diff options
Diffstat (limited to 'arch/parisc/kernel/time.c')
| -rw-r--r-- | arch/parisc/kernel/time.c | 292 |
1 files changed, 115 insertions, 177 deletions
diff --git a/arch/parisc/kernel/time.c b/arch/parisc/kernel/time.c index bad7d1eb62b..70e105d6242 100644 --- a/arch/parisc/kernel/time.c +++ b/arch/parisc/kernel/time.c @@ -22,10 +22,14 @@ #include <linux/init.h> #include <linux/smp.h> #include <linux/profile.h> +#include <linux/clocksource.h> +#include <linux/platform_device.h> +#include <linux/ftrace.h> #include <asm/uaccess.h> #include <asm/io.h> #include <asm/irq.h> +#include <asm/page.h> #include <asm/param.h> #include <asm/pdc.h> #include <asm/led.h> @@ -51,14 +55,14 @@ static unsigned long clocktick __read_mostly; /* timer cycles per tick */ * held off for an arbitrarily long period of time by interrupts being * disabled, so we may miss one or more ticks. */ -irqreturn_t timer_interrupt(int irq, void *dev_id) +irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id) { - unsigned long now; + unsigned long now, now2; unsigned long next_tick; - unsigned long cycles_elapsed, ticks_elapsed; + unsigned long cycles_elapsed, ticks_elapsed = 1; unsigned long cycles_remainder; unsigned int cpu = smp_processor_id(); - struct cpuinfo_parisc *cpuinfo = &cpu_data[cpu]; + struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu); /* gcc can optimize for "read-only" case with a local clocktick */ unsigned long cpt = clocktick; @@ -68,44 +72,24 @@ irqreturn_t timer_interrupt(int irq, void *dev_id) /* Initialize next_tick to the expected tick time. */ next_tick = cpuinfo->it_value; - /* Get current interval timer. - * CR16 reads as 64 bits in CPU wide mode. - * CR16 reads as 32 bits in CPU narrow mode. - */ + /* Get current cycle counter (Control Register 16). */ now = mfctl(16); cycles_elapsed = now - next_tick; - if ((cycles_elapsed >> 5) < cpt) { + if ((cycles_elapsed >> 6) < cpt) { /* use "cheap" math (add/subtract) instead * of the more expensive div/mul method */ cycles_remainder = cycles_elapsed; - ticks_elapsed = 1; while (cycles_remainder > cpt) { cycles_remainder -= cpt; ticks_elapsed++; } } else { + /* TODO: Reduce this to one fdiv op */ cycles_remainder = cycles_elapsed % cpt; - ticks_elapsed = 1 + cycles_elapsed / cpt; - } - - /* Can we differentiate between "early CR16" (aka Scenario 1) and - * "long delay" (aka Scenario 3)? I don't think so. - * - * We expected timer_interrupt to be delivered at least a few hundred - * cycles after the IT fires. But it's arbitrary how much time passes - * before we call it "late". I've picked one second. - */ - if (ticks_elapsed > HZ) { - /* Scenario 3: very long delay? bad in any case */ - printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!" - " cycles %lX rem %lX " - " next/now %lX/%lX\n", - cpu, - cycles_elapsed, cycles_remainder, - next_tick, now ); + ticks_elapsed += cycles_elapsed / cpt; } /* convert from "division remainder" to "remainder of clock tick" */ @@ -119,18 +103,56 @@ irqreturn_t timer_interrupt(int irq, void *dev_id) cpuinfo->it_value = next_tick; - /* Skip one clocktick on purpose if we are likely to miss next_tick. - * We want to avoid the new next_tick being less than CR16. - * If that happened, itimer wouldn't fire until CR16 wrapped. - * We'll catch the tick we missed on the tick after that. + /* Program the IT when to deliver the next interrupt. + * Only bottom 32-bits of next_tick are writable in CR16! */ - if (!