diff options
Diffstat (limited to 'arch/arm/mach-omap1/time.c')
| -rw-r--r-- | arch/arm/mach-omap1/time.c | 416 |
1 files changed, 109 insertions, 307 deletions
diff --git a/arch/arm/mach-omap1/time.c b/arch/arm/mach-omap1/time.c index 191a9b1ee9b..a7588cfd028 100644 --- a/arch/arm/mach-omap1/time.c +++ b/arch/arm/mach-omap1/time.c @@ -33,402 +33,204 @@ * 675 Mass Ave, Cambridge, MA 02139, USA. */ -#include <linux/config.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/interrupt.h> -#include <linux/sched.h> #include <linux/spinlock.h> +#include <linux/clk.h> +#include <linux/err.h> +#include <linux/clocksource.h> +#include <linux/clockchips.h> +#include <linux/io.h> +#include <linux/sched_clock.h> -#include <asm/system.h> -#include <asm/hardware.h> -#include <asm/io.h> -#include <asm/leds.h> #include <asm/irq.h> + +#include <mach/hardware.h> #include <asm/mach/irq.h> #include <asm/mach/time.h> -struct sys_timer omap_timer; +#include "iomap.h" +#include "common.h" #ifdef CONFIG_OMAP_MPU_TIMER -/* - * --------------------------------------------------------------------------- - * MPU timer - * --------------------------------------------------------------------------- - */ #define OMAP_MPU_TIMER_BASE OMAP_MPU_TIMER1_BASE #define OMAP_MPU_TIMER_OFFSET 0x100 -/* cycles to nsec conversions taken from arch/i386/kernel/timers/timer_tsc.c, - * converted to use kHz by Kevin Hilman */ -/* convert from cycles(64bits) => nanoseconds (64bits) - * basic equation: - * ns = cycles / (freq / ns_per_sec) - * ns = cycles * (ns_per_sec / freq) - * ns = cycles * (10^9 / (cpu_khz * 10^3)) - * ns = cycles * (10^6 / cpu_khz) - * - * Then we use scaling math (suggested by george at mvista.com) to get: - * ns = cycles * (10^6 * SC / cpu_khz / SC - * ns = cycles * cyc2ns_scale / SC - * - * And since SC is a constant power of two, we can convert the div - * into a shift. - * -johnstul at us.ibm.com "math is hard, lets go shopping!" - */ -static unsigned long cyc2ns_scale; -#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */ - -static inline void set_cyc2ns_scale(unsigned long cpu_khz) -{ - cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR)/cpu_khz; -} - -static inline unsigned long long cycles_2_ns(unsigned long long cyc) -{ - return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR; -} - -/* - * MPU_TICKS_PER_SEC must be an even number, otherwise machinecycles_to_usecs - * will break. On P2, the timer count rate is 6.5 MHz after programming PTV - * with 0. This divides the 13MHz input by 2, and is undocumented. - */ -#ifdef CONFIG_MACH_OMAP_PERSEUS2 -/* REVISIT: This ifdef construct should be replaced by a query to clock - * framework to see if timer base frequency is 12.0, 13.0 or 19.2 MHz. - */ -#define MPU_TICKS_PER_SEC (13000000 / 2) -#else -#define MPU_TICKS_PER_SEC (12000000 / 2) -#endif - -#define MPU_TIMER_TICK_PERIOD ((MPU_TICKS_PER_SEC / HZ) - 1) - typedef struct { u32 cntl; /* CNTL_TIMER, R/W */ u32 load_tim; /* LOAD_TIM, W */ u32 read_tim; /* READ_TIM, R */ } omap_mpu_timer_regs_t; -#define omap_mpu_timer_base(n) \ -((volatile omap_mpu_timer_regs_t*)IO_ADDRESS(OMAP_MPU_TIMER_BASE + \ +#define omap_mpu_timer_base(n) \ +((omap_mpu_timer_regs_t __iomem *)OMAP1_IO_ADDRESS(OMAP_MPU_TIMER_BASE + \ (n)*OMAP_MPU_TIMER_OFFSET)) -static inline unsigned long omap_mpu_timer_read(int nr) +static inline unsigned long notrace omap_mpu_timer_read(int nr) { - volatile omap_mpu_timer_regs_t* timer = omap_mpu_timer_base(nr); - return timer->read_tim; + omap_mpu_timer_regs_t __iomem *timer = omap_mpu_timer_base(nr); + return readl(&timer->read_tim); } -static inline void omap_mpu_timer_start(int nr, unsigned long load_val) +static inline void omap_mpu_set_autoreset(int nr) { - volatile omap_mpu_timer_regs_t* timer = omap_mpu_timer_base(nr); + omap_mpu_timer_regs_t __iomem *timer = omap_mpu_timer_base(nr); - timer->cntl = MPU_TIMER_CLOCK_ENABLE; - udelay(1); - timer->load_tim = load_val; - udelay(1); - timer->cntl = (MPU_TIMER_CLOCK_ENABLE | MPU_TIMER_AR | MPU_TIMER_ST); + writel(readl(&timer->cntl) | MPU_TIMER_AR, &timer->cntl); } -unsigned long omap_mpu_timer_ticks_to_usecs(unsigned long nr_ticks) +static inline void omap_mpu_remove_autoreset(int nr) { - unsigned long long nsec; + omap_mpu_timer_regs_t __iomem *timer = omap_mpu_timer_base(nr); - nsec = cycles_2_ns((unsigned long long)nr_ticks); - return (unsigned long)nsec / 1000; + writel(readl(&timer->cntl) & ~MPU_TIMER_AR, &timer->cntl); } -/* - * Last processed system timer interrupt - */ -static unsigned long omap_mpu_timer_last = 0; +static inline void omap_mpu_timer_start(int nr, unsigned long load_val, + int autoreset) +{ + omap_mpu_timer_regs_t __iomem *timer = omap_mpu_timer_base(nr); + unsigned int timerflags = MPU_TIMER_CLOCK_ENABLE | MPU_TIMER_ST; -/* - * Returns elapsed usecs since last system timer interrupt - */ -static unsigned long omap_mpu_timer_gettimeoffset(void) + if (autoreset) + timerflags |= MPU_TIMER_AR; + + writel(MPU_TIMER_CLOCK_ENABLE, &timer->cntl); + udelay(1); + writel(load_val, &timer->load_tim); + udelay(1); + writel(timerflags, &timer->cntl); +} + +static inline void omap_mpu_timer_stop(int nr) { - unsigned long now = 0 - omap_mpu_timer_read(0); - unsigned long elapsed = now - omap_mpu_timer_last; + omap_mpu_timer_regs_t __iomem *timer = omap_mpu_timer_base(nr); - return omap_mpu_timer_ticks_to_usecs(elapsed); + writel(readl(&timer->cntl) & ~MPU_TIMER_ST, &timer->cntl); } /* - * Elapsed time between interrupts is calculated using timer0. - * Latency during the interrupt is calculated using timer1. - * Both timer0 and timer1 are counting at 6MHz (P2 6.5MHz). + * --------------------------------------------------------------------------- + * MPU timer 1 ... count down to zero, interrupt, reload + * --------------------------------------------------------------------------- */ -static irqreturn_t omap_mpu_timer_interrupt(int irq, void *dev_id, - struct pt_regs *regs) +static int omap_mpu_set_next_event(unsigned long cycles, + struct clock_event_device *evt) { - unsigned long now, latency; - - write_seqlock(&xtime_lock); - now = 0 - omap_mpu_timer_read(0); - latency = MPU_TICKS_PER_SEC / HZ - omap_mpu_timer_read(1); - omap_mpu_timer_last = now - latency; - timer_tick(regs); - write_sequnlock(&xtime_lock); + omap_mpu_timer_start(0, cycles, 0); + return 0; +} - return IRQ_HANDLED; +static void omap_mpu_set_mode(enum clock_event_mode mode, + struct clock_event_device *evt) +{ + switch (mode) { + case CLOCK_EVT_MODE_PERIODIC: + omap_mpu_set_autoreset(0); + break; + case CLOCK_EVT_MODE_ONESHOT: + omap_mpu_timer_stop(0); + omap_mpu_remove_autoreset(0); + break; + case CLOCK_EVT_MODE_UNUSED: + case CLOCK_EVT_MODE_SHUTDOWN: + case CLOCK_EVT_MODE_RESUME: + break; + } } -static struct irqaction omap_mpu_timer_irq = { - .name = "mpu timer", - .flags = SA_INTERRUPT | SA_TIMER, - .handler = omap_mpu_timer_interrupt, +static struct clock_event_device clockevent_mpu_timer1 = { + .name = "mpu_timer1", + .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, + .set_next_event = omap_mpu_set_next_event, + .set_mode = omap_mpu_set_mode, }; -static unsigned long omap_mpu_timer1_overflows; -static irqreturn_t omap_mpu_timer1_interrupt(int irq, void *dev_id, - struct pt_regs *regs) +static irqreturn_t omap_mpu_timer1_interrupt(int irq, void *dev_id) { - omap_mpu_timer1_overflows++; + struct clock_event_device *evt = &clockevent_mpu_timer1; + + evt->event_handler(evt); + return IRQ_HANDLED; } static struct irqaction omap_mpu_timer1_irq = { - .name = "mpu timer1 overflow", - .flags = SA_INTERRUPT, + .name = "mpu_timer1", + .flags = IRQF_TIMER | IRQF_IRQPOLL, .handler = omap_mpu_timer1_interrupt, }; -static __init void omap_init_mpu_timer(void) +static __init void omap_init_mpu_timer(unsigned long rate) { - set_cyc2ns_scale(MPU_TICKS_PER_SEC / 1000); - omap_timer.offset = omap_mpu_timer_gettimeoffset; setup_irq(INT_TIMER1, &omap_mpu_timer1_irq); - setup_irq(INT_TIMER2, &omap_mpu_timer_irq); - omap_mpu_timer_start(0, 0xffffffff); - omap_mpu_timer_start(1, MPU_TIMER_TICK_PERIOD); -} + omap_mpu_timer_start(0, (rate / HZ) - 1, 1); -/* - * Scheduler clock - returns current time in nanosec units. - */ -unsigned long long sched_clock(void) -{ - unsigned long ticks = 0 - omap_mpu_timer_read(0); - unsigned long long ticks64; - - ticks64 = omap_mpu_timer1_overflows; - ticks64 <<= 32; - ticks64 |= ticks; - - return cycles_2_ns(ticks64); + clockevent_mpu_timer1.cpumask = cpumask_of(0); + clockevents_config_and_register(&clockevent_mpu_timer1, rate, + 1, -1); } -#endif /* CONFIG_OMAP_MPU_TIMER */ - -#ifdef CONFIG_OMAP_32K_TIMER -#ifdef CONFIG_ARCH_OMAP1510 -#error OMAP 32KHz timer does not currently work on 1510! -#endif /* * --------------------------------------------------------------------------- - * 32KHz OS timer - * - * This currently works only on 16xx, as 1510 does not have the continuous - * 32KHz synchronous timer. The 32KHz synchronous timer is used to keep track - * of time in addition to the 32KHz OS timer. Using only the 32KHz OS timer - * on 1510 would be possible, but the timer would not be as accurate as - * with the 32KHz synchronized timer. + * MPU timer 2 ... free running 32-bit clock source and scheduler clock * --------------------------------------------------------------------------- */ -#define OMAP_32K_TIMER_BASE 0xfffb9000 -#define OMAP_32K_TIMER_CR 0x08 -#define OMAP_32K_TIMER_TVR 