aboutsummaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/00-INDEX26
-rw-r--r--Documentation/ABI/README13
-rw-r--r--Documentation/ABI/stable/sysfs-bus-usb8
-rw-r--r--Documentation/ABI/stable/sysfs-devices-system-cpu25
-rw-r--r--Documentation/ABI/stable/sysfs-driver-ib_srp13
-rw-r--r--Documentation/ABI/stable/sysfs-firmware-opal-dump41
-rw-r--r--Documentation/ABI/stable/sysfs-firmware-opal-elog60
-rw-r--r--Documentation/ABI/stable/sysfs-transport-srp39
-rw-r--r--Documentation/ABI/testing/configfs-usb-gadget57
-rw-r--r--Documentation/ABI/testing/configfs-usb-gadget-acm2
-rw-r--r--Documentation/ABI/testing/configfs-usb-gadget-ecm2
-rw-r--r--Documentation/ABI/testing/configfs-usb-gadget-eem2
-rw-r--r--Documentation/ABI/testing/configfs-usb-gadget-ffs9
-rw-r--r--Documentation/ABI/testing/configfs-usb-gadget-loopback8
-rw-r--r--Documentation/ABI/testing/configfs-usb-gadget-mass-storage31
-rw-r--r--Documentation/ABI/testing/configfs-usb-gadget-ncm2
-rw-r--r--Documentation/ABI/testing/configfs-usb-gadget-obex2
-rw-r--r--Documentation/ABI/testing/configfs-usb-gadget-phonet2
-rw-r--r--Documentation/ABI/testing/configfs-usb-gadget-rndis2
-rw-r--r--Documentation/ABI/testing/configfs-usb-gadget-serial2
-rw-r--r--Documentation/ABI/testing/configfs-usb-gadget-sourcesink12
-rw-r--r--Documentation/ABI/testing/configfs-usb-gadget-subset2
-rw-r--r--Documentation/ABI/testing/debugfs-driver-genwqe91
-rw-r--r--Documentation/ABI/testing/ima_policy2
-rw-r--r--Documentation/ABI/testing/sysfs-block-zram39
-rw-r--r--Documentation/ABI/testing/sysfs-bus-event_source-devices-events517
-rw-r--r--Documentation/ABI/testing/sysfs-bus-event_source-devices-hv_24x723
-rw-r--r--Documentation/ABI/testing/sysfs-bus-event_source-devices-hv_gpci43
-rw-r--r--Documentation/ABI/testing/sysfs-bus-iio130
-rw-r--r--Documentation/ABI/testing/sysfs-bus-iio-proximity-as393516
-rw-r--r--Documentation/ABI/testing/sysfs-bus-mdio20
-rw-r--r--Documentation/ABI/testing/sysfs-bus-pci34
-rw-r--r--Documentation/ABI/testing/sysfs-bus-rbd26
-rw-r--r--Documentation/ABI/testing/sysfs-bus-usb10
-rw-r--r--Documentation/ABI/testing/sysfs-class-mic.txt157
-rw-r--r--Documentation/ABI/testing/sysfs-class-mtd2
-rw-r--r--Documentation/ABI/testing/sysfs-class-net207
-rw-r--r--Documentation/ABI/testing/sysfs-class-net-batman-adv4
-rw-r--r--Documentation/ABI/testing/sysfs-class-net-cdc_ncm149
-rw-r--r--Documentation/ABI/testing/sysfs-class-net-mesh51
-rw-r--r--Documentation/ABI/testing/sysfs-class-net-queues79
-rw-r--r--Documentation/ABI/testing/sysfs-class-net-statistics201
-rw-r--r--Documentation/ABI/testing/sysfs-class-powercap152
-rw-r--r--Documentation/ABI/testing/sysfs-class-rc111
-rw-r--r--Documentation/ABI/testing/sysfs-class-scsi_host16
-rw-r--r--Documentation/ABI/testing/sysfs-devices-power105
-rw-r--r--Documentation/ABI/testing/sysfs-devices-system-cpu28
-rw-r--r--Documentation/ABI/testing/sysfs-driver-genwqe62
-rw-r--r--Documentation/ABI/testing/sysfs-driver-hid-roccat-ryos178
-rw-r--r--Documentation/ABI/testing/sysfs-driver-hid-thingm23
-rw-r--r--Documentation/ABI/testing/sysfs-driver-hid-wiimote18
-rw-r--r--Documentation/ABI/testing/sysfs-driver-sunxi-sid22
-rw-r--r--Documentation/ABI/testing/sysfs-firmware-efi20
-rw-r--r--Documentation/ABI/testing/sysfs-firmware-efi-runtime-map34
-rw-r--r--Documentation/ABI/testing/sysfs-firmware-ofw28
-rw-r--r--Documentation/ABI/testing/sysfs-fs-f2fs43
-rw-r--r--Documentation/ABI/testing/sysfs-kernel-boot_params38
-rw-r--r--Documentation/ABI/testing/sysfs-kernel-vmcoreinfo14
-rw-r--r--Documentation/ABI/testing/sysfs-module1
-rw-r--r--Documentation/ABI/testing/sysfs-platform-brcmstb-gisb-arb8
-rw-r--r--Documentation/ABI/testing/sysfs-platform-chipidea-usb-otg56
-rw-r--r--Documentation/ABI/testing/sysfs-platform-tahvo-usb16
-rw-r--r--Documentation/ABI/testing/sysfs-power50
-rw-r--r--Documentation/ABI/testing/sysfs-ptp20
-rw-r--r--Documentation/Changes25
-rw-r--r--Documentation/CodingStyle22
-rw-r--r--Documentation/DMA-API-HOWTO.txt243
-rw-r--r--Documentation/DMA-API.txt158
-rw-r--r--Documentation/DMA-ISA-LPC.txt4
-rw-r--r--Documentation/DMA-attributes.txt8
-rw-r--r--Documentation/DocBook/.gitignore1
-rw-r--r--Documentation/DocBook/80211.tmpl7
-rw-r--r--Documentation/DocBook/Makefile33
-rw-r--r--Documentation/DocBook/device-drivers.tmpl17
-rw-r--r--Documentation/DocBook/drm.tmpl1586
-rw-r--r--Documentation/DocBook/filesystems.tmpl3
-rw-r--r--Documentation/DocBook/gadget.tmpl2
-rw-r--r--Documentation/DocBook/genericirq.tmpl68
-rw-r--r--Documentation/DocBook/kernel-api.tmpl1
-rw-r--r--Documentation/DocBook/kernel-hacking.tmpl12
-rw-r--r--Documentation/DocBook/kernel-locking.tmpl4
-rw-r--r--Documentation/DocBook/libata.tmpl6
-rw-r--r--Documentation/DocBook/media/Makefile6
-rw-r--r--Documentation/DocBook/media/dvb/demux.xml23
-rw-r--r--Documentation/DocBook/media/dvb/dvbapi.xml4
-rw-r--r--Documentation/DocBook/media/dvb/dvbproperty.xml2
-rw-r--r--Documentation/DocBook/media/dvb/frontend.xml8
-rw-r--r--Documentation/DocBook/media/v4l/common.xml412
-rw-r--r--Documentation/DocBook/media/v4l/compat.xml27
-rw-r--r--Documentation/DocBook/media/v4l/controls.xml217
-rw-r--r--Documentation/DocBook/media/v4l/dev-osd.xml22
-rw-r--r--Documentation/DocBook/media/v4l/dev-overlay.xml9
-rw-r--r--Documentation/DocBook/media/v4l/dev-sdr.xml110
-rw-r--r--Documentation/DocBook/media/v4l/io.xml200
-rw-r--r--Documentation/DocBook/media/v4l/media-ioc-enum-links.xml17
-rw-r--r--Documentation/DocBook/media/v4l/pixfmt-nv16m.xml9
-rw-r--r--Documentation/DocBook/media/v4l/pixfmt-packed-rgb.xml513
-rw-r--r--Documentation/DocBook/media/v4l/pixfmt-sdr-cu08.xml44
-rw-r--r--Documentation/DocBook/media/v4l/pixfmt-sdr-cu16le.xml46
-rw-r--r--Documentation/DocBook/media/v4l/pixfmt.xml38
-rw-r--r--Documentation/DocBook/media/v4l/remote_controllers.xml143
-rw-r--r--Documentation/DocBook/media/v4l/subdev-formats.xml923
-rw-r--r--Documentation/DocBook/media/v4l/v4l2.xml36
-rw-r--r--Documentation/DocBook/media/v4l/vidioc-cropcap.xml10
-rw-r--r--Documentation/DocBook/media/v4l/vidioc-dqevent.xml33
-rw-r--r--Documentation/DocBook/media/v4l/vidioc-dv-timings-cap.xml27
-rw-r--r--Documentation/DocBook/media/v4l/vidioc-enum-dv-timings.xml30
-rw-r--r--Documentation/DocBook/media/v4l/vidioc-enum-freq-bands.xml8
-rw-r--r--Documentation/DocBook/media/v4l/vidioc-expbuf.xml8
-rw-r--r--Documentation/DocBook/media/v4l/vidioc-g-edid.xml (renamed from Documentation/DocBook/media/v4l/vidioc-subdev-g-edid.xml)36
-rw-r--r--Documentation/DocBook/media/v4l/vidioc-g-ext-ctrls.xml7
-rw-r--r--Documentation/DocBook/media/v4l/vidioc-g-fmt.xml7
-rw-r--r--Documentation/DocBook/media/v4l/vidioc-g-frequency.xml5
-rw-r--r--Documentation/DocBook/media/v4l/vidioc-g-modulator.xml6
-rw-r--r--Documentation/DocBook/media/v4l/vidioc-g-tuner.xml15
-rw-r--r--Documentation/DocBook/media/v4l/vidioc-querycap.xml6
-rw-r--r--Documentation/DocBook/media/v4l/vidioc-s-hw-freq-seek.xml8
-rw-r--r--Documentation/DocBook/media/v4l/vidioc-streamon.xml30
-rw-r--r--Documentation/DocBook/media/v4l/vidioc-subscribe-event.xml20
-rw-r--r--Documentation/DocBook/media_api.tmpl92
-rw-r--r--Documentation/DocBook/mtdnand.tmpl32
-rw-r--r--Documentation/DocBook/regulator.tmpl2
-rw-r--r--Documentation/DocBook/uio-howto.tmpl4
-rw-r--r--Documentation/DocBook/usb.tmpl2
-rw-r--r--Documentation/DocBook/w1.tmpl101
-rw-r--r--Documentation/DocBook/writing-an-alsa-driver.tmpl74
-rw-r--r--Documentation/DocBook/writing_musb_glue_layer.tmpl873
-rw-r--r--Documentation/EDID/1024x768.S2
-rw-r--r--Documentation/EDID/1280x1024.S2
-rw-r--r--Documentation/EDID/1600x1200.S2
-rw-r--r--Documentation/EDID/1680x1050.S2
-rw-r--r--Documentation/EDID/1920x1080.S2
-rw-r--r--Documentation/EDID/800x600.S41
-rw-r--r--Documentation/EDID/HOWTO.txt2
-rw-r--r--Documentation/EDID/edid.S17
-rw-r--r--Documentation/HOWTO4
-rw-r--r--Documentation/IRQ-domain.txt5
-rw-r--r--Documentation/PCI/00-INDEX4
-rw-r--r--Documentation/PCI/MSI-HOWTO.txt379
-rw-r--r--Documentation/PCI/pci-iov-howto.txt4
-rw-r--r--Documentation/PCI/pci.txt14
-rw-r--r--Documentation/RCU/00-INDEX4
-rw-r--r--Documentation/RCU/RTFP.txt149
-rw-r--r--Documentation/RCU/checklist.txt34
-rw-r--r--Documentation/RCU/rcu_dereference.txt371
-rw-r--r--Documentation/RCU/stallwarn.txt24
-rw-r--r--Documentation/RCU/trace.txt22
-rw-r--r--Documentation/RCU/whatisRCU.txt55
-rw-r--r--Documentation/SubmittingPatches72
-rw-r--r--Documentation/accounting/getdelays.c1
-rw-r--r--Documentation/acpi/apei/einj.txt19
-rw-r--r--Documentation/acpi/dsdt-override.txt2
-rw-r--r--Documentation/acpi/enumeration.txt42
-rw-r--r--Documentation/acpi/namespace.txt9
-rw-r--r--Documentation/arm/00-INDEX16
-rw-r--r--Documentation/arm/Marvell/README42
-rw-r--r--Documentation/arm/Samsung-S3C24XX/GPIO.txt13
-rw-r--r--Documentation/arm/memory.txt9
-rw-r--r--Documentation/arm/sti/stih407-overview.txt18
-rw-r--r--Documentation/arm/sunxi/README26
-rw-r--r--Documentation/arm/uefi.txt64
-rw-r--r--Documentation/arm64/booting.txt59
-rw-r--r--Documentation/arm64/memory.txt37
-rw-r--r--Documentation/arm64/tagged-pointers.txt14
-rw-r--r--Documentation/assoc_array.txt574
-rw-r--r--Documentation/atomic_ops.txt31
-rw-r--r--Documentation/backlight/lp855x-driver.txt5
-rw-r--r--Documentation/blackfin/00-INDEX6
-rw-r--r--Documentation/block/00-INDEX4
-rw-r--r--Documentation/block/biodoc.txt7
-rw-r--r--Documentation/block/biovecs.txt111
-rw-r--r--Documentation/block/cmdline-partition.txt8
-rw-r--r--Documentation/block/null_blk.txt72
-rw-r--r--Documentation/blockdev/drbd/data-structure-v9.txt38
-rw-r--r--Documentation/blockdev/floppy.txt6
-rw-r--r--Documentation/blockdev/ramdisk.txt21
-rw-r--r--Documentation/blockdev/zram.txt113
-rw-r--r--Documentation/cgroups/cgroups.txt20
-rw-r--r--Documentation/cgroups/memcg_test.txt4
-rw-r--r--Documentation/cgroups/memory.txt39
-rw-r--r--Documentation/cgroups/net_cls.txt5
-rw-r--r--Documentation/cgroups/resource_counter.txt18
-rw-r--r--Documentation/cgroups/unified-hierarchy.txt359
-rw-r--r--Documentation/circular-buffers.txt45
-rw-r--r--Documentation/clk.txt53
-rw-r--r--Documentation/connector/cn_test.c2
-rw-r--r--Documentation/connector/connector.txt15
-rw-r--r--Documentation/connector/ucon.c2
-rw-r--r--Documentation/cpu-freq/boost.txt26
-rw-r--r--Documentation/cpu-freq/core.txt31
-rw-r--r--Documentation/cpu-freq/cpu-drivers.txt81
-rw-r--r--Documentation/cpu-freq/governors.txt4
-rw-r--r--Documentation/cpu-freq/index.txt4
-rw-r--r--Documentation/cpu-freq/intel-pstate.txt43
-rw-r--r--Documentation/cpu-hotplug.txt49
-rw-r--r--Documentation/cpuidle/governor.txt1
-rw-r--r--Documentation/debugging-via-ohci1394.txt44
-rw-r--r--Documentation/device-mapper/cache-policies.txt22
-rw-r--r--Documentation/device-mapper/cache.txt121
-rw-r--r--Documentation/device-mapper/dm-crypt.txt11
-rw-r--r--Documentation/device-mapper/era.txt108
-rw-r--r--Documentation/device-mapper/thin-provisioning.txt44
-rw-r--r--Documentation/devices.txt12
-rw-r--r--Documentation/devicetree/00-INDEX2
-rw-r--r--Documentation/devicetree/bindings/ABI.txt39
-rw-r--r--Documentation/devicetree/bindings/arc/pmu.txt24
-rw-r--r--Documentation/devicetree/bindings/arm/arch_timer.txt3
-rw-r--r--Documentation/devicetree/bindings/arm/arm-boards58
-rw-r--r--Documentation/devicetree/bindings/arm/armada-370-xp-pmsu.txt19
-rw-r--r--Documentation/devicetree/bindings/arm/armada-375.txt9
-rw-r--r--Documentation/devicetree/bindings/arm/armada-38x.txt20
-rw-r--r--Documentation/devicetree/bindings/arm/armada-cpu-reset.txt14
-rw-r--r--Documentation/devicetree/bindings/arm/atmel-aic.txt1
-rw-r--r--Documentation/devicetree/bindings/arm/atmel-at91.txt11
-rw-r--r--Documentation/devicetree/bindings/arm/axxia.txt12
-rw-r--r--Documentation/devicetree/bindings/arm/bcm/bcm21664.txt15
-rw-r--r--Documentation/devicetree/bindings/arm/bcm/kona-resetmgr.txt14
-rw-r--r--Documentation/devicetree/bindings/arm/bcm/kona-timer.txt7
-rw-r--r--Documentation/devicetree/bindings/arm/bcm4708.txt8
-rw-r--r--Documentation/devicetree/bindings/arm/calxeda/mem-ctrlr.txt4
-rw-r--r--Documentation/devicetree/bindings/arm/cci.txt60
-rw-r--r--Documentation/devicetree/bindings/arm/coherency-fabric.txt32
-rw-r--r--Documentation/devicetree/bindings/arm/cpus.txt430
-rw-r--r--Documentation/devicetree/bindings/arm/davinci/nand.txt46
-rw-r--r--Documentation/devicetree/bindings/arm/exynos/power_domain.txt20
-rw-r--r--Documentation/devicetree/bindings/arm/exynos/smp-sysram.txt38
-rw-r--r--Documentation/devicetree/bindings/arm/firmware/tlm,trusted-foundations.txt20
-rw-r--r--Documentation/devicetree/bindings/arm/gic.txt7
-rw-r--r--Documentation/devicetree/bindings/arm/global_timer.txt7
-rw-r--r--Documentation/devicetree/bindings/arm/hisilicon/hisilicon.txt46
-rw-r--r--Documentation/devicetree/bindings/arm/keystone/keystone.txt10
-rw-r--r--Documentation/devicetree/bindings/arm/l2cc.txt26
-rw-r--r--Documentation/devicetree/bindings/arm/marvell,berlin.txt126
-rw-r--r--Documentation/devicetree/bindings/arm/marvell,dove.txt22
-rw-r--r--Documentation/devicetree/bindings/arm/marvell,kirkwood.txt97
-rw-r--r--Documentation/devicetree/bindings/arm/moxart.txt12
-rw-r--r--Documentation/devicetree/bindings/arm/mrvl/feroceon.txt16
-rw-r--r--Documentation/devicetree/bindings/arm/msm/qcom,kpss-acc.txt30
-rw-r--r--Documentation/devicetree/bindings/arm/msm/qcom,saw2.txt35
-rw-r--r--Documentation/devicetree/bindings/arm/mvebu-system-controller.txt3
-rw-r--r--Documentation/devicetree/bindings/arm/omap/crossbar.txt27
-rw-r--r--Documentation/devicetree/bindings/arm/omap/dmm.txt22
-rw-r--r--Documentation/devicetree/bindings/arm/omap/l3-noc.txt2
-rw-r--r--Documentation/devicetree/bindings/arm/omap/mpu.txt8
-rw-r--r--Documentation/devicetree/bindings/arm/omap/omap.txt80
-rw-r--r--Documentation/devicetree/bindings/arm/pmu.txt12
-rw-r--r--Documentation/devicetree/bindings/arm/psci.txt37
-rw-r--r--Documentation/devicetree/bindings/arm/rockchip.txt10
-rw-r--r--Documentation/devicetree/bindings/arm/rockchip/pmu.txt16
-rw-r--r--Documentation/devicetree/bindings/arm/rockchip/smp-sram.txt30
-rw-r--r--Documentation/devicetree/bindings/arm/samsung/exynos-adc.txt4
-rw-r--r--Documentation/devicetree/bindings/arm/samsung/pmu.txt19
-rw-r--r--Documentation/devicetree/bindings/arm/samsung/sysreg.txt18
-rw-r--r--Documentation/devicetree/bindings/arm/sti.txt15
-rw-r--r--Documentation/devicetree/bindings/arm/tegra.txt5
-rw-r--r--Documentation/devicetree/bindings/arm/tegra/nvidia,tegra20-pmc.txt1
-rw-r--r--Documentation/devicetree/bindings/arm/topology.txt475
-rw-r--r--Documentation/devicetree/bindings/arm/versatile-fpga-irq.txt5
-rw-r--r--Documentation/devicetree/bindings/arm/vexpress-sysreg.txt79
-rw-r--r--Documentation/devicetree/bindings/arm/vexpress.txt15
-rw-r--r--Documentation/devicetree/bindings/arm/vic.txt12
-rw-r--r--Documentation/devicetree/bindings/ata/ahci-platform.txt28
-rw-r--r--Documentation/devicetree/bindings/ata/apm-xgene.txt79
-rw-r--r--Documentation/devicetree/bindings/ata/exynos-sata-phy.txt14
-rw-r--r--Documentation/devicetree/bindings/ata/exynos-sata.txt31
-rw-r--r--Documentation/devicetree/bindings/ata/marvell.txt2
-rw-r--r--Documentation/devicetree/bindings/ata/sata_rcar.txt18
-rw-r--r--Documentation/devicetree/bindings/bus/brcm,gisb-arb.txt30
-rw-r--r--Documentation/devicetree/bindings/bus/imx-weim.txt28
-rw-r--r--Documentation/devicetree/bindings/bus/mvebu-mbus.txt2
-rw-r--r--Documentation/devicetree/bindings/clock/altr_socfpga.txt9
-rw-r--r--Documentation/devicetree/bindings/clock/arm-integrator.txt34
-rw-r--r--Documentation/devicetree/bindings/clock/at91-clock.txt449
-rw-r--r--Documentation/devicetree/bindings/clock/axi-clkgen.txt2
-rw-r--r--Documentation/devicetree/bindings/clock/bcm-kona-clock.txt139
-rw-r--r--Documentation/devicetree/bindings/clock/clk-exynos-audss.txt39
-rw-r--r--Documentation/devicetree/bindings/clock/clock-bindings.txt18
-rw-r--r--Documentation/devicetree/bindings/clock/efm32-clock.txt11
-rw-r--r--Documentation/devicetree/bindings/clock/emev2-clock.txt98
-rw-r--r--Documentation/devicetree/bindings/clock/exynos3250-clock.txt41
-rw-r--r--Documentation/devicetree/bindings/clock/exynos4-clock.txt261
-rw-r--r--Documentation/devicetree/bindings/clock/exynos5250-clock.txt162
-rw-r--r--Documentation/devicetree/bindings/clock/exynos5260-clock.txt190
-rw-r--r--Documentation/devicetree/bindings/clock/exynos5410-clock.txt45
-rw-r--r--Documentation/devicetree/bindings/clock/exynos5420-clock.txt189
-rw-r--r--Documentation/devicetree/bindings/clock/exynos5440-clock.txt47
-rw-r--r--Documentation/devicetree/bindings/clock/fixed-clock.txt4
-rw-r--r--Documentation/devicetree/bindings/clock/fixed-factor-clock.txt4
-rw-r--r--Documentation/devicetree/bindings/clock/hi3620-clock.txt20
-rw-r--r--Documentation/devicetree/bindings/clock/hix5hd2-clock.txt31
-rw-r--r--Documentation/devicetree/bindings/clock/imx25-clock.txt3
-rw-r--r--Documentation/devicetree/bindings/clock/imx27-clock.txt7
-rw-r--r--Documentation/devicetree/bindings/clock/imx35-clock.txt113
-rw-r--r--Documentation/devicetree/bindings/clock/imx5-clock.txt195
-rw-r--r--Documentation/devicetree/bindings/clock/imx6q-clock.txt6
-rw-r--r--Documentation/devicetree/bindings/clock/imx6sx-clock.txt13
-rw-r--r--Documentation/devicetree/bindings/clock/keystone-gate.txt29
-rw-r--r--Documentation/devicetree/bindings/clock/keystone-pll.txt84
-rw-r--r--Documentation/devicetree/bindings/clock/lsi,axm5516-clks.txt29
-rw-r--r--Documentation/devicetree/bindings/clock/maxim,max77686.txt38
-rw-r--r--Documentation/devicetree/bindings/clock/moxa,moxart-clock.txt48
-rw-r--r--Documentation/devicetree/bindings/clock/mvebu-core-clock.txt22
-rw-r--r--Documentation/devicetree/bindings/clock/mvebu-corediv-clock.txt22
-rw-r--r--Documentation/devicetree/bindings/clock/mvebu-gated-clock.txt71
-rw-r--r--Documentation/devicetree/bindings/clock/nvidia,tegra114-car.txt4
-rw-r--r--Documentation/devicetree/bindings/clock/nvidia,tegra124-car.txt63
-rw-r--r--Documentation/devicetree/bindings/clock/nvidia,tegra20-car.txt4
-rw-r--r--Documentation/devicetree/bindings/clock/nvidia,tegra30-car.txt4
-rw-r--r--Documentation/devicetree/bindings/clock/qcom,gcc.txt24
-rw-r--r--Documentation/devicetree/bindings/clock/qcom,mmcc.txt21
-rw-r--r--Documentation/devicetree/bindings/clock/qoriq-clock.txt142
-rw-r--r--Documentation/devicetree/bindings/clock/renesas,cpg-div6-clocks.txt28
-rw-r--r--Documentation/devicetree/bindings/clock/renesas,cpg-mstp-clocks.txt53
-rw-r--r--Documentation/devicetree/bindings/clock/renesas,r8a7740-cpg-clocks.txt41
-rw-r--r--Documentation/devicetree/bindings/clock/renesas,r8a7779-cpg-clocks.txt27
-rw-r--r--Documentation/devicetree/bindings/clock/renesas,rcar-gen2-cpg-clocks.txt32
-rw-r--r--Documentation/devicetree/bindings/clock/renesas,rz-cpg-clocks.txt29
-rw-r--r--Documentation/devicetree/bindings/clock/samsung,s3c2410-clock.txt50
-rw-r--r--Documentation/devicetree/bindings/clock/samsung,s3c2412-clock.txt50
-rw-r--r--Documentation/devicetree/bindings/clock/samsung,s3c2443-clock.txt56
-rw-r--r--Documentation/devicetree/bindings/clock/silabs,si570.txt39
-rw-r--r--Documentation/devicetree/bindings/clock/st/st,clkgen-divmux.txt49
-rw-r--r--Documentation/devicetree/bindings/clock/st/st,clkgen-mux.txt36
-rw-r--r--Documentation/devicetree/bindings/clock/st/st,clkgen-pll.txt48
-rw-r--r--Documentation/devicetree/bindings/clock/st/st,clkgen-prediv.txt36
-rw-r--r--Documentation/devicetree/bindings/clock/st/st,clkgen-vcc.txt53
-rw-r--r--Documentation/devicetree/bindings/clock/st/st,clkgen.txt83
-rw-r--r--Documentation/devicetree/bindings/clock/st/st,quadfs.txt45
-rw-r--r--Documentation/devicetree/bindings/clock/sunxi.txt112
-rw-r--r--Documentation/devicetree/bindings/clock/sunxi/sun4i-a10-gates.txt93
-rw-r--r--Documentation/devicetree/bindings/clock/sunxi/sun5i-a10s-gates.txt75
-rw-r--r--Documentation/devicetree/bindings/clock/sunxi/sun5i-a13-gates.txt58
-rw-r--r--Documentation/devicetree/bindings/clock/sunxi/sun6i-a31-gates.txt83
-rw-r--r--Documentation/devicetree/bindings/clock/sunxi/sun7i-a20-gates.txt98
-rw-r--r--Documentation/devicetree/bindings/clock/ti-keystone-pllctrl.txt20
-rw-r--r--Documentation/devicetree/bindings/clock/ti/apll.txt45
-rw-r--r--Documentation/devicetree/bindings/clock/ti/autoidle.txt39
-rw-r--r--Documentation/devicetree/bindings/clock/ti/clockdomain.txt24
-rw-r--r--Documentation/devicetree/bindings/clock/ti/composite.txt54
-rw-r--r--Documentation/devicetree/bindings/clock/ti/divider.txt114
-rw-r--r--Documentation/devicetree/bindings/clock/ti/dpll.txt85
-rw-r--r--Documentation/devicetree/bindings/clock/ti/dra7-atl.txt96
-rw-r--r--Documentation/devicetree/bindings/clock/ti/fixed-factor-clock.txt43
-rw-r--r--Documentation/devicetree/bindings/clock/ti/gate.txt106
-rw-r--r--Documentation/devicetree/bindings/clock/ti/interface.txt56
-rw-r--r--Documentation/devicetree/bindings/clock/ti/mux.txt76
-rw-r--r--Documentation/devicetree/bindings/clock/xgene.txt111
-rw-r--r--Documentation/devicetree/bindings/clock/zynq-7000.txt8
-rw-r--r--Documentation/devicetree/bindings/cpufreq/cpufreq-cpu0.txt13
-rw-r--r--Documentation/devicetree/bindings/crypto/atmel-crypto.txt68
-rw-r--r--Documentation/devicetree/bindings/crypto/fsl-dcp.txt17
-rw-r--r--Documentation/devicetree/bindings/crypto/omap-aes.txt31
-rw-r--r--Documentation/devicetree/bindings/crypto/omap-des.txt30
-rw-r--r--Documentation/devicetree/bindings/crypto/omap-sham.txt28
-rw-r--r--Documentation/devicetree/bindings/crypto/samsung-sss.txt34
-rw-r--r--Documentation/devicetree/bindings/dma/atmel-dma.txt2
-rw-r--r--Documentation/devicetree/bindings/dma/bcm2835-dma.txt57
-rw-r--r--Documentation/devicetree/bindings/dma/dma.txt4
-rw-r--r--Documentation/devicetree/bindings/dma/fsl-edma.txt76
-rw-r--r--Documentation/devicetree/bindings/dma/fsl-imx-sdma.txt17
-rw-r--r--Documentation/devicetree/bindings/dma/mmp-dma.txt11
-rw-r--r--Documentation/devicetree/bindings/dma/moxa,moxart-dma.txt45
-rw-r--r--Documentation/devicetree/bindings/dma/qcom_bam_dma.txt41
-rw-r--r--Documentation/devicetree/bindings/dma/sirfsoc-dma.txt43
-rw-r--r--Documentation/devicetree/bindings/dma/ste-dma40.txt3
-rw-r--r--Documentation/devicetree/bindings/dma/tegra20-apbdma.txt14
-rw-r--r--Documentation/devicetree/bindings/dma/ti-edma.txt17
-rw-r--r--Documentation/devicetree/bindings/dma/xilinx/xilinx_vdma.txt75
-rw-r--r--Documentation/devicetree/bindings/drm/bridge/ptn3460.txt27
-rw-r--r--Documentation/devicetree/bindings/drm/i2c/tda998x.txt27
-rw-r--r--Documentation/devicetree/bindings/extcon/extcon-palmas.txt6
-rw-r--r--Documentation/devicetree/bindings/gpio/8xxx_gpio.txt66
-rw-r--r--Documentation/devicetree/bindings/gpio/abilis,tb10x-gpio.txt36
-rw-r--r--Documentation/devicetree/bindings/gpio/cirrus,clps711x-mctrl-gpio.txt17
-rw-r--r--Documentation/devicetree/bindings/gpio/gpio-bcm-kona.txt52
-rw-r--r--Documentation/devicetree/bindings/gpio/gpio-davinci.txt62
-rw-r--r--Documentation/devicetree/bindings/gpio/gpio-lp3943.txt37
-rw-r--r--Documentation/devicetree/bindings/gpio/gpio-mcp23s08.txt28
-rw-r--r--Documentation/devicetree/bindings/gpio/gpio-pcf857x.txt71
-rw-r--r--Documentation/devicetree/bindings/gpio/gpio-zevio.txt16
-rw-r--r--Documentation/devicetree/bindings/gpio/gpio.txt100
-rw-r--r--Documentation/devicetree/bindings/gpio/moxa,moxart-gpio.txt19
-rw-r--r--Documentation/devicetree/bindings/gpio/renesas,gpio-rcar.txt9
-rw-r--r--Documentation/devicetree/bindings/gpio/snps-dwapb-gpio.txt60
-rw-r--r--Documentation/devicetree/bindings/gpu/nvidia,tegra20-host1x.txt181
-rw-r--r--Documentation/devicetree/bindings/graph.txt129
-rw-r--r--Documentation/devicetree/bindings/hsi/client-devices.txt44
-rw-r--r--Documentation/devicetree/bindings/hsi/nokia-modem.txt57
-rw-r--r--Documentation/devicetree/bindings/hsi/omap-ssi.txt97
-rw-r--r--Documentation/devicetree/bindings/hwmon/lm90.txt44
-rw-r--r--Documentation/devicetree/bindings/hwmon/ntc_thermistor.txt20
-rw-r--r--Documentation/devicetree/bindings/hwrng/omap_rng.txt22
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-arb-gpio-challenge.txt6
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-at91.txt4
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-bcm-kona.txt35
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-cadence.txt24
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-cros-ec-tunnel.txt39
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-designware.txt8
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-efm32.txt34
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-exynos5.txt51
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-mux-pca954x.txt50
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-mv64xxx.txt16
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-omap.txt3
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-rcar.txt32
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-riic.txt29
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-rk3x.txt42
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-s3c2410.txt2
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-sh_mobile.txt26
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-st.txt41
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-sunxi-p2wi.txt41
-rw-r--r--Documentation/devicetree/bindings/i2c/nvidia,tegra20-i2c.txt27
-rw-r--r--Documentation/devicetree/bindings/i2c/qcom,i2c-qup.txt40
-rw-r--r--Documentation/devicetree/bindings/i2c/trivial-devices.txt24
-rw-r--r--Documentation/devicetree/bindings/iio/adc/at91_adc.txt (renamed from Documentation/devicetree/bindings/arm/atmel-adc.txt)36
-rw-r--r--Documentation/devicetree/bindings/iio/adc/twl4030-madc.txt24
-rw-r--r--Documentation/devicetree/bindings/iio/adc/vf610-adc.txt22
-rw-r--r--Documentation/devicetree/bindings/iio/adc/xilinx-xadc.txt113
-rw-r--r--Documentation/devicetree/bindings/iio/humidity/dht11.txt14
-rw-r--r--Documentation/devicetree/bindings/iio/light/cm36651.txt26
-rw-r--r--Documentation/devicetree/bindings/iio/light/gp2ap020a00f.txt21
-rw-r--r--Documentation/devicetree/bindings/iio/light/tsl2563.txt19
-rw-r--r--Documentation/devicetree/bindings/iio/magnetometer/hmc5843.txt17
-rw-r--r--Documentation/devicetree/bindings/iio/proximity/as3935.txt28
-rw-r--r--Documentation/devicetree/bindings/input/clps711x-keypad.txt27
-rw-r--r--Documentation/devicetree/bindings/input/gpio-beeper.txt13
-rw-r--r--Documentation/devicetree/bindings/input/gpio-keys.txt (renamed from Documentation/devicetree/bindings/gpio/gpio_keys.txt)0
-rw-r--r--Documentation/devicetree/bindings/input/nvidia,tegra20-kbc.txt9
-rw-r--r--Documentation/devicetree/bindings/input/qcom,pm8xxx-keypad.txt89
-rw-r--r--Documentation/devicetree/bindings/input/qcom,pm8xxx-pwrkey.txt46
-rw-r--r--Documentation/devicetree/bindings/input/qcom,pm8xxx-vib.txt22
-rw-r--r--Documentation/devicetree/bindings/input/st-keyscan.txt60
-rw-r--r--Documentation/devicetree/bindings/input/touchscreen/edt-ft5x06.txt55
-rw-r--r--Documentation/devicetree/bindings/input/touchscreen/sun4i.txt20
-rw-r--r--Documentation/devicetree/bindings/input/touchscreen/ti-tsc-adc.txt2
-rw-r--r--Documentation/devicetree/bindings/input/touchscreen/touchscreen.txt27
-rw-r--r--Documentation/devicetree/bindings/input/touchscreen/tsc2005.txt42
-rw-r--r--Documentation/devicetree/bindings/input/touchscreen/tsc2007.txt41
-rw-r--r--Documentation/devicetree/bindings/input/touchscreen/zforce_ts.txt30
-rw-r--r--Documentation/devicetree/bindings/input/twl4030-keypad.txt27
-rw-r--r--Documentation/devicetree/bindings/input/twl4030-pwrbutton.txt21
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/allwinner,sun4i-ic.txt9
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/allwinner,sun67i-sc-nmi.txt27
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/brcm,l2-intc.txt29
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/cirrus,clps711x-intc.txt41
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/interrupts.txt29
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/lsi,zevio-intc.txt18
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/marvell,armada-370-xp-mpic.txt (renamed from Documentation/devicetree/bindings/arm/armada-370-xp-mpic.txt)11
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/snps,dw-apb-ictl.txt32
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/sunxi/sun4i-a10.txt89
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/sunxi/sun5i-a13.txt55
-rw-r--r--Documentation/devicetree/bindings/iommu/arm,smmu.txt6
-rw-r--r--Documentation/devicetree/bindings/iommu/samsung,sysmmu.txt70
-rw-r--r--Documentation/devicetree/bindings/iommu/ti,omap-iommu.txt26
-rw-r--r--Documentation/devicetree/bindings/leds/leds-gpio.txt12
-rw-r--r--Documentation/devicetree/bindings/leds/leds-lp55xx.txt19
-rw-r--r--Documentation/devicetree/bindings/leds/leds-pwm.txt2
-rw-r--r--Documentation/devicetree/bindings/leds/tca6507.txt16
-rw-r--r--Documentation/devicetree/bindings/marvell.txt8
-rw-r--r--Documentation/devicetree/bindings/media/exynos-jpeg-codec.txt11
-rw-r--r--Documentation/devicetree/bindings/media/i2c/adv7604.txt70
-rw-r--r--Documentation/devicetree/bindings/media/img-ir-rev1.txt34
-rw-r--r--Documentation/devicetree/bindings/media/renesas,vsp1.txt43
-rw-r--r--Documentation/devicetree/bindings/media/s5p-mfc.txt3
-rw-r--r--Documentation/devicetree/bindings/media/samsung-fimc.txt44
-rw-r--r--Documentation/devicetree/bindings/media/samsung-s5c73m3.txt97
-rw-r--r--Documentation/devicetree/bindings/media/samsung-s5k5baf.txt58
-rw-r--r--Documentation/devicetree/bindings/media/samsung-s5k6a3.txt33
-rw-r--r--Documentation/devicetree/bindings/media/st-rc.txt29
-rw-r--r--Documentation/devicetree/bindings/memory-controllers/fsl/ifc.txt (renamed from Documentation/devicetree/bindings/powerpc/fsl/ifc.txt)0
-rw-r--r--Documentation/devicetree/bindings/memory-controllers/mvebu-devbus.txt32
-rw-r--r--Documentation/devicetree/bindings/memory-controllers/ti-aemif.txt210
-rw-r--r--Documentation/devicetree/bindings/memory.txt168
-rw-r--r--Documentation/devicetree/bindings/mfd/arizona.txt23
-rw-r--r--Documentation/devicetree/bindings/mfd/as3722.txt205
-rw-r--r--Documentation/devicetree/bindings/mfd/bcm590xx.txt39
-rw-r--r--Documentation/devicetree/bindings/mfd/bfticu.txt25
-rw-r--r--Documentation/devicetree/bindings/mfd/cros-ec.txt9
-rw-r--r--Documentation/devicetree/bindings/mfd/da9055.txt72
-rw-r--r--Documentation/devicetree/bindings/mfd/lp3943.txt33
-rw-r--r--Documentation/devicetree/bindings/mfd/max77686.txt3
-rw-r--r--Documentation/devicetree/bindings/mfd/mc13xxx.txt50
-rw-r--r--Documentation/devicetree/bindings/mfd/omap-usb-host.txt23
-rw-r--r--Documentation/devicetree/bindings/mfd/omap-usb-tll.txt10
-rw-r--r--Documentation/devicetree/bindings/mfd/qcom,pm8xxx.txt96
-rw-r--r--Documentation/devicetree/bindings/mfd/qriox.txt17
-rw-r--r--Documentation/devicetree/bindings/mfd/s2mpa01.txt90
-rw-r--r--Documentation/devicetree/bindings/mfd/s2mps11.txt61
-rw-r--r--Documentation/devicetree/bindings/mfd/sun6i-prcm.txt59
-rw-r--r--Documentation/devicetree/bindings/mfd/ti-keystone-devctrl.txt19
-rw-r--r--Documentation/devicetree/bindings/mfd/tps65910.txt6
-rw-r--r--Documentation/devicetree/bindings/mfd/twl4030-power.txt17
-rw-r--r--Documentation/devicetree/bindings/mfd/twl6040.txt2
-rw-r--r--Documentation/devicetree/bindings/mipi/dsi/mipi-dsi-bus.txt98
-rw-r--r--Documentation/devicetree/bindings/mipi/nvidia,tegra114-mipi.txt41
-rw-r--r--Documentation/devicetree/bindings/misc/allwinner,sunxi-sid.txt17
-rw-r--r--Documentation/devicetree/bindings/misc/arm-charlcd.txt18
-rw-r--r--Documentation/devicetree/bindings/misc/atmel-ssc.txt13
-rw-r--r--Documentation/devicetree/bindings/misc/bmp085.txt4
-rw-r--r--Documentation/devicetree/bindings/misc/sram.txt35
-rw-r--r--Documentation/devicetree/bindings/misc/ti,dac7512.txt20
-rw-r--r--Documentation/devicetree/bindings/mmc/arasan,sdhci.txt27
-rw-r--r--Documentation/devicetree/bindings/mmc/atmel-hsmci.txt5
-rw-r--r--Documentation/devicetree/bindings/mmc/exynos-dw-mshc.txt12
-rw-r--r--Documentation/devicetree/bindings/mmc/fsl-imx-esdhc.txt5
-rw-r--r--Documentation/devicetree/bindings/mmc/k3-dw-mshc.txt46
-rw-r--r--Documentation/devicetree/bindings/mmc/kona-sdhci.txt4
-rw-r--r--Documentation/devicetree/bindings/mmc/mmc.txt11
-rw-r--r--Documentation/devicetree/bindings/mmc/mmci.txt54
-rw-r--r--Documentation/devicetree/bindings/mmc/moxa,moxart-mmc.txt30
-rw-r--r--Documentation/devicetree/bindings/mmc/nvidia,tegra20-sdhci.txt9
-rw-r--r--Documentation/devicetree/bindings/mmc/rockchip-dw-mshc.txt10
-rw-r--r--Documentation/devicetree/bindings/mmc/samsung-sdhci.txt2
-rw-r--r--Documentation/devicetree/bindings/mmc/sdhci-msm.txt55
-rw-r--r--Documentation/devicetree/bindings/mmc/sdhci-pxa.txt17
-rw-r--r--Documentation/devicetree/bindings/mmc/socfpga-dw-mshc.txt23
-rw-r--r--Documentation/devicetree/bindings/mmc/sunxi-mmc.txt43
-rw-r--r--Documentation/devicetree/bindings/mmc/synopsys-dw-mshc.txt (renamed from Documentation/devicetree/bindings/mmc/synopsis-dw-mshc.txt)12
-rw-r--r--Documentation/devicetree/bindings/mmc/ti-omap-hsmmc.txt27
-rw-r--r--Documentation/devicetree/bindings/mmc/ti-omap.txt54
-rw-r--r--Documentation/devicetree/bindings/mmc/tmio_mmc.txt17
-rw-r--r--Documentation/devicetree/bindings/mmc/usdhi6rol0.txt33
-rw-r--r--Documentation/devicetree/bindings/mtd/davinci-nand.txt94
-rw-r--r--Documentation/devicetree/bindings/mtd/fsl-quadspi.txt35
-rw-r--r--Documentation/devicetree/bindings/mtd/gpmc-nand.txt63
-rw-r--r--Documentation/devicetree/bindings/mtd/gpmc-nor.txt2
-rw-r--r--Documentation/devicetree/bindings/mtd/gpmc-onenand.txt2
-rw-r--r--Documentation/devicetree/bindings/mtd/gpmi-nand.txt8
-rw-r--r--Documentation/devicetree/bindings/mtd/m25p80.txt4
-rw-r--r--Documentation/devicetree/bindings/mtd/nand.txt14
-rw-r--r--Documentation/devicetree/bindings/mtd/pxa3xx-nand.txt14
-rw-r--r--Documentation/devicetree/bindings/mtd/st-fsm.txt26
-rw-r--r--Documentation/devicetree/bindings/net/allwinner,sun4i-emac.txt11
-rw-r--r--Documentation/devicetree/bindings/net/allwinner,sun4i-mdio.txt5
-rw-r--r--Documentation/devicetree/bindings/net/allwinner,sun7i-a20-gmac.txt27
-rw-r--r--Documentation/devicetree/bindings/net/altera_tse.txt114
-rw-r--r--Documentation/devicetree/bindings/net/amd-xgbe-phy.txt17
-rw-r--r--Documentation/devicetree/bindings/net/amd-xgbe.txt34
-rw-r--r--Documentation/devicetree/bindings/net/arc_emac.txt23
-rw-r--r--Documentation/devicetree/bindings/net/broadcom-bcmgenet.txt121
-rw-r--r--Documentation/devicetree/bindings/net/broadcom-systemport.txt29
-rw-r--r--Documentation/devicetree/bindings/net/can/microchip,mcp251x.txt25
-rw-r--r--Documentation/devicetree/bindings/net/can/sja1000.txt4
-rw-r--r--Documentation/devicetree/bindings/net/can/xilinx_can.txt44
-rw-r--r--Documentation/devicetree/bindings/net/cavium-mix.txt7
-rw-r--r--Documentation/devicetree/bindings/net/cavium-pip.txt7
-rw-r--r--Documentation/devicetree/bindings/net/cdns-emac.txt6
-rw-r--r--Documentation/devicetree/bindings/net/cpsw-phy-sel.txt30
-rw-r--r--Documentation/devicetree/bindings/net/cpsw.txt5
-rw-r--r--Documentation/devicetree/bindings/net/davicom-dm9000.txt2
-rw-r--r--Documentation/devicetree/bindings/net/davinci_emac.txt11
-rw-r--r--Documentation/devicetree/bindings/net/ethernet.txt25
-rw-r--r--Documentation/devicetree/bindings/net/fixed-link.txt42
-rw-r--r--Documentation/devicetree/bindings/net/fsl-fec.txt7
-rw-r--r--Documentation/devicetree/bindings/net/fsl-tsec-phy.txt36
-rw-r--r--Documentation/devicetree/bindings/net/hisilicon-hix5hd2-gmac.txt36
-rw-r--r--Documentation/devicetree/bindings/net/ieee802154/at86rf230.txt23
-rw-r--r--Documentation/devicetree/bindings/net/lpc-eth.txt5
-rw-r--r--Documentation/devicetree/bindings/net/macb.txt12
-rw-r--r--Documentation/devicetree/bindings/net/marvell-armada-370-neta.txt6
-rw-r--r--Documentation/devicetree/bindings/net/marvell-orion-net.txt7
-rw-r--r--Documentation/devicetree/bindings/net/mdio-gpio.txt2
-rw-r--r--Documentation/devicetree/bindings/net/micrel-ks8851.txt15
-rw-r--r--Documentation/devicetree/bindings/net/micrel-ksz9021.txt49
-rw-r--r--Documentation/devicetree/bindings/net/micrel-ksz90x1.txt83
-rw-r--r--Documentation/devicetree/bindings/net/micrel.txt18
-rw-r--r--Documentation/devicetree/bindings/net/nfc/pn544.txt35
-rw-r--r--Documentation/devicetree/bindings/net/nfc/st21nfca.txt33
-rw-r--r--Documentation/devicetree/bindings/net/nfc/trf7970a.txt36
-rw-r--r--Documentation/devicetree/bindings/net/opencores-ethoc.txt22
-rw-r--r--Documentation/devicetree/bindings/net/phy.txt16
-rw-r--r--Documentation/devicetree/bindings/net/samsung-sxgbe.txt52
-rw-r--r--Documentation/devicetree/bindings/net/sh_eth.txt55
-rw-r--r--Documentation/devicetree/bindings/net/smsc-lan91c111.txt7
-rw-r--r--Documentation/devicetree/bindings/net/smsc911x.txt5
-rw-r--r--Documentation/devicetree/bindings/net/socfpga-dwmac.txt27
-rw-r--r--Documentation/devicetree/bindings/net/sti-dwmac.txt58
-rw-r--r--Documentation/devicetree/bindings/net/stmmac.txt16
-rw-r--r--Documentation/devicetree/bindings/net/via-rhine.txt17
-rw-r--r--Documentation/devicetree/bindings/net/wireless/ti,wl1251.txt39
-rw-r--r--Documentation/devicetree/bindings/nvec/nvidia,nvec.txt12
-rw-r--r--Documentation/devicetree/bindings/panel/auo,b101aw03.txt7
-rw-r--r--Documentation/devicetree/bindings/panel/auo,b133xtn01.txt7
-rw-r--r--Documentation/devicetree/bindings/panel/chunghwa,claa101wa01a.txt7
-rw-r--r--Documentation/devicetree/bindings/panel/chunghwa,claa101wb03.txt7
-rw-r--r--Documentation/devicetree/bindings/panel/edt,et057090dhu.txt7
-rw-r--r--Documentation/devicetree/bindings/panel/edt,et070080dh6.txt10
-rw-r--r--Documentation/devicetree/bindings/panel/edt,etm0700g0dh6.txt10
-rw-r--r--Documentation/devicetree/bindings/panel/lg,ld070wx3-sl01.txt7
-rw-r--r--Documentation/devicetree/bindings/panel/lg,lh500wx1-sd03.txt7
-rw-r--r--Documentation/devicetree/bindings/panel/lg,lp129qe.txt7
-rw-r--r--Documentation/devicetree/bindings/panel/panasonic,vvx10f004b00.txt7
-rw-r--r--Documentation/devicetree/bindings/panel/samsung,ld9040.txt66
-rw-r--r--Documentation/devicetree/bindings/panel/samsung,ltn101nt05.txt7
-rw-r--r--Documentation/devicetree/bindings/panel/samsung,s6e8aa0.txt56
-rw-r--r--Documentation/devicetree/bindings/panel/simple-panel.txt21
-rw-r--r--Documentation/devicetree/bindings/pci/designware-pcie.txt73
-rw-r--r--Documentation/devicetree/bindings/pci/fsl,imx6q-pcie.txt38
-rw-r--r--Documentation/devicetree/bindings/pci/host-generic-pci.txt100
-rw-r--r--Documentation/devicetree/bindings/pci/mvebu-pci.txt10
-rw-r--r--Documentation/devicetree/bindings/pci/nvidia,tegra20-pcie.txt34
-rw-r--r--Documentation/devicetree/bindings/pci/pci-rcar-gen2.txt66
-rw-r--r--Documentation/devicetree/bindings/pci/rcar-pci.txt47
-rw-r--r--Documentation/devicetree/bindings/pci/samsung,exynos5440-pcie.txt65
-rw-r--r--Documentation/devicetree/bindings/phy/apm-xgene-phy.txt79
-rw-r--r--Documentation/devicetree/bindings/phy/bcm-phy.txt15
-rw-r--r--Documentation/devicetree/bindings/phy/phy-bindings.txt66
-rw-r--r--Documentation/devicetree/bindings/phy/samsung-phy.txt163
-rw-r--r--Documentation/devicetree/bindings/phy/sun4i-usb-phy.txt37
-rw-r--r--Documentation/devicetree/bindings/phy/ti-phy.txt93
-rw-r--r--Documentation/devicetree/bindings/pinctrl/abilis,tb10x-iomux.txt80
-rw-r--r--Documentation/devicetree/bindings/pinctrl/allwinner,sunxi-pinctrl.txt9
-rw-r--r--Documentation/devicetree/bindings/pinctrl/atmel,at91-pinctrl.txt2
-rw-r--r--Documentation/devicetree/bindings/pinctrl/brcm,bcm11351-pinctrl.txt461
-rw-r--r--Documentation/devicetree/bindings/pinctrl/fsl,imx-pinctrl.txt37
-rw-r--r--Documentation/devicetree/bindings/pinctrl/fsl,imx25-pinctrl.txt23
-rw-r--r--Documentation/devicetree/bindings/pinctrl/fsl,imx27-pinctrl.txt121
-rw-r--r--Documentation/devicetree/bindings/pinctrl/fsl,imx6sx-pinctrl.txt36
-rw-r--r--Documentation/devicetree/bindings/pinctrl/fsl,mxs-pinctrl.txt859
-rw-r--r--Documentation/devicetree/bindings/pinctrl/marvell,armada-370-pinctrl.txt1
-rw-r--r--Documentation/devicetree/bindings/pinctrl/marvell,armada-375-pinctrl.txt82
-rw-r--r--Documentation/devicetree/bindings/pinctrl/marvell,armada-38x-pinctrl.txt80
-rw-r--r--Documentation/devicetree/bindings/pinctrl/marvell,armada-xp-pinctrl.txt1
-rw-r--r--Documentation/devicetree/bindings/pinctrl/marvell,dove-pinctrl.txt1
-rw-r--r--Documentation/devicetree/bindings/pinctrl/marvell,kirkwood-pinctrl.txt1
-rw-r--r--Documentation/devicetree/bindings/pinctrl/marvell,mvebu-pinctrl.txt2
-rw-r--r--Documentation/devicetree/bindings/pinctrl/marvell,orion-pinctrl.txt91
-rw-r--r--Documentation/devicetree/bindings/pinctrl/nvidia,tegra124-pinmux.txt144
-rw-r--r--Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt4
-rw-r--r--Documentation/devicetree/bindings/pinctrl/pinctrl-palmas.txt2
-rw-r--r--Documentation/devicetree/bindings/pinctrl/pinctrl-single.txt20
-rw-r--r--Documentation/devicetree/bindings/pinctrl/pinctrl-st.txt73
-rw-r--r--Documentation/devicetree/bindings/pinctrl/qcom,apq8064-pinctrl.txt88
-rw-r--r--Documentation/devicetree/bindings/pinctrl/qcom,ipq8064-pinctrl.txt95
-rw-r--r--Documentation/devicetree/bindings/pinctrl/qcom,msm8974-pinctrl.txt112
-rw-r--r--Documentation/devicetree/bindings/pinctrl/renesas,pfc-pinctrl.txt14
-rw-r--r--Documentation/devicetree/bindings/pinctrl/rockchip,pinctrl.txt62
-rw-r--r--Documentation/devicetree/bindings/pinctrl/samsung-pinctrl.txt1
-rw-r--r--Documentation/devicetree/bindings/power/bq2415x.txt47
-rw-r--r--Documentation/devicetree/bindings/power/isp1704.txt17
-rw-r--r--Documentation/devicetree/bindings/power/reset/keystone-reset.txt67
-rw-r--r--Documentation/devicetree/bindings/power/twl-charger.txt20
-rw-r--r--Documentation/devicetree/bindings/power_supply/axxia-reset.txt20
-rw-r--r--Documentation/devicetree/bindings/power_supply/charger-manager.txt81
-rw-r--r--Documentation/devicetree/bindings/power_supply/qnap-poweroff.txt5
-rw-r--r--Documentation/devicetree/bindings/power_supply/ti,bq24735.txt32
-rw-r--r--Documentation/devicetree/bindings/powerpc/4xx/akebono.txt54
-rw-r--r--Documentation/devicetree/bindings/powerpc/4xx/hsta.txt19
-rw-r--r--Documentation/devicetree/bindings/powerpc/4xx/reboot.txt2
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/board.txt17
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/ccf.txt46
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/network.txt2
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/pincfg.txt3
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/cpus.txt11
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/dcsr.txt2
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/dma.txt138
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/l2cache.txt23
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/mem-ctrlr.txt27
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/pamu.txt10
-rw-r--r--Documentation/devicetree/bindings/pwm/atmel-pwm.txt33
-rw-r--r--Documentation/devicetree/bindings/pwm/bcm-kona-pwm.txt21
-rw-r--r--Documentation/devicetree/bindings/pwm/cirrus,clps711x-pwm.txt16
-rw-r--r--Documentation/devicetree/bindings/pwm/nvidia,tegra20-pwm.txt9
-rw-r--r--Documentation/devicetree/bindings/pwm/pwm-fsl-ftm.txt35
-rw-r--r--Documentation/devicetree/bindings/pwm/pwm-lp3943.txt58
-rw-r--r--Documentation/devicetree/bindings/pwm/pwm-samsung.txt2
-rw-r--r--Documentation/devicetree/bindings/pwm/pxa-pwm.txt30
-rw-r--r--Documentation/devicetree/bindings/regulator/act8865-regulator.txt60
-rw-r--r--Documentation/devicetree/bindings/regulator/as3722-regulator.txt91
-rw-r--r--Documentation/devicetree/bindings/regulator/da9210.txt21
-rw-r--r--Documentation/devicetree/bindings/regulator/gpio-regulator.txt4
-rw-r--r--Documentation/devicetree/bindings/regulator/ltc3589.txt99
-rw-r--r--Documentation/devicetree/bindings/regulator/palmas-pmic.txt12
-rw-r--r--Documentation/devicetree/bindings/regulator/pbias-regulator.txt27
-rw-r--r--Documentation/devicetree/bindings/regulator/pfuze100.txt96
-rw-r--r--Documentation/devicetree/bindings/regulator/regulator.txt7
-rw-r--r--Documentation/devicetree/bindings/regulator/s5m8767-regulator.txt15
-rw-r--r--Documentation/devicetree/bindings/regulator/ti-abb-regulator.txt6
-rw-r--r--Documentation/devicetree/bindings/regulator/tps65090.txt4
-rw-r--r--Documentation/devicetree/bindings/reserved-memory/reserved-memory.txt133
-rw-r--r--Documentation/devicetree/bindings/reset/allwinner,sunxi-clock-reset.txt21
-rw-r--r--Documentation/devicetree/bindings/reset/sirf,rstc.txt42
-rw-r--r--Documentation/devicetree/bindings/reset/socfpga-reset.txt (renamed from Documentation/devicetree/bindings/arm/altera/socfpga-reset.txt)2
-rw-r--r--Documentation/devicetree/bindings/reset/st,sti-powerdown.txt47
-rw-r--r--Documentation/devicetree/bindings/reset/st,sti-softreset.txt46
-rw-r--r--Documentation/devicetree/bindings/rng/qcom,prng.txt17
-rw-r--r--Documentation/devicetree/bindings/rtc/haoyu,hym8563.txt30
-rw-r--r--Documentation/devicetree/bindings/rtc/maxim,ds1742.txt12
-rw-r--r--Documentation/devicetree/bindings/rtc/nvidia,tegra20-rtc.txt3
-rw-r--r--Documentation/devicetree/bindings/rtc/sunxi-rtc.txt17
-rw-r--r--Documentation/devicetree/bindings/rtc/xgene-rtc.txt28
-rw-r--r--Documentation/devicetree/bindings/serial/atmel-usart.txt16
-rw-r--r--Documentation/devicetree/bindings/serial/cirrus,clps711x-uart.txt28
-rw-r--r--Documentation/devicetree/bindings/serial/efm32-uart.txt8
-rw-r--r--Documentation/devicetree/bindings/serial/fsl-lpuart.txt21
-rw-r--r--Documentation/devicetree/bindings/serial/maxim,max310x.txt36
-rw-r--r--Documentation/devicetree/bindings/serial/nvidia,tegra20-hsuart.txt19
-rw-r--r--Documentation/devicetree/bindings/serial/nxp,sc16is7xx.txt33
-rw-r--r--Documentation/devicetree/bindings/serial/of-serial.txt1
-rw-r--r--Documentation/devicetree/bindings/serial/qca,ar9330-uart.txt (renamed from Documentation/devicetree/bindings/tty/serial/qca,ar9330-uart.txt)0
-rw-r--r--Documentation/devicetree/bindings/serial/renesas,sci-serial.txt54
-rw-r--r--Documentation/devicetree/bindings/serial/vt8500-uart.txt26
-rw-r--r--Documentation/devicetree/bindings/soc/qcom/qcom,gsbi.txt78
-rw-r--r--Documentation/devicetree/bindings/sound/adi,axi-i2s.txt31
-rw-r--r--Documentation/devicetree/bindings/sound/adi,axi-spdif-tx.txt30
-rw-r--r--Documentation/devicetree/bindings/sound/ak4104.txt3
-rw-r--r--Documentation/devicetree/bindings/sound/alc5623.txt25
-rw-r--r--Documentation/devicetree/bindings/sound/armada-370db-audio.txt27
-rw-r--r--Documentation/devicetree/bindings/sound/bcm2835-i2s.txt25
-rw-r--r--Documentation/devicetree/bindings/sound/cs42l52.txt46
-rw-r--r--Documentation/devicetree/bindings/sound/cs42l56.txt63
-rw-r--r--Documentation/devicetree/bindings/sound/cs42l73.txt22
-rw-r--r--Documentation/devicetree/bindings/sound/cs42xx8.txt28
-rw-r--r--Documentation/devicetree/bindings/sound/da9055.txt22
-rw-r--r--Documentation/devicetree/bindings/sound/davinci-evm-audio.txt49
-rw-r--r--Documentation/devicetree/bindings/sound/davinci-mcasp-audio.txt43
-rw-r--r--Documentation/devicetree/bindings/sound/eukrea-tlv320.txt21
-rw-r--r--Documentation/devicetree/bindings/sound/fsl,esai.txt55
-rw-r--r--Documentation/devicetree/bindings/sound/fsl,spdif.txt5
-rw-r--r--Documentation/devicetree/bindings/sound/fsl,ssi.txt28
-rw-r--r--Documentation/devicetree/bindings/sound/fsl-sai.txt43
-rw-r--r--Documentation/devicetree/bindings/sound/hdmi.txt17
-rw-r--r--Documentation/devicetree/bindings/sound/max98090.txt49
-rw-r--r--Documentation/devicetree/bindings/sound/max98095.txt22
-rw-r--r--Documentation/devicetree/bindings/sound/mvebu-audio.txt1
-rw-r--r--Documentation/devicetree/bindings/sound/nokia,rx51.txt27
-rw-r--r--Documentation/devicetree/bindings/sound/nvidia,tegra-audio-alc5632.txt7
-rw-r--r--Documentation/devicetree/bindings/sound/nvidia,tegra-audio-max98090.txt51
-rw-r--r--Documentation/devicetree/bindings/sound/nvidia,tegra-audio-rt5640.txt7
-rw-r--r--Documentation/devicetree/bindings/sound/nvidia,tegra-audio-wm8753.txt7
-rw-r--r--Documentation/devicetree/bindings/sound/nvidia,tegra-audio-wm8903.txt7
-rw-r--r--Documentation/devicetree/bindings/sound/nvidia,tegra-audio-wm9712.txt7
-rw-r--r--Documentation/devicetree/bindings/sound/nvidia,tegra20-ac97.txt20
-rw-r--r--Documentation/devicetree/bindings/sound/nvidia,tegra20-i2s.txt19
-rw-r--r--Documentation/devicetree/bindings/sound/nvidia,tegra30-ahub.txt63
-rw-r--r--Documentation/devicetree/bindings/sound/nvidia,tegra30-hda.txt28
-rw-r--r--Documentation/devicetree/bindings/sound/nvidia,tegra30-i2s.txt11
-rw-r--r--Documentation/devicetree/bindings/sound/pcm512x.txt30
-rw-r--r--Documentation/devicetree/bindings/sound/renesas,rsnd.txt106
-rw-r--r--Documentation/devicetree/bindings/sound/rt5640.txt13
-rw-r--r--Documentation/devicetree/bindings/sound/simple-card.txt151
-rw-r--r--Documentation/devicetree/bindings/sound/sirf-audio-codec.txt17
-rw-r--r--Documentation/devicetree/bindings/sound/sirf-audio-port.txt20
-rw-r--r--Documentation/devicetree/bindings/sound/sirf-audio.txt41
-rw-r--r--Documentation/devicetree/bindings/sound/snow.txt17
-rw-r--r--Documentation/devicetree/bindings/sound/st,sta350.txt131
-rw-r--r--Documentation/devicetree/bindings/sound/tdm-slot.txt20
-rw-r--r--Documentation/devicetree/bindings/sound/tlv320aic31xx.txt61
-rw-r--r--Documentation/devicetree/bindings/sound/tlv320aic32x4.txt30
-rw-r--r--Documentation/devicetree/bindings/sound/tlv320aic3x.txt26
-rw-r--r--Documentation/devicetree/bindings/sound/tpa6130a2.txt27
-rw-r--r--Documentation/devicetree/bindings/sound/widgets.txt20
-rw-r--r--Documentation/devicetree/bindings/spi/efm32-spi.txt14
-rw-r--r--Documentation/devicetree/bindings/spi/fsl-spi.txt6
-rw-r--r--Documentation/devicetree/bindings/spi/nvidia,tegra114-spi.txt24
-rw-r--r--Documentation/devicetree/bindings/spi/nvidia,tegra20-sflash.txt20
-rw-r--r--Documentation/devicetree/bindings/spi/nvidia,tegra20-slink.txt20
-rw-r--r--Documentation/devicetree/bindings/spi/nvidia,tegra20-spi.txt5
-rw-r--r--Documentation/devicetree/bindings/spi/omap-spi.txt4
-rw-r--r--Documentation/devicetree/bindings/spi/qcom,spi-qup.txt91
-rw-r--r--Documentation/devicetree/bindings/spi/sh-hspi.txt29
-rw-r--r--Documentation/devicetree/bindings/spi/sh-msiof.txt42
-rw-r--r--Documentation/devicetree/bindings/spi/spi-bus.txt6
-rw-r--r--Documentation/devicetree/bindings/spi/spi-cadence.txt31
-rw-r--r--Documentation/devicetree/bindings/spi/spi-dw.txt24
-rw-r--r--Documentation/devicetree/bindings/spi/spi-fsl-dspi.txt2
-rw-r--r--Documentation/devicetree/bindings/spi/spi-rspi.txt61
-rw-r--r--Documentation/devicetree/bindings/spi/spi-sun4i.txt24
-rw-r--r--Documentation/devicetree/bindings/spi/spi-sun6i.txt24
-rw-r--r--Documentation/devicetree/bindings/spi/spi-xtensa-xtfpga.txt9
-rw-r--r--Documentation/devicetree/bindings/spi/spi_atmel.txt5
-rw-r--r--Documentation/devicetree/bindings/spi/ti_qspi.txt8
-rw-r--r--Documentation/devicetree/bindings/spmi/qcom,spmi-pmic-arb.txt61
-rw-r--r--Documentation/devicetree/bindings/spmi/spmi.txt41
-rw-r--r--Documentation/devicetree/bindings/staging/dwc2.txt15
-rw-r--r--Documentation/devicetree/bindings/staging/iio/adc/mxs-lradc.txt36
-rw-r--r--Documentation/devicetree/bindings/staging/imx-drm/fsl-imx-drm.txt49
-rw-r--r--Documentation/devicetree/bindings/staging/imx-drm/hdmi.txt58
-rw-r--r--Documentation/devicetree/bindings/staging/imx-drm/ldb.txt20
-rw-r--r--Documentation/devicetree/bindings/staging/xillybus.txt20
-rw-r--r--Documentation/devicetree/bindings/submitting-patches.txt38
-rw-r--r--Documentation/devicetree/bindings/thermal/armada-thermal.txt12
-rw-r--r--Documentation/devicetree/bindings/thermal/exynos-thermal.txt50
-rw-r--r--Documentation/devicetree/bindings/thermal/imx-thermal.txt4
-rw-r--r--Documentation/devicetree/bindings/thermal/thermal.txt595
-rw-r--r--Documentation/devicetree/bindings/timer/allwinner,sun4i-timer.txt4
-rw-r--r--Documentation/devicetree/bindings/timer/allwinner,sun5i-a13-hstimer.txt26
-rw-r--r--Documentation/devicetree/bindings/timer/energymicro,efm32-timer.txt23
-rw-r--r--Documentation/devicetree/bindings/timer/fsl,ftm-timer.txt31
-rw-r--r--Documentation/devicetree/bindings/timer/nvidia,tegra20-timer.txt3
-rw-r--r--Documentation/devicetree/bindings/timer/nvidia,tegra30-timer.txt3
