aboutsummaryrefslogtreecommitdiff
path: root/arch/powerpc/kernel/time.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/powerpc/kernel/time.c')
-rw-r--r--arch/powerpc/kernel/time.c1331
1 files changed, 609 insertions, 722 deletions
diff --git a/arch/powerpc/kernel/time.c b/arch/powerpc/kernel/time.c
index 7a3c3f791ad..9fff9cdcc51 100644
--- a/arch/powerpc/kernel/time.c
+++ b/arch/powerpc/kernel/time.c
@@ -17,8 +17,7 @@
*
* TODO (not necessarily in this file):
* - improve precision and reproducibility of timebase frequency
- * measurement at boot time. (for iSeries, we calibrate the timebase
- * against the Titan chip's clock.)
+ * measurement at boot time.
* - for astronomical applications: add a new function to get
* non ambiguous timestamps even around leap seconds. This needs
* a new timestamp format and a good name.
@@ -33,7 +32,7 @@
*/
#include <linux/errno.h>
-#include <linux/module.h>
+#include <linux/export.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
@@ -43,6 +42,7 @@
#include <linux/timex.h>
#include <linux/kernel_stat.h>
#include <linux/time.h>
+#include <linux/clockchips.h>
#include <linux/init.h>
#include <linux/profile.h>
#include <linux/cpu.h>
@@ -51,6 +51,10 @@
#include <linux/rtc.h>
#include <linux/jiffies.h>
#include <linux/posix-timers.h>
+#include <linux/irq.h>
+#include <linux/delay.h>
+#include <linux/irq_work.h>
+#include <asm/trace.h>
#include <asm/io.h>
#include <asm/processor.h>
@@ -64,25 +68,51 @@
#include <asm/div64.h>
#include <asm/smp.h>
#include <asm/vdso_datapage.h>
-#ifdef CONFIG_PPC64
#include <asm/firmware.h>
-#endif
-#ifdef CONFIG_PPC_ISERIES
-#include <asm/iseries/it_lp_queue.h>
-#include <asm/iseries/hv_call_xm.h>
-#endif
-#include <asm/smp.h>
+#include <asm/cputime.h>
-/* keep track of when we need to update the rtc */
-time_t last_rtc_update;
-#ifdef CONFIG_PPC_ISERIES
-unsigned long iSeries_recal_titan = 0;
-unsigned long iSeries_recal_tb = 0;
-static unsigned long first_settimeofday = 1;
-#endif
+/* powerpc clocksource/clockevent code */
+
+#include <linux/clockchips.h>
+#include <linux/timekeeper_internal.h>
+
+static cycle_t rtc_read(struct clocksource *);
+static struct clocksource clocksource_rtc = {
+ .name = "rtc",
+ .rating = 400,
+ .flags = CLOCK_SOURCE_IS_CONTINUOUS,
+ .mask = CLOCKSOURCE_MASK(64),
+ .read = rtc_read,
+};
+
+static cycle_t timebase_read(struct clocksource *);
+static struct clocksource clocksource_timebase = {
+ .name = "timebase",
+ .rating = 400,
+ .flags = CLOCK_SOURCE_IS_CONTINUOUS,
+ .mask = CLOCKSOURCE_MASK(64),
+ .read = timebase_read,
+};
+
+#define DECREMENTER_MAX 0x7fffffff
+
+static int decrementer_set_next_event(unsigned long evt,
+ struct clock_event_device *dev);
+static void decrementer_set_mode(enum clock_event_mode mode,
+ struct clock_event_device *dev);
-/* The decrementer counts down by 128 every 128ns on a 601. */
-#define DECREMENTER_COUNT_601 (1000000000 / HZ)
+struct clock_event_device decrementer_clockevent = {
+ .name = "decrementer",
+ .rating = 200,
+ .irq = 0,
+ .set_next_event = decrementer_set_next_event,
+ .set_mode = decrementer_set_mode,
+ .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP,
+};
+EXPORT_SYMBOL(decrementer_clockevent);
+
+DEFINE_PER_CPU(u64, decrementers_next_tb);
+static DEFINE_PER_CPU(struct clock_event_device, decrementers);
#define XSEC_PER_SEC (1024*1024)
@@ -98,50 +128,42 @@ unsigned long tb_ticks_per_usec = 100; /* sane default */
EXPORT_SYMBOL(tb_ticks_per_usec);
unsigned long tb_ticks_per_sec;
EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
-u64 tb_to_xs;
-unsigned tb_to_us;
-
-#define TICKLEN_SCALE TICK_LENGTH_SHIFT
-u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
-u64 ticklen_to_xs; /* 0.64 fraction */
-
-/* If last_tick_len corresponds to about 1/HZ seconds, then
- last_tick_len << TICKLEN_SHIFT will be about 2^63. */
-#define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
DEFINE_SPINLOCK(rtc_lock);
EXPORT_SYMBOL_GPL(rtc_lock);
-u64 tb_to_ns_scale;
-unsigned tb_to_ns_shift;
-
-struct gettimeofday_struct do_gtod;
-
-extern unsigned long wall_jiffies;
+static u64 tb_to_ns_scale __read_mostly;
+static unsigned tb_to_ns_shift __read_mostly;
+static u64 boot_tb __read_mostly;
extern struct timezone sys_tz;
static long timezone_offset;
unsigned long ppc_proc_freq;
+EXPORT_SYMBOL_GPL(ppc_proc_freq);
unsigned long ppc_tb_freq;
+EXPORT_SYMBOL_GPL(ppc_tb_freq);
-static u64 tb_last_jiffy __cacheline_aligned_in_smp;
-static DEFINE_PER_CPU(u64, last_jiffy);
-
-#ifdef CONFIG_VIRT_CPU_ACCOUNTING
+#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
/*
* Factors for converting from cputime_t (timebase ticks) to
- * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
+ * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
* These are all stored as 0.64 fixed-point binary fractions.
*/
u64 __cputime_jiffies_factor;
EXPORT_SYMBOL(__cputime_jiffies_factor);
-u64 __cputime_msec_factor;
-EXPORT_SYMBOL(__cputime_msec_factor);
+u64 __cputime_usec_factor;
+EXPORT_SYMBOL(__cputime_usec_factor);
u64 __cputime_sec_factor;
EXPORT_SYMBOL(__cputime_sec_factor);
u64 __cputime_clockt_factor;
EXPORT_SYMBOL(__cputime_clockt_factor);
+DEFINE_PER_CPU(unsigned long, cputime_last_delta);
+DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
+
+cputime_t cputime_one_jiffy;
+
+void (*dtl_consumer)(struct dtl_entry *, u64);
static void calc_cputime_factors(void)
{
@@ -149,8 +171,8 @@ static void calc_cputime_factors(void)
div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
__cputime_jiffies_factor = res.result_low;
- div128_by_32(1000, 0, tb_ticks_per_sec, &res);
- __cputime_msec_factor = res.result_low;
+ div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
+ __cputime_usec_factor = res.result_low;
div128_by_32(1, 0, tb_ticks_per_sec, &res);
__cputime_sec_factor = res.result_low;
div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
@@ -158,194 +180,209 @@ static void calc_cputime_factors(void)
}
/*
- * Read the PURR on systems that have it, otherwise the timebase.
