diff options
Diffstat (limited to 'arch/parisc/kernel/time.c')
| -rw-r--r-- | arch/parisc/kernel/time.c | 327 |
1 files changed, 177 insertions, 150 deletions
diff --git a/arch/parisc/kernel/time.c b/arch/parisc/kernel/time.c index cded2568078..70e105d6242 100644 --- a/arch/parisc/kernel/time.c +++ b/arch/parisc/kernel/time.c @@ -10,7 +10,6 @@ * 1998-12-20 Updated NTP code according to technical memorandum Jan '96 * "A Kernel Model for Precision Timekeeping" by Dave Mills */ -#include <linux/config.h> #include <linux/errno.h> #include <linux/module.h> #include <linux/sched.h> @@ -23,71 +22,149 @@ #include <linux/init.h> #include <linux/smp.h> #include <linux/profile.h> +#include <linux/clocksource.h> +#include <linux/platform_device.h> +#include <linux/ftrace.h> #include <asm/uaccess.h> #include <asm/io.h> #include <asm/irq.h> +#include <asm/page.h> #include <asm/param.h> #include <asm/pdc.h> #include <asm/led.h> #include <linux/timex.h> -/* xtime and wall_jiffies keep wall-clock time */ -extern unsigned long wall_jiffies; +static unsigned long clocktick __read_mostly; /* timer cycles per tick */ -static long clocktick; /* timer cycles per tick */ -static long halftick; +/* + * We keep time on PA-RISC Linux by using the Interval Timer which is + * a pair of registers; one is read-only and one is write-only; both + * accessed through CR16. The read-only register is 32 or 64 bits wide, + * and increments by 1 every CPU clock tick. The architecture only + * guarantees us a rate between 0.5 and 2, but all implementations use a + * rate of 1. The write-only register is 32-bits wide. When the lowest + * 32 bits of the read-only register compare equal to the write-only + * register, it raises a maskable external interrupt. Each processor has + * an Interval Timer of its own and they are not synchronised. + * + * We want to generate an interrupt every 1/HZ seconds. So we program + * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data + * is programmed with the intended time of the next tick. We can be + * held off for an arbitrarily long period of time by interrupts being + * disabled, so we may miss one or more ticks. + */ +irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id) +{ + unsigned long now, now2; + unsigned long next_tick; + unsigned long cycles_elapsed, ticks_elapsed = 1; + unsigned long cycles_remainder; + unsigned int cpu = smp_processor_id(); + struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu); -#ifdef CONFIG_SMP -extern void smp_do_timer(struct pt_regs *regs); -#endif + /* gcc can optimize for "read-only" case with a local clocktick */ + unsigned long cpt = clocktick; -irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) -{ - long now; - long next_tick; - int nticks; - int cpu = smp_processor_id(); + profile_tick(CPU_PROFILING); - profile_tick(CPU_PROFILING, regs); + /* Initialize next_tick to the expected tick time. */ + next_tick = cpuinfo->it_value; + /* Get current cycle counter (Control Register 16). */ now = mfctl(16); - /* initialize next_tick to time at last clocktick */ - next_tick = cpu_data[cpu].it_value; - /* since time passes between the interrupt and the mfctl() - * above, it is never true that last_tick + clocktick == now. If we - * never miss a clocktick, we could set next_tick = last_tick + clocktick - * but maybe we'll miss ticks, hence the loop. - * - * Variables are *signed*. - */ + cycles_elapsed = now - next_tick; - nticks = 0; - while((next_tick - now) < halftick) { - next_tick += clocktick; - nticks++; + if ((cycles_elapsed >> 6) < cpt) { + /* use "cheap" math (add/subtract) instead + * of the more expensive div/mul method + */ + cycles_remainder = cycles_elapsed; + while (cycles_remainder > cpt) { + cycles_remainder -= cpt; + ticks_elapsed++; + } + } else { + /* TODO: Reduce this to one fdiv op */ + cycles_remainder = cycles_elapsed % cpt; + ticks_elapsed += cycles_elapsed / cpt; } + + /* convert from "division