-rw-r--r--Documentation/devicetree/bindings/timer/samsung,exynos4210-mct.txt54
-rw-r--r--Documentation/devicetree/bindings/timer/ti,keystone-timer.txt29
-rw-r--r--Documentation/devicetree/bindings/usb/atmel-usb.txt4
-rw-r--r--Documentation/devicetree/bindings/usb/ci-hdrc-imx.txt (renamed from Documentation/devicetree/bindings/usb/ci13xxx-imx.txt)2
-rw-r--r--Documentation/devicetree/bindings/usb/ci-hdrc-qcom.txt17
-rw-r--r--Documentation/devicetree/bindings/usb/ci-hdrc-zevio.txt17
-rw-r--r--Documentation/devicetree/bindings/usb/dwc2.txt29
-rw-r--r--Documentation/devicetree/bindings/usb/dwc3.txt6
-rw-r--r--Documentation/devicetree/bindings/usb/ehci-omap.txt2
-rw-r--r--Documentation/devicetree/bindings/usb/ehci-orion.txt5
-rw-r--r--Documentation/devicetree/bindings/usb/exynos-usb.txt31
-rw-r--r--Documentation/devicetree/bindings/usb/fsl-usb.txt4
-rw-r--r--Documentation/devicetree/bindings/usb/gr-udc.txt34
-rw-r--r--Documentation/devicetree/bindings/usb/keystone-phy.txt20
-rw-r--r--Documentation/devicetree/bindings/usb/keystone-usb.txt42
-rw-r--r--Documentation/devicetree/bindings/usb/msm-hsusb.txt95
-rw-r--r--Documentation/devicetree/bindings/usb/mxs-phy.txt8
-rw-r--r--Documentation/devicetree/bindings/usb/nvidia,tegra20-ehci.txt7
-rw-r--r--Documentation/devicetree/bindings/usb/ohci-omap3.txt2
-rw-r--r--Documentation/devicetree/bindings/usb/omap-usb.txt35
-rw-r--r--Documentation/devicetree/bindings/usb/usb-ehci.txt28
-rw-r--r--Documentation/devicetree/bindings/usb/usb-nop-xceiv.txt7
-rw-r--r--Documentation/devicetree/bindings/usb/usb-ohci.txt26
-rw-r--r--Documentation/devicetree/bindings/usb/usb-phy.txt42
-rw-r--r--Documentation/devicetree/bindings/usb/usb-uhci.txt (renamed from Documentation/devicetree/bindings/usb/platform-uhci.txt)4
-rw-r--r--Documentation/devicetree/bindings/usb/usb-xhci.txt10
-rw-r--r--Documentation/devicetree/bindings/usb/usb3503.txt8
-rw-r--r--Documentation/devicetree/bindings/usb/ux500-usb.txt2
-rw-r--r--Documentation/devicetree/bindings/usb/via,vt8500-ehci.txt15
-rw-r--r--Documentation/devicetree/bindings/usb/vt8500-ehci.txt12
-rw-r--r--Documentation/devicetree/bindings/vendor-prefixes.txt77
-rw-r--r--Documentation/devicetree/bindings/video/analog-tv-connector.txt25
-rw-r--r--Documentation/devicetree/bindings/video/atmel,lcdc.txt75
-rw-r--r--Documentation/devicetree/bindings/video/backlight/gpio-backlight.txt16
-rw-r--r--Documentation/devicetree/bindings/video/backlight/lp855x.txt29
-rw-r--r--Documentation/devicetree/bindings/video/backlight/pwm-backlight.txt7
-rw-r--r--Documentation/devicetree/bindings/video/dvi-connector.txt35
-rw-r--r--Documentation/devicetree/bindings/video/exynos_dp.txt38
-rw-r--r--Documentation/devicetree/bindings/video/exynos_dsim.txt80
-rw-r--r--Documentation/devicetree/bindings/video/exynos_hdmi.txt20
-rw-r--r--Documentation/devicetree/bindings/video/exynos_mixer.txt4
-rw-r--r--Documentation/devicetree/bindings/video/fsl,imx-fb.txt4
-rw-r--r--Documentation/devicetree/bindings/video/hdmi-connector.txt29
-rw-r--r--Documentation/devicetree/bindings/video/lgphilips,lb035q02.txt33
-rw-r--r--Documentation/devicetree/bindings/video/panel-dpi.txt45
-rw-r--r--Documentation/devicetree/bindings/video/panel-dsi-cm.txt29
-rw-r--r--Documentation/devicetree/bindings/video/samsung-fimd.txt17
-rw-r--r--Documentation/devicetree/bindings/video/sharp,ls037v7dw01.txt43
-rw-r--r--Documentation/devicetree/bindings/video/sony,acx565akm.txt30
-rw-r--r--Documentation/devicetree/bindings/video/ssd1289fb.txt13
-rw-r--r--Documentation/devicetree/bindings/video/ti,omap-dss.txt211
-rw-r--r--Documentation/devicetree/bindings/video/ti,omap2-dss.txt54
-rw-r--r--Documentation/devicetree/bindings/video/ti,omap3-dss.txt83
-rw-r--r--Documentation/devicetree/bindings/video/ti,omap4-dss.txt115
-rw-r--r--Documentation/devicetree/bindings/video/ti,omap5-dss.txt96
-rw-r--r--Documentation/devicetree/bindings/video/ti,tfp410.txt41
-rw-r--r--Documentation/devicetree/bindings/video/ti,tpd12s015.txt44
-rw-r--r--Documentation/devicetree/bindings/video/toppoly,td028ttec1.txt30
-rw-r--r--Documentation/devicetree/bindings/video/tpo,td043mtea1.txt33
-rw-r--r--Documentation/devicetree/bindings/watchdog/atmel-wdt.txt30
-rw-r--r--Documentation/devicetree/bindings/watchdog/davinci-wdt.txt16
-rw-r--r--Documentation/devicetree/bindings/watchdog/dw_wdt.txt21
-rw-r--r--Documentation/devicetree/bindings/watchdog/gpio-wdt.txt23
-rw-r--r--Documentation/devicetree/bindings/watchdog/marvel.txt18
-rw-r--r--Documentation/devicetree/bindings/watchdog/men-a021-wdt.txt (renamed from Documentation/devicetree/bindings/gpio/men-a021-wdt.txt)0
-rw-r--r--Documentation/devicetree/bindings/watchdog/moxa,moxart-watchdog.txt15
-rw-r--r--Documentation/devicetree/bindings/watchdog/of-xilinx-wdt.txt23
-rw-r--r--Documentation/devicetree/bindings/watchdog/rt2880-wdt.txt19
-rw-r--r--Documentation/devicetree/bindings/watchdog/samsung-wdt.txt21
-rw-r--r--Documentation/devicetree/bindings/watchdog/sirfsoc_wdt.txt14
-rw-r--r--Documentation/devicetree/bindings/watchdog/sunxi-wdt.txt6
-rw-r--r--Documentation/devicetree/booting-without-of.txt3
-rw-r--r--Documentation/dma-buf-sharing.txt6
-rw-r--r--Documentation/dmatest.txt72
-rw-r--r--Documentation/dontdiff3
-rw-r--r--Documentation/driver-model/design-patterns.txt116
-rw-r--r--Documentation/driver-model/devres.txt21
-rw-r--r--Documentation/driver-model/platform.txt2
-rw-r--r--Documentation/dvb/contributors.txt2
-rwxr-xr-xDocumentation/dvb/get_dvb_firmware22
-rw-r--r--Documentation/dvb/it9137.txt9
-rw-r--r--Documentation/dynamic-debug-howto.txt9
-rw-r--r--Documentation/edac.txt4
-rw-r--r--Documentation/efi-stub.txt (renamed from Documentation/x86/efi-stub.txt)35
-rw-r--r--Documentation/email-clients.txt28
-rw-r--r--Documentation/extcon/porting-android-switch-class15
-rw-r--r--Documentation/fb/00-INDEX6
-rw-r--r--Documentation/fb/sm501.txt2
-rw-r--r--Documentation/fb/sstfb.txt2
-rw-r--r--Documentation/filesystems/00-INDEX60
-rw-r--r--Documentation/filesystems/9p.txt17
-rw-r--r--Documentation/filesystems/Locking25
-rw-r--r--Documentation/filesystems/affs.txt9
-rw-r--r--Documentation/filesystems/autofs4-mount-control.txt2
-rw-r--r--Documentation/filesystems/btrfs.txt81
-rw-r--r--Documentation/filesystems/caching/netfs-api.txt73
-rw-r--r--Documentation/filesystems/directory-locking31
-rw-r--r--Documentation/filesystems/f2fs.txt54
-rw-r--r--Documentation/filesystems/hfsplus.txt2
-rw-r--r--Documentation/filesystems/nfs/00-INDEX4
-rw-r--r--Documentation/filesystems/nfs/nfs41-server.txt44
-rw-r--r--Documentation/filesystems/nilfs2.txt68
-rw-r--r--Documentation/filesystems/ntfs.txt2
-rw-r--r--Documentation/filesystems/porting14
-rw-r--r--Documentation/filesystems/proc.txt45
-rw-r--r--Documentation/filesystems/seq_file.txt9
-rw-r--r--Documentation/filesystems/sharedsubtree.txt2
-rw-r--r--Documentation/filesystems/sysfs.txt6
-rw-r--r--Documentation/filesystems/vfat.txt7
-rw-r--r--Documentation/filesystems/vfs.txt57
-rw-r--r--Documentation/fmc/fmc-write-eeprom.txt77
-rw-r--r--Documentation/futex-requeue-pi.txt2
-rw-r--r--Documentation/gcov.txt4
-rw-r--r--Documentation/gpio/00-INDEX14
-rw-r--r--Documentation/gpio/board.txt121
-rw-r--r--Documentation/gpio/consumer.txt202
-rw-r--r--Documentation/gpio/driver.txt169
-rw-r--r--Documentation/gpio/gpio-legacy.txt (renamed from Documentation/gpio.txt)0
-rw-r--r--Documentation/gpio/gpio.txt119
-rw-r--r--Documentation/gpio/sysfs.txt155
-rw-r--r--Documentation/hid/hid-transport.txt317
-rw-r--r--Documentation/hid/uhid.txt13
-rw-r--r--Documentation/hsi.txt75
-rw-r--r--Documentation/hwmon/adc128d81847
-rw-r--r--Documentation/hwmon/adm10252
-rw-r--r--Documentation/hwmon/adm10312
-rw-r--r--Documentation/hwmon/adm92402
-rw-r--r--Documentation/hwmon/ds16212
-rw-r--r--Documentation/hwmon/emc140359
-rw-r--r--Documentation/hwmon/emc6w2012
-rw-r--r--Documentation/hwmon/f71805f2
-rw-r--r--Documentation/hwmon/gl518sm2
-rw-r--r--Documentation/hwmon/hwmon-kernel-api.txt107
-rw-r--r--Documentation/hwmon/it8733
-rw-r--r--Documentation/hwmon/jc4216
-rw-r--r--Documentation/hwmon/k10temp6
-rw-r--r--Documentation/hwmon/lm2506620
-rw-r--r--Documentation/hwmon/lm632
-rw-r--r--Documentation/hwmon/lm702
-rw-r--r--Documentation/hwmon/lm7720
-rw-r--r--Documentation/hwmon/lm782
-rw-r--r--Documentation/hwmon/lm832
-rw-r--r--Documentation/hwmon/lm872
-rw-r--r--Documentation/hwmon/lm908
-rw-r--r--Documentation/hwmon/lm922
-rw-r--r--Documentation/hwmon/lm952458
-rw-r--r--Documentation/hwmon/ltc294584
-rw-r--r--Documentation/hwmon/ltc297859
-rw-r--r--Documentation/hwmon/ltc426056
-rw-r--r--Documentation/hwmon/max16192
-rw-r--r--Documentation/hwmon/nct668357
-rw-r--r--Documentation/hwmon/ntc_thermistor8
-rw-r--r--Documentation/hwmon/pc873602
-rw-r--r--Documentation/hwmon/pc874272
-rw-r--r--Documentation/hwmon/pcf85912
-rw-r--r--Documentation/hwmon/shtc143
-rw-r--r--Documentation/hwmon/smsc47m12
-rw-r--r--Documentation/hwmon/sysfs-interface14
-rw-r--r--Documentation/hwmon/w83627ehf2
-rw-r--r--Documentation/hwmon/w837952
-rw-r--r--Documentation/hwmon/w83l785ts2
-rw-r--r--Documentation/i2c/busses/i2c-i8014
-rw-r--r--Documentation/i2c/busses/i2c-parport2
-rw-r--r--Documentation/i2c/busses/i2c-parport-light2
-rw-r--r--Documentation/i2c/busses/i2c-piix42
-rw-r--r--Documentation/i2c/busses/i2c-taos-evm2
-rw-r--r--Documentation/i2c/busses/i2c-viapro2
-rw-r--r--Documentation/i2c/fault-codes3
-rw-r--r--Documentation/i2c/functionality2
-rw-r--r--Documentation/i2c/i2c-protocol35
-rw-r--r--Documentation/i2c/instantiating-devices41
-rw-r--r--Documentation/ide/00-INDEX2
-rw-r--r--Documentation/input/alps.txt2
-rw-r--r--Documentation/input/elantech.txt5
-rw-r--r--Documentation/input/event-codes.txt13
-rw-r--r--Documentation/input/gamepad.txt9
-rw-r--r--Documentation/input/input.txt2
-rw-r--r--Documentation/input/joystick-api.txt38
-rw-r--r--Documentation/input/joystick.txt8
-rw-r--r--Documentation/input/multi-touch-protocol.txt2
-rw-r--r--Documentation/io-mapping.txt2
-rw-r--r--Documentation/ioctl/ioctl-number.txt2
-rw-r--r--Documentation/irqflags-tracing.txt7
-rw-r--r--Documentation/ja_JP/HOWTO6
-rw-r--r--Documentation/ja_JP/SubmittingPatches9
-rw-r--r--Documentation/ja_JP/stable_kernel_rules.txt6
-rw-r--r--Documentation/java.txt8
-rw-r--r--Documentation/kbuild/kconfig-language.txt4
-rw-r--r--Documentation/kbuild/kconfig.txt11
-rw-r--r--Documentation/kbuild/makefiles.txt2
-rw-r--r--Documentation/kbuild/modules.txt2
-rw-r--r--Documentation/kernel-parameters.txt416
-rw-r--r--Documentation/kernel-per-CPU-kthreads.txt30
-rw-r--r--Documentation/kmemcheck.txt2
-rw-r--r--Documentation/kmemleak.txt24
-rw-r--r--Documentation/ko_KR/HOWTO130
-rw-r--r--Documentation/kobject.txt5
-rw-r--r--Documentation/kprobes.txt16
-rw-r--r--Documentation/laptops/00-INDEX6
-rw-r--r--Documentation/laptops/freefall.c (renamed from Documentation/laptops/hpfall.c)61
-rw-r--r--Documentation/laptops/thinkpad-acpi.txt7
-rw-r--r--Documentation/leds/00-INDEX8
-rw-r--r--Documentation/leds/leds-lp55xx.txt10
-rw-r--r--Documentation/lockstat.txt123
-rw-r--r--Documentation/m68k/00-INDEX2
-rw-r--r--Documentation/magic-number.txt12
-rw-r--r--Documentation/md.txt2
-rw-r--r--Documentation/memory-barriers.txt1027
-rw-r--r--Documentation/memory-hotplug.txt140
-rw-r--r--Documentation/mic/mic_overview.txt51
-rw-r--r--Documentation/mic/mpssd/.gitignore1
-rw-r--r--Documentation/mic/mpssd/Makefile19
-rwxr-xr-xDocumentation/mic/mpssd/micctrl173
-rwxr-xr-xDocumentation/mic/mpssd/mpss202
-rw-r--r--Documentation/mic/mpssd/mpssd.c1727
-rw-r--r--Documentation/mic/mpssd/mpssd.h102
-rw-r--r--Documentation/mic/mpssd/sysfs.c102
-rw-r--r--Documentation/misc-devices/eeprom2
-rw-r--r--Documentation/misc-devices/mei/mei-amt-version.c2
-rw-r--r--Documentation/module-signing.txt241
-rw-r--r--Documentation/mtd/nand/pxa3xx-nand.txt113
-rw-r--r--Documentation/mtd/spi-nor.txt62
-rw-r--r--Documentation/mutex-design.txt252
-rw-r--r--Documentation/networking/00-INDEX30
-rw-r--r--Documentation/networking/3c505.txt45
-rw-r--r--Documentation/networking/altera_tse.txt263
-rw-r--r--Documentation/networking/batman-adv.txt61
-rw-r--r--Documentation/networking/bonding.txt232
-rw-r--r--Documentation/networking/can.txt354
-rw-r--r--Documentation/networking/cdc_mbim.txt339
-rw-r--r--Documentation/networking/dccp.txt6
-rw-r--r--Documentation/networking/e100.txt2
-rw-r--r--Documentation/networking/filter.txt1072
-rw-r--r--Documentation/networking/gianfar.txt30
-rw-r--r--Documentation/networking/i40evf.txt47
-rw-r--r--Documentation/networking/ieee802154.txt4
-rw-r--r--Documentation/networking/igb.txt48
-rw-r--r--Documentation/networking/ip-sysctl.txt89
-rw-r--r--Documentation/networking/ipsec.txt38
-rw-r--r--Documentation/networking/l2tp.txt2
-rw-r--r--Documentation/networking/netdev-FAQ.txt24
-rw-r--r--Documentation/networking/netdevices.txt10
-rw-r--r--Documentation/networking/netlink_mmap.txt10
-rw-r--r--Documentation/networking/operstates.txt4
-rw-r--r--Documentation/networking/packet_mmap.txt63
-rw-r--r--Documentation/networking/phy.txt14
-rw-r--r--Documentation/networking/pktgen.txt37
-rw-r--r--Documentation/networking/regulatory.txt4
-rw-r--r--Documentation/networking/rxrpc.txt83
-rw-r--r--Documentation/networking/scaling.txt2
-rw-r--r--Documentation/networking/spider_net.txt2
-rw-r--r--Documentation/networking/stmmac.txt20
-rw-r--r--Documentation/networking/tcp.txt2
-rw-r--r--Documentation/networking/timestamping.txt67
-rw-r--r--Documentation/networking/timestamping/.gitignore1
-rw-r--r--Documentation/networking/timestamping/Makefile5
-rw-r--r--Documentation/networking/timestamping/hwtstamp_config.c134
-rw-r--r--Documentation/networking/vortex.txt4
-rw-r--r--Documentation/networking/x25-iface.txt2
-rw-r--r--Documentation/oops-tracing.txt3
-rw-r--r--Documentation/phy.txt178
-rw-r--r--Documentation/phy/samsung-usb2.txt135
-rw-r--r--Documentation/pinctrl.txt50
-rw-r--r--Documentation/platform/x86-laptop-drivers.txt18
-rw-r--r--Documentation/power/00-INDEX6
-rw-r--r--Documentation/power/basic-pm-debugging.txt2
-rw-r--r--Documentation/power/devices.txt36
-rw-r--r--Documentation/power/opp.txt138
-rw-r--r--Documentation/power/pm_qos_interface.txt82
-rw-r--r--Documentation/power/power_supply_class.txt8
-rw-r--r--Documentation/power/powercap/powercap.txt236
-rw-r--r--Documentation/power/runtime_pm.txt92
-rw-r--r--Documentation/power/states.txt87
-rw-r--r--Documentation/power/suspend-and-cpuhotplug.txt2
-rw-r--r--Documentation/power/swsusp.txt5
-rw-r--r--Documentation/powerpc/cpu_families.txt221
-rw-r--r--Documentation/powerpc/transactional_memory.txt2
-rw-r--r--Documentation/pps/pps.txt15
-rw-r--r--Documentation/printk-formats.txt15
-rw-r--r--Documentation/ptp/testptp.c154
-rw-r--r--Documentation/pwm.txt14
-rw-r--r--Documentation/rapidio/sysfs.txt66
-rw-r--r--Documentation/rbtree.txt2
-rw-r--r--Documentation/rfkill.txt4
-rw-r--r--Documentation/robust-futex-ABI.txt4
-rw-r--r--Documentation/robust-futexes.txt2
-rw-r--r--Documentation/rt-mutex-design.txt2
-rw-r--r--Documentation/s390/00-INDEX8
-rw-r--r--Documentation/s390/monreader.txt2
-rw-r--r--Documentation/s390/qeth.txt50
-rw-r--r--Documentation/s390/s390dbf.txt10
-rw-r--r--Documentation/s390/zfcpdump.txt73
-rw-r--r--Documentation/scheduler/00-INDEX4
-rw-r--r--Documentation/scheduler/sched-arch.txt7
-rw-r--r--Documentation/scheduler/sched-deadline.txt281
-rw-r--r--Documentation/scheduler/sched-design-CFS.txt4
-rw-r--r--Documentation/scsi/00-INDEX18
-rw-r--r--Documentation/scsi/ChangeLog.megaraid_sas13
-rw-r--r--Documentation/scsi/LICENSE.qla2xxx2
-rw-r--r--Documentation/scsi/aic7xxx_old.txt511
-rw-r--r--Documentation/scsi/scsi_eh.txt69
-rw-r--r--Documentation/scsi/scsi_mid_low_api.txt9
-rw-r--r--Documentation/scsi/scsi_transport_srp/Makefile7
-rw-r--r--Documentation/scsi/scsi_transport_srp/rport_state_diagram.dot26
-rw-r--r--Documentation/security/00-INDEX2
-rw-r--r--Documentation/security/IMA-templates.txt89
-rw-r--r--Documentation/security/Smack.txt12
-rw-r--r--Documentation/security/Yama.txt2
-rw-r--r--Documentation/security/keys.txt20
-rw-r--r--Documentation/serial/00-INDEX14
-rw-r--r--Documentation/serial/digiepca.txt98
-rw-r--r--Documentation/serial/driver29
-rw-r--r--Documentation/serial/riscom8.txt36
-rw-r--r--Documentation/serial/specialix.txt383
-rw-r--r--Documentation/serial/sx.txt294
-rw-r--r--Documentation/sgi-visws.txt13
-rw-r--r--Documentation/sound/alsa/ALSA-Configuration.txt6
-rw-r--r--Documentation/sound/alsa/Audiophile-Usb.txt2
-rw-r--r--Documentation/sound/alsa/CMIPCI.txt2
-rw-r--r--Documentation/sound/alsa/HD-Audio-Models.txt12
-rw-r--r--Documentation/sound/alsa/compress_offload.txt6
-rw-r--r--Documentation/sound/alsa/soc/DPCM.txt380
-rw-r--r--Documentation/sound/alsa/soc/codec.txt46
-rw-r--r--Documentation/sound/alsa/soc/dapm.txt73
-rw-r--r--Documentation/sound/alsa/soc/machine.txt6
-rw-r--r--Documentation/sound/alsa/soc/overview.txt27
-rw-r--r--Documentation/sound/alsa/soc/platform.txt19
-rw-r--r--Documentation/sound/oss/vwsnd293
-rw-r--r--Documentation/spi/00-INDEX22
-rw-r--r--Documentation/spi/spi-summary25
-rw-r--r--Documentation/spi/spidev6
-rw-r--r--Documentation/spi/spidev_fdx.c8
-rw-r--r--Documentation/spi/spidev_test.c45
-rw-r--r--Documentation/stable_kernel_rules.txt2
-rw-r--r--Documentation/static-keys.txt4
-rw-r--r--Documentation/sysctl/kernel.txt187
-rw-r--r--Documentation/sysctl/vm.txt93
-rw-r--r--Documentation/sysrq.txt28
-rwxr-xr-xDocumentation/target/tcm_mod_builder.py18
-rw-r--r--Documentation/thermal/nouveau_thermal7
-rw-r--r--Documentation/timers/00-INDEX6
-rw-r--r--Documentation/timers/timer_stats.txt6
-rw-r--r--Documentation/trace/events-power.txt2
-rw-r--r--Documentation/trace/events.txt207
-rw-r--r--Documentation/trace/ftrace-design.txt5
-rw-r--r--Documentation/trace/ftrace.txt32
-rw-r--r--Documentation/trace/postprocess/trace-vmscan-postprocess.pl32
-rw-r--r--Documentation/trace/ring-buffer-design.txt2
-rw-r--r--Documentation/trace/tracepoints.txt29
-rw-r--r--Documentation/trace/uprobetracer.txt36
-rw-r--r--Documentation/unaligned-memory-access.txt28
-rw-r--r--Documentation/usb/WUSB-Design-overview.txt2
-rw-r--r--Documentation/usb/chipidea.txt71
-rw-r--r--Documentation/usb/gadget_configfs.txt6
-rw-r--r--Documentation/usb/gadget_multi.txt2
-rw-r--r--Documentation/usb/mass-storage.txt2
-rw-r--r--Documentation/vDSO/parse_vdso.c67
-rw-r--r--Documentation/vDSO/vdso_standalone_test_x86.c128
-rw-r--r--Documentation/vDSO/vdso_test.c107
-rw-r--r--Documentation/video4linux/CARDLIST.bttv2
-rw-r--r--Documentation/video4linux/CARDLIST.cx238855
-rw-r--r--Documentation/video4linux/CARDLIST.em28xx7
-rw-r--r--Documentation/video4linux/fimc.txt31
-rw-r--r--Documentation/video4linux/gspca.txt1
-rw-r--r--Documentation/video4linux/omap4_camera.txt60
-rw-r--r--Documentation/video4linux/si476x.txt2
-rw-r--r--Documentation/video4linux/sn9c102.txt592
-rw-r--r--Documentation/video4linux/v4l2-framework.txt5
-rw-r--r--Documentation/video4linux/v4l2-pci-skeleton.c929
-rw-r--r--Documentation/virtual/kvm/00-INDEX26
-rw-r--r--Documentation/virtual/kvm/api.txt248
-rw-r--r--Documentation/virtual/kvm/cpuid.txt7
-rw-r--r--Documentation/virtual/kvm/devices/arm-vgic.txt73
-rw-r--r--Documentation/virtual/kvm/devices/s390_flic.txt91
-rw-r--r--Documentation/virtual/kvm/devices/vfio.txt22
-rw-r--r--Documentation/virtual/kvm/devices/vm.txt26
-rw-r--r--Documentation/virtual/kvm/hypercalls.txt5
-rw-r--r--Documentation/virtual/kvm/locking.txt23
-rw-r--r--Documentation/virtual/kvm/ppc-pv.txt16
-rw-r--r--Documentation/virtual/kvm/s390-diag.txt82
-rw-r--r--Documentation/virtual/kvm/timekeeping.txt2
-rw-r--r--Documentation/vm/00-INDEX24
-rw-r--r--Documentation/vm/hwpoison.txt5
-rw-r--r--Documentation/vm/locking130
-rw-r--r--Documentation/vm/numa_memory_policy.txt5
-rw-r--r--Documentation/vm/overcommit-accounting7
-rw-r--r--Documentation/vm/remap_file_pages.txt28
-rw-r--r--Documentation/vm/split_page_table_lock94
-rw-r--r--Documentation/vm/transhuge.txt4
-rw-r--r--Documentation/vm/unevictable-lru.txt2
-rw-r--r--Documentation/vm/zswap.txt8
-rw-r--r--Documentation/vme_api.txt12
-rw-r--r--Documentation/w1/masters/00-INDEX4
-rw-r--r--Documentation/w1/masters/ds24902
-rw-r--r--Documentation/w1/slaves/00-INDEX2
-rw-r--r--Documentation/w1/w1.generic2
-rw-r--r--Documentation/w1/w1.netlink21
-rw-r--r--Documentation/watchdog/watchdog-parameters.txt7
-rw-r--r--Documentation/x86/00-INDEX18
-rw-r--r--Documentation/x86/boot.txt7
-rw-r--r--Documentation/x86/earlyprintk.txt2
-rw-r--r--Documentation/x86/i386/IO-APIC.txt2
-rw-r--r--Documentation/x86/x86_64/boot-options.txt23
-rw-r--r--Documentation/x86/x86_64/mm.txt9
-rw-r--r--Documentation/xtensa/atomctl.txt2
-rw-r--r--Documentation/xtensa/mmu.txt18
-rw-r--r--Documentation/zh_CN/HOWTO6
-rw-r--r--Documentation/zh_CN/SubmittingPatches8
-rw-r--r--Documentation/zh_CN/arm64/booting.txt65
-rw-r--r--Documentation/zh_CN/arm64/memory.txt46
-rw-r--r--Documentation/zh_CN/arm64/tagged-pointers.txt52
-rw-r--r--Documentation/zh_CN/io_ordering.txt67
-rw-r--r--Documentation/zh_CN/magic-number.txt12
-rw-r--r--Documentation/zh_CN/stable_kernel_rules.txt2
-rw-r--r--Documentation/zorro.txt5
1205 files changed, 49072 insertions, 10492 deletions
diff --git a/Documentation/00-INDEX b/Documentation/00-INDEX
index 38f8444bdd0..27e67a98b7b 100644
--- a/Documentation/00-INDEX
+++ b/Documentation/00-INDEX
@@ -29,6 +29,8 @@ DMA-ISA-LPC.txt
- How to do DMA with ISA (and LPC) devices.
DMA-attributes.txt
- listing of the various possible attributes a DMA region can have
+dmatest.txt
+ - how to compile, configure and use the dmatest system.
DocBook/
- directory with DocBook templates etc. for kernel documentation.
EDID/
@@ -77,6 +79,8 @@ arm/
- directory with info about Linux on the ARM architecture.
arm64/
- directory with info about Linux on the 64 bit ARM architecture.
+assoc_array.txt
+ - generic associative array intro.
atomic_ops.txt
- semantics and behavior of atomic and bitmask operations.
auxdisplay/
@@ -87,6 +91,8 @@ bad_memory.txt
- how to use kernel parameters to exclude bad RAM regions.
basic_profiling.txt
- basic instructions for those who wants to profile Linux kernel.
+bcache.txt
+ - Block-layer cache on fast SSDs to improve slow (raid) I/O performance.
binfmt_misc.txt
- info on the kernel support for extra binary formats.
blackfin/
@@ -171,6 +177,8 @@ early-userspace/
- info about initramfs, klibc, and userspace early during boot.
edac.txt
- information on EDAC - Error Detection And Correction
+efi-stub.txt
+ - How to use the EFI boot stub to bypass GRUB or elilo on EFI systems.
eisa.txt
- info on EISA bus support.
email-clients.txt
@@ -195,8 +203,8 @@ futex-requeue-pi.txt
- info on requeueing of tasks from a non-PI futex to a PI futex
gcov.txt
- use of GCC's coverage testing tool "gcov" with the Linux kernel
-gpio.txt
- - overview of GPIO (General Purpose Input/Output) access conventions.
+gpio/
+ - gpio related documentation
hid/
- directory with information on human interface devices
highuid.txt
@@ -255,6 +263,8 @@ kernel-docs.txt
- listing of various WWW + books that document kernel internals.
kernel-parameters.txt
- summary listing of command line / boot prompt args for the kernel.
+kernel-per-CPU-kthreads.txt
+ - List of all per-CPU kthreads and how they introduce jitter.
kmemcheck.txt
- info on dynamic checker that detects uses of uninitialized memory.
kmemleak.txt
@@ -299,8 +309,6 @@ memory-devices/
- directory with info on parts like the Texas Instruments EMIF driver
memory-hotplug.txt
- Hotpluggable memory support, how to use and current status.
-memory.txt
- - info on typical Linux memory problems.
metag/
- directory with info about Linux on Meta architecture.
mips/
@@ -311,6 +319,8 @@ mmc/
- directory with info about the MMC subsystem
mn10300/
- directory with info about the mn10300 architecture port
+module-signing.txt
+ - Kernel module signing for increased security when loading modules.
mtd/
- directory with info about memory technology devices (flash)
mono.txt
@@ -343,6 +353,8 @@ pcmcia/
- info on the Linux PCMCIA driver.
percpu-rw-semaphore.txt
- RCU based read-write semaphore optimized for locking for reading
+phy.txt
+ - Description of the generic PHY framework.
pi-futex.txt
- documentation on lightweight priority inheritance futexes.
pinctrl.txt
@@ -401,8 +413,6 @@ serial-console.txt
- how to set up Linux with a serial line console as the default.
sgi-ioc4.txt
- description of the SGI IOC4 PCI (multi function) device.
-sgi-visws.txt
- - short blurb on the SGI Visual Workstations.
sh/
- directory with info on porting Linux to a new architecture.
smsc_ece1099.txt
@@ -431,6 +441,8 @@ sysrq.txt
- info on the magic SysRq key.
target/
- directory with info on generating TCM v4 fabric .ko modules
+this_cpu_ops.txt
+ - List rationale behind and the way to use this_cpu operations.
thermal/
- directory with information on managing thermal issues (CPU/temp)
trace/
@@ -469,6 +481,8 @@ wimax/
- directory with info about Intel Wireless Wimax Connections
workqueue.txt
- information on the Concurrency Managed Workqueue implementation
+ww-mutex-design.txt
+ - Intro to Mutex wait/would deadlock handling.s
x86/x86_64/
- directory with info on Linux support for AMD x86-64 (Hammer) machines.
xtensa/
diff --git a/Documentation/ABI/README b/Documentation/ABI/README
index 10069828568..1fafc4b0753 100644
--- a/Documentation/ABI/README
+++ b/Documentation/ABI/README
@@ -72,3 +72,16 @@ kernel tree without going through the obsolete state first.
It's up to the developer to place their interfaces in the category they
wish for it to start out in.
+
+
+Notable bits of non-ABI, which should not under any circumstances be considered
+stable:
+
+- Kconfig. Userspace should not rely on the presence or absence of any
+ particular Kconfig symbol, in /proc/config.gz, in the copy of .config
+ commonly installed to /boot, or in any invocation of the kernel build
+ process.
+
+- Kernel-internal symbols. Do not rely on the presence, absence, location, or
+ type of any kernel symbol, either in System.map files or the kernel binary
+ itself. See Documentation/stable_api_nonsense.txt.
diff --git a/Documentation/ABI/stable/sysfs-bus-usb b/Documentation/ABI/stable/sysfs-bus-usb
index 2be603c52a2..a6b68572474 100644
--- a/Documentation/ABI/stable/sysfs-bus-usb
+++ b/Documentation/ABI/stable/sysfs-bus-usb
@@ -37,8 +37,8 @@ Description:
that the USB device has been connected to the machine. This
file is read-only.
Users:
- PowerTOP <power@bughost.org>
- http://www.lesswatts.org/projects/powertop/
+ PowerTOP <powertop@lists.01.org>
+ https://01.org/powertop/
What: /sys/bus/usb/device/.../power/active_duration
Date: January 2008
@@ -57,8 +57,8 @@ Description:
will give an integer percentage. Note that this does not
account for counter wrap.
Users:
- PowerTOP <power@bughost.org>
- http://www.lesswatts.org/projects/powertop/
+ PowerTOP <powertop@lists.01.org>
+ https://01.org/powertop/
What: /sys/bus/usb/devices/<busnum>-<port[.port]>...:<config num>-<interface num>/supports_autosuspend
Date: January 2008
diff --git a/Documentation/ABI/stable/sysfs-devices-system-cpu b/Documentation/ABI/stable/sysfs-devices-system-cpu
new file mode 100644
index 00000000000..33c133e2a63
--- /dev/null
+++ b/Documentation/ABI/stable/sysfs-devices-system-cpu
@@ -0,0 +1,25 @@
+What: /sys/devices/system/cpu/dscr_default
+Date: 13-May-2014
+KernelVersion: v3.15.0
+Contact:
+Description: Writes are equivalent to writing to
+ /sys/devices/system/cpu/cpuN/dscr on all CPUs.
+ Reads return the last written value or 0.
+ This value is not a global default: it is a way to set
+ all per-CPU defaults at the same time.
+Values: 64 bit unsigned integer (bit field)
+
+What: /sys/devices/system/cpu/cpu[0-9]+/dscr
+Date: 13-May-2014
+KernelVersion: v3.15.0
+Contact:
+Description: Default value for the Data Stream Control Register (DSCR) on
+ a CPU.
+ This default value is used when the kernel is executing and
+ for any process that has not set the DSCR itself.
+ If a process ever sets the DSCR (via direct access to the
+ SPR) that value will be persisted for that process and used
+ on any CPU where it executes (overriding the value described
+ here).
+ If set by a process it will be inherited by child processes.
+Values: 64 bit unsigned integer (bit field)
diff --git a/Documentation/ABI/stable/sysfs-driver-ib_srp b/Documentation/ABI/stable/sysfs-driver-ib_srp
index 5c53d28f775..b9688de8455 100644
--- a/Documentation/ABI/stable/sysfs-driver-ib_srp
+++ b/Documentation/ABI/stable/sysfs-driver-ib_srp
@@ -61,6 +61,12 @@ Description: Interface for making ib_srp connect to a new target.
interrupt is handled by a different CPU then the comp_vector
parameter can be used to spread the SRP completion workload
over multiple CPU's.
+ * tl_retry_count, a number in the range 2..7 specifying the
+ IB RC retry count.
+ * queue_size, the maximum number of commands that the
+ initiator is allowed to queue per SCSI host. The default
+ value for this parameter is 62. The lowest supported value
+ is 2.
What: /sys/class/infiniband_srp/srp-<hca>-<port_number>/ibdev
Date: January 2, 2006
@@ -153,6 +159,13 @@ Contact: linux-rdma@vger.kernel.org
Description: InfiniBand service ID used for establishing communication with
the SRP target.
+What: /sys/class/scsi_host/host<n>/sgid
+Date: February 1, 2014
+KernelVersion: 3.13
+Contact: linux-rdma@vger.kernel.org
+Description: InfiniBand GID of the source port used for communication with
+ the SRP target.
+
What: /sys/class/scsi_host/host<n>/zero_req_lim
Date: September 20, 2006
KernelVersion: 2.6.18
diff --git a/Documentation/ABI/stable/sysfs-firmware-opal-dump b/Documentation/ABI/stable/sysfs-firmware-opal-dump
new file mode 100644
index 00000000000..32fe7f5c488
--- /dev/null
+++ b/Documentation/ABI/stable/sysfs-firmware-opal-dump
@@ -0,0 +1,41 @@
+What: /sys/firmware/opal/dump
+Date: Feb 2014
+Contact: Stewart Smith <stewart@linux.vnet.ibm.com>
+Description:
+ This directory exposes interfaces for interacting with
+ the FSP and platform dumps through OPAL firmware interface.
+
+ This is only for the powerpc/powernv platform.
+
+ initiate_dump: When '1' is written to it,
+ we will initiate a dump.
+ Read this file for supported commands.
+
+ 0xXX-0xYYYY: A directory for dump of type 0xXX and
+ id 0xYYYY (in hex). The name of this
+ directory should not be relied upon to
+ be in this format, only that it's unique
+ among all dumps. For determining the type
+ and ID of the dump, use the id and type files.
+ Do not rely on any particular size of dump
+ type or dump id.
+
+ Each dump has the following files:
+ id: An ASCII representation of the dump ID
+ in hex (e.g. '0x01')
+ type: An ASCII representation of the type of
+ dump in the format "0x%x %s" with the ID
+ in hex and a description of the dump type
+ (or 'unknown').
+ Type '0xffffffff unknown' is used when
+ we could not get the type from firmware.
+ e.g. '0x02 System/Platform Dump'
+ dump: A binary file containing the dump.
+ The size of the dump is the size of this file.
+ acknowledge: When 'ack' is written to this, we will
+ acknowledge that we've retrieved the
+ dump to the service processor. It will
+ then remove it, making the dump
+ inaccessible.
+ Reading this file will get a list of
+ supported actions.
diff --git a/Documentation/ABI/stable/sysfs-firmware-opal-elog b/Documentation/ABI/stable/sysfs-firmware-opal-elog
new file mode 100644
index 00000000000..e1f3058f595
--- /dev/null
+++ b/Documentation/ABI/stable/sysfs-firmware-opal-elog
@@ -0,0 +1,60 @@
+What: /sys/firmware/opal/elog
+Date: Feb 2014
+Contact: Stewart Smith <stewart@linux.vnet.ibm.com>
+Description:
+ This directory exposes error log entries retrieved
+ through the OPAL firmware interface.
+
+ Each error log is identified by a unique ID and will
+ exist until explicitly acknowledged to firmware.
+
+ Each log entry has a directory in /sys/firmware/opal/elog.
+
+ Log entries may be purged by the service processor
+ before retrieved by firmware or retrieved/acknowledged by
+ Linux if there is no room for more log entries.
+
+ In the event that Linux has retrieved the log entries
+ but not explicitly acknowledged them to firmware and
+ the service processor needs more room for log entries,
+ the only remaining copy of a log message may be in
+ Linux.
+
+ Typically, a user space daemon will monitor for new
+ entries, read them out and acknowledge them.
+
+ The service processor may be able to store more log
+ entries than firmware can, so after you acknowledge
+ an event from Linux you may instantly get another one
+ from the queue that was generated some time in the past.
+
+ The raw log format is a binary format. We currently
+ do not parse this at all in kernel, leaving it up to
+ user space to solve the problem. In future, we may
+ do more parsing in kernel and add more files to make
+ it easier for simple user space processes to extract
+ more information.
+
+ For each log entry (directory), there are the following
+ files:
+
+ id: An ASCII representation of the ID of the
+ error log, in hex - e.g. "0x01".
+
+ type: An ASCII representation of the type id and
+ description of the type of error log.
+ Currently just "0x00 PEL" - platform error log.
+ In the future there may be additional types.
+
+ raw: A read-only binary file that can be read
+ to get the raw log entry. These are
+ <16kb, often just hundreds of bytes and
+ "average" 2kb.
+
+ acknowledge: Writing 'ack' to this file will acknowledge
+ the error log to firmware (and in turn
+ the service processor, if applicable).
+ Shortly after acknowledging it, the log
+ entry will be removed from sysfs.
+ Reading this file will list the supported
+ operations (curently just acknowledge). \ No newline at end of file
diff --git a/Documentation/ABI/stable/sysfs-transport-srp b/Documentation/ABI/stable/sysfs-transport-srp
index b36fb0dc13c..ec7af69fea0 100644
--- a/Documentation/ABI/stable/sysfs-transport-srp
+++ b/Documentation/ABI/stable/sysfs-transport-srp
@@ -5,6 +5,24 @@ Contact: linux-scsi@vger.kernel.org, linux-rdma@vger.kernel.org
Description: Instructs an SRP initiator to disconnect from a target and to
remove all LUNs imported from that target.
+What: /sys/class/srp_remote_ports/port-<h>:<n>/dev_loss_tmo
+Date: February 1, 2014
+KernelVersion: 3.13
+Contact: linux-scsi@vger.kernel.org, linux-rdma@vger.kernel.org
+Description: Number of seconds the SCSI layer will wait after a transport
+ layer error has been observed before removing a target port.
+ Zero means immediate removal. Setting this attribute to "off"
+ will disable the dev_loss timer.
+
+What: /sys/class/srp_remote_ports/port-<h>:<n>/fast_io_fail_tmo
+Date: February 1, 2014
+KernelVersion: 3.13
+Contact: linux-scsi@vger.kernel.org, linux-rdma@vger.kernel.org
+Description: Number of seconds the SCSI layer will wait after a transport
+ layer error has been observed before failing I/O. Zero means
+ failing I/O immediately. Setting this attribute to "off" will
+ disable the fast_io_fail timer.
+
What: /sys/class/srp_remote_ports/port-<h>:<n>/port_id
Date: June 27, 2007
KernelVersion: 2.6.24
@@ -12,8 +30,29 @@ Contact: linux-scsi@vger.kernel.org
Description: 16-byte local SRP port identifier in hexadecimal format. An
example: 4c:49:4e:55:58:20:56:49:4f:00:00:00:00:00:00:00.
+What: /sys/class/srp_remote_ports/port-<h>:<n>/reconnect_delay
+Date: February 1, 2014
+KernelVersion: 3.13
+Contact: linux-scsi@vger.kernel.org, linux-rdma@vger.kernel.org
+Description: Number of seconds the SCSI layer will wait after a reconnect
+ attempt failed before retrying. Setting this attribute to
+ "off" will disable time-based reconnecting.
+
What: /sys/class/srp_remote_ports/port-<h>:<n>/roles
Date: June 27, 2007
KernelVersion: 2.6.24
Contact: linux-scsi@vger.kernel.org
Description: Role of the remote port. Either "SRP Initiator" or "SRP Target".
+
+What: /sys/class/srp_remote_ports/port-<h>:<n>/state
+Date: February 1, 2014
+KernelVersion: 3.13
+Contact: linux-scsi@vger.kernel.org, linux-rdma@vger.kernel.org
+Description: State of the transport layer used for communication with the
+ remote port. "running" if the transport layer is operational;
+ "blocked" if a transport layer error has been encountered but
+ the fast_io_fail_tmo timer has not yet fired; "fail-fast"
+ after the fast_io_fail_tmo timer has fired and before the
+ "dev_loss_tmo" timer has fired; "lost" after the
+ "dev_loss_tmo" timer has fired and before the port is finally
+ removed.
diff --git a/Documentation/ABI/testing/configfs-usb-gadget b/Documentation/ABI/testing/configfs-usb-gadget
index 01e769d6984..95a36589a66 100644
--- a/Documentation/ABI/testing/configfs-usb-gadget
+++ b/Documentation/ABI/testing/configfs-usb-gadget
@@ -1,13 +1,13 @@
What: /config/usb-gadget
Date: Jun 2013
-KenelVersion: 3.11
+KernelVersion: 3.11
Description:
This group contains sub-groups corresponding to created
USB gadgets.
What: /config/usb-gadget/gadget
Date: Jun 2013
-KenelVersion: 3.11
+KernelVersion: 3.11
Description:
The attributes of a gadget:
@@ -27,7 +27,7 @@ Description:
What: /config/usb-gadget/gadget/configs
Date: Jun 2013
-KenelVersion: 3.11
+KernelVersion: 3.11
Description:
This group contains a USB gadget's configurations
@@ -58,20 +58,54 @@ Description:
What: /config/usb-gadget/gadget/functions
Date: Jun 2013
-KenelVersion: 3.11
+KernelVersion: 3.11
Description:
This group contains functions available to this USB gadget.
+What: /config/usb-gadget/gadget/functions/<func>.<inst>/interface.<n>
+Date: May 2014
+KernelVersion: 3.16
+Description:
+ This group contains "Feature Descriptors" specific for one
+ gadget's USB interface or one interface group described
+ by an IAD.
+
+ The attributes:
+
+ compatible_id - 8-byte string for "Compatible ID"
+ sub_compatible_id - 8-byte string for "Sub Compatible ID"
+
+What: /config/usb-gadget/gadget/functions/<func>.<inst>/interface.<n>/<property>
+Date: May 2014
+KernelVersion: 3.16
+Description:
+ This group contains "Extended Property Descriptors" specific for one
+ gadget's USB interface or one interface group described
+ by an IAD.
+
+ The attributes:
+
+ type - value 1..7 for interpreting the data
+ 1: unicode string
+ 2: unicode string with environment variable
+ 3: binary
+ 4: little-endian 32-bit
+ 5: big-endian 32-bit
+ 6: unicode string with a symbolic link
+ 7: multiple unicode strings
+ data - blob of data to be interpreted depending on
+ type
+
What: /config/usb-gadget/gadget/strings
Date: Jun 2013
-KenelVersion: 3.11
+KernelVersion: 3.11
Description:
This group contains subdirectories for language-specific
strings for this gadget.
What: /config/usb-gadget/gadget/strings/language
Date: Jun 2013
-KenelVersion: 3.11
+KernelVersion: 3.11
Description:
The attributes:
@@ -79,3 +113,14 @@ Description:
product - gadget's product description
manufacturer - gadget's manufacturer description
+What: /config/usb-gadget/gadget/os_desc
+Date: May 2014
+KernelVersion: 3.16
+Description:
+ This group contains "OS String" extension handling attributes.
+
+ use - flag turning "OS Desctiptors" support on/off
+ b_vendor_code - one-byte value used for custom per-device and
+ per-interface requests
+ qw_sign - an identifier to be reported as "OS String"
+ proper
diff --git a/Documentation/ABI/testing/configfs-usb-gadget-acm b/Documentation/ABI/testing/configfs-usb-gadget-acm
index 5708a568b5f..d21092d75a0 100644
--- a/Documentation/ABI/testing/configfs-usb-gadget-acm
+++ b/Documentation/ABI/testing/configfs-usb-gadget-acm
@@ -1,6 +1,6 @@
What: /config/usb-gadget/gadget/functions/acm.name
Date: Jun 2013
-KenelVersion: 3.11
+KernelVersion: 3.11
Description:
This item contains just one readonly attribute: port_num.
diff --git a/Documentation/ABI/testing/configfs-usb-gadget-ecm b/Documentation/ABI/testing/configfs-usb-gadget-ecm
index 6b9a582ce0b..0addf7704b4 100644
--- a/Documentation/ABI/testing/configfs-usb-gadget-ecm
+++ b/Documentation/ABI/testing/configfs-usb-gadget-ecm
@@ -1,6 +1,6 @@
What: /config/usb-gadget/gadget/functions/ecm.name
Date: Jun 2013
-KenelVersion: 3.11
+KernelVersion: 3.11
Description:
The attributes:
diff --git a/Documentation/ABI/testing/configfs-usb-gadget-eem b/Documentation/ABI/testing/configfs-usb-gadget-eem
index dbddf36b48b..a4c57158fcd 100644
--- a/Documentation/ABI/testing/configfs-usb-gadget-eem
+++ b/Documentation/ABI/testing/configfs-usb-gadget-eem
@@ -1,6 +1,6 @@
What: /config/usb-gadget/gadget/functions/eem.name
Date: Jun 2013
-KenelVersion: 3.11
+KernelVersion: 3.11
Description:
The attributes:
diff --git a/Documentation/ABI/testing/configfs-usb-gadget-ffs b/Documentation/ABI/testing/configfs-usb-gadget-ffs
new file mode 100644
index 00000000000..e39b27653c6
--- /dev/null
+++ b/Documentation/ABI/testing/configfs-usb-gadget-ffs
@@ -0,0 +1,9 @@
+What: /config/usb-gadget/gadget/functions/ffs.name
+Date: Nov 2013
+KernelVersion: 3.13
+Description: The purpose of this directory is to create and remove it.
+
+ A corresponding USB function instance is created/removed.
+ There are no attributes here.
+
+ All parameters are set through FunctionFS.
diff --git a/Documentation/ABI/testing/configfs-usb-gadget-loopback b/Documentation/ABI/testing/configfs-usb-gadget-loopback
new file mode 100644
index 00000000000..9aae5bfb990
--- /dev/null
+++ b/Documentation/ABI/testing/configfs-usb-gadget-loopback
@@ -0,0 +1,8 @@
+What: /config/usb-gadget/gadget/functions/Loopback.name
+Date: Nov 2013
+KernelVersion: 3.13
+Description:
+ The attributes:
+
+ qlen - depth of loopback queue
+ bulk_buflen - buffer length
diff --git a/Documentation/ABI/testing/configfs-usb-gadget-mass-storage b/Documentation/ABI/testing/configfs-usb-gadget-mass-storage
new file mode 100644
index 00000000000..9931fb0d63b
--- /dev/null
+++ b/Documentation/ABI/testing/configfs-usb-gadget-mass-storage
@@ -0,0 +1,31 @@
+What: /config/usb-gadget/gadget/functions/mass_storage.name
+Date: Oct 2013
+KernelVersion: 3.13
+Description:
+ The attributes:
+
+ stall - Set to permit function to halt bulk endpoints.
+ Disabled on some USB devices known not to work
+ correctly. You should set it to true.
+ num_buffers - Number of pipeline buffers. Valid numbers
+ are 2..4. Available only if
+ CONFIG_USB_GADGET_DEBUG_FILES is set.
+
+What: /config/usb-gadget/gadget/functions/mass_storage.name/lun.name
+Date: Oct 2013
+KernelVersion: 3.13
+Description:
+ The attributes:
+
+ file - The path to the backing file for the LUN.
+ Required if LUN is not marked as removable.
+ ro - Flag specifying access to the LUN shall be
+ read-only. This is implied if CD-ROM emulation
+ is enabled as well as when it was impossible
+ to open "filename" in R/W mode.
+ removable - Flag specifying that LUN shall be indicated as
+ being removable.
+ cdrom - Flag specifying that LUN shall be reported as
+ being a CD-ROM.
+ nofua - Flag specifying that FUA flag
+ in SCSI WRITE(10,12)
diff --git a/Documentation/ABI/testing/configfs-usb-gadget-ncm b/Documentation/ABI/testing/configfs-usb-gadget-ncm
index bc309f42357..6fe723effc7 100644
--- a/Documentation/ABI/testing/configfs-usb-gadget-ncm
+++ b/Documentation/ABI/testing/configfs-usb-gadget-ncm
@@ -1,6 +1,6 @@
What: /config/usb-gadget/gadget/functions/ncm.name
Date: Jun 2013
-KenelVersion: 3.11
+KernelVersion: 3.11
Description:
The attributes:
diff --git a/Documentation/ABI/testing/configfs-usb-gadget-obex b/Documentation/ABI/testing/configfs-usb-gadget-obex
index aaa5c96fb7c..a6a9327ed9b 100644
--- a/Documentation/ABI/testing/configfs-usb-gadget-obex
+++ b/Documentation/ABI/testing/configfs-usb-gadget-obex
@@ -1,6 +1,6 @@
What: /config/usb-gadget/gadget/functions/obex.name
Date: Jun 2013
-KenelVersion: 3.11
+KernelVersion: 3.11
Description:
This item contains just one readonly attribute: port_num.
diff --git a/Documentation/ABI/testing/configfs-usb-gadget-phonet b/Documentation/ABI/testing/configfs-usb-gadget-phonet
index 3e3b742cdfd..7037a358e6c 100644
--- a/Documentation/ABI/testing/configfs-usb-gadget-phonet
+++ b/Documentation/ABI/testing/configfs-usb-gadget-phonet
@@ -1,6 +1,6 @@
What: /config/usb-gadget/gadget/functions/phonet.name
Date: Jun 2013
-KenelVersion: 3.11
+KernelVersion: 3.11
Description:
This item contains just one readonly attribute: ifname.
diff --git a/Documentation/ABI/testing/configfs-usb-gadget-rndis b/Documentation/ABI/testing/configfs-usb-gadget-rndis
index 822e6dad8fc..e32879b84b4 100644
--- a/Documentation/ABI/testing/configfs-usb-gadget-rndis
+++ b/Documentation/ABI/testing/configfs-usb-gadget-rndis
@@ -1,6 +1,6 @@
What: /config/usb-gadget/gadget/functions/rndis.name
Date: Jun 2013
-KenelVersion: 3.11
+KernelVersion: 3.11
Description:
The attributes:
diff --git a/Documentation/ABI/testing/configfs-usb-gadget-serial b/Documentation/ABI/testing/configfs-usb-gadget-serial
index 16f130c1501..474d249f760 100644
--- a/Documentation/ABI/testing/configfs-usb-gadget-serial
+++ b/Documentation/ABI/testing/configfs-usb-gadget-serial
@@ -1,6 +1,6 @@
What: /config/usb-gadget/gadget/functions/gser.name
Date: Jun 2013
-KenelVersion: 3.11
+KernelVersion: 3.11
Description:
This item contains just one readonly attribute: port_num.
diff --git a/Documentation/ABI/testing/configfs-usb-gadget-sourcesink b/Documentation/ABI/testing/configfs-usb-gadget-sourcesink
new file mode 100644
index 00000000000..29477c319f6
--- /dev/null
+++ b/Documentation/ABI/testing/configfs-usb-gadget-sourcesink
@@ -0,0 +1,12 @@
+What: /config/usb-gadget/gadget/functions/SourceSink.name
+Date: Nov 2013
+KernelVersion: 3.13
+Description:
+ The attributes:
+
+ pattern - 0 (all zeros), 1 (mod63), 2 (none)
+ isoc_interval - 1..16
+ isoc_maxpacket - 0 - 1023 (fs), 0 - 1024 (hs/ss)
+ isoc_mult - 0..2 (hs/ss only)
+ isoc_maxburst - 0..15 (ss only)
+ qlen - buffer length
diff --git a/Documentation/ABI/testing/configfs-usb-gadget-subset b/Documentation/ABI/testing/configfs-usb-gadget-subset
index 154ae597cd9..9373e2c51ea 100644
--- a/Documentation/ABI/testing/configfs-usb-gadget-subset
+++ b/Documentation/ABI/testing/configfs-usb-gadget-subset
@@ -1,6 +1,6 @@
What: /config/usb-gadget/gadget/functions/geth.name
Date: Jun 2013
-KenelVersion: 3.11
+KernelVersion: 3.11
Description:
The attributes:
diff --git a/Documentation/ABI/testing/debugfs-driver-genwqe b/Documentation/ABI/testing/debugfs-driver-genwqe
new file mode 100644
index 00000000000..1c2f25674e8
--- /dev/null
+++ b/Documentation/ABI/testing/debugfs-driver-genwqe
@@ -0,0 +1,91 @@
+What: /sys/kernel/debug/genwqe/genwqe<n>_card/ddcb_info
+Date: Oct 2013
+Contact: haver@linux.vnet.ibm.com
+Description: DDCB queue dump used for debugging queueing problems.
+
+What: /sys/kernel/debug/genwqe/genwqe<n>_card/curr_regs
+Date: Oct 2013
+Contact: haver@linux.vnet.ibm.com
+Description: Dump of the current error registers.
+ Only available for PF.
+
+What: /sys/kernel/debug/genwqe/genwqe<n>_card/curr_dbg_uid0
+Date: Oct 2013
+Contact: haver@linux.vnet.ibm.com
+Description: Internal chip state of UID0 (unit id 0).
+ Only available for PF.
+
+What: /sys/kernel/debug/genwqe/genwqe<n>_card/curr_dbg_uid1
+Date: Oct 2013
+Contact: haver@linux.vnet.ibm.com
+Description: Internal chip state of UID1.
+ Only available for PF.
+
+What: /sys/kernel/debug/genwqe/genwqe<n>_card/curr_dbg_uid2
+Date: Oct 2013
+Contact: haver@linux.vnet.ibm.com
+Description: Internal chip state of UID2.
+ Only available for PF.
+
+What: /sys/kernel/debug/genwqe/genwqe<n>_card/prev_regs
+Date: Oct 2013
+Contact: haver@linux.vnet.ibm.com
+Description: Dump of the error registers before the last reset of
+ the card occured.
+ Only available for PF.
+
+What: /sys/kernel/debug/genwqe/genwqe<n>_card/prev_dbg_uid0
+Date: Oct 2013
+Contact: haver@linux.vnet.ibm.com
+Description: Internal chip state of UID0 before card was reset.
+ Only available for PF.
+
+What: /sys/kernel/debug/genwqe/genwqe<n>_card/prev_dbg_uid1
+Date: Oct 2013
+Contact: haver@linux.vnet.ibm.com
+Description: Internal chip state of UID1 before card was reset.
+ Only available for PF.
+
+What: /sys/kernel/debug/genwqe/genwqe<n>_card/prev_dbg_uid2
+Date: Oct 2013
+Contact: haver@linux.vnet.ibm.com
+Description: Internal chip state of UID2 before card was reset.
+ Only available for PF.
+
+What: /sys/kernel/debug/genwqe/genwqe<n>_card/info
+Date: Oct 2013
+Contact: haver@linux.vnet.ibm.com
+Description: Comprehensive summary of bitstream version and software
+ version. Used bitstream and bitstream clocking information.
+
+What: /sys/kernel/debug/genwqe/genwqe<n>_card/err_inject
+Date: Oct 2013
+Contact: haver@linux.vnet.ibm.com
+Description: Possibility to inject error cases to ensure that the drivers
+ error handling code works well.
+
+What: /sys/kernel/debug/genwqe/genwqe<n>_card/vf<0..14>_jobtimeout_msec
+Date: Oct 2013
+Contact: haver@linux.vnet.ibm.com
+Description: Default VF timeout 250ms. Testing might require 1000ms.
+ Using 0 will use the cards default value (whatever that is).
+
+ The timeout depends on the max number of available cards
+ in the system and the maximum allowed queue size.
+
+ The driver ensures that the settings are done just before
+ the VFs get enabled. Changing the timeouts in flight is not
+ possible.
+ Only available for PF.
+
+What: /sys/kernel/debug/genwqe/genwqe<n>_card/jobtimer
+Date: Oct 2013
+Contact: haver@linux.vnet.ibm.com
+Description: Dump job timeout register values for PF and VFs.
+ Only available for PF.
+
+What: /sys/kernel/debug/genwqe/genwqe<n>_card/queue_working_time
+Date: Dec 2013
+Contact: haver@linux.vnet.ibm.com
+Description: Dump queue working time register values for PF and VFs.
+ Only available for PF.
diff --git a/Documentation/ABI/testing/ima_policy b/Documentation/ABI/testing/ima_policy
index f1c5cc9d17a..4c3efe43480 100644
--- a/Documentation/ABI/testing/ima_policy
+++ b/Documentation/ABI/testing/ima_policy
@@ -23,7 +23,7 @@ Description:
[fowner]]
lsm: [[subj_user=] [subj_role=] [subj_type=]
[obj_user=] [obj_role=] [obj_type=]]
- option: [[appraise_type=]]
+ option: [[appraise_type=]] [permit_directio]
base: func:= [BPRM_CHECK][MMAP_CHECK][FILE_CHECK][MODULE_CHECK]
mask:= [MAY_READ] [MAY_WRITE] [MAY_APPEND] [MAY_EXEC]
diff --git a/Documentation/ABI/testing/sysfs-block-zram b/Documentation/ABI/testing/sysfs-block-zram
index 3f0b9ae61d8..70ec992514d 100644
--- a/Documentation/ABI/testing/sysfs-block-zram
+++ b/Documentation/ABI/testing/sysfs-block-zram
@@ -43,6 +43,36 @@ Description:
The invalid_io file is read-only and specifies the number of
non-page-size-aligned I/O requests issued to this device.
+What: /sys/block/zram<id>/failed_reads
+Date: February 2014
+Contact: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
+Description:
+ The failed_reads file is read-only and specifies the number of
+ failed reads happened on this device.
+
+What: /sys/block/zram<id>/failed_writes
+Date: February 2014
+Contact: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
+Description:
+ The failed_writes file is read-only and specifies the number of
+ failed writes happened on this device.
+
+What: /sys/block/zram<id>/max_comp_streams
+Date: February 2014
+Contact: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
+Description:
+ The max_comp_streams file is read-write and specifies the
+ number of backend's zcomp_strm compression streams (number of
+ concurrent compress operations).
+
+What: /sys/block/zram<id>/comp_algorithm
+Date: February 2014
+Contact: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
+Description:
+ The comp_algorithm file is read-write and lets to show
+ available and selected compression algorithms, change
+ compression algorithm selection.
+
What: /sys/block/zram<id>/notify_free
Date: August 2010
Contact: Nitin Gupta <ngupta@vflare.org>
@@ -53,15 +83,6 @@ Description:
is freed. This statistic is applicable only when this disk is
being used as a swap disk.
-What: /sys/block/zram<id>/discard
-Date: August 2010
-Contact: Nitin Gupta <ngupta@vflare.org>
-Description:
- The discard file is read-only and specifies the number of
- discard requests received by this device. These requests
- provide information to block device regarding blocks which are
- no longer used by filesystem.