+ * Read the SPURR on systems that have it, otherwise the PURR,
+ * or if that doesn't exist return the timebase value passed in.
*/
-static u64 read_purr(void)
+static u64 read_spurr(u64 tb)
{
+ if (cpu_has_feature(CPU_FTR_SPURR))
+ return mfspr(SPRN_SPURR);
if (cpu_has_feature(CPU_FTR_PURR))
return mfspr(SPRN_PURR);
- return mftb();
+ return tb;
}
+#ifdef CONFIG_PPC_SPLPAR
+
/*
- * Account time for a transition between system, hard irq
- * or soft irq state.
+ * Scan the dispatch trace log and count up the stolen time.
+ * Should be called with interrupts disabled.
*/
-void account_system_vtime(struct task_struct *tsk)
+static u64 scan_dispatch_log(u64 stop_tb)
{
- u64 now, delta;
- unsigned long flags;
-
- local_irq_save(flags);
- now = read_purr();
- delta = now - get_paca()->startpurr;
- get_paca()->startpurr = now;
- if (!in_interrupt()) {
- delta += get_paca()->system_time;
- get_paca()->system_time = 0;
+ u64 i = local_paca->dtl_ridx;
+ struct dtl_entry *dtl = local_paca->dtl_curr;
+ struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
+ struct lppaca *vpa = local_paca->lppaca_ptr;
+ u64 tb_delta;
+ u64 stolen = 0;
+ u64 dtb;
+
+ if (!dtl)
+ return 0;
+
+ if (i == be64_to_cpu(vpa->dtl_idx))
+ return 0;
+ while (i < be64_to_cpu(vpa->dtl_idx)) {
+ dtb = be64_to_cpu(dtl->timebase);
+ tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
+ be32_to_cpu(dtl->ready_to_enqueue_time);
+ barrier();
+ if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
+ /* buffer has overflowed */
+ i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
+ dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
+ continue;
+ }
+ if (dtb > stop_tb)
+ break;
+ if (dtl_consumer)
+ dtl_consumer(dtl, i);
+ stolen += tb_delta;
+ ++i;
+ ++dtl;
+ if (dtl == dtl_end)
+ dtl = local_paca->dispatch_log;
}
- account_system_time(tsk, 0, delta);
- local_irq_restore(flags);
+ local_paca->dtl_ridx = i;
+ local_paca->dtl_curr = dtl;
+ return stolen;
}
/*
- * Transfer the user and system times accumulated in the paca
- * by the exception entry and exit code to the generic process
- * user and system time records.
- * Must be called with interrupts disabled.
+ * Accumulate stolen time by scanning the dispatch trace log.
+ * Called on entry from user mode.
*/
-void account_process_vtime(struct task_struct *tsk)
+void accumulate_stolen_time(void)
{
- cputime_t utime;
+ u64 sst, ust;
- utime = get_paca()->user_time;
- get_paca()->user_time = 0;
- account_user_time(tsk, utime);
-}
+ u8 save_soft_enabled = local_paca->soft_enabled;
-static void account_process_time(struct pt_regs *regs)
-{
- int cpu = smp_processor_id();
+ /* We are called early in the exception entry, before
+ * soft/hard_enabled are sync'ed to the expected state
+ * for the exception. We are hard disabled but the PACA
+ * needs to reflect that so various debug stuff doesn't
+ * complain
+ */
+ local_paca->soft_enabled = 0;
+
+ sst = scan_dispatch_log(local_paca->starttime_user);
+ ust = scan_dispatch_log(local_paca->starttime);
+ local_paca->system_time -= sst;
+ local_paca->user_time -= ust;
+ local_paca->stolen_time += ust + sst;
- account_process_vtime(current);
- run_local_timers();
- if (rcu_pending(cpu))
- rcu_check_callbacks(cpu, user_mode(regs));
- scheduler_tick();
- run_posix_cpu_timers(current);
+ local_paca->soft_enabled = save_soft_enabled;
}
-#ifdef CONFIG_PPC_SPLPAR
-/*
- * Stuff for accounting stolen time.
- */
-struct cpu_purr_data {
- int initialized; /* thread is running */
- u64 tb0; /* timebase at origin time */
- u64 purr0; /* PURR at origin time */
- u64 tb; /* last TB value read */
- u64 purr; /* last PURR value read */
- u64 stolen; /* stolen time so far */
- spinlock_t lock;
-};
+static inline u64 calculate_stolen_time(u64 stop_tb)
+{
+ u64 stolen = 0;
+
+ if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) {
+ stolen = scan_dispatch_log(stop_tb);
+ get_paca()->system_time -= stolen;
+ }
-static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
+ stolen += get_paca()->stolen_time;
+ get_paca()->stolen_time = 0;
+ return stolen;
+}
-static void snapshot_tb_and_purr(void *data)
+#else /* CONFIG_PPC_SPLPAR */
+static inline u64 calculate_stolen_time(u64 stop_tb)
{
- struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
-
- p->tb0 = mftb();
- p->purr0 = mfspr(SPRN_PURR);
- p->tb = p->tb0;
- p->purr = 0;
- wmb();
- p->initialized = 1;
+ return 0;
}
+#endif /* CONFIG_PPC_SPLPAR */
+
/*
- * Called during boot when all cpus have come up.
+ * Account time for a transition between system, hard irq
+ * or soft irq state.