remainder" to "remainder of clock tick" */ + cycles_remainder = cpt - cycles_remainder; + + /* Determine when (in CR16 cycles) next IT interrupt will fire. + * We want IT to fire modulo clocktick even if we miss/skip some. + * But those interrupts don't in fact get delivered that regularly. + */ + next_tick = now + cycles_remainder; + + cpuinfo->it_value = next_tick; + + /* Program the IT when to deliver the next interrupt. + * Only bottom 32-bits of next_tick are writable in CR16! + */ mtctl(next_tick, 16); - cpu_data[cpu].it_value = next_tick; - while (nticks--) { -#ifdef CONFIG_SMP - smp_do_timer(regs); -#else - update_process_times(user_mode(regs)); + /* Skip one clocktick on purpose if we missed next_tick. + * The new CR16 must be "later" than current CR16 otherwise + * itimer would not fire until CR16 wrapped - e.g 4 seconds + * later on a 1Ghz processor. We'll account for the missed + * tick on the next timer interrupt. + * + * "next_tick - now" will always give the difference regardless + * if one or the other wrapped. If "now" is "bigger" we'll end up + * with a very large unsigned number. + */ + now2 = mfctl(16); + if (next_tick - now2 > cpt) + mtctl(next_tick+cpt, 16); + +#if 1 +/* + * GGG: DEBUG code for how many cycles programming CR16 used. + */ + if (unlikely(now2 - now > 0x3000)) /* 12K cycles */ + printk (KERN_CRIT "timer_interrupt(CPU %d): SLOW! 0x%lx cycles!" + " cyc %lX rem %lX " + " next/now %lX/%lX\n", + cpu, now2 - now, cycles_elapsed, cycles_remainder, + next_tick, now ); #endif - if (cpu == 0) { - write_seqlock(&xtime_lock); - do_timer(regs); - write_sequnlock(&xtime_lock); - } + + /* Can we differentiate between "early CR16" (aka Scenario 1) and + * "long delay" (aka Scenario 3)? I don't think so. + * + * Timer_interrupt will be delivered at least a few hundred cycles + * after the IT fires. But it's arbitrary how much time passes + * before we call it "late". I've picked one second. + * + * It's important NO printk's are between reading CR16 and + * setting up the next value. May introduce huge variance. + */ + if (unlikely(ticks_elapsed > HZ)) { + /* Scenario 3: very long delay? bad in any case */ + printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!" + " cycles %lX rem %lX " + " next/now %lX/%lX\n", + cpu, + cycles_elapsed, cycles_remainder, + next_tick, now ); } - - /* check soft power switch status */ - if (cpu == 0 && !atomic_read(&power_tasklet.count)) - tasklet_schedule(&power_tasklet); + + /* Done mucking with unreliable delivery of interrupts. + * Go do system house keeping. + */ + + if (!--cpuinfo->prof_counter) { + cpuinfo->prof_counter = cpuinfo->prof_multiplier; + update_process_times(user_mode(get_irq_regs())); + } + + if (cpu == 0) + xtime_update(ticks_elapsed); return IRQ_HANDLED; } @@ -110,137 +187,87 @@ unsigned long profile_pc(struct pt_regs *regs) EXPORT_SYMBOL(profile_pc); -/*** converted from ia64 ***/ -/* - * Return the number of micro-seconds that elapsed since the last - * update to wall time (aka xtime aka wall_jiffies). The xtime_lock - * must be at least read-locked when calling this routine. - */ -static inline unsigned long -gettimeoffset (void) +/* clock source code */ + +static cycle_t read_cr16(struct clocksource *cs) { -#ifndef CONFIG_SMP - /* - * FIXME: This won't work on smp because jiffies are updated by cpu 0. - * Once parisc-linux learns the cr16 difference between processors, - * this could be made to work. - */ - long last_tick; - long elapsed_cycles; + return get_cycles(); +} - /* it_value is the intended time of the next tick */ - last_tick = cpu_data[smp_processor_id()].it_value; +static struct clocksource clocksource_cr16 = { + .name = "cr16", + .rating = 300, + .read = read_cr16, + .mask = CLOCKSOURCE_MASK(BITS_PER_LONG), + .flags = CLOCK_SOURCE_IS_CONTINUOUS, +}; - /* Subtract one tick and account for possible difference between - * when we expected the tick and when it actually arrived. - * (aka