-
What: /sys/block/zram<id>/zero_pages
Date: August 2010
Contact: Nitin Gupta <ngupta@vflare.org>
diff --git a/Documentation/ABI/testing/sysfs-bus-event_source-devices-events b/Documentation/ABI/testing/sysfs-bus-event_source-devices-events
index 3c1cc24361b..7b40a3cbc26 100644
--- a/Documentation/ABI/testing/sysfs-bus-event_source-devices-events
+++ b/Documentation/ABI/testing/sysfs-bus-event_source-devices-events
@@ -57,6 +57,523 @@ What: /sys/devices/cpu/events/PM_1PLUS_PPC_CMPL
/sys/devices/cpu/events/PM_LD_REF_L1
/sys/devices/cpu/events/PM_RUN_CYC
/sys/devices/cpu/events/PM_RUN_INST_CMPL
+ /sys/devices/cpu/events/PM_IC_DEMAND_L2_BR_ALL
+ /sys/devices/cpu/events/PM_GCT_UTIL_7_TO_10_SLOTS
+ /sys/devices/cpu/events/PM_PMC2_SAVED
+ /sys/devices/cpu/events/PM_VSU0_16FLOP
+ /sys/devices/cpu/events/PM_MRK_LSU_DERAT_MISS
+ /sys/devices/cpu/events/PM_MRK_ST_CMPL
+ /sys/devices/cpu/events/PM_NEST_PAIR3_ADD
+ /sys/devices/cpu/events/PM_L2_ST_DISP
+ /sys/devices/cpu/events/PM_L2_CASTOUT_MOD
+ /sys/devices/cpu/events/PM_ISEG
+ /sys/devices/cpu/events/PM_MRK_INST_TIMEO
+ /sys/devices/cpu/events/PM_L2_RCST_DISP_FAIL_ADDR
+ /sys/devices/cpu/events/PM_LSU1_DC_PREF_STREAM_CONFIRM
+ /sys/devices/cpu/events/PM_IERAT_WR_64K
+ /sys/devices/cpu/events/PM_MRK_DTLB_MISS_16M
+ /sys/devices/cpu/events/PM_IERAT_MISS
+ /sys/devices/cpu/events/PM_MRK_PTEG_FROM_LMEM
+ /sys/devices/cpu/events/PM_FLOP
+ /sys/devices/cpu/events/PM_THRD_PRIO_4_5_CYC
+ /sys/devices/cpu/events/PM_BR_PRED_TA
+ /sys/devices/cpu/events/PM_EXT_INT
+ /sys/devices/cpu/events/PM_VSU_FSQRT_FDIV
+ /sys/devices/cpu/events/PM_MRK_LD_MISS_EXPOSED_CYC
+ /sys/devices/cpu/events/PM_LSU1_LDF
+ /sys/devices/cpu/events/PM_IC_WRITE_ALL
+ /sys/devices/cpu/events/PM_LSU0_SRQ_STFWD
+ /sys/devices/cpu/events/PM_PTEG_FROM_RL2L3_MOD
+ /sys/devices/cpu/events/PM_MRK_DATA_FROM_L31_SHR
+ /sys/devices/cpu/events/PM_DATA_FROM_L21_MOD
+ /sys/devices/cpu/events/PM_VSU1_SCAL_DOUBLE_ISSUED
+ /sys/devices/cpu/events/PM_VSU0_8FLOP
+ /sys/devices/cpu/events/PM_POWER_EVENT1
+ /sys/devices/cpu/events/PM_DISP_CLB_HELD_BAL
+ /sys/devices/cpu/events/PM_VSU1_2FLOP
+ /sys/devices/cpu/events/PM_LWSYNC_HELD
+ /sys/devices/cpu/events/PM_PTEG_FROM_DL2L3_SHR
+ /sys/devices/cpu/events/PM_INST_FROM_L21_MOD
+ /sys/devices/cpu/events/PM_IERAT_XLATE_WR_16MPLUS
+ /sys/devices/cpu/events/PM_IC_REQ_ALL
+ /sys/devices/cpu/events/PM_DSLB_MISS
+ /sys/devices/cpu/events/PM_L3_MISS
+ /sys/devices/cpu/events/PM_LSU0_L1_PREF
+ /sys/devices/cpu/events/PM_VSU_SCALAR_SINGLE_ISSUED
+ /sys/devices/cpu/events/PM_LSU1_DC_PREF_STREAM_CONFIRM_STRIDE
+ /sys/devices/cpu/events/PM_L2_INST
+ /sys/devices/cpu/events/PM_VSU0_FRSP
+ /sys/devices/cpu/events/PM_FLUSH_DISP
+ /sys/devices/cpu/events/PM_PTEG_FROM_L2MISS
+ /sys/devices/cpu/events/PM_VSU1_DQ_ISSUED
+ /sys/devices/cpu/events/PM_MRK_DATA_FROM_DMEM
+ /sys/devices/cpu/events/PM_LSU_FLUSH_ULD
+ /sys/devices/cpu/events/PM_PTEG_FROM_LMEM
+ /sys/devices/cpu/events/PM_MRK_DERAT_MISS_16M
+ /sys/devices/cpu/events/PM_THRD_ALL_RUN_CYC
+ /sys/devices/cpu/events/PM_MEM0_PREFETCH_DISP
+ /sys/devices/cpu/events/PM_MRK_STALL_CMPLU_CYC_COUNT
+ /sys/devices/cpu/events/PM_DATA_FROM_DL2L3_MOD
+ /sys/devices/cpu/events/PM_VSU_FRSP
+ /sys/devices/cpu/events/PM_MRK_DATA_FROM_L21_MOD
+ /sys/devices/cpu/events/PM_PMC1_OVERFLOW
+ /sys/devices/cpu/events/PM_VSU0_SINGLE
+ /sys/devices/cpu/events/PM_MRK_PTEG_FROM_L3MISS
+ /sys/devices/cpu/events/PM_MRK_PTEG_FROM_L31_SHR
+ /sys/devices/cpu/events/PM_VSU0_VECTOR_SP_ISSUED
+ /sys/devices/cpu/events/PM_VSU1_FEST
+ /sys/devices/cpu/events/PM_MRK_INST_DISP
+ /sys/devices/cpu/events/PM_VSU0_COMPLEX_ISSUED
+ /sys/devices/cpu/events/PM_LSU1_FLUSH_UST
+ /sys/devices/cpu/events/PM_FXU_IDLE
+ /sys/devices/cpu/events/PM_LSU0_FLUSH_ULD
+ /sys/devices/cpu/events/PM_MRK_DATA_FROM_DL2L3_MOD
+ /sys/devices/cpu/events/PM_LSU_LMQ_SRQ_EMPTY_ALL_CYC
+ /sys/devices/cpu/events/PM_LSU1_REJECT_LMQ_FULL
+ /sys/devices/cpu/events/PM_INST_PTEG_FROM_L21_MOD
+ /sys/devices/cpu/events/PM_INST_FROM_RL2L3_MOD
+ /sys/devices/cpu/events/PM_SHL_CREATED
+ /sys/devices/cpu/events/PM_L2_ST_HIT
+ /sys/devices/cpu/events/PM_DATA_FROM_DMEM
+ /sys/devices/cpu/events/PM_L3_LD_MISS
+ /sys/devices/cpu/events/PM_FXU1_BUSY_FXU0_IDLE
+ /sys/devices/cpu/events/PM_DISP_CLB_HELD_RES
+ /sys/devices/cpu/events/PM_L2_SN_SX_I_DONE
+ /sys/devices/cpu/events/PM_STCX_CMPL
+ /sys/devices/cpu/events/PM_VSU0_2FLOP
+ /sys/devices/cpu/events/PM_L3_PREF_MISS
+ /sys/devices/cpu/events/PM_LSU_SRQ_SYNC_CYC
+ /sys/devices/cpu/events/PM_LSU_REJECT_ERAT_MISS
+ /sys/devices/cpu/events/PM_L1_ICACHE_MISS
+ /sys/devices/cpu/events/PM_LSU1_FLUSH_SRQ
+ /sys/devices/cpu/events/PM_LD_REF_L1_LSU0
+ /sys/devices/cpu/events/PM_VSU0_FEST
+ /sys/devices/cpu/events/PM_VSU_VECTOR_SINGLE_ISSUED
+ /sys/devices/cpu/events/PM_FREQ_UP
+ /sys/devices/cpu/events/PM_DATA_FROM_LMEM
+ /sys/devices/cpu/events/PM_LSU1_LDX
+ /sys/devices/cpu/events/PM_PMC3_OVERFLOW
+ /sys/devices/cpu/events/PM_MRK_BR_MPRED
+ /sys/devices/cpu/events/PM_SHL_MATCH
+ /sys/devices/cpu/events/PM_MRK_BR_TAKEN
+ /sys/devices/cpu/events/PM_ISLB_MISS
+ /sys/devices/cpu/events/PM_DISP_HELD_THERMAL
+ /sys/devices/cpu/events/PM_INST_PTEG_FROM_RL2L3_SHR
+ /sys/devices/cpu/events/PM_LSU1_SRQ_STFWD
+ /sys/devices/cpu/events/PM_PTEG_FROM_DMEM
+ /sys/devices/cpu/events/PM_VSU_2FLOP
+ /sys/devices/cpu/events/PM_GCT_FULL_CYC
+ /sys/devices/cpu/events/PM_MRK_DATA_FROM_L3_CYC
+ /sys/devices/cpu/events/PM_LSU_SRQ_S0_ALLOC
+ /sys/devices/cpu/events/PM_MRK_DERAT_MISS_4K
+ /sys/devices/cpu/events/PM_BR_MPRED_TA
+ /sys/devices/cpu/events/PM_INST_PTEG_FROM_L2MISS
+ /sys/devices/cpu/events/PM_DPU_HELD_POWER
+ /sys/devices/cpu/events/PM_MRK_VSU_FIN
+ /sys/devices/cpu/events/PM_LSU_SRQ_S0_VALID
+ /sys/devices/cpu/events/PM_GCT_EMPTY_CYC
+ /sys/devices/cpu/events/PM_IOPS_DISP
+ /sys/devices/cpu/events/PM_RUN_SPURR
+ /sys/devices/cpu/events/PM_PTEG_FROM_L21_MOD
+ /sys/devices/cpu/events/PM_VSU0_1FLOP
+ /sys/devices/cpu/events/PM_SNOOP_TLBIE
+ /sys/devices/cpu/events/PM_DATA_FROM_L3MISS
+ /sys/devices/cpu/events/PM_VSU_SINGLE
+ /sys/devices/cpu/events/PM_DTLB_MISS_16G
+ /sys/devices/cpu/events/PM_FLUSH
+ /sys/devices/cpu/events/PM_L2_LD_HIT
+ /sys/devices/cpu/events/PM_NEST_PAIR2_AND
+ /sys/devices/cpu/events/PM_VSU1_1FLOP
+ /sys/devices/cpu/events/PM_IC_PREF_REQ
+ /sys/devices/cpu/events/PM_L3_LD_HIT
+ /sys/devices/cpu/events/PM_DISP_HELD
+ /sys/devices/cpu/events/PM_L2_LD
+ /sys/devices/cpu/events/PM_LSU_FLUSH_SRQ
+ /sys/devices/cpu/events/PM_BC_PLUS_8_CONV
+ /sys/devices/cpu/events/PM_MRK_DATA_FROM_L31_MOD_CYC
+ /sys/devices/cpu/events/PM_L2_RCST_BUSY_RC_FULL
+ /sys/devices/cpu/events/PM_TB_BIT_TRANS
+ /sys/devices/cpu/events/PM_THERMAL_MAX
+ /sys/devices/cpu/events/PM_LSU1_FLUSH_ULD
+ /sys/devices/cpu/events/PM_LSU1_REJECT_LHS
+ /sys/devices/cpu/events/PM_LSU_LRQ_S0_ALLOC
+ /sys/devices/cpu/events/PM_L3_CO_L31
+ /sys/devices/cpu/events/PM_POWER_EVENT4
+ /sys/devices/cpu/events/PM_DATA_FROM_L31_SHR
+ /sys/devices/cpu/events/PM_BR_UNCOND
+ /sys/devices/cpu/events/PM_LSU1_DC_PREF_STREAM_ALLOC
+ /sys/devices/cpu/events/PM_PMC4_REWIND
+ /sys/devices/cpu/events/PM_L2_RCLD_DISP
+ /sys/devices/cpu/events/PM_THRD_PRIO_2_3_CYC
+ /sys/devices/cpu/events/PM_MRK_PTEG_FROM_L2MISS
+ /sys/devices/cpu/events/PM_IC_DEMAND_L2_BHT_REDIRECT
+ /sys/devices/cpu/events/PM_DATA_FROM_L31_SHR
+ /sys/devices/cpu/events/PM_IC_PREF_CANCEL_L2
+ /sys/devices/cpu/events/PM_MRK_FIN_STALL_CYC_COUNT
+ /sys/devices/cpu/events/PM_BR_PRED_CCACHE
+ /sys/devices/cpu/events/PM_GCT_UTIL_1_TO_2_SLOTS
+ /sys/devices/cpu/events/PM_MRK_ST_CMPL_INT
+ /sys/devices/cpu/events/PM_LSU_TWO_TABLEWALK_CYC
+ /sys/devices/cpu/events/PM_MRK_DATA_FROM_L3MISS
+ /sys/devices/cpu/events/PM_LSU_SET_MPRED
+ /sys/devices/cpu/events/PM_FLUSH_DISP_TLBIE
+ /sys/devices/cpu/events/PM_VSU1_FCONV
+ /sys/devices/cpu/events/PM_DERAT_MISS_16G
+ /sys/devices/cpu/events/PM_INST_FROM_LMEM
+ /sys/devices/cpu/events/PM_IC_DEMAND_L2_BR_REDIRECT
+ /sys/devices/cpu/events/PM_INST_PTEG_FROM_L2
+ /sys/devices/cpu/events/PM_PTEG_FROM_L2
+ /sys/devices/cpu/events/PM_MRK_DATA_FROM_L21_SHR_CYC
+ /sys/devices/cpu/events/PM_MRK_DTLB_MISS_4K
+ /sys/devices/cpu/events/PM_VSU0_FPSCR
+ /sys/devices/cpu/events/PM_VSU1_VECT_DOUBLE_ISSUED
+ /sys/devices/cpu/events/PM_MRK_PTEG_FROM_RL2L3_MOD
+ /sys/devices/cpu/events/PM_MEM0_RQ_DISP
+ /sys/devices/cpu/events/PM_L2_LD_MISS
+ /sys/devices/cpu/events/PM_VMX_RESULT_SAT_1
+ /sys/devices/cpu/events/PM_L1_PREF
+ /sys/devices/cpu/events/PM_MRK_DATA_FROM_LMEM_CYC
+ /sys/devices/cpu/events/PM_GRP_IC_MISS_NONSPEC
+ /sys/devices/cpu/events/PM_PB_NODE_PUMP
+ /sys/devices/cpu/events/PM_SHL_MERGED
+ /sys/devices/cpu/events/PM_NEST_PAIR1_ADD
+ /sys/devices/cpu/events/PM_DATA_FROM_L3
+ /sys/devices/cpu/events/PM_LSU_FLUSH
+ /sys/devices/cpu/events/PM_LSU_SRQ_SYNC_COUNT
+ /sys/devices/cpu/events/PM_PMC2_OVERFLOW
+ /sys/devices/cpu/events/PM_LSU_LDF
+ /sys/devices/cpu/events/PM_POWER_EVENT3
+ /sys/devices/cpu/events/PM_DISP_WT
+ /sys/devices/cpu/events/PM_IC_BANK_CONFLICT
+ /sys/devices/cpu/events/PM_BR_MPRED_CR_TA
+ /sys/devices/cpu/events/PM_L2_INST_MISS
+ /sys/devices/cpu/events/PM_NEST_PAIR2_ADD
+ /sys/devices/cpu/events/PM_MRK_LSU_FLUSH
+ /sys/devices/cpu/events/PM_L2_LDST
+ /sys/devices/cpu/events/PM_INST_FROM_L31_SHR
+ /sys/devices/cpu/events/PM_VSU0_FIN
+ /sys/devices/cpu/events/PM_VSU1_FCONV
+ /sys/devices/cpu/events/PM_INST_FROM_RMEM
+ /sys/devices/cpu/events/PM_DISP_CLB_HELD_TLBIE
+ /sys/devices/cpu/events/PM_MRK_DATA_FROM_DMEM_CYC
+ /sys/devices/cpu/events/PM_BR_PRED_CR
+ /sys/devices/cpu/events/PM_LSU_REJECT
+ /sys/devices/cpu/events/PM_GCT_UTIL_3_TO_6_SLOTS
+ /sys/devices/cpu/events/PM_CMPLU_STALL_END_GCT_NOSLOT
+ /sys/devices/cpu/events/PM_LSU0_REJECT_LMQ_FULL
+ /sys/devices/cpu/events/PM_VSU_FEST
+ /sys/devices/cpu/events/PM_NEST_PAIR0_AND
+ /sys/devices/cpu/events/PM_PTEG_FROM_L3
+ /sys/devices/cpu/events/PM_POWER_EVENT2
+ /sys/devices/cpu/events/PM_IC_PREF_CANCEL_PAGE
+ /sys/devices/cpu/events/PM_VSU0_FSQRT_FDIV
+ /sys/devices/cpu/events/PM_MRK_GRP_CMPL
+ /sys/devices/cpu/events/PM_VSU0_SCAL_DOUBLE_ISSUED
+ /sys/devices/cpu/events/PM_GRP_DISP
+ /sys/devices/cpu/events/PM_LSU0_LDX
+ /sys/devices/cpu/events/PM_DATA_FROM_L2
+ /sys/devices/cpu/events/PM_MRK_DATA_FROM_RL2L3_MOD
+ /sys/devices/cpu/events/PM_VSU0_VECT_DOUBLE_ISSUED
+ /sys/devices/cpu/events/PM_VSU1_2FLOP_DOUBLE
+ /sys/devices/cpu/events/PM_THRD_PRIO_6_7_CYC
+ /sys/devices/cpu/events/PM_BC_PLUS_8_RSLV_TAKEN
+ /sys/devices/cpu/events/PM_BR_MPRED_CR
+ /sys/devices/cpu/events/PM_L3_CO_MEM
+ /sys/devices/cpu/events/PM_DATA_FROM_RL2L3_MOD
+ /sys/devices/cpu/events/PM_LSU_SRQ_FULL_CYC
+ /sys/devices/cpu/events/PM_TABLEWALK_CYC
+ /sys/devices/cpu/events/PM_MRK_PTEG_FROM_RMEM
+ /sys/devices/cpu/events/PM_LSU_SRQ_STFWD
+ /sys/devices/cpu/events/PM_INST_PTEG_FROM_RMEM
+ /sys/devices/cpu/events/PM_FXU0_FIN
+ /sys/devices/cpu/events/PM_LSU1_L1_SW_PREF
+ /sys/devices/cpu/events/PM_PTEG_FROM_L31_MOD
+ /sys/devices/cpu/events/PM_PMC5_OVERFLOW
+ /sys/devices/cpu/events/PM_LD_REF_L1_LSU1
+ /sys/devices/cpu/events/PM_INST_PTEG_FROM_L21_SHR
+ /sys/devices/cpu/events/PM_DATA_FROM_RMEM
+ /sys/devices/cpu/events/PM_VSU0_SCAL_SINGLE_ISSUED
+ /sys/devices/cpu/events/PM_BR_MPRED_LSTACK
+ /sys/devices/cpu/events/PM_MRK_DATA_FROM_RL2L3_MOD_CYC
+ /sys/devices/cpu/events/PM_LSU0_FLUSH_UST
+ /sys/devices/cpu/events/PM_LSU_NCST
+ /sys/devices/cpu/events/PM_BR_TAKEN
+ /sys/devices/cpu/events/PM_INST_PTEG_FROM_LMEM
+ /sys/devices/cpu/events/PM_DTLB_MISS_4K
+ /sys/devices/cpu/events/PM_PMC4_SAVED
+ /sys/devices/cpu/events/PM_VSU1_PERMUTE_ISSUED
+ /sys/devices/cpu/events/PM_SLB_MISS
+ /sys/devices/cpu/events/PM_LSU1_FLUSH_LRQ
+ /sys/devices/cpu/events/PM_DTLB_MISS
+ /sys/devices/cpu/events/PM_VSU1_FRSP
+ /sys/devices/cpu/events/PM_VSU_VECTOR_DOUBLE_ISSUED
+ /sys/devices/cpu/events/PM_L2_CASTOUT_SHR
+ /sys/devices/cpu/events/PM_DATA_FROM_DL2L3_SHR
+ /sys/devices/cpu/events/PM_VSU1_STF
+ /sys/devices/cpu/events/PM_ST_FIN
+ /sys/devices/cpu/events/PM_PTEG_FROM_L21_SHR
+ /sys/devices/cpu/events/PM_L2_LOC_GUESS_WRONG
+ /sys/devices/cpu/events/PM_MRK_STCX_FAIL
+ /sys/devices/cpu/events/PM_LSU0_REJECT_LHS
+ /sys/devices/cpu/events/PM_IC_PREF_CANCEL_HIT
+ /sys/devices/cpu/events/PM_L3_PREF_BUSY
+ /sys/devices/cpu/events/PM_MRK_BRU_FIN
+ /sys/devices/cpu/events/PM_LSU1_NCLD
+ /sys/devices/cpu/events/PM_INST_PTEG_FROM_L31_MOD
+ /sys/devices/cpu/events/PM_LSU_NCLD
+ /sys/devices/cpu/events/PM_LSU_LDX
+ /sys/devices/cpu/events/PM_L2_LOC_GUESS_CORRECT
+ /sys/devices/cpu/events/PM_THRESH_TIMEO
+ /sys/devices/cpu/events/PM_L3_PREF_ST
+ /sys/devices/cpu/events/PM_DISP_CLB_HELD_SYNC
+ /sys/devices/cpu/events/PM_VSU_SIMPLE_ISSUED
+ /sys/devices/cpu/events/PM_VSU1_SINGLE
+ /sys/devices/cpu/events/PM_DATA_TABLEWALK_CYC
+ /sys/devices/cpu/events/PM_L2_RC_ST_DONE
+ /sys/devices/cpu/events/PM_MRK_PTEG_FROM_L21_MOD
+ /sys/devices/cpu/events/PM_LARX_LSU1
+ /sys/devices/cpu/events/PM_MRK_DATA_FROM_RMEM
+ /sys/devices/cpu/events/PM_DISP_CLB_HELD
+ /sys/devices/cpu/events/PM_DERAT_MISS_4K
+ /sys/devices/cpu/events/PM_L2_RCLD_DISP_FAIL_ADDR
+ /sys/devices/cpu/events/PM_SEG_EXCEPTION
+ /sys/devices/cpu/events/PM_FLUSH_DISP_SB
+ /sys/devices/cpu/events/PM_L2_DC_INV
+ /sys/devices/cpu/events/PM_PTEG_FROM_DL2L3_MOD
+ /sys/devices/cpu/events/PM_DSEG
+ /sys/devices/cpu/events/PM_BR_PRED_LSTACK
+ /sys/devices/cpu/events/PM_VSU0_STF
+ /sys/devices/cpu/events/PM_LSU_FX_FIN
+ /sys/devices/cpu/events/PM_DERAT_MISS_16M
+ /sys/devices/cpu/events/PM_MRK_PTEG_FROM_DL2L3_MOD
+ /sys/devices/cpu/events/PM_GCT_UTIL_11_PLUS_SLOTS
+ /sys/devices/cpu/events/PM_INST_FROM_L3
+ /sys/devices/cpu/events/PM_MRK_IFU_FIN
+ /sys/devices/cpu/events/PM_ITLB_MISS
+ /sys/devices/cpu/events/PM_VSU_STF
+ /sys/devices/cpu/events/PM_LSU_FLUSH_UST
+ /sys/devices/cpu/events/PM_L2_LDST_MISS
+ /sys/devices/cpu/events/PM_FXU1_FIN
+ /sys/devices/cpu/events/PM_SHL_DEALLOCATED
+ /sys/devices/cpu/events/PM_L2_SN_M_WR_DONE
+ /sys/devices/cpu/events/PM_LSU_REJECT_SET_MPRED
+ /sys/devices/cpu/events/PM_L3_PREF_LD
+ /sys/devices/cpu/events/PM_L2_SN_M_RD_DONE
+ /sys/devices/cpu/events/PM_MRK_DERAT_MISS_16G
+ /sys/devices/cpu/events/PM_VSU_FCONV
+ /sys/devices/cpu/events/PM_ANY_THRD_RUN_CYC
+ /sys/devices/cpu/events/PM_LSU_LMQ_FULL_CYC
+ /sys/devices/cpu/events/PM_MRK_LSU_REJECT_LHS
+ /sys/devices/cpu/events/PM_MRK_LD_MISS_L1_CYC
+ /sys/devices/cpu/events/PM_MRK_DATA_FROM_L2_CYC
+ /sys/devices/cpu/events/PM_INST_IMC_MATCH_DISP
+ /sys/devices/cpu/events/PM_MRK_DATA_FROM_RMEM_CYC
+ /sys/devices/cpu/events/PM_VSU0_SIMPLE_ISSUED
+ /sys/devices/cpu/events/PM_MRK_PTEG_FROM_RL2L3_SHR
+ /sys/devices/cpu/events/PM_VSU_FMA_DOUBLE
+ /sys/devices/cpu/events/PM_VSU_4FLOP
+ /sys/devices/cpu/events/PM_VSU1_FIN
+ /sys/devices/cpu/events/PM_NEST_PAIR1_AND
+ /sys/devices/cpu/events/PM_INST_PTEG_FROM_RL2L3_MOD
+ /sys/devices/cpu/events/PM_PTEG_FROM_RMEM
+ /sys/devices/cpu/events/PM_LSU_LRQ_S0_VALID
+ /sys/devices/cpu/events/PM_LSU0_LDF
+ /sys/devices/cpu/events/PM_FLUSH_COMPLETION
+ /sys/devices/cpu/events/PM_ST_MISS_L1
+ /sys/devices/cpu/events/PM_L2_NODE_PUMP
+ /sys/devices/cpu/events/PM_INST_FROM_DL2L3_SHR
+ /sys/devices/cpu/events/PM_MRK_STALL_CMPLU_CYC
+ /sys/devices/cpu/events/PM_VSU1_DENORM
+ /sys/devices/cpu/events/PM_MRK_DATA_FROM_L31_SHR_CYC
+ /sys/devices/cpu/events/PM_NEST_PAIR0_ADD
+ /sys/devices/cpu/events/PM_INST_FROM_L3MISS
+ /sys/devices/cpu/events/PM_EE_OFF_EXT_INT
+ /sys/devices/cpu/events/PM_INST_PTEG_FROM_DMEM
+ /sys/devices/cpu/events/PM_INST_FROM_DL2L3_MOD
+ /sys/devices/cpu/events/PM_PMC6_OVERFLOW
+ /sys/devices/cpu/events/PM_VSU_2FLOP_DOUBLE
+ /sys/devices/cpu/events/PM_TLB_MISS
+ /sys/devices/cpu/events/PM_FXU_BUSY
+ /sys/devices/cpu/events/PM_L2_RCLD_DISP_FAIL_OTHER
+ /sys/devices/cpu/events/PM_LSU_REJECT_LMQ_FULL
+ /sys/devices/cpu/events/PM_IC_RELOAD_SHR
+ /sys/devices/cpu/events/PM_GRP_MRK
+ /sys/devices/cpu/events/PM_MRK_ST_NEST
+ /sys/devices/cpu/events/PM_VSU1_FSQRT_FDIV
+ /sys/devices/cpu/events/PM_LSU0_FLUSH_LRQ
+ /sys/devices/cpu/events/PM_LARX_LSU0
+ /sys/devices/cpu/events/PM_IBUF_FULL_CYC
+ /sys/devices/cpu/events/PM_MRK_DATA_FROM_DL2L3_SHR_CYC
+ /sys/devices/cpu/events/PM_LSU_DC_PREF_STREAM_ALLOC
+ /sys/devices/cpu/events/PM_GRP_MRK_CYC
+ /sys/devices/cpu/events/PM_MRK_DATA_FROM_RL2L3_SHR_CYC
+ /sys/devices/cpu/events/PM_L2_GLOB_GUESS_CORRECT
+ /sys/devices/cpu/events/PM_LSU_REJECT_LHS
+ /sys/devices/cpu/events/PM_MRK_DATA_FROM_LMEM
+ /sys/devices/cpu/events/PM_INST_PTEG_FROM_L3
+ /sys/devices/cpu/events/PM_FREQ_DOWN
+ /sys/devices/cpu/events/PM_PB_RETRY_NODE_PUMP
+ /sys/devices/cpu/events/PM_INST_FROM_RL2L3_SHR
+ /sys/devices/cpu/events/PM_MRK_INST_ISSUED
+ /sys/devices/cpu/events/PM_PTEG_FROM_L3MISS
+ /sys/devices/cpu/events/PM_RUN_PURR
+ /sys/devices/cpu/events/PM_MRK_GRP_IC_MISS
+ /sys/devices/cpu/events/PM_MRK_DATA_FROM_L3
+ /sys/devices/cpu/events/PM_PTEG_FROM_RL2L3_SHR
+ /sys/devices/cpu/events/PM_LSU_FLUSH_LRQ
+ /sys/devices/cpu/events/PM_MRK_DERAT_MISS_64K
+ /sys/devices/cpu/events/PM_INST_PTEG_FROM_DL2L3_MOD
+ /sys/devices/cpu/events/PM_L2_ST_MISS
+ /sys/devices/cpu/events/PM_MRK_PTEG_FROM_L21_SHR
+ /sys/devices/cpu/events/PM_LWSYNC
+ /sys/devices/cpu/events/PM_LSU0_DC_PREF_STREAM_CONFIRM_STRIDE
+ /sys/devices/cpu/events/PM_MRK_LSU_FLUSH_LRQ
+ /sys/devices/cpu/events/PM_INST_IMC_MATCH_CMPL
+ /sys/devices/cpu/events/PM_NEST_PAIR3_AND
+ /sys/devices/cpu/events/PM_PB_RETRY_SYS_PUMP
+ /sys/devices/cpu/events/PM_MRK_INST_FIN
+ /sys/devices/cpu/events/PM_MRK_PTEG_FROM_DL2L3_SHR
+ /sys/devices/cpu/events/PM_INST_FROM_L31_MOD
+ /sys/devices/cpu/events/PM_MRK_DTLB_MISS_64K
+ /sys/devices/cpu/events/PM_LSU_FIN
+ /sys/devices/cpu/events/PM_MRK_LSU_REJECT
+ /sys/devices/cpu/events/PM_L2_CO_FAIL_BUSY
+ /sys/devices/cpu/events/PM_MEM0_WQ_DISP
+ /sys/devices/cpu/events/PM_DATA_FROM_L31_MOD
+ /sys/devices/cpu/events/PM_THERMAL_WARN
+ /sys/devices/cpu/events/PM_VSU0_4FLOP
+ /sys/devices/cpu/events/PM_BR_MPRED_CCACHE
+ /sys/devices/cpu/events/PM_L1_DEMAND_WRITE
+ /sys/devices/cpu/events/PM_FLUSH_BR_MPRED
+ /sys/devices/cpu/events/PM_MRK_DTLB_MISS_16G
+ /sys/devices/cpu/events/PM_MRK_PTEG_FROM_DMEM
+ /sys/devices/cpu/events/PM_L2_RCST_DISP
+ /sys/devices/cpu/events/PM_LSU_PARTIAL_CDF
+ /sys/devices/cpu/events/PM_DISP_CLB_HELD_SB
+ /sys/devices/cpu/events/PM_VSU0_FMA_DOUBLE
+ /sys/devices/cpu/events/PM_FXU0_BUSY_FXU1_IDLE
+ /sys/devices/cpu/events/PM_IC_DEMAND_CYC
+ /sys/devices/cpu/events/PM_MRK_DATA_FROM_L21_SHR
+ /sys/devices/cpu/events/PM_MRK_LSU_FLUSH_UST
+ /sys/devices/cpu/events/PM_INST_PTEG_FROM_L3MISS
+ /sys/devices/cpu/events/PM_VSU_DENORM
+ /sys/devices/cpu/events/PM_MRK_LSU_PARTIAL_CDF
+ /sys/devices/cpu/events/PM_INST_FROM_L21_SHR
+ /sys/devices/cpu/events/PM_IC_PREF_WRITE
+ /sys/devices/cpu/events/PM_BR_PRED
+ /sys/devices/cpu/events/PM_INST_FROM_DMEM
+ /sys/devices/cpu/events/PM_IC_PREF_CANCEL_ALL
+ /sys/devices/cpu/events/PM_LSU_DC_PREF_STREAM_CONFIRM
+ /sys/devices/cpu/events/PM_MRK_LSU_FLUSH_SRQ
+ /sys/devices/cpu/events/PM_MRK_FIN_STALL_CYC
+ /sys/devices/cpu/events/PM_L2_RCST_DISP_FAIL_OTHER
+ /sys/devices/cpu/events/PM_VSU1_DD_ISSUED
+ /sys/devices/cpu/events/PM_PTEG_FROM_L31_SHR
+ /sys/devices/cpu/events/PM_DATA_FROM_L21_SHR
+ /sys/devices/cpu/events/PM_LSU0_NCLD
+ /sys/devices/cpu/events/PM_VSU1_4FLOP
+ /sys/devices/cpu/events/PM_VSU1_8FLOP
+ /sys/devices/cpu/events/PM_VSU_8FLOP
+ /sys/devices/cpu/events/PM_LSU_LMQ_SRQ_EMPTY_CYC
+ /sys/devices/cpu/events/PM_DTLB_MISS_64K
+ /sys/devices/cpu/events/PM_THRD_CONC_RUN_INST
+ /sys/devices/cpu/events/PM_MRK_PTEG_FROM_L2
+ /sys/devices/cpu/events/PM_PB_SYS_PUMP
+ /sys/devices/cpu/events/PM_VSU_FIN
+ /sys/devices/cpu/events/PM_MRK_DATA_FROM_L31_MOD
+ /sys/devices/cpu/events/PM_THRD_PRIO_0_1_CYC
+ /sys/devices/cpu/events/PM_DERAT_MISS_64K
+ /sys/devices/cpu/events/PM_PMC2_REWIND
+ /sys/devices/cpu/events/PM_INST_FROM_L2
+ /sys/devices/cpu/events/PM_GRP_BR_MPRED_NONSPEC
+ /sys/devices/cpu/events/PM_INST_DISP
+ /sys/devices/cpu/events/PM_MEM0_RD_CANCEL_TOTAL
+ /sys/devices/cpu/events/PM_LSU0_DC_PREF_STREAM_CONFIRM
+ /sys/devices/cpu/events/PM_L1_DCACHE_RELOAD_VALID
+ /sys/devices/cpu/events/PM_VSU_SCALAR_DOUBLE_ISSUED
+ /sys/devices/cpu/events/PM_L3_PREF_HIT
+ /sys/devices/cpu/events/PM_MRK_PTEG_FROM_L31_MOD
+ /sys/devices/cpu/events/PM_MRK_FXU_FIN
+ /sys/devices/cpu/events/PM_PMC4_OVERFLOW
+ /sys/devices/cpu/events/PM_MRK_PTEG_FROM_L3
+ /sys/devices/cpu/events/PM_LSU0_LMQ_LHR_MERGE
+ /sys/devices/cpu/events/PM_BTAC_HIT
+ /sys/devices/cpu/events/PM_L3_RD_BUSY
+ /sys/devices/cpu/events/PM_LSU0_L1_SW_PREF
+ /sys/devices/cpu/events/PM_INST_FROM_L2MISS
+ /sys/devices/cpu/events/PM_LSU0_DC_PREF_STREAM_ALLOC
+ /sys/devices/cpu/events/PM_L2_ST
+ /sys/devices/cpu/events/PM_VSU0_DENORM
+ /sys/devices/cpu/events/PM_MRK_DATA_FROM_DL2L3_SHR
+ /sys/devices/cpu/events/PM_BR_PRED_CR_TA
+ /sys/devices/cpu/events/PM_VSU0_FCONV
+ /sys/devices/cpu/events/PM_MRK_LSU_FLUSH_ULD
+ /sys/devices/cpu/events/PM_BTAC_MISS
+ /sys/devices/cpu/events/PM_MRK_LD_MISS_EXPOSED_CYC_COUNT
+ /sys/devices/cpu/events/PM_MRK_DATA_FROM_L2
+ /sys/devices/cpu/events/PM_LSU_DCACHE_RELOAD_VALID
+ /sys/devices/cpu/events/PM_VSU_FMA
+ /sys/devices/cpu/events/PM_LSU0_FLUSH_SRQ
+ /sys/devices/cpu/events/PM_LSU1_L1_PREF
+ /sys/devices/cpu/events/PM_IOPS_CMPL
+ /sys/devices/cpu/events/PM_L2_SYS_PUMP
+ /sys/devices/cpu/events/PM_L2_RCLD_BUSY_RC_FULL
+ /sys/devices/cpu/events/PM_LSU_LMQ_S0_ALLOC
+ /sys/devices/cpu/events/PM_FLUSH_DISP_SYNC
+ /sys/devices/cpu/events/PM_MRK_DATA_FROM_DL2L3_MOD_CYC
+ /sys/devices/cpu/events/PM_L2_IC_INV
+ /sys/devices/cpu/events/PM_MRK_DATA_FROM_L21_MOD_CYC
+ /sys/devices/cpu/events/PM_L3_PREF_LDST
+ /sys/devices/cpu/events/PM_LSU_SRQ_EMPTY_CYC
+ /sys/devices/cpu/events/PM_LSU_LMQ_S0_VALID
+ /sys/devices/cpu/events/PM_FLUSH_PARTIAL
+ /sys/devices/cpu/events/PM_VSU1_FMA_DOUBLE
+ /sys/devices/cpu/events/PM_1PLUS_PPC_DISP
+ /sys/devices/cpu/events/PM_DATA_FROM_L2MISS
+ /sys/devices/cpu/events/PM_SUSPENDED
+ /sys/devices/cpu/events/PM_VSU0_FMA
+ /sys/devices/cpu/events/PM_STCX_FAIL
+ /sys/devices/cpu/events/PM_VSU0_FSQRT_FDIV_DOUBLE
+ /sys/devices/cpu/events/PM_DC_PREF_DST
+ /sys/devices/cpu/events/PM_VSU1_SCAL_SINGLE_ISSUED
+ /sys/devices/cpu/events/PM_L3_HIT
+ /sys/devices/cpu/events/PM_L2_GLOB_GUESS_WRONG
+ /sys/devices/cpu/events/PM_MRK_DFU_FIN
+ /sys/devices/cpu/events/PM_INST_FROM_L1
+ /sys/devices/cpu/events/PM_IC_DEMAND_REQ
+ /sys/devices/cpu/events/PM_VSU1_FSQRT_FDIV_DOUBLE
+ /sys/devices/cpu/events/PM_VSU1_FMA
+ /sys/devices/cpu/events/PM_MRK_LD_MISS_L1
+ /sys/devices/cpu/events/PM_VSU0_2FLOP_DOUBLE
+ /sys/devices/cpu/events/PM_LSU_DC_PREF_STRIDED_STREAM_CONFIRM
+ /sys/devices/cpu/events/PM_INST_PTEG_FROM_L31_SHR
+ /sys/devices/cpu/events/PM_MRK_LSU_REJECT_ERAT_MISS
+ /sys/devices/cpu/events/PM_MRK_DATA_FROM_L2MISS
+ /sys/devices/cpu/events/PM_DATA_FROM_RL2L3_SHR
+ /sys/devices/cpu/events/PM_INST_FROM_PREF
+ /sys/devices/cpu/events/PM_VSU1_SQ
+ /sys/devices/cpu/events/PM_L2_LD_DISP
+ /sys/devices/cpu/events/PM_L2_DISP_ALL
+ /sys/devices/cpu/events/PM_THRD_GRP_CMPL_BOTH_CYC
+ /sys/devices/cpu/events/PM_VSU_FSQRT_FDIV_DOUBLE
+ /sys/devices/cpu/events/PM_INST_PTEG_FROM_DL2L3_SHR
+ /sys/devices/cpu/events/PM_VSU_1FLOP
+ /sys/devices/cpu/events/PM_HV_CYC
+ /sys/devices/cpu/events/PM_MRK_LSU_FIN
+ /sys/devices/cpu/events/PM_MRK_DATA_FROM_RL2L3_SHR
+ /sys/devices/cpu/events/PM_DTLB_MISS_16M
+ /sys/devices/cpu/events/PM_LSU1_LMQ_LHR_MERGE
+ /sys/devices/cpu/events/PM_IFU_FIN
+ /sys/devices/cpu/events/PM_1THRD_CON_RUN_INSTR
+ /sys/devices/cpu/events/PM_CMPLU_STALL_COUNT
+ /sys/devices/cpu/events/PM_MEM0_PB_RD_CL
+ /sys/devices/cpu/events/PM_THRD_1_RUN_CYC
+ /sys/devices/cpu/events/PM_THRD_2_CONC_RUN_INSTR
+ /sys/devices/cpu/events/PM_THRD_2_RUN_CYC
+ /sys/devices/cpu/events/PM_THRD_3_CONC_RUN_INST
+ /sys/devices/cpu/events/PM_THRD_3_RUN_CYC
+ /sys/devices/cpu/events/PM_THRD_4_CONC_RUN_INST
+ /sys/devices/cpu/events/PM_THRD_4_RUN_CYC
Date: 2013/01/08
diff --git a/Documentation/ABI/testing/sysfs-bus-event_source-devices-hv_24x7 b/Documentation/ABI/testing/sysfs-bus-event_source-devices-hv_24x7
new file mode 100644
index 00000000000..e78ee798d7b
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-bus-event_source-devices-hv_24x7
@@ -0,0 +1,23 @@
+What: /sys/bus/event_source/devices/hv_24x7/interface/catalog
+Date: February 2014
+Contact: Cody P Schafer <cody@linux.vnet.ibm.com>
+Description:
+ Provides access to the binary "24x7 catalog" provided by the
+ hypervisor on POWER7 and 8 systems. This catalog lists events
+ avaliable from the powerpc "hv_24x7" pmu. Its format is
+ documented here:
+ https://raw.githubusercontent.com/jmesmon/catalog-24x7/master/hv-24x7-catalog.h
+
+What: /sys/bus/event_source/devices/hv_24x7/interface/catalog_length
+Date: February 2014
+Contact: Cody P Schafer <cody@linux.vnet.ibm.com>
+Description:
+ A number equal to the length in bytes of the catalog. This is
+ also extractable from the provided binary "catalog" sysfs entry.
+
+What: /sys/bus/event_source/devices/hv_24x7/interface/catalog_version
+Date: February 2014
+Contact: Cody P Schafer <cody@linux.vnet.ibm.com>
+Description:
+ Exposes the "version" field of the 24x7 catalog. This is also
+ extractable from the provided binary "catalog" sysfs entry.
diff --git a/Documentation/ABI/testing/sysfs-bus-event_source-devices-hv_gpci b/Documentation/ABI/testing/sysfs-bus-event_source-devices-hv_gpci
new file mode 100644
index 00000000000..3fa58c23f13
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-bus-event_source-devices-hv_gpci
@@ -0,0 +1,43 @@
+What: /sys/bus/event_source/devices/hv_gpci/interface/collect_privileged
+Date: February 2014
+Contact: Cody P Schafer <cody@linux.vnet.ibm.com>
+Description:
+ '0' if the hypervisor is configured to forbid access to event
+ counters being accumulated by other guests and to physical
+ domain event counters.
+ '1' if that access is allowed.
+
+What: /sys/bus/event_source/devices/hv_gpci/interface/ga
+Date: February 2014
+Contact: Cody P Schafer <cody@linux.vnet.ibm.com>
+Description:
+ 0 or 1. Indicates whether we have access to "GA" events (listed
+ in arch/powerpc/perf/hv-gpci.h).
+
+What: /sys/bus/event_source/devices/hv_gpci/interface/expanded
+Date: February 2014
+Contact: Cody P Schafer <cody@linux.vnet.ibm.com>
+Description:
+ 0 or 1. Indicates whether we have access to "EXPANDED" events (listed
+ in arch/powerpc/perf/hv-gpci.h).
+
+What: /sys/bus/event_source/devices/hv_gpci/interface/lab
+Date: February 2014
+Contact: Cody P Schafer <cody@linux.vnet.ibm.com>
+Description:
+ 0 or 1. Indicates whether we have access to "LAB" events (listed
+ in arch/powerpc/perf/hv-gpci.h).
+
+What: /sys/bus/event_source/devices/hv_gpci/interface/version
+Date: February 2014
+Contact: Cody P Schafer <cody@linux.vnet.ibm.com>
+Description:
+ A number indicating the version of the gpci interface that the
+ hypervisor reports supporting.
+
+What: /sys/bus/event_source/devices/hv_gpci/interface/kernel_version
+Date: February 2014
+Contact: Cody P Schafer <cody@linux.vnet.ibm.com>
+Description:
+ A number indicating the latest version of the gpci interface
+ that the kernel is aware of.
diff --git a/Documentation/ABI/testing/sysfs-bus-iio b/Documentation/ABI/testing/sysfs-bus-iio
index 39c8de0e53d..a9757dcf2e8 100644
--- a/Documentation/ABI/testing/sysfs-bus-iio
+++ b/Documentation/ABI/testing/sysfs-bus-iio
@@ -79,7 +79,7 @@ Description:
correspond to externally available input one of the named
versions may be used. The number must always be specified and
unique to allow association with event codes. Units after
- application of scale and offset are microvolts.
+ application of scale and offset are millivolts.
What: /sys/bus/iio/devices/iio:deviceX/in_voltageY-voltageZ_raw
KernelVersion: 2.6.35
@@ -90,7 +90,7 @@ Description:
physically equivalent inputs when non differential readings are
separately available. In differential only parts, then all that
is required is a consistent labeling. Units after application
- of scale and offset are microvolts.
+ of scale and offset are millivolts.
What: /sys/bus/iio/devices/iio:deviceX/in_capacitanceY_raw
KernelVersion: 3.2
@@ -114,14 +114,17 @@ What: /sys/bus/iio/devices/iio:deviceX/in_temp_raw
What: /sys/bus/iio/devices/iio:deviceX/in_tempX_raw
What: /sys/bus/iio/devices/iio:deviceX/in_temp_x_raw
What: /sys/bus/iio/devices/iio:deviceX/in_temp_y_raw
-What: /sys/bus/iio/devices/iio:deviceX/in_temp_z_raw
+What: /sys/bus/iio/devices/iio:deviceX/in_temp_ambient_raw
+What: /sys/bus/iio/devices/iio:deviceX/in_temp_object_raw
KernelVersion: 2.6.35
Contact: linux-iio@vger.kernel.org
Description:
Raw (unscaled no bias removal etc.) temperature measurement.
If an axis is specified it generally means that the temperature
sensor is associated with one part of a compound device (e.g.
- a gyroscope axis). Units after application of scale and offset
+ a gyroscope axis). The ambient and object modifiers distinguish
+ between ambient (reference) and distant temperature for contact-
+ less measurements. Units after application of scale and offset
are milli degrees Celsius.
What: /sys/bus/iio/devices/iio:deviceX/in_tempX_input
@@ -197,6 +200,27 @@ Description:
Raw pressure measurement from channel Y. Units after
application of scale and offset are kilopascal.
+What: /sys/bus/iio/devices/iio:deviceX/in_humidityrelative_raw
+KernelVersion: 3.14
+Contact: linux-iio@vger.kernel.org
+Description:
+ Raw humidity measurement of air. Units after application of
+ scale and offset are milli percent.
+
+What: /sys/bus/iio/devices/iio:deviceX/in_humidityrelative_input
+KernelVersion: 3.14
+Contact: linux-iio@vger.kernel.org
+Description:
+ Scaled humidity measurement in milli percent.
+
+What: /sys/bus/iio/devices/iio:deviceX/in_X_mean_raw
+KernelVersion: 3.5
+Contact: linux-iio@vger.kernel.org
+Description:
+ Averaged raw measurement from channel X. The number of values
+ used for averaging is device specific. The converting rules for
+ normal raw values also applies to the averaged raw values.
+
What: /sys/bus/iio/devices/iio:deviceX/in_accel_offset
What: /sys/bus/iio/devices/iio:deviceX/in_accel_x_offset
What: /sys/bus/iio/devices/iio:deviceX/in_accel_y_offset
@@ -537,6 +561,62 @@ Description:
value is in raw device units or in processed units (as _raw
and _input do on sysfs direct channel read attributes).
+What: /sys/.../events/in_accel_x_thresh_rising_hysteresis
+What: /sys/.../events/in_accel_x_thresh_falling_hysteresis
+What: /sys/.../events/in_accel_x_thresh_either_hysteresis
+What: /sys/.../events/in_accel_y_thresh_rising_hysteresis
+What: /sys/.../events/in_accel_y_thresh_falling_hysteresis
+What: /sys/.../events/in_accel_y_thresh_either_hysteresis
+What: /sys/.../events/in_accel_z_thresh_rising_hysteresis
+What: /sys/.../events/in_accel_z_thresh_falling_hysteresis
+What: /sys/.../events/in_accel_z_thresh_either_hysteresis
+What: /sys/.../events/in_anglvel_x_thresh_rising_hysteresis
+What: /sys/.../events/in_anglvel_x_thresh_falling_hysteresis
+What: /sys/.../events/in_anglvel_x_thresh_either_hysteresis
+What: /sys/.../events/in_anglvel_y_thresh_rising_hysteresis
+What: /sys/.../events/in_anglvel_y_thresh_falling_hysteresis
+What: /sys/.../events/in_anglvel_y_thresh_either_hysteresis
+What: /sys/.../events/in_anglvel_z_thresh_rising_hysteresis
+What: /sys/.../events/in_anglvel_z_thresh_falling_hysteresis
+What: /sys/.../events/in_anglvel_z_thresh_either_hysteresis
+What: /sys/.../events/in_magn_x_thresh_rising_hysteresis
+What: /sys/.../events/in_magn_x_thresh_falling_hysteresis
+What: /sys/.../events/in_magn_x_thresh_either_hysteresis
+What: /sys/.../events/in_magn_y_thresh_rising_hysteresis
+What: /sys/.../events/in_magn_y_thresh_falling_hysteresis
+What: /sys/.../events/in_magn_y_thresh_either_hysteresis
+What: /sys/.../events/in_magn_z_thresh_rising_hysteresis
+What: /sys/.../events/in_magn_z_thresh_falling_hysteresis
+What: /sys/.../events/in_magn_z_thresh_either_hysteresis
+What: /sys/.../events/in_voltageY_thresh_rising_hysteresis
+What: /sys/.../events/in_voltageY_thresh_falling_hysteresis
+What: /sys/.../events/in_voltageY_thresh_either_hysteresis
+What: /sys/.../events/in_tempY_thresh_rising_hysteresis
+What: /sys/.../events/in_tempY_thresh_falling_hysteresis
+What: /sys/.../events/in_tempY_thresh_either_hysteresis
+What: /sys/.../events/in_illuminance0_thresh_falling_hysteresis
+what: /sys/.../events/in_illuminance0_thresh_rising_hysteresis
+what: /sys/.../events/in_illuminance0_thresh_either_hysteresis
+what: /sys/.../events/in_proximity0_thresh_falling_hysteresis
+what: /sys/.../events/in_proximity0_thresh_rising_hysteresis
+what: /sys/.../events/in_proximity0_thresh_either_hysteresis
+KernelVersion: 3.13
+Contact: linux-iio@vger.kernel.org
+Description:
+ Specifies the hysteresis of threshold that the device is comparing
+ against for the events enabled by
+ <type>Y[_name]_thresh[_(rising|falling)]_hysteresis.
+ If separate attributes exist for the two directions, but
+ direction is not specified for this attribute, then a single
+ hysteresis value applies to both directions.
+ For falling events the hysteresis is added to the _value attribute for
+ this event to get the upper threshold for when the event goes back to
+ normal, for rising events the hysteresis is subtracted from the _value
+ attribute. E.g. if in_voltage0_raw_thresh_rising_value is set to 1200
+ and in_voltage0_raw_thresh_rising_hysteresis is set to 50. The event
+ will get activated once in_voltage0_raw goes above 1200 and will become
+ deactived again once the value falls below 1150.
+
What: /sys/.../events/in_accel_x_raw_roc_rising_value
What: /sys/.../events/in_accel_x_raw_roc_falling_value
What: /sys/.../events/in_accel_y_raw_roc_rising_value
@@ -715,6 +795,7 @@ What: /sys/.../iio:deviceX/scan_elements/in_incli_x_en
What: /sys/.../iio:deviceX/scan_elements/in_incli_y_en
What: /sys/.../iio:deviceX/scan_elements/in_pressureY_en
What: /sys/.../iio:deviceX/scan_elements/in_pressure_en
+What: /sys/.../iio:deviceX/scan_elements/in_rot_quaternion_en
KernelVersion: 2.6.37
Contact: linux-iio@vger.kernel.org
Description:
@@ -730,6 +811,7 @@ What: /sys/.../iio:deviceX/scan_elements/in_voltageY_supply_type
What: /sys/.../iio:deviceX/scan_elements/in_timestamp_type
What: /sys/.../iio:deviceX/scan_elements/in_pressureY_type
What: /sys/.../iio:deviceX/scan_elements/in_pressure_type
+What: /sys/.../iio:deviceX/scan_elements/in_rot_quaternion_type
KernelVersion: 2.6.37
Contact: linux-iio@vger.kernel.org
Description:
@@ -776,6 +858,7 @@ What: /sys/.../iio:deviceX/scan_elements/in_incli_y_index
What: /sys/.../iio:deviceX/scan_elements/in_timestamp_index
What: /sys/.../iio:deviceX/scan_elements/in_pressureY_index
What: /sys/.../iio:deviceX/scan_elements/in_pressure_index
+What: /sys/.../iio:deviceX/scan_elements/in_rot_quaternion_index
KernelVersion: 2.6.37
Contact: linux-iio@vger.kernel.org
Description:
@@ -811,3 +894,42 @@ Description:
Writing '1' stores the current device configuration into
on-chip EEPROM. After power-up or chip reset the device will
automatically load the saved configuration.
+
+What: /sys/.../iio:deviceX/in_illuminanceY_input
+What: /sys/.../iio:deviceX/in_illuminanceY_raw
+What: /sys/.../iio:deviceX/in_illuminanceY_mean_raw
+KernelVersion: 3.4
+Contact: linux-iio@vger.kernel.org
+Description:
+ Illuminance measurement, units after application of scale
+ and offset are lux.
+
+What: /sys/.../iio:deviceX/in_intensityY_raw
+What: /sys/.../iio:deviceX/in_intensityY_ir_raw
+What: /sys/.../iio:deviceX/in_intensityY_both_raw
+KernelVersion: 3.4
+Contact: linux-iio@vger.kernel.org
+Description:
+ Unit-less light intensity. Modifiers both and ir indicate
+ that measurements contains visible and infrared light
+ components or just infrared light, respectively.
+
+What: /sys/.../iio:deviceX/in_intensity_red_integration_time
+What: /sys/.../iio:deviceX/in_intensity_green_integration_time
+What: /sys/.../iio:deviceX/in_intensity_blue_integration_time
+What: /sys/.../iio:deviceX/in_intensity_clear_integration_time
+What: /sys/.../iio:deviceX/in_illuminance_integration_time
+KernelVersion: 3.12
+Contact: linux-iio@vger.kernel.org
+Description:
+ This attribute is used to get/set the integration time in
+ seconds.
+
+What: /sys/bus/iio/devices/iio:deviceX/in_rot_quaternion_raw
+KernelVersion: 3.15
+Contact: linux-iio@vger.kernel.org
+Description:
+ Raw value of quaternion components using a format
+ x y z w. Here x, y, and z component represents the axis about
+ which a rotation will occur and w component represents the
+ amount of rotation.
diff --git a/Documentation/ABI/testing/sysfs-bus-iio-proximity-as3935 b/Documentation/ABI/testing/sysfs-bus-iio-proximity-as3935
new file mode 100644
index 00000000000..6708c5e264a
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-bus-iio-proximity-as3935
@@ -0,0 +1,16 @@
+What /sys/bus/iio/devices/iio:deviceX/in_proximity_raw
+Date: March 2014
+KernelVersion: 3.15
+Contact: Matt Ranostay <mranostay@gmail.com>
+Description:
+ Get the current distance in meters of storm (1km steps)
+ 1000-40000 = distance in meters
+
+What /sys/bus/iio/devices/iio:deviceX/sensor_sensitivity
+Date: March 2014
+KernelVersion: 3.15
+Contact: Matt Ranostay <mranostay@gmail.com>
+Description:
+ Show or set the gain boost of the amp, from 0-31 range.
+ 18 = indoors (default)
+ 14 = outdoors
diff --git a/Documentation/ABI/testing/sysfs-bus-mdio b/Documentation/ABI/testing/sysfs-bus-mdio
index 6349749ebc2..491baaf4285 100644
--- a/Documentation/ABI/testing/sysfs-bus-mdio
+++ b/Documentation/ABI/testing/sysfs-bus-mdio
@@ -7,3 +7,23 @@ Description:
by the device during bus enumeration, encoded in hexadecimal.
This ID is used to match the device with the appropriate
driver.
+
+What: /sys/bus/mdio_bus/devices/.../phy_interface
+Date: February 2014
+KernelVersion: 3.15
+Contact: netdev@vger.kernel.org
+Description:
+ This attribute contains the PHY interface as configured by the
+ Ethernet driver during bus enumeration, encoded in string.
+ This interface mode is used to configure the Ethernet MAC with the
+ appropriate mode for its data lines to the PHY hardware.
+
+What: /sys/bus/mdio_bus/devices/.../phy_has_fixups
+Date: February 2014
+KernelVersion: 3.15
+Contact: netdev@vger.kernel.org
+Description:
+ This attribute contains the boolean value whether a given PHY
+ device has had any "fixup" workaround running on it, encoded as
+ a boolean. This information is provided to help troubleshooting
+ PHY configurations.
diff --git a/Documentation/ABI/testing/sysfs-bus-pci b/Documentation/ABI/testing/sysfs-bus-pci
index 5210a51c90f..6615fda0abf 100644
--- a/Documentation/ABI/testing/sysfs-bus-pci
+++ b/Documentation/ABI/testing/sysfs-bus-pci
@@ -70,18 +70,15 @@ Date: September, 2011
Contact: Neil Horman <nhorman@tuxdriver.com>
Description:
The /sys/devices/.../msi_irqs directory contains a variable set
- of sub-directories, with each sub-directory being named after a
- corresponding msi irq vector allocated to that device. Each
- numbered sub-directory N contains attributes of that irq.
- Note that this directory is not created for device drivers which
- do not support msi irqs
+ of files, with each file being named after a corresponding msi
+ irq vector allocated to that device.
-What: /sys/bus/pci/devices/.../msi_irqs/<N>/mode
+What: /sys/bus/pci/devices/.../msi_irqs/<N>
Date: September 2011
Contact: Neil Horman <nhorman@tuxdriver.com>
Description:
This attribute indicates the mode that the irq vector named by
- the parent directory is in (msi vs. msix)
+ the file is in (msi vs. msix)
What: /sys/bus/pci/devices/.../remove
Date: January 2009
@@ -120,7 +117,7 @@ Description:
What: /sys/bus/pci/devices/.../vpd
Date: February 2008
-Contact: Ben Hutchings <bhutchings@solarflare.com>
+Contact: Ben Hutchings <bwh@kernel.org>
Description:
A file named vpd in a device directory will be a
binary file containing the Vital Product Data for the
@@ -253,3 +250,24 @@ Description:
valid. For example, writing a 2 to this file when sriov_numvfs
is not 0 and not 2 already will return an error. Writing a 10
when the value of sriov_totalvfs is 8 will return an error.
+
+What: /sys/bus/pci/devices/.../driver_override
+Date: April 2014
+Contact: Alex Williamson <alex.williamson@redhat.com>
+Description:
+ This file allows the driver for a device to be specified which
+ will override standard static and dynamic ID matching. When
+ specified, only a driver with a name matching the value written
+ to driver_override will have an opportunity to bind to the
+ device. The override is specified by writing a string to the
+ driver_override file (echo pci-stub > driver_override) and
+ may be cleared with an empty string (echo > driver_override).
+ This returns the device to standard matching rules binding.
+ Writing to driver_override does not automatically unbind the
+ device from its current driver or make any attempt to
+ automatically load the specified driver. If no driver with a
+ matching name is currently loaded in the kernel, the device
+ will not bind to any driver. This also allows devices to
+ opt-out of driver binding using a driver_override name such as
+ "none". Only a single driver may be specified in the override,
+ there is no support for parsing delimiters.
diff --git a/Documentation/ABI/testing/sysfs-bus-rbd b/Documentation/ABI/testing/sysfs-bus-rbd
index 0a306476424..501adc2a9ec 100644
--- a/Documentation/ABI/testing/sysfs-bus-rbd
+++ b/Documentation/ABI/testing/sysfs-bus-rbd
@@ -18,6 +18,28 @@ Removal of a device:
$ echo <dev-id> > /sys/bus/rbd/remove
+What: /sys/bus/rbd/add_single_major
+Date: December 2013
+KernelVersion: 3.14
+Contact: Sage Weil <sage@inktank.com>
+Description: Available only if rbd module is inserted with single_major
+ parameter set to true.
+ Usage is the same as for /sys/bus/rbd/add. If present,
+ should be used instead of the latter: any attempts to use
+ /sys/bus/rbd/add if /sys/bus/rbd/add_single_major is
+ available will fail for backwards compatibility reasons.
+
+What: /sys/bus/rbd/remove_single_major
+Date: December 2013
+KernelVersion: 3.14
+Contact: Sage Weil <sage@inktank.com>
+Description: Available only if rbd module is inserted with single_major
+ parameter set to true.
+ Usage is the same as for /sys/bus/rbd/remove. If present,
+ should be used instead of the latter: any attempts to use
+ /sys/bus/rbd/remove if /sys/bus/rbd/remove_single_major is
+ available will fail for backwards compatibility reasons.
+
Entries under /sys/bus/rbd/devices/<dev-id>/
--------------------------------------------
@@ -33,6 +55,10 @@ major
The block device major number.
+minor
+
+ The block device minor number. (December 2013, since 3.14.)
+
name
The name of the rbd image.
diff --git a/Documentation/ABI/testing/sysfs-bus-usb b/Documentation/ABI/testing/sysfs-bus-usb
index 1430f584b26..614d451cee4 100644
--- a/Documentation/ABI/testing/sysfs-bus-usb
+++ b/Documentation/ABI/testing/sysfs-bus-usb
@@ -50,13 +50,19 @@ Description:
This may allow the driver to support more hardware than
was included in the driver's static device ID support
table at compile time. The format for the device ID is:
- idVendor idProduct bInterfaceClass.
+ idVendor idProduct bInterfaceClass RefIdVendor RefIdProduct
The vendor ID and device ID fields are required, the
- interface class is optional.
+ rest is optional. The Ref* tuple can be used to tell the
+ driver to use the same driver_data for the new device as
+ it is used for the reference device.
Upon successfully adding an ID, the driver will probe
for the device and attempt to bind to it. For example:
# echo "8086 10f5" > /sys/bus/usb/drivers/foo/new_id
+ Here add a new device (0458:7045) using driver_data from
+ an already supported device (0458:704c):
+ # echo "0458 7045 0 0458 704c" > /sys/bus/usb/drivers/foo/new_id
+
Reading from this file will list all dynamically added
device IDs in the same format, with one entry per
line. For example:
diff --git a/Documentation/ABI/testing/sysfs-class-mic.txt b/Documentation/ABI/testing/sysfs-class-mic.txt
new file mode 100644
index 00000000000..13f48afc534
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-class-mic.txt
@@ -0,0 +1,157 @@
+What: /sys/class/mic/
+Date: October 2013
+KernelVersion: 3.13
+Contact: Sudeep Dutt <sudeep.dutt@intel.com>
+Description:
+ The mic class directory belongs to Intel MIC devices and
+ provides information per MIC device. An Intel MIC device is a
+ PCIe form factor add-in Coprocessor card based on the Intel Many
+ Integrated Core (MIC) architecture that runs a Linux OS.
+
+What: /sys/class/mic/mic(x)
+Date: October 2013
+KernelVersion: 3.13
+Contact: Sudeep Dutt <sudeep.dutt@intel.com>
+Description:
+ The directories /sys/class/mic/mic0, /sys/class/mic/mic1 etc.,
+ represent MIC devices (0,1,..etc). Each directory has
+ information specific to that MIC device.
+
+What: /sys/class/mic/mic(x)/family
+Date: October 2013
+KernelVersion: 3.13
+Contact: Sudeep Dutt <sudeep.dutt@intel.com>
+Description:
+ Provides information about the Coprocessor family for an Intel
+ MIC device. For example - "x100"
+
+What: /sys/class/mic/mic(x)/stepping
+Date: October 2013
+KernelVersion: 3.13
+Contact: Sudeep Dutt <sudeep.dutt@intel.com>
+Description:
+ Provides information about the silicon stepping for an Intel
+ MIC device. For example - "A0" or "B0"
+
+What: /sys/class/mic/mic(x)/state
+Date: October 2013
+KernelVersion: 3.13
+Contact: Sudeep Dutt <sudeep.dutt@intel.com>
+Description:
+ When read, this entry provides the current state of an Intel
+ MIC device in the context of the card OS. Possible values that
+ will be read are:
+ "offline" - The MIC device is ready to boot the card OS. On
+ reading this entry after an OSPM resume, a "boot" has to be
+ written to this entry if the card was previously shutdown
+ during OSPM suspend.
+ "online" - The MIC device has initiated booting a card OS.
+ "shutting_down" - The card OS is shutting down.
+ "reset_failed" - The MIC device has failed to reset.
+ "suspending" - The MIC device is currently being prepared for
+ suspend. On reading this entry, a "suspend" has to be written
+ to the state sysfs entry to ensure the card is shutdown during
+ OSPM suspend.
+ "suspended" - The MIC device has been suspended.
+
+ When written, this sysfs entry triggers different state change
+ operations depending upon the current state of the card OS.
+ Acceptable values are:
+ "boot" - Boot the card OS image specified by the combination
+ of firmware, ramdisk, cmdline and bootmode
+ sysfs entries.
+ "reset" - Initiates device reset.
+ "shutdown" - Initiates card OS shutdown.
+ "suspend" - Initiates card OS shutdown and also marks the card
+ as suspended.
+
+What: /sys/class/mic/mic(x)/shutdown_status
+Date: October 2013
+KernelVersion: 3.13
+Contact: Sudeep Dutt <sudeep.dutt@intel.com>
+Description:
+ An Intel MIC device runs a Linux OS during its operation. This
+ OS can shutdown because of various reasons. When read, this
+ entry provides the status on why the card OS was shutdown.
+ Possible values are:
+ "nop" - shutdown status is not applicable, when the card OS is
+ "online"
+ "crashed" - Shutdown because of a HW or SW crash.
+ "halted" - Shutdown because of a halt command.
+ "poweroff" - Shutdown because of a poweroff command.
+ "restart" - Shutdown because of a restart command.