(cycles_remainder >> 13)) - next_tick += cpt; - - /* Program the IT when to deliver the next interrupt. */ - /* Only bottom 32-bits of next_tick are written to cr16. */ mtctl(next_tick, 16); + /* Skip one clocktick on purpose if we missed next_tick. + * The new CR16 must be "later" than current CR16 otherwise + * itimer would not fire until CR16 wrapped - e.g 4 seconds + * later on a 1Ghz processor. We'll account for the missed + * tick on the next timer interrupt. + * + * "next_tick - now" will always give the difference regardless + * if one or the other wrapped. If "now" is "bigger" we'll end up + * with a very large unsigned number. + */ + now2 = mfctl(16); + if (next_tick - now2 > cpt) + mtctl(next_tick+cpt, 16); + +#if 1 +/* + * GGG: DEBUG code for how many cycles programming CR16 used. + */ + if (unlikely(now2 - now > 0x3000)) /* 12K cycles */ + printk (KERN_CRIT "timer_interrupt(CPU %d): SLOW! 0x%lx cycles!" + " cyc %lX rem %lX " + " next/now %lX/%lX\n", + cpu, now2 - now, cycles_elapsed, cycles_remainder, + next_tick, now ); +#endif + + /* Can we differentiate between "early CR16" (aka Scenario 1) and + * "long delay" (aka Scenario 3)? I don't think so. + * + * Timer_interrupt will be delivered at least a few hundred cycles + * after the IT fires. But it's arbitrary how much time passes + * before we call it "late". I've picked one second. + * + * It's important NO printk's are between reading CR16 and + * setting up the next value. May introduce huge variance. + */ + if (unlikely(ticks_elapsed > HZ)) { + /* Scenario 3: very long delay? bad in any case */ + printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!" + " cycles %lX rem %lX " + " next/now %lX/%lX\n", + cpu, + cycles_elapsed, cycles_remainder, + next_tick, now ); + } /* Done mucking with unreliable delivery of interrupts. * Go do system house keeping. @@ -141,15 +163,8 @@ irqreturn_t timer_interrupt(int irq, void *dev_id) update_process_times(user_mode(get_irq_regs())); } - if (cpu == 0) { - write_seqlock(&xtime_lock); - do_timer(ticks_elapsed); - write_sequnlock(&xtime_lock); - } - - /* check soft power switch status */ - if (cpu == 0 && !atomic_read(&power_tasklet.count)) - tasklet_schedule(&power_tasklet); + if (cpu == 0) + xtime_update(ticks_elapsed); return IRQ_HANDLED; } @@ -172,132 +187,39 @@ unsigned long profile_pc(struct pt_regs *regs) EXPORT_SYMBOL(profile_pc); -/* - * Return the number of micro-seconds that elapsed since the last - * update to wall time (aka xtime). The xtime_lock - * must be at least read-locked when calling this routine. - */ -static inline unsigned long gettimeoffset (void) -{ -#ifndef CONFIG_SMP - /* - * FIXME: This won't work on smp because jiffies are updated by cpu 0. - * Once parisc-linux learns the cr16 difference between processors, - * this could be made to work. - */ - unsigned long now; - unsigned long prev_tick; - unsigned long next_tick; - unsigned long elapsed_cycles; - unsigned long usec; - unsigned long cpuid = smp_processor_id(); - unsigned long cpt = clocktick; - - next_tick = cpu_data[cpuid].it_value; - now = mfctl(16); /* Read the hardware interval timer. */ - - prev_tick = next_tick - cpt; - - /* Assume Scenario 1: "now" is later than prev_tick. */ - elapsed_cycles = now - prev_tick; - -/* aproximate HZ with shifts. Intended math is "(elapsed/clocktick) > HZ" */ -#if HZ == 1000 - if (elapsed_cycles > (cpt << 10) ) -#elif HZ == 250 - if (elapsed_cycles > (cpt << 8) ) -#elif HZ == 100 - if (elapsed_cycles > (cpt << 7) ) -#else -#warn WTF is HZ set to anyway? - if (elapsed_cycles > (HZ * cpt) ) -#endif - { - /* Scenario 3: clock ticks are missing. */ - printk (KERN_CRIT "gettimeoffset(CPU %ld): missing %ld ticks!" - " cycles %lX prev/now/next %lX/%lX/%lX clock %lX\n", - cpuid, elapsed_cycles / cpt, - elapsed_cycles, prev_tick, now, next_tick, cpt); - } +/* clock source code */ - /* FIXME: Can we improve the precision? Not with PAGE0. */ - usec = (elapsed_cycles * 10000) / PAGE0->mem_10msec; - return usec; -#else - return 0; -#endif -} - -void -do_gettimeofday (struct timeval *tv) +static cycle_t read_cr16(struct clocksource *cs) { - unsigned long