wall vs real) - */ - last_tick -= clocktick * (jiffies - wall_jiffies + 1); - elapsed_cycles = mfctl(16) - last_tick; +#ifdef CONFIG_SMP +int update_cr16_clocksource(void) +{ + /* since the cr16 cycle counters are not synchronized across CPUs, + we'll check if we should switch to a safe clocksource: */ + if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) { + clocksource_change_rating(&clocksource_cr16, 0); + return 1; + } - /* the precision of this math could be improved */ - return elapsed_cycles / (PAGE0->mem_10msec / 10000); -#else return 0; -#endif } +#else +int update_cr16_clocksource(void) +{ + return 0; /* no change */ +} +#endif /*CONFIG_SMP*/ -void -do_gettimeofday (struct timeval *tv) +void __init start_cpu_itimer(void) { - unsigned long flags, seq, usec, sec; - - do { - seq = read_seqbegin_irqsave(&xtime_lock, flags); - usec = gettimeoffset(); - sec = xtime.tv_sec; - usec += (xtime.tv_nsec / 1000); - } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); - - while (usec >= 1000000) { - usec -= 1000000; - ++sec; - } + unsigned int cpu = smp_processor_id(); + unsigned long next_tick = mfctl(16) + clocktick; - tv->tv_sec = sec; - tv->tv_usec = usec; + mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */ + + per_cpu(cpu_data, cpu).it_value = next_tick; } -EXPORT_SYMBOL(do_gettimeofday); +static struct platform_device rtc_generic_dev = { + .name = "rtc-generic", + .id = -1, +}; -int -do_settimeofday (struct timespec *tv) +static int __init rtc_init(void) { - time_t wtm_sec, sec = tv->tv_sec; - long wtm_nsec, nsec = tv->tv_nsec; - - if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) - return -EINVAL; - - write_seqlock_irq(&xtime_lock); - { - /* - * This is revolting. We need to set "xtime" - * correctly. However, the value in this location is - * the value at the most recent update of wall time. - * Discover what correction gettimeofday would have - * done, and then undo it! - */ - nsec -= gettimeoffset() * 1000; - - wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); - wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); - - set_normalized_timespec(&xtime, sec, nsec); - set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); + if (platform_device_register(&rtc_generic_dev) < 0) + printk(KERN_ERR "unable to register rtc device...\n"); - ntp_clear(); - } - write_sequnlock_irq(&xtime_lock); - clock_was_set(); + /* not necessarily an error */ return 0; } -EXPORT_SYMBOL(do_settimeofday); +module_init(rtc_init); -/* - * XXX: We can do better than this. - * Returns nanoseconds - */ - -unsigned long long sched_clock(void) +void read_persistent_clock(struct timespec *ts) { - return (unsigned long long)jiffies * (1000000000 / HZ); + static struct pdc_tod tod_data; + if (pdc_tod_read(&tod_data) == 0) { + ts->tv_sec = tod_data.tod_sec; + ts->tv_nsec = tod_data.tod_usec * 1000; + } else { + printk(KERN_ERR "Error reading tod clock\n"); + ts->tv_sec = 0; + ts->tv_nsec = 0; + } } - void __init time_init(void) { - unsigned long next_tick; - static struct pdc_tod tod_data; + unsigned long current_cr16_khz; clocktick = (100 * PAGE0->mem_10msec) / HZ; - halftick = clocktick / 2; - - /* Setup clock interrupt timing */ - next_tick = mfctl(16); - next_tick += clocktick; - cpu_data[smp_processor_id()].it_value = next_tick; - - /* kick off Itimer (CR16) */ - mtctl(next_tick, 16); + start_cpu_itimer(); /* get CPU 0 started */ - if(pdc_tod_read(&tod_data) == 0) { - write_seqlock_irq(&xtime_lock); - xtime.tv_sec = tod_data.tod_sec; - xtime.tv_nsec = tod_data.tod_usec * 1000; - set_normalized_timespec(&wall_to_monotonic, - -xtime.tv_sec, -xtime.tv_nsec); - write_sequnlock_irq(&xtime_lock); - } else { - printk(KERN_ERR "Error reading tod clock\n"); - xtime.tv_sec = 0; - xtime.tv_nsec = 0; - } + /* register at clocksource framework */ + current_cr16_khz = PAGE0->mem_10msec/10; /* kHz */ + clocksource_register_khz(&clocksource_cr16, current_cr16_khz); } - |