+
+What: /sys/class/mic/mic(x)/cmdline
+Date: October 2013
+KernelVersion: 3.13
+Contact: Sudeep Dutt <sudeep.dutt@intel.com>
+Description:
+ An Intel MIC device runs a Linux OS during its operation. Before
+ booting this card OS, it is possible to pass kernel command line
+ options to configure various features in it, similar to
+ self-bootable machines. When read, this entry provides
+ information about the current kernel command line options set to
+ boot the card OS. This entry can be written to change the
+ existing kernel command line options. Typically, the user would
+ want to read the current command line options, append new ones
+ or modify existing ones and then write the whole kernel command
+ line back to this entry.
+
+What: /sys/class/mic/mic(x)/firmware
+Date: October 2013
+KernelVersion: 3.13
+Contact: Sudeep Dutt <sudeep.dutt@intel.com>
+Description:
+ When read, this sysfs entry provides the path name under
+ /lib/firmware/ where the firmware image to be booted on the
+ card can be found. The entry can be written to change the
+ firmware image location under /lib/firmware/.
+
+What: /sys/class/mic/mic(x)/ramdisk
+Date: October 2013
+KernelVersion: 3.13
+Contact: Sudeep Dutt <sudeep.dutt@intel.com>
+Description:
+ When read, this sysfs entry provides the path name under
+ /lib/firmware/ where the ramdisk image to be used during card
+ OS boot can be found. The entry can be written to change
+ the ramdisk image location under /lib/firmware/.
+
+What: /sys/class/mic/mic(x)/bootmode
+Date: October 2013
+KernelVersion: 3.13
+Contact: Sudeep Dutt <sudeep.dutt@intel.com>
+Description:
+ When read, this sysfs entry provides the current bootmode for
+ the card. This sysfs entry can be written with the following
+ valid strings:
+ a) linux - Boot a Linux image.
+ b) elf - Boot an elf image for flash updates.
+
+What: /sys/class/mic/mic(x)/log_buf_addr
+Date: October 2013
+KernelVersion: 3.13
+Contact: Sudeep Dutt <sudeep.dutt@intel.com>
+Description:
+ An Intel MIC device runs a Linux OS during its operation. For
+ debugging purpose and early kernel boot messages, the user can
+ access the card OS log buffer via debugfs. When read, this entry
+ provides the kernel virtual address of the buffer where the card
+ OS log buffer can be read. This entry is written by the host
+ configuration daemon to set the log buffer address. The correct
+ log buffer address to be written can be found in the System.map
+ file of the card OS.
+
+What: /sys/class/mic/mic(x)/log_buf_len
+Date: October 2013
+KernelVersion: 3.13
+Contact: Sudeep Dutt <sudeep.dutt@intel.com>
+Description:
+ An Intel MIC device runs a Linux OS during its operation. For
+ debugging purpose and early kernel boot messages, the user can
+ access the card OS log buffer via debugfs. When read, this entry
+ provides the kernel virtual address where the card OS log buffer
+ length can be read. This entry is written by host configuration
+ daemon to set the log buffer length address. The correct log
+ buffer length address to be written can be found in the
+ System.map file of the card OS.
diff --git a/Documentation/ABI/testing/sysfs-class-mtd b/Documentation/ABI/testing/sysfs-class-mtd
index bfd119ace6a..1399bb2da3e 100644
--- a/Documentation/ABI/testing/sysfs-class-mtd
+++ b/Documentation/ABI/testing/sysfs-class-mtd
@@ -104,7 +104,7 @@ Description:
One of the following ASCII strings, representing the device
type:
- absent, ram, rom, nor, nand, dataflash, ubi, unknown
+ absent, ram, rom, nor, nand, mlc-nand, dataflash, ubi, unknown
What: /sys/class/mtd/mtdX/writesize
Date: April 2009
diff --git a/Documentation/ABI/testing/sysfs-class-net b/Documentation/ABI/testing/sysfs-class-net
new file mode 100644
index 00000000000..416c5d59f52
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-class-net
@@ -0,0 +1,207 @@
+What: /sys/class/net/<iface>/addr_assign_type
+Date: July 2010
+KernelVersion: 3.2
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the address assignment type. Possible values are:
+ 0: permanent address
+ 1: randomly generated
+ 2: stolen from another device
+ 3: set using dev_set_mac_address
+
+What: /sys/class/net/<iface>/addr_len
+Date: April 2005
+KernelVersion: 2.6.12
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the hardware address size in bytes.
+ Values vary based on the lower-level protocol used by the
+ interface (Ethernet, FDDI, ATM, IEEE 802.15.4...). See
+ include/uapi/linux/if_*.h for actual values.
+
+What: /sys/class/net/<iface>/address
+Date: April 2005
+KernelVersion: 2.6.12
+Contact: netdev@vger.kernel.org
+Description:
+ Hardware address currently assigned to this interface.
+ Format is a string, e.g: 00:11:22:33:44:55 for an Ethernet MAC
+ address.
+
+What: /sys/class/net/<iface>/broadcast
+Date: April 2005
+KernelVersion: 2.6.12
+Contact: netdev@vger.kernel.org
+Description:
+ Hardware broadcast address for this interface. Format is a
+ string, e.g: ff:ff:ff:ff:ff:ff for an Ethernet broadcast MAC
+ address.
+
+What: /sys/class/net/<iface>/carrier
+Date: April 2005
+KernelVersion: 2.6.12
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the current physical link state of the interface.
+ Posssible values are:
+ 0: physical link is down
+ 1: physical link is up
+
+ Note: some special devices, e.g: bonding and team drivers will
+ allow this attribute to be written to force a link state for
+ operating correctly and designating another fallback interface.
+
+What: /sys/class/net/<iface>/dev_id
+Date: April 2008
+KernelVersion: 2.6.26
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the device unique identifier. Format is an hexadecimal
+ value. This is used to disambiguate interfaces which might be
+ stacked (e.g: VLAN interfaces) but still have the same MAC
+ address as their parent device.
+
+What: /sys/class/net/<iface>/dormant
+Date: March 2006
+KernelVersion: 2.6.17
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates whether the interface is in dormant state. Possible
+ values are:
+ 0: interface is not dormant
+ 1: interface is dormant
+
+ This attribute can be used by supplicant software to signal that
+ the device is not usable unless some supplicant-based
+ authentication is performed (e.g: 802.1x). 'link_mode' attribute
+ will also reflect the dormant state.
+
+What: /sys/clas/net/<iface>/duplex
+Date: October 2009
+KernelVersion: 2.6.33
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the interface latest or current duplex value. Possible
+ values are:
+ half: half duplex
+ full: full duplex
+
+ Note: This attribute is only valid for interfaces that implement
+ the ethtool get_settings method (mostly Ethernet).
+
+What: /sys/class/net/<iface>/flags
+Date: April 2005
+KernelVersion: 2.6.12
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the interface flags as a bitmask in hexadecimal. See
+ include/uapi/linux/if.h for a list of all possible values and
+ the flags semantics.
+
+What: /sys/class/net/<iface>/ifalias
+Date: September 2008
+KernelVersion: 2.6.28
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates/stores an interface alias name as a string. This can
+ be used for system management purposes.
+
+What: /sys/class/net/<iface>/ifindex
+Date: April 2005
+KernelVersion: 2.6.12
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the system-wide interface unique index identifier as a
+ decimal number. This attribute is used for mapping an interface
+ identifier to an interface name. It is used throughout the
+ networking stack for specifying the interface specific
+ requests/events.
+
+What: /sys/class/net/<iface>/iflink
+Date: April 2005
+KernelVersion: 2.6.12
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the system-wide interface unique index identifier a
+ the interface is linked to. Format is decimal. This attribute is
+ used to resolve interfaces chaining, linking and stacking.
+ Physical interfaces have the same 'ifindex' and 'iflink' values.
+
+What: /sys/class/net/<iface>/link_mode
+Date: March 2006
+KernelVersion: 2.6.17
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the interface link mode, as a decimal number. This
+ attribute should be used in conjunction with 'dormant' attribute
+ to determine the interface usability. Possible values:
+ 0: default link mode
+ 1: dormant link mode
+
+What: /sys/class/net/<iface>/mtu
+Date: April 2005
+KernelVersion: 2.6.12
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the interface currently configured MTU value, in
+ bytes, and in decimal format. Specific values depends on the
+ lower-level interface protocol used. Ethernet devices will show
+ a 'mtu' attribute value of 1500 unless changed.
+
+What: /sys/calss/net/<iface>/netdev_group
+Date: January 2011
+KernelVersion: 2.6.39
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the interface network device group, as a decimal
+ integer. Default value is 0 which corresponds to the initial
+ network devices group. The group can be changed to affect
+ routing decisions (see: net/ipv4/fib_rules and
+ net/ipv6/fib6_rules.c).
+
+What: /sys/class/net/<iface>/operstate
+Date: March 2006
+KernelVersion: 2.6.17
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the interface RFC2863 operational state as a string.
+ Possible values are:
+ "unknown", "notpresent", "down", "lowerlayerdown", "testing",
+ "dormant", "up".
+
+What: /sys/class/net/<iface>/phys_port_id
+Date: July 2013
+KernelVersion: 3.12
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the interface unique physical port identifier within
+ the NIC, as a string.
+
+What: /sys/class/net/<iface>/speed
+Date: October 2009
+KernelVersion: 2.6.33
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the interface latest or current speed value. Value is
+ an integer representing the link speed in Mbits/sec.
+
+ Note: this attribute is only valid for interfaces that implement
+ the ethtool get_settings method (mostly Ethernet ).
+
+What: /sys/class/net/<iface>/tx_queue_len
+Date: April 2005
+KernelVersion: 2.6.12
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the interface transmit queue len in number of packets,
+ as an integer value. Value depend on the type of interface,
+ Ethernet network adapters have a default value of 1000 unless
+ configured otherwise
+
+What: /sys/class/net/<iface>/type
+Date: April 2005
+KernelVersion: 2.6.12
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the interface protocol type as a decimal value. See
+ include/uapi/linux/if_arp.h for all possible values.
diff --git a/Documentation/ABI/testing/sysfs-class-net-batman-adv b/Documentation/ABI/testing/sysfs-class-net-batman-adv
index bdc00707c75..7f34a95bb96 100644
--- a/Documentation/ABI/testing/sysfs-class-net-batman-adv
+++ b/Documentation/ABI/testing/sysfs-class-net-batman-adv
@@ -1,13 +1,13 @@
What: /sys/class/net/<iface>/batman-adv/iface_status
Date: May 2010
-Contact: Marek Lindner <lindner_marek@yahoo.de>
+Contact: Marek Lindner <mareklindner@neomailbox.ch>
Description:
Indicates the status of <iface> as it is seen by batman.
What: /sys/class/net/<iface>/batman-adv/mesh_iface
Date: May 2010
-Contact: Marek Lindner <lindner_marek@yahoo.de>
+Contact: Marek Lindner <mareklindner@neomailbox.ch>
Description:
The /sys/class/net/<iface>/batman-adv/mesh_iface file
displays the batman mesh interface this <iface>
diff --git a/Documentation/ABI/testing/sysfs-class-net-cdc_ncm b/Documentation/ABI/testing/sysfs-class-net-cdc_ncm
new file mode 100644
index 00000000000..5cedf72df35
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-class-net-cdc_ncm
@@ -0,0 +1,149 @@
+What: /sys/class/net/<iface>/cdc_ncm/min_tx_pkt
+Date: May 2014
+KernelVersion: 3.16
+Contact: Bjørn Mork <bjorn@mork.no>
+Description:
+ The driver will pad NCM Transfer Blocks (NTBs) longer
+ than this to tx_max, allowing the device to receive
+ tx_max sized frames with no terminating short
+ packet. NTBs shorter than this limit are transmitted
+ as-is, without any padding, and are terminated with a
+ short USB packet.
+
+ Padding to tx_max allows the driver to transmit NTBs
+ back-to-back without any interleaving short USB
+ packets. This reduces the number of short packet
+ interrupts in the device, and represents a tradeoff
+ between USB bus bandwidth and device DMA optimization.
+
+ Set to 0 to pad all frames. Set greater than tx_max to
+ disable all padding.
+
+What: /sys/class/net/<iface>/cdc_ncm/rx_max
+Date: May 2014
+KernelVersion: 3.16
+Contact: Bjørn Mork <bjorn@mork.no>
+Description:
+ The maximum NTB size for RX. Cannot exceed the
+ maximum value supported by the device. Must allow at
+ least one max sized datagram plus headers.
+
+ The actual limits are device dependent. See
+ dwNtbInMaxSize.
+
+ Note: Some devices will silently ignore changes to
+ this value, resulting in oversized NTBs and
+ corresponding framing errors.
+
+What: /sys/class/net/<iface>/cdc_ncm/tx_max
+Date: May 2014
+KernelVersion: 3.16
+Contact: Bjørn Mork <bjorn@mork.no>
+Description:
+ The maximum NTB size for TX. Cannot exceed the
+ maximum value supported by the device. Must allow at
+ least one max sized datagram plus headers.
+
+ The actual limits are device dependent. See
+ dwNtbOutMaxSize.
+
+What: /sys/class/net/<iface>/cdc_ncm/tx_timer_usecs
+Date: May 2014
+KernelVersion: 3.16
+Contact: Bjørn Mork <bjorn@mork.no>
+Description:
+ Datagram aggregation timeout in µs. The driver will
+ wait up to 3 times this timeout for more datagrams to
+ aggregate before transmitting an NTB frame.
+
+ Valid range: 5 to 4000000
+
+ Set to 0 to disable aggregation.
+
+The following read-only attributes all represent fields of the
+structure defined in section 6.2.1 "GetNtbParameters" of "Universal
+Serial Bus Communications Class Subclass Specifications for Network
+Control Model Devices" (CDC NCM), Revision 1.0 (Errata 1), November
+24, 2010 from USB Implementers Forum, Inc. The descriptions are
+quoted from table 6-3 of CDC NCM: "NTB Parameter Structure".
+
+What: /sys/class/net/<iface>/cdc_ncm/bmNtbFormatsSupported
+Date: May 2014
+KernelVersion: 3.16
+Contact: Bjørn Mork <bjorn@mork.no>
+Description:
+ Bit 0: 16-bit NTB supported (set to 1)
+ Bit 1: 32-bit NTB supported
+ Bits 2 – 15: reserved (reset to zero; must be ignored by host)
+
+What: /sys/class/net/<iface>/cdc_ncm/dwNtbInMaxSize
+Date: May 2014
+KernelVersion: 3.16
+Contact: Bjørn Mork <bjorn@mork.no>
+Description:
+ IN NTB Maximum Size in bytes
+
+What: /sys/class/net/<iface>/cdc_ncm/wNdpInDivisor
+Date: May 2014
+KernelVersion: 3.16
+Contact: Bjørn Mork <bjorn@mork.no>
+Description:
+ Divisor used for IN NTB Datagram payload alignment
+
+What: /sys/class/net/<iface>/cdc_ncm/wNdpInPayloadRemainder
+Date: May 2014
+KernelVersion: 3.16
+Contact: Bjørn Mork <bjorn@mork.no>
+Description:
+ Remainder used to align input datagram payload within
+ the NTB: (Payload Offset) mod (wNdpInDivisor) =
+ wNdpInPayloadRemainder
+
+What: /sys/class/net/<iface>/cdc_ncm/wNdpInAlignment
+Date: May 2014
+KernelVersion: 3.16
+Contact: Bjørn Mork <bjorn@mork.no>
+Description:
+ NDP alignment modulus for NTBs on the IN pipe. Shall
+ be a power of 2, and shall be at least 4.
+
+What: /sys/class/net/<iface>/cdc_ncm/dwNtbOutMaxSize
+Date: May 2014
+KernelVersion: 3.16
+Contact: Bjørn Mork <bjorn@mork.no>
+Description:
+ OUT NTB Maximum Size
+
+What: /sys/class/net/<iface>/cdc_ncm/wNdpOutDivisor
+Date: May 2014
+KernelVersion: 3.16
+Contact: Bjørn Mork <bjorn@mork.no>
+Description:
+ OUT NTB Datagram alignment modulus
+
+What: /sys/class/net/<iface>/cdc_ncm/wNdpOutPayloadRemainder
+Date: May 2014
+KernelVersion: 3.16
+Contact: Bjørn Mork <bjorn@mork.no>
+Description:
+ Remainder used to align output datagram payload
+ offsets within the NTB: Padding, shall be transmitted
+ as zero by function, and ignored by host. (Payload
+ Offset) mod (wNdpOutDivisor) = wNdpOutPayloadRemainder
+
+What: /sys/class/net/<iface>/cdc_ncm/wNdpOutAlignment
+Date: May 2014
+KernelVersion: 3.16
+Contact: Bjørn Mork <bjorn@mork.no>
+Description:
+ NDP alignment modulus for use in NTBs on the OUT
+ pipe. Shall be a power of 2, and shall be at least 4.
+
+What: /sys/class/net/<iface>/cdc_ncm/wNtbOutMaxDatagrams
+Date: May 2014
+KernelVersion: 3.16
+Contact: Bjørn Mork <bjorn@mork.no>
+Description:
+ Maximum number of datagrams that the host may pack
+ into a single OUT NTB. Zero means that the device
+ imposes no limit.
diff --git a/Documentation/ABI/testing/sysfs-class-net-mesh b/Documentation/ABI/testing/sysfs-class-net-mesh
index bdcd8b4e38f..c4640629663 100644
--- a/Documentation/ABI/testing/sysfs-class-net-mesh
+++ b/Documentation/ABI/testing/sysfs-class-net-mesh
@@ -1,22 +1,23 @@
What: /sys/class/net/<mesh_iface>/mesh/aggregated_ogms
Date: May 2010
-Contact: Marek Lindner <lindner_marek@yahoo.de>
+Contact: Marek Lindner <mareklindner@neomailbox.ch>
Description:
Indicates whether the batman protocol messages of the
mesh <mesh_iface> shall be aggregated or not.
-What: /sys/class/net/<mesh_iface>/mesh/ap_isolation
+What: /sys/class/net/<mesh_iface>/mesh/<vlan_subdir>/ap_isolation
Date: May 2011
-Contact: Antonio Quartulli <ordex@autistici.org>
+Contact: Antonio Quartulli <antonio@meshcoding.com>
Description:
Indicates whether the data traffic going from a
wireless client to another wireless client will be
- silently dropped.
+ silently dropped. <vlan_subdir> is empty when referring
+ to the untagged lan.
What: /sys/class/net/<mesh_iface>/mesh/bonding
Date: June 2010
-Contact: Simon Wunderlich <siwu@hrz.tu-chemnitz.de>
+Contact: Simon Wunderlich <sw@simonwunderlich.de>
Description:
Indicates whether the data traffic going through the
mesh will be sent using multiple interfaces at the
@@ -24,7 +25,7 @@ Description:
What: /sys/class/net/<mesh_iface>/mesh/bridge_loop_avoidance
Date: November 2011
-Contact: Simon Wunderlich <siwu@hrz.tu-chemnitz.de>
+Contact: Simon Wunderlich <sw@simonwunderlich.de>
Description:
Indicates whether the bridge loop avoidance feature
is enabled. This feature detects and avoids loops
@@ -41,21 +42,21 @@ Description:
What: /sys/class/net/<mesh_iface>/mesh/gw_bandwidth
Date: October 2010
-Contact: Marek Lindner <lindner_marek@yahoo.de>
+Contact: Marek Lindner <mareklindner@neomailbox.ch>
Description:
Defines the bandwidth which is propagated by this
node if gw_mode was set to 'server'.
What: /sys/class/net/<mesh_iface>/mesh/gw_mode
Date: October 2010
-Contact: Marek Lindner <lindner_marek@yahoo.de>
+Contact: Marek Lindner <mareklindner@neomailbox.ch>
Description:
Defines the state of the gateway features. Can be
either 'off', 'client' or 'server'.
What: /sys/class/net/<mesh_iface>/mesh/gw_sel_class
Date: October 2010
-Contact: Marek Lindner <lindner_marek@yahoo.de>
+Contact: Marek Lindner <mareklindner@neomailbox.ch>
Description:
Defines the selection criteria this node will use
to choose a gateway if gw_mode was set to 'client'.
@@ -67,6 +68,23 @@ Description:
Defines the penalty which will be applied to an
originator message's tq-field on every hop.
+What: /sys/class/net/<mesh_iface>/mesh/isolation_mark
+Date: Nov 2013
+Contact: Antonio Quartulli <antonio@meshcoding.com>
+Description:
+ Defines the isolation mark (and its bitmask) which
+ is used to classify clients as "isolated" by the
+ Extended Isolation feature.
+
+What: /sys/class/net/<mesh_iface>/mesh/multicast_mode
+Date: Feb 2014
+Contact: Linus Lüssing <linus.luessing@web.de>
+Description:
+ Indicates whether multicast optimizations are enabled
+ or disabled. If set to zero then all nodes in the
+ mesh are going to use classic flooding for any
+ multicast packet with no optimizations.
+
What: /sys/class/net/<mesh_iface>/mesh/network_coding
Date: Nov 2012
Contact: Martin Hundeboll <martin@hundeboll.net>
@@ -77,25 +95,14 @@ Description:
What: /sys/class/net/<mesh_iface>/mesh/orig_interval
Date: May 2010
-Contact: Marek Lindner <lindner_marek@yahoo.de>
+Contact: Marek Lindner <mareklindner@neomailbox.ch>
Description:
Defines the interval in milliseconds in which batman
sends its protocol messages.
What: /sys/class/net/<mesh_iface>/mesh/routing_algo
Date: Dec 2011
-Contact: Marek Lindner <lindner_marek@yahoo.de>
+Contact: Marek Lindner <mareklindner@neomailbox.ch>
Description:
Defines the routing procotol this mesh instance
uses to find the optimal paths through the mesh.
-
-What: /sys/class/net/<mesh_iface>/mesh/vis_mode
-Date: May 2010
-Contact: Marek Lindner <lindner_marek@yahoo.de>
-Description:
- Each batman node only maintains information about its
- own local neighborhood, therefore generating graphs
- showing the topology of the entire mesh is not easily
- feasible without having a central instance to collect
- the local topologies from all nodes. This file allows
- to activate the collecting (server) mode.
diff --git a/Documentation/ABI/testing/sysfs-class-net-queues b/Documentation/ABI/testing/sysfs-class-net-queues
new file mode 100644
index 00000000000..5e9aeb91d35
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-class-net-queues
@@ -0,0 +1,79 @@
+What: /sys/class/<iface>/queues/rx-<queue>/rps_cpus
+Date: March 2010
+KernelVersion: 2.6.35
+Contact: netdev@vger.kernel.org
+Description:
+ Mask of the CPU(s) currently enabled to participate into the
+ Receive Packet Steering packet processing flow for this
+ network device queue. Possible values depend on the number
+ of available CPU(s) in the system.
+
+What: /sys/class/<iface>/queues/rx-<queue>/rps_flow_cnt
+Date: April 2010
+KernelVersion: 2.6.35
+Contact: netdev@vger.kernel.org
+Description:
+ Number of Receive Packet Steering flows being currently
+ processed by this particular network device receive queue.
+
+What: /sys/class/<iface>/queues/tx-<queue>/tx_timeout
+Date: November 2011
+KernelVersion: 3.3
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the number of transmit timeout events seen by this
+ network interface transmit queue.
+
+What: /sys/class/<iface>/queues/tx-<queue>/xps_cpus
+Date: November 2010
+KernelVersion: 2.6.38
+Contact: netdev@vger.kernel.org
+Description:
+ Mask of the CPU(s) currently enabled to participate into the
+ Transmit Packet Steering packet processing flow for this
+ network device transmit queue. Possible vaules depend on the
+ number of available CPU(s) in the system.
+
+What: /sys/class/<iface>/queues/tx-<queue>/byte_queue_limits/hold_time
+Date: November 2011
+KernelVersion: 3.3
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the hold time in milliseconds to measure the slack
+ of this particular network device transmit queue.
+ Default value is 1000.
+
+What: /sys/class/<iface>/queues/tx-<queue>/byte_queue_limits/inflight
+Date: November 2011
+KernelVersion: 3.3
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the number of bytes (objects) in flight on this
+ network device transmit queue.
+
+What: /sys/class/<iface>/queues/tx-<queue>/byte_queue_limits/limit
+Date: November 2011
+KernelVersion: 3.3
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the current limit of bytes allowed to be queued
+ on this network device transmit queue. This value is clamped
+ to be within the bounds defined by limit_max and limit_min.
+
+What: /sys/class/<iface>/queues/tx-<queue>/byte_queue_limits/limit_max
+Date: November 2011
+KernelVersion: 3.3
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the absolute maximum limit of bytes allowed to be
+ queued on this network device transmit queue. See
+ include/linux/dynamic_queue_limits.h for the default value.
+
+What: /sys/class/<iface>/queues/tx-<queue>/byte_queue_limits/limit_min
+Date: November 2011
+KernelVersion: 3.3
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the absolute minimum limit of bytes allowed to be
+ queued on this network device transmit queue. Default value is
+ 0.
diff --git a/Documentation/ABI/testing/sysfs-class-net-statistics b/Documentation/ABI/testing/sysfs-class-net-statistics
new file mode 100644
index 00000000000..397118de7b5
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-class-net-statistics
@@ -0,0 +1,201 @@
+What: /sys/class/<iface>/statistics/collisions
+Date: April 2005
+KernelVersion: 2.6.12
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the number of collisions seen by this network device.
+ This value might not be relevant with all MAC layers.
+
+What: /sys/class/<iface>/statistics/multicast
+Date: April 2005
+KernelVersion: 2.6.12
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the number of multicast packets received by this
+ network device.
+
+What: /sys/class/<iface>/statistics/rx_bytes
+Date: April 2005
+KernelVersion: 2.6.12
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the number of bytes received by this network device.
+ See the network driver for the exact meaning of when this
+ value is incremented.
+
+What: /sys/class/<iface>/statistics/rx_compressed
+Date: April 2005
+KernelVersion: 2.6.12
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the number of compressed packets received by this
+ network device. This value might only be relevant for interfaces
+ that support packet compression (e.g: PPP).
+
+What: /sys/class/<iface>/statistics/rx_crc_errors
+Date: April 2005
+KernelVersion: 2.6.12
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the number of packets received with a CRC (FCS) error
+ by this network device. Note that the specific meaning might
+ depend on the MAC layer used by the interface.
+
+What: /sys/class/<iface>/statistics/rx_dropped
+Date: April 2005
+KernelVersion: 2.6.12
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the number of packets received by the network device
+ but dropped, that are not forwarded to the upper layers for
+ packet processing. See the network driver for the exact
+ meaning of this value.
+
+What: /sys/class/<iface>/statistics/rx_fifo_errors
+Date: April 2005
+KernelVersion: 2.6.12
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the number of receive FIFO errors seen by this
+ network device. See the network driver for the exact
+ meaning of this value.
+
+What: /sys/class/<iface>/statistics/rx_frame_errors
+Date: April 2005
+KernelVersion: 2.6.12
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the number of received frames with error, such as
+ alignment errors. Note that the specific meaning depends on
+ on the MAC layer protocol used. See the network driver for
+ the exact meaning of this value.
+
+What: /sys/class/<iface>/statistics/rx_length_errors
+Date: April 2005
+KernelVersion: 2.6.12
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the number of received error packet with a length
+ error, oversized or undersized. See the network driver for the
+ exact meaning of this value.
+
+What: /sys/class/<iface>/statistics/rx_missed_errors
+Date: April 2005
+KernelVersion: 2.6.12
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the number of received packets that have been missed
+ due to lack of capacity in the receive side. See the network
+ driver for the exact meaning of this value.
+
+What: /sys/class/<iface>/statistics/rx_over_errors
+Date: April 2005
+KernelVersion: 2.6.12
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the number of received packets that are oversized
+ compared to what the network device is configured to accept
+ (e.g: larger than MTU). See the network driver for the exact
+ meaning of this value.
+
+What: /sys/class/<iface>/statistics/rx_packets
+Date: April 2005
+KernelVersion: 2.6.12
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the total number of good packets received by this
+ network device.
+
+What: /sys/class/<iface>/statistics/tx_aborted_errors
+Date: April 2005
+KernelVersion: 2.6.12
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the number of packets that have been aborted
+ during transmission by a network device (e.g: because of
+ a medium collision). See the network driver for the exact
+ meaning of this value.
+
+What: /sys/class/<iface>/statistics/tx_bytes
+Date: April 2005
+KernelVersion: 2.6.12
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the number of bytes transmitted by a network
+ device. See the network driver for the exact meaning of this
+ value, in particular whether this accounts for all successfully
+ transmitted packets or all packets that have been queued for
+ transmission.
+
+What: /sys/class/<iface>/statistics/tx_carrier_errors
+Date: April 2005
+KernelVersion: 2.6.12
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the number of packets that could not be transmitted
+ because of carrier errors (e.g: physical link down). See the
+ network driver for the exact meaning of this value.
+
+What: /sys/class/<iface>/statistics/tx_compressed
+Date: April 2005
+KernelVersion: 2.6.12
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the number of transmitted compressed packets. Note
+ this might only be relevant for devices that support
+ compression (e.g: PPP).
+
+What: /sys/class/<iface>/statistics/tx_dropped
+Date: April 2005
+KernelVersion: 2.6.12
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the number of packets dropped during transmission.
+ See the driver for the exact reasons as to why the packets were
+ dropped.
+
+What: /sys/class/<iface>/statistics/tx_errors
+Date: April 2005
+KernelVersion: 2.6.12
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the number of packets in error during transmission by
+ a network device. See the driver for the exact reasons as to
+ why the packets were dropped.
+
+What: /sys/class/<iface>/statistics/tx_fifo_errors
+Date: April 2005
+KernelVersion: 2.6.12
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the number of packets having caused a transmit
+ FIFO error. See the driver for the exact reasons as to why the
+ packets were dropped.
+
+What: /sys/class/<iface>/statistics/tx_heartbeat_errors
+Date: April 2005
+KernelVersion: 2.6.12
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the number of packets transmitted that have been
+ reported as heartbeat errors. See the driver for the exact
+ reasons as to why the packets were dropped.
+
+What: /sys/class/<iface>/statistics/tx_packets
+Date: April 2005
+KernelVersion: 2.6.12
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the number of packets transmitted by a network
+ device. See the driver for whether this reports the number of all
+ attempted or successful transmissions.
+
+What: /sys/class/<iface>/statistics/tx_window_errors
+Date: April 2005
+KernelVersion: 2.6.12
+Contact: netdev@vger.kernel.org
+Description:
+ Indicates the number of packets not successfully transmitted
+ due to a window collision. The specific meaning depends on the
+ MAC layer used. On Ethernet this is usually used to report
+ late collisions errors.
diff --git a/Documentation/ABI/testing/sysfs-class-powercap b/Documentation/ABI/testing/sysfs-class-powercap
new file mode 100644
index 00000000000..db3b3ff70d8
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-class-powercap
@@ -0,0 +1,152 @@
+What: /sys/class/powercap/
+Date: September 2013
+KernelVersion: 3.13
+Contact: linux-pm@vger.kernel.org
+Description:
+ The powercap/ class sub directory belongs to the power cap
+ subsystem. Refer to
+ Documentation/power/powercap/powercap.txt for details.
+
+What: /sys/class/powercap/<control type>
+Date: September 2013
+KernelVersion: 3.13
+Contact: linux-pm@vger.kernel.org
+Description:
+ A <control type> is a unique name under /sys/class/powercap.
+ Here <control type> determines how the power is going to be
+ controlled. A <control type> can contain multiple power zones.
+
+What: /sys/class/powercap/<control type>/enabled
+Date: September 2013
+KernelVersion: 3.13
+Contact: linux-pm@vger.kernel.org
+Description:
+ This allows to enable/disable power capping for a "control type".
+ This status affects every power zone using this "control_type.
+
+What: /sys/class/powercap/<control type>/<power zone>
+Date: September 2013
+KernelVersion: 3.13
+Contact: linux-pm@vger.kernel.org
+Description:
+ A power zone is a single or a collection of devices, which can
+ be independently monitored and controlled. A power zone sysfs
+ entry is qualified with the name of the <control type>.
+ E.g. intel-rapl:0:1:1.
+
+What: /sys/class/powercap/<control type>/<power zone>/<child power zone>
+Date: September 2013
+KernelVersion: 3.13
+Contact: linux-pm@vger.kernel.org
+Description:
+ Power zones may be organized in a hierarchy in which child
+ power zones provide monitoring and control for a subset of
+ devices under the parent. For example, if there is a parent
+ power zone for a whole CPU package, each CPU core in it can
+ be a child power zone.
+
+What: /sys/class/powercap/.../<power zone>/name
+Date: September 2013
+KernelVersion: 3.13
+Contact: linux-pm@vger.kernel.org
+Description:
+ Specifies the name of this power zone.
+
+What: /sys/class/powercap/.../<power zone>/energy_uj
+Date: September 2013
+KernelVersion: 3.13
+Contact: linux-pm@vger.kernel.org
+Description:
+ Current energy counter in micro-joules. Write "0" to reset.
+ If the counter can not be reset, then this attribute is
+ read-only.
+
+What: /sys/class/powercap/.../<power zone>/max_energy_range_uj
+Date: September 2013
+KernelVersion: 3.13
+Contact: linux-pm@vger.kernel.org
+Description:
+ Range of the above energy counter in micro-joules.
+
+
+What: /sys/class/powercap/.../<power zone>/power_uw
+Date: September 2013
+KernelVersion: 3.13
+Contact: linux-pm@vger.kernel.org
+Description:
+ Current power in micro-watts.
+
+What: /sys/class/powercap/.../<power zone>/max_power_range_uw
+Date: September 2013
+KernelVersion: 3.13
+Contact: linux-pm@vger.kernel.org
+Description:
+ Range of the above power value in micro-watts.
+
+What: /sys/class/powercap/.../<power zone>/constraint_X_name
+Date: September 2013
+KernelVersion: 3.13
+Contact: linux-pm@vger.kernel.org
+Description:
+ Each power zone can define one or more constraints. Each
+ constraint can have an optional name. Here "X" can have values
+ from 0 to max integer.
+
+What: /sys/class/powercap/.../<power zone>/constraint_X_power_limit_uw
+Date: September 2013
+KernelVersion: 3.13
+Contact: linux-pm@vger.kernel.org
+Description:
+ Power limit in micro-watts should be applicable for
+ the time window specified by "constraint_X_time_window_us".
+ Here "X" can have values from 0 to max integer.
+
+What: /sys/class/powercap/.../<power zone>/constraint_X_time_window_us
+Date: September 2013
+KernelVersion: 3.13
+Contact: linux-pm@vger.kernel.org
+Description:
+ Time window in micro seconds. This is used along with
+ constraint_X_power_limit_uw to define a power constraint.
+ Here "X" can have values from 0 to max integer.
+
+
+What: /sys/class/powercap/<control type>/.../constraint_X_max_power_uw
+Date: September 2013
+KernelVersion: 3.13
+Contact: linux-pm@vger.kernel.org
+Description:
+ Maximum allowed power in micro watts for this constraint.
+ Here "X" can have values from 0 to max integer.
+
+What: /sys/class/powercap/<control type>/.../constraint_X_min_power_uw
+Date: September 2013
+KernelVersion: 3.13
+Contact: linux-pm@vger.kernel.org
+Description:
+ Minimum allowed power in micro watts for this constraint.
+ Here "X" can have values from 0 to max integer.
+
+What: /sys/class/powercap/.../<power zone>/constraint_X_max_time_window_us
+Date: September 2013
+KernelVersion: 3.13
+Contact: linux-pm@vger.kernel.org
+Description:
+ Maximum allowed time window in micro seconds for this
+ constraint. Here "X" can have values from 0 to max integer.
+
+What: /sys/class/powercap/.../<power zone>/constraint_X_min_time_window_us
+Date: September 2013
+KernelVersion: 3.13
+Contact: linux-pm@vger.kernel.org
+Description:
+ Minimum allowed time window in micro seconds for this
+ constraint. Here "X" can have values from 0 to max integer.
+
+What: /sys/class/powercap/.../<power zone>/enabled
+Date: September 2013
+KernelVersion: 3.13
+Contact: linux-pm@vger.kernel.org
+Description
+ This allows to enable/disable power capping at power zone level.
+ This applies to current power zone and its children.
diff --git a/Documentation/ABI/testing/sysfs-class-rc b/Documentation/ABI/testing/sysfs-class-rc
new file mode 100644
index 00000000000..b65674da43b
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-class-rc
@@ -0,0 +1,111 @@
+What: /sys/class/rc/
+Date: Apr 2010
+KernelVersion: 2.6.35
+Contact: Mauro Carvalho Chehab <m.chehab@samsung.com>
+Description:
+ The rc/ class sub-directory belongs to the Remote Controller
+ core and provides a sysfs interface for configuring infrared
+ remote controller receivers.
+
+What: /sys/class/rc/rcN/
+Date: Apr 2010
+KernelVersion: 2.6.35
+Contact: Mauro Carvalho Chehab <m.chehab@samsung.com>
+Description:
+ A /sys/class/rc/rcN directory is created for each remote
+ control receiver device where N is the number of the receiver.
+
+What: /sys/class/rc/rcN/protocols
+Date: Jun 2010
+KernelVersion: 2.6.36
+Contact: Mauro Carvalho Chehab <m.chehab@samsung.com>
+Description:
+ Reading this file returns a list of available protocols,
+ something like:
+ "rc5 [rc6] nec jvc [sony]"
+ Enabled protocols are shown in [] brackets.
+ Writing "+proto" will add a protocol to the list of enabled
+ protocols.
+ Writing "-proto" will remove a protocol from the list of enabled
+ protocols.
+ Writing "proto" will enable only "proto".
+ Writing "none" will disable all protocols.
+ Write fails with EINVAL if an invalid protocol combination or
+ unknown protocol name is used.
+
+What: /sys/class/rc/rcN/filter
+Date: Jan 2014
+KernelVersion: 3.15
+Contact: Mauro Carvalho Chehab <m.chehab@samsung.com>
+Description:
+ Sets the scancode filter expected value.
+ Use in combination with /sys/class/rc/rcN/filter_mask to set the
+ expected value of the bits set in the filter mask.
+ If the hardware supports it then scancodes which do not match
+ the filter will be ignored. Otherwise the write will fail with
+ an error.
+ This value may be reset to 0 if the current protocol is altered.
+
+What: /sys/class/rc/rcN/filter_mask
+Date: Jan 2014
+KernelVersion: 3.15
+Contact: Mauro Carvalho Chehab <m.chehab@samsung.com>
+Description:
+ Sets the scancode filter mask of bits to compare.
+ Use in combination with /sys/class/rc/rcN/filter to set the bits
+ of the scancode which should be compared against the expected
+ value. A value of 0 disables the filter to allow all valid
+ scancodes to be processed.
+ If the hardware supports it then scancodes which do not match
+ the filter will be ignored. Otherwise the write will fail with
+ an error.
+ This value may be reset to 0 if the current protocol is altered.
+
+What: /sys/class/rc/rcN/wakeup_protocols
+Date: Feb 2014
+KernelVersion: 3.15
+Contact: Mauro Carvalho Chehab <m.chehab@samsung.com>
+Description:
+ Reading this file returns a list of available protocols to use
+ for the wakeup filter, something like:
+ "rc5 rc6 nec jvc [sony]"
+ The enabled wakeup protocol is shown in [] brackets.
+ Writing "+proto" will add a protocol to the list of enabled
+ wakeup protocols.
+ Writing "-proto" will remove a protocol from the list of enabled
+ wakeup protocols.
+ Writing "proto" will use "proto" for wakeup events.
+ Writing "none" will disable wakeup.
+ Write fails with EINVAL if an invalid protocol combination or
+ unknown protocol name is used, or if wakeup is not supported by
+ the hardware.
+
+What: /sys/class/rc/rcN/wakeup_filter
+Date: Jan 2014
+KernelVersion: 3.15
+Contact: Mauro Carvalho Chehab <m.chehab@samsung.com>
+Description:
+ Sets the scancode wakeup filter expected value.
+ Use in combination with /sys/class/rc/rcN/wakeup_filter_mask to
+ set the expected value of the bits set in the wakeup filter mask
+ to trigger a system wake event.
+ If the hardware supports it and wakeup_filter_mask is not 0 then
+ scancodes which match the filter will wake the system from e.g.
+ suspend to RAM or power off.
+ Otherwise the write will fail with an error.
+ This value may be reset to 0 if the wakeup protocol is altered.
+
+What: /sys/class/rc/rcN/wakeup_filter_mask
+Date: Jan 2014
+KernelVersion: 3.15
+Contact: Mauro Carvalho Chehab <m.chehab@samsung.com>
+Description:
+ Sets the scancode wakeup filter mask of bits to compare.
+ Use in combination with /sys/class/rc/rcN/wakeup_filter to set
+ the bits of the scancode which should be compared against the
+ expected value to trigger a system wake event.
+ If the hardware supports it and wakeup_filter_mask is not 0 then
+ scancodes which match the filter will wake the system from e.g.
+ suspend to RAM or power off.
+ Otherwise the write will fail with an error.
+ This value may be reset to 0 if the wakeup protocol is altered.
diff --git a/Documentation/ABI/testing/sysfs-class-scsi_host b/Documentation/ABI/testing/sysfs-class-scsi_host
index 29a4f892e43..0eb255e7db1 100644
--- a/Documentation/ABI/testing/sysfs-class-scsi_host
+++ b/Documentation/ABI/testing/sysfs-class-scsi_host
@@ -11,3 +11,19 @@ Description:
guaranteed. The 'isci_id' attribute unambiguously identifies
the controller index: '0' for the first controller,
'1' for the second.
+
+What: /sys/class/scsi_host/hostX/acciopath_status
+Date: November 2013
+Contact: Stephen M. Cameron <scameron@beardog.cce.hp.com>
+Description: This file contains the current status of the "SSD Smart Path"
+ feature of HP Smart Array RAID controllers using the hpsa
+ driver. SSD Smart Path, when enabled permits the driver to
+ send i/o requests directly to physical devices that are part
+ of a logical drive, bypassing the controllers firmware RAID
+ stack for a performance advantage when possible. A value of
+ '1' indicates the feature is enabled, and the controller may
+ use the direct i/o path to physical devices. A value of zero
+ means the feature is disabled and the controller may not use
+ the direct i/o path to physical devices. This setting is
+ controller wide, affecting all configured logical drives on the
+ controller. This file is readable and writable.
diff --git a/Documentation/ABI/testing/sysfs-devices-power b/Documentation/ABI/testing/sysfs-devices-power
index 9d43e767084..676fdf5f2a9 100644
--- a/Documentation/ABI/testing/sysfs-devices-power
+++ b/Documentation/ABI/testing/sysfs-devices-power
@@ -1,6 +1,6 @@
What: /sys/devices/.../power/
Date: January 2009
-Contact: Rafael J. Wysocki <rjw@sisk.pl>
+Contact: Rafael J. Wysocki <rjw@rjwysocki.net>
Description:
The /sys/devices/.../power directory contains attributes
allowing the user space to check and modify some power
@@ -8,7 +8,7 @@ Description:
What: /sys/devices/.../power/wakeup
Date: January 2009
-Contact: Rafael J. Wysocki <rjw@sisk.pl>
+Contact: Rafael J. Wysocki <rjw@rjwysocki.net>
Description:
The /sys/devices/.../power/wakeup attribute allows the user
space to check if the device is enabled to wake up the system
@@ -34,7 +34,7 @@ Description:
What: /sys/devices/.../power/control
Date: January 2009
-Contact: Rafael J. Wysocki <rjw@sisk.pl>
+Contact: Rafael J. Wysocki <rjw@rjwysocki.net>
Description:
The /sys/devices/.../power/control attribute allows the user
space to control the run-time power management of the device.
@@ -53,7 +53,7 @@ Description:
What: /sys/devices/.../power/async
Date: January 2009
-Contact: Rafael J. Wysocki <rjw@sisk.pl>
+Contact: Rafael J. Wysocki <rjw@rjwysocki.net>
Description:
The /sys/devices/.../async attribute allows the user space to
enable or diasble the device's suspend and resume callbacks to
@@ -79,95 +79,109 @@ Description:
What: /sys/devices/.../power/wakeup_count
Date: September 2010
-Contact: Rafael J. Wysocki <rjw@sisk.pl>
+Contact: Rafael J. Wysocki <rjw@rjwysocki.net>
Description:
The /sys/devices/.../wakeup_count attribute contains the number
of signaled wakeup events associated with the device. This
- attribute is read-only. If the device is not enabled to wake up
+ attribute is read-only. If the device is not capable to wake up
the system from sleep states, this attribute is not present.
+ If the device is not enabled to wake up the system from sleep
+ states, this attribute is empty.
What: /sys/devices/.../power/wakeup_active_count
Date: September 2010
-Contact: Rafael J. Wysocki <rjw@sisk.pl>
+Contact: Rafael J. Wysocki <rjw@rjwysocki.net>
Description:
The /sys/devices/.../wakeup_active_count attribute contains the
number of times the processing of wakeup events associated with
the device was completed (at the kernel level). This attribute
- is read-only. If the device is not enabled to wake up the
- system from sleep states, this attribute is not present.
+ is read-only. If the device is not capable to wake up the
+ system from sleep states, this attribute is not present. If
+ the device is not enabled to wake up the system from sleep
+ states, this attribute is empty.
What: /sys/devices/.../power/wakeup_abort_count
Date: February 2012
-Contact: Rafael J. Wysocki <rjw@sisk.pl>
+Contact: Rafael J. Wysocki <rjw@rjwysocki.net>
Description:
The /sys/devices/.../wakeup_abort_count attribute contains the
number of times the processing of a wakeup event associated with
the device might have aborted system transition into a sleep
state in progress. This attribute is read-only. If the device
- is not enabled to wake up the system from sleep states, this
- attribute is not present.
+ is not capable to wake up the system from sleep states, this
+ attribute is not present. If the device is not enabled to wake
+ up the system from sleep states, this attribute is empty.
What: /sys/devices/.../power/wakeup_expire_count
Date: February 2012
-Contact: Rafael J. Wysocki <rjw@sisk.pl>
+Contact: Rafael J. Wysocki <rjw@rjwysocki.net>
Description:
The /sys/devices/.../wakeup_expire_count attribute contains the
number of times a wakeup event associated with the device has
been reported with a timeout that expired. This attribute is
- read-only. If the device is not enabled to wake up the system
- from sleep states, this attribute is not present.
+ read-only. If the device is not capable to wake up the system
+ from sleep states, this attribute is not present. If the
+ device is not enabled to wake up the system from sleep states,
+ this attribute is empty.
What: /sys/devices/.../power/wakeup_active
Date: September 2010
-Contact: Rafael J. Wysocki <rjw@sisk.pl>
+Contact: Rafael J. Wysocki <rjw@rjwysocki.net>
Description:
The /sys/devices/.../wakeup_active attribute contains either 1,
or 0, depending on whether or not a wakeup event associated with
the device is being processed (1). This attribute is read-only.
- If the device is not enabled to wake up the system from sleep
- states, this attribute is not present.
+ If the device is not capable to wake up the system from sleep
+ states, this attribute is not present. If the device is not
+ enabled to wake up the system from sleep states, this attribute
+ is empty.
What: /sys/devices/.../power/wakeup_total_time_ms
Date: September 2010
-Contact: Rafael J. Wysocki <rjw@sisk.pl>
+Contact: Rafael J. Wysocki <rjw@rjwysocki.net>
Description:
The /sys/devices/.../wakeup_total_time_ms attribute contains
the total time of processing wakeup events associated with the
device, in milliseconds. This attribute is read-only. If the
- device is not enabled to wake up the system from sleep states,
- this attribute is not present.
+ device is not capable to wake up the system from sleep states,
+ this attribute is not present. If the device is not enabled to
+ wake up the system from sleep states, this attribute is empty.
What: /sys/devices/.../power/wakeup_max_time_ms
Date: September 2010
-Contact: Rafael J. Wysocki <rjw@sisk.pl>
+Contact: Rafael J. Wysocki <rjw@rjwysocki.net>
Description:
The /sys/devices/.../wakeup_max_time_ms attribute contains
the maximum time of processing a single wakeup event associated
with the device, in milliseconds. This attribute is read-only.
- If the device is not enabled to wake up the system from sleep
- states, this attribute is not present.
+ If the device is not capable to wake up the system from sleep
+ states, this attribute is not present. If the device is not
+ enabled to wake up the system from sleep states, this attribute
+ is empty.
What: /sys/devices/.../power/wakeup_last_time_ms
Date: September 2010
-Contact: Rafael J. Wysocki <rjw@sisk.pl>
+Contact: Rafael J. Wysocki <rjw@rjwysocki.net>
Description:
The /sys/devices/.../wakeup_last_time_ms attribute contains
the value of the monotonic clock corresponding to the time of
signaling the last wakeup event associated with the device, in
milliseconds. This attribute is read-only. If the device is
not enabled to wake up the system from sleep states, this
- attribute is not present.
+ attribute is not present. If the device is not enabled to wake
+ up the system from sleep states, this attribute is empty.
What: /sys/devices/.../power/wakeup_prevent_sleep_time_ms
Date: February 2012
-Contact: Rafael J. Wysocki <rjw@sisk.pl>
+Contact: Rafael J. Wysocki <rjw@rjwysocki.net>
Description:
The /sys/devices/.../wakeup_prevent_sleep_time_ms attribute
contains the total time the device has been preventing
opportunistic transitions to sleep states from occurring.
- This attribute is read-only. If the device is not enabled to
+ This attribute is read-only. If the device is not capable to
wake up the system from sleep states, this attribute is not
- present.
+ present. If the device is not enabled to wake up the system
+ from sleep states, this attribute is empty.
What: /sys/devices/.../power/autosuspend_delay_ms
Date: September 2010
@@ -187,9 +201,9 @@ Description:
Not all drivers support this attribute. If it isn't supported,
attempts to read or write it will yield I/O errors.
-What: /sys/devices/.../power/pm_qos_latency_us
+What: /sys/devices/.../power/pm_qos_resume_latency_us
Date: March 2012
-Contact: Rafael J. Wysocki <rjw@sisk.pl>
+Contact: Rafael J. Wysocki <rjw@rjwysocki.net>
Description:
The /sys/devices/.../power/pm_qos_resume_latency_us attribute
contains the PM QoS resume latency limit for the given device,
@@ -205,9 +219,34 @@ Description:
This attribute has no effect on system-wide suspend/resume and
hibernation.
+What: /sys/devices/.../power/pm_qos_latency_tolerance_us
+Date: January 2014
+Contact: Rafael J. Wysocki <rjw@rjwysocki.net>
+Description:
+ The /sys/devices/.../power/pm_qos_latency_tolerance_us attribute
+ contains the PM QoS active state latency tolerance limit for the
+ given device in microseconds. That is the maximum memory access
+ latency the device can suffer without any visible adverse
+ effects on user space functionality. If that value is the
+ string "any", the latency does not matter to user space at all,
+ but hardware should not be allowed to set the latency tolerance
+ for the device automatically.
+
+ Reading "auto" from this file means that the maximum memory
+ access latency for the device may be determined automatically
+ by the hardware as needed. Writing "auto" to it allows the
+ hardware to be switched to this mode if there are no other
+ latency tolerance requirements from the kernel side.
+
+ This attribute is only present if the feature controlled by it
+ is supported by the hardware.
+
+ This attribute has no effect on runtime suspend and resume of
+ devices and on system-wide suspend/resume and hibernation.
+
What: /sys/devices/.../power/pm_qos_no_power_off
Date: September 2012
-Contact: Rafael J. Wysocki <rjw@sisk.pl>
+Contact: Rafael J. Wysocki <rjw@rjwysocki.net>
Description:
The /sys/devices/.../power/pm_qos_no_power_off attribute
is used for manipulating the PM QoS "no power off" flag. If
@@ -222,7 +261,7 @@ Description:
What: /sys/devices/.../power/pm_qos_remote_wakeup
Date: September 2012
-Contact: Rafael J. Wysocki <rjw@sisk.pl>
+Contact: Rafael J. Wysocki <rjw@rjwysocki.net>
Description:
The /sys/devices/.../power/pm_qos_remote_wakeup attribute
is used for manipulating the PM QoS "remote wakeup required"
diff --git a/Documentation/ABI/testing/sysfs-devices-system-cpu b/Documentation/ABI/testing/sysfs-devices-system-cpu
index 468e4d48f88..acb9bfc89b4 100644
--- a/Documentation/ABI/testing/sysfs-devices-system-cpu
+++ b/Documentation/ABI/testing/sysfs-devices-system-cpu
@@ -128,7 +128,7 @@ Description: Discover cpuidle policy and mechanism
What: /sys/devices/system/cpu/cpu#/cpufreq/*
Date: pre-git history
-Contact: cpufreq@vger.kernel.org
+Contact: linux-pm@vger.kernel.org
Description: Discover and change clock speed of CPUs
Clock scaling allows you to change the clock speed of the
@@ -146,7 +146,7 @@ Description: Discover and change clock speed of CPUs
What: /sys/devices/system/cpu/cpu#/cpufreq/freqdomain_cpus
Date: June 2013
-Contact: cpufreq@vger.kernel.org
+Contact: linux-pm@vger.kernel.org
Description: Discover CPUs in the same CPU frequency coordination domain
freqdomain_cpus is the list of CPUs (online+offline) that share
@@ -200,3 +200,27 @@ Description: address and size of the percpu note.
note of cpu#.
crash_notes_size: size of the note of cpu#.
+
+
+What: /sys/devices/system/cpu/intel_pstate/max_perf_pct
+ /sys/devices/system/cpu/intel_pstate/min_perf_pct
+ /sys/devices/system/cpu/intel_pstate/no_turbo
+Date: February 2013
+Contact: linux-pm@vger.kernel.org
+Description: Parameters for the Intel P-state driver
+
+ Logic for selecting the current P-state in Intel
+ Sandybridge+ processors. The three knobs control
+ limits for the P-state that will be requested by the
+ driver.
+
+ max_perf_pct: limits the maximum P state that will be requested by
+ the driver stated as a percentage of the available performance.
+
+ min_perf_pct: limits the minimum P state that will be requested by
+ the driver stated as a percentage of the available performance.
+
+ no_turbo: limits the driver to selecting P states below the turbo
+ frequency range.
+
+ More details can be found in Documentation/cpu-freq/intel-pstate.txt
diff --git a/Documentation/ABI/testing/sysfs-driver-genwqe b/Documentation/ABI/testing/sysfs-driver-genwqe
new file mode 100644
index 00000000000..1870737a1f5
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-driver-genwqe
@@ -0,0 +1,62 @@
+What: /sys/class/genwqe/genwqe<n>_card/version
+Date: Oct 2013
+Contact: haver@linux.vnet.ibm.com
+Description: Unique bitstream identification e.g.
+ '0000000330336283.00000000475a4950'.
+
+What: /sys/class/genwqe/genwqe<n>_card/appid
+Date: Oct 2013
+Contact: haver@linux.vnet.ibm.com
+Description: Identifies the currently active card application e.g. 'GZIP'
+ for compression/decompression.
+
+What: /sys/class/genwqe/genwqe<n>_card/type
+Date: Oct 2013
+Contact: haver@linux.vnet.ibm.com
+Description: Type of the card e.g. 'GenWQE5-A7'.
+
+What: /sys/class/genwqe/genwqe<n>_card/curr_bitstream
+Date: Oct 2013
+Contact: haver@linux.vnet.ibm.com
+Description: Currently active bitstream. 1 is default, 0 is backup.
+
+What: /sys/class/genwqe/genwqe<n>_card/next_bitstream
+Date: Oct 2013
+Contact: haver@linux.vnet.ibm.com
+Description: Interface to set the next bitstream to be used.
+
+What: /sys/class/genwqe/genwqe<n>_card/tempsens
+Date: Oct 2013
+Contact: haver@linux.vnet.ibm.com
+Description: Interface to read the cards temperature sense register.
+
+What: /sys/class/genwqe/genwqe<n>_card/freerunning_timer
+Date: Oct 2013
+Contact: haver@linux.vnet.ibm.com
+Description: Interface to read the cards free running timer.
+ Used for performance and utilization measurements.
+
+What: /sys/class/genwqe/genwqe<n>_card/queue_working_time
+Date: Oct 2013
+Contact: haver@linux.vnet.ibm.com
+Description: Interface to read queue working time.
+ Used for performance and utilization measurements.
+
+What: /sys/class/genwqe/genwqe<n>_card/state
+Date: Oct 2013
+Contact: haver@linux.vnet.ibm.com
+Description: State of the card: "unused", "used", "error".
+
+What: /sys/class/genwqe/genwqe<n>_card/base_clock
+Date: Oct 2013
+Contact: haver@linux.vnet.ibm.com
+Description: Base clock frequency of the card.
+
+What: /sys/class/genwqe/genwqe<n>_card/device/sriov_numvfs
+Date: Oct 2013
+Contact: haver@linux.vnet.ibm.com
+Description: Enable VFs (1..15):
+ sudo sh -c 'echo 15 > \
+ /sys/bus/pci/devices/0000\:1b\:00.0/sriov_numvfs'
+ Disable VFs:
+ Write a 0 into the same sysfs entry.
diff --git a/Documentation/ABI/testing/sysfs-driver-hid-roccat-ryos b/Documentation/ABI/testing/sysfs-driver-hid-roccat-ryos
new file mode 100644
index 00000000000..1d6a8cf9dc0
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-driver-hid-roccat-ryos
@@ -0,0 +1,178 @@
+What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/ryos/roccatryos<minor>/control
+Date: October 2013
+Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
+Description: When written, this file lets one select which data from which
+ profile will be read next. The data has to be 3 bytes long.
+ This file is writeonly.
+Users: http://roccat.sourceforge.net
+
+What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/ryos/roccatryos<minor>/profile
+Date: October 2013
+Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
+Description: The mouse can store 5 profiles which can be switched by the
+ press of a button. profile holds index of actual profile.
+ This value is persistent, so its value determines the profile
+ that's active when the device is powered on next time.
+ When written, the device activates the set profile immediately.
+ The data has to be 3 bytes long.
+ The device will reject invalid data.
+Users: http://roccat.sourceforge.net
+
+What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/ryos/roccatryos<minor>/keys_primary
+Date: October 2013
+Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
+Description: When written, this file lets one set the default of all keys for
+ a specific profile. Profile index is included in written data.
+ The data has to be 125 bytes long.
+ Before reading this file, control has to be written to select
+ which profile to read.
+Users: http://roccat.sourceforge.net
+
+What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/ryos/roccatryos<minor>/keys_function
+Date: October 2013
+Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
+Description: When written, this file lets one set the function of the
+ function keys for a specific profile. Profile index is included
+ in written data. The data has to be 95 bytes long.
+ Before reading this file, control has to be written to select
+ which profile to read.
+Users: http://roccat.sourceforge.net
+
+What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/ryos/roccatryos<minor>/keys_macro
+Date: October 2013
+Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
+Description: When written, this file lets one set the function of the macro
+ keys for a specific profile. Profile index is included in
+ written data. The data has to be 35 bytes long.
+ Before reading this file, control has to be written to select
+ which profile to read.
+Users: http://roccat.sourceforge.net
+
+What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/ryos/roccatryos<minor>/keys_thumbster
+Date: October 2013
+Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
+Description: When written, this file lets one set the function of the
+ thumbster keys for a specific profile. Profile index is included
+ in written data. The data has to be 23 bytes long.
+ Before reading this file, control has to be written to select
+ which profile to read.
+Users: http://roccat.sourceforge.net
+
+What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/ryos/roccatryos<minor>/keys_extra
+Date: October 2013
+Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
+Description: When written, this file lets one set the function of the
+ capslock and function keys for a specific profile. Profile index
+ is included in written data. The data has to be 8 bytes long.
+ Before reading this file, control has to be written to select
+ which profile to read.
+Users: http://roccat.sourceforge.net
+
+What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/ryos/roccatryos<minor>/keys_easyzone
+Date: October 2013
+Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
+Description: When written, this file lets one set the function of the
+ easyzone keys for a specific profile. Profile index is included
+ in written data. The data has to be 294 bytes long.
+ Before reading this file, control has to be written to select
+ which profile to read.
+Users: http://roccat.sourceforge.net
+
+What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/ryos/roccatryos<minor>/key_mask
+Date: October 2013
+Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
+Description: When written, this file lets one deactivate certain keys like
+ windows and application keys, to prevent accidental presses.
+ Profile index for which this settings occur is included in
+ written data. The data has to be 6 bytes long.
+ Before reading this file, control has to be written to select
+ which profile to read.
+Users: http://roccat.sourceforge.net
+
+What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/ryos/roccatryos<minor>/light
+Date: October 2013
+Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
+Description: When written, this file lets one set the backlight intensity for
+ a specific profile. Profile index is included in written data.
+ This attribute is only valid for the glow and pro variant.
+ The data has to be 16 bytes long.
+ Before reading this file, control has to be written to select
+ which profile to read.
+Users: http://roccat.sourceforge.net
+
+What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/ryos/roccatryos<minor>/macro
+Date: October 2013
+Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
+Description: When written, this file lets one store macros with max 480
+ keystrokes for a specific button for a specific profile.
+ Button and profile indexes are included in written data.
+ The data has to be 2002 bytes long.
+ Before reading this file, control has to be written to select
+ which profile and key to read.
+Users: http://roccat.sourceforge.net
+
+What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/ryos/roccatryos<minor>/info
+Date: October 2013
+Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
+Description: When read, this file returns general data like firmware version.
+ The data is 8 bytes long.
+ This file is readonly.
+Users: http://roccat.sourceforge.net
+
+What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/ryos/roccatryos<minor>/reset
+Date: October 2013
+Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
+Description: When written, this file lets one reset the device.
+ The data has to be 3 bytes long.
+ This file is writeonly.
+Users: http://roccat.sourceforge.net
+
+What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/ryos/roccatryos<minor>/talk
+Date: October 2013
+Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
+Description: When written, this file lets one trigger easyshift functionality
+ from the host.
+ The data has to be 16 bytes long.
+ This file is writeonly.
+Users: http://roccat.sourceforge.net
+
+What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/ryos/roccatryos<minor>/light_control
+Date: October 2013
+Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
+Description: When written, this file lets one switch between stored and custom
+ light settings.
+ This attribute is only valid for the pro variant.
+ The data has to be 8 bytes long.
+ This file is writeonly.
+Users: http://roccat.sourceforge.net
+
+What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/ryos/roccatryos<minor>/stored_lights
+Date: October 2013
+Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
+Description: When written, this file lets one set per-key lighting for different
+ layers.
+ This attribute is only valid for the pro variant.
+ The data has to be 1382 bytes long.
+ Before reading this file, control has to be written to select
+ which profile to read.
+Users: http://roccat.sourceforge.net
+
+What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/ryos/roccatryos<minor>/custom_lights
+Date: October 2013
+Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
+Description: When written, this file lets one set the actual per-key lighting.
+ This attribute is only valid for the pro variant.
+ The data has to be 20 bytes long.
+ This file is writeonly.
+Users: http://roccat.sourceforge.net
+
+What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/ryos/roccatryos<minor>/light_macro
+Date: October 2013
+Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
+Description: When written, this file lets one set a light macro that is looped
+ whenever the device gets in dimness mode.
+ This attribute is only valid for the pro variant.
+ The data has to be 2002 bytes long.
+ Before reading this file, control has to be written to select
+ which profile to read.
+Users: http://roccat.sourceforge.net
diff --git a/Documentation/ABI/testing/sysfs-driver-hid-thingm b/Documentation/ABI/testing/sysfs-driver-hid-thingm
deleted file mode 100644
index abcffeedd20..00000000000
--- a/Documentation/ABI/testing/sysfs-driver-hid-thingm
+++ /dev/null
@@ -1,23 +0,0 @@
-What: /sys/class/leds/blink1::<serial>/rgb
-Date: January 2013
-Contact: Vivien Didelot <vivien.didelot@savoirfairelinux.com>
-Description: The ThingM blink1 is an USB RGB LED. The color notation is
- 3-byte hexadecimal. Read this attribute to get the last set
- color. Write the 24-bit hexadecimal color to change the current
- LED color. The default color is full white (0xFFFFFF).
- For instance, set the color to green with: echo 00FF00 > rgb
-
-What: /sys/class/leds/blink1::<serial>/fade
-Date: January 2013
-Contact: Vivien Didelot <vivien.didelot@savoirfairelinux.com>
-Description: This attribute allows to set a fade time in milliseconds for
- the next color change. Read the attribute to know the current
- fade time. The default value is set to 0 (no fade time). For
- instance, set a fade time of 2 seconds with: echo 2000 > fade
-
-What: /sys/class/leds/blink1::<serial>/play
-Date: January 2013
-Contact: Vivien Didelot <vivien.didelot@savoirfairelinux.com>
-Description: This attribute is used to play/pause the light patterns. Write 1
- to start playing, 0 to stop. Reading this attribute returns the
- current playing status.
diff --git a/Documentation/ABI/testing/sysfs-driver-hid-wiimote b/Documentation/ABI/testing/sysfs-driver-hid-wiimote
index ed5dd567d39..39dfa5cb1cc 100644
--- a/Documentation/ABI/testing/sysfs-driver-hid-wiimote
+++ b/Documentation/ABI/testing/sysfs-driver-hid-wiimote
@@ -57,3 +57,21 @@ Description: This attribute is only provided if the device was detected as a
Calibration data is already applied by the kernel to all input
values but may be used by user-space to perform other
transformations.
+
+What: /sys/bus/hid/drivers/wiimote/<dev>/pro_calib
+Date: October 2013
+KernelVersion: 3.13
+Contact: David Herrmann <dh.herrmann@gmail.com>
+Description: This attribute is only provided if the device was detected as a
+ pro-controller. It provides a single line with 4 calibration
+ values for all 4 analog sticks. Format is: "x1:y1 x2:y2". Data
+ is prefixed with a +/-. Each value is a signed 16bit number.
+ Data is encoded as decimal numbers and specifies the offsets of
+ the analog sticks of the pro-controller.
+ Calibration data is already applied by the kernel to all input
+ values but may be used by user-space to perform other
+ transformations.
+ Calibration data is detected by the kernel during device setup.
+ You can write "scan\n" into this file to re-trigger calibration.