flags, seq, usec, sec; - - /* Hold xtime_lock and adjust timeval. */ - do { - seq = read_seqbegin_irqsave(&xtime_lock, flags); - usec = gettimeoffset(); - sec = xtime.tv_sec; - usec += (xtime.tv_nsec / 1000); - } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); - - /* Move adjusted usec's into sec's. */ - while (usec >= USEC_PER_SEC) { - usec -= USEC_PER_SEC; - ++sec; - } - - /* Return adjusted result. */ - tv->tv_sec = sec; - tv->tv_usec = usec; + return get_cycles(); } -EXPORT_SYMBOL(do_gettimeofday); +static struct clocksource clocksource_cr16 = { + .name = "cr16", + .rating = 300, + .read = read_cr16, + .mask = CLOCKSOURCE_MASK(BITS_PER_LONG), + .flags = CLOCK_SOURCE_IS_CONTINUOUS, +}; -int -do_settimeofday (struct timespec *tv) +#ifdef CONFIG_SMP +int update_cr16_clocksource(void) { - time_t wtm_sec, sec = tv->tv_sec; - long wtm_nsec, nsec = tv->tv_nsec; - - if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) - return -EINVAL; - - write_seqlock_irq(&xtime_lock); - { - /* - * This is revolting. We need to set "xtime" - * correctly. However, the value in this location is - * the value at the most recent update of wall time. - * Discover what correction gettimeofday would have - * done, and then undo it! - */ - nsec -= gettimeoffset() * 1000; - - wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); - wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); - - set_normalized_timespec(&xtime, sec, nsec); - set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); - - ntp_clear(); + /* since the cr16 cycle counters are not synchronized across CPUs, + we'll check if we should switch to a safe clocksource: */ + if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) { + clocksource_change_rating(&clocksource_cr16, 0); + return 1; } - write_sequnlock_irq(&xtime_lock); - clock_was_set(); + return 0; } -EXPORT_SYMBOL(do_settimeofday); - -/* - * XXX: We can do better than this. - * Returns nanoseconds - */ - -unsigned long long sched_clock(void) +#else +int update_cr16_clocksource(void) { - return (unsigned long long)jiffies * (1000000000 / HZ); + return 0; /* no change */ } - +#endif /*CONFIG_SMP*/ void __init start_cpu_itimer(void) { @@ -306,30 +228,46 @@ void __init start_cpu_itimer(void) mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */ - cpu_data[cpu].it_value = next_tick; + per_cpu(cpu_data, cpu).it_value = next_tick; } -void __init time_init(void) -{ - static struct pdc_tod tod_data; +static struct platform_device rtc_generic_dev = { + .name = "rtc-generic", + .id = -1, +}; - clocktick = (100 * PAGE0->mem_10msec) / HZ; +static int __init rtc_init(void) +{ + if (platform_device_register(&rtc_generic_dev) < 0) + printk(KERN_ERR "unable to register rtc device...\n"); - start_cpu_itimer(); /* get CPU 0 started */ + /* not necessarily an error */ + return 0; +} +module_init(rtc_init); +void read_persistent_clock(struct timespec *ts) +{ + static struct pdc_tod tod_data; if (pdc_tod_read(&tod_data) == 0) { - unsigned long flags; - - write_seqlock_irqsave(&xtime_lock, flags); - xtime.tv_sec = tod_data.tod_sec; - xtime.tv_nsec = tod_data.tod_usec * 1000; - set_normalized_timespec(&wall_to_monotonic, - -xtime.tv_sec, -xtime.tv_nsec); - write_sequnlock_irqrestore(&xtime_lock, flags); + ts->tv_sec = tod_data.tod_sec; + ts->tv_nsec = tod_data.tod_usec * 1000; } else { printk(KERN_ERR "Error reading tod clock\n"); - xtime.tv_sec = 0; - xtime.tv_nsec = 0; + ts->tv_sec = 0; + ts->tv_nsec = 0; } } +void __init time_init(void) +{ + unsigned long current_cr16_khz; + + clocktick = (100 * PAGE0->mem_10msec) / HZ; + + start_cpu_itimer(); /* get CPU 0 started */ + + /* register at clocksource framework */ + current_cr16_khz = PAGE0->mem_10msec/10; /* kHz */ + clocksource_register_khz(&clocksource_cr16, current_cr16_khz); +} |
