diff options
Diffstat (limited to 'arch/parisc/kernel/time.c')
| -rw-r--r-- | arch/parisc/kernel/time.c | 157 |
1 files changed, 91 insertions, 66 deletions
diff --git a/arch/parisc/kernel/time.c b/arch/parisc/kernel/time.c index 24be86bba94..70e105d6242 100644 --- a/arch/parisc/kernel/time.c +++ b/arch/parisc/kernel/time.c @@ -23,10 +23,13 @@ #include <linux/smp.h> #include <linux/profile.h> #include <linux/clocksource.h> +#include <linux/platform_device.h> +#include <linux/ftrace.h> #include <asm/uaccess.h> #include <asm/io.h> #include <asm/irq.h> +#include <asm/page.h> #include <asm/param.h> #include <asm/pdc.h> #include <asm/led.h> @@ -52,14 +55,14 @@ static unsigned long clocktick __read_mostly; /* timer cycles per tick */ * held off for an arbitrarily long period of time by interrupts being * disabled, so we may miss one or more ticks. */ -irqreturn_t timer_interrupt(int irq, void *dev_id) +irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id) { - unsigned long now; + unsigned long now, now2; unsigned long next_tick; - unsigned long cycles_elapsed, ticks_elapsed; + unsigned long cycles_elapsed, ticks_elapsed = 1; unsigned long cycles_remainder; unsigned int cpu = smp_processor_id(); - struct cpuinfo_parisc *cpuinfo = &cpu_data[cpu]; + struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu); /* gcc can optimize for "read-only" case with a local clocktick */ unsigned long cpt = clocktick; @@ -69,44 +72,24 @@ irqreturn_t timer_interrupt(int irq, void *dev_id) /* Initialize next_tick to the expected tick time. */ next_tick = cpuinfo->it_value; - /* Get current interval timer. - * CR16 reads as 64 bits in CPU wide mode. - * CR16 reads as 32 bits in CPU narrow mode. - */ + /* Get current cycle counter (Control Register 16). */ now = mfctl(16); cycles_elapsed = now - next_tick; - if ((cycles_elapsed >> 5) < cpt) { + if ((cycles_elapsed >> 6) < cpt) { /* use "cheap" math (add/subtract) instead * of the more expensive div/mul method */ cycles_remainder = cycles_elapsed; - ticks_elapsed = 1; while (cycles_remainder > cpt) { cycles_remainder -= cpt; ticks_elapsed++; } } else { + /* TODO: Reduce this to one fdiv op */ cycles_remainder = cycles_elapsed % cpt; - ticks_elapsed = 1 + cycles_elapsed / cpt; - } - - /* Can we differentiate between "early CR16" (aka Scenario 1) and - * "long delay" (aka Scenario 3)? I don't think so. - * - * We expected timer_interrupt to be delivered at least a few hundred - * cycles after the IT fires. But it's arbitrary how much time passes - * before we call it "late". I've picked one second. - */ - if (unlikely(ticks_elapsed > HZ)) { - /* Scenario 3: very long delay? bad in any case */ - printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!" - " cycles %lX rem %lX " - " next/now %lX/%lX\n", - cpu, - cycles_elapsed, cycles_remainder, - next_tick, now ); + ticks_elapsed += cycles_elapsed / cpt; } /* convert from "division remainder" to "remainder of clock tick" */ @@ -120,18 +103,56 @@ irqreturn_t timer_interrupt(int irq, void *dev_id) cpuinfo->it_value = next_tick; - /* Skip one clocktick on purpose if we are likely to miss next_tick. - * We want to avoid the new next_tick being less than CR16. - * If that happened, itimer wouldn't fire until CR16 wrapped. - * We'll catch the tick we missed on the tick after that. + /* Program the IT when to deliver the next interrupt. + * Only bottom 32-bits of next_tick are writable in CR16! */ - if (!