0x00 -#define OMAP_32K_TIMER_TCR 0x04 -#define OMAP_32K_TICKS_PER_HZ (32768 / HZ) - -/* - * TRM says 1 / HZ = ( TVR + 1) / 32768, so TRV = (32768 / HZ) - 1 - * so with HZ = 100, TVR = 327.68. - */ -#define OMAP_32K_TIMER_TICK_PERIOD ((32768 / HZ) - 1) -#define TIMER_32K_SYNCHRONIZED 0xfffbc410 - -#define JIFFIES_TO_HW_TICKS(nr_jiffies, clock_rate) \ - (((nr_jiffies) * (clock_rate)) / HZ) - -static inline void omap_32k_timer_write(int val, int reg) +static u64 notrace omap_mpu_read_sched_clock(void) { - omap_writew(val, reg + OMAP_32K_TIMER_BASE); + return ~omap_mpu_timer_read(1); } -static inline unsigned long omap_32k_timer_read(int reg) +static void __init omap_init_clocksource(unsigned long rate) { - return omap_readl(reg + OMAP_32K_TIMER_BASE) & 0xffffff; -} + omap_mpu_timer_regs_t __iomem *timer = omap_mpu_timer_base(1); + static char err[] __initdata = KERN_ERR + "%s: can't register clocksource!\n"; -/* - * The 32KHz synchronized timer is an additional timer on 16xx. - * It is always running. - */ -static inline unsigned long omap_32k_sync_timer_read(void) -{ - return omap_readl(TIMER_32K_SYNCHRONIZED); -} + omap_mpu_timer_start(1, ~0, 1); + sched_clock_register(omap_mpu_read_sched_clock, 32, rate); -static inline void omap_32k_timer_start(unsigned long load_val) -{ - omap_32k_timer_write(load_val, OMAP_32K_TIMER_TVR); - omap_32k_timer_write(0x0f, OMAP_32K_TIMER_CR); + if (clocksource_mmio_init(&timer->read_tim, "mpu_timer2", rate, + 300, 32, clocksource_mmio_readl_down)) + printk(err, "mpu_timer2"); } -static inline void omap_32k_timer_stop(void) +static void __init omap_mpu_timer_init(void) { - omap_32k_timer_write(0x0, OMAP_32K_TIMER_CR); -} + struct clk *ck_ref = clk_get(NULL, "ck_ref"); + unsigned long rate; -/* - * Rounds down to nearest usec. Note that this will overflow for larger values. - */ -static inline unsigned long omap_32k_ticks_to_usecs(unsigned long ticks_32k) -{ - return (ticks_32k * 5*5*5*5*5*5) >> 9; -} + BUG_ON(IS_ERR(ck_ref)); -/* - * Rounds down to nearest nsec. - */ -static inline unsigned long long -omap_32k_ticks_to_nsecs(unsigned long ticks_32k) -{ - return (unsigned long long) ticks_32k * 1000 * 5*5*5*5*5*5 >> 9; -} + rate = clk_get_rate(ck_ref); + clk_put(ck_ref); -static unsigned long omap_32k_last_tick = 0; + /* PTV = 0 */ + rate /= 2; -/* - * Returns elapsed usecs since last 32k timer interrupt - */ -static unsigned long omap_32k_timer_gettimeoffset(void) -{ - unsigned long now = omap_32k_sync_timer_read(); - return omap_32k_ticks_to_usecs(now - omap_32k_last_tick); + omap_init_mpu_timer(rate); + omap_init_clocksource(rate); } -/* - * Returns current time from boot in nsecs. It's OK for this to wrap - * around for now, as it's just a relative time stamp. - */ -unsigned long long sched_clock(void) -{ - return omap_32k_ticks_to_nsecs(omap_32k_sync_timer_read()); -} - -/* - * Timer interrupt for 32KHz timer. When dynamic tick is enabled, this - * function is also called from other interrupts to remove latency - * issues with dynamic tick. In the dynamic tick case, we need to lock - * with irqsave. - */ -static irqreturn_t omap_32k_timer_interrupt(int