+ You can also write data directly in the form "x1:y1 x2:y2" to
+ set the calibration values manually.
diff --git a/Documentation/ABI/testing/sysfs-driver-sunxi-sid b/Documentation/ABI/testing/sysfs-driver-sunxi-sid
new file mode 100644
index 00000000000..ffb9536f6ec
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-driver-sunxi-sid
@@ -0,0 +1,22 @@
+What: /sys/devices/*/<our-device>/eeprom
+Date: August 2013
+Contact: Oliver Schinagl <oliver@schinagl.nl>
+Description: read-only access to the SID (Security-ID) on current
+ A-series SoC's from Allwinner. Currently supports A10, A10s, A13
+ and A20 CPU's. The earlier A1x series of SoCs exports 16 bytes,
+ whereas the newer A20 SoC exposes 512 bytes split into sections.
+ Besides the 16 bytes of SID, there's also an SJTAG area,
+ HDMI-HDCP key and some custom keys. Below a quick overview, for
+ details see the user manual:
+ 0x000 128 bit root-key (sun[457]i)
+ 0x010 128 bit boot-key (sun7i)
+ 0x020 64 bit security-jtag-key (sun7i)
+ 0x028 16 bit key configuration (sun7i)
+ 0x02b 16 bit custom-vendor-key (sun7i)
+ 0x02c 320 bit low general key (sun7i)
+ 0x040 32 bit read-control access (sun7i)
+ 0x064 224 bit low general key (sun7i)
+ 0x080 2304 bit HDCP-key (sun7i)
+ 0x1a0 768 bit high general key (sun7i)
+Users: any user space application which wants to read the SID on
+ Allwinner's A-series of CPU's.
diff --git a/Documentation/ABI/testing/sysfs-firmware-efi b/Documentation/ABI/testing/sysfs-firmware-efi
new file mode 100644
index 00000000000..05874da7ce8
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-firmware-efi
@@ -0,0 +1,20 @@
+What: /sys/firmware/efi/fw_vendor
+Date: December 2013
+Contact: Dave Young <dyoung@redhat.com>
+Description: It shows the physical address of firmware vendor field in the
+ EFI system table.
+Users: Kexec
+
+What: /sys/firmware/efi/runtime
+Date: December 2013
+Contact: Dave Young <dyoung@redhat.com>
+Description: It shows the physical address of runtime service table entry in
+ the EFI system table.
+Users: Kexec
+
+What: /sys/firmware/efi/config_table
+Date: December 2013
+Contact: Dave Young <dyoung@redhat.com>
+Description: It shows the physical address of config table entry in the EFI
+ system table.
+Users: Kexec
diff --git a/Documentation/ABI/testing/sysfs-firmware-efi-runtime-map b/Documentation/ABI/testing/sysfs-firmware-efi-runtime-map
new file mode 100644
index 00000000000..c61b9b348e9
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-firmware-efi-runtime-map
@@ -0,0 +1,34 @@
+What: /sys/firmware/efi/runtime-map/
+Date: December 2013
+Contact: Dave Young <dyoung@redhat.com>
+Description: Switching efi runtime services to virtual mode requires
+ that all efi memory ranges which have the runtime attribute
+ bit set to be mapped to virtual addresses.
+
+ The efi runtime services can only be switched to virtual
+ mode once without rebooting. The kexec kernel must maintain
+ the same physical to virtual address mappings as the first
+ kernel. The mappings are exported to sysfs so userspace tools
+ can reassemble them and pass them into the kexec kernel.
+
+ /sys/firmware/efi/runtime-map/ is the directory the kernel
+ exports that information in.
+
+ subdirectories are named with the number of the memory range:
+
+ /sys/firmware/efi/runtime-map/0
+ /sys/firmware/efi/runtime-map/1
+ /sys/firmware/efi/runtime-map/2
+ /sys/firmware/efi/runtime-map/3
+ ...
+
+ Each subdirectory contains five files:
+
+ attribute : The attributes of the memory range.
+ num_pages : The size of the memory range in pages.
+ phys_addr : The physical address of the memory range.
+ type : The type of the memory range.
+ virt_addr : The virtual address of the memory range.
+
+ Above values are all hexadecimal numbers with the '0x' prefix.
+Users: Kexec
diff --git a/Documentation/ABI/testing/sysfs-firmware-ofw b/Documentation/ABI/testing/sysfs-firmware-ofw
new file mode 100644
index 00000000000..f562b188e71
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-firmware-ofw
@@ -0,0 +1,28 @@
+What: /sys/firmware/devicetree/*
+Date: November 2013
+Contact: Grant Likely <grant.likely@linaro.org>
+Description:
+ When using OpenFirmware or a Flattened Device Tree to enumerate
+ hardware, the device tree structure will be exposed in this
+ directory.
+
+ It is possible for multiple device-tree directories to exist.
+ Some device drivers use a separate detached device tree which
+ have no attachment to the system tree and will appear in a
+ different subdirectory under /sys/firmware/devicetree.
+
+ Userspace must not use the /sys/firmware/devicetree/base
+ path directly, but instead should follow /proc/device-tree
+ symlink. It is possible that the absolute path will change
+ in the future, but the symlink is the stable ABI.
+
+ The /proc/device-tree symlink replaces the devicetree /proc
+ filesystem support, and has largely the same semantics and
+ should be compatible with existing userspace.
+
+ The contents of /sys/firmware/devicetree/ is a
+ hierarchy of directories, one per device tree node. The
+ directory name is the resolved path component name (node
+ name plus address). Properties are represented as files
+ in the directory. The contents of each file is the exact
+ binary data from the device tree.
diff --git a/Documentation/ABI/testing/sysfs-fs-f2fs b/Documentation/ABI/testing/sysfs-fs-f2fs
index 31942efcaf0..62dd72522d6 100644
--- a/Documentation/ABI/testing/sysfs-fs-f2fs
+++ b/Documentation/ABI/testing/sysfs-fs-f2fs
@@ -24,3 +24,46 @@ Date: July 2013
Contact: "Namjae Jeon" <namjae.jeon@samsung.com>
Description:
Controls the victim selection policy for garbage collection.
+
+What: /sys/fs/f2fs/<disk>/reclaim_segments
+Date: October 2013
+Contact: "Jaegeuk Kim" <jaegeuk.kim@samsung.com>
+Description:
+ Controls the issue rate of segment discard commands.
+
+What: /sys/fs/f2fs/<disk>/ipu_policy
+Date: November 2013
+Contact: "Jaegeuk Kim" <jaegeuk.kim@samsung.com>
+Description:
+ Controls the in-place-update policy.
+
+What: /sys/fs/f2fs/<disk>/min_ipu_util
+Date: November 2013
+Contact: "Jaegeuk Kim" <jaegeuk.kim@samsung.com>
+Description:
+ Controls the FS utilization condition for the in-place-update
+ policies.
+
+What: /sys/fs/f2fs/<disk>/max_small_discards
+Date: November 2013
+Contact: "Jaegeuk Kim" <jaegeuk.kim@samsung.com>
+Description:
+ Controls the issue rate of small discard commands.
+
+What: /sys/fs/f2fs/<disk>/max_victim_search
+Date: January 2014
+Contact: "Jaegeuk Kim" <jaegeuk.kim@samsung.com>
+Description:
+ Controls the number of trials to find a victim segment.
+
+What: /sys/fs/f2fs/<disk>/dir_level
+Date: March 2014
+Contact: "Jaegeuk Kim" <jaegeuk.kim@samsung.com>
+Description:
+ Controls the directory level for large directory.
+
+What: /sys/fs/f2fs/<disk>/ram_thresh
+Date: March 2014
+Contact: "Jaegeuk Kim" <jaegeuk.kim@samsung.com>
+Description:
+ Controls the memory footprint used by f2fs.
diff --git a/Documentation/ABI/testing/sysfs-kernel-boot_params b/Documentation/ABI/testing/sysfs-kernel-boot_params
new file mode 100644
index 00000000000..eca38ce2852
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-kernel-boot_params
@@ -0,0 +1,38 @@
+What: /sys/kernel/boot_params
+Date: December 2013
+Contact: Dave Young <dyoung@redhat.com>
+Description: The /sys/kernel/boot_params directory contains two
+ files: "data" and "version" and one subdirectory "setup_data".
+ It is used to export the kernel boot parameters of an x86
+ platform to userspace for kexec and debugging purpose.
+
+ If there's no setup_data in boot_params the subdirectory will
+ not be created.
+
+ "data" file is the binary representation of struct boot_params.
+
+ "version" file is the string representation of boot
+ protocol version.
+
+ "setup_data" subdirectory contains the setup_data data
+ structure in boot_params. setup_data is maintained in kernel
+ as a link list. In "setup_data" subdirectory there's one
+ subdirectory for each link list node named with the number
+ of the list nodes. The list node subdirectory contains two
+ files "type" and "data". "type" file is the string
+ representation of setup_data type. "data" file is the binary
+ representation of setup_data payload.
+
+ The whole boot_params directory structure is like below:
+ /sys/kernel/boot_params
+ |__ data
+ |__ setup_data
+ | |__ 0
+ | | |__ data
+ | | |__ type
+ | |__ 1
+ | |__ data
+ | |__ type
+ |__ version
+
+Users: Kexec
diff --git a/Documentation/ABI/testing/sysfs-kernel-vmcoreinfo b/Documentation/ABI/testing/sysfs-kernel-vmcoreinfo
new file mode 100644
index 00000000000..7bd81168e06
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-kernel-vmcoreinfo
@@ -0,0 +1,14 @@
+What: /sys/kernel/vmcoreinfo
+Date: October 2007
+KernelVersion: 2.6.24
+Contact: Ken'ichi Ohmichi <oomichi@mxs.nes.nec.co.jp>
+ Kexec Mailing List <kexec@lists.infradead.org>
+ Vivek Goyal <vgoyal@redhat.com>
+Description
+ Shows physical address and size of vmcoreinfo ELF note.
+ First value contains physical address of note in hex and
+ second value contains the size of note in hex. This ELF
+ note info is parsed by second kernel and exported to user
+ space as part of ELF note in /proc/vmcore file. This note
+ contains various information like struct size, symbol
+ values, page size etc.
diff --git a/Documentation/ABI/testing/sysfs-module b/Documentation/ABI/testing/sysfs-module
index 47064c2b1f7..0aac02e7fb0 100644
--- a/Documentation/ABI/testing/sysfs-module
+++ b/Documentation/ABI/testing/sysfs-module
@@ -49,3 +49,4 @@ Description: Module taint flags:
O - out-of-tree module
F - force-loaded module
C - staging driver module
+ E - unsigned module
diff --git a/Documentation/ABI/testing/sysfs-platform-brcmstb-gisb-arb b/Documentation/ABI/testing/sysfs-platform-brcmstb-gisb-arb
new file mode 100644
index 00000000000..f1bad92bbe2
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-platform-brcmstb-gisb-arb
@@ -0,0 +1,8 @@
+What: /sys/devices/../../gisb_arb_timeout
+Date: May 2014
+KernelVersion: 3.17
+Contact: Florian Fainelli <f.fainelli@gmail.com>
+Description:
+ Returns the currently configured raw timeout value of the
+ Broadcom Set Top Box internal GISB bus arbiter. Minimum value
+ is 1, and maximum value is 0xffffffff.
diff --git a/Documentation/ABI/testing/sysfs-platform-chipidea-usb-otg b/Documentation/ABI/testing/sysfs-platform-chipidea-usb-otg
new file mode 100644
index 00000000000..151c59578db
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-platform-chipidea-usb-otg
@@ -0,0 +1,56 @@
+What: /sys/bus/platform/devices/ci_hdrc.0/inputs/a_bus_req
+Date: Feb 2014
+Contact: Li Jun <b47624@freescale.com>
+Description:
+ Can be set and read.
+ Set a_bus_req(A-device bus request) input to be 1 if
+ the application running on the A-device wants to use the bus,
+ and to be 0 when the application no longer wants to use
+ the bus(or wants to work as peripheral). a_bus_req can also
+ be set to 1 by kernel in response to remote wakeup signaling
+ from the B-device, the A-device should decide to resume the bus.
+
+ Valid values are "1" and "0".
+
+ Reading: returns 1 if the application running on the A-device
+ is using the bus as host role, otherwise 0.
+
+What: /sys/bus/platform/devices/ci_hdrc.0/inputs/a_bus_drop
+Date: Feb 2014
+Contact: Li Jun <b47624@freescale.com>
+Description:
+ Can be set and read
+ The a_bus_drop(A-device bus drop) input is 1 when the
+ application running on the A-device wants to power down
+ the bus, and is 0 otherwise, When a_bus_drop is 1, then
+ the a_bus_req shall be 0.
+
+ Valid values are "1" and "0".
+
+ Reading: returns 1 if the bus is off(vbus is turned off) by
+ A-device, otherwise 0.
+
+What: /sys/bus/platform/devices/ci_hdrc.0/inputs/b_bus_req
+Date: Feb 2014
+Contact: Li Jun <b47624@freescale.com>
+Description:
+ Can be set and read.
+ The b_bus_req(B-device bus request) input is 1 during the time
+ that the application running on the B-device wants to use the
+ bus as host, and is 0 when the application no longer wants to
+ work as host and decides to switch back to be peripheral.
+
+ Valid values are "1" and "0".
+
+ Reading: returns if the application running on the B device
+ is using the bus as host role, otherwise 0.
+
+What: /sys/bus/platform/devices/ci_hdrc.0/inputs/a_clr_err
+Date: Feb 2014
+Contact: Li Jun <b47624@freescale.com>
+Description:
+ Only can be set.
+ The a_clr_err(A-device Vbus error clear) input is used to clear
+ vbus error, then A-device will power down the bus.
+
+ Valid value is "1"
diff --git a/Documentation/ABI/testing/sysfs-platform-tahvo-usb b/Documentation/ABI/testing/sysfs-platform-tahvo-usb
new file mode 100644
index 00000000000..f6e20ce4b53
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-platform-tahvo-usb
@@ -0,0 +1,16 @@
+What: /sys/bus/platform/devices/tahvo-usb/otg_mode
+Date: December 2013
+Contact: Aaro Koskinen <aaro.koskinen@iki.fi>
+Description:
+ Set or read the current OTG mode. Valid values are "host" and
+ "peripheral".
+
+ Reading: returns the current mode.
+
+What: /sys/bus/platform/devices/tahvo-usb/vbus
+Date: December 2013
+Contact: Aaro Koskinen <aaro.koskinen@iki.fi>
+Description:
+ Read the current VBUS state.
+
+ Reading: returns "on" or "off".
diff --git a/Documentation/ABI/testing/sysfs-power b/Documentation/ABI/testing/sysfs-power
index 217772615d0..f4551816329 100644
--- a/Documentation/ABI/testing/sysfs-power
+++ b/Documentation/ABI/testing/sysfs-power
@@ -1,28 +1,40 @@
What: /sys/power/
Date: August 2006
-Contact: Rafael J. Wysocki <rjw@sisk.pl>
+Contact: Rafael J. Wysocki <rjw@rjwysocki.net>
Description:
The /sys/power directory will contain files that will
provide a unified interface to the power management
subsystem.
What: /sys/power/state
-Date: August 2006
-Contact: Rafael J. Wysocki <rjw@sisk.pl>
+Date: May 2014
+Contact: Rafael J. Wysocki <rjw@rjwysocki.net>
Description:
- The /sys/power/state file controls the system power state.
- Reading from this file returns what states are supported,
- which is hard-coded to 'standby' (Power-On Suspend), 'mem'
- (Suspend-to-RAM), and 'disk' (Suspend-to-Disk).
+ The /sys/power/state file controls system sleep states.
+ Reading from this file returns the available sleep state
+ labels, which may be "mem", "standby", "freeze" and "disk"
+ (hibernation). The meanings of the first three labels depend on
+ the relative_sleep_states command line argument as follows:
+ 1) relative_sleep_states = 1
+ "mem", "standby", "freeze" represent non-hibernation sleep
+ states from the deepest ("mem", always present) to the
+ shallowest ("freeze"). "standby" and "freeze" may or may
+ not be present depending on the capabilities of the
+ platform. "freeze" can only be present if "standby" is
+ present.
+ 2) relative_sleep_states = 0 (default)
+ "mem" - "suspend-to-RAM", present if supported.
+ "standby" - "power-on suspend", present if supported.
+ "freeze" - "suspend-to-idle", always present.
Writing to this file one of these strings causes the system to
- transition into that state. Please see the file
- Documentation/power/states.txt for a description of each of
- these states.
+ transition into the corresponding state, if available. See
+ Documentation/power/states.txt for a description of what
+ "suspend-to-RAM", "power-on suspend" and "suspend-to-idle" mean.
What: /sys/power/disk
Date: September 2006
-Contact: Rafael J. Wysocki <rjw@sisk.pl>
+Contact: Rafael J. Wysocki <rjw@rjwysocki.net>
Description:
The /sys/power/disk file controls the operating mode of the
suspend-to-disk mechanism. Reading from this file returns
@@ -67,7 +79,7 @@ Description:
What: /sys/power/image_size
Date: August 2006
-Contact: Rafael J. Wysocki <rjw@sisk.pl>
+Contact: Rafael J. Wysocki <rjw@rjwysocki.net>
Description:
The /sys/power/image_size file controls the size of the image
created by the suspend-to-disk mechanism. It can be written a
@@ -84,7 +96,7 @@ Description:
What: /sys/power/pm_trace
Date: August 2006
-Contact: Rafael J. Wysocki <rjw@sisk.pl>
+Contact: Rafael J. Wysocki <rjw@rjwysocki.net>
Description:
The /sys/power/pm_trace file controls the code which saves the
last PM event point in the RTC across reboots, so that you can
@@ -133,7 +145,7 @@ Description:
What: /sys/power/pm_async
Date: January 2009
-Contact: Rafael J. Wysocki <rjw@sisk.pl>
+Contact: Rafael J. Wysocki <rjw@rjwysocki.net>
Description:
The /sys/power/pm_async file controls the switch allowing the
user space to enable or disable asynchronous suspend and resume
@@ -146,7 +158,7 @@ Description:
What: /sys/power/wakeup_count
Date: July 2010
-Contact: Rafael J. Wysocki <rjw@sisk.pl>
+Contact: Rafael J. Wysocki <rjw@rjwysocki.net>
Description:
The /sys/power/wakeup_count file allows user space to put the
system into a sleep state while taking into account the
@@ -161,7 +173,7 @@ Description:
What: /sys/power/reserved_size
Date: May 2011
-Contact: Rafael J. Wysocki <rjw@sisk.pl>
+Contact: Rafael J. Wysocki <rjw@rjwysocki.net>
Description:
The /sys/power/reserved_size file allows user space to control
the amount of memory reserved for allocations made by device
@@ -175,7 +187,7 @@ Description:
What: /sys/power/autosleep
Date: April 2012
-Contact: Rafael J. Wysocki <rjw@sisk.pl>
+Contact: Rafael J. Wysocki <rjw@rjwysocki.net>
Description:
The /sys/power/autosleep file can be written one of the strings
returned by reads from /sys/power/state. If that happens, a
@@ -192,7 +204,7 @@ Description:
What: /sys/power/wake_lock
Date: February 2012
-Contact: Rafael J. Wysocki <rjw@sisk.pl>
+Contact: Rafael J. Wysocki <rjw@rjwysocki.net>
Description:
The /sys/power/wake_lock file allows user space to create
wakeup source objects and activate them on demand (if one of
@@ -219,7 +231,7 @@ Description:
What: /sys/power/wake_unlock
Date: February 2012
-Contact: Rafael J. Wysocki <rjw@sisk.pl>
+Contact: Rafael J. Wysocki <rjw@rjwysocki.net>
Description:
The /sys/power/wake_unlock file allows user space to deactivate
wakeup sources created with the help of /sys/power/wake_lock.
diff --git a/Documentation/ABI/testing/sysfs-ptp b/Documentation/ABI/testing/sysfs-ptp
index 05aeedf1779..44806a678f1 100644
--- a/Documentation/ABI/testing/sysfs-ptp
+++ b/Documentation/ABI/testing/sysfs-ptp
@@ -54,6 +54,26 @@ Description:
This file contains the number of programmable periodic
output channels offered by the PTP hardware clock.
+What: /sys/class/ptp/ptpN/n_pins
+Date: March 2014
+Contact: Richard Cochran <richardcochran@gmail.com>
+Description:
+ This file contains the number of programmable pins
+ offered by the PTP hardware clock.
+
+What: /sys/class/ptp/ptpN/pins
+Date: March 2014
+Contact: Richard Cochran <richardcochran@gmail.com>
+Description:
+ This directory contains one file for each programmable
+ pin offered by the PTP hardware clock. The file name
+ is the hardware dependent pin name. Reading from this
+ file produces two numbers, the assigned function (see
+ the PTP_PF_ enumeration values in linux/ptp_clock.h)
+ and the channel number. The function and channel
+ assignment may be changed by two writing numbers into
+ the file.
+
What: /sys/class/ptp/ptpN/pps_avaiable
Date: September 2010
Contact: Richard Cochran <richardcochran@gmail.com>
diff --git a/Documentation/Changes b/Documentation/Changes
index b1758088527..227bec88021 100644
--- a/Documentation/Changes
+++ b/Documentation/Changes
@@ -73,6 +73,11 @@ Perl
You will need perl 5 and the following modules: Getopt::Long, Getopt::Std,
File::Basename, and File::Find to build the kernel.
+BC
+--
+
+You will need bc to build kernels 3.10 and higher
+
System utilities
================
@@ -196,13 +201,6 @@ chmod 0644 /dev/cpu/microcode
as root before you can use this. You'll probably also want to
get the user-space microcode_ctl utility to use with this.
-Powertweak
-----------
-
-If you are running v0.1.17 or earlier, you should upgrade to
-version v0.99.0 or higher. Running old versions may cause problems
-with programs using shared memory.
-
udev
----
udev is a userspace application for populating /dev dynamically with
@@ -282,12 +280,9 @@ that is possible.
mcelog
------
-In Linux 2.6.31+ the i386 kernel needs to run the mcelog utility
-as a regular cronjob similar to the x86-64 kernel to process and log
-machine check events when CONFIG_X86_NEW_MCE is enabled. Machine check
-events are errors reported by the CPU. Processing them is strongly encouraged.
-All x86-64 kernels since 2.6.4 require the mcelog utility to
-process machine checks.
+On x86 kernels the mcelog utility is needed to process and log machine check
+events when CONFIG_X86_MCE is enabled. Machine check events are errors reported
+by the CPU. Processing them is strongly encouraged.
Getting updated software
========================
@@ -366,10 +361,6 @@ Intel P6 microcode
------------------
o <http://www.urbanmyth.org/microcode/>
-Powertweak
-----------
-o <http://powertweak.sourceforge.net/>
-
udev
----
o <http://www.kernel.org/pub/linux/utils/kernel/hotplug/udev.html>
diff --git a/Documentation/CodingStyle b/Documentation/CodingStyle
index 7fe0546c504..6b6bef31e95 100644
--- a/Documentation/CodingStyle
+++ b/Documentation/CodingStyle
@@ -660,15 +660,23 @@ There are a number of driver model diagnostic macros in <linux/device.h>
which you should use to make sure messages are matched to the right device
and driver, and are tagged with the right level: dev_err(), dev_warn(),
dev_info(), and so forth. For messages that aren't associated with a
-particular device, <linux/printk.h> defines pr_debug() and pr_info().
+particular device, <linux/printk.h> defines pr_notice(), pr_info(),
+pr_warn(), pr_err(), etc.
Coming up with good debugging messages can be quite a challenge; and once
-you have them, they can be a huge help for remote troubleshooting. Such
-messages should be compiled out when the DEBUG symbol is not defined (that
-is, by default they are not included). When you use dev_dbg() or pr_debug(),
-that's automatic. Many subsystems have Kconfig options to turn on -DDEBUG.
-A related convention uses VERBOSE_DEBUG to add dev_vdbg() messages to the
-ones already enabled by DEBUG.
+you have them, they can be a huge help for remote troubleshooting. However
+debug message printing is handled differently than printing other non-debug
+messages. While the other pr_XXX() functions print unconditionally,
+pr_debug() does not; it is compiled out by default, unless either DEBUG is
+defined or CONFIG_DYNAMIC_DEBUG is set. That is true for dev_dbg() also,
+and a related convention uses VERBOSE_DEBUG to add dev_vdbg() messages to
+the ones already enabled by DEBUG.
+
+Many subsystems have Kconfig debug options to turn on -DDEBUG in the
+corresponding Makefile; in other cases specific files #define DEBUG. And
+when a debug message should be unconditionally printed, such as if it is
+already inside a debug-related #ifdef secton, printk(KERN_DEBUG ...) can be
+used.
Chapter 14: Allocating memory
diff --git a/Documentation/DMA-API-HOWTO.txt b/Documentation/DMA-API-HOWTO.txt
index 14129f149a7..dcbbe3602d7 100644
--- a/Documentation/DMA-API-HOWTO.txt
+++ b/Documentation/DMA-API-HOWTO.txt
@@ -9,16 +9,76 @@ This is a guide to device driver writers on how to use the DMA API
with example pseudo-code. For a concise description of the API, see
DMA-API.txt.
-Most of the 64bit platforms have special hardware that translates bus
-addresses (DMA addresses) into physical addresses. This is similar to
-how page tables and/or a TLB translates virtual addresses to physical
-addresses on a CPU. This is needed so that e.g. PCI devices can
-access with a Single Address Cycle (32bit DMA address) any page in the
-64bit physical address space. Previously in Linux those 64bit
-platforms had to set artificial limits on the maximum RAM size in the
-system, so that the virt_to_bus() static scheme works (the DMA address
-translation tables were simply filled on bootup to map each bus
-address to the physical page __pa(bus_to_virt())).
+ CPU and DMA addresses
+
+There are several kinds of addresses involved in the DMA API, and it's
+important to understand the differences.
+
+The kernel normally uses virtual addresses. Any address returned by
+kmalloc(), vmalloc(), and similar interfaces is a virtual address and can
+be stored in a "void *".
+
+The virtual memory system (TLB, page tables, etc.) translates virtual
+addresses to CPU physical addresses, which are stored as "phys_addr_t" or
+"resource_size_t". The kernel manages device resources like registers as
+physical addresses. These are the addresses in /proc/iomem. The physical
+address is not directly useful to a driver; it must use ioremap() to map
+the space and produce a virtual address.
+
+I/O devices use a third kind of address: a "bus address" or "DMA address".
+If a device has registers at an MMIO address, or if it performs DMA to read
+or write system memory, the addresses used by the device are bus addresses.
+In some systems, bus addresses are identical to CPU physical addresses, but
+in general they are not. IOMMUs and host bridges can produce arbitrary
+mappings between physical and bus addresses.
+
+Here's a picture and some examples:
+
+ CPU CPU Bus
+ Virtual Physical Address
+ Address Address Space
+ Space Space
+
+ +-------+ +------+ +------+
+ | | |MMIO | Offset | |
+ | | Virtual |Space | applied | |
+ C +-------+ --------> B +------+ ----------> +------+ A
+ | | mapping | | by host | |
+ +-----+ | | | | bridge | | +--------+
+ | | | | +------+ | | | |
+ | CPU | | | | RAM | | | | Device |
+ | | | | | | | | | |
+ +-----+ +-------+ +------+ +------+ +--------+
+ | | Virtual |Buffer| Mapping | |
+ X +-------+ --------> Y +------+ <---------- +------+ Z
+ | | mapping | RAM | by IOMMU
+ | | | |
+ | | | |
+ +-------+ +------+
+
+During the enumeration process, the kernel learns about I/O devices and
+their MMIO space and the host bridges that connect them to the system. For
+example, if a PCI device has a BAR, the kernel reads the bus address (A)
+from the BAR and converts it to a CPU physical address (B). The address B
+is stored in a struct resource and usually exposed via /proc/iomem. When a
+driver claims a device, it typically uses ioremap() to map physical address
+B at a virtual address (C). It can then use, e.g., ioread32(C), to access
+the device registers at bus address A.
+
+If the device supports DMA, the driver sets up a buffer using kmalloc() or
+a similar interface, which returns a virtual address (X). The virtual
+memory system maps X to a physical address (Y) in system RAM. The driver
+can use virtual address X to access the buffer, but the device itself
+cannot because DMA doesn't go through the CPU virtual memory system.
+
+In some simple systems, the device can do DMA directly to physical address
+Y. But in many others, there is IOMMU hardware that translates bus
+addresses to physical addresses, e.g., it translates Z to Y. This is part
+of the reason for the DMA API: the driver can give a virtual address X to
+an interface like dma_map_single(), which sets up any required IOMMU
+mapping and returns the bus address Z. The driver then tells the device to
+do DMA to Z, and the IOMMU maps it to the buffer at address Y in system
+RAM.
So that Linux can use the dynamic DMA mapping, it needs some help from the
drivers, namely it has to take into account that DMA addresses should be
@@ -29,17 +89,17 @@ The following API will work of course even on platforms where no such
hardware exists.
Note that the DMA API works with any bus independent of the underlying
-microprocessor architecture. You should use the DMA API rather than
-the bus specific DMA API (e.g. pci_dma_*).
+microprocessor architecture. You should use the DMA API rather than the
+bus-specific DMA API, i.e., use the dma_map_*() interfaces rather than the
+pci_map_*() interfaces.
First of all, you should make sure
#include <linux/dma-mapping.h>
-is in your driver. This file will obtain for you the definition of the
-dma_addr_t (which can hold any valid DMA address for the platform)
-type which should be used everywhere you hold a DMA (bus) address
-returned from the DMA mapping functions.
+is in your driver, which provides the definition of dma_addr_t. This type
+can hold any valid DMA or bus address for the platform and should be used
+everywhere you hold a DMA address returned from the DMA mapping functions.
What memory is DMA'able?
@@ -101,22 +161,31 @@ style to do this even if your device holds the default setting,
because this shows that you did think about these issues wrt. your
device.
-The query is performed via a call to dma_set_mask():
+The query is performed via a call to dma_set_mask_and_coherent():
- int dma_set_mask(struct device *dev, u64 mask);
+ int dma_set_mask_and_coherent(struct device *dev, u64 mask);
-The query for consistent allocations is performed via a call to
-dma_set_coherent_mask():
+which will query the mask for both streaming and coherent APIs together.
+If you have some special requirements, then the following two separate
+queries can be used instead:
- int dma_set_coherent_mask(struct device *dev, u64 mask);
+ The query for streaming mappings is performed via a call to
+ dma_set_mask():
+
+ int dma_set_mask(struct device *dev, u64 mask);
+
+ The query for consistent allocations is performed via a call
+ to dma_set_coherent_mask():
+
+ int dma_set_coherent_mask(struct device *dev, u64 mask);
Here, dev is a pointer to the device struct of your device, and mask
is a bit mask describing which bits of an address your device
supports. It returns zero if your card can perform DMA properly on
the machine given the address mask you provided. In general, the
-device struct of your device is embedded in the bus specific device
-struct of your device. For example, a pointer to the device struct of
-your PCI device is pdev->dev (pdev is a pointer to the PCI device
+device struct of your device is embedded in the bus-specific device
+struct of your device. For example, &pdev->dev is a pointer to the
+device struct of a PCI device (pdev is a pointer to the PCI device
struct of your device).
If it returns non-zero, your device cannot perform DMA properly on
@@ -137,9 +206,8 @@ exactly why.
The standard 32-bit addressing device would do something like this:
- if (dma_set_mask(dev, DMA_BIT_MASK(32))) {
- printk(KERN_WARNING
- "mydev: No suitable DMA available.\n");
+ if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32))) {
+ dev_warn(dev, "mydev: No suitable DMA available\n");
goto ignore_this_device;
}
@@ -161,8 +229,7 @@ all 64-bits when accessing streaming DMA:
} else if (!dma_set_mask(dev, DMA_BIT_MASK(32))) {
using_dac = 0;
} else {
- printk(KERN_WARNING
- "mydev: No suitable DMA available.\n");
+ dev_warn(dev, "mydev: No suitable DMA available\n");
goto ignore_this_device;
}
@@ -171,37 +238,33 @@ the case would look like this:
int using_dac, consistent_using_dac;
- if (!dma_set_mask(dev, DMA_BIT_MASK(64))) {
+ if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64))) {
using_dac = 1;
consistent_using_dac = 1;
- dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
- } else if (!dma_set_mask(dev, DMA_BIT_MASK(32))) {
+ } else if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32))) {
using_dac = 0;
consistent_using_dac = 0;
- dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
} else {
- printk(KERN_WARNING
- "mydev: No suitable DMA available.\n");
+ dev_warn(dev, "mydev: No suitable DMA available\n");
goto ignore_this_device;
}
-dma_set_coherent_mask() will always be able to set the same or a
-smaller mask as dma_set_mask(). However for the rare case that a
-device driver only uses consistent allocations, one would have to
-check the return value from dma_set_coherent_mask().
+The coherent mask will always be able to set the same or a smaller mask as
+the streaming mask. However for the rare case that a device driver only
+uses consistent allocations, one would have to check the return value from
+dma_set_coherent_mask().
Finally, if your device can only drive the low 24-bits of
address you might do something like:
if (dma_set_mask(dev, DMA_BIT_MASK(24))) {
- printk(KERN_WARNING
- "mydev: 24-bit DMA addressing not available.\n");
+ dev_warn(dev, "mydev: 24-bit DMA addressing not available\n");
goto ignore_this_device;
}
-When dma_set_mask() is successful, and returns zero, the kernel saves
-away this mask you have provided. The kernel will use this
-information later when you make DMA mappings.
+When dma_set_mask() or dma_set_mask_and_coherent() is successful, and
+returns zero, the kernel saves away this mask you have provided. The
+kernel will use this information later when you make DMA mappings.
There is a case which we are aware of at this time, which is worth
mentioning in this documentation. If your device supports multiple
@@ -225,14 +288,14 @@ Here is pseudo-code showing how this might be done:
card->playback_enabled = 1;
} else {
card->playback_enabled = 0;
- printk(KERN_WARNING "%s: Playback disabled due to DMA limitations.\n",
+ dev_warn(dev, "%s: Playback disabled due to DMA limitations\n",
card->name);
}
if (!dma_set_mask(dev, RECORD_ADDRESS_BITS)) {
card->record_enabled = 1;
} else {
card->record_enabled = 0;
- printk(KERN_WARNING "%s: Record disabled due to DMA limitations.\n",
+ dev_warn(dev, "%s: Record disabled due to DMA limitations\n",
card->name);
}
@@ -324,7 +387,7 @@ context with the GFP_ATOMIC flag.
Size is the length of the region you want to allocate, in bytes.
This routine will allocate RAM for that region, so it acts similarly to
-__get_free_pages (but takes size instead of a page order). If your
+__get_free_pages() (but takes size instead of a page order). If your
driver needs regions sized smaller than a page, you may prefer using
the dma_pool interface, described below.
@@ -336,11 +399,11 @@ the consistent DMA mask has been explicitly changed via
dma_set_coherent_mask(). This is true of the dma_pool interface as
well.
-dma_alloc_coherent returns two values: the virtual address which you
+dma_alloc_coherent() returns two values: the virtual address which you
can use to access it from the CPU and dma_handle which you pass to the
card.
-The cpu return address and the DMA bus master address are both
+The CPU virtual address and the DMA bus address are both
guaranteed to be aligned to the smallest PAGE_SIZE order which
is greater than or equal to the requested size. This invariant
exists (for example) to guarantee that if you allocate a chunk
@@ -352,13 +415,13 @@ To unmap and free such a DMA region, you call:
dma_free_coherent(dev, size, cpu_addr, dma_handle);
where dev, size are the same as in the above call and cpu_addr and
-dma_handle are the values dma_alloc_coherent returned to you.
+dma_handle are the values dma_alloc_coherent() returned to you.
This function may not be called in interrupt context.
If your driver needs lots of smaller memory regions, you can write
-custom code to subdivide pages returned by dma_alloc_coherent,
+custom code to subdivide pages returned by dma_alloc_coherent(),
or you can use the dma_pool API to do that. A dma_pool is like
-a kmem_cache, but it uses dma_alloc_coherent not __get_free_pages.
+a kmem_cache, but it uses dma_alloc_coherent(), not __get_free_pages().
Also, it understands common hardware constraints for alignment,
like queue heads needing to be aligned on N byte boundaries.
@@ -366,37 +429,37 @@ Create a dma_pool like this:
struct dma_pool *pool;
- pool = dma_pool_create(name, dev, size, align, alloc);
+ pool = dma_pool_create(name, dev, size, align, boundary);
The "name" is for diagnostics (like a kmem_cache name); dev and size
are as above. The device's hardware alignment requirement for this
type of data is "align" (which is expressed in bytes, and must be a
power of two). If your device has no boundary crossing restrictions,
-pass 0 for alloc; passing 4096 says memory allocated from this pool
+pass 0 for boundary; passing 4096 says memory allocated from this pool
must not cross 4KByte boundaries (but at that time it may be better to
-go for dma_alloc_coherent directly instead).
+use dma_alloc_coherent() directly instead).
-Allocate memory from a dma pool like this:
+Allocate memory from a DMA pool like this:
cpu_addr = dma_pool_alloc(pool, flags, &dma_handle);
-flags are SLAB_KERNEL if blocking is permitted (not in_interrupt nor
-holding SMP locks), SLAB_ATOMIC otherwise. Like dma_alloc_coherent,
+flags are GFP_KERNEL if blocking is permitted (not in_interrupt nor
+holding SMP locks), GFP_ATOMIC otherwise. Like dma_alloc_coherent(),
this returns two values, cpu_addr and dma_handle.
Free memory that was allocated from a dma_pool like this:
dma_pool_free(pool, cpu_addr, dma_handle);
-where pool is what you passed to dma_pool_alloc, and cpu_addr and
-dma_handle are the values dma_pool_alloc returned. This function
+where pool is what you passed to dma_pool_alloc(), and cpu_addr and
+dma_handle are the values dma_pool_alloc() returned. This function
may be called in interrupt context.
Destroy a dma_pool by calling:
dma_pool_destroy(pool);
-Make sure you've called dma_pool_free for all memory allocated
+Make sure you've called dma_pool_free() for all memory allocated
from a pool before you destroy the pool. This function may not
be called in interrupt context.
@@ -411,7 +474,7 @@ one of the following values:
DMA_FROM_DEVICE
DMA_NONE
-One should provide the exact DMA direction if you know it.
+You should provide the exact DMA direction if you know it.
DMA_TO_DEVICE means "from main memory to the device"
DMA_FROM_DEVICE means "from the device to main memory"
@@ -482,14 +545,14 @@ and to unmap it:
dma_unmap_single(dev, dma_handle, size, direction);
You should call dma_mapping_error() as dma_map_single() could fail and return
-error. Not all dma implementations support dma_mapping_error() interface.
+error. Not all DMA implementations support the dma_mapping_error() interface.
However, it is a good practice to call dma_mapping_error() interface, which
will invoke the generic mapping error check interface. Doing so will ensure
-that the mapping code will work correctly on all dma implementations without
+that the mapping code will work correctly on all DMA implementations without
any dependency on the specifics of the underlying implementation. Using the
returned address without checking for errors could result in failures ranging
from panics to silent data corruption. A couple of examples of incorrect ways
-to check for errors that make assumptions about the underlying dma
+to check for errors that make assumptions about the underlying DMA
implementation are as follows and these are applicable to dma_map_page() as
well.
@@ -509,13 +572,13 @@ Incorrect example 2:
goto map_error;
}
-You should call dma_unmap_single when the DMA activity is finished, e.g.
+You should call dma_unmap_single() when the DMA activity is finished, e.g.,
from the interrupt which told you that the DMA transfer is done.
-Using cpu pointers like this for single mappings has a disadvantage,
+Using CPU pointers like this for single mappings has a disadvantage:
you cannot reference HIGHMEM memory in this way. Thus, there is a
-map/unmap interface pair akin to dma_{map,unmap}_single. These
-interfaces deal with page/offset pairs instead of cpu pointers.
+map/unmap interface pair akin to dma_{map,unmap}_single(). These
+interfaces deal with page/offset pairs instead of CPU pointers.
Specifically:
struct device *dev = &my_dev->dev;
@@ -543,7 +606,7 @@ Here, "offset" means byte offset within the given page.
You should call dma_mapping_error() as dma_map_page() could fail and return
error as outlined under the dma_map_single() discussion.
-You should call dma_unmap_page when the DMA activity is finished, e.g.
+You should call dma_unmap_page() when the DMA activity is finished, e.g.,
from the interrupt which told you that the DMA transfer is done.
With scatterlists, you map a region gathered from several regions by:
@@ -581,18 +644,16 @@ PLEASE NOTE: The 'nents' argument to the dma_unmap_sg call must be
it should _NOT_ be the 'count' value _returned_ from the
dma_map_sg call.
-Every dma_map_{single,sg} call should have its dma_unmap_{single,sg}
-counterpart, because the bus address space is a shared resource (although
-in some ports the mapping is per each BUS so less devices contend for the
-same bus address space) and you could render the machine unusable by eating
-all bus addresses.
+Every dma_map_{single,sg}() call should have its dma_unmap_{single,sg}()
+counterpart, because the bus address space is a shared resource and
+you could render the machine unusable by consuming all bus addresses.
If you need to use the same streaming DMA region multiple times and touch
the data in between the DMA transfers, the buffer needs to be synced
-properly in order for the cpu and device to see the most uptodate and
+properly in order for the CPU and device to see the most up-to-date and
correct copy of the DMA buffer.
-So, firstly, just map it with dma_map_{single,sg}, and after each DMA
+So, firstly, just map it with dma_map_{single,sg}(), and after each DMA
transfer call either:
dma_sync_single_for_cpu(dev, dma_handle, size, direction);
@@ -604,7 +665,7 @@ or:
as appropriate.
Then, if you wish to let the device get at the DMA area again,
-finish accessing the data with the cpu, and then before actually
+finish accessing the data with the CPU, and then before actually
giving the buffer to the hardware call either:
dma_sync_single_for_device(dev, dma_handle, size, direction);
@@ -616,9 +677,9 @@ or:
as appropriate.
After the last DMA transfer call one of the DMA unmap routines
-dma_unmap_{single,sg}. If you don't touch the data from the first dma_map_*
-call till dma_unmap_*, then you don't have to call the dma_sync_*
-routines at all.
+dma_unmap_{single,sg}(). If you don't touch the data from the first
+dma_map_*() call till dma_unmap_*(), then you don't have to call the
+dma_sync_*() routines at all.
Here is pseudo code which shows a situation in which you would need
to use the dma_sync_*() interfaces.
@@ -683,12 +744,12 @@ to use the dma_sync_*() interfaces.
}
}
-Drivers converted fully to this interface should not use virt_to_bus any
-longer, nor should they use bus_to_virt. Some drivers have to be changed a
-little bit, because there is no longer an equivalent to bus_to_virt in the
+Drivers converted fully to this interface should not use virt_to_bus() any
+longer, nor should they use bus_to_virt(). Some drivers have to be changed a
+little bit, because there is no longer an equivalent to bus_to_virt() in the
dynamic DMA mapping scheme - you have to always store the DMA addresses
-returned by the dma_alloc_coherent, dma_pool_alloc, and dma_map_single
-calls (dma_map_sg stores them in the scatterlist itself if the platform
+returned by the dma_alloc_coherent(), dma_pool_alloc(), and dma_map_single()
+calls (dma_map_sg() stores them in the scatterlist itself if the platform
supports dynamic DMA mapping in hardware) in your driver structures and/or
in the card registers.
@@ -702,9 +763,9 @@ as it is impossible to correctly support them.
DMA address space is limited on some architectures and an allocation
failure can be determined by:
-- checking if dma_alloc_coherent returns NULL or dma_map_sg returns 0
+- checking if dma_alloc_coherent() returns NULL or dma_map_sg returns 0
-- checking the returned dma_addr_t of dma_map_single and dma_map_page
+- checking the dma_addr_t returned from dma_map_single() and dma_map_page()
by using dma_mapping_error():
dma_addr_t dma_handle;
@@ -787,7 +848,7 @@ Example 2: (if buffers are allocated in a loop, unmap all mapped buffers when
dma_unmap_single(array[i].dma_addr);
}
-Networking drivers must call dev_kfree_skb to free the socket buffer
+Networking drivers must call dev_kfree_skb() to free the socket buffer
and return NETDEV_TX_OK if the DMA mapping fails on the transmit hook
(ndo_start_xmit). This means that the socket buffer is just dropped in
the failure case.
@@ -824,7 +885,7 @@ transform some example code.
DEFINE_DMA_UNMAP_LEN(len);
};
-2) Use dma_unmap_{addr,len}_set to set these values.
+2) Use dma_unmap_{addr,len}_set() to set these values.
Example, before:
ringp->mapping = FOO;
@@ -835,7 +896,7 @@ transform some example code.
dma_unmap_addr_set(ringp, mapping, FOO);
dma_unmap_len_set(ringp, len, BAR);
-3) Use dma_unmap_{addr,len} to access these values.
+3) Use dma_unmap_{addr,len}() to access these values.
Example, before:
dma_unmap_single(dev, ringp->mapping, ringp->len,
diff --git a/Documentation/DMA-API.txt b/Documentation/DMA-API.txt
index 78a6c569d20..52088408668 100644
--- a/Documentation/DMA-API.txt
+++ b/Documentation/DMA-API.txt
@@ -4,22 +4,26 @@
James E.J. Bottomley <James.Bottomley@HansenPartnership.com>
This document describes the DMA API. For a more gentle introduction
-of the API (and actual examples) see
-Documentation/DMA-API-HOWTO.txt.
+of the API (and actual examples), see Documentation/DMA-API-HOWTO.txt.
-This API is split into two pieces. Part I describes the API. Part II
-describes the extensions to the API for supporting non-consistent
-memory machines. Unless you know that your driver absolutely has to
-support non-consistent platforms (this is usually only legacy
-platforms) you should only use the API described in part I.
+This API is split into two pieces. Part I describes the basic API.
+Part II describes extensions for supporting non-consistent memory
+machines. Unless you know that your driver absolutely has to support
+non-consistent platforms (this is usually only legacy platforms) you
+should only use the API described in part I.
Part I - dma_ API
-------------------------------------
-To get the dma_ API, you must #include <linux/dma-mapping.h>
+To get the dma_ API, you must #include <linux/dma-mapping.h>. This
+provides dma_addr_t and the interfaces described below.
+A dma_addr_t can hold any valid DMA or bus address for the platform. It
+can be given to a device to use as a DMA source or target. A CPU cannot
+reference a dma_addr_t directly because there may be translation between
+its physical address space and the bus address space.
-Part Ia - Using large dma-coherent buffers
+Part Ia - Using large DMA-coherent buffers
------------------------------------------
void *
@@ -33,20 +37,21 @@ to make sure to flush the processor's write buffers before telling
devices to read that memory.)
This routine allocates a region of <size> bytes of consistent memory.
-It also returns a <dma_handle> which may be cast to an unsigned
-integer the same width as the bus and used as the physical address
-base of the region.
-Returns: a pointer to the allocated region (in the processor's virtual
+It returns a pointer to the allocated region (in the processor's virtual
address space) or NULL if the allocation failed.
+It also returns a <dma_handle> which may be cast to an unsigned integer the
+same width as the bus and given to the device as the bus address base of
+the region.
+
Note: consistent memory can be expensive on some platforms, and the
minimum allocation length may be as big as a page, so you should
consolidate your requests for consistent memory as much as possible.
The simplest way to do that is to use the dma_pool calls (see below).
-The flag parameter (dma_alloc_coherent only) allows the caller to
-specify the GFP_ flags (see kmalloc) for the allocation (the
+The flag parameter (dma_alloc_coherent() only) allows the caller to
+specify the GFP_ flags (see kmalloc()) for the allocation (the
implementation may choose to ignore flags that affect the location of
the returned memory, like GFP_DMA).
@@ -61,24 +66,24 @@ void
dma_free_coherent(struct device *dev, size_t size, void *cpu_addr,
dma_addr_t dma_handle)
-Free the region of consistent memory you previously allocated. dev,
-size and dma_handle must all be the same as those passed into the
-consistent allocate. cpu_addr must be the virtual address returned by
-the consistent allocate.
+Free a region of consistent memory you previously allocated. dev,
+size and dma_handle must all be the same as those passed into
+dma_alloc_coherent(). cpu_addr must be the virtual address returned by
+the dma_alloc_coherent().
Note that unlike their sibling allocation calls, these routines
may only be called with IRQs enabled.
-Part Ib - Using small dma-coherent buffers
+Part Ib - Using small DMA-coherent buffers
------------------------------------------
To get this part of the dma_ API, you must #include <linux/dmapool.h>
-Many drivers need lots of small dma-coherent memory regions for DMA
+Many drivers need lots of small DMA-coherent memory regions for DMA
descriptors or I/O buffers. Rather than allocating in units of a page
or more using dma_alloc_coherent(), you can use DMA pools. These work
-much like a struct kmem_cache, except that they use the dma-coherent allocator,
+much like a struct kmem_cache, except that they use the DMA-coherent allocator,
not __get_free_pages(). Also, they understand common hardware constraints
for alignment, like queue heads needing to be aligned on N-byte boundaries.
@@ -87,7 +92,7 @@ for alignment, like queue heads needing to be aligned on N-byte boundaries.
dma_pool_create(const char *name, struct device *dev,
size_t size, size_t align, size_t alloc);
-The pool create() routines initialize a pool of dma-coherent buffers
+dma_pool_create() initializes a pool of DMA-coherent buffers
for use with a given device. It must be called in a context which
can sleep.
@@ -102,25 +107,26 @@ from this pool must not cross 4KByte boundaries.
void *dma_pool_alloc(struct dma_pool *pool, gfp_t gfp_flags,
dma_addr_t *dma_handle);
-This allocates memory from the pool; the returned memory will meet the size
-and alignment requirements specified at creation time. Pass GFP_ATOMIC to
-prevent blocking, or if it's permitted (not in_interrupt, not holding SMP locks),
-pass GFP_KERNEL to allow blocking. Like dma_alloc_coherent(), this returns
-two values: an address usable by the cpu, and the dma address usable by the
-pool's device.
+This allocates memory from the pool; the returned memory will meet the
+size and alignment requirements specified at creation time. Pass
+GFP_ATOMIC to prevent blocking, or if it's permitted (not
+in_interrupt, not holding SMP locks), pass GFP_KERNEL to allow
+blocking. Like dma_alloc_coherent(), this returns two values: an
+address usable by the CPU, and the DMA address usable by the pool's
+device.
void dma_pool_free(struct dma_pool *pool, void *vaddr,
dma_addr_t addr);
This puts memory back into the pool. The pool is what was passed to
-the pool allocation routine; the cpu (vaddr) and dma addresses are what
+dma_pool_alloc(); the CPU (vaddr) and DMA addresses are what
were returned when that routine allocated the memory being freed.
void dma_pool_destroy(struct dma_pool *pool);
-The pool destroy() routines free the resources of the pool. They must be
+dma_pool_destroy() frees the resources of the pool. It must be
called in a context which can sleep. Make sure you've freed all allocated
memory back to the pool before you destroy it.
@@ -142,6 +148,14 @@ internal API for use by the platform than an external API for use by
driver writers.
int
+dma_set_mask_and_coherent(struct device *dev, u64 mask)
+
+Checks to see if the mask is possible and updates the device
+streaming and coherent DMA mask parameters if it is.
+
+Returns: 0 if successful and a negative error if not.
+
+int
dma_set_mask(struct device *dev, u64 mask)
Checks to see if the mask is possible and updates the device
@@ -179,9 +193,9 @@ dma_map_single(struct device *dev, void *cpu_addr, size_t size,
enum dma_data_direction direction)
Maps a piece of processor virtual memory so it can be accessed by the
-device and returns the physical handle of the memory.
+device and returns the bus address of the memory.
-The direction for both api's may be converted freely by casting.
+The direction for both APIs may be converted freely by casting.
However the dma_ API uses a strongly typed enumerator for its
direction:
@@ -190,31 +204,30 @@ DMA_TO_DEVICE data is going from the memory to the device
DMA_FROM_DEVICE data is coming from the device to the memory
DMA_BIDIRECTIONAL direction isn't known
-Notes: Not all memory regions in a machine can be mapped by this
-API. Further, regions that appear to be physically contiguous in
-kernel virtual space may not be contiguous as physical memory. Since
-this API does not provide any scatter/gather capability, it will fail
-if the user tries to map a non-physically contiguous piece of memory.
-For this reason, it is recommended that memory mapped by this API be
-obtained only from sources which guarantee it to be physically contiguous
-(like kmalloc).
-
-Further, the physical address of the memory must be within the
-dma_mask of the device (the dma_mask represents a bit mask of the
-addressable region for the device. I.e., if the physical address of
-the memory anded with the dma_mask is still equal to the physical
-address, then the device can perform DMA to the memory). In order to
+Notes: Not all memory regions in a machine can be mapped by this API.
+Further, contiguous kernel virtual space may not be contiguous as
+physical memory. Since this API does not provide any scatter/gather
+capability, it will fail if the user tries to map a non-physically
+contiguous piece of memory. For this reason, memory to be mapped by
+this API should be obtained from sources which guarantee it to be
+physically contiguous (like kmalloc).
+
+Further, the bus address of the memory must be within the
+dma_mask of the device (the dma_mask is a bit mask of the
+addressable region for the device, i.e., if the bus address of
+the memory ANDed with the dma_mask is still equal to the bus
+address, then the device can perform DMA to the memory). To
ensure that the memory allocated by kmalloc is within the dma_mask,
the driver may specify various platform-dependent flags to restrict
-the physical memory range of the allocation (e.g. on x86, GFP_DMA
-guarantees to be within the first 16Mb of available physical memory,
+the bus address range of the allocation (e.g., on x86, GFP_DMA
+guarantees to be within the first 16MB of available bus addresses,
as required by ISA devices).
Note also that the above constraints on physical contiguity and
dma_mask may not apply if the platform has an IOMMU (a device which
-supplies a physical to virtual mapping between the I/O memory bus and
-the device). However, to be portable, device driver writers may *not*
-assume that such an IOMMU exists.
+maps an I/O bus address to a physical memory address). However, to be
+portable, device driver writers may *not* assume that such an IOMMU
+exists.
Warnings: Memory coherency operates at a granularity called the cache
line width. In order for memory mapped by this API to operate
@@ -273,9 +286,9 @@ cache width is.
int
dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
-In some circumstances dma_map_single and dma_map_page will fail to create
+In some circumstances dma_map_single() and dma_map_page() will fail to create
a mapping. A driver can check for these errors by testing the returned
-dma address with dma_mapping_error(). A non-zero return value means the mapping
+DMA address with dma_mapping_error(). A non-zero return value means the mapping
could not be created and the driver should take appropriate action (e.g.
reduce current DMA mapping usage or delay and try again later).
@@ -283,7 +296,7 @@ reduce current DMA mapping usage or delay and try again later).
dma_map_sg(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction direction)
-Returns: the number of physical segments mapped (this may be shorter
+Returns: the number of bus address segments mapped (this may be shorter
than <nents> passed in if some elements of the scatter/gather list are
physically or virtually adjacent and an IOMMU maps them with a single
entry).
@@ -291,7 +304,7 @@ entry).
Please note that the sg cannot be mapped again if it has been mapped once.
The mapping process is allowed to destroy information in the sg.
-As with the other mapping interfaces, dma_map_sg can fail. When it
+As with the other mapping interfaces, dma_map_sg() can fail. When it
does, 0 is returned and a driver must take appropriate action. It is
critical that the driver do something, in the case of a block driver
aborting the request or even oopsing is better than doing nothing and
@@ -327,7 +340,7 @@ must be the same as those and passed in to the scatter/gather mapping
API.
Note: <nents> must be the number you passed in, *not* the number of
-physical entries returned.
+bus address entries returned.
void
dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, size_t size,
@@ -342,7 +355,7 @@ void
dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems,
enum dma_data_direction direction)
-Synchronise a single contiguous or scatter/gather mapping for the cpu
+Synchronise a single contiguous or scatter/gather mapping for the CPU
and device. With the sync_sg API, all the parameters must be the same
as those passed into the single mapping API. With the sync_single API,
you can use dma_handle and size parameters that aren't identical to
@@ -383,10 +396,10 @@ The four functions above are just like the counterpart functions
without the _attrs suffixes, except that they pass an optional
struct dma_attrs*.
-struct dma_attrs encapsulates a set of "dma attributes". For the
+struct dma_attrs encapsulates a set of "DMA attributes". For the
definition of struct dma_attrs see linux/dma-attrs.h.
-The interpretation of dma attributes is architecture-specific, and
+The interpretation of DMA attributes is architecture-specific, and
each attribute should be documented in Documentation/DMA-attributes.txt.
If struct dma_attrs* is NULL, the semantics of each of these
@@ -450,7 +463,7 @@ Note: where the platform can return consistent memory, it will
guarantee that the sync points become nops.
Warning: Handling non-consistent memory is a real pain. You should
-only ever use this API if you positively know your driver will be
+only use this API if you positively know your driver will be
required to work on one of the rare (usually non-PCI) architectures
that simply cannot make consistent memory.
@@ -484,30 +497,29 @@ continuing on for size. Again, you *must* observe the cache line
boundaries when doing this.
int
-dma_declare_coherent_memory(struct device *dev, dma_addr_t bus_addr,
+dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
dma_addr_t device_addr, size_t size, int
flags)
-Declare region of memory to be handed out by dma_alloc_coherent when
+Declare region of memory to be handed out by dma_alloc_coherent() when
it's asked for coherent memory for this device.
-bus_addr is the physical address to which the memory is currently
-assigned in the bus responding region (this will be used by the
-platform to perform the mapping).
+phys_addr is the CPU physical address to which the memory is currently
+assigned (this will be ioremapped so the CPU can access the region).
-device_addr is the physical address the device needs to be programmed
-with actually to address this memory (this will be handed out as the
+device_addr is the bus address the device needs to be programmed
+with to actually address this memory (this will be handed out as the
dma_addr_t in dma_alloc_coherent()).
size is the size of the area (must be multiples of PAGE_SIZE).
-flags can be or'd together and are:
+flags can be ORed together and are:
DMA_MEMORY_MAP - request that the memory returned from
dma_alloc_coherent() be directly writable.
DMA_MEMORY_IO - request that the memory returned from
-dma_alloc_coherent() be addressable using read/write/memcpy_toio etc.
+dma_alloc_coherent() be addressable using read()/write()/memcpy_toio() etc.
One or both of these flags must be present.
@@ -564,7 +576,7 @@ region is occupied.
Part III - Debug drivers use of the DMA-API
-------------------------------------------
-The DMA-API as described above as some constraints. DMA addresses must be
+The DMA-API as described above has some constraints. DMA addresses must be
released with the corresponding function with the same size for example. With
the advent of hardware IOMMUs it becomes more and more important that drivers
do not violate those constraints. In the worst case such a violation can
@@ -682,11 +694,11 @@ architectural default.
void debug_dmap_mapping_error(struct device *dev, dma_addr_t dma_addr);
dma-debug interface debug_dma_mapping_error() to debug drivers that fail
-to check dma mapping errors on addresses returned by dma_map_single() and
+to check DMA mapping errors on addresses returned by dma_map_single() and
dma_map_page() interfaces. This interface clears a flag set by
debug_dma_map_page() to indicate that dma_mapping_error() has been called by
the driver. When driver does unmap, debug_dma_unmap() checks the flag and if
this flag is still set, prints warning message that includes call trace that
leads up to the unmap. This interface can be called from dma_mapping_error()
-routines to enable dma mapping error check debugging.
+routines to enable DMA mapping error check debugging.
diff --git a/Documentation/DMA-ISA-LPC.txt b/Documentation/DMA-ISA-LPC.txt
index e767805b418..b1a19835e90 100644
--- a/Documentation/DMA-ISA-LPC.txt
+++ b/Documentation/DMA-ISA-LPC.txt
@@ -16,7 +16,7 @@ To do ISA style DMA you need to include two headers:
#include <asm/dma.h>
The first is the generic DMA API used to convert virtual addresses to
-physical addresses (see Documentation/DMA-API.txt for details).
+bus addresses (see Documentation/DMA-API.txt for details).
The second contains the routines specific to ISA DMA transfers. Since
this is not present on all platforms make sure you construct your
@@ -50,7 +50,7 @@ early as possible and not release it until the driver is unloaded.)
Part III - Address translation
------------------------------
-To translate the virtual address to a physical use the normal DMA
+To translate the virtual address to a bus address, use the normal DMA
API. Do _not_ use isa_virt_to_phys() even though it does the same
thing. The reason for this is that the function isa_virt_to_phys()
will require a Kconfig dependency to ISA, not just ISA_DMA_API which
diff --git a/Documentation/DMA-attributes.txt b/Documentation/DMA-attributes.txt
index e59480db9ee..18dc52c4f2a 100644
--- a/Documentation/DMA-attributes.txt
+++ b/Documentation/DMA-attributes.txt
@@ -13,7 +13,7 @@ all pending DMA writes to complete, and thus provides a mechanism to
strictly order DMA from a device across all intervening busses and
bridges. This barrier is not specific to a particular type of
interconnect, it applies to the system as a whole, and so its
-implementation must account for the idiosyncracies of the system all
+implementation must account for the idiosyncrasies of the system all
the way from the DMA device to memory.
As an example of a situation where DMA_ATTR_WRITE_BARRIER would be
@@ -60,7 +60,7 @@ such mapping is non-trivial task and consumes very limited resources
Buffers allocated with this attribute can be only passed to user space
by calling dma_mmap_attrs(). By using this API, you are guaranteeing
that you won't dereference the pointer returned by dma_alloc_attr(). You
-can threat it as a cookie that must be passed to dma_mmap_attrs() and
+can treat it as a cookie that must be passed to dma_mmap_attrs() and
dma_free_attrs(). Make sure that both of these also get this attribute
set on each call.
@@ -82,7 +82,7 @@ to 'device' domain, what synchronizes CPU caches for the given region
(usually it means that the cache has been flushed or invalidated
depending on the dma direction). However, next calls to
dma_map_{single,page,sg}() for other devices will perform exactly the
-same sychronization operation on the CPU cache. CPU cache sychronization
+same synchronization operation on the CPU cache. CPU cache synchronization
might be a time consuming operation, especially if the buffers are
large, so it is highly recommended to avoid it if possible.