*/
-void snapshot_timebases(void)
+static u64 vtime_delta(struct task_struct *tsk,
+ u64 *sys_scaled, u64 *stolen)
{
- int cpu;
+ u64 now, nowscaled, deltascaled;
+ u64 udelta, delta, user_scaled;
- if (!cpu_has_feature(CPU_FTR_PURR))
- return;
- for_each_possible_cpu(cpu)
- spin_lock_init(&per_cpu(cpu_purr_data, cpu).lock);
- on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
-}
+ WARN_ON_ONCE(!irqs_disabled());
-void calculate_steal_time(void)
-{
- u64 tb, purr, t0;
- s64 stolen;
- struct cpu_purr_data *p0, *pme, *phim;
- int cpu;
+ now = mftb();
+ nowscaled = read_spurr(now);
+ get_paca()->system_time += now - get_paca()->starttime;
+ get_paca()->starttime = now;
+ deltascaled = nowscaled - get_paca()->startspurr;
+ get_paca()->startspurr = nowscaled;
- if (!cpu_has_feature(CPU_FTR_PURR))
- return;
- cpu = smp_processor_id();
- pme = &per_cpu(cpu_purr_data, cpu);
- if (!pme->initialized)
- return; /* this can happen in early boot */
- p0 = &per_cpu(cpu_purr_data, cpu & ~1);
- phim = &per_cpu(cpu_purr_data, cpu ^ 1);
- spin_lock(&p0->lock);
- tb = mftb();
- purr = mfspr(SPRN_PURR) - pme->purr0;
- if (!phim->initialized || !cpu_online(cpu ^ 1)) {
- stolen = (tb - pme->tb) - (purr - pme->purr);
- } else {
- t0 = pme->tb0;
- if (phim->tb0 < t0)
- t0 = phim->tb0;
- stolen = phim->tb - t0 - phim->purr - purr - p0->stolen;
- }
- if (stolen > 0) {
- account_steal_time(current, stolen);
- p0->stolen += stolen;
+ *stolen = calculate_stolen_time(now);
+
+ delta = get_paca()->system_time;
+ get_paca()->system_time = 0;
+ udelta = get_paca()->user_time - get_paca()->utime_sspurr;
+ get_paca()->utime_sspurr = get_paca()->user_time;
+
+ /*
+ * Because we don't read the SPURR on every kernel entry/exit,
+ * deltascaled includes both user and system SPURR ticks.
+ * Apportion these ticks to system SPURR ticks and user
+ * SPURR ticks in the same ratio as the system time (delta)
+ * and user time (udelta) values obtained from the timebase
+ * over the same interval. The system ticks get accounted here;
+ * the user ticks get saved up in paca->user_time_scaled to be
+ * used by account_process_tick.
+ */
+ *sys_scaled = delta;
+ user_scaled = udelta;
+ if (deltascaled != delta + udelta) {
+ if (udelta) {
+ *sys_scaled = deltascaled * delta / (delta + udelta);
+ user_scaled = deltascaled - *sys_scaled;
+ } else {
+ *sys_scaled = deltascaled;
+ }
}
- pme->tb = tb;
- pme->purr = purr;
- spin_unlock(&p0->lock);
+ get_paca()->user_time_scaled += user_scaled;
+
+ return delta;
}
-/*
- * Must be called before the cpu is added to the online map when
- * a cpu is being brought up at runtime.
- */
-static void snapshot_purr(void)
+void vtime_account_system(struct task_struct *tsk)
{
- int cpu;
- u64 purr;
- struct cpu_purr_data *p0, *pme, *phim;
- unsigned long flags;
+ u64 delta, sys_scaled, stolen;
- if (!cpu_has_feature(CPU_FTR_PURR))
- return;
- cpu = smp_processor_id();
- pme = &per_cpu(cpu_purr_data, cpu);
- p0 = &per_cpu(cpu_purr_data, cpu & ~1);
- phim = &per_cpu(cpu_purr_data, cpu ^ 1);
- spin_lock_irqsave(&p0->lock, flags);
- pme->tb = pme->tb0 = mftb();
- purr = mfspr(SPRN_PURR);
- if (!phim->initialized) {
- pme->purr = 0;
- pme->purr0 = purr;
- } else {
- /* set p->purr and p->purr0 for no change in p0->stolen */
- pme->purr = phim->tb - phim->tb0 - phim->purr - p0->stolen;
- pme->purr0 = purr - pme->purr;
- }
- pme->initialized = 1;
- spin_unlock_irqrestore(&p0->lock, flags);
+ delta = vtime_delta(tsk, &sys_scaled, &stolen);
+ account_system_time(tsk, 0, delta, sys_scaled);
+ if (stolen)
+ account_steal_time(stolen);
}
+EXPORT_SYMBOL_GPL(vtime_account_system);
-#endif /* CONFIG_PPC_SPLPAR */
-
-#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
-#define calc_cputime_factors()
-#define account_process_time(regs) update_process_times(user_mode(regs))
-#define calculate_steal_time() do { } while (0)
-#endif
+void vtime_account_idle(struct task_struct *tsk)
+{
+ u64 delta, sys_scaled, stolen;
-#if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
-#define snapshot_purr() do { } while (0)
-#endif
+ delta = vtime_delta(tsk, &sys_scaled, &stolen);
+ account_idle_time(delta + stolen);
+}
/*
- * Called when a cpu comes up after the system has finished booting,
- * i.e. as a result of a hotplug cpu action.
+ * Transfer the user time accumulated in the paca
+ * by the exception entry and exit code to the generic
+ * process user time records.
+ * Must be called with interrupts disabled.
+ * Assumes that vtime_account_system/idle() has been called
+ * recently (i.e. since the last entry from usermode) so that
+ * get_paca()->user_time_scaled is up to date.
*/
-void snapshot_timebase(void)
+void vtime_account_user(struct task_struct *tsk)
{
- __get_cpu_var(last_jiffy) = get_tb();
- snapshot_purr();
+ cputime_t utime, utimescaled;
+
+ utime = get_paca()->user_time;
+ utimescaled = get_paca()->user_time_scaled;
+ get_paca()->user_time = 0;
+ get_paca()->user_time_scaled = 0;
+ get_paca()->utime_sspurr = 0;
+ account_user_time(tsk, utime, utimescaled);
}
+#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
+#define calc_cputime_factors()
+#endif
+
void __delay(unsigned long loops)
{
unsigned long start;
@@ -374,270 +411,114 @@ void udelay(unsigned long usecs)
}
EXPORT_SYMBOL(udelay);
-static __inline__ void timer_check_rtc(void)
+#ifdef CONFIG_SMP
+unsigned long profile_pc(struct pt_regs *regs)
{
- /*
- * update the rtc when needed, this should be performed on the
- * right fraction of a second. Half or full second ?
- * Full second works on mk48t59 clocks, others need testing.
- * Note that this update is basically only used through
- * the adjtimex system calls. Setting the HW clock in
- * any other way is a /dev/rtc and userland business.
- * This is still wrong by -0.5/+1.5 jiffies because of the
- * timer interrupt resolution and possible delay, but here we
- * hit a quantization limit which can only be solved by higher
- * resolution timers and decoupling time management from timer
- * interrupts. This is also wrong on the clocks
- * which require being written at the half second boundary.