irq, void *dev_id, - struct pt_regs *regs) -{ - unsigned long flags; - unsigned long now; - - write_seqlock_irqsave(&xtime_lock, flags); - now = omap_32k_sync_timer_read(); - - while (now - omap_32k_last_tick >= OMAP_32K_TICKS_PER_HZ) { - omap_32k_last_tick += OMAP_32K_TICKS_PER_HZ; - timer_tick(regs); - } - - /* Restart timer so we don't drift off due to modulo or dynamic tick. - * By default we program the next timer to be continuous to avoid - * latencies during high system load. During dynamic tick operation the - * continuous timer can be overridden from pm_idle to be longer. - */ - omap_32k_timer_start(omap_32k_last_tick + OMAP_32K_TICKS_PER_HZ - now); - write_sequnlock_irqrestore(&xtime_lock, flags); - - return IRQ_HANDLED; -} - -#ifdef CONFIG_NO_IDLE_HZ -/* - * Programs the next timer interrupt needed. Called when dynamic tick is - * enabled, and to reprogram the ticks to skip from pm_idle. Note that - * we can keep the timer continuous, and don't need to set it to run in - * one-shot mode. This is because the timer will get reprogrammed again - * after next interrupt. - */ -void omap_32k_timer_reprogram(unsigned long next_tick) -{ - omap_32k_timer_start(JIFFIES_TO_HW_TICKS(next_tick, 32768) + 1); -} - -static struct irqaction omap_32k_timer_irq; -extern struct timer_update_handler timer_update; - -static int omap_32k_timer_enable_dyn_tick(void) -{ - /* No need to reprogram timer, just use the next interrupt */ - return 0; -} - -static int omap_32k_timer_disable_dyn_tick(void) -{ - omap_32k_timer_start(OMAP_32K_TIMER_TICK_PERIOD); - return 0; -} - -static struct dyn_tick_timer omap_dyn_tick_timer = { - .enable = omap_32k_timer_enable_dyn_tick, - .disable = omap_32k_timer_disable_dyn_tick, - .reprogram = omap_32k_timer_reprogram, - .handler = omap_32k_timer_interrupt, -}; -#endif /* CONFIG_NO_IDLE_HZ */ - -static struct irqaction omap_32k_timer_irq = { - .name = "32KHz timer", - .flags = SA_INTERRUPT | SA_TIMER, - .handler = omap_32k_timer_interrupt, -}; - -static __init void omap_init_32k_timer(void) +#else +static inline void omap_mpu_timer_init(void) { - -#ifdef CONFIG_NO_IDLE_HZ - omap_timer.dyn_tick = &omap_dyn_tick_timer; -#endif - - setup_irq(INT_OS_TIMER, &omap_32k_timer_irq); - omap_timer.offset = omap_32k_timer_gettimeoffset; - omap_32k_last_tick = omap_32k_sync_timer_read(); - omap_32k_timer_start(OMAP_32K_TIMER_TICK_PERIOD); + pr_err("Bogus timer, should not happen\n"); } -#endif /* CONFIG_OMAP_32K_TIMER */ +#endif /* CONFIG_OMAP_MPU_TIMER */ /* * --------------------------------------------------------------------------- * Timer initialization * --------------------------------------------------------------------------- */ -static void __init omap_timer_init(void) +void __init omap1_timer_init(void) { -#if defined(CONFIG_OMAP_MPU_TIMER) - omap_init_mpu_timer(); -#elif defined(CONFIG_OMAP_32K_TIMER) - omap_init_32k_timer(); -#else -#error No system timer selected in Kconfig! -#endif + if (omap_32k_timer_init() != 0) + omap_mpu_timer_init(); } - -struct sys_timer omap_timer = { - .init = omap_timer_init, - .offset = NULL, /* Initialized later */ -}; |