DMA_ATTR_SKIP_CPU_SYNC allows platform code to skip synchronization of
@@ -98,5 +98,5 @@ DMA_ATTR_FORCE_CONTIGUOUS
By default DMA-mapping subsystem is allowed to assemble the buffer
allocated by dma_alloc_attrs() function from individual pages if it can
be mapped as contiguous chunk into device dma address space. By
-specifing this attribute the allocated buffer is forced to be contiguous
+specifying this attribute the allocated buffer is forced to be contiguous
also in physical memory.
diff --git a/Documentation/DocBook/.gitignore b/Documentation/DocBook/.gitignore
index 720f245ceb1..7ebd5465d92 100644
--- a/Documentation/DocBook/.gitignore
+++ b/Documentation/DocBook/.gitignore
@@ -10,5 +10,6 @@
*.out
*.png
*.gif
+*.svg
media-indices.tmpl
media-entities.tmpl
diff --git a/Documentation/DocBook/80211.tmpl b/Documentation/DocBook/80211.tmpl
index f403ec3c5c9..d9b9416c989 100644
--- a/Documentation/DocBook/80211.tmpl
+++ b/Documentation/DocBook/80211.tmpl
@@ -98,6 +98,9 @@
!Finclude/net/cfg80211.h priv_to_wiphy
!Finclude/net/cfg80211.h set_wiphy_dev
!Finclude/net/cfg80211.h wdev_priv
+!Finclude/net/cfg80211.h ieee80211_iface_limit
+!Finclude/net/cfg80211.h ieee80211_iface_combination
+!Finclude/net/cfg80211.h cfg80211_check_combinations
</chapter>
<chapter>
<title>Actions and configuration</title>
@@ -152,8 +155,8 @@
!Finclude/net/cfg80211.h cfg80211_scan_request
!Finclude/net/cfg80211.h cfg80211_scan_done
!Finclude/net/cfg80211.h cfg80211_bss
-!Finclude/net/cfg80211.h cfg80211_inform_bss_frame
-!Finclude/net/cfg80211.h cfg80211_inform_bss
+!Finclude/net/cfg80211.h cfg80211_inform_bss_width_frame
+!Finclude/net/cfg80211.h cfg80211_inform_bss_width
!Finclude/net/cfg80211.h cfg80211_unlink_bss
!Finclude/net/cfg80211.h cfg80211_find_ie
!Finclude/net/cfg80211.h ieee80211_bss_get_ie
diff --git a/Documentation/DocBook/Makefile b/Documentation/DocBook/Makefile
index bc3d9f8c0a9..bec06659e0e 100644
--- a/Documentation/DocBook/Makefile
+++ b/Documentation/DocBook/Makefile
@@ -14,9 +14,10 @@ DOCBOOKS := z8530book.xml device-drivers.xml \
genericirq.xml s390-drivers.xml uio-howto.xml scsi.xml \
80211.xml debugobjects.xml sh.xml regulator.xml \
alsa-driver-api.xml writing-an-alsa-driver.xml \
- tracepoint.xml drm.xml media_api.xml
+ tracepoint.xml drm.xml media_api.xml w1.xml \
+ writing_musb_glue_layer.xml
-include $(srctree)/Documentation/DocBook/media/Makefile
+include Documentation/DocBook/media/Makefile
###
# The build process is as follows (targets):
@@ -36,6 +37,7 @@ PS_METHOD = $(prefer-db2x)
# The targets that may be used.
PHONY += xmldocs sgmldocs psdocs pdfdocs htmldocs mandocs installmandocs cleandocs
+targets += $(DOCBOOKS)
BOOKS := $(addprefix $(obj)/,$(DOCBOOKS))
xmldocs: $(BOOKS)
sgmldocs: xmldocs
@@ -54,17 +56,18 @@ htmldocs: $(HTML)
MAN := $(patsubst %.xml, %.9, $(BOOKS))
mandocs: $(MAN)
+ $(if $(wildcard $(obj)/man/*.9),gzip -f $(obj)/man/*.9)
installmandocs: mandocs
mkdir -p /usr/local/man/man9/
- install Documentation/DocBook/man/*.9.gz /usr/local/man/man9/
+ install $(obj)/man/*.9.gz /usr/local/man/man9/
###
#External programs used
KERNELDOC = $(srctree)/scripts/kernel-doc
DOCPROC = $(objtree)/scripts/docproc
-XMLTOFLAGS = -m $(srctree)/Documentation/DocBook/stylesheet.xsl
+XMLTOFLAGS = -m $(srctree)/$(src)/stylesheet.xsl
XMLTOFLAGS += --skip-validation
###
@@ -86,21 +89,9 @@ define rule_docproc
) > $(dir $@).$(notdir $@).cmd
endef
-%.xml: %.tmpl FORCE
+%.xml: %.tmpl $(KERNELDOC) $(DOCPROC) FORCE
$(call if_changed_rule,docproc)
-###
-#Read in all saved dependency files
-cmd_files := $(wildcard $(foreach f,$(BOOKS),$(dir $(f)).$(notdir $(f)).cmd))
-
-ifneq ($(cmd_files),)
- include $(cmd_files)
-endif
-
-###
-# Changes in kernel-doc force a rebuild of all documentation
-$(BOOKS): $(KERNELDOC)
-
# Tell kbuild to always build the programs
always := $(hostprogs-y)
@@ -138,16 +129,16 @@ quiet_cmd_db2pdf = PDF $@
index = index.html
-main_idx = Documentation/DocBook/$(index)
+main_idx = $(obj)/$(index)
build_main_index = rm -rf $(main_idx); \
echo '<h1>Linux Kernel HTML Documentation</h1>' >> $(main_idx) && \
echo '<h2>Kernel Version: $(KERNELVERSION)</h2>' >> $(main_idx) && \
cat $(HTML) >> $(main_idx)
quiet_cmd_db2html = HTML $@
- cmd_db2html = xmlto xhtml $(XMLTOFLAGS) -o $(patsubst %.html,%,$@) $< && \
+ cmd_db2html = xmlto html $(XMLTOFLAGS) -o $(patsubst %.html,%,$@) $< && \
echo '<a HREF="$(patsubst %.html,%,$(notdir $@))/index.html"> \
- $(patsubst %.html,%,$(notdir $@))</a><p>' > $@
+ $(patsubst %.html,%,$(notdir $@))</a><p>' > $@
%.html: %.xml
@(which xmlto > /dev/null 2>&1) || \
@@ -159,7 +150,7 @@ quiet_cmd_db2html = HTML $@
cp $(PNG-$(basename $(notdir $@))) $(patsubst %.html,%,$@); fi
quiet_cmd_db2man = MAN $@
- cmd_db2man = if grep -q refentry $<; then xmlto man $(XMLTOFLAGS) -o $(obj)/man $< ; gzip -f $(obj)/man/*.9; fi
+ cmd_db2man = if grep -q refentry $<; then xmlto man $(XMLTOFLAGS) -o $(obj)/man $< ; fi
%.9 : %.xml
@(which xmlto > /dev/null 2>&1) || \
(echo "*** You need to install xmlto ***"; \
diff --git a/Documentation/DocBook/device-drivers.tmpl b/Documentation/DocBook/device-drivers.tmpl
index fe397f90a34..cc63f30de16 100644
--- a/Documentation/DocBook/device-drivers.tmpl
+++ b/Documentation/DocBook/device-drivers.tmpl
@@ -58,7 +58,7 @@
</sect1>
<sect1><title>Wait queues and Wake events</title>
!Iinclude/linux/wait.h
-!Ekernel/wait.c
+!Ekernel/sched/wait.c
</sect1>
<sect1><title>High-resolution timers</title>
!Iinclude/linux/ktime.h
@@ -87,7 +87,10 @@ X!Iinclude/linux/kobject.h
!Ekernel/printk/printk.c
!Ekernel/panic.c
!Ekernel/sys.c
-!Ekernel/rcupdate.c
+!Ekernel/rcu/srcu.c
+!Ekernel/rcu/tree.c
+!Ekernel/rcu/tree_plugin.h
+!Ekernel/rcu/update.c
</sect1>
<sect1><title>Device Resource Management</title>
@@ -273,7 +276,7 @@ X!Isound/sound_firmware.c
</para>
<sect1><title>Frame Buffer Memory</title>
-!Edrivers/video/fbmem.c
+!Edrivers/video/fbdev/core/fbmem.c
</sect1>
<!--
<sect1><title>Frame Buffer Console</title>
@@ -281,7 +284,7 @@ X!Edrivers/video/console/fbcon.c
</sect1>
-->
<sect1><title>Frame Buffer Colormap</title>
-!Edrivers/video/fbcmap.c
+!Edrivers/video/fbdev/core/fbcmap.c
</sect1>
<!-- FIXME:
drivers/video/fbgen.c has no docs, which stuffs up the sgml. Comment
@@ -291,11 +294,11 @@ X!Idrivers/video/fbgen.c
</sect1>
KAO -->
<sect1><title>Frame Buffer Video Mode Database</title>
-!Idrivers/video/modedb.c
-!Edrivers/video/modedb.c
+!Idrivers/video/fbdev/core/modedb.c
+!Edrivers/video/fbdev/core/modedb.c
</sect1>
<sect1><title>Frame Buffer Macintosh Video Mode Database</title>
-!Edrivers/video/macmodes.c
+!Edrivers/video/fbdev/macmodes.c
</sect1>
<sect1><title>Frame Buffer Fonts</title>
<para>
diff --git a/Documentation/DocBook/drm.tmpl b/Documentation/DocBook/drm.tmpl
index ed1d6d28902..7df3134ebc0 100644
--- a/Documentation/DocBook/drm.tmpl
+++ b/Documentation/DocBook/drm.tmpl
@@ -29,12 +29,26 @@
</address>
</affiliation>
</author>
+ <author>
+ <firstname>Daniel</firstname>
+ <surname>Vetter</surname>
+ <contrib>Contributions all over the place</contrib>
+ <affiliation>
+ <orgname>Intel Corporation</orgname>
+ <address>
+ <email>daniel.vetter@ffwll.ch</email>
+ </address>
+ </affiliation>
+ </author>
</authorgroup>
<copyright>
<year>2008-2009</year>
- <year>2012</year>
+ <year>2013-2014</year>
<holder>Intel Corporation</holder>
+ </copyright>
+ <copyright>
+ <year>2012</year>
<holder>Laurent Pinchart</holder>
</copyright>
@@ -60,7 +74,15 @@
<toc></toc>
- <!-- Introduction -->
+<part id="drmCore">
+ <title>DRM Core</title>
+ <partintro>
+ <para>
+ This first part of the DRM Developer's Guide documents core DRM code,
+ helper libraries for writing drivers and generic userspace interfaces
+ exposed by DRM drivers.
+ </para>
+ </partintro>
<chapter id="drmIntroduction">
<title>Introduction</title>
@@ -120,6 +142,12 @@
to register it with the DRM subsystem.
</para>
<para>
+ Newer drivers that no longer require a <structname>drm_bus</structname>
+ structure can alternatively use the low-level device initialization and
+ registration functions such as <function>drm_dev_alloc()</function> and
+ <function>drm_dev_register()</function> directly.
+ </para>
+ <para>
The <structname>drm_driver</structname> structure contains static
information that describes the driver and features it supports, and
pointers to methods that the DRM core will call to implement the DRM API.
@@ -260,12 +288,42 @@ char *date;</synopsis>
</sect3>
</sect2>
<sect2>
+ <title>Device Registration</title>
+ <para>
+ A number of functions are provided to help with device registration.
+ The functions deal with PCI, USB and platform devices, respectively.
+ </para>
+!Edrivers/gpu/drm/drm_pci.c
+!Edrivers/gpu/drm/drm_usb.c
+!Edrivers/gpu/drm/drm_platform.c
+ <para>
+ New drivers that no longer rely on the services provided by the
+ <structname>drm_bus</structname> structure can call the low-level
+ device registration functions directly. The
+ <function>drm_dev_alloc()</function> function can be used to allocate
+ and initialize a new <structname>drm_device</structname> structure.
+ Drivers will typically want to perform some additional setup on this
+ structure, such as allocating driver-specific data and storing a
+ pointer to it in the DRM device's <structfield>dev_private</structfield>
+ field. Drivers should also set the device's unique name using the
+ <function>drm_dev_set_unique()</function> function. After it has been
+ set up a device can be registered with the DRM subsystem by calling
+ <function>drm_dev_register()</function>. This will cause the device to
+ be exposed to userspace and will call the driver's
+ <structfield>.load()</structfield> implementation. When a device is
+ removed, the DRM device can safely be unregistered and freed by calling
+ <function>drm_dev_unregister()</function> followed by a call to
+ <function>drm_dev_unref()</function>.
+ </para>
+!Edrivers/gpu/drm/drm_stub.c
+ </sect2>
+ <sect2>
<title>Driver Load</title>
<para>
The <methodname>load</methodname> method is the driver and device
initialization entry point. The method is responsible for allocating and
- initializing driver private data, specifying supported performance
- counters, performing resource allocation and mapping (e.g. acquiring
+ initializing driver private data, performing resource allocation and
+ mapping (e.g. acquiring
clocks, mapping registers or allocating command buffers), initializing
the memory manager (<xref linkend="drm-memory-management"/>), installing
the IRQ handler (<xref linkend="drm-irq-registration"/>), setting up
@@ -295,7 +353,7 @@ char *date;</synopsis>
their <methodname>load</methodname> method called with flags to 0.
</para>
<sect3>
- <title>Driver Private &amp; Performance Counters</title>
+ <title>Driver Private Data</title>
<para>
The driver private hangs off the main
<structname>drm_device</structname> structure and can be used for
@@ -307,14 +365,6 @@ char *date;</synopsis>
<structname>drm_device</structname>.<structfield>dev_priv</structfield>
set to NULL when the driver is unloaded.
</para>
- <para>
- DRM supports several counters which were used for rough performance
- characterization. This stat counter system is deprecated and should not
- be used. If performance monitoring is desired, the developer should
- investigate and potentially enhance the kernel perf and tracing
- infrastructure to export GPU related performance information for
- consumption by performance monitoring tools and applications.
- </para>
</sect3>
<sect3 id="drm-irq-registration">
<title>IRQ Registration</title>
@@ -328,21 +378,13 @@ char *date;</synopsis>
<sect4>
<title>Managed IRQ Registration</title>
<para>
- Both the <function>drm_irq_install</function> and
- <function>drm_irq_uninstall</function> functions get the device IRQ by
- calling <function>drm_dev_to_irq</function>. This inline function will
- call a bus-specific operation to retrieve the IRQ number. For platform
- devices, <function>platform_get_irq</function>(..., 0) is used to
- retrieve the IRQ number.
- </para>
- <para>
<function>drm_irq_install</function> starts by calling the
<methodname>irq_preinstall</methodname> driver operation. The operation
is optional and must make sure that the interrupt will not get fired by
clearing all pending interrupt flags or disabling the interrupt.
</para>
<para>
- The IRQ will then be requested by a call to
+ The passed-in IRQ will then be requested by a call to
<function>request_irq</function>. If the DRIVER_IRQ_SHARED driver
feature flag is set, a shared (IRQF_SHARED) IRQ handler will be
requested.
@@ -445,7 +487,7 @@ char *date;</synopsis>
providing a solution to every graphics memory-related problems, GEM
identified common code between drivers and created a support library to
share it. GEM has simpler initialization and execution requirements than
- TTM, but has no video RAM management capabitilies and is thus limited to
+ TTM, but has no video RAM management capabilities and is thus limited to
UMA devices.
</para>
<sect2>
@@ -697,55 +739,16 @@ char *date;</synopsis>
respectively. The conversion is handled by the DRM core without any
driver-specific support.
</para>
- <para>
- Similar to global names, GEM file descriptors are also used to share GEM
- objects across processes. They offer additional security: as file
- descriptors must be explicitly sent over UNIX domain sockets to be shared
- between applications, they can't be guessed like the globally unique GEM
- names.
- </para>
- <para>
- Drivers that support GEM file descriptors, also known as the DRM PRIME
- API, must set the DRIVER_PRIME bit in the struct
- <structname>drm_driver</structname>
- <structfield>driver_features</structfield> field, and implement the
- <methodname>prime_handle_to_fd</methodname> and
- <methodname>prime_fd_to_handle</methodname> operations.
- </para>
- <para>
- <synopsis>int (*prime_handle_to_fd)(struct drm_device *dev,
- struct drm_file *file_priv, uint32_t handle,
- uint32_t flags, int *prime_fd);
- int (*prime_fd_to_handle)(struct drm_device *dev,
- struct drm_file *file_priv, int prime_fd,
- uint32_t *handle);</synopsis>
- Those two operations convert a handle to a PRIME file descriptor and
- vice versa. Drivers must use the kernel dma-buf buffer sharing framework
- to manage the PRIME file descriptors.
- </para>
- <para>
- While non-GEM drivers must implement the operations themselves, GEM
- drivers must use the <function>drm_gem_prime_handle_to_fd</function>
- and <function>drm_gem_prime_fd_to_handle</function> helper functions.
- Those helpers rely on the driver
- <methodname>gem_prime_export</methodname> and
- <methodname>gem_prime_import</methodname> operations to create a dma-buf
- instance from a GEM object (dma-buf exporter role) and to create a GEM
- object from a dma-buf instance (dma-buf importer role).
- </para>
- <para>
- <synopsis>struct dma_buf * (*gem_prime_export)(struct drm_device *dev,
- struct drm_gem_object *obj,
- int flags);
- struct drm_gem_object * (*gem_prime_import)(struct drm_device *dev,
- struct dma_buf *dma_buf);</synopsis>
- These two operations are mandatory for GEM drivers that support DRM
- PRIME.
- </para>
- <sect4>
- <title>DRM PRIME Helper Functions Reference</title>
-!Pdrivers/gpu/drm/drm_prime.c PRIME Helpers
- </sect4>
+ <para>
+ GEM also supports buffer sharing with dma-buf file descriptors through
+ PRIME. GEM-based drivers must use the provided helpers functions to
+ implement the exporting and importing correctly. See <xref linkend="drm-prime-support" />.
+ Since sharing file descriptors is inherently more secure than the
+ easily guessable and global GEM names it is the preferred buffer
+ sharing mechanism. Sharing buffers through GEM names is only supported
+ for legacy userspace. Furthermore PRIME also allows cross-device
+ buffer sharing since it is based on dma-bufs.
+ </para>
</sect3>
<sect3 id="drm-gem-objects-mapping">
<title>GEM Objects Mapping</title>
@@ -830,62 +833,6 @@ char *date;</synopsis>
</para>
</sect3>
<sect3>
- <title>Dumb GEM Objects</title>
- <para>
- The GEM API doesn't standardize GEM objects creation and leaves it to
- driver-specific ioctls. While not an issue for full-fledged graphics
- stacks that include device-specific userspace components (in libdrm for
- instance), this limit makes DRM-based early boot graphics unnecessarily
- complex.
- </para>
- <para>
- Dumb GEM objects partly alleviate the problem by providing a standard
- API to create dumb buffers suitable for scanout, which can then be used
- to create KMS frame buffers.
- </para>
- <para>
- To support dumb GEM objects drivers must implement the
- <methodname>dumb_create</methodname>,
- <methodname>dumb_destroy</methodname> and
- <methodname>dumb_map_offset</methodname> operations.
- </para>
- <itemizedlist>
- <listitem>
- <synopsis>int (*dumb_create)(struct drm_file *file_priv, struct drm_device *dev,
- struct drm_mode_create_dumb *args);</synopsis>
- <para>
- The <methodname>dumb_create</methodname> operation creates a GEM
- object suitable for scanout based on the width, height and depth
- from the struct <structname>drm_mode_create_dumb</structname>
- argument. It fills the argument's <structfield>handle</structfield>,
- <structfield>pitch</structfield> and <structfield>size</structfield>
- fields with a handle for the newly created GEM object and its line
- pitch and size in bytes.
- </para>
- </listitem>
- <listitem>
- <synopsis>int (*dumb_destroy)(struct drm_file *file_priv, struct drm_device *dev,
- uint32_t handle);</synopsis>
- <para>
- The <methodname>dumb_destroy</methodname> operation destroys a dumb
- GEM object created by <methodname>dumb_create</methodname>.
- </para>
- </listitem>
- <listitem>
- <synopsis>int (*dumb_map_offset)(struct drm_file *file_priv, struct drm_device *dev,
- uint32_t handle, uint64_t *offset);</synopsis>
- <para>
- The <methodname>dumb_map_offset</methodname> operation associates an
- mmap fake offset with the GEM object given by the handle and returns
- it. Drivers must use the
- <function>drm_gem_create_mmap_offset</function> function to
- associate the fake offset as described in
- <xref linkend="drm-gem-objects-mapping"/>.
- </para>
- </listitem>
- </itemizedlist>
- </sect3>
- <sect3>
<title>Memory Coherency</title>
<para>
When mapped to the device or used in a command buffer, backing pages
@@ -924,7 +871,99 @@ char *date;</synopsis>
abstracted from the client in libdrm.
</para>
</sect3>
- </sect2>
+ <sect3>
+ <title>GEM Function Reference</title>
+!Edrivers/gpu/drm/drm_gem.c
+ </sect3>
+ </sect2>
+ <sect2>
+ <title>VMA Offset Manager</title>
+!Pdrivers/gpu/drm/drm_vma_manager.c vma offset manager
+!Edrivers/gpu/drm/drm_vma_manager.c
+!Iinclude/drm/drm_vma_manager.h
+ </sect2>
+ <sect2 id="drm-prime-support">
+ <title>PRIME Buffer Sharing</title>
+ <para>
+ PRIME is the cross device buffer sharing framework in drm, originally
+ created for the OPTIMUS range of multi-gpu platforms. To userspace
+ PRIME buffers are dma-buf based file descriptors.
+ </para>
+ <sect3>
+ <title>Overview and Driver Interface</title>
+ <para>
+ Similar to GEM global names, PRIME file descriptors are
+ also used to share buffer objects across processes. They offer
+ additional security: as file descriptors must be explicitly sent over
+ UNIX domain sockets to be shared between applications, they can't be
+ guessed like the globally unique GEM names.
+ </para>
+ <para>
+ Drivers that support the PRIME
+ API must set the DRIVER_PRIME bit in the struct
+ <structname>drm_driver</structname>
+ <structfield>driver_features</structfield> field, and implement the
+ <methodname>prime_handle_to_fd</methodname> and
+ <methodname>prime_fd_to_handle</methodname> operations.
+ </para>
+ <para>
+ <synopsis>int (*prime_handle_to_fd)(struct drm_device *dev,
+ struct drm_file *file_priv, uint32_t handle,
+ uint32_t flags, int *prime_fd);
+int (*prime_fd_to_handle)(struct drm_device *dev,
+ struct drm_file *file_priv, int prime_fd,
+ uint32_t *handle);</synopsis>
+ Those two operations convert a handle to a PRIME file descriptor and
+ vice versa. Drivers must use the kernel dma-buf buffer sharing framework
+ to manage the PRIME file descriptors. Similar to the mode setting
+ API PRIME is agnostic to the underlying buffer object manager, as
+ long as handles are 32bit unsigned integers.
+ </para>
+ <para>
+ While non-GEM drivers must implement the operations themselves, GEM
+ drivers must use the <function>drm_gem_prime_handle_to_fd</function>
+ and <function>drm_gem_prime_fd_to_handle</function> helper functions.
+ Those helpers rely on the driver
+ <methodname>gem_prime_export</methodname> and
+ <methodname>gem_prime_import</methodname> operations to create a dma-buf
+ instance from a GEM object (dma-buf exporter role) and to create a GEM
+ object from a dma-buf instance (dma-buf importer role).
+ </para>
+ <para>
+ <synopsis>struct dma_buf * (*gem_prime_export)(struct drm_device *dev,
+ struct drm_gem_object *obj,
+ int flags);
+struct drm_gem_object * (*gem_prime_import)(struct drm_device *dev,
+ struct dma_buf *dma_buf);</synopsis>
+ These two operations are mandatory for GEM drivers that support
+ PRIME.
+ </para>
+ </sect3>
+ <sect3>
+ <title>PRIME Helper Functions</title>
+!Pdrivers/gpu/drm/drm_prime.c PRIME Helpers
+ </sect3>
+ </sect2>
+ <sect2>
+ <title>PRIME Function References</title>
+!Edrivers/gpu/drm/drm_prime.c
+ </sect2>
+ <sect2>
+ <title>DRM MM Range Allocator</title>
+ <sect3>
+ <title>Overview</title>
+!Pdrivers/gpu/drm/drm_mm.c Overview
+ </sect3>
+ <sect3>
+ <title>LRU Scan/Eviction Support</title>
+!Pdrivers/gpu/drm/drm_mm.c lru scan roaster
+ </sect3>
+ </sect2>
+ <sect2>
+ <title>DRM MM Range Allocator Function References</title>
+!Edrivers/gpu/drm/drm_mm.c
+!Iinclude/drm/drm_mm.h
+ </sect2>
</sect1>
<!-- Internals: mode setting -->
@@ -953,6 +992,11 @@ int max_width, max_height;</synopsis>
</listitem>
</itemizedlist>
<sect2>
+ <title>Display Modes Function Reference</title>
+!Iinclude/drm/drm_modes.h
+!Edrivers/gpu/drm/drm_modes.c
+ </sect2>
+ <sect2>
<title>Frame Buffer Creation</title>
<synopsis>struct drm_framebuffer *(*fb_create)(struct drm_device *dev,
struct drm_file *file_priv,
@@ -968,9 +1012,11 @@ int max_width, max_height;</synopsis>
Frame buffers rely on the underneath memory manager for low-level memory
operations. When creating a frame buffer applications pass a memory
handle (or a list of memory handles for multi-planar formats) through
- the <parameter>drm_mode_fb_cmd2</parameter> argument. This document
- assumes that the driver uses GEM, those handles thus reference GEM
- objects.
+ the <parameter>drm_mode_fb_cmd2</parameter> argument. For drivers using
+ GEM as their userspace buffer management interface this would be a GEM
+ handle. Drivers are however free to use their own backing storage object
+ handles, e.g. vmwgfx directly exposes special TTM handles to userspace
+ and so expects TTM handles in the create ioctl and not GEM handles.
</para>
<para>
Drivers must first validate the requested frame buffer parameters passed
@@ -992,7 +1038,7 @@ int max_width, max_height;</synopsis>
</para>
<para>
- The initailization of the new framebuffer instance is finalized with a
+ The initialization of the new framebuffer instance is finalized with a
call to <function>drm_framebuffer_init</function> which takes a pointer
to DRM frame buffer operations (struct
<structname>drm_framebuffer_funcs</structname>). Note that this function
@@ -1042,7 +1088,7 @@ int max_width, max_height;</synopsis>
<para>
The lifetime of a drm framebuffer is controlled with a reference count,
drivers can grab additional references with
- <function>drm_framebuffer_reference</function> </para> and drop them
+ <function>drm_framebuffer_reference</function>and drop them
again with <function>drm_framebuffer_unreference</function>. For
driver-private framebuffers for which the last reference is never
dropped (e.g. for the fbdev framebuffer when the struct
@@ -1050,6 +1096,72 @@ int max_width, max_height;</synopsis>
helper struct) drivers can manually clean up a framebuffer at module
unload time with
<function>drm_framebuffer_unregister_private</function>.
+ </para>
+ </sect2>
+ <sect2>
+ <title>Dumb Buffer Objects</title>
+ <para>
+ The KMS API doesn't standardize backing storage object creation and
+ leaves it to driver-specific ioctls. Furthermore actually creating a
+ buffer object even for GEM-based drivers is done through a
+ driver-specific ioctl - GEM only has a common userspace interface for
+ sharing and destroying objects. While not an issue for full-fledged
+ graphics stacks that include device-specific userspace components (in
+ libdrm for instance), this limit makes DRM-based early boot graphics
+ unnecessarily complex.
+ </para>
+ <para>
+ Dumb objects partly alleviate the problem by providing a standard
+ API to create dumb buffers suitable for scanout, which can then be used
+ to create KMS frame buffers.
+ </para>
+ <para>
+ To support dumb objects drivers must implement the
+ <methodname>dumb_create</methodname>,
+ <methodname>dumb_destroy</methodname> and
+ <methodname>dumb_map_offset</methodname> operations.
+ </para>
+ <itemizedlist>
+ <listitem>
+ <synopsis>int (*dumb_create)(struct drm_file *file_priv, struct drm_device *dev,
+ struct drm_mode_create_dumb *args);</synopsis>
+ <para>
+ The <methodname>dumb_create</methodname> operation creates a driver
+ object (GEM or TTM handle) suitable for scanout based on the
+ width, height and depth from the struct
+ <structname>drm_mode_create_dumb</structname> argument. It fills the
+ argument's <structfield>handle</structfield>,
+ <structfield>pitch</structfield> and <structfield>size</structfield>
+ fields with a handle for the newly created object and its line
+ pitch and size in bytes.
+ </para>
+ </listitem>
+ <listitem>
+ <synopsis>int (*dumb_destroy)(struct drm_file *file_priv, struct drm_device *dev,
+ uint32_t handle);</synopsis>
+ <para>
+ The <methodname>dumb_destroy</methodname> operation destroys a dumb
+ object created by <methodname>dumb_create</methodname>.
+ </para>
+ </listitem>
+ <listitem>
+ <synopsis>int (*dumb_map_offset)(struct drm_file *file_priv, struct drm_device *dev,
+ uint32_t handle, uint64_t *offset);</synopsis>
+ <para>
+ The <methodname>dumb_map_offset</methodname> operation associates an
+ mmap fake offset with the object given by the handle and returns
+ it. Drivers must use the
+ <function>drm_gem_create_mmap_offset</function> function to
+ associate the fake offset as described in
+ <xref linkend="drm-gem-objects-mapping"/>.
+ </para>
+ </listitem>
+ </itemizedlist>
+ <para>
+ Note that dumb objects may not be used for gpu acceleration, as has been
+ attempted on some ARM embedded platforms. Such drivers really must have
+ a hardware-specific ioctl to allocate suitable buffer objects.
+ </para>
</sect2>
<sect2>
<title>Output Polling</title>
@@ -1110,7 +1222,7 @@ int max_width, max_height;</synopsis>
pointer to CRTC functions.
</para>
</sect3>
- <sect3>
+ <sect3 id="drm-kms-crtcops">
<title>CRTC Operations</title>
<sect4>
<title>Set Configuration</title>
@@ -1130,8 +1242,11 @@ int max_width, max_height;</synopsis>
This operation is called with the mode config lock held.
</para>
<note><para>
- FIXME: How should set_config interact with DPMS? If the CRTC is
- suspended, should it be resumed?
+ Note that the drm core has no notion of restoring the mode setting
+ state after resume, since all resume handling is in the full
+ responsibility of the driver. The common mode setting helper library
+ though provides a helper which can be used for this:
+ <function>drm_helper_resume_force_mode</function>.
</para></note>
</sect4>
<sect4>
@@ -1248,15 +1363,47 @@ int max_width, max_height;</synopsis>
optionally scale it to a destination size. The result is then blended
with or overlayed on top of a CRTC.
</para>
+ <para>
+ The DRM core recognizes three types of planes:
+ <itemizedlist>
+ <listitem>
+ DRM_PLANE_TYPE_PRIMARY represents a "main" plane for a CRTC. Primary
+ planes are the planes operated upon by by CRTC modesetting and flipping
+ operations described in <xref linkend="drm-kms-crtcops"/>.
+ </listitem>
+ <listitem>
+ DRM_PLANE_TYPE_CURSOR represents a "cursor" plane for a CRTC. Cursor
+ planes are the planes operated upon by the DRM_IOCTL_MODE_CURSOR and
+ DRM_IOCTL_MODE_CURSOR2 ioctls.
+ </listitem>
+ <listitem>
+ DRM_PLANE_TYPE_OVERLAY represents all non-primary, non-cursor planes.
+ Some drivers refer to these types of planes as "sprites" internally.
+ </listitem>
+ </itemizedlist>
+ For compatibility with legacy userspace, only overlay planes are made
+ available to userspace by default. Userspace clients may set the
+ DRM_CLIENT_CAP_UNIVERSAL_PLANES client capability bit to indicate that
+ they wish to receive a universal plane list containing all plane types.
+ </para>
<sect3>
<title>Plane Initialization</title>
<para>
- Planes are optional. To create a plane, a KMS drivers allocates and
+ To create a plane, a KMS drivers allocates and
zeroes an instances of struct <structname>drm_plane</structname>
(possibly as part of a larger structure) and registers it with a call
- to <function>drm_plane_init</function>. The function takes a bitmask
+ to <function>drm_universal_plane_init</function>. The function takes a bitmask
of the CRTCs that can be associated with the plane, a pointer to the
- plane functions and a list of format supported formats.
+ plane functions, a list of format supported formats, and the type of
+ plane (primary, cursor, or overlay) being initialized.
+ </para>
+ <para>
+ Cursor and overlay planes are optional. All drivers should provide
+ one primary plane per CRTC (although this requirement may change in
+ the future); drivers that do not wish to provide special handling for
+ primary planes may make use of the helper functions described in
+ <xref linkend="drm-kms-planehelpers"/> to create and register a
+ primary plane with standard capabilities.
</para>
</sect3>
<sect3>
@@ -1680,6 +1827,12 @@ void intel_crt_init(struct drm_device *dev)
<title>KMS API Functions</title>
!Edrivers/gpu/drm/drm_crtc.c
</sect2>
+ <sect2>
+ <title>KMS Locking</title>
+!Pdrivers/gpu/drm/drm_modeset_lock.c kms locking
+!Iinclude/drm/drm_modeset_lock.h
+!Edrivers/gpu/drm/drm_modeset_lock.c
+ </sect2>
</sect1>
<!-- Internals: kms helper functions -->
@@ -1687,7 +1840,7 @@ void intel_crt_init(struct drm_device *dev)
<sect1>
<title>Mode Setting Helper Functions</title>
<para>
- The CRTC, encoder and connector functions provided by the drivers
+ The plane, CRTC, encoder and connector functions provided by the drivers
implement the DRM API. They're called by the DRM core and ioctl handlers
to handle device state changes and configuration request. As implementing
those functions often requires logic not specific to drivers, mid-layer
@@ -1695,8 +1848,8 @@ void intel_crt_init(struct drm_device *dev)
</para>
<para>
The DRM core contains one mid-layer implementation. The mid-layer provides
- implementations of several CRTC, encoder and connector functions (called
- from the top of the mid-layer) that pre-process requests and call
+ implementations of several plane, CRTC, encoder and connector functions
+ (called from the top of the mid-layer) that pre-process requests and call
lower-level functions provided by the driver (at the bottom of the
mid-layer). For instance, the
<function>drm_crtc_helper_set_config</function> function can be used to
@@ -1784,8 +1937,8 @@ void intel_crt_init(struct drm_device *dev)
<para>
The function filters out modes larger than
<parameter>max_width</parameter> and <parameter>max_height</parameter>
- if specified. It then calls the connector
- <methodname>mode_valid</methodname> helper operation for each mode in
+ if specified. It then calls the optional connector
+ <methodname>mode_valid</methodname> helper operation for each mode in
the probed list to check whether the mode is valid for the connector.
</para>
</listitem>
@@ -2134,7 +2287,7 @@ void intel_crt_init(struct drm_device *dev)
set the <structfield>display_info</structfield>
<structfield>width_mm</structfield> and
<structfield>height_mm</structfield> fields if they haven't been set
- already (for instance at initilization time when a fixed-size panel is
+ already (for instance at initialization time when a fixed-size panel is
attached to the connector). The mode <structfield>width_mm</structfield>
and <structfield>height_mm</structfield> fields are only used internally
during EDID parsing and should not be set when creating modes manually.
@@ -2146,7 +2299,7 @@ void intel_crt_init(struct drm_device *dev)
<para>
Verify whether a mode is valid for the connector. Return MODE_OK for
supported modes and one of the enum drm_mode_status values (MODE_*)
- for unsupported modes. This operation is mandatory.
+ for unsupported modes. This operation is optional.
</para>
<para>
As the mode rejection reason is currently not used beside for
@@ -2168,6 +2321,11 @@ void intel_crt_init(struct drm_device *dev)
!Edrivers/gpu/drm/drm_crtc_helper.c
</sect2>
<sect2>
+ <title>Output Probing Helper Functions Reference</title>
+!Pdrivers/gpu/drm/drm_probe_helper.c output probing helper overview
+!Edrivers/gpu/drm/drm_probe_helper.c
+ </sect2>
+ <sect2>
<title>fbdev Helper Functions Reference</title>
!Pdrivers/gpu/drm/drm_fb_helper.c fbdev helpers
!Edrivers/gpu/drm/drm_fb_helper.c
@@ -2196,10 +2354,19 @@ void intel_crt_init(struct drm_device *dev)
!Edrivers/gpu/drm/drm_flip_work.c
</sect2>
<sect2>
- <title>VMA Offset Manager</title>
-!Pdrivers/gpu/drm/drm_vma_manager.c vma offset manager
-!Edrivers/gpu/drm/drm_vma_manager.c
-!Iinclude/drm/drm_vma_manager.h
+ <title>HDMI Infoframes Helper Reference</title>
+ <para>
+ Strictly speaking this is not a DRM helper library but generally useable
+ by any driver interfacing with HDMI outputs like v4l or alsa drivers.
+ But it nicely fits into the overall topic of mode setting helper
+ libraries and hence is also included here.
+ </para>
+!Iinclude/linux/hdmi.h
+!Edrivers/video/hdmi.c
+ </sect2>
+ <sect2>
+ <title id="drm-kms-planehelpers">Plane Helper Reference</title>
+!Edrivers/gpu/drm/drm_plane_helper.c Plane Helpers
</sect2>
</sect1>
@@ -2223,7 +2390,7 @@ void intel_crt_init(struct drm_device *dev)
first create properties and then create and associate individual instances
of those properties to objects. A property can be instantiated multiple
times and associated with different objects. Values are stored in property
- instances, and all other property information are stored in the propery
+ instances, and all other property information are stored in the property
and shared between all instances of the property.
</para>
<para>
@@ -2317,6 +2484,863 @@ void intel_crt_init(struct drm_device *dev)
pointer to the target object, a pointer to the previously created property
and an initial instance value.
</para>
+ <sect2>
+ <title>Existing KMS Properties</title>
+ <para>
+ The following table gives description of drm properties exposed by various
+ modules/drivers.
+ </para>
+ <table border="1" cellpadding="0" cellspacing="0">
+ <tbody>
+ <tr style="font-weight: bold;">
+ <td valign="top" >Owner Module/Drivers</td>
+ <td valign="top" >Group</td>
+ <td valign="top" >Property Name</td>
+ <td valign="top" >Type</td>
+ <td valign="top" >Property Values</td>
+ <td valign="top" >Object attached</td>
+ <td valign="top" >Description/Restrictions</td>
+ </tr>
+ <tr>
+ <td rowspan="20" valign="top" >DRM</td>
+ <td rowspan="2" valign="top" >Generic</td>
+ <td valign="top" >“EDID”</td>
+ <td valign="top" >BLOB | IMMUTABLE</td>
+ <td valign="top" >0</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >Contains id of edid blob ptr object.</td>
+ </tr>
+ <tr>
+ <td valign="top" >“DPMS”</td>
+ <td valign="top" >ENUM</td>
+ <td valign="top" >{ “On”, “Standby”, “Suspend”, “Off” }</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >Contains DPMS operation mode value.</td>
+ </tr>
+ <tr>
+ <td rowspan="1" valign="top" >Plane</td>
+ <td valign="top" >“type”</td>
+ <td valign="top" >ENUM | IMMUTABLE</td>
+ <td valign="top" >{ "Overlay", "Primary", "Cursor" }</td>
+ <td valign="top" >Plane</td>
+ <td valign="top" >Plane type</td>
+ </tr>
+ <tr>
+ <td rowspan="2" valign="top" >DVI-I</td>
+ <td valign="top" >“subconnector”</td>
+ <td valign="top" >ENUM</td>
+ <td valign="top" >{ “Unknown”, “DVI-D”, “DVI-A” }</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“select subconnector”</td>
+ <td valign="top" >ENUM</td>
+ <td valign="top" >{ “Automatic”, “DVI-D”, “DVI-A” }</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td rowspan="13" valign="top" >TV</td>
+ <td valign="top" >“subconnector”</td>
+ <td valign="top" >ENUM</td>
+ <td valign="top" >{ "Unknown", "Composite", "SVIDEO", "Component", "SCART" }</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“select subconnector”</td>
+ <td valign="top" >ENUM</td>
+ <td valign="top" >{ "Automatic", "Composite", "SVIDEO", "Component", "SCART" }</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“mode”</td>
+ <td valign="top" >ENUM</td>
+ <td valign="top" >{ "NTSC_M", "NTSC_J", "NTSC_443", "PAL_B" } etc.</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“left margin”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=100</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“right margin”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=100</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“top margin”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=100</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“bottom margin”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=100</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“brightness”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=100</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“contrast”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=100</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“flicker reduction”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=100</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“overscan”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=100</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“saturation”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=100</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“hue”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=100</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td rowspan="2" valign="top" >Optional</td>
+ <td valign="top" >“scaling mode”</td>
+ <td valign="top" >ENUM</td>
+ <td valign="top" >{ "None", "Full", "Center", "Full aspect" }</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“dirty”</td>
+ <td valign="top" >ENUM | IMMUTABLE</td>
+ <td valign="top" >{ "Off", "On", "Annotate" }</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td rowspan="21" valign="top" >i915</td>
+ <td rowspan="3" valign="top" >Generic</td>
+ <td valign="top" >"Broadcast RGB"</td>
+ <td valign="top" >ENUM</td>
+ <td valign="top" >{ "Automatic", "Full", "Limited 16:235" }</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“audio”</td>
+ <td valign="top" >ENUM</td>
+ <td valign="top" >{ "force-dvi", "off", "auto", "on" }</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >Standard name as in DRM</td>
+ <td valign="top" >Standard type as in DRM</td>
+ <td valign="top" >Standard value as in DRM</td>
+ <td valign="top" >Standard Object as in DRM</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td rowspan="17" valign="top" >SDVO-TV</td>
+ <td valign="top" >“mode”</td>
+ <td valign="top" >ENUM</td>
+ <td valign="top" >{ "NTSC_M", "NTSC_J", "NTSC_443", "PAL_B" } etc.</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >"left_margin"</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max= SDVO dependent</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >"right_margin"</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max= SDVO dependent</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >"top_margin"</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max= SDVO dependent</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >"bottom_margin"</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max= SDVO dependent</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“hpos”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max= SDVO dependent</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“vpos”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max= SDVO dependent</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“contrast”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max= SDVO dependent</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“saturation”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max= SDVO dependent</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“hue”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max= SDVO dependent</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“sharpness”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max= SDVO dependent</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“flicker_filter”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max= SDVO dependent</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“flicker_filter_adaptive”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max= SDVO dependent</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“flicker_filter_2d”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max= SDVO dependent</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“tv_chroma_filter”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max= SDVO dependent</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“tv_luma_filter”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max= SDVO dependent</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“dot_crawl”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=1</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >SDVO-TV/LVDS</td>
+ <td valign="top" >“brightness”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max= SDVO dependent</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td rowspan="3" valign="top" >CDV gma-500</td>
+ <td rowspan="3" valign="top" >Generic</td>
+ <td valign="top" >"Broadcast RGB"</td>
+ <td valign="top" >ENUM</td>
+ <td valign="top" >{ “Full”, “Limited 16:235” }</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >"Broadcast RGB"</td>
+ <td valign="top" >ENUM</td>
+ <td valign="top" >{ “off”, “auto”, “on” }</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >Standard name as in DRM</td>
+ <td valign="top" >Standard type as in DRM</td>
+ <td valign="top" >Standard value as in DRM</td>
+ <td valign="top" >Standard Object as in DRM</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td rowspan="20" valign="top" >Poulsbo</td>
+ <td rowspan="2" valign="top" >Generic</td>
+ <td valign="top" >“backlight”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=100</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >Standard name as in DRM</td>
+ <td valign="top" >Standard type as in DRM</td>
+ <td valign="top" >Standard value as in DRM</td>
+ <td valign="top" >Standard Object as in DRM</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td rowspan="17" valign="top" >SDVO-TV</td>
+ <td valign="top" >“mode”</td>
+ <td valign="top" >ENUM</td>
+ <td valign="top" >{ "NTSC_M", "NTSC_J", "NTSC_443", "PAL_B" } etc.</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >"left_margin"</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max= SDVO dependent</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >"right_margin"</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max= SDVO dependent</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >"top_margin"</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max= SDVO dependent</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >"bottom_margin"</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max= SDVO dependent</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“hpos”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max= SDVO dependent</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“vpos”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max= SDVO dependent</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“contrast”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max= SDVO dependent</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“saturation”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max= SDVO dependent</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“hue”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max= SDVO dependent</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“sharpness”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max= SDVO dependent</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“flicker_filter”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max= SDVO dependent</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“flicker_filter_adaptive”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max= SDVO dependent</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“flicker_filter_2d”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max= SDVO dependent</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“tv_chroma_filter”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max= SDVO dependent</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“tv_luma_filter”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max= SDVO dependent</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“dot_crawl”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=1</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >SDVO-TV/LVDS</td>
+ <td valign="top" >“brightness”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max= SDVO dependent</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td rowspan="11" valign="top" >armada</td>
+ <td rowspan="2" valign="top" >CRTC</td>
+ <td valign="top" >"CSC_YUV"</td>
+ <td valign="top" >ENUM</td>
+ <td valign="top" >{ "Auto" , "CCIR601", "CCIR709" }</td>
+ <td valign="top" >CRTC</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >"CSC_RGB"</td>
+ <td valign="top" >ENUM</td>
+ <td valign="top" >{ "Auto", "Computer system", "Studio" }</td>
+ <td valign="top" >CRTC</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td rowspan="9" valign="top" >Overlay</td>
+ <td valign="top" >"colorkey"</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=0xffffff</td>
+ <td valign="top" >Plane</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >"colorkey_min"</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=0xffffff</td>
+ <td valign="top" >Plane</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >"colorkey_max"</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=0xffffff</td>
+ <td valign="top" >Plane</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >"colorkey_val"</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=0xffffff</td>
+ <td valign="top" >Plane</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >"colorkey_alpha"</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=0xffffff</td>
+ <td valign="top" >Plane</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >"colorkey_mode"</td>
+ <td valign="top" >ENUM</td>
+ <td valign="top" >{ "disabled", "Y component", "U component"
+ , "V component", "RGB", “R component", "G component", "B component" }</td>
+ <td valign="top" >Plane</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >"brightness"</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=256 + 255</td>
+ <td valign="top" >Plane</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >"contrast"</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=0x7fff</td>
+ <td valign="top" >Plane</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >"saturation"</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=0x7fff</td>
+ <td valign="top" >Plane</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td rowspan="2" valign="top" >exynos</td>
+ <td valign="top" >CRTC</td>
+ <td valign="top" >“mode”</td>
+ <td valign="top" >ENUM</td>
+ <td valign="top" >{ "normal", "blank" }</td>
+ <td valign="top" >CRTC</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >Overlay</td>
+ <td valign="top" >“zpos”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=MAX_PLANE-1</td>
+ <td valign="top" >Plane</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td rowspan="3" valign="top" >i2c/ch7006_drv</td>
+ <td valign="top" >Generic</td>
+ <td valign="top" >“scale”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=2</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td rowspan="2" valign="top" >TV</td>
+ <td valign="top" >Standard names as in DRM</td>
+ <td valign="top" >Standard types as in DRM</td>
+ <td valign="top" >Standard Values as in DRM</td>
+ <td valign="top" >Standard object as in DRM</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“mode”</td>
+ <td valign="top" >ENUM</td>
+ <td valign="top" >{ "PAL", "PAL-M","PAL-N"}, ”PAL-Nc"
+ , "PAL-60", "NTSC-M", "NTSC-J" }</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td rowspan="16" valign="top" >nouveau</td>
+ <td rowspan="6" valign="top" >NV10 Overlay</td>
+ <td valign="top" >"colorkey"</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=0x01ffffff</td>
+ <td valign="top" >Plane</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“contrast”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=8192-1</td>
+ <td valign="top" >Plane</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“brightness”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=1024</td>
+ <td valign="top" >Plane</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“hue”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=359</td>
+ <td valign="top" >Plane</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“saturation”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=8192-1</td>
+ <td valign="top" >Plane</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“iturbt_709”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=1</td>
+ <td valign="top" >Plane</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td rowspan="2" valign="top" >Nv04 Overlay</td>
+ <td valign="top" >“colorkey”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=0x01ffffff</td>
+ <td valign="top" >Plane</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“brightness”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=1024</td>
+ <td valign="top" >Plane</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td rowspan="7" valign="top" >Display</td>
+ <td valign="top" >“dithering mode”</td>
+ <td valign="top" >ENUM</td>
+ <td valign="top" >{ "auto", "off", "on" }</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“dithering depth”</td>
+ <td valign="top" >ENUM</td>
+ <td valign="top" >{ "auto", "off", "on", "static 2x2", "dynamic 2x2", "temporal" }</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“underscan”</td>
+ <td valign="top" >ENUM</td>
+ <td valign="top" >{ "auto", "6 bpc", "8 bpc" }</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“underscan hborder”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=128</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“underscan vborder”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=128</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“vibrant hue”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=180</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“color vibrance”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=200</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >Generic</td>
+ <td valign="top" >Standard name as in DRM</td>
+ <td valign="top" >Standard type as in DRM</td>
+ <td valign="top" >Standard value as in DRM</td>
+ <td valign="top" >Standard Object as in DRM</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td rowspan="2" valign="top" >omap</td>
+ <td rowspan="2" valign="top" >Generic</td>
+ <td valign="top" >“rotation”</td>
+ <td valign="top" >BITMASK</td>
+ <td valign="top" >{ 0, "rotate-0" },
+ { 1, "rotate-90" },
+ { 2, "rotate-180" },
+ { 3, "rotate-270" },
+ { 4, "reflect-x" },
+ { 5, "reflect-y" }</td>
+ <td valign="top" >CRTC, Plane</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >“zorder”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=3</td>
+ <td valign="top" >CRTC, Plane</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >qxl</td>
+ <td valign="top" >Generic</td>
+ <td valign="top" >“hotplug_mode_update"</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=1</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td rowspan="10" valign="top" >radeon</td>
+ <td valign="top" >DVI-I</td>
+ <td valign="top" >“coherent”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=1</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >DAC enable load detect</td>
+ <td valign="top" >“load detection”</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=1</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >TV Standard</td>
+ <td valign="top" >"tv standard"</td>
+ <td valign="top" >ENUM</td>
+ <td valign="top" >{ "ntsc", "pal", "pal-m", "pal-60", "ntsc-j"
+ , "scart-pal", "pal-cn", "secam" }</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >legacy TMDS PLL detect</td>
+ <td valign="top" >"tmds_pll"</td>
+ <td valign="top" >ENUM</td>
+ <td valign="top" >{ "driver", "bios" }</td>
+ <td valign="top" >-</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td rowspan="3" valign="top" >Underscan</td>
+ <td valign="top" >"underscan"</td>
+ <td valign="top" >ENUM</td>
+ <td valign="top" >{ "off", "on", "auto" }</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >"underscan hborder"</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=128</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >"underscan vborder"</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=128</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >Audio</td>
+ <td valign="top" >“audio”</td>
+ <td valign="top" >ENUM</td>
+ <td valign="top" >{ "off", "on", "auto" }</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >FMT Dithering</td>
+ <td valign="top" >“dither”</td>
+ <td valign="top" >ENUM</td>
+ <td valign="top" >{ "off", "on" }</td>
+ <td valign="top" >Connector</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >Generic</td>
+ <td valign="top" >Standard name as in DRM</td>
+ <td valign="top" >Standard type as in DRM</td>
+ <td valign="top" >Standard value as in DRM</td>
+ <td valign="top" >Standard Object as in DRM</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td rowspan="3" valign="top" >rcar-du</td>
+ <td rowspan="3" valign="top" >Generic</td>
+ <td valign="top" >"alpha"</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=255</td>
+ <td valign="top" >Plane</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >"colorkey"</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=0, Max=0x01ffffff</td>
+ <td valign="top" >Plane</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ <tr>
+ <td valign="top" >"zpos"</td>
+ <td valign="top" >RANGE</td>
+ <td valign="top" >Min=1, Max=7</td>
+ <td valign="top" >Plane</td>
+ <td valign="top" >TBD</td>
+ </tr>
+ </tbody>
+ </table>
+ </sect2>
</sect1>
<!-- Internals: vertical blanking -->
@@ -2394,6 +3418,10 @@ void (*disable_vblank) (struct drm_device *dev, int crtc);</synopsis>
with a call to <function>drm_vblank_cleanup</function> in the driver
<methodname>unload</methodname> operation handler.
</para>
+ <sect2>
+ <title>Vertical Blanking and Interrupt Handling Functions Reference</title>
+!Edrivers/gpu/drm/drm_irq.c
+ </sect2>
</sect1>
<!-- Internals: open/close, file operations and ioctls -->
@@ -2561,42 +3589,44 @@ int num_ioctls;</synopsis>
</para>
</sect2>
</sect1>
-
<sect1>
- <title>Command submission &amp; fencing</title>
+ <title>Legacy Support Code</title>
<para>
- This should cover a few device-specific command submission
- implementations.
+ The section very briefly covers some of the old legacy support code which
+ is only used by old DRM drivers which have done a so-called shadow-attach
+ to the underlying device instead of registering as a real driver. This
+ also includes some of the old generic buffer management and command
+ submission code. Do not use any of this in new and modern drivers.
</para>
- </sect1>
- <!-- Internals: suspend/resume -->
-
- <sect1>
- <title>Suspend/Resume</title>
- <para>
- The DRM core provides some suspend/resume code, but drivers wanting full
- suspend/resume support should provide save() and restore() functions.
- These are called at suspend, hibernate, or resume time, and should perform
- any state save or restore required by your device across suspend or
- hibernate states.
- </para>
- <synopsis>int (*suspend) (struct drm_device *, pm_message_t state);
-int (*resume) (struct drm_device *);</synopsis>
- <para>
- Those are legacy suspend and resume methods. New driver should use the
- power management interface provided by their bus type (usually through
- the struct <structname>device_driver</structname> dev_pm_ops) and set
- these methods to NULL.
- </para>
- </sect1>
+ <sect2>
+ <title>Legacy Suspend/Resume</title>
+ <para>
+ The DRM core provides some suspend/resume code, but drivers wanting full
+ suspend/resume support should provide save() and restore() functions.
+ These are called at suspend, hibernate, or resume time, and should perform
+ any state save or restore required by your device across suspend or
+ hibernate states.
+ </para>
+ <synopsis>int (*suspend) (struct drm_device *, pm_message_t state);
+ int (*resume) (struct drm_device *);</synopsis>
+ <para>
+ Those are legacy suspend and resume methods which
+ <emphasis>only</emphasis> work with the legacy shadow-attach driver
+ registration functions. New driver should use the power management
+ interface provided by their bus type (usually through
+ the struct <structname>device_driver</structname> dev_pm_ops) and set
+ these methods to NULL.
+ </para>
+ </sect2>
- <sect1>
- <title>DMA services</title>
- <para>
- This should cover how DMA mapping etc. is supported by the core.
- These functions are deprecated and should not be used.
- </para>
+ <sect2>
+ <title>Legacy DMA Services</title>
+ <para>
+ This should cover how DMA mapping etc. is supported by the core.
+ These functions are deprecated and should not be used.
+ </para>
+ </sect2>
</sect1>
</chapter>
@@ -2658,8 +3688,8 @@ int (*resume) (struct drm_device *);</synopsis>
DRM core provides multiple character-devices for user-space to use.
Depending on which device is opened, user-space can perform a different
set of operations (mainly ioctls). The primary node is always created
- and called <term>card&lt;num&gt;</term>. Additionally, a currently
- unused control node, called <term>controlD&lt;num&gt;</term> is also
+ and called card&lt;num&gt;. Additionally, a currently
+ unused control node, called controlD&lt;num&gt; is also
created. The primary node provides all legacy operations and
historically was the only interface used by userspace. With KMS, the
control node was introduced. However, the planned KMS control interface
@@ -2674,21 +3704,21 @@ int (*resume) (struct drm_device *);</synopsis>
nodes were introduced. Render nodes solely serve render clients, that
is, no modesetting or privileged ioctls can be issued on render nodes.
Only non-global rendering commands are allowed. If a driver supports
- render nodes, it must advertise it via the <term>DRIVER_RENDER</term>
+ render nodes, it must advertise it via the DRIVER_RENDER
DRM driver capability. If not supported, the primary node must be used
for render clients together with the legacy drmAuth authentication
procedure.
</para>
<para>
If a driver advertises render node support, DRM core will create a
- separate render node called <term>renderD&lt;num&gt;</term>. There will
+ separate render node called renderD&lt;num&gt;. There will
be one render node per device. No ioctls except PRIME-related ioctls
- will be allowed on this node. Especially <term>GEM_OPEN</term> will be
+ will be allowed on this node. Especially GEM_OPEN will be
explicitly prohibited. Render nodes are designed to avoid the
buffer-leaks, which occur if clients guess the flink names or mmap
offsets on the legacy interface. Additionally to this basic interface,
drivers must mark their driver-dependent render-only ioctls as
- <term>DRM_RENDER_ALLOW</term> so render clients can use them. Driver
+ DRM_RENDER_ALLOW so render clients can use them. Driver
authors must be careful not to allow any privileged ioctls on render
nodes.
</para>
@@ -2734,30 +3764,182 @@ int (*resume) (struct drm_device *);</synopsis>
<term>DRM_IOCTL_MODESET_CTL</term>
<listitem>
<para>
- This should be called by application level drivers before and
- after mode setting, since on many devices the vertical blank
- counter is reset at that time. Internally, the DRM snapshots
- the last vblank count when the ioctl is called with the
- _DRM_PRE_MODESET command, so that the counter won't go backwards
- (which is dealt with when _DRM_POST_MODESET is used).
+ This was only used for user-mode-settind drivers around
+ modesetting changes to allow the kernel to update the vblank
+ interrupt after mode setting, since on many devices the vertical
+ blank counter is reset to 0 at some point during modeset. Modern
+ drivers should not call this any more since with kernel mode
+ setting it is a no-op.
</para>
</listitem>
</varlistentry>
</variablelist>
-<!--!Edrivers/char/drm/drm_irq.c-->
</para>
</sect1>
</chapter>
+</part>
+<part id="drmDrivers">
+ <title>DRM Drivers</title>
- <!-- API reference -->
+ <partintro>
+ <para>
+ This second part of the DRM Developer's Guide documents driver code,
+ implementation details and also all the driver-specific userspace
+ interfaces. Especially since all hardware-acceleration interfaces to
+ userspace are driver specific for efficiency and other reasons these
+ interfaces can be rather substantial. Hence every driver has its own
+ chapter.
+ </para>
+ </partintro>
- <appendix id="drmDriverApi">
- <title>DRM Driver API</title>
+ <chapter id="drmI915">
+ <title>drm/i915 Intel GFX Driver</title>
<para>
- Include auto-generated API reference here (need to reference it
- from paragraphs above too).
+ The drm/i915 driver supports all (with the exception of some very early
+ models) integrated GFX chipsets with both Intel display and rendering
+ blocks. This excludes a set of SoC platforms with an SGX rendering unit,
+ those have basic support through the gma500 drm driver.
</para>
- </appendix>
+ <sect1>
+ <title>Display Hardware Handling</title>
+ <para>
+ This section covers everything related to the display hardware including
+ the mode setting infrastructure, plane, sprite and cursor handling and
+ display, output probing and related topics.
+ </para>
+ <sect2>
+ <title>Mode Setting Infrastructure</title>
+ <para>
+ The i915 driver is thus far the only DRM driver which doesn't use the
+ common DRM helper code to implement mode setting sequences. Thus it
+ has its own tailor-made infrastructure for executing a display
+ configuration change.
+ </para>
+ </sect2>
+ <sect2>
+ <title>Plane Configuration</title>
+ <para>
+ This section covers plane configuration and composition with the
+ primary plane, sprites, cursors and overlays. This includes the
+ infrastructure to do atomic vsync'ed updates of all this state and
+ also tightly coupled topics like watermark setup and computation,
+ framebuffer compression and panel self refresh.
+ </para>
+ </sect2>
+ <sect2>
+ <title>Output Probing</title>
+ <para>
+ This section covers output probing and related infrastructure like the
+ hotplug interrupt storm detection and mitigation code. Note that the
+ i915 driver still uses most of the common DRM helper code for output
+ probing, so those sections fully apply.
+ </para>
+ </sect2>
+ <sect2>
+ <title>DPIO</title>
+!Pdrivers/gpu/drm/i915/i915_reg.h DPIO
+ <table id="dpiox2">
+ <title>Dual channel PHY (VLV/CHV)</title>
+ <tgroup cols="8">
+ <colspec colname="c0" />
+ <colspec colname="c1" />
+ <colspec colname="c2" />
+ <colspec colname="c3" />
+ <colspec colname="c4" />
+ <colspec colname="c5" />
+ <colspec colname="c6" />
+ <colspec colname="c7" />
+ <spanspec spanname="ch0" namest="c0" nameend="c3" />
+ <spanspec spanname="ch1" namest="c4" nameend="c7" />
+ <spanspec spanname="ch0pcs01" namest="c0" nameend="c1" />
+ <spanspec spanname="ch0pcs23" namest="c2" nameend="c3" />
+ <spanspec spanname="ch1pcs01" namest="c4" nameend="c5" />
+ <spanspec spanname="ch1pcs23" namest="c6" nameend="c7" />
+ <thead>
+ <row>
+ <entry spanname="ch0">CH0</entry>
+ <entry spanname="ch1">CH1</entry>
+ </row>
+ </thead>
+ <tbody valign="top" align="center">
+ <row>
+ <entry spanname="ch0">CMN/PLL/REF</entry>
+ <entry spanname="ch1">CMN/PLL/REF</entry>
+ </row>
+ <row>
+ <entry spanname="ch0pcs01">PCS01</entry>
+ <entry spanname="ch0pcs23">PCS23</entry>
+ <entry spanname="ch1pcs01">PCS01</entry>
+ <entry spanname="ch1pcs23">PCS23</entry>
+ </row>
+ <row>
+ <entry>TX0</entry>
+ <entry>TX1</entry>
+ <entry>TX2</entry>
+ <entry>TX3</entry>
+ <entry>TX0</entry>
+ <entry>TX1</entry>
+ <entry>TX2</entry>
+ <entry>TX3</entry>
+ </row>
+ <row>
+ <entry spanname="ch0">DDI0</entry>
+ <entry spanname="ch1">DDI1</entry>
+ </row>
+ </tbody>
+ </tgroup>
+ </table>
+ <table id="dpiox1">
+ <title>Single channel PHY (CHV)</title>
+ <tgroup cols="4">
+ <colspec colname="c0" />
+ <colspec colname="c1" />
+ <colspec colname="c2" />
+ <colspec colname="c3" />
+ <spanspec spanname="ch0" namest="c0" nameend="c3" />
+ <spanspec spanname="ch0pcs01" namest="c0" nameend="c1" />
+ <spanspec spanname="ch0pcs23" namest="c2" nameend="c3" />
+ <thead>
+ <row>
+ <entry spanname="ch0">CH0</entry>
+ </row>
+ </thead>
+ <tbody valign="top" align="center">
+ <row>
+ <entry spanname="ch0">CMN/PLL/REF</entry>
+ </row>
+ <row>
+ <entry spanname="ch0pcs01">PCS01</entry>
+ <entry spanname="ch0pcs23">PCS23</entry>
+ </row>
+ <row>
+ <entry>TX0</entry>
+ <entry>TX1</entry>
+ <entry>TX2</entry>
+ <entry>TX3</entry>
+ </row>
+ <row>
+ <entry spanname="ch0">DDI2</entry>
+ </row>
+ </tbody>
+ </tgroup>
+ </table>
+ </sect2>
+ </sect1>
+ <sect1>
+ <title>Memory Management and Command Submission</title>
+ <para>
+ This sections covers all things related to the GEM implementation in the
+ i915 driver.
+ </para>
+ <sect2>
+ <title>Batchbuffer Parsing</title>
+!Pdrivers/gpu/drm/i915/i915_cmd_parser.c batch buffer command parser
+!Idrivers/gpu/drm/i915/i915_cmd_parser.c
+ </sect2>
+ </sect1>
+ </chapter>
+</part>
</book>
diff --git a/Documentation/DocBook/filesystems.tmpl b/Documentation/DocBook/filesystems.tmpl
index 25b58efd955..bcdfdb9a927 100644
--- a/Documentation/DocBook/filesystems.tmpl
+++ b/Documentation/DocBook/filesystems.tmpl
@@ -62,7 +62,7 @@
!Efs/mpage.c
!Efs/namei.c
!Efs/buffer.c
-!Efs/bio.c
+!Eblock/bio.c
!Efs/seq_file.c
!Efs/filesystems.c
!Efs/fs-writeback.c
@@ -91,7 +91,6 @@
<title>The Filesystem for Exporting Kernel Objects</title>
!Efs/sysfs/file.c
!Efs/sysfs/symlink.c
-!Efs/sysfs/bin.c
</chapter>
<chapter id="debugfs">
diff --git a/Documentation/DocBook/gadget.tmpl b/Documentation/DocBook/gadget.tmpl
index 4017f147ba2..2c425d70f7e 100644
--- a/Documentation/DocBook/gadget.tmpl
+++ b/Documentation/DocBook/gadget.tmpl
@@ -708,7 +708,7 @@ hardware level details could be very different.
<para>Systems need specialized hardware support to implement OTG,
notably including a special <emphasis>Mini-AB</emphasis> jack
-and associated transciever to support <emphasis>Dual-Role</emphasis>
+and associated transceiver to support <emphasis>Dual-Role</emphasis>
operation:
they can act either as a host, using the standard
Linux-USB host side driver stack,
diff --git a/Documentation/DocBook/genericirq.tmpl b/Documentation/DocBook/genericirq.tmpl
index d16d21b7a3b..59fb5c07754 100644
--- a/Documentation/DocBook/genericirq.tmpl
+++ b/Documentation/DocBook/genericirq.tmpl
@@ -87,7 +87,7 @@
<chapter id="rationale">
<title>Rationale</title>
<para>
- The original implementation of interrupt handling in Linux is using
+ The original implementation of interrupt handling in Linux uses
the __do_IRQ() super-handler, which is able to deal with every
type of interrupt logic.
</para>
@@ -111,19 +111,19 @@
</itemizedlist>
</para>
<para>
- This split implementation of highlevel IRQ handlers allows us to
+ This split implementation of high-level IRQ handlers allows us to
optimize the flow of the interrupt handling for each specific
- interrupt type. This reduces complexity in that particular codepath
+ interrupt type. This reduces complexity in that particular code path
and allows the optimized handling of a given type.
</para>
<para>
The original general IRQ implementation used hw_interrupt_type
structures and their ->ack(), ->end() [etc.] callbacks to
differentiate the flow control in the super-handler. This leads to
- a mix of flow logic and lowlevel hardware logic, and it also leads
- to unnecessary code duplication: for example in i386, there is a
- ioapic_level_irq and a ioapic_edge_irq irq-type which share many
- of the lowlevel details but have different flow handling.
+ a mix of flow logic and low-level hardware logic, and it also leads
+ to unnecessary code duplication: for example in i386, there is an
+ ioapic_level_irq and an ioapic_edge_irq IRQ-type which share many
+ of the low-level details but have different flow handling.
</para>
<para>
A more natural abstraction is the clean separation of the
@@ -132,23 +132,23 @@
<para>
Analysing a couple of architecture's IRQ subsystem implementations
reveals that most of them can use a generic set of 'irq flow'
- methods and only need to add the chip level specific code.
+ methods and only need to add the chip-level specific code.
The separation is also valuable for (sub)architectures
- which need specific quirks in the irq flow itself but not in the
- chip-details - and thus provides a more transparent IRQ subsystem
+ which need specific quirks in the IRQ flow itself but not in the
+ chip details - and thus provides a more transparent IRQ subsystem
design.
</para>
<para>
- Each interrupt descriptor is assigned its own highlevel flow
+ Each interrupt descriptor is assigned its own high-level flow
handler, which is normally one of the generic
- implementations. (This highlevel flow handler implementation also
+ implementations. (This high-level flow handler implementation also
makes it simple to provide demultiplexing handlers which can be
found in embedded platforms on various architectures.)
</para>
<para>
The separation makes the generic interrupt handling layer more
flexible and extensible. For example, an (sub)architecture can
- use a generic irq-flow implementation for 'level type' interrupts
+ use a generic IRQ-flow implementation for 'level type' interrupts
and add a (sub)architecture specific 'edge type' implementation.
</para>
<para>
@@ -172,9 +172,9 @@
<para>
There are three main levels of abstraction in the interrupt code:
<orderedlist>
- <listitem><para>Highlevel driver API</para></listitem>
- <listitem><para>Highlevel IRQ flow handlers</para></listitem>
- <listitem><para>Chiplevel hardware encapsulation</para></listitem>
+ <listitem><para>High-level driver API</para></listitem>
+ <listitem><para>High-level IRQ flow handlers</para></listitem>
+ <listitem><para>Chip-level hardware encapsulation</para></listitem>
</orderedlist>
</para>
<sect1 id="Interrupt_control_flow">
@@ -182,23 +182,23 @@
<para>
Each interrupt is described by an interrupt descriptor structure
irq_desc. The interrupt is referenced by an 'unsigned int' numeric
- value which selects the corresponding interrupt decription structure
+ value which selects the corresponding interrupt description structure
in the descriptor structures array.
The descriptor structure contains status information and pointers
to the interrupt flow method and the interrupt chip structure
which are assigned to this interrupt.
</para>
<para>
- Whenever an interrupt triggers, the lowlevel arch code calls into
- the generic interrupt code by calling desc->handle_irq().
- This highlevel IRQ handling function only uses desc->irq_data.chip
+ Whenever an interrupt triggers, the low-level architecture code calls
+ into the generic interrupt code by calling desc->handle_irq().
+ This high-level IRQ handling function only uses desc->irq_data.chip
primitives referenced by the assigned chip descriptor structure.