- * We should have an rtc call that only sets the minutes and
- * seconds like on Intel to avoid problems with non UTC clocks.
- */
- if (ppc_md.set_rtc_time && ntp_synced() &&
- xtime.tv_sec - last_rtc_update >= 659 &&
- abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) {
- struct rtc_time tm;
- to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
- tm.tm_year -= 1900;
- tm.tm_mon -= 1;
- if (ppc_md.set_rtc_time(&tm) == 0)
- last_rtc_update = xtime.tv_sec + 1;
- else
- /* Try again one minute later */
- last_rtc_update += 60;
- }
+ unsigned long pc = instruction_pointer(regs);
+
+ if (in_lock_functions(pc))
+ return regs->link;
+
+ return pc;
}
+EXPORT_SYMBOL(profile_pc);
+#endif
+
+#ifdef CONFIG_IRQ_WORK
/*
- * This version of gettimeofday has microsecond resolution.
+ * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
*/
-static inline void __do_gettimeofday(struct timeval *tv)
+#ifdef CONFIG_PPC64
+static inline unsigned long test_irq_work_pending(void)
{
- unsigned long sec, usec;
- u64 tb_ticks, xsec;
- struct gettimeofday_vars *temp_varp;
- u64 temp_tb_to_xs, temp_stamp_xsec;
+ unsigned long x;
- /*
- * These calculations are faster (gets rid of divides)
- * if done in units of 1/2^20 rather than microseconds.
- * The conversion to microseconds at the end is done
- * without a divide (and in fact, without a multiply)
- */
- temp_varp = do_gtod.varp;
-
- /* Sampling the time base must be done after loading
- * do_gtod.varp in order to avoid racing with update_gtod.
- */
- data_barrier(temp_varp);
- tb_ticks = get_tb() - temp_varp->tb_orig_stamp;
- temp_tb_to_xs = temp_varp->tb_to_xs;
- temp_stamp_xsec = temp_varp->stamp_xsec;
- xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
- sec = xsec / XSEC_PER_SEC;
- usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
- usec = SCALE_XSEC(usec, 1000000);
-
- tv->tv_sec = sec;
- tv->tv_usec = usec;
+ asm volatile("lbz %0,%1(13)"
+ : "=r" (x)
+ : "i" (offsetof(struct paca_struct, irq_work_pending)));
+ return x;
}
-void do_gettimeofday(struct timeval *tv)
+static inline void set_irq_work_pending_flag(void)
{
- if (__USE_RTC()) {
- /* do this the old way */
- unsigned long flags, seq;
- unsigned int sec, nsec, usec;
-
- do {
- seq = read_seqbegin_irqsave(&xtime_lock, flags);
- sec = xtime.tv_sec;
- nsec = xtime.tv_nsec + tb_ticks_since(tb_last_jiffy);
- } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
- usec = nsec / 1000;
- while (usec >= 1000000) {
- usec -= 1000000;
- ++sec;
- }
- tv->tv_sec = sec;
- tv->tv_usec = usec;
- return;
- }
- __do_gettimeofday(tv);
+ asm volatile("stb %0,%1(13)" : :
+ "r" (1),
+ "i" (offsetof(struct paca_struct, irq_work_pending)));
}
-EXPORT_SYMBOL(do_gettimeofday);
-
-/*
- * There are two copies of tb_to_xs and stamp_xsec so that no
- * lock is needed to access and use these values in
- * do_gettimeofday. We alternate the copies and as long as a
- * reasonable time elapses between changes, there will never
- * be inconsistent values. ntpd has a minimum of one minute
- * between updates.
- */
-static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
- u64 new_tb_to_xs)
+static inline void clear_irq_work_pending(void)
{
- unsigned temp_idx;
- struct gettimeofday_vars *temp_varp;
+ asm volatile("stb %0,%1(13)" : :
+ "r" (0),
+ "i" (offsetof(struct paca_struct, irq_work_pending)));
+}
- temp_idx = (do_gtod.var_idx == 0);
- temp_varp = &do_gtod.vars[temp_idx];
+#else /* 32-bit */
- temp_varp->tb_to_xs = new_tb_to_xs;
- temp_varp->tb_orig_stamp = new_tb_stamp;
- temp_varp->stamp_xsec = new_stamp_xsec;
- smp_mb();
- do_gtod.varp = temp_varp;
- do_gtod.var_idx = temp_idx;
+DEFINE_PER_CPU(u8, irq_work_pending);
- /*
- * tb_update_count is used to allow the userspace gettimeofday code
- * to assure itself that it sees a consistent view of the tb_to_xs and
- * stamp_xsec variables. It reads the tb_update_count, then reads
- * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
- * the two values of tb_update_count match and are even then the
- * tb_to_xs and stamp_xsec values are consistent. If not, then it
- * loops back and reads them again until this criteria is met.
- * We expect the caller to have done the first increment of
- * vdso_data->tb_update_count already.
- */
- vdso_data->tb_orig_stamp = new_tb_stamp;
- vdso_data->stamp_xsec = new_stamp_xsec;
- vdso_data->tb_to_xs = new_tb_to_xs;
- vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
- vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
- smp_wmb();
- ++(vdso_data->tb_update_count);
-}
+#define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1
+#define test_irq_work_pending() __get_cpu_var(irq_work_pending)
+#define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0
-/*
- * When the timebase - tb_orig_stamp gets too big, we do a manipulation
- * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
- * difference tb - tb_orig_stamp small enough to always fit inside a
- * 32 bits number. This is a requirement of our fast 32 bits userland
- * implementation in the vdso. If we "miss" a call to this function
- * (interrupt latency, CPU locked in a spinlock, ...) and we end up
- * with a too big difference, then the vdso will fallback to calling
- * the syscall
- */
-static __inline__ void timer_recalc_offset(u64 cur_tb)
+#endif /* 32 vs 64 bit */
+
+void arch_irq_work_raise(void)
{
- unsigned long offset;
- u64 new_stamp_xsec;
- u64 tlen, t2x;
- u64 tb, xsec_old, xsec_new;
- struct gettimeofday_vars *varp;
+ preempt_disable();
+ set_irq_work_pending_flag();
+ set_dec(1);
+ preempt_enable();
+}
- if (__USE_RTC())
- return;
- tlen = current_tick_length();
- offset = cur_tb - do_gtod.varp->tb_orig_stamp;
- if (tlen == last_tick_len && offset < 0x80000000u)
- return;
- if (tlen != last_tick_len) {
- t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs);
- last_tick_len = tlen;
- } else
- t2x = do_gtod.varp->tb_to_xs;
- new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
- do_div(new_stamp_xsec, 1000000000);
- new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
+#else /* CONFIG_IRQ_WORK */
- ++vdso_data->tb_update_count;
- smp_mb();
+#define test_irq_work_pending() 0
+#define clear_irq_work_pending()
- /*
- * Make sure time doesn't go backwards for userspace gettimeofday.