(cycles_remainder >> 13)) - next_tick += cpt; - - /* Program the IT when to deliver the next interrupt. */ - /* Only bottom 32-bits of next_tick are written to cr16. */ mtctl(next_tick, 16); + /* Skip one clocktick on purpose if we missed next_tick. + * The new CR16 must be "later" than current CR16 otherwise + * itimer would not fire until CR16 wrapped - e.g 4 seconds + * later on a 1Ghz processor. We'll account for the missed + * tick on the next timer interrupt. + * + * "next_tick - now" will always give the difference regardless + * if one or the other wrapped. If "now" is "bigger" we'll end up + * with a very large unsigned number. + */ + now2 = mfctl(16); + if (next_tick - now2 > cpt) + mtctl(next_tick+cpt, 16); + +#if 1 +/* + * GGG: DEBUG code for how many cycles programming CR16 used. + */ + if (unlikely(now2 - now > 0x3000)) /* 12K cycles */ + printk (KERN_CRIT "timer_interrupt(CPU %d): SLOW! 0x%lx cycles!" + " cyc %lX rem %lX " + " next/now %lX/%lX\n", + cpu, now2 - now, cycles_elapsed, cycles_remainder, + next_tick, now ); +#endif + + /* Can we differentiate between "early CR16" (aka Scenario 1) and + * "long delay" (aka Scenario 3)? I don't think so. + * + * Timer_interrupt will be delivered at least a few hundred cycles + * after the IT fires. But it's arbitrary how much time passes + * before we call it "late". I've picked one second. + * + * It's important NO printk's are between reading CR16 and + * setting up the next value. May introduce huge variance. + */ + if (unlikely(ticks_elapsed > HZ)) { + /* Scenario 3: very long delay? bad in any case */ + printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!" + " cycles %lX rem %lX " + " next/now %lX/%lX\n", + cpu, + cycles_elapsed, cycles_remainder, + next_tick, now ); + } /* Done mucking with unreliable delivery of interrupts. * Go do system house keeping. @@ -142,11 +163,8 @@ irqreturn_t timer_interrupt(int irq, void *dev_id) update_process_times(user_mode(get_irq_regs())); } - if (cpu == 0) { - write_seqlock(&xtime_lock); - do_timer(ticks_elapsed); - write_sequnlock(&xtime_lock); - } + if (cpu == 0) + xtime_update(ticks_elapsed); return IRQ_HANDLED; } @@ -171,7 +189,7 @@ EXPORT_SYMBOL(profile_pc); /* clock source code */ -static cycle_t read_cr16(void) +static cycle_t read_cr16(struct clocksource *cs) { return get_cycles(); } @@ -181,8 +199,6 @@ static struct clocksource clocksource_cr16 = { .rating = 300, .read = read_cr16, .mask = CLOCKSOURCE_MASK(BITS_PER_LONG), - .mult = 0, /* to be set */ - .shift = 22, .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; @@ -212,12 +228,39 @@ void __init start_cpu_itimer(void) mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */ - cpu_data[cpu].it_value = next_tick; + per_cpu(cpu_data, cpu).it_value = next_tick; } -void __init time_init(void) +static struct platform_device rtc_generic_dev = { + .name = "rtc-generic", + .id = -1, +}; + +static int __init rtc_init(void) +{ + if (platform_device_register(&rtc_generic_dev) < 0) + printk(KERN_ERR "unable to register rtc device...\n"); + + /* not necessarily an error */ + return 0; +} +module_init(rtc_init); + +void read_persistent_clock(struct timespec *ts) { static struct pdc_tod tod_data; + if (pdc_tod_read(&tod_data) == 0) { + ts->tv_sec = tod_data.tod_sec; + ts->tv_nsec = tod_data.tod_usec * 1000; + } else { + printk(KERN_ERR "Error reading tod clock\n"); + ts->tv_sec = 0; + ts->tv_nsec = 0; + } +} + +void __init time_init(void) +{ unsigned long current_cr16_khz; clocktick = (100 * PAGE0->mem_10msec) / HZ; @@ -226,23 +269,5 @@ void __init time_init(void) /* register at clocksource framework */ current_cr16_khz = PAGE0->mem_10msec/10; /* kHz */ - clocksource_cr16.mult = clocksource_khz2mult(current_cr16_khz, - clocksource_cr16.shift); - clocksource_register(&clocksource_cr16); - - if (pdc_tod_read(&tod_data) == 0) { - unsigned long flags; - - write_seqlock_irqsave(&xtime_lock, flags); - xtime.tv_sec = tod_data.tod_sec; - xtime.tv_nsec = tod_data.tod_usec * 1000; - set_normalized_timespec(&wall_to_monotonic, - -xtime.tv_sec, -xtime.tv_nsec); - write_sequnlock_irqrestore(&xtime_lock, flags); - } else { - printk(KERN_ERR "Error reading tod clock\n"); - xtime.tv_sec = 0; - xtime.tv_nsec = 0; - } + clocksource_register_khz(&clocksource_cr16, current_cr16_khz); } - |