</para>
</sect1>
<sect1 id="Highlevel_Driver_API">
- <title>Highlevel Driver API</title>
+ <title>High-level Driver API</title>
<para>
- The highlevel Driver API consists of following functions:
+ The high-level Driver API consists of following functions:
<itemizedlist>
<listitem><para>request_irq()</para></listitem>
<listitem><para>free_irq()</para></listitem>
@@ -216,7 +216,7 @@
</para>
</sect1>
<sect1 id="Highlevel_IRQ_flow_handlers">
- <title>Highlevel IRQ flow handlers</title>
+ <title>High-level IRQ flow handlers</title>
<para>
The generic layer provides a set of pre-defined irq-flow methods:
<itemizedlist>
@@ -228,7 +228,7 @@
<listitem><para>handle_edge_eoi_irq</para></listitem>
<listitem><para>handle_bad_irq</para></listitem>
</itemizedlist>
- The interrupt flow handlers (either predefined or architecture
+ The interrupt flow handlers (either pre-defined or architecture
specific) are assigned to specific interrupts by the architecture
either during bootup or during device initialization.
</para>
@@ -297,7 +297,7 @@ desc->irq_data.chip->irq_unmask();
<para>
handle_fasteoi_irq provides a generic implementation
for interrupts, which only need an EOI at the end of
- the handler
+ the handler.
</para>
<para>
The following control flow is implemented (simplified excerpt):
@@ -394,7 +394,7 @@ if (desc->irq_data.chip->irq_eoi)
The generic functions are intended for 'clean' architectures and chips,
which have no platform-specific IRQ handling quirks. If an architecture
needs to implement quirks on the 'flow' level then it can do so by
- overriding the highlevel irq-flow handler.
+ overriding the high-level irq-flow handler.
</para>
</sect2>
<sect2 id="Delayed_interrupt_disable">
@@ -419,9 +419,9 @@ if (desc->irq_data.chip->irq_eoi)
</sect2>
</sect1>
<sect1 id="Chiplevel_hardware_encapsulation">
- <title>Chiplevel hardware encapsulation</title>
+ <title>Chip-level hardware encapsulation</title>
<para>
- The chip level hardware descriptor structure irq_chip
+ The chip-level hardware descriptor structure irq_chip
contains all the direct chip relevant functions, which
can be utilized by the irq flow implementations.
<itemizedlist>
@@ -429,14 +429,14 @@ if (desc->irq_data.chip->irq_eoi)
<listitem><para>irq_mask_ack() - Optional, recommended for performance</para></listitem>
<listitem><para>irq_mask()</para></listitem>
<listitem><para>irq_unmask()</para></listitem>
- <listitem><para>irq_eoi() - Optional, required for eoi flow handlers</para></listitem>
+ <listitem><para>irq_eoi() - Optional, required for EOI flow handlers</para></listitem>
<listitem><para>irq_retrigger() - Optional</para></listitem>
<listitem><para>irq_set_type() - Optional</para></listitem>
<listitem><para>irq_set_wake() - Optional</para></listitem>
</itemizedlist>
These primitives are strictly intended to mean what they say: ack means
ACK, masking means masking of an IRQ line, etc. It is up to the flow
- handler(s) to use these basic units of lowlevel functionality.
+ handler(s) to use these basic units of low-level functionality.
</para>
</sect1>
</chapter>
@@ -445,7 +445,7 @@ if (desc->irq_data.chip->irq_eoi)
<title>__do_IRQ entry point</title>
<para>
The original implementation __do_IRQ() was an alternative entry
- point for all types of interrupts. It not longer exists.
+ point for all types of interrupts. It no longer exists.
</para>
<para>
This handler turned out to be not suitable for all
@@ -468,11 +468,11 @@ if (desc->irq_data.chip->irq_eoi)
<chapter id="genericchip">
<title>Generic interrupt chip</title>
<para>
- To avoid copies of identical implementations of irq chips the
+ To avoid copies of identical implementations of IRQ chips the
core provides a configurable generic interrupt chip
- implementation. Developers should check carefuly whether the
+ implementation. Developers should check carefully whether the
generic chip fits their needs before implementing the same
- functionality slightly different themself.
+ functionality slightly differently themselves.
</para>
!Ekernel/irq/generic-chip.c
</chapter>
diff --git a/Documentation/DocBook/kernel-api.tmpl b/Documentation/DocBook/kernel-api.tmpl
index f75ab4c1b28..ecfd0ea4066 100644
--- a/Documentation/DocBook/kernel-api.tmpl
+++ b/Documentation/DocBook/kernel-api.tmpl
@@ -109,6 +109,7 @@ X!Ilib/string.c
<sect1><title>The Slab Cache</title>
!Iinclude/linux/slab.h
!Emm/slab.c
+!Emm/util.c
</sect1>
<sect1><title>User Space Memory Access</title>
!Iarch/x86/include/asm/uaccess_32.h
diff --git a/Documentation/DocBook/kernel-hacking.tmpl b/Documentation/DocBook/kernel-hacking.tmpl
index d0758b241b2..e84f09467cd 100644
--- a/Documentation/DocBook/kernel-hacking.tmpl
+++ b/Documentation/DocBook/kernel-hacking.tmpl
@@ -671,7 +671,7 @@ printk(KERN_INFO "my ip: %pI4\n", &amp;ipaddress);
<sect1 id="routines-local-irqs">
<title><function>local_irq_save()</function>/<function>local_irq_restore()</function>
- <filename class="headerfile">include/asm/system.h</filename>
+ <filename class="headerfile">include/linux/irqflags.h</filename>
</title>
<para>
@@ -850,16 +850,6 @@ printk(KERN_INFO "my ip: %pI4\n", &amp;ipaddress);
<returnvalue>-ERESTARTSYS</returnvalue> if a signal is received.
The <function>wait_event()</function> version ignores signals.
</para>
- <para>
- Do not use the <function>sleep_on()</function> function family -
- it is very easy to accidentally introduce races; almost certainly
- one of the <function>wait_event()</function> family will do, or a
- loop around <function>schedule_timeout()</function>. If you choose
- to loop around <function>schedule_timeout()</function> remember
- you must set the task state (with
- <function>set_current_state()</function>) on each iteration to avoid
- busy-looping.
- </para>
</sect1>
diff --git a/Documentation/DocBook/kernel-locking.tmpl b/Documentation/DocBook/kernel-locking.tmpl
index 09e884e5b9f..e584ee12a1e 100644
--- a/Documentation/DocBook/kernel-locking.tmpl
+++ b/Documentation/DocBook/kernel-locking.tmpl
@@ -1760,7 +1760,7 @@ as it would be on UP.
</para>
<para>
-There is a furthur optimization possible here: remember our original
+There is a further optimization possible here: remember our original
cache code, where there were no reference counts and the caller simply
held the lock whenever using the object? This is still possible: if
you hold the lock, no one can delete the object, so you don't need to
@@ -1958,7 +1958,7 @@ machines due to caching.
<chapter id="apiref-mutex">
<title>Mutex API reference</title>
!Iinclude/linux/mutex.h
-!Ekernel/mutex.c
+!Ekernel/locking/mutex.c
</chapter>
<chapter id="apiref-futex">
diff --git a/Documentation/DocBook/libata.tmpl b/Documentation/DocBook/libata.tmpl
index deb71baed32..d7fcdc5a437 100644
--- a/Documentation/DocBook/libata.tmpl
+++ b/Documentation/DocBook/libata.tmpl
@@ -677,7 +677,7 @@ and other resources, etc.
<listitem>
<para>
- ATA_QCFLAG_ACTIVE is clared from qc->flags.
+ ATA_QCFLAG_ACTIVE is cleared from qc->flags.
</para>
</listitem>
@@ -708,7 +708,7 @@ and other resources, etc.
<listitem>
<para>
- qc->waiting is claread &amp; completed (in that order).
+ qc->waiting is cleared &amp; completed (in that order).
</para>
</listitem>
@@ -1163,7 +1163,7 @@ and other resources, etc.
<para>
Once sense data is acquired, this type of errors can be
- handled similary to other SCSI errors. Note that sense data
+ handled similarly to other SCSI errors. Note that sense data
may indicate ATA bus error (e.g. Sense Key 04h HARDWARE ERROR
&amp;&amp; ASC/ASCQ 47h/00h SCSI PARITY ERROR). In such
cases, the error should be considered as an ATA bus error and
diff --git a/Documentation/DocBook/media/Makefile b/Documentation/DocBook/media/Makefile
index f9fd615427f..639e7485796 100644
--- a/Documentation/DocBook/media/Makefile
+++ b/Documentation/DocBook/media/Makefile
@@ -195,15 +195,15 @@ DVB_DOCUMENTED = \
#
install_media_images = \
- $(Q)cp $(OBJIMGFILES) $(MEDIA_SRC_DIR)/v4l/*.svg $(MEDIA_OBJ_DIR)/media_api
+ $(Q)-cp $(OBJIMGFILES) $(MEDIA_SRC_DIR)/v4l/*.svg $(MEDIA_OBJ_DIR)/media_api
$(MEDIA_OBJ_DIR)/%: $(MEDIA_SRC_DIR)/%.b64
$(Q)base64 -d $< >$@
$(MEDIA_OBJ_DIR)/v4l2.xml: $(OBJIMGFILES)
@$($(quiet)gen_xml)
- @(ln -sf $(MEDIA_SRC_DIR)/v4l/*xml $(MEDIA_OBJ_DIR)/)
- @(ln -sf $(MEDIA_SRC_DIR)/dvb/*xml $(MEDIA_OBJ_DIR)/)
+ @(ln -sf `cd $(MEDIA_SRC_DIR) && /bin/pwd`/v4l/*xml $(MEDIA_OBJ_DIR)/)
+ @(ln -sf `cd $(MEDIA_SRC_DIR) && /bin/pwd`/dvb/*xml $(MEDIA_OBJ_DIR)/)
$(MEDIA_OBJ_DIR)/videodev2.h.xml: $(srctree)/include/uapi/linux/videodev2.h $(MEDIA_OBJ_DIR)/v4l2.xml
@$($(quiet)gen_xml)
diff --git a/Documentation/DocBook/media/dvb/demux.xml b/Documentation/DocBook/media/dvb/demux.xml
index 86de89cfbd6..c8683d66f05 100644
--- a/Documentation/DocBook/media/dvb/demux.xml
+++ b/Documentation/DocBook/media/dvb/demux.xml
@@ -1042,7 +1042,14 @@ role="subsection"><title>DMX_ADD_PID</title>
</para>
<informaltable><tgroup cols="1"><tbody><row><entry
align="char">
-<para>This ioctl is undocumented. Documentation is welcome.</para>
+<para>This ioctl call allows to add multiple PIDs to a transport stream filter
+previously set up with DMX_SET_PES_FILTER and output equal to DMX_OUT_TSDEMUX_TAP.
+</para></entry></row><row><entry align="char"><para>
+It is used by readers of /dev/dvb/adapterX/demuxY.
+</para></entry></row><row><entry align="char"><para>
+It may be called at any time, i.e. before or after the first filter on the
+shared file descriptor was started. It makes it possible to record multiple
+services without the need to de-multiplex or re-multiplex TS packets.</para>
</entry>
</row></tbody></tgroup></informaltable>
<para>SYNOPSIS
@@ -1075,7 +1082,7 @@ role="subsection"><title>DMX_ADD_PID</title>
</para>
</entry><entry
align="char">
-<para>Undocumented.</para>
+<para>PID number to be filtered.</para>
</entry>
</row></tbody></tgroup></informaltable>
&return-value-dvb;
@@ -1087,7 +1094,15 @@ role="subsection"><title>DMX_REMOVE_PID</title>
</para>
<informaltable><tgroup cols="1"><tbody><row><entry
align="char">
-<para>This ioctl is undocumented. Documentation is welcome.</para>
+<para>This ioctl call allows to remove a PID when multiple PIDs are set on a
+transport stream filter, e. g. a filter previously set up with output equal to
+DMX_OUT_TSDEMUX_TAP, created via either DMX_SET_PES_FILTER or DMX_ADD_PID.
+</para></entry></row><row><entry align="char"><para>
+It is used by readers of /dev/dvb/adapterX/demuxY.
+</para></entry></row><row><entry align="char"><para>
+It may be called at any time, i.e. before or after the first filter on the
+shared file descriptor was started. It makes it possible to record multiple
+services without the need to de-multiplex or re-multiplex TS packets.</para>
</entry>
</row></tbody></tgroup></informaltable>
<para>SYNOPSIS
@@ -1120,7 +1135,7 @@ role="subsection"><title>DMX_REMOVE_PID</title>
</para>
</entry><entry
align="char">
-<para>Undocumented.</para>
+<para>PID of the PES filter to be removed.</para>
</entry>
</row></tbody></tgroup></informaltable>
&return-value-dvb;
diff --git a/Documentation/DocBook/media/dvb/dvbapi.xml b/Documentation/DocBook/media/dvb/dvbapi.xml
index 0197bcc7842..4c15396c67e 100644
--- a/Documentation/DocBook/media/dvb/dvbapi.xml
+++ b/Documentation/DocBook/media/dvb/dvbapi.xml
@@ -18,7 +18,7 @@
<firstname>Mauro</firstname>
<othername role="mi">Carvalho</othername>
<surname>Chehab</surname>
-<affiliation><address><email>mchehab@redhat.com</email></address></affiliation>
+<affiliation><address><email>m.chehab@samsung.com</email></address></affiliation>
<contrib>Ported document to Docbook XML.</contrib>
</author>
</authorgroup>
@@ -28,7 +28,7 @@
<holder>Convergence GmbH</holder>
</copyright>
<copyright>
- <year>2009-2012</year>
+ <year>2009-2014</year>
<holder>Mauro Carvalho Chehab</holder>
</copyright>
diff --git a/Documentation/DocBook/media/dvb/dvbproperty.xml b/Documentation/DocBook/media/dvb/dvbproperty.xml
index a9b15e34c5b..24c22cabc66 100644
--- a/Documentation/DocBook/media/dvb/dvbproperty.xml
+++ b/Documentation/DocBook/media/dvb/dvbproperty.xml
@@ -196,7 +196,7 @@ get/set up to 64 properties. The actual meaning of each property is described on
<para>1)For satellital delivery systems, it is measured in kHz.
For the other ones, it is measured in Hz.</para>
<para>2)For ISDB-T, the channels are usually transmitted with an offset of 143kHz.
- E.g. a valid frequncy could be 474143 kHz. The stepping is bound to the bandwidth of
+ E.g. a valid frequency could be 474143 kHz. The stepping is bound to the bandwidth of
the channel which is 6MHz.</para>
<para>3)As in ISDB-Tsb the channel consists of only one or three segments the
diff --git a/Documentation/DocBook/media/dvb/frontend.xml b/Documentation/DocBook/media/dvb/frontend.xml
index 0d6e81bd9ed..8a6a6ff27af 100644
--- a/Documentation/DocBook/media/dvb/frontend.xml
+++ b/Documentation/DocBook/media/dvb/frontend.xml
@@ -744,7 +744,7 @@ typedef enum fe_hierarchy {
</para>
<informaltable><tgroup cols="1"><tbody><row><entry
align="char">
-<para>int ioctl(int fd, int request = <link linkend="FE_READ_SNR">FE_READ_SNR</link>, int16_t
+<para>int ioctl(int fd, int request = <link linkend="FE_READ_SNR">FE_READ_SNR</link>, uint16_t
&#x22C6;snr);</para>
</entry>
</row></tbody></tgroup></informaltable>
@@ -766,7 +766,7 @@ typedef enum fe_hierarchy {
</entry>
</row><row><entry
align="char">
-<para>int16_t *snr</para>
+<para>uint16_t *snr</para>
</entry><entry
align="char">
<para>The signal-to-noise ratio is stored into *snr.</para>
@@ -791,7 +791,7 @@ typedef enum fe_hierarchy {
<informaltable><tgroup cols="1"><tbody><row><entry
align="char">
<para>int ioctl( int fd, int request =
- <link linkend="FE_READ_SIGNAL_STRENGTH">FE_READ_SIGNAL_STRENGTH</link>, int16_t &#x22C6;strength);</para>
+ <link linkend="FE_READ_SIGNAL_STRENGTH">FE_READ_SIGNAL_STRENGTH</link>, uint16_t &#x22C6;strength);</para>
</entry>
</row></tbody></tgroup></informaltable>
@@ -814,7 +814,7 @@ typedef enum fe_hierarchy {
</entry>
</row><row><entry
align="char">
-<para>int16_t *strength</para>
+<para>uint16_t *strength</para>
</entry><entry
align="char">
<para>The signal strength value is stored into *strength.</para>
diff --git a/Documentation/DocBook/media/v4l/common.xml b/Documentation/DocBook/media/v4l/common.xml
index 1ddf354aa99..71f6bf9e735 100644
--- a/Documentation/DocBook/media/v4l/common.xml
+++ b/Documentation/DocBook/media/v4l/common.xml
@@ -38,70 +38,41 @@ the basic concepts applicable to all devices.</para>
<para>V4L2 drivers are implemented as kernel modules, loaded
manually by the system administrator or automatically when a device is
-first opened. The driver modules plug into the "videodev" kernel
+first discovered. The driver modules plug into the "videodev" kernel
module. It provides helper functions and a common application
interface specified in this document.</para>
<para>Each driver thus loaded registers one or more device nodes
-with major number 81 and a minor number between 0 and 255. Assigning
-minor numbers to V4L2 devices is entirely up to the system administrator,
-this is primarily intended to solve conflicts between devices.<footnote>
- <para>Access permissions are associated with character
-device special files, hence we must ensure device numbers cannot
-change with the module load order. To this end minor numbers are no
-longer automatically assigned by the "videodev" module as in V4L but
-requested by the driver. The defaults will suffice for most people
-unless two drivers compete for the same minor numbers.</para>
- </footnote> The module options to select minor numbers are named
-after the device special file with a "_nr" suffix. For example "video_nr"
-for <filename>/dev/video</filename> video capture devices. The number is
-an offset to the base minor number associated with the device type.
-<footnote>
- <para>In earlier versions of the V4L2 API the module options
-where named after the device special file with a "unit_" prefix, expressing
-the minor number itself, not an offset. Rationale for this change is unknown.
-Lastly the naming and semantics are just a convention among driver writers,
-the point to note is that minor numbers are not supposed to be hardcoded
-into drivers.</para>
- </footnote> When the driver supports multiple devices of the same
-type more than one minor number can be assigned, separated by commas:
-<informalexample>
+with major number 81 and a minor number between 0 and 255. Minor numbers
+are allocated dynamically unless the kernel is compiled with the kernel
+option CONFIG_VIDEO_FIXED_MINOR_RANGES. In that case minor numbers are
+allocated in ranges depending on the device node type (video, radio, etc.).</para>
+
+ <para>Many drivers support "video_nr", "radio_nr" or "vbi_nr"
+module options to select specific video/radio/vbi node numbers. This allows
+the user to request that the device node is named e.g. /dev/video5 instead
+of leaving it to chance. When the driver supports multiple devices of the same
+type more than one device node number can be assigned, separated by commas:
+ <informalexample>
<screen>
-&gt; insmod mydriver.o video_nr=0,1 radio_nr=0,1</screen>
+&gt; modprobe mydriver video_nr=0,1 radio_nr=0,1</screen>
</informalexample></para>
<para>In <filename>/etc/modules.conf</filename> this may be
written as: <informalexample>
<screen>
-alias char-major-81-0 mydriver
-alias char-major-81-1 mydriver
-alias char-major-81-64 mydriver <co id="alias" />
-options mydriver video_nr=0,1 radio_nr=0,1 <co id="options" />
+options mydriver video_nr=0,1 radio_nr=0,1
</screen>
- <calloutlist>
- <callout arearefs="alias">
- <para>When an application attempts to open a device
-special file with major number 81 and minor number 0, 1, or 64, load
-"mydriver" (and the "videodev" module it depends upon).</para>
- </callout>
- <callout arearefs="options">
- <para>Register the first two video capture devices with
-minor number 0 and 1 (base number is 0), the first two radio device
-with minor number 64 and 65 (base 64).</para>
- </callout>
- </calloutlist>
- </informalexample> When no minor number is given as module
-option the driver supplies a default. <xref linkend="devices" />
-recommends the base minor numbers to be used for the various device
-types. Obviously minor numbers must be unique. When the number is
-already in use the <emphasis>offending device</emphasis> will not be
-registered. <!-- Blessed by Linus Torvalds on
-linux-kernel@vger.kernel.org, 2002-11-20. --></para>
-
- <para>By convention system administrators create various
-character device special files with these major and minor numbers in
-the <filename>/dev</filename> directory. The names recommended for the
-different V4L2 device types are listed in <xref linkend="devices" />.
+ </informalexample> When no device node number is given as module
+option the driver supplies a default.</para>
+
+ <para>Normally udev will create the device nodes in /dev automatically
+for you. If udev is not installed, then you need to enable the
+CONFIG_VIDEO_FIXED_MINOR_RANGES kernel option in order to be able to correctly
+relate a minor number to a device node number. I.e., you need to be certain
+that minor number 5 maps to device node name video5. With this kernel option
+different device types have different minor number ranges. These ranges are
+listed in <xref linkend="devices" />.
</para>
<para>The creation of character special files (with
@@ -110,85 +81,66 @@ devices cannot be opened by major and minor number. That means
applications cannot <emphasis>reliable</emphasis> scan for loaded or
installed drivers. The user must enter a device name, or the
application can try the conventional device names.</para>
-
- <para>Under the device filesystem (devfs) the minor number
-options are ignored. V4L2 drivers (or by proxy the "videodev" module)
-automatically create the required device files in the
-<filename>/dev/v4l</filename> directory using the conventional device
-names above.</para>
</section>
<section id="related">
<title>Related Devices</title>
- <para>Devices can support several related functions. For example
-video capturing, video overlay and VBI capturing are related because
-these functions share, amongst other, the same video input and tuner
-frequency. V4L and earlier versions of V4L2 used the same device name
-and minor number for video capturing and overlay, but different ones
-for VBI. Experience showed this approach has several problems<footnote>
- <para>Given a device file name one cannot reliable find
-related devices. For once names are arbitrary and in a system with
-multiple devices, where only some support VBI capturing, a
-<filename>/dev/video2</filename> is not necessarily related to
-<filename>/dev/vbi2</filename>. The V4L
-<constant>VIDIOCGUNIT</constant> ioctl would require a search for a
-device file with a particular major and minor number.</para>
- </footnote>, and to make things worse the V4L videodev module
-used to prohibit multiple opens of a device.</para>
-
- <para>As a remedy the present version of the V4L2 API relaxed the
-concept of device types with specific names and minor numbers. For
-compatibility with old applications drivers must still register different
-minor numbers to assign a default function to the device. But if related
-functions are supported by the driver they must be available under all
-registered minor numbers. The desired function can be selected after
-opening the device as described in <xref linkend="devices" />.</para>
-
- <para>Imagine a driver supporting video capturing, video
-overlay, raw VBI capturing, and FM radio reception. It registers three
-devices with minor number 0, 64 and 224 (this numbering scheme is
-inherited from the V4L API). Regardless if
-<filename>/dev/video</filename> (81, 0) or
-<filename>/dev/vbi</filename> (81, 224) is opened the application can
-select any one of the video capturing, overlay or VBI capturing
-functions. Without programming (e.&nbsp;g. reading from the device
-with <application>dd</application> or <application>cat</application>)
-<filename>/dev/video</filename> captures video images, while
-<filename>/dev/vbi</filename> captures raw VBI data.
-<filename>/dev/radio</filename> (81, 64) is invariable a radio device,
-unrelated to the video functions. Being unrelated does not imply the
-devices can be used at the same time, however. The &func-open;
-function may very well return an &EBUSY;.</para>
+ <para>Devices can support several functions. For example
+video capturing, VBI capturing and radio support.</para>
+
+ <para>The V4L2 API creates different nodes for each of these functions.</para>
+
+ <para>The V4L2 API was designed with the idea that one device node could support
+all functions. However, in practice this never worked: this 'feature'
+was never used by applications and many drivers did not support it and if
+they did it was certainly never tested. In addition, switching a device
+node between different functions only works when using the streaming I/O
+API, not with the read()/write() API.</para>
+
+ <para>Today each device node supports just one function.</para>
<para>Besides video input or output the hardware may also
support audio sampling or playback. If so, these functions are
-implemented as OSS or ALSA PCM devices and eventually OSS or ALSA
-audio mixer. The V4L2 API makes no provisions yet to find these
-related devices. If you have an idea please write to the linux-media
-mailing list: &v4l-ml;.</para>
+implemented as ALSA PCM devices with optional ALSA audio mixer
+devices.</para>
+
+ <para>One problem with all these devices is that the V4L2 API
+makes no provisions to find these related devices. Some really
+complex devices use the Media Controller (see <xref linkend="media_controller" />)
+which can be used for this purpose. But most drivers do not use it,
+and while some code exists that uses sysfs to discover related devices
+(see libmedia_dev in the <ulink url="http://git.linuxtv.org/v4l-utils/">v4l-utils</ulink>
+git repository), there is no library yet that can provide a single API towards
+both Media Controller-based devices and devices that do not use the Media Controller.
+If you want to work on this please write to the linux-media mailing list: &v4l-ml;.</para>
</section>
<section>
<title>Multiple Opens</title>
- <para>In general, V4L2 devices can be opened more than once.
+ <para>V4L2 devices can be opened more than once.<footnote><para>
+There are still some old and obscure drivers that have not been updated to
+allow for multiple opens. This implies that for such drivers &func-open; can
+return an &EBUSY; when the device is already in use.</para></footnote>
When this is supported by the driver, users can for example start a
"panel" application to change controls like brightness or audio
volume, while another application captures video and audio. In other words, panel
-applications are comparable to an OSS or ALSA audio mixer application.
-When a device supports multiple functions like capturing and overlay
-<emphasis>simultaneously</emphasis>, multiple opens allow concurrent
-use of the device by forked processes or specialized applications.</para>
-
- <para>Multiple opens are optional, although drivers should
-permit at least concurrent accesses without data exchange, &ie; panel
-applications. This implies &func-open; can return an &EBUSY; when the
-device is already in use, as well as &func-ioctl; functions initiating
-data exchange (namely the &VIDIOC-S-FMT; ioctl), and the &func-read;
-and &func-write; functions.</para>
-
- <para>Mere opening a V4L2 device does not grant exclusive
+applications are comparable to an ALSA audio mixer application.
+Just opening a V4L2 device should not change the state of the device.<footnote>
+<para>Unfortunately, opening a radio device often switches the state of the
+device to radio mode in many drivers. This behavior should be fixed eventually
+as it violates the V4L2 specification.</para></footnote></para>
+
+ <para>Once an application has allocated the memory buffers needed for
+streaming data (by calling the &VIDIOC-REQBUFS; or &VIDIOC-CREATE-BUFS; ioctls,
+or implicitly by calling the &func-read; or &func-write; functions) that
+application (filehandle) becomes the owner of the device. It is no longer
+allowed to make changes that would affect the buffer sizes (e.g. by calling
+the &VIDIOC-S-FMT; ioctl) and other applications are no longer allowed to allocate
+buffers or start or stop streaming. The &EBUSY; will be returned instead.</para>
+
+ <para>Merely opening a V4L2 device does not grant exclusive
access.<footnote>
<para>Drivers could recognize the
<constant>O_EXCL</constant> open flag. Presently this is not required,
@@ -206,12 +158,7 @@ additional access privileges using the priority mechanism described in
<para>V4L2 drivers should not support multiple applications
reading or writing the same data stream on a device by copying
buffers, time multiplexing or similar means. This is better handled by
-a proxy application in user space. When the driver supports stream
-sharing anyway it must be implemented transparently. The V4L2 API does
-not specify how conflicts are solved. <!-- For example O_EXCL when the
-application does not want to be preempted, PROT_READ mmapped buffers
-which can be mapped twice, what happens when image formats do not
-match etc.--></para>
+a proxy application in user space.</para>
</section>
<section>
@@ -240,15 +187,15 @@ methods</link> supported by the device.</para>
<para>Starting with kernel version 3.1, VIDIOC-QUERYCAP will return the
V4L2 API version used by the driver, with generally matches the Kernel version.
-There's no need of using &VIDIOC-QUERYCAP; to check if an specific ioctl is
-supported, the V4L2 core now returns ENOIOCTLCMD if a driver doesn't provide
+There's no need of using &VIDIOC-QUERYCAP; to check if a specific ioctl is
+supported, the V4L2 core now returns ENOTTY if a driver doesn't provide
support for an ioctl.</para>
<para>Other features can be queried
by calling the respective ioctl, for example &VIDIOC-ENUMINPUT;
to learn about the number, types and names of video connectors on the
device. Although abstraction is a major objective of this API, the
-ioctl also allows driver specific applications to reliable identify
+&VIDIOC-QUERYCAP; ioctl also allows driver specific applications to reliably identify
the driver.</para>
<para>All V4L2 drivers must support
@@ -278,9 +225,7 @@ Applications requiring a different priority will usually call
the &VIDIOC-QUERYCAP; ioctl.</para>
<para>Ioctls changing driver properties, such as &VIDIOC-S-INPUT;,
-return an &EBUSY; after another application obtained higher priority.
-An event mechanism to notify applications about asynchronous property
-changes has been proposed but not added yet.</para>
+return an &EBUSY; after another application obtained higher priority.</para>
</section>
<section id="video">
@@ -288,9 +233,9 @@ changes has been proposed but not added yet.</para>
<para>Video inputs and outputs are physical connectors of a
device. These can be for example RF connectors (antenna/cable), CVBS
-a.k.a. Composite Video, S-Video or RGB connectors. Only video and VBI
-capture devices have inputs, output devices have outputs, at least one
-each. Radio devices have no video inputs or outputs.</para>
+a.k.a. Composite Video, S-Video or RGB connectors. Video and VBI
+capture devices have inputs. Video and VBI output devices have outputs,
+at least one each. Radio devices have no video inputs or outputs.</para>
<para>To learn about the number and attributes of the
available inputs and outputs applications can enumerate them with the
@@ -299,30 +244,13 @@ available inputs and outputs applications can enumerate them with the
ioctl also contains signal status information applicable when the
current video input is queried.</para>
- <para>The &VIDIOC-G-INPUT; and &VIDIOC-G-OUTPUT; ioctl return the
+ <para>The &VIDIOC-G-INPUT; and &VIDIOC-G-OUTPUT; ioctls return the
index of the current video input or output. To select a different
input or output applications call the &VIDIOC-S-INPUT; and
-&VIDIOC-S-OUTPUT; ioctl. Drivers must implement all the input ioctls
+&VIDIOC-S-OUTPUT; ioctls. Drivers must implement all the input ioctls
when the device has one or more inputs, all the output ioctls when the
device has one or more outputs.</para>
- <!--
- <figure id=io-tree>
- <title>Input and output enumeration is the root of most device properties.</title>
- <mediaobject>
- <imageobject>
- <imagedata fileref="links.pdf" format="ps" />
- </imageobject>
- <imageobject>
- <imagedata fileref="links.gif" format="gif" />
- </imageobject>
- <textobject>
- <phrase>Links between various device property structures.</phrase>
- </textobject>
- </mediaobject>
- </figure>
- -->
-
<example>
<title>Information about the current video input</title>
@@ -330,20 +258,20 @@ device has one or more outputs.</para>
&v4l2-input; input;
int index;
-if (-1 == ioctl (fd, &VIDIOC-G-INPUT;, &amp;index)) {
- perror ("VIDIOC_G_INPUT");
- exit (EXIT_FAILURE);
+if (-1 == ioctl(fd, &VIDIOC-G-INPUT;, &amp;index)) {
+ perror("VIDIOC_G_INPUT");
+ exit(EXIT_FAILURE);
}
-memset (&amp;input, 0, sizeof (input));
+memset(&amp;input, 0, sizeof(input));
input.index = index;
-if (-1 == ioctl (fd, &VIDIOC-ENUMINPUT;, &amp;input)) {
- perror ("VIDIOC_ENUMINPUT");
- exit (EXIT_FAILURE);
+if (-1 == ioctl(fd, &VIDIOC-ENUMINPUT;, &amp;input)) {
+ perror("VIDIOC_ENUMINPUT");
+ exit(EXIT_FAILURE);
}
-printf ("Current input: %s\n", input.name);
+printf("Current input: %s\n", input.name);
</programlisting>
</example>
@@ -355,9 +283,9 @@ int index;
index = 0;
-if (-1 == ioctl (fd, &VIDIOC-S-INPUT;, &amp;index)) {
- perror ("VIDIOC_S_INPUT");
- exit (EXIT_FAILURE);
+if (-1 == ioctl(fd, &VIDIOC-S-INPUT;, &amp;index)) {
+ perror("VIDIOC_S_INPUT");
+ exit(EXIT_FAILURE);
}
</programlisting>
</example>
@@ -397,7 +325,7 @@ available inputs and outputs applications can enumerate them with the
also contains signal status information applicable when the current
audio input is queried.</para>
- <para>The &VIDIOC-G-AUDIO; and &VIDIOC-G-AUDOUT; ioctl report
+ <para>The &VIDIOC-G-AUDIO; and &VIDIOC-G-AUDOUT; ioctls report
the current audio input and output, respectively. Note that, unlike
&VIDIOC-G-INPUT; and &VIDIOC-G-OUTPUT; these ioctls return a structure
as <constant>VIDIOC_ENUMAUDIO</constant> and
@@ -408,11 +336,11 @@ applications call the &VIDIOC-S-AUDIO; ioctl. To select an audio
output (which presently has no changeable properties) applications
call the &VIDIOC-S-AUDOUT; ioctl.</para>
- <para>Drivers must implement all input ioctls when the device
-has one or more inputs, all output ioctls when the device has one
-or more outputs. When the device has any audio inputs or outputs the
-driver must set the <constant>V4L2_CAP_AUDIO</constant> flag in the
-&v4l2-capability; returned by the &VIDIOC-QUERYCAP; ioctl.</para>
+ <para>Drivers must implement all audio input ioctls when the device
+has multiple selectable audio inputs, all audio output ioctls when the
+device has multiple selectable audio outputs. When the device has any
+audio inputs or outputs the driver must set the <constant>V4L2_CAP_AUDIO</constant>
+flag in the &v4l2-capability; returned by the &VIDIOC-QUERYCAP; ioctl.</para>
<example>
<title>Information about the current audio input</title>
@@ -420,14 +348,14 @@ driver must set the <constant>V4L2_CAP_AUDIO</constant> flag in the
<programlisting>
&v4l2-audio; audio;
-memset (&amp;audio, 0, sizeof (audio));
+memset(&amp;audio, 0, sizeof(audio));
-if (-1 == ioctl (fd, &VIDIOC-G-AUDIO;, &amp;audio)) {
- perror ("VIDIOC_G_AUDIO");
- exit (EXIT_FAILURE);
+if (-1 == ioctl(fd, &VIDIOC-G-AUDIO;, &amp;audio)) {
+ perror("VIDIOC_G_AUDIO");
+ exit(EXIT_FAILURE);
}
-printf ("Current input: %s\n", audio.name);
+printf("Current input: %s\n", audio.name);
</programlisting>
</example>
@@ -437,13 +365,13 @@ printf ("Current input: %s\n", audio.name);
<programlisting>
&v4l2-audio; audio;
-memset (&amp;audio, 0, sizeof (audio)); /* clear audio.mode, audio.reserved */
+memset(&amp;audio, 0, sizeof(audio)); /* clear audio.mode, audio.reserved */
audio.index = 0;
-if (-1 == ioctl (fd, &VIDIOC-S-AUDIO;, &amp;audio)) {
- perror ("VIDIOC_S_AUDIO");
- exit (EXIT_FAILURE);
+if (-1 == ioctl(fd, &VIDIOC-S-AUDIO;, &amp;audio)) {
+ perror("VIDIOC_S_AUDIO");
+ exit(EXIT_FAILURE);
}
</programlisting>
</example>
@@ -468,7 +396,7 @@ the tuner.</para>
video inputs.</para>
<para>To query and change tuner properties applications use the
-&VIDIOC-G-TUNER; and &VIDIOC-S-TUNER; ioctl, respectively. The
+&VIDIOC-G-TUNER; and &VIDIOC-S-TUNER; ioctls, respectively. The
&v4l2-tuner; returned by <constant>VIDIOC_G_TUNER</constant> also
contains signal status information applicable when the tuner of the
current video or radio input is queried. Note that
@@ -533,7 +461,7 @@ standards or variations of standards. Each video input and output may
support another set of standards. This set is reported by the
<structfield>std</structfield> field of &v4l2-input; and
&v4l2-output; returned by the &VIDIOC-ENUMINPUT; and
-&VIDIOC-ENUMOUTPUT; ioctl, respectively.</para>
+&VIDIOC-ENUMOUTPUT; ioctls, respectively.</para>
<para>V4L2 defines one bit for each analog video standard
currently in use worldwide, and sets aside bits for driver defined
@@ -564,28 +492,10 @@ automatically.</para>
<para>To query and select the standard used by the current video
input or output applications call the &VIDIOC-G-STD; and
&VIDIOC-S-STD; ioctl, respectively. The <emphasis>received</emphasis>
-standard can be sensed with the &VIDIOC-QUERYSTD; ioctl. Note that the parameter of all these ioctls is a pointer to a &v4l2-std-id; type (a standard set), <emphasis>not</emphasis> an index into the standard enumeration.<footnote>
- <para>An alternative to the current scheme is to use pointers
-to indices as arguments of <constant>VIDIOC_G_STD</constant> and
-<constant>VIDIOC_S_STD</constant>, the &v4l2-input; and
-&v4l2-output; <structfield>std</structfield> field would be a set of
-indices like <structfield>audioset</structfield>.</para>
- <para>Indices are consistent with the rest of the API
-and identify the standard unambiguously. In the present scheme of
-things an enumerated standard is looked up by &v4l2-std-id;. Now the
-standards supported by the inputs of a device can overlap. Just
-assume the tuner and composite input in the example above both
-exist on a device. An enumeration of "PAL-B/G", "PAL-H/I" suggests
-a choice which does not exist. We cannot merge or omit sets, because
-applications would be unable to find the standards reported by
-<constant>VIDIOC_G_STD</constant>. That leaves separate enumerations
-for each input. Also selecting a standard by &v4l2-std-id; can be
-ambiguous. Advantage of this method is that applications need not
-identify the standard indirectly, after enumerating.</para><para>So in
-summary, the lookup itself is unavoidable. The difference is only
-whether the lookup is necessary to find an enumerated standard or to
-switch to a standard by &v4l2-std-id;.</para>
- </footnote> Drivers must implement all video standard ioctls
+standard can be sensed with the &VIDIOC-QUERYSTD; ioctl. Note that the
+parameter of all these ioctls is a pointer to a &v4l2-std-id; type
+(a standard set), <emphasis>not</emphasis> an index into the standard
+enumeration. Drivers must implement all video standard ioctls
when the device has one or more video inputs or outputs.</para>
<para>Special rules apply to devices such as USB cameras where the notion of video
@@ -604,17 +514,10 @@ to zero and the <constant>VIDIOC_G_STD</constant>,
<constant>VIDIOC_S_STD</constant>,
<constant>VIDIOC_QUERYSTD</constant> and
<constant>VIDIOC_ENUMSTD</constant> ioctls shall return the
-&ENOTTY;.<footnote>
- <para>See <xref linkend="buffer" /> for a rationale.</para>
+&ENOTTY; or the &EINVAL;.</para>
<para>Applications can make use of the <xref linkend="input-capabilities" /> and
<xref linkend="output-capabilities"/> flags to determine whether the video standard ioctls
-are available for the device.</para>
-
- <para>See <xref linkend="buffer" /> for a rationale. Probably
-even USB cameras follow some well known video standard. It might have
-been better to explicitly indicate elsewhere if a device cannot live
-up to normal expectations, instead of this exception.</para>
- </footnote></para>
+can be used with the given input or output.</para>
<example>
<title>Information about the current video standard</title>
@@ -623,22 +526,22 @@ up to normal expectations, instead of this exception.</para>
&v4l2-std-id; std_id;
&v4l2-standard; standard;
-if (-1 == ioctl (fd, &VIDIOC-G-STD;, &amp;std_id)) {
+if (-1 == ioctl(fd, &VIDIOC-G-STD;, &amp;std_id)) {
/* Note when VIDIOC_ENUMSTD always returns ENOTTY this
is no video device or it falls under the USB exception,
and VIDIOC_G_STD returning ENOTTY is no error. */
- perror ("VIDIOC_G_STD");
- exit (EXIT_FAILURE);
+ perror("VIDIOC_G_STD");
+ exit(EXIT_FAILURE);
}
-memset (&amp;standard, 0, sizeof (standard));
+memset(&amp;standard, 0, sizeof(standard));
standard.index = 0;
-while (0 == ioctl (fd, &VIDIOC-ENUMSTD;, &amp;standard)) {
+while (0 == ioctl(fd, &VIDIOC-ENUMSTD;, &amp;standard)) {
if (standard.id &amp; std_id) {
- printf ("Current video standard: %s\n", standard.name);
- exit (EXIT_SUCCESS);
+ printf("Current video standard: %s\n", standard.name);
+ exit(EXIT_SUCCESS);
}
standard.index++;
@@ -648,8 +551,8 @@ while (0 == ioctl (fd, &VIDIOC-ENUMSTD;, &amp;standard)) {
empty unless this device falls under the USB exception. */
if (errno == EINVAL || standard.index == 0) {
- perror ("VIDIOC_ENUMSTD");
- exit (EXIT_FAILURE);
+ perror("VIDIOC_ENUMSTD");
+ exit(EXIT_FAILURE);
}
</programlisting>
</example>
@@ -662,26 +565,26 @@ input</title>
&v4l2-input; input;
&v4l2-standard; standard;
-memset (&amp;input, 0, sizeof (input));
+memset(&amp;input, 0, sizeof(input));
-if (-1 == ioctl (fd, &VIDIOC-G-INPUT;, &amp;input.index)) {
- perror ("VIDIOC_G_INPUT");
- exit (EXIT_FAILURE);
+if (-1 == ioctl(fd, &VIDIOC-G-INPUT;, &amp;input.index)) {
+ perror("VIDIOC_G_INPUT");
+ exit(EXIT_FAILURE);
}
-if (-1 == ioctl (fd, &VIDIOC-ENUMINPUT;, &amp;input)) {
- perror ("VIDIOC_ENUM_INPUT");
- exit (EXIT_FAILURE);
+if (-1 == ioctl(fd, &VIDIOC-ENUMINPUT;, &amp;input)) {
+ perror("VIDIOC_ENUM_INPUT");
+ exit(EXIT_FAILURE);
}
-printf ("Current input %s supports:\n", input.name);
+printf("Current input %s supports:\n", input.name);
-memset (&amp;standard, 0, sizeof (standard));
+memset(&amp;standard, 0, sizeof(standard));
standard.index = 0;
-while (0 == ioctl (fd, &VIDIOC-ENUMSTD;, &amp;standard)) {
+while (0 == ioctl(fd, &VIDIOC-ENUMSTD;, &amp;standard)) {
if (standard.id &amp; input.std)
- printf ("%s\n", standard.name);
+ printf("%s\n", standard.name);
standard.index++;
}
@@ -690,8 +593,8 @@ while (0 == ioctl (fd, &VIDIOC-ENUMSTD;, &amp;standard)) {
empty unless this device falls under the USB exception. */
if (errno != EINVAL || standard.index == 0) {
- perror ("VIDIOC_ENUMSTD");
- exit (EXIT_FAILURE);
+ perror("VIDIOC_ENUMSTD");
+ exit(EXIT_FAILURE);
}
</programlisting>
</example>
@@ -703,21 +606,21 @@ if (errno != EINVAL || standard.index == 0) {
&v4l2-input; input;
&v4l2-std-id; std_id;
-memset (&amp;input, 0, sizeof (input));
+memset(&amp;input, 0, sizeof(input));
-if (-1 == ioctl (fd, &VIDIOC-G-INPUT;, &amp;input.index)) {
- perror ("VIDIOC_G_INPUT");
- exit (EXIT_FAILURE);
+if (-1 == ioctl(fd, &VIDIOC-G-INPUT;, &amp;input.index)) {
+ perror("VIDIOC_G_INPUT");
+ exit(EXIT_FAILURE);
}
-if (-1 == ioctl (fd, &VIDIOC-ENUMINPUT;, &amp;input)) {
- perror ("VIDIOC_ENUM_INPUT");
- exit (EXIT_FAILURE);
+if (-1 == ioctl(fd, &VIDIOC-ENUMINPUT;, &amp;input)) {
+ perror("VIDIOC_ENUM_INPUT");
+ exit(EXIT_FAILURE);
}
if (0 == (input.std &amp; V4L2_STD_PAL_BG)) {
- fprintf (stderr, "Oops. B/G PAL is not supported.\n");
- exit (EXIT_FAILURE);
+ fprintf(stderr, "Oops. B/G PAL is not supported.\n");
+ exit(EXIT_FAILURE);
}
/* Note this is also supposed to work when only B
@@ -725,9 +628,9 @@ if (0 == (input.std &amp; V4L2_STD_PAL_BG)) {
std_id = V4L2_STD_PAL_BG;
-if (-1 == ioctl (fd, &VIDIOC-S-STD;, &amp;std_id)) {
- perror ("VIDIOC_S_STD");
- exit (EXIT_FAILURE);
+if (-1 == ioctl(fd, &VIDIOC-S-STD;, &amp;std_id)) {
+ perror("VIDIOC_S_STD");
+ exit(EXIT_FAILURE);
}
</programlisting>
</example>
@@ -740,26 +643,25 @@ corresponding video timings. Today there are many more different hardware interf
such as High Definition TV interfaces (HDMI), VGA, DVI connectors etc., that carry
video signals and there is a need to extend the API to select the video timings
for these interfaces. Since it is not possible to extend the &v4l2-std-id; due to
-the limited bits available, a new set of IOCTLs was added to set/get video timings at
-the input and output: </para><itemizedlist>
- <listitem>
- <para>DV Timings: This will allow applications to define detailed
-video timings for the interface. This includes parameters such as width, height,
-polarities, frontporch, backporch etc. The <filename>linux/v4l2-dv-timings.h</filename>
+the limited bits available, a new set of ioctls was added to set/get video timings at
+the input and output.</para>
+
+ <para>These ioctls deal with the detailed digital video timings that define
+each video format. This includes parameters such as the active video width and height,
+signal polarities, frontporches, backporches, sync widths etc. The <filename>linux/v4l2-dv-timings.h</filename>
header can be used to get the timings of the formats in the <xref linkend="cea861" /> and
<xref linkend="vesadmt" /> standards.
</para>
- </listitem>
- </itemizedlist>
- <para>To enumerate and query the attributes of the DV timings supported by a device,
+
+ <para>To enumerate and query the attributes of the DV timings supported by a device
applications use the &VIDIOC-ENUM-DV-TIMINGS; and &VIDIOC-DV-TIMINGS-CAP; ioctls.
- To set DV timings for the device, applications use the
+ To set DV timings for the device applications use the
&VIDIOC-S-DV-TIMINGS; ioctl and to get current DV timings they use the
&VIDIOC-G-DV-TIMINGS; ioctl. To detect the DV timings as seen by the video receiver applications
use the &VIDIOC-QUERY-DV-TIMINGS; ioctl.</para>
<para>Applications can make use of the <xref linkend="input-capabilities" /> and
-<xref linkend="output-capabilities"/> flags to decide what ioctls are available to set the
-video timings for the device.</para>
+<xref linkend="output-capabilities"/> flags to determine whether the digital video ioctls
+can be used with the given input or output.</para>
</section>
&sub-controls;
diff --git a/Documentation/DocBook/media/v4l/compat.xml b/Documentation/DocBook/media/v4l/compat.xml
index 0c7195e3e09..eee6f0f4aa4 100644
--- a/Documentation/DocBook/media/v4l/compat.xml
+++ b/Documentation/DocBook/media/v4l/compat.xml
@@ -397,7 +397,7 @@ linkend="control" />.</para>
<para>The <structfield>depth</structfield> (average number of
bits per pixel) of a video image is implied by the selected image
-format. V4L2 does not explicitely provide such information assuming
+format. V4L2 does not explicitly provide such information assuming
applications recognizing the format are aware of the image depth and
others need not know. The <structfield>palette</structfield> field
moved into the &v4l2-pix-format;:<informaltable>
@@ -2523,6 +2523,28 @@ that used it. It was originally scheduled for removal in 2.6.35.
</orderedlist>
</section>
+ <section>
+ <title>V4L2 in Linux 3.14</title>
+ <orderedlist>
+ <listitem>
+ <para> In struct <structname>v4l2_rect</structname>, the type
+of <structfield>width</structfield> and <structfield>height</structfield>
+fields changed from _s32 to _u32.
+ </para>
+ </listitem>
+ </orderedlist>
+ </section>
+
+ <section>
+ <title>V4L2 in Linux 3.15</title>
+ <orderedlist>
+ <listitem>
+ <para>Added Software Defined Radio (SDR) Interface.
+ </para>
+ </listitem>
+ </orderedlist>
+ </section>
+
<section id="other">
<title>Relation of V4L2 to other Linux multimedia APIs</title>
@@ -2639,6 +2661,9 @@ ioctls.</para>
<listitem>
<para>Exporting DMABUF files using &VIDIOC-EXPBUF; ioctl.</para>
</listitem>
+ <listitem>
+ <para>Software Defined Radio (SDR) Interface, <xref linkend="sdr" />.</para>
+ </listitem>
</itemizedlist>
</section>
diff --git a/Documentation/DocBook/media/v4l/controls.xml b/Documentation/DocBook/media/v4l/controls.xml
index 7a3b49b3cc3..47198eef75a 100644
--- a/Documentation/DocBook/media/v4l/controls.xml
+++ b/Documentation/DocBook/media/v4l/controls.xml
@@ -2258,6 +2258,26 @@ Applicable to the MPEG1, MPEG2, MPEG4 encoders.</entry>
VBV buffer control.</entry>
</row>
+ <row><entry></entry></row>
+ <row id="v4l2-mpeg-video-hor-search-range">
+ <entry spanname="id"><constant>V4L2_CID_MPEG_VIDEO_MV_H_SEARCH_RANGE</constant>&nbsp;</entry>
+ <entry>integer</entry>
+ </row>
+ <row><entry spanname="descr">Horizontal search range defines maximum horizontal search area in pixels
+to search and match for the present Macroblock (MB) in the reference picture. This V4L2 control macro is used to set
+horizontal search range for motion estimation module in video encoder.</entry>
+ </row>
+
+ <row><entry></entry></row>
+ <row id="v4l2-mpeg-video-vert-search-range">
+ <entry spanname="id"><constant>V4L2_CID_MPEG_VIDEO_MV_V_SEARCH_RANGE</constant>&nbsp;</entry>
+ <entry>integer</entry>
+ </row>
+ <row><entry spanname="descr">Vertical search range defines maximum vertical search area in pixels
+to search and match for the present Macroblock (MB) in the reference picture. This V4L2 control macro is used to set
+vertical search range for motion estimation module in video encoder.</entry>
+ </row>
+
<row><entry></entry></row>
<row>
<entry spanname="id"><constant>V4L2_CID_MPEG_VIDEO_H264_CPB_SIZE</constant>&nbsp;</entry>
@@ -3161,6 +3181,47 @@ V4L2_CID_MPEG_VIDEO_VPX_GOLDEN_FRAME_REF_PERIOD as a golden frame.</entry>
</entrytbl>
</row>
+ <row><entry></entry></row>
+ <row>
+ <entry spanname="id"><constant>V4L2_CID_MPEG_VIDEO_VPX_MIN_QP</constant></entry>
+ <entry>integer</entry>
+ </row>
+ <row><entry spanname="descr">Minimum quantization parameter for VP8.</entry>
+ </row>
+
+ <row><entry></entry></row>
+ <row>
+ <entry spanname="id"><constant>V4L2_CID_MPEG_VIDEO_VPX_MAX_QP</constant></entry>
+ <entry>integer</entry>
+ </row>
+ <row><entry spanname="descr">Maximum quantization parameter for VP8.</entry>
+ </row>
+
+ <row><entry></entry></row>
+ <row>
+ <entry spanname="id"><constant>V4L2_CID_MPEG_VIDEO_VPX_I_FRAME_QP</constant>&nbsp;</entry>
+ <entry>integer</entry>
+ </row>
+ <row><entry spanname="descr">Quantization parameter for an I frame for VP8.</entry>
+ </row>
+
+ <row><entry></entry></row>
+ <row>
+ <entry spanname="id"><constant>V4L2_CID_MPEG_VIDEO_VPX_P_FRAME_QP</constant>&nbsp;</entry>
+ <entry>integer</entry>
+ </row>
+ <row><entry spanname="descr">Quantization parameter for a P frame for VP8.</entry>
+ </row>
+
+ <row><entry></entry></row>
+ <row>
+ <entry spanname="id"><constant>V4L2_CID_MPEG_VIDEO_VPX_PROFILE</constant>&nbsp;</entry>
+ <entry>integer</entry>
+ </row>
+ <row><entry spanname="descr">Select the desired profile for VPx encoder.
+Acceptable values are 0, 1, 2 and 3 corresponding to encoder profiles 0, 1, 2 and 3.</entry>
+ </row>
+
<row><entry></entry></row>
</tbody>
</tgroup>
@@ -4329,6 +4390,24 @@ interface and may change in the future.</para>
<entry>The flash controller has detected a short or open
circuit condition on the indicator LED.</entry>
</row>
+ <row>
+ <entry><constant>V4L2_FLASH_FAULT_UNDER_VOLTAGE</constant></entry>
+ <entry>Flash controller voltage to the flash LED
+ has been below the minimum limit specific to the flash
+ controller.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_FLASH_FAULT_INPUT_VOLTAGE</constant></entry>
+ <entry>The input voltage of the flash controller is below
+ the limit under which strobing the flash at full current
+ will not be possible.The condition persists until this flag
+ is no longer set.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_FLASH_FAULT_LED_OVER_TEMPERATURE</constant></entry>
+ <entry>The temperature of the LED has exceeded its
+ allowed upper limit.</entry>
+ </row>
</tbody>
</entrytbl>
</row>
@@ -4930,4 +5009,142 @@ defines possible values for de-emphasis. Here they are:</entry>
</table>
</section>
+
+ <section id="rf-tuner-controls">
+ <title>RF Tuner Control Reference</title>
+
+ <para>
+The RF Tuner (RF_TUNER) class includes controls for common features of devices
+having RF tuner.
+ </para>
+ <para>
+In this context, RF tuner is radio receiver circuit between antenna and
+demodulator. It receives radio frequency (RF) from the antenna and converts that
+received signal to lower intermediate frequency (IF) or baseband frequency (BB).
+Tuners that could do baseband output are often called Zero-IF tuners. Older
+tuners were typically simple PLL tuners inside a metal box, whilst newer ones
+are highly integrated chips without a metal box "silicon tuners". These controls
+are mostly applicable for new feature rich silicon tuners, just because older
+tuners does not have much adjustable features.
+ </para>
+ <para>
+For more information about RF tuners see
+<ulink url="http://en.wikipedia.org/wiki/Tuner_%28radio%29">Tuner (radio)</ulink>
+and
+<ulink url="http://en.wikipedia.org/wiki/RF_front_end">RF front end</ulink>
+from Wikipedia.
+ </para>
+
+ <table pgwide="1" frame="none" id="rf-tuner-control-id">
+ <title>RF_TUNER Control IDs</title>
+
+ <tgroup cols="4">
+ <colspec colname="c1" colwidth="1*" />
+ <colspec colname="c2" colwidth="6*" />
+ <colspec colname="c3" colwidth="2*" />
+ <colspec colname="c4" colwidth="6*" />
+ <spanspec namest="c1" nameend="c2" spanname="id" />
+ <spanspec namest="c2" nameend="c4" spanname="descr" />
+ <thead>
+ <row>
+ <entry spanname="id" align="left">ID</entry>
+ <entry align="left">Type</entry>
+ </row>
+ <row rowsep="1">
+ <entry spanname="descr" align="left">Description</entry>
+ </row>
+ </thead>
+ <tbody valign="top">
+ <row><entry></entry></row>
+ <row>
+ <entry spanname="id"><constant>V4L2_CID_RF_TUNER_CLASS</constant>&nbsp;</entry>
+ <entry>class</entry>
+ </row><row><entry spanname="descr">The RF_TUNER class
+descriptor. Calling &VIDIOC-QUERYCTRL; for this control will return a
+description of this control class.</entry>
+ </row>
+ <row>
+ <entry spanname="id"><constant>V4L2_CID_RF_TUNER_BANDWIDTH_AUTO</constant>&nbsp;</entry>
+ <entry>boolean</entry>
+ </row>
+ <row>
+ <entry spanname="descr">Enables/disables tuner radio channel
+bandwidth configuration. In automatic mode bandwidth configuration is performed
+by the driver.</entry>
+ </row>
+ <row>
+ <entry spanname="id"><constant>V4L2_CID_RF_TUNER_BANDWIDTH</constant>&nbsp;</entry>
+ <entry>integer</entry>
+ </row>
+ <row>
+ <entry spanname="descr">Filter(s) on tuner signal path are used to
+filter signal according to receiving party needs. Driver configures filters to
+fulfill desired bandwidth requirement. Used when V4L2_CID_RF_TUNER_BANDWIDTH_AUTO is not
+set. Unit is in Hz. The range and step are driver-specific.</entry>
+ </row>
+ <row>
+ <entry spanname="id"><constant>V4L2_CID_RF_TUNER_LNA_GAIN_AUTO</constant>&nbsp;</entry>
+ <entry>boolean</entry>
+ </row>
+ <row>
+ <entry spanname="descr">Enables/disables LNA automatic gain control (AGC)</entry>
+ </row>
+ <row>
+ <entry spanname="id"><constant>V4L2_CID_RF_TUNER_MIXER_GAIN_AUTO</constant>&nbsp;</entry>
+ <entry>boolean</entry>
+ </row>
+ <row>
+ <entry spanname="descr">Enables/disables mixer automatic gain control (AGC)</entry>
+ </row>
+ <row>
+ <entry spanname="id"><constant>V4L2_CID_RF_TUNER_IF_GAIN_AUTO</constant>&nbsp;</entry>
+ <entry>boolean</entry>
+ </row>
+ <row>
+ <entry spanname="descr">Enables/disables IF automatic gain control (AGC)</entry>
+ </row>
+ <row>
+ <entry spanname="id"><constant>V4L2_CID_RF_TUNER_LNA_GAIN</constant>&nbsp;</entry>
+ <entry>integer</entry>
+ </row>
+ <row>
+ <entry spanname="descr">LNA (low noise amplifier) gain is first
+gain stage on the RF tuner signal path. It is located very close to tuner
+antenna input. Used when <constant>V4L2_CID_RF_TUNER_LNA_GAIN_AUTO</constant> is not set.
+The range and step are driver-specific.</entry>
+ </row>
+ <row>
+ <entry spanname="id"><constant>V4L2_CID_RF_TUNER_MIXER_GAIN</constant>&nbsp;</entry>
+ <entry>integer</entry>
+ </row>
+ <row>
+ <entry spanname="descr">Mixer gain is second gain stage on the RF
+tuner signal path. It is located inside mixer block, where RF signal is
+down-converted by the mixer. Used when <constant>V4L2_CID_RF_TUNER_MIXER_GAIN_AUTO</constant>
+is not set. The range and step are driver-specific.</entry>
+ </row>
+ <row>
+ <entry spanname="id"><constant>V4L2_CID_RF_TUNER_IF_GAIN</constant>&nbsp;</entry>
+ <entry>integer</entry>
+ </row>
+ <row>
+ <entry spanname="descr">IF gain is last gain stage on the RF tuner
+signal path. It is located on output of RF tuner. It controls signal level of
+intermediate frequency output or baseband output. Used when
+<constant>V4L2_CID_RF_TUNER_IF_GAIN_AUTO</constant> is not set. The range and step are
+driver-specific.</entry>
+ </row>
+ <row>
+ <entry spanname="id"><constant>V4L2_CID_RF_TUNER_PLL_LOCK</constant>&nbsp;</entry>
+ <entry>boolean</entry>
+ </row>
+ <row>
+ <entry spanname="descr">Is synthesizer PLL locked? RF tuner is
+receiving given frequency when that control is set. This is a read-only control.
+</entry>
+ </row>
+ </tbody>
+ </tgroup>
+ </table>
+ </section>
</section>
diff --git a/Documentation/DocBook/media/v4l/dev-osd.xml b/Documentation/DocBook/media/v4l/dev-osd.xml
index dd91d6134e8..54853329140 100644
--- a/Documentation/DocBook/media/v4l/dev-osd.xml
+++ b/Documentation/DocBook/media/v4l/dev-osd.xml
@@ -56,18 +56,18 @@ framebuffer device.</para>
unsigned int i;
int fb_fd;
-if (-1 == ioctl (fd, VIDIOC_G_FBUF, &amp;fbuf)) {
- perror ("VIDIOC_G_FBUF");
- exit (EXIT_FAILURE);
+if (-1 == ioctl(fd, VIDIOC_G_FBUF, &amp;fbuf)) {
+ perror("VIDIOC_G_FBUF");
+ exit(EXIT_FAILURE);
}
-for (i = 0; i &gt; 30; ++i) {
+for (i = 0; i &lt; 30; i++) {
char dev_name[16];
struct fb_fix_screeninfo si;
- snprintf (dev_name, sizeof (dev_name), "/dev/fb%u", i);
+ snprintf(dev_name, sizeof(dev_name), "/dev/fb%u", i);
- fb_fd = open (dev_name, O_RDWR);
+ fb_fd = open(dev_name, O_RDWR);
if (-1 == fb_fd) {
switch (errno) {
case ENOENT: /* no such file */
@@ -75,19 +75,19 @@ for (i = 0; i &gt; 30; ++i) {
continue;
default:
- perror ("open");
- exit (EXIT_FAILURE);
+ perror("open");
+ exit(EXIT_FAILURE);
}
}
- if (0 == ioctl (fb_fd, FBIOGET_FSCREENINFO, &amp;si)) {
- if (si.smem_start == (unsigned long) fbuf.base)
+ if (0 == ioctl(fb_fd, FBIOGET_FSCREENINFO, &amp;si)) {
+ if (si.smem_start == (unsigned long)fbuf.base)
break;
} else {
/* Apparently not a framebuffer device. */
}
- close (fb_fd);
+ close(fb_fd);
fb_fd = -1;
}
diff --git a/Documentation/DocBook/media/v4l/dev-overlay.xml b/Documentation/DocBook/media/v4l/dev-overlay.xml
index 40d1d768143..cc6e0c5c960 100644
--- a/Documentation/DocBook/media/v4l/dev-overlay.xml
+++ b/Documentation/DocBook/media/v4l/dev-overlay.xml
@@ -346,17 +346,14 @@ rectangle, in pixels.</entry>
rectangle, in pixels. Offsets increase to the right and down.</entry>
</row>
<row>
- <entry>__s32</entry>
+ <entry>__u32</entry>
<entry><structfield>width</structfield></entry>
<entry>Width of the rectangle, in pixels.</entry>
</row>
<row>
- <entry>__s32</entry>
+ <entry>__u32</entry>
<entry><structfield>height</structfield></entry>
- <entry>Height of the rectangle, in pixels. Width and
-height cannot be negative, the fields are signed for hysterical
-reasons. <!-- video4linux-list@redhat.com on 22 Oct 2002 subject
-"Re:[V4L][patches!] Re:v4l2/kernel-2.5" --></entry>
+ <entry>Height of the rectangle, in pixels.</entry>
</row>
</tbody>
</tgroup>
diff --git a/Documentation/DocBook/media/v4l/dev-sdr.xml b/Documentation/DocBook/media/v4l/dev-sdr.xml
new file mode 100644
index 00000000000..dc14804f543
--- /dev/null
+++ b/Documentation/DocBook/media/v4l/dev-sdr.xml
@@ -0,0 +1,110 @@
+ <title>Software Defined Radio Interface (SDR)</title>
+
+ <note>
+ <title>Experimental</title>
+ <para>This is an <link linkend="experimental"> experimental </link>
+ interface and may change in the future.</para>
+ </note>
+
+ <para>
+SDR is an abbreviation of Software Defined Radio, the radio device
+which uses application software for modulation or demodulation. This interface
+is intended for controlling and data streaming of such devices.
+ </para>
+
+ <para>
+SDR devices are accessed through character device special files named
+<filename>/dev/swradio0</filename> to <filename>/dev/swradio255</filename>
+with major number 81 and dynamically allocated minor numbers 0 to 255.
+ </para>
+
+ <section>
+ <title>Querying Capabilities</title>
+
+ <para>
+Devices supporting the SDR receiver interface set the
+<constant>V4L2_CAP_SDR_CAPTURE</constant> and
+<constant>V4L2_CAP_TUNER</constant> flag in the
+<structfield>capabilities</structfield> field of &v4l2-capability;
+returned by the &VIDIOC-QUERYCAP; ioctl. That flag means the device has an
+Analog to Digital Converter (ADC), which is a mandatory element for the SDR receiver.
+At least one of the read/write, streaming or asynchronous I/O methods must
+be supported.
+ </para>
+ </section>
+
+ <section>
+ <title>Supplemental Functions</title>
+
+ <para>
+SDR devices can support <link linkend="control">controls</link>, and must
+support the <link linkend="tuner">tuner</link> ioctls. Tuner ioctls are used
+for setting the ADC sampling rate (sampling frequency) and the possible RF tuner
+frequency.
+ </para>
+
+ <para>
+The <constant>V4L2_TUNER_ADC</constant> tuner type is used for ADC tuners, and
+the <constant>V4L2_TUNER_RF</constant> tuner type is used for RF tuners. The
+tuner index of the RF tuner (if any) must always follow the ADC tuner index.
+Normally the ADC tuner is #0 and the RF tuner is #1.
+ </para>
+
+ <para>
+The &VIDIOC-S-HW-FREQ-SEEK; ioctl is not supported.
+ </para>
+ </section>
+
+ <section>
+ <title>Data Format Negotiation</title>
+
+ <para>
+The SDR capture device uses the <link linkend="format">format</link> ioctls to
+select the capture format. Both the sampling resolution and the data streaming
+format are bound to that selectable format. In addition to the basic
+<link linkend="format">format</link> ioctls, the &VIDIOC-ENUM-FMT; ioctl
+must be supported as well.