- */
- tb = get_tb();
- varp = do_gtod.varp;
- xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs)
- + varp->stamp_xsec;
- xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec;
- if (xsec_new < xsec_old)
- new_stamp_xsec += xsec_old - xsec_new;
-
- update_gtod(cur_tb, new_stamp_xsec, t2x);
-}
+#endif /* CONFIG_IRQ_WORK */
-#ifdef CONFIG_SMP
-unsigned long profile_pc(struct pt_regs *regs)
+void __timer_interrupt(void)
{
- unsigned long pc = instruction_pointer(regs);
-
- if (in_lock_functions(pc))
- return regs->link;
+ struct pt_regs *regs = get_irq_regs();
+ u64 *next_tb = &__get_cpu_var(decrementers_next_tb);
+ struct clock_event_device *evt = &__get_cpu_var(decrementers);
+ u64 now;
- return pc;
-}
-EXPORT_SYMBOL(profile_pc);
-#endif
+ trace_timer_interrupt_entry(regs);
-#ifdef CONFIG_PPC_ISERIES
+ if (test_irq_work_pending()) {
+ clear_irq_work_pending();
+ irq_work_run();
+ }
-/*
- * This function recalibrates the timebase based on the 49-bit time-of-day
- * value in the Titan chip. The Titan is much more accurate than the value
- * returned by the service processor for the timebase frequency.
- */
+ now = get_tb_or_rtc();
+ if (now >= *next_tb) {
+ *next_tb = ~(u64)0;
+ if (evt->event_handler)
+ evt->event_handler(evt);
+ __get_cpu_var(irq_stat).timer_irqs_event++;
+ } else {
+ now = *next_tb - now;
+ if (now <= DECREMENTER_MAX)
+ set_dec((int)now);
+ /* We may have raced with new irq work */
+ if (test_irq_work_pending())
+ set_dec(1);
+ __get_cpu_var(irq_stat).timer_irqs_others++;
+ }
-static void iSeries_tb_recal(void)
-{
- struct div_result divres;
- unsigned long titan, tb;
- tb = get_tb();
- titan = HvCallXm_loadTod();
- if ( iSeries_recal_titan ) {
- unsigned long tb_ticks = tb - iSeries_recal_tb;
- unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
- unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
- unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
- long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
- char sign = '+';
- /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
- new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
-
- if ( tick_diff < 0 ) {
- tick_diff = -tick_diff;
- sign = '-';
- }
- if ( tick_diff ) {
- if ( tick_diff < tb_ticks_per_jiffy/25 ) {
- printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
- new_tb_ticks_per_jiffy, sign, tick_diff );
- tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
- tb_ticks_per_sec = new_tb_ticks_per_sec;
- calc_cputime_factors();
- div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
- do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
- tb_to_xs = divres.result_low;
- do_gtod.varp->tb_to_xs = tb_to_xs;
- vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
- vdso_data->tb_to_xs = tb_to_xs;
- }
- else {
- printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
- " new tb_ticks_per_jiffy = %lu\n"
- " old tb_ticks_per_jiffy = %lu\n",
- new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
- }
- }
+#ifdef CONFIG_PPC64
+ /* collect purr register values often, for accurate calculations */
+ if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
+ struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
+ cu->current_tb = mfspr(SPRN_PURR);
}
- iSeries_recal_titan = titan;
- iSeries_recal_tb = tb;
-}
#endif
-/*
- * For iSeries shared processors, we have to let the hypervisor
- * set the hardware decrementer. We set a virtual decrementer
- * in the lppaca and call the hypervisor if the virtual
- * decrementer is less than the current value in the hardware
- * decrementer. (almost always the new decrementer value will
- * be greater than the current hardware decementer so the hypervisor
- * call will not be needed)
- */
+ trace_timer_interrupt_exit(regs);
+}
/*
* timer_interrupt - gets called when the decrementer overflows,
@@ -645,125 +526,84 @@ static void iSeries_tb_recal(void)
*/
void timer_interrupt(struct pt_regs * regs)
{
- int next_dec;
- int cpu = smp_processor_id();
- unsigned long ticks;
- u64 tb_next_jiffy;
+ struct pt_regs *old_regs;
+ u64 *next_tb = &__get_cpu_var(decrementers_next_tb);
-#ifdef CONFIG_PPC32
- if (atomic_read(&ppc_n_lost_interrupts) != 0)
- do_IRQ(regs);
-#endif
-
- irq_enter();
+ /* Ensure a positive value is written to the decrementer, or else
+ * some CPUs will continue to take decrementer exceptions.
+ */
+ set_dec(DECREMENTER_MAX);
- profile_tick(CPU_PROFILING, regs);
- calculate_steal_time();
+ /* Some implementations of hotplug will get timer interrupts while
+ * offline, just ignore these and we also need to set
+ * decrementers_next_tb as MAX to make sure __check_irq_replay
+ * don't replay timer interrupt when return, otherwise we'll trap
+ * here infinitely :(
+ */
+ if (!cpu_online(smp_processor_id())) {
+ *next_tb = ~(u64)0;
+ return;
+ }
-#ifdef CONFIG_PPC_ISERIES
- get_lppaca()->int_dword.fields.decr_int = 0;
-#endif
+ /* Conditionally hard-enable interrupts now that the DEC has been
+ * bumped to its maximum value
+ */
+ may_hard_irq_enable();
- while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
- >= tb_ticks_per_jiffy) {
- /* Update last_jiffy */
- per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
- /* Handle RTCL overflow on 601 */
- if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
- per_cpu(last_jiffy, cpu) -= 1000000000;
-
- /*
- * We cannot disable the decrementer, so in the period
- * between this cpu's being marked offline in cpu_online_map
- * and calling stop-self, it is taking timer interrupts.
- * Avoid calling into the scheduler rebalancing code if this
- * is the case.
- */
- if (!cpu_is_offline(cpu))
- account_process_time(regs);
-
- /*
- * No need to check whether cpu is offline here; boot_cpuid
- * should have been fixed up by now.
- */
- if (cpu != boot_cpuid)
- continue;
- write_seqlock(&xtime_lock);
- tb_next_jiffy = tb_last_jiffy + tb_ticks_per_jiffy;
- if (per_cpu(last_jiffy, cpu) >= tb_next_jiffy) {
- tb_last_jiffy = tb_next_jiffy;
- do_timer(regs);
- timer_recalc_offset(tb_last_jiffy);
- timer_check_rtc();
- }
- write_sequnlock(&xtime_lock);
- }
-
- next_dec = tb_ticks_per_jiffy - ticks;
- set_dec(next_dec);
-
-#ifdef CONFIG_PPC_ISERIES
- if (hvlpevent_is_pending())
- process_hvlpevents(regs);
+#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
+ if (atomic_read(&ppc_n_lost_interrupts) != 0)
+ do_IRQ(regs);
#endif
-#ifdef CONFIG_PPC64
- /* collect purr register values often, for accurate calculations */
- if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
- struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
- cu->current_tb = mfspr(SPRN_PURR);
- }
-#endif
+ old_regs = set_irq_regs(regs);
+ irq_enter();
+ __timer_interrupt();
irq_exit();
+ set_irq_regs(old_regs);
}
-void wakeup_decrementer(void)
+/*
+ * Hypervisor decrementer interrupts shouldn't occur but are sometimes
+ * left pending on exit from a KVM guest. We don't need to do anything
+ * to clear them, as they are edge-triggered.
+ */
+void hdec_interrupt(struct pt_regs *regs)
{
- unsigned long ticks;
+}
- /*
- * The timebase gets saved on sleep and restored on wakeup,
- * so all we need to do is to reset the decrementer.
+#ifdef CONFIG_SUSPEND
+static void generic_suspend_disable_irqs(void)
+{
+ /* Disable the decrementer, so that it doesn't interfere
+ * with suspending.
*/
- ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
- if (ticks < tb_ticks_per_jiffy)
- ticks = tb_ticks_per_jiffy - ticks;
- else
- ticks = 1;
- set_dec(ticks);
+
+ set_dec(DECREMENTER_MAX);
+ local_irq_disable();
+ set_dec(DECREMENTER_MAX);
}
-#ifdef CONFIG_SMP
-void __init smp_space_timers(unsigned int max_cpus)
+static void generic_suspend_enable_irqs(void)
{
- int i;
- unsigned long half = tb_ticks_per_jiffy / 2;
- unsigned long offset = tb_ticks_per_jiffy / max_cpus;
- u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
+ local_irq_enable();
+}
- /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
- previous_tb -= tb_ticks_per_jiffy;
- /*
- * The stolen time calculation for POWER5 shared-processor LPAR
- * systems works better if the two threads' timebase interrupts
- * are staggered by half a jiffy with respect to each other.
- */
- for_each_possible_cpu(i) {
- if (i == boot_cpuid)
- continue;
- if (i == (boot_cpuid ^ 1))
- per_cpu(last_jiffy, i) =
- per_cpu(last_jiffy, boot_cpuid) - half;
- else if (i & 1)
- per_cpu(last_jiffy, i) =
- per_cpu(last_jiffy, i ^ 1) + half;
- else {
- previous_tb += offset;
- per_cpu(last_jiffy, i) = previous_tb;
- }
- }
+/* Overrides the weak version in kernel/power/main.c */
+void arch_suspend_disable_irqs(void)
+{
+ if (ppc_md.suspend_disable_irqs)
+ ppc_md.suspend_disable_irqs();
+ generic_suspend_disable_irqs();
+}
+
+/* Overrides the weak version in kernel/power/main.c */
+void arch_suspend_enable_irqs(void)
+{
+ generic_suspend_enable_irqs();
+ if (ppc_md.suspend_enable_irqs)
+ ppc_md.suspend_enable_irqs();
}
#endif
@@ -778,96 +618,20 @@ unsigned long long sched_clock(void)
{
if (__USE_RTC())
return get_rtc();
- return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
-}
-
-int do_settimeofday(struct timespec *tv)
-{
- time_t wtm_sec, new_sec = tv->tv_sec;
- long wtm_nsec, new_nsec = tv->tv_nsec;
- unsigned long flags;
- u64 new_xsec;
- unsigned long tb_delta;
-
- if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
- return -EINVAL;
-
- write_seqlock_irqsave(&xtime_lock, flags);
-
- /*
- * Updating the RTC is not the job of this code. If the time is
- * stepped under NTP, the RTC will be updated after STA_UNSYNC
- * is cleared. Tools like clock/hwclock either copy the RTC
- * to the system time, in which case there is no point in writing
- * to the RTC again, or write to the RTC but then they don't call
- * settimeofday to perform this operation.
- */
-#ifdef CONFIG_PPC_ISERIES
- if (first_settimeofday) {
- iSeries_tb_recal();
- first_settimeofday = 0;
- }
-#endif
-
- /* Make userspace gettimeofday spin until we're done. */
- ++vdso_data->tb_update_count;
- smp_mb();
-
- /*
- * Subtract off the number of nanoseconds since the
- * beginning of the last tick.
- * Note that since we don't increment jiffies_64 anywhere other
- * than in do_timer (since we don't have a lost tick problem),
- * wall_jiffies will always be the same as jiffies,
- * and therefore the (jiffies - wall_jiffies) computation
- * has been removed.
- */
- tb_delta = tb_ticks_since(tb_last_jiffy);
- tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */
- new_nsec -= SCALE_XSEC(tb_delta, 1000000000);
-
- wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
- wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
-
- set_normalized_timespec(&xtime, new_sec, new_nsec);
- set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
-
- /* In case of a large backwards jump in time with NTP, we want the
- * clock to be updated as soon as the PLL is again in lock.
- */
- last_rtc_update = new_sec - 658;
-
- ntp_clear();
-
- new_xsec = xtime.tv_nsec;
- if (new_xsec != 0) {
- new_xsec *= XSEC_PER_SEC;
- do_div(new_xsec, NSEC_PER_SEC);
- }
- new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC;
- update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
-
- vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
- vdso_data->tz_dsttime = sys_tz.tz_dsttime;
-
- write_sequnlock_irqrestore(&xtime_lock, flags);
- clock_was_set();
- return 0;
+ return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
}
-EXPORT_SYMBOL(do_settimeofday);
-
static int __init get_freq(char *name, int cells, unsigned long *val)
{
struct device_node *cpu;
- const unsigned int *fp;
+ const __be32 *fp;
int found = 0;
/* The cpu node should have timebase and clock frequency properties */
cpu = of_find_node_by_type(NULL, "cpu");
if (cpu) {
- fp = get_property(cpu, name, NULL);
+ fp = of_get_property(cpu, name, NULL);
if (fp) {
found = 1;
*val = of_read_ulong(fp, cells);
@@ -879,6 +643,17 @@ static int __init get_freq(char *name, int cells, unsigned long *val)
return found;
}
+void start_cpu_decrementer(void)
+{
+#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
+ /* Clear any pending timer interrupts */
+ mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
+
+ /* Enable decrementer interrupt */
+ mtspr(SPRN_TCR, TCR_DIE);
+#endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
+}
+
void __init generic_calibrate_decr(void)
{
ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
@@ -898,49 +673,221 @@ void __init generic_calibrate_decr(void)
printk(KERN_ERR "WARNING: Estimating processor frequency "
"(not found)\n");
}
+}
+
+int update_persistent_clock(struct timespec now)
+{
+ struct rtc_time tm;
-#ifdef CONFIG_BOOKE
- /* Set the time base to zero */
- mtspr(SPRN_TBWL, 0);
- mtspr(SPRN_TBWU, 0);
+ if (!ppc_md.set_rtc_time)
+ return -ENODEV;
- /* Clear any pending timer interrupts */
- mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
+ to_tm(now.tv_sec + 1 + timezone_offset, &tm);
+ tm.tm_year -= 1900;
+ tm.tm_mon -= 1;
- /* Enable decrementer interrupt */
- mtspr(SPRN_TCR, TCR_DIE);
-#endif
+ return ppc_md.set_rtc_time(&tm);
}
-unsigned long get_boot_time(void)
+static void __read_persistent_clock(struct timespec *ts)
{
struct rtc_time tm;
-
- if (ppc_md.get_boot_time)
- return ppc_md.get_boot_time();
- if (!ppc_md.get_rtc_time)
- return 0;
+ static int first = 1;
+
+ ts->tv_nsec = 0;
+ /* XXX this is a litle fragile but will work okay in the short term */
+ if (first) {
+ first = 0;
+ if (ppc_md.time_init)
+ timezone_offset = ppc_md.time_init();
+
+ /* get_boot_time() isn't guaranteed to be safe to call late */
+ if (ppc_md.get_boot_time) {
+ ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
+ return;
+ }
+ }
+ if (!ppc_md.get_rtc_time) {
+ ts->tv_sec = 0;
+ return;
+ }
ppc_md.get_rtc_time(&tm);
- return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
- tm.tm_hour, tm.tm_min, tm.tm_sec);
+
+ ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
+ tm.tm_hour, tm.tm_min, tm.tm_sec);
+}
+
+void read_persistent_clock(struct timespec *ts)
+{
+ __read_persistent_clock(ts);
+
+ /* Sanitize it in case real time clock is set below EPOCH */
+ if (ts->tv_sec < 0) {
+ ts->tv_sec = 0;
+ ts->tv_nsec = 0;
+ }
+
+}
+
+/* clocksource code */
+static cycle_t rtc_read(struct clocksource *cs)
+{
+ return (cycle_t)get_rtc();
+}
+
+static cycle_t timebase_read(struct clocksource *cs)
+{
+ return (cycle_t)get_tb();
+}
+
+void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
+ struct clocksource *clock, u32 mult)
+{
+ u64 new_tb_to_xs, new_stamp_xsec;
+ u32 frac_sec;
+
+ if (clock != &clocksource_timebase)
+ return;
+
+ /* Make userspace gettimeofday spin until we're done. */
+ ++vdso_data->tb_update_count;
+ smp_mb();
+
+ /* 19342813113834067 ~= 2^(20+64) / 1e9 */
+ new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
+ new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
+ do_div(new_stamp_xsec, 1000000000);
+ new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
+
+ BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
+ /* this is tv_nsec / 1e9 as a 0.32 fraction */
+ frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
+
+ /*
+ * tb_update_count is used to allow the userspace gettimeofday code
+ * to assure itself that it sees a consistent view of the tb_to_xs and
+ * stamp_xsec variables. It reads the tb_update_count, then reads
+ * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
+ * the two values of tb_update_count match and are even then the
+ * tb_to_xs and stamp_xsec values are consistent. If not, then it
+ * loops back and reads them again until this criteria is met.
+ * We expect the caller to have done the first increment of
+ * vdso_data->tb_update_count already.
+ */
+ vdso_data->tb_orig_stamp = clock->cycle_last;
+ vdso_data->stamp_xsec = new_stamp_xsec;
+ vdso_data->tb_to_xs = new_tb_to_xs;
+ vdso_data->wtom_clock_sec = wtm->tv_sec;
+ vdso_data->wtom_clock_nsec = wtm->tv_nsec;
+ vdso_data->stamp_xtime = *wall_time;
+ vdso_data->stamp_sec_fraction = frac_sec;
+ smp_wmb();
+ ++(vdso_data->tb_update_count);
+}
+
+void update_vsyscall_tz(void)
+{
+ vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
+ vdso_data->tz_dsttime = sys_tz.tz_dsttime;
+}
+
+static void __init clocksource_init(void)
+{
+ struct clocksource *clock;
+
+ if (__USE_RTC())
+ clock = &clocksource_rtc;
+ else
+ clock = &clocksource_timebase;
+
+ if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
+ printk(KERN_ERR "clocksource: %s is already registered\n",
+ clock->name);
+ return;
+ }
+
+ printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
+ clock->name, clock->mult, clock->shift);
+}
+
+static int decrementer_set_next_event(unsigned long evt,
+ struct clock_event_device *dev)
+{
+ __get_cpu_var(decrementers_next_tb) = get_tb_or_rtc() + evt;
+ set_dec(evt);
+
+ /* We may have raced with new irq work */
+ if (test_irq_work_pending())
+ set_dec(1);
+
+ return 0;
+}
+
+static void decrementer_set_mode(enum clock_event_mode mode,
+ struct clock_event_device *dev)
+{
+ if (mode != CLOCK_EVT_MODE_ONESHOT)
+ decrementer_set_next_event(DECREMENTER_MAX, dev);
+}
+
+/* Interrupt handler for the timer broadcast IPI */
+void tick_broadcast_ipi_handler(void)
+{
+ u64 *next_tb = &__get_cpu_var(decrementers_next_tb);
+
+ *next_tb = get_tb_or_rtc();
+ __timer_interrupt();
+}
+
+static void register_decrementer_clockevent(int cpu)
+{
+ struct clock_event_device *dec = &per_cpu(decrementers, cpu);
+
+ *dec = decrementer_clockevent;
+ dec->cpumask = cpumask_of(cpu);
+
+ printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
+ dec->name, dec->mult, dec->shift, cpu);
+
+ clockevents_register_device(dec);
+}
+
+static void __init init_decrementer_clockevent(void)
+{
+ int cpu = smp_processor_id();
+
+ clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
+
+ decrementer_clockevent.max_delta_ns =
+ clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
+ decrementer_clockevent.min_delta_ns =
+ clockevent_delta2ns(2, &decrementer_clockevent);
+
+ register_decrementer_clockevent(cpu);
+}
+
+void secondary_cpu_time_init(void)
+{
+ /* Start the decrementer on CPUs that have manual control
+ * such as BookE
+ */
+ start_cpu_decrementer();
+
+ /* FIME: Should make unrelatred change to move snapshot_timebase
+ * call here ! */
+ register_decrementer_clockevent(smp_processor_id());
}
/* This function is only called on the boot processor */
void __init time_init(void)
{
- unsigned long flags;
- unsigned long tm = 0;
struct div_result res;
- u64 scale, x;
+ u64 scale;
unsigned shift;
- if (ppc_md.time_init != NULL)
- timezone_offset = ppc_md.time_init();
-
if (__USE_RTC()) {
/* 601 processor: dec counts down by 128 every 128ns */
ppc_tb_freq = 1000000000;
- tb_last_jiffy = get_rtcl();
} else {
/* Normal PowerPC with timebase register */
ppc_md.calibrate_decr();
@@ -948,47 +895,13 @@ void __init time_init(void)
ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
- tb_last_jiffy = get_tb();
}
tb_ticks_per_jiffy = ppc_tb_freq / HZ;
tb_ticks_per_sec = ppc_tb_freq;
tb_ticks_per_usec = ppc_tb_freq / 1000000;
- tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
calc_cputime_factors();
-
- /*
- * Calculate the length of each tick in ns. It will not be
- * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
- * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
- * rounded up.
- */
- x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
- do_div(x, ppc_tb_freq);
- tick_nsec = x;
- last_tick_len = x << TICKLEN_SCALE;
-
- /*
- * Compute ticklen_to_xs, which is a factor which gets multiplied
- * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
- * It is computed as:
- * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
- * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
- * which turns out to be N = 51 - SHIFT_HZ.
- * This gives the result as a 0.64 fixed-point fraction.
- * That value is reduced by an offset amounting to 1 xsec per
- * 2^31 timebase ticks to avoid problems with time going backwards
- * by 1 xsec when we do timer_recalc_offset due to losing the
- * fractional xsec. That offset is equal to ppc_tb_freq/2^51
- * since there are 2^20 xsec in a second.
- */
- div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
- tb_ticks_per_jiffy << SHIFT_HZ, &res);
- div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
- ticklen_to_xs = res.result_low;
-
- /* Compute tb_to_xs from tick_nsec */
- tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
+ setup_cputime_one_jiffy();
/*
* Compute scale factor for sched_clock.
@@ -1008,44 +921,28 @@ void __init time_init(void)
}
tb_to_ns_scale = scale;
tb_to_ns_shift = shift;
-
- tm = get_boot_time();
-
- write_seqlock_irqsave(&xtime_lock, flags);
+ /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
+ boot_tb = get_tb_or_rtc();
/* If platform provided a timezone (pmac), we correct the time */
- if (timezone_offset) {
+ if (timezone_offset) {
sys_tz.tz_minuteswest = -timezone_offset / 60;
sys_tz.tz_dsttime = 0;
- tm -= timezone_offset;
- }
-
- xtime.tv_sec = tm;
- xtime.tv_nsec = 0;
- do_gtod.varp = &do_gtod.vars[0];
- do_gtod.var_idx = 0;
- do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
- __get_cpu_var(last_jiffy) = tb_last_jiffy;
- do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
- do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
- do_gtod.varp->tb_to_xs = tb_to_xs;
- do_gtod.tb_to_us = tb_to_us;
-
- vdso_data->tb_orig_stamp = tb_last_jiffy;
+ }
+
vdso_data->tb_update_count = 0;
vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
- vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
- vdso_data->tb_to_xs = tb_to_xs;
- time_freq = 0;
+ /* Start the decrementer on CPUs that have manual control
+ * such as BookE
+ */
+ start_cpu_decrementer();
- last_rtc_update = xtime.tv_sec;
- set_normalized_timespec(&wall_to_monotonic,
- -xtime.tv_sec, -xtime.tv_nsec);
- write_sequnlock_irqrestore(&xtime_lock, flags);
+ /* Register the clocksource */
+ clocksource_init();
- /* Not exact, but the timer interrupt takes care of this */
- set_dec(tb_ticks_per_jiffy);
+ init_decrementer_clockevent();
+ tick_setup_hrtimer_broadcast();
}
@@ -1128,39 +1025,6 @@ void to_tm(int tim, struct rtc_time * tm)
GregorianDay(tm);
}
-/* Auxiliary function to compute scaling factors */
-/* Actually the choice of a timebase running at 1/4 the of the bus
- * frequency giving resolution of a few tens of nanoseconds is quite nice.
- * It makes this computation very precise (27-28 bits typically) which
- * is optimistic considering the stability of most processor clock
- * oscillators and the precision with which the timebase frequency
- * is measured but does not harm.
- */
-unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
-{
- unsigned mlt=0, tmp, err;
- /* No concern for performance, it's done once: use a stupid
- * but safe and compact method to find the multiplier.
- */
-
- for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
- if (mulhwu(inscale, mlt|tmp) < outscale)
- mlt |= tmp;
- }
-
- /* We might still be off by 1 for the best approximation.
- * A side effect of this is that if outscale is too large
- * the returned value will be zero.
- * Many corner cases have been checked and seem to work,
- * some might have been forgotten in the test however.
- */
-
- err = inscale * (mlt+1);
- if (err <= inscale/2)
- mlt++;
- return mlt;
-}
-
/*
* Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
* result.
@@ -1193,3 +1057,26 @@ void div128_by_32(u64 dividend_high, u64 dividend_low,
dr->result_low = ((u64)y << 32) + z;
}
+
+/* We don't need to calibrate delay, we use the CPU timebase for that */
+void calibrate_delay(void)
+{
+ /* Some generic code (such as spinlock debug) use loops_per_jiffy
+ * as the number of __delay(1) in a jiffy, so make it so
+ */
+ loops_per_jiffy = tb_ticks_per_jiffy;
+}
+
+static int __init rtc_init(void)
+{
+ struct platform_device *pdev;
+
+ if (!ppc_md.get_rtc_time)
+ return -ENODEV;
+
+ pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
+
+ return PTR_ERR_OR_ZERO(pdev);
+}
+
+module_init(rtc_init);