+ </para>
+
+ <para>
+To use the <link linkend="format">format</link> ioctls applications set the
+<structfield>type</structfield> field of a &v4l2-format; to
+<constant>V4L2_BUF_TYPE_SDR_CAPTURE</constant> and use the &v4l2-sdr-format;
+<structfield>sdr</structfield> member of the <structfield>fmt</structfield>
+union as needed per the desired operation.
+Currently only the <structfield>pixelformat</structfield> field of
+&v4l2-sdr-format; is used. The content of that field is the V4L2 fourcc code
+of the data format.
+ </para>
+
+ <table pgwide="1" frame="none" id="v4l2-sdr-format">
+ <title>struct <structname>v4l2_sdr_format</structname></title>
+ <tgroup cols="3">
+ &cs-str;
+ <tbody valign="top">
+ <row>
+ <entry>__u32</entry>
+ <entry><structfield>pixelformat</structfield></entry>
+ <entry>
+The data format or type of compression, set by the application. This is a
+little endian <link linkend="v4l2-fourcc">four character code</link>.
+V4L2 defines SDR formats in <xref linkend="sdr-formats" />.
+ </entry>
+ </row>
+ <row>
+ <entry>__u8</entry>
+ <entry><structfield>reserved[28]</structfield></entry>
+ <entry>This array is reserved for future extensions.
+Drivers and applications must set it to zero.</entry>
+ </row>
+ </tbody>
+ </tgroup>
+ </table>
+
+ <para>
+An SDR device may support <link linkend="rw">read/write</link>
+and/or streaming (<link linkend="mmap">memory mapping</link>
+or <link linkend="userp">user pointer</link>) I/O.
+ </para>
+
+ </section>
diff --git a/Documentation/DocBook/media/v4l/io.xml b/Documentation/DocBook/media/v4l/io.xml
index 2c4c068dde8..a086a5db7a1 100644
--- a/Documentation/DocBook/media/v4l/io.xml
+++ b/Documentation/DocBook/media/v4l/io.xml
@@ -125,7 +125,7 @@ location of the buffers in device memory can be determined with the
<structfield>m.offset</structfield> and <structfield>length</structfield>
returned in a &v4l2-buffer; are passed as sixth and second parameter to the
<function>mmap()</function> function. When using the multi-planar API,
-struct &v4l2-buffer; contains an array of &v4l2-plane; structures, each
+&v4l2-buffer; contains an array of &v4l2-plane; structures, each
containing its own <structfield>m.offset</structfield> and
<structfield>length</structfield>. When using the multi-planar API, every
plane of every buffer has to be mapped separately, so the number of
@@ -339,8 +339,8 @@ returns immediately with an &EAGAIN; when no buffer is available. The
queues as a side effect. Since there is no notion of doing anything
"now" on a multitasking system, if an application needs to synchronize
with another event it should examine the &v4l2-buffer;
-<structfield>timestamp</structfield> of captured buffers, or set the
-field before enqueuing buffers for output.</para>
+<structfield>timestamp</structfield> of captured or outputted buffers.
+</para>
<para>Drivers implementing memory mapping I/O must
support the <constant>VIDIOC_REQBUFS</constant>,
@@ -457,7 +457,7 @@ queues and unlocks all buffers as a side effect. Since there is no
notion of doing anything "now" on a multitasking system, if an
application needs to synchronize with another event it should examine
the &v4l2-buffer; <structfield>timestamp</structfield> of captured
-buffers, or set the field before enqueuing buffers for output.</para>
+or outputted buffers.</para>
<para>Drivers implementing user pointer I/O must
support the <constant>VIDIOC_REQBUFS</constant>,
@@ -620,8 +620,7 @@ returns immediately with an &EAGAIN; when no buffer is available. The
unlocks all buffers as a side effect. Since there is no notion of doing
anything "now" on a multitasking system, if an application needs to synchronize
with another event it should examine the &v4l2-buffer;
-<structfield>timestamp</structfield> of captured buffers, or set the field
-before enqueuing buffers for output.</para>
+<structfield>timestamp</structfield> of captured or outputted buffers.</para>
<para>Drivers implementing DMABUF importing I/O must support the
<constant>VIDIOC_REQBUFS</constant>, <constant>VIDIOC_QBUF</constant>,
@@ -654,38 +653,19 @@ plane, are stored in struct <structname>v4l2_plane</structname> instead.
In that case, struct <structname>v4l2_buffer</structname> contains an array of
plane structures.</para>
- <para>Nominally timestamps refer to the first data byte transmitted.
-In practice however the wide range of hardware covered by the V4L2 API
-limits timestamp accuracy. Often an interrupt routine will
-sample the system clock shortly after the field or frame was stored
-completely in memory. So applications must expect a constant
-difference up to one field or frame period plus a small (few scan
-lines) random error. The delay and error can be much
-larger due to compression or transmission over an external bus when
-the frames are not properly stamped by the sender. This is frequently
-the case with USB cameras. Here timestamps refer to the instant the
-field or frame was received by the driver, not the capture time. These
-devices identify by not enumerating any video standards, see <xref
-linkend="standard" />.</para>
-
- <para>Similar limitations apply to output timestamps. Typically
-the video hardware locks to a clock controlling the video timing, the
-horizontal and vertical synchronization pulses. At some point in the
-line sequence, possibly the vertical blanking, an interrupt routine
-samples the system clock, compares against the timestamp and programs
-the hardware to repeat the previous field or frame, or to display the
-buffer contents.</para>
-
- <para>Apart of limitations of the video device and natural
-inaccuracies of all clocks, it should be noted system time itself is
-not perfectly stable. It can be affected by power saving cycles,
-warped to insert leap seconds, or even turned back or forth by the
-system administrator affecting long term measurements. <footnote>
- <para>Since no other Linux multimedia
-API supports unadjusted time it would be foolish to introduce here. We
-must use a universally supported clock to synchronize different media,
-hence time of day.</para>
- </footnote></para>
+ <para>Dequeued video buffers come with timestamps. The driver
+ decides at which part of the frame and with which clock the
+ timestamp is taken. Please see flags in the masks
+ <constant>V4L2_BUF_FLAG_TIMESTAMP_MASK</constant> and
+ <constant>V4L2_BUF_FLAG_TSTAMP_SRC_MASK</constant> in <xref
+ linkend="buffer-flags" />. These flags are always valid and constant
+ across all buffers during the whole video stream. Changes in these
+ flags may take place as a side effect of &VIDIOC-S-INPUT; or
+ &VIDIOC-S-OUTPUT; however. The
+ <constant>V4L2_BUF_FLAG_TIMESTAMP_COPY</constant> timestamp type
+ which is used by e.g. on mem-to-mem devices is an exception to the
+ rule: the timestamp source flags are copied from the OUTPUT video
+ buffer to the CAPTURE video buffer.</para>
<table frame="none" pgwide="1" id="v4l2-buffer">
<title>struct <structname>v4l2_buffer</structname></title>
@@ -696,10 +676,11 @@ hence time of day.</para>
<entry>__u32</entry>
<entry><structfield>index</structfield></entry>
<entry></entry>
- <entry>Number of the buffer, set by the application. This
-field is only used for <link linkend="mmap">memory mapping</link> I/O
-and can range from zero to the number of buffers allocated
-with the &VIDIOC-REQBUFS; ioctl (&v4l2-requestbuffers; <structfield>count</structfield>) minus one.</entry>
+ <entry>Number of the buffer, set by the application except
+when calling &VIDIOC-DQBUF;, then it is set by the driver.
+This field can range from zero to the number of buffers allocated
+with the &VIDIOC-REQBUFS; ioctl (&v4l2-requestbuffers; <structfield>count</structfield>),
+plus any buffers allocated with &VIDIOC-CREATE-BUFS; minus one.</entry>
</row>
<row>
<entry>__u32</entry>
@@ -718,7 +699,12 @@ linkend="v4l2-buf-type" /></entry>
buffer. It depends on the negotiated data format and may change with
each buffer for compressed variable size data like JPEG images.
Drivers must set this field when <structfield>type</structfield>
-refers to an input stream, applications when an output stream.</entry>
+refers to an input stream, applications when it refers to an output stream.
+If the application sets this to 0 for an output stream, then
+<structfield>bytesused</structfield> will be set to the size of the
+buffer (see the <structfield>length</structfield> field of this struct) by
+the driver. For multiplanar formats this field is ignored and the
+<structfield>planes</structfield> pointer is used instead.</entry>
</row>
<row>
<entry>__u32</entry>
@@ -735,7 +721,7 @@ linkend="buffer-flags" />.</entry>
buffer, see <xref linkend="v4l2-field" />. This field is not used when
the buffer contains VBI data. Drivers must set it when
<structfield>type</structfield> refers to an input stream,
-applications when an output stream.</entry>
+applications when it refers to an output stream.</entry>
</row>
<row>
<entry>struct timeval</entry>
@@ -745,15 +731,13 @@ applications when an output stream.</entry>
byte was captured, as returned by the
<function>clock_gettime()</function> function for the relevant
clock id; see <constant>V4L2_BUF_FLAG_TIMESTAMP_*</constant> in
- <xref linkend="buffer-flags" />. For output streams the data
- will not be displayed before this time, secondary to the nominal
- frame rate determined by the current video standard in enqueued
- order. Applications can for example zero this field to display
- frames as soon as possible. The driver stores the time at which
- the first data byte was actually sent out in the
- <structfield>timestamp</structfield> field. This permits
+ <xref linkend="buffer-flags" />. For output streams the driver
+ stores the time at which the last data byte was actually sent out
+ in the <structfield>timestamp</structfield> field. This permits
applications to monitor the drift between the video and system
- clock.</para></entry>
+ clock. For output streams that use <constant>V4L2_BUF_FLAG_TIMESTAMP_COPY</constant>
+ the application has to fill in the timestamp which will be copied
+ by the driver to the capture stream.</para></entry>
</row>
<row>
<entry>&v4l2-timecode;</entry>
@@ -846,7 +830,8 @@ is the file descriptor associated with a DMABUF buffer.</entry>
<entry><structfield>length</structfield></entry>
<entry></entry>
<entry>Size of the buffer (not the payload) in bytes for the
- single-planar API. For the multi-planar API the application sets
+ single-planar API. This is set by the driver based on the calls to
+ &VIDIOC-REQBUFS; and/or &VIDIOC-CREATE-BUFS;. For the multi-planar API the application sets
this to the number of elements in the <structfield>planes</structfield>
array. The driver will fill in the actual number of valid elements in
that array.
@@ -880,13 +865,19 @@ should set this to 0.</entry>
<entry><structfield>bytesused</structfield></entry>
<entry></entry>
<entry>The number of bytes occupied by data in the plane
- (its payload).</entry>
+ (its payload). Drivers must set this field when <structfield>type</structfield>
+ refers to an input stream, applications when it refers to an output stream.
+ If the application sets this to 0 for an output stream, then
+ <structfield>bytesused</structfield> will be set to the size of the
+ plane (see the <structfield>length</structfield> field of this struct)
+ by the driver.</entry>
</row>
<row>
<entry>__u32</entry>
<entry><structfield>length</structfield></entry>
<entry></entry>
- <entry>Size in bytes of the plane (not its payload).</entry>
+ <entry>Size in bytes of the plane (not its payload). This is set by the driver
+ based on the calls to &VIDIOC-REQBUFS; and/or &VIDIOC-CREATE-BUFS;.</entry>
</row>
<row>
<entry>union</entry>
@@ -925,7 +916,9 @@ should set this to 0.</entry>
<entry>__u32</entry>
<entry><structfield>data_offset</structfield></entry>
<entry></entry>
- <entry>Offset in bytes to video data in the plane, if applicable.
+ <entry>Offset in bytes to video data in the plane.
+ Drivers must set this field when <structfield>type</structfield>
+ refers to an input stream, applications when it refers to an output stream.
</entry>
</row>
<row>
@@ -1005,6 +998,12 @@ should set this to 0.</entry>
<entry>Buffer for video output overlay (OSD), see <xref
linkend="osd" />.</entry>
</row>
+ <row>
+ <entry><constant>V4L2_BUF_TYPE_SDR_CAPTURE</constant></entry>
+ <entry>11</entry>
+ <entry>Buffer for Software Defined Radio (SDR), see <xref
+ linkend="sdr" />.</entry>
+ </row>
</tbody>
</tgroup>
</table>
@@ -1016,7 +1015,7 @@ should set this to 0.</entry>
<tbody valign="top">
<row>
<entry><constant>V4L2_BUF_FLAG_MAPPED</constant></entry>
- <entry>0x0001</entry>
+ <entry>0x00000001</entry>
<entry>The buffer resides in device memory and has been mapped
into the application's address space, see <xref linkend="mmap" /> for details.
Drivers set or clear this flag when the
@@ -1026,7 +1025,7 @@ Drivers set or clear this flag when the
</row>
<row>
<entry><constant>V4L2_BUF_FLAG_QUEUED</constant></entry>
- <entry>0x0002</entry>
+ <entry>0x00000002</entry>
<entry>Internally drivers maintain two buffer queues, an
incoming and outgoing queue. When this flag is set, the buffer is
currently on the incoming queue. It automatically moves to the
@@ -1039,7 +1038,7 @@ cleared.</entry>
</row>
<row>
<entry><constant>V4L2_BUF_FLAG_DONE</constant></entry>
- <entry>0x0004</entry>
+ <entry>0x00000004</entry>
<entry>When this flag is set, the buffer is currently on
the outgoing queue, ready to be dequeued from the driver. Drivers set
or clear this flag when the <constant>VIDIOC_QUERYBUF</constant> ioctl
@@ -1049,11 +1048,11 @@ buffer cannot be on both queues at the same time, the
<constant>V4L2_BUF_FLAG_QUEUED</constant> and
<constant>V4L2_BUF_FLAG_DONE</constant> flag are mutually exclusive.
They can be both cleared however, then the buffer is in "dequeued"
-state, in the application domain to say so.</entry>
+state, in the application domain so to say.</entry>
</row>
<row>
<entry><constant>V4L2_BUF_FLAG_ERROR</constant></entry>
- <entry>0x0040</entry>
+ <entry>0x00000040</entry>
<entry>When this flag is set, the buffer has been dequeued
successfully, although the data might have been corrupted.
This is recoverable, streaming may continue as normal and
@@ -1063,35 +1062,43 @@ state, in the application domain to say so.</entry>
</row>
<row>
<entry><constant>V4L2_BUF_FLAG_KEYFRAME</constant></entry>
- <entry>0x0008</entry>
+ <entry>0x00000008</entry>
<entry>Drivers set or clear this flag when calling the
<constant>VIDIOC_DQBUF</constant> ioctl. It may be set by video
capture devices when the buffer contains a compressed image which is a
-key frame (or field), &ie; can be decompressed on its own.</entry>
+key frame (or field), &ie; can be decompressed on its own. Also know as
+an I-frame. Applications can set this bit when <structfield>type</structfield>
+refers to an output stream.</entry>
</row>
<row>
<entry><constant>V4L2_BUF_FLAG_PFRAME</constant></entry>
- <entry>0x0010</entry>
+ <entry>0x00000010</entry>
<entry>Similar to <constant>V4L2_BUF_FLAG_KEYFRAME</constant>
this flags predicted frames or fields which contain only differences to a
-previous key frame.</entry>
+previous key frame. Applications can set this bit when <structfield>type</structfield>
+refers to an output stream.</entry>
</row>
<row>
<entry><constant>V4L2_BUF_FLAG_BFRAME</constant></entry>
- <entry>0x0020</entry>
- <entry>Similar to <constant>V4L2_BUF_FLAG_PFRAME</constant>
- this is a bidirectional predicted frame or field. [ooc tbd]</entry>
+ <entry>0x00000020</entry>
+ <entry>Similar to <constant>V4L2_BUF_FLAG_KEYFRAME</constant>
+this flags a bi-directional predicted frame or field which contains only
+the differences between the current frame and both the preceding and following
+key frames to specify its content. Applications can set this bit when
+<structfield>type</structfield> refers to an output stream.</entry>
</row>
<row>
<entry><constant>V4L2_BUF_FLAG_TIMECODE</constant></entry>
- <entry>0x0100</entry>
+ <entry>0x00000100</entry>
<entry>The <structfield>timecode</structfield> field is valid.
Drivers set or clear this flag when the <constant>VIDIOC_DQBUF</constant>
-ioctl is called.</entry>
+ioctl is called. Applications can set this bit and the corresponding
+<structfield>timecode</structfield> structure when <structfield>type</structfield>
+refers to an output stream.</entry>
</row>
<row>
<entry><constant>V4L2_BUF_FLAG_PREPARED</constant></entry>
- <entry>0x0400</entry>
+ <entry>0x00000400</entry>
<entry>The buffer has been prepared for I/O and can be queued by the
application. Drivers set or clear this flag when the
<link linkend="vidioc-querybuf">VIDIOC_QUERYBUF</link>, <link
@@ -1101,7 +1108,7 @@ application. Drivers set or clear this flag when the
</row>
<row>
<entry><constant>V4L2_BUF_FLAG_NO_CACHE_INVALIDATE</constant></entry>
- <entry>0x0800</entry>
+ <entry>0x00000800</entry>
<entry>Caches do not have to be invalidated for this buffer.
Typically applications shall use this flag if the data captured in the buffer
is not going to be touched by the CPU, instead the buffer will, probably, be
@@ -1110,7 +1117,7 @@ passed on to a DMA-capable hardware unit for further processing or output.
</row>
<row>
<entry><constant>V4L2_BUF_FLAG_NO_CACHE_CLEAN</constant></entry>
- <entry>0x1000</entry>
+ <entry>0x00001000</entry>
<entry>Caches do not have to be cleaned for this buffer.
Typically applications shall use this flag for output buffers if the data
in this buffer has not been created by the CPU but by some DMA-capable unit,
@@ -1118,7 +1125,7 @@ in which case caches have not been used.</entry>
</row>
<row>
<entry><constant>V4L2_BUF_FLAG_TIMESTAMP_MASK</constant></entry>
- <entry>0xe000</entry>
+ <entry>0x0000e000</entry>
<entry>Mask for timestamp types below. To test the
timestamp type, mask out bits not belonging to timestamp
type by performing a logical and operation with buffer
@@ -1126,7 +1133,7 @@ in which case caches have not been used.</entry>
</row>
<row>
<entry><constant>V4L2_BUF_FLAG_TIMESTAMP_UNKNOWN</constant></entry>
- <entry>0x0000</entry>
+ <entry>0x00000000</entry>
<entry>Unknown timestamp type. This type is used by
drivers before Linux 3.9 and may be either monotonic (see
below) or realtime (wall clock). Monotonic clock has been
@@ -1139,7 +1146,7 @@ in which case caches have not been used.</entry>
</row>
<row>
<entry><constant>V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC</constant></entry>
- <entry>0x2000</entry>
+ <entry>0x00002000</entry>
<entry>The buffer timestamp has been taken from the
<constant>CLOCK_MONOTONIC</constant> clock. To access the
same clock outside V4L2, use
@@ -1147,10 +1154,42 @@ in which case caches have not been used.</entry>
</row>
<row>
<entry><constant>V4L2_BUF_FLAG_TIMESTAMP_COPY</constant></entry>
- <entry>0x4000</entry>
+ <entry>0x00004000</entry>
<entry>The CAPTURE buffer timestamp has been taken from the
corresponding OUTPUT buffer. This flag applies only to mem2mem devices.</entry>
</row>
+ <row>
+ <entry><constant>V4L2_BUF_FLAG_TSTAMP_SRC_MASK</constant></entry>
+ <entry>0x00070000</entry>
+ <entry>Mask for timestamp sources below. The timestamp source
+ defines the point of time the timestamp is taken in relation to
+ the frame. Logical 'and' operation between the
+ <structfield>flags</structfield> field and
+ <constant>V4L2_BUF_FLAG_TSTAMP_SRC_MASK</constant> produces the
+ value of the timestamp source. Applications must set the timestamp
+ source when <structfield>type</structfield> refers to an output stream
+ and <constant>V4L2_BUF_FLAG_TIMESTAMP_COPY</constant> is set.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_BUF_FLAG_TSTAMP_SRC_EOF</constant></entry>
+ <entry>0x00000000</entry>
+ <entry>End Of Frame. The buffer timestamp has been taken
+ when the last pixel of the frame has been received or the
+ last pixel of the frame has been transmitted. In practice,
+ software generated timestamps will typically be read from
+ the clock a small amount of time after the last pixel has
+ been received or transmitten, depending on the system and
+ other activity in it.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_BUF_FLAG_TSTAMP_SRC_SOE</constant></entry>
+ <entry>0x00010000</entry>
+ <entry>Start Of Exposure. The buffer timestamp has been
+ taken when the exposure of the frame has begun. This is
+ only valid for the
+ <constant>V4L2_BUF_TYPE_VIDEO_CAPTURE</constant> buffer
+ type.</entry>
+ </row>
</tbody>
</tgroup>
</table>
@@ -1440,10 +1479,9 @@ or application, depending on data direction, must set &v4l2-buffer;
<constant>V4L2_FIELD_BOTTOM</constant>. Any two successive fields pair
to build a frame. If fields are successive, without any dropped fields
between them (fields can drop individually), can be determined from
-the &v4l2-buffer; <structfield>sequence</structfield> field. Image
-sizes refer to the frame, not fields. This format cannot be selected
-when using the read/write I/O method.<!-- Where it's indistinguishable
-from V4L2_FIELD_SEQ_*. --></entry>
+the &v4l2-buffer; <structfield>sequence</structfield> field. This format
+cannot be selected when using the read/write I/O method since there
+is no way to communicate if a field was a top or bottom field.</entry>
</row>
<row>
<entry><constant>V4L2_FIELD_INTERLACED_TB</constant></entry>
diff --git a/Documentation/DocBook/media/v4l/media-ioc-enum-links.xml b/Documentation/DocBook/media/v4l/media-ioc-enum-links.xml
index 355df43badc..74fb394ec66 100644
--- a/Documentation/DocBook/media/v4l/media-ioc-enum-links.xml
+++ b/Documentation/DocBook/media/v4l/media-ioc-enum-links.xml
@@ -79,13 +79,13 @@
<entry>Entity id, set by the application.</entry>
</row>
<row>
- <entry>struct &media-pad-desc;</entry>
+ <entry>&media-pad-desc;</entry>
<entry>*<structfield>pads</structfield></entry>
<entry>Pointer to a pads array allocated by the application. Ignored
if NULL.</entry>
</row>
<row>
- <entry>struct &media-link-desc;</entry>
+ <entry>&media-link-desc;</entry>
<entry>*<structfield>links</structfield></entry>
<entry>Pointer to a links array allocated by the application. Ignored
if NULL.</entry>
@@ -134,6 +134,15 @@
<entry>Output pad, relative to the entity. Output pads source data
and are origins of links.</entry>
</row>
+ <row>
+ <entry><constant>MEDIA_PAD_FL_MUST_CONNECT</constant></entry>
+ <entry>If this flag is set and the pad is linked to any other
+ pad, then at least one of those links must be enabled for the
+ entity to be able to stream. There could be temporary reasons
+ (e.g. device configuration dependent) for the pad to need
+ enabled links even when this flag isn't set; the absence of the
+ flag doesn't imply there is none.</entry>
+ </row>
</tbody>
</tgroup>
</table>
@@ -144,12 +153,12 @@
&cs-str;
<tbody valign="top">
<row>
- <entry>struct &media-pad-desc;</entry>
+ <entry>&media-pad-desc;</entry>
<entry><structfield>source</structfield></entry>
<entry>Pad at the origin of this link.</entry>
</row>
<row>
- <entry>struct &media-pad-desc;</entry>
+ <entry>&media-pad-desc;</entry>
<entry><structfield>sink</structfield></entry>
<entry>Pad at the target of this link.</entry>
</row>
diff --git a/Documentation/DocBook/media/v4l/pixfmt-nv16m.xml b/Documentation/DocBook/media/v4l/pixfmt-nv16m.xml
index c51d5a4cda0..fb2b5e35d66 100644
--- a/Documentation/DocBook/media/v4l/pixfmt-nv16m.xml
+++ b/Documentation/DocBook/media/v4l/pixfmt-nv16m.xml
@@ -12,18 +12,17 @@
<refsect1>
<title>Description</title>
- <para>This is a multi-planar, two-plane version of the YUV 4:2:0 format.
+ <para>This is a multi-planar, two-plane version of the YUV 4:2:2 format.
The three components are separated into two sub-images or planes.
<constant>V4L2_PIX_FMT_NV16M</constant> differs from <constant>V4L2_PIX_FMT_NV16
</constant> in that the two planes are non-contiguous in memory, i.e. the chroma
-plane does not necessarily immediately follows the luma plane.
+plane does not necessarily immediately follow the luma plane.
The luminance data occupies the first plane. The Y plane has one byte per pixel.
In the second plane there is chrominance data with alternating chroma samples.
The CbCr plane is the same width and height, in bytes, as the Y plane.
-Each CbCr pair belongs to four pixels. For example,
+Each CbCr pair belongs to two pixels. For example,
Cb<subscript>0</subscript>/Cr<subscript>0</subscript> belongs to
-Y'<subscript>00</subscript>, Y'<subscript>01</subscript>,
-Y'<subscript>10</subscript>, Y'<subscript>11</subscript>.
+Y'<subscript>00</subscript>, Y'<subscript>01</subscript>.
<constant>V4L2_PIX_FMT_NV61M</constant> is the same as <constant>V4L2_PIX_FMT_NV16M</constant>
except the Cb and Cr bytes are swapped, the CrCb plane starts with a Cr byte.</para>
diff --git a/Documentation/DocBook/media/v4l/pixfmt-packed-rgb.xml b/Documentation/DocBook/media/v4l/pixfmt-packed-rgb.xml
index 166c8d65e4f..e1c4f8b4c0b 100644
--- a/Documentation/DocBook/media/v4l/pixfmt-packed-rgb.xml
+++ b/Documentation/DocBook/media/v4l/pixfmt-packed-rgb.xml
@@ -121,14 +121,14 @@ colorspace <constant>V4L2_COLORSPACE_SRGB</constant>.</para>
<entry><constant>V4L2_PIX_FMT_RGB332</constant></entry>
<entry>'RGB1'</entry>
<entry></entry>
- <entry>b<subscript>1</subscript></entry>
- <entry>b<subscript>0</subscript></entry>
- <entry>g<subscript>2</subscript></entry>
- <entry>g<subscript>1</subscript></entry>
- <entry>g<subscript>0</subscript></entry>
<entry>r<subscript>2</subscript></entry>
<entry>r<subscript>1</subscript></entry>
<entry>r<subscript>0</subscript></entry>
+ <entry>g<subscript>2</subscript></entry>
+ <entry>g<subscript>1</subscript></entry>
+ <entry>g<subscript>0</subscript></entry>
+ <entry>b<subscript>1</subscript></entry>
+ <entry>b<subscript>0</subscript></entry>
</row>
<row id="V4L2-PIX-FMT-RGB444">
<entry><constant>V4L2_PIX_FMT_RGB444</constant></entry>
@@ -159,18 +159,18 @@ colorspace <constant>V4L2_COLORSPACE_SRGB</constant>.</para>
<entry>g<subscript>2</subscript></entry>
<entry>g<subscript>1</subscript></entry>
<entry>g<subscript>0</subscript></entry>
- <entry>r<subscript>4</subscript></entry>
- <entry>r<subscript>3</subscript></entry>
- <entry>r<subscript>2</subscript></entry>
- <entry>r<subscript>1</subscript></entry>
- <entry>r<subscript>0</subscript></entry>
- <entry></entry>
- <entry>a</entry>
<entry>b<subscript>4</subscript></entry>
<entry>b<subscript>3</subscript></entry>
<entry>b<subscript>2</subscript></entry>
<entry>b<subscript>1</subscript></entry>
<entry>b<subscript>0</subscript></entry>
+ <entry></entry>
+ <entry>a</entry>
+ <entry>r<subscript>4</subscript></entry>
+ <entry>r<subscript>3</subscript></entry>
+ <entry>r<subscript>2</subscript></entry>
+ <entry>r<subscript>1</subscript></entry>
+ <entry>r<subscript>0</subscript></entry>
<entry>g<subscript>4</subscript></entry>
<entry>g<subscript>3</subscript></entry>
</row>
@@ -181,17 +181,17 @@ colorspace <constant>V4L2_COLORSPACE_SRGB</constant>.</para>
<entry>g<subscript>2</subscript></entry>
<entry>g<subscript>1</subscript></entry>
<entry>g<subscript>0</subscript></entry>
- <entry>r<subscript>4</subscript></entry>
- <entry>r<subscript>3</subscript></entry>
- <entry>r<subscript>2</subscript></entry>
- <entry>r<subscript>1</subscript></entry>
- <entry>r<subscript>0</subscript></entry>
- <entry></entry>
<entry>b<subscript>4</subscript></entry>
<entry>b<subscript>3</subscript></entry>
<entry>b<subscript>2</subscript></entry>
<entry>b<subscript>1</subscript></entry>
<entry>b<subscript>0</subscript></entry>
+ <entry></entry>
+ <entry>r<subscript>4</subscript></entry>
+ <entry>r<subscript>3</subscript></entry>
+ <entry>r<subscript>2</subscript></entry>
+ <entry>r<subscript>1</subscript></entry>
+ <entry>r<subscript>0</subscript></entry>
<entry>g<subscript>5</subscript></entry>
<entry>g<subscript>4</subscript></entry>
<entry>g<subscript>3</subscript></entry>
@@ -201,32 +201,32 @@ colorspace <constant>V4L2_COLORSPACE_SRGB</constant>.</para>
<entry>'RGBQ'</entry>
<entry></entry>
<entry>a</entry>
- <entry>b<subscript>4</subscript></entry>
- <entry>b<subscript>3</subscript></entry>
- <entry>b<subscript>2</subscript></entry>
- <entry>b<subscript>1</subscript></entry>
- <entry>b<subscript>0</subscript></entry>
- <entry>g<subscript>4</subscript></entry>
- <entry>g<subscript>3</subscript></entry>
- <entry></entry>
- <entry>g<subscript>2</subscript></entry>
- <entry>g<subscript>1</subscript></entry>
- <entry>g<subscript>0</subscript></entry>
<entry>r<subscript>4</subscript></entry>
<entry>r<subscript>3</subscript></entry>
<entry>r<subscript>2</subscript></entry>
<entry>r<subscript>1</subscript></entry>
<entry>r<subscript>0</subscript></entry>
- </row>
- <row id="V4L2-PIX-FMT-RGB565X">
- <entry><constant>V4L2_PIX_FMT_RGB565X</constant></entry>
- <entry>'RGBR'</entry>
+ <entry>g<subscript>4</subscript></entry>
+ <entry>g<subscript>3</subscript></entry>
<entry></entry>
+ <entry>g<subscript>2</subscript></entry>
+ <entry>g<subscript>1</subscript></entry>
+ <entry>g<subscript>0</subscript></entry>
<entry>b<subscript>4</subscript></entry>
<entry>b<subscript>3</subscript></entry>
<entry>b<subscript>2</subscript></entry>
<entry>b<subscript>1</subscript></entry>
<entry>b<subscript>0</subscript></entry>
+ </row>
+ <row id="V4L2-PIX-FMT-RGB565X">
+ <entry><constant>V4L2_PIX_FMT_RGB565X</constant></entry>
+ <entry>'RGBR'</entry>
+ <entry></entry>
+ <entry>r<subscript>4</subscript></entry>
+ <entry>r<subscript>3</subscript></entry>
+ <entry>r<subscript>2</subscript></entry>
+ <entry>r<subscript>1</subscript></entry>
+ <entry>r<subscript>0</subscript></entry>
<entry>g<subscript>5</subscript></entry>
<entry>g<subscript>4</subscript></entry>
<entry>g<subscript>3</subscript></entry>
@@ -234,11 +234,11 @@ colorspace <constant>V4L2_COLORSPACE_SRGB</constant>.</para>
<entry>g<subscript>2</subscript></entry>
<entry>g<subscript>1</subscript></entry>
<entry>g<subscript>0</subscript></entry>
- <entry>r<subscript>4</subscript></entry>
- <entry>r<subscript>3</subscript></entry>
- <entry>r<subscript>2</subscript></entry>
- <entry>r<subscript>1</subscript></entry>
- <entry>r<subscript>0</subscript></entry>
+ <entry>b<subscript>4</subscript></entry>
+ <entry>b<subscript>3</subscript></entry>
+ <entry>b<subscript>2</subscript></entry>
+ <entry>b<subscript>1</subscript></entry>
+ <entry>b<subscript>0</subscript></entry>
</row>
<row id="V4L2-PIX-FMT-BGR666">
<entry><constant>V4L2_PIX_FMT_BGR666</constant></entry>
@@ -385,6 +385,15 @@ colorspace <constant>V4L2_COLORSPACE_SRGB</constant>.</para>
<entry><constant>V4L2_PIX_FMT_RGB32</constant></entry>
<entry>'RGB4'</entry>
<entry></entry>
+ <entry>a<subscript>7</subscript></entry>
+ <entry>a<subscript>6</subscript></entry>
+ <entry>a<subscript>5</subscript></entry>
+ <entry>a<subscript>4</subscript></entry>
+ <entry>a<subscript>3</subscript></entry>
+ <entry>a<subscript>2</subscript></entry>
+ <entry>a<subscript>1</subscript></entry>
+ <entry>a<subscript>0</subscript></entry>
+ <entry></entry>
<entry>r<subscript>7</subscript></entry>
<entry>r<subscript>6</subscript></entry>
<entry>r<subscript>5</subscript></entry>
@@ -411,25 +420,16 @@ colorspace <constant>V4L2_COLORSPACE_SRGB</constant>.</para>
<entry>b<subscript>2</subscript></entry>
<entry>b<subscript>1</subscript></entry>
<entry>b<subscript>0</subscript></entry>
- <entry></entry>
- <entry>a<subscript>7</subscript></entry>
- <entry>a<subscript>6</subscript></entry>
- <entry>a<subscript>5</subscript></entry>
- <entry>a<subscript>4</subscript></entry>
- <entry>a<subscript>3</subscript></entry>
- <entry>a<subscript>2</subscript></entry>
- <entry>a<subscript>1</subscript></entry>
- <entry>a<subscript>0</subscript></entry>
</row>
</tbody>
</tgroup>
</table>
- <para>Bit 7 is the most significant bit. The value of a = alpha
+ <para>Bit 7 is the most significant bit. The value of the a = alpha
bits is undefined when reading from the driver, ignored when writing
to the driver, except when alpha blending has been negotiated for a
<link linkend="overlay">Video Overlay</link> or <link linkend="osd">
-Video Output Overlay</link> or when alpha component has been configured
+Video Output Overlay</link> or when the alpha component has been configured
for a <link linkend="capture">Video Capture</link> by means of <link
linkend="v4l2-alpha-component"> <constant>V4L2_CID_ALPHA_COMPONENT
</constant> </link> control.</para>
@@ -512,421 +512,6 @@ image</title>
</formalpara>
</example>
- <important>
- <para>Drivers may interpret these formats differently.</para>
- </important>
-
- <para>Some RGB formats above are uncommon and were probably
-defined in error. Drivers may interpret them as in <xref
- linkend="rgb-formats-corrected" />.</para>
-
- <table pgwide="1" frame="none" id="rgb-formats-corrected">
- <title>Packed RGB Image Formats (corrected)</title>
- <tgroup cols="37" align="center">
- <colspec colname="id" align="left" />
- <colspec colname="fourcc" />
- <colspec colname="bit" />
-
- <colspec colnum="4" colname="b07" align="center" />
- <colspec colnum="5" colname="b06" align="center" />
- <colspec colnum="6" colname="b05" align="center" />
- <colspec colnum="7" colname="b04" align="center" />
- <colspec colnum="8" colname="b03" align="center" />
- <colspec colnum="9" colname="b02" align="center" />
- <colspec colnum="10" colname="b01" align="center" />
- <colspec colnum="11" colname="b00" align="center" />
-
- <colspec colnum="13" colname="b17" align="center" />
- <colspec colnum="14" colname="b16" align="center" />
- <colspec colnum="15" colname="b15" align="center" />
- <colspec colnum="16" colname="b14" align="center" />
- <colspec colnum="17" colname="b13" align="center" />
- <colspec colnum="18" colname="b12" align="center" />
- <colspec colnum="19" colname="b11" align="center" />
- <colspec colnum="20" colname="b10" align="center" />
-
- <colspec colnum="22" colname="b27" align="center" />
- <colspec colnum="23" colname="b26" align="center" />
- <colspec colnum="24" colname="b25" align="center" />
- <colspec colnum="25" colname="b24" align="center" />
- <colspec colnum="26" colname="b23" align="center" />
- <colspec colnum="27" colname="b22" align="center" />
- <colspec colnum="28" colname="b21" align="center" />
- <colspec colnum="29" colname="b20" align="center" />
-
- <colspec colnum="31" colname="b37" align="center" />
- <colspec colnum="32" colname="b36" align="center" />
- <colspec colnum="33" colname="b35" align="center" />
- <colspec colnum="34" colname="b34" align="center" />
- <colspec colnum="35" colname="b33" align="center" />
- <colspec colnum="36" colname="b32" align="center" />
- <colspec colnum="37" colname="b31" align="center" />
- <colspec colnum="38" colname="b30" align="center" />
-
- <spanspec namest="b07" nameend="b00" spanname="b0" />
- <spanspec namest="b17" nameend="b10" spanname="b1" />
- <spanspec namest="b27" nameend="b20" spanname="b2" />
- <spanspec namest="b37" nameend="b30" spanname="b3" />
- <thead>
- <row>
- <entry>Identifier</entry>
- <entry>Code</entry>
- <entry>&nbsp;</entry>
- <entry spanname="b0">Byte&nbsp;0 in memory</entry>
- <entry spanname="b1">Byte&nbsp;1</entry>
- <entry spanname="b2">Byte&nbsp;2</entry>
- <entry spanname="b3">Byte&nbsp;3</entry>
- </row>
- <row>
- <entry>&nbsp;</entry>
- <entry>&nbsp;</entry>
- <entry>Bit</entry>
- <entry>7</entry>
- <entry>6</entry>
- <entry>5</entry>
- <entry>4</entry>
- <entry>3</entry>
- <entry>2</entry>
- <entry>1</entry>
- <entry>0</entry>
- <entry>&nbsp;</entry>
- <entry>7</entry>
- <entry>6</entry>
- <entry>5</entry>
- <entry>4</entry>
- <entry>3</entry>
- <entry>2</entry>
- <entry>1</entry>
- <entry>0</entry>
- <entry>&nbsp;</entry>
- <entry>7</entry>
- <entry>6</entry>
- <entry>5</entry>
- <entry>4</entry>
- <entry>3</entry>
- <entry>2</entry>
- <entry>1</entry>
- <entry>0</entry>
- <entry>&nbsp;</entry>
- <entry>7</entry>
- <entry>6</entry>
- <entry>5</entry>
- <entry>4</entry>
- <entry>3</entry>
- <entry>2</entry>
- <entry>1</entry>
- <entry>0</entry>
- </row>
- </thead>
- <tbody valign="top">
- <row><!-- id="V4L2-PIX-FMT-RGB332" -->
- <entry><constant>V4L2_PIX_FMT_RGB332</constant></entry>
- <entry>'RGB1'</entry>
- <entry></entry>
- <entry>r<subscript>2</subscript></entry>
- <entry>r<subscript>1</subscript></entry>
- <entry>r<subscript>0</subscript></entry>
- <entry>g<subscript>2</subscript></entry>
- <entry>g<subscript>1</subscript></entry>
- <entry>g<subscript>0</subscript></entry>
- <entry>b<subscript>1</subscript></entry>
- <entry>b<subscript>0</subscript></entry>
- </row>
- <row><!-- id="V4L2-PIX-FMT-RGB444" -->
- <entry><constant>V4L2_PIX_FMT_RGB444</constant></entry>
- <entry>'R444'</entry>
- <entry></entry>
- <entry>g<subscript>3</subscript></entry>
- <entry>g<subscript>2</subscript></entry>
- <entry>g<subscript>1</subscript></entry>
- <entry>g<subscript>0</subscript></entry>
- <entry>b<subscript>3</subscript></entry>
- <entry>b<subscript>2</subscript></entry>
- <entry>b<subscript>1</subscript></entry>
- <entry>b<subscript>0</subscript></entry>
- <entry></entry>
- <entry>a<subscript>3</subscript></entry>
- <entry>a<subscript>2</subscript></entry>
- <entry>a<subscript>1</subscript></entry>
- <entry>a<subscript>0</subscript></entry>
- <entry>r<subscript>3</subscript></entry>
- <entry>r<subscript>2</subscript></entry>
- <entry>r<subscript>1</subscript></entry>
- <entry>r<subscript>0</subscript></entry>
- </row>
- <row><!-- id="V4L2-PIX-FMT-RGB555" -->
- <entry><constant>V4L2_PIX_FMT_RGB555</constant></entry>
- <entry>'RGBO'</entry>
- <entry></entry>
- <entry>g<subscript>2</subscript></entry>
- <entry>g<subscript>1</subscript></entry>
- <entry>g<subscript>0</subscript></entry>
- <entry>b<subscript>4</subscript></entry>
- <entry>b<subscript>3</subscript></entry>
- <entry>b<subscript>2</subscript></entry>
- <entry>b<subscript>1</subscript></entry>
- <entry>b<subscript>0</subscript></entry>
- <entry></entry>
- <entry>a</entry>
- <entry>r<subscript>4</subscript></entry>
- <entry>r<subscript>3</subscript></entry>
- <entry>r<subscript>2</subscript></entry>
- <entry>r<subscript>1</subscript></entry>
- <entry>r<subscript>0</subscript></entry>
- <entry>g<subscript>4</subscript></entry>
- <entry>g<subscript>3</subscript></entry>
- </row>
- <row><!-- id="V4L2-PIX-FMT-RGB565" -->
- <entry><constant>V4L2_PIX_FMT_RGB565</constant></entry>
- <entry>'RGBP'</entry>
- <entry></entry>
- <entry>g<subscript>2</subscript></entry>
- <entry>g<subscript>1</subscript></entry>
- <entry>g<subscript>0</subscript></entry>
- <entry>b<subscript>4</subscript></entry>
- <entry>b<subscript>3</subscript></entry>
- <entry>b<subscript>2</subscript></entry>
- <entry>b<subscript>1</subscript></entry>
- <entry>b<subscript>0</subscript></entry>
- <entry></entry>
- <entry>r<subscript>4</subscript></entry>
- <entry>r<subscript>3</subscript></entry>
- <entry>r<subscript>2</subscript></entry>
- <entry>r<subscript>1</subscript></entry>
- <entry>r<subscript>0</subscript></entry>
- <entry>g<subscript>5</subscript></entry>
- <entry>g<subscript>4</subscript></entry>
- <entry>g<subscript>3</subscript></entry>
- </row>
- <row><!-- id="V4L2-PIX-FMT-RGB555X" -->
- <entry><constant>V4L2_PIX_FMT_RGB555X</constant></entry>
- <entry>'RGBQ'</entry>
- <entry></entry>
- <entry>a</entry>
- <entry>r<subscript>4</subscript></entry>
- <entry>r<subscript>3</subscript></entry>
- <entry>r<subscript>2</subscript></entry>
- <entry>r<subscript>1</subscript></entry>
- <entry>r<subscript>0</subscript></entry>
- <entry>g<subscript>4</subscript></entry>
- <entry>g<subscript>3</subscript></entry>
- <entry></entry>
- <entry>g<subscript>2</subscript></entry>
- <entry>g<subscript>1</subscript></entry>
- <entry>g<subscript>0</subscript></entry>
- <entry>b<subscript>4</subscript></entry>
- <entry>b<subscript>3</subscript></entry>
- <entry>b<subscript>2</subscript></entry>
- <entry>b<subscript>1</subscript></entry>
- <entry>b<subscript>0</subscript></entry>
- </row>
- <row><!-- id="V4L2-PIX-FMT-RGB565X" -->
- <entry><constant>V4L2_PIX_FMT_RGB565X</constant></entry>
- <entry>'RGBR'</entry>
- <entry></entry>
- <entry>r<subscript>4</subscript></entry>
- <entry>r<subscript>3</subscript></entry>
- <entry>r<subscript>2</subscript></entry>
- <entry>r<subscript>1</subscript></entry>
- <entry>r<subscript>0</subscript></entry>
- <entry>g<subscript>5</subscript></entry>
- <entry>g<subscript>4</subscript></entry>
- <entry>g<subscript>3</subscript></entry>
- <entry></entry>
- <entry>g<subscript>2</subscript></entry>
- <entry>g<subscript>1</subscript></entry>
- <entry>g<subscript>0</subscript></entry>
- <entry>b<subscript>4</subscript></entry>
- <entry>b<subscript>3</subscript></entry>
- <entry>b<subscript>2</subscript></entry>
- <entry>b<subscript>1</subscript></entry>
- <entry>b<subscript>0</subscript></entry>
- </row>
- <row><!-- id="V4L2-PIX-FMT-BGR666" -->
- <entry><constant>V4L2_PIX_FMT_BGR666</constant></entry>
- <entry>'BGRH'</entry>
- <entry></entry>
- <entry>b<subscript>5</subscript></entry>
- <entry>b<subscript>4</subscript></entry>
- <entry>b<subscript>3</subscript></entry>
- <entry>b<subscript>2</subscript></entry>
- <entry>b<subscript>1</subscript></entry>
- <entry>b<subscript>0</subscript></entry>
- <entry>g<subscript>5</subscript></entry>
- <entry>g<subscript>4</subscript></entry>
- <entry></entry>
- <entry>g<subscript>3</subscript></entry>
- <entry>g<subscript>2</subscript></entry>
- <entry>g<subscript>1</subscript></entry>
- <entry>g<subscript>0</subscript></entry>
- <entry>r<subscript>5</subscript></entry>
- <entry>r<subscript>4</subscript></entry>
- <entry>r<subscript>3</subscript></entry>
- <entry>r<subscript>2</subscript></entry>
- <entry></entry>
- <entry>r<subscript>1</subscript></entry>
- <entry>r<subscript>0</subscript></entry>
- <entry></entry>
- <entry></entry>
- <entry></entry>
- <entry></entry>
- <entry></entry>
- <entry></entry>
- <entry></entry>
- <entry></entry>
- <entry></entry>
- <entry></entry>
- <entry></entry>
- <entry></entry>
- <entry></entry>
- <entry></entry>
- </row>
- <row><!-- id="V4L2-PIX-FMT-BGR24" -->
- <entry><constant>V4L2_PIX_FMT_BGR24</constant></entry>
- <entry>'BGR3'</entry>
- <entry></entry>
- <entry>b<subscript>7</subscript></entry>
- <entry>b<subscript>6</subscript></entry>
- <entry>b<subscript>5</subscript></entry>
- <entry>b<subscript>4</subscript></entry>
- <entry>b<subscript>3</subscript></entry>
- <entry>b<subscript>2</subscript></entry>
- <entry>b<subscript>1</subscript></entry>
- <entry>b<subscript>0</subscript></entry>
- <entry></entry>
- <entry>g<subscript>7</subscript></entry>
- <entry>g<subscript>6</subscript></entry>
- <entry>g<subscript>5</subscript></entry>
- <entry>g<subscript>4</subscript></entry>
- <entry>g<subscript>3</subscript></entry>
- <entry>g<subscript>2</subscript></entry>
- <entry>g<subscript>1</subscript></entry>
- <entry>g<subscript>0</subscript></entry>
- <entry></entry>
- <entry>r<subscript>7</subscript></entry>
- <entry>r<subscript>6</subscript></entry>
- <entry>r<subscript>5</subscript></entry>
- <entry>r<subscript>4</subscript></entry>
- <entry>r<subscript>3</subscript></entry>
- <entry>r<subscript>2</subscript></entry>
- <entry>r<subscript>1</subscript></entry>
- <entry>r<subscript>0</subscript></entry>
- </row>
- <row><!-- id="V4L2-PIX-FMT-RGB24" -->
- <entry><constant>V4L2_PIX_FMT_RGB24</constant></entry>
- <entry>'RGB3'</entry>
- <entry></entry>
- <entry>r<subscript>7</subscript></entry>
- <entry>r<subscript>6</subscript></entry>
- <entry>r<subscript>5</subscript></entry>
- <entry>r<subscript>4</subscript></entry>
- <entry>r<subscript>3</subscript></entry>
- <entry>r<subscript>2</subscript></entry>
- <entry>r<subscript>1</subscript></entry>
- <entry>r<subscript>0</subscript></entry>
- <entry></entry>
- <entry>g<subscript>7</subscript></entry>
- <entry>g<subscript>6</subscript></entry>
- <entry>g<subscript>5</subscript></entry>
- <entry>g<subscript>4</subscript></entry>
- <entry>g<subscript>3</subscript></entry>
- <entry>g<subscript>2</subscript></entry>
- <entry>g<subscript>1</subscript></entry>
- <entry>g<subscript>0</subscript></entry>
- <entry></entry>
- <entry>b<subscript>7</subscript></entry>
- <entry>b<subscript>6</subscript></entry>
- <entry>b<subscript>5</subscript></entry>
- <entry>b<subscript>4</subscript></entry>
- <entry>b<subscript>3</subscript></entry>
- <entry>b<subscript>2</subscript></entry>
- <entry>b<subscript>1</subscript></entry>
- <entry>b<subscript>0</subscript></entry>
- </row>
- <row><!-- id="V4L2-PIX-FMT-BGR32" -->
- <entry><constant>V4L2_PIX_FMT_BGR32</constant></entry>
- <entry>'BGR4'</entry>
- <entry></entry>
- <entry>b<subscript>7</subscript></entry>
- <entry>b<subscript>6</subscript></entry>
- <entry>b<subscript>5</subscript></entry>
- <entry>b<subscript>4</subscript></entry>
- <entry>b<subscript>3</subscript></entry>
- <entry>b<subscript>2</subscript></entry>
- <entry>b<subscript>1</subscript></entry>
- <entry>b<subscript>0</subscript></entry>
- <entry></entry>
- <entry>g<subscript>7</subscript></entry>
- <entry>g<subscript>6</subscript></entry>
- <entry>g<subscript>5</subscript></entry>
- <entry>g<subscript>4</subscript></entry>
- <entry>g<subscript>3</subscript></entry>
- <entry>g<subscript>2</subscript></entry>
- <entry>g<subscript>1</subscript></entry>
- <entry>g<subscript>0</subscript></entry>
- <entry></entry>
- <entry>r<subscript>7</subscript></entry>
- <entry>r<subscript>6</subscript></entry>
- <entry>r<subscript>5</subscript></entry>
- <entry>r<subscript>4</subscript></entry>
- <entry>r<subscript>3</subscript></entry>
- <entry>r<subscript>2</subscript></entry>
- <entry>r<subscript>1</subscript></entry>
- <entry>r<subscript>0</subscript></entry>
- <entry></entry>
- <entry>a<subscript>7</subscript></entry>
- <entry>a<subscript>6</subscript></entry>
- <entry>a<subscript>5</subscript></entry>
- <entry>a<subscript>4</subscript></entry>
- <entry>a<subscript>3</subscript></entry>
- <entry>a<subscript>2</subscript></entry>
- <entry>a<subscript>1</subscript></entry>
- <entry>a<subscript>0</subscript></entry>
- </row>
- <row><!-- id="V4L2-PIX-FMT-RGB32" -->
- <entry><constant>V4L2_PIX_FMT_RGB32</constant></entry>
- <entry>'RGB4'</entry>
- <entry></entry>
- <entry>a<subscript>7</subscript></entry>
- <entry>a<subscript>6</subscript></entry>
- <entry>a<subscript>5</subscript></entry>
- <entry>a<subscript>4</subscript></entry>
- <entry>a<subscript>3</subscript></entry>
- <entry>a<subscript>2</subscript></entry>
- <entry>a<subscript>1</subscript></entry>
- <entry>a<subscript>0</subscript></entry>
- <entry></entry>
- <entry>r<subscript>7</subscript></entry>
- <entry>r<subscript>6</subscript></entry>
- <entry>r<subscript>5</subscript></entry>
- <entry>r<subscript>4</subscript></entry>
- <entry>r<subscript>3</subscript></entry>
- <entry>r<subscript>2</subscript></entry>
- <entry>r<subscript>1</subscript></entry>
- <entry>r<subscript>0</subscript></entry>
- <entry></entry>
- <entry>g<subscript>7</subscript></entry>
- <entry>g<subscript>6</subscript></entry>
- <entry>g<subscript>5</subscript></entry>
- <entry>g<subscript>4</subscript></entry>
- <entry>g<subscript>3</subscript></entry>
- <entry>g<subscript>2</subscript></entry>
- <entry>g<subscript>1</subscript></entry>
- <entry>g<subscript>0</subscript></entry>
- <entry></entry>
- <entry>b<subscript>7</subscript></entry>
- <entry>b<subscript>6</subscript></entry>
- <entry>b<subscript>5</subscript></entry>
- <entry>b<subscript>4</subscript></entry>
- <entry>b<subscript>3</subscript></entry>
- <entry>b<subscript>2</subscript></entry>
- <entry>b<subscript>1</subscript></entry>
- <entry>b<subscript>0</subscript></entry>
- </row>
- </tbody>
- </tgroup>
- </table>
-
<para>A test utility to determine which RGB formats a driver
actually supports is available from the LinuxTV v4l-dvb repository.
See &v4l-dvb; for access instructions.</para>
diff --git a/Documentation/DocBook/media/v4l/pixfmt-sdr-cu08.xml b/Documentation/DocBook/media/v4l/pixfmt-sdr-cu08.xml
new file mode 100644
index 00000000000..2d80104c178
--- /dev/null
+++ b/Documentation/DocBook/media/v4l/pixfmt-sdr-cu08.xml
@@ -0,0 +1,44 @@
+<refentry id="V4L2-SDR-FMT-CU08">
+ <refmeta>
+ <refentrytitle>V4L2_SDR_FMT_CU8 ('CU08')</refentrytitle>
+ &manvol;
+ </refmeta>
+ <refnamediv>
+ <refname>
+ <constant>V4L2_SDR_FMT_CU8</constant>
+ </refname>
+ <refpurpose>Complex unsigned 8-bit IQ sample</refpurpose>
+ </refnamediv>
+ <refsect1>
+ <title>Description</title>
+ <para>
+This format contains sequence of complex number samples. Each complex number
+consist two parts, called In-phase and Quadrature (IQ). Both I and Q are
+represented as a 8 bit unsigned number. I value comes first and Q value after
+that.
+ </para>
+ <example>
+ <title><constant>V4L2_SDR_FMT_CU8</constant> 1 sample</title>
+ <formalpara>
+ <title>Byte Order.</title>
+ <para>Each cell is one byte.
+ <informaltable frame="none">
+ <tgroup cols="2" align="center">
+ <colspec align="left" colwidth="2*" />
+ <tbody valign="top">
+ <row>
+ <entry>start&nbsp;+&nbsp;0:</entry>
+ <entry>I'<subscript>0</subscript></entry>
+ </row>
+ <row>
+ <entry>start&nbsp;+&nbsp;1:</entry>
+ <entry>Q'<subscript>0</subscript></entry>
+ </row>
+ </tbody>
+ </tgroup>
+ </informaltable>
+ </para>
+ </formalpara>
+ </example>
+ </refsect1>
+</refentry>
diff --git a/Documentation/DocBook/media/v4l/pixfmt-sdr-cu16le.xml b/Documentation/DocBook/media/v4l/pixfmt-sdr-cu16le.xml
new file mode 100644
index 00000000000..26288ffa907
--- /dev/null
+++ b/Documentation/DocBook/media/v4l/pixfmt-sdr-cu16le.xml
@@ -0,0 +1,46 @@
+<refentry id="V4L2-SDR-FMT-CU16LE">
+ <refmeta>
+ <refentrytitle>V4L2_SDR_FMT_CU16LE ('CU16')</refentrytitle>
+ &manvol;
+ </refmeta>
+ <refnamediv>
+ <refname>
+ <constant>V4L2_SDR_FMT_CU16LE</constant>
+ </refname>
+ <refpurpose>Complex unsigned 16-bit little endian IQ sample</refpurpose>
+ </refnamediv>
+ <refsect1>
+ <title>Description</title>
+ <para>
+This format contains sequence of complex number samples. Each complex number
+consist two parts, called In-phase and Quadrature (IQ). Both I and Q are
+represented as a 16 bit unsigned little endian number. I value comes first
+and Q value after that.
+ </para>
+ <example>
+ <title><constant>V4L2_SDR_FMT_CU16LE</constant> 1 sample</title>
+ <formalpara>
+ <title>Byte Order.</title>
+ <para>Each cell is one byte.
+ <informaltable frame="none">
+ <tgroup cols="3" align="center">
+ <colspec align="left" colwidth="2*" />
+ <tbody valign="top">
+ <row>
+ <entry>start&nbsp;+&nbsp;0:</entry>
+ <entry>I'<subscript>0[7:0]</subscript></entry>
+ <entry>I'<subscript>0[15:8]</subscript></entry>
+ </row>
+ <row>
+ <entry>start&nbsp;+&nbsp;2:</entry>
+ <entry>Q'<subscript>0[7:0]</subscript></entry>
+ <entry>Q'<subscript>0[15:8]</subscript></entry>
+ </row>
+ </tbody>
+ </tgroup>
+ </informaltable>
+ </para>
+ </formalpara>
+ </example>
+ </refsect1>
+</refentry>
diff --git a/Documentation/DocBook/media/v4l/pixfmt.xml b/Documentation/DocBook/media/v4l/pixfmt.xml
index 72d72bd67d0..91dcbc84f3f 100644
--- a/Documentation/DocBook/media/v4l/pixfmt.xml
+++ b/Documentation/DocBook/media/v4l/pixfmt.xml
@@ -25,7 +25,12 @@ capturing and output, for overlay frame buffer formats see also
<row>
<entry>__u32</entry>
<entry><structfield>height</structfield></entry>
- <entry>Image height in pixels.</entry>
+ <entry>Image height in pixels. If <structfield>field</structfield> is
+ one of <constant>V4L2_FIELD_TOP</constant>, <constant>V4L2_FIELD_BOTTOM</constant>
+ or <constant>V4L2_FIELD_ALTERNATE</constant> then height refers to the
+ number of lines in the field, otherwise it refers to the number of
+ lines in the frame (which is twice the field height for interlaced
+ formats).</entry>
</row>
<row>
<entry spanname="hspan">Applications set these fields to
@@ -54,7 +59,7 @@ linkend="reserved-formats" /></entry>
can request to capture or output only the top or bottom field, or both
fields interlaced or sequentially stored in one buffer or alternating
in separate buffers. Drivers return the actual field order selected.
-For details see <xref linkend="field-order" />.</entry>
+For more details on fields see <xref linkend="field-order" />.</entry>
</row>
<row>
<entry>__u32</entry>
@@ -81,7 +86,10 @@ plane and is divided by the same factor as the
example the Cb and Cr planes of a YUV 4:2:0 image have half as many
padding bytes following each line as the Y plane. To avoid ambiguities
drivers must return a <structfield>bytesperline</structfield> value
-rounded up to a multiple of the scale factor.</para></entry>
+rounded up to a multiple of the scale factor.</para>
+<para>For compressed formats the <structfield>bytesperline</structfield>
+value makes no sense. Applications and drivers must set this to 0 in
+that case.</para></entry>
</row>
<row>
<entry>__u32</entry>
@@ -97,7 +105,8 @@ hold an image.</entry>
<entry>&v4l2-colorspace;</entry>
<entry><structfield>colorspace</structfield></entry>
<entry>This information supplements the
-<structfield>pixelformat</structfield> and must be set by the driver,
+<structfield>pixelformat</structfield> and must be set by the driver for
+capture streams and by the application for output streams,
see <xref linkend="colorspaces" />.</entry>
</row>
<row>
@@ -135,7 +144,7 @@ set this field to zero.</entry>
<entry>__u16</entry>
<entry><structfield>bytesperline</structfield></entry>
<entry>Distance in bytes between the leftmost pixels in two adjacent
- lines.</entry>
+ lines. See &v4l2-pix-format;.</entry>
</row>
<row>
<entry>__u16</entry>
@@ -154,12 +163,12 @@ set this field to zero.</entry>
<row>
<entry>__u32</entry>
<entry><structfield>width</structfield></entry>
- <entry>Image width in pixels.</entry>
+ <entry>Image width in pixels. See &v4l2-pix-format;.</entry>
</row>
<row>
<entry>__u32</entry>
<entry><structfield>height</structfield></entry>
- <entry>Image height in pixels.</entry>
+ <entry>Image height in pixels. See &v4l2-pix-format;.</entry>
</row>
<row>
<entry>__u32</entry>
@@ -763,7 +772,7 @@ extended control <constant>V4L2_CID_MPEG_STREAM_TYPE</constant>, see
</row>
<row id="V4L2-PIX-FMT-H264-MVC">
<entry><constant>V4L2_PIX_FMT_H264_MVC</constant></entry>
- <entry>'MVC'</entry>
+ <entry>'M264'</entry>
<entry>H264 MVC video elementary stream.</entry>
</row>
<row id="V4L2-PIX-FMT-H263">
@@ -803,7 +812,7 @@ extended control <constant>V4L2_CID_MPEG_STREAM_TYPE</constant>, see
</row>
<row id="V4L2-PIX-FMT-VP8">
<entry><constant>V4L2_PIX_FMT_VP8</constant></entry>
- <entry>'VP8'</entry>
+ <entry>'VP80'</entry>
<entry>VP8 video elementary stream.</entry>
</row>
</tbody>
@@ -811,6 +820,17 @@ extended control <constant>V4L2_CID_MPEG_STREAM_TYPE</constant>, see
</table>
</section>
+ <section id="sdr-formats">
+ <title>SDR Formats</title>
+
+ <para>These formats are used for <link linkend="sdr">SDR Capture</link>
+interface only.</para>
+
+ &sub-sdr-cu08;
+ &sub-sdr-cu16le;
+
+ </section>
+
<section id="pixfmt-reserved">
<title>Reserved Format Identifiers</title>
diff --git a/Documentation/DocBook/media/v4l/remote_controllers.xml b/Documentation/DocBook/media/v4l/remote_controllers.xml
index 160e464d44b..5124a6c4daa 100644
--- a/Documentation/DocBook/media/v4l/remote_controllers.xml
+++ b/Documentation/DocBook/media/v4l/remote_controllers.xml
@@ -1,10 +1,152 @@
+<partinfo>
+<authorgroup>
+<author>
+<firstname>Mauro</firstname>
+<surname>Chehab</surname>
+<othername role="mi">Carvalho</othername>
+<affiliation><address><email>m.chehab@samsung.com</email></address></affiliation>
+<contrib>Initial version.</contrib>
+</author>
+</authorgroup>
+<copyright>
+ <year>2009-2014</year>
+ <holder>Mauro Carvalho Chehab</holder>
+</copyright>
+
+<revhistory>
+<!-- Put document revisions here, newest first. -->
+<revision>
+<revnumber>3.15</revnumber>
+<date>2014-02-06</date>
+<authorinitials>mcc</authorinitials>
+<revremark>Added the interface description and the RC sysfs class description.</revremark>
+</revision>
+<revision>
+<revnumber>1.0</revnumber>
+<date>2009-09-06</date>
+<authorinitials>mcc</authorinitials>
+<revremark>Initial revision</revremark>
+</revision>
+</revhistory>
+</partinfo>
+
+ <title>Remote Controller API</title>
+ <chapter id="remote_controllers">
+
<title>Remote Controllers</title>
+
<section id="Remote_controllers_Intro">
<title>Introduction</title>
<para>Currently, most analog and digital devices have a Infrared input for remote controllers. Each
manufacturer has their own type of control. It is not rare for the same manufacturer to ship different
types of controls, depending on the device.</para>
+<para>A Remote Controller interface is mapped as a normal evdev/input interface, just like a keyboard or a mouse.
+So, it uses all ioctls already defined for any other input devices.</para>
+<para>However, remove controllers are more flexible than a normal input device, as the IR
+receiver (and/or transmitter) can be used in conjunction with a wide variety of different IR remotes.</para>
+<para>In order to allow flexibility, the Remote Controller subsystem allows controlling the
+RC-specific attributes via <link linkend="remote_controllers_sysfs_nodes">the sysfs class nodes</link>.</para>
+</section>
+
+<section id="remote_controllers_sysfs_nodes">
+<title>Remote Controller's sysfs nodes</title>
+<para>As defined at <constant>Documentation/ABI/testing/sysfs-class-rc</constant>, those are the sysfs nodes that control the Remote Controllers:</para>
+
+<section id="sys_class_rc">
+<title>/sys/class/rc/</title>
+<para>The <constant>/sys/class/rc/</constant> class sub-directory belongs to the Remote Controller
+core and provides a sysfs interface for configuring infrared remote controller receivers.
+</para>
+
+</section>
+<section id="sys_class_rc_rcN">
+<title>/sys/class/rc/rcN/</title>
+<para>A <constant>/sys/class/rc/rcN</constant> directory is created for each remote
+ control receiver device where N is the number of the receiver.</para>
+
+</section>
+<section id="sys_class_rc_rcN_protocols">
+<title>/sys/class/rc/rcN/protocols</title>
+<para>Reading this file returns a list of available protocols, something like:</para>
+<para><constant>rc5 [rc6] nec jvc [sony]</constant></para>
+<para>Enabled protocols are shown in [] brackets.</para>
+<para>Writing "+proto" will add a protocol to the list of enabled protocols.</para>
+<para>Writing "-proto" will remove a protocol from the list of enabled protocols.</para>
+<para>Writing "proto" will enable only "proto".</para>
+<para>Writing "none" will disable all protocols.</para>
+<para>Write fails with EINVAL if an invalid protocol combination or unknown protocol name is used.</para>
+
+</section>
+<section id="sys_class_rc_rcN_filter">
+<title>/sys/class/rc/rcN/filter</title>
+<para>Sets the scancode filter expected value.</para>
+<para>Use in combination with <constant>/sys/class/rc/rcN/filter_mask</constant> to set the
+expected value of the bits set in the filter mask.
+If the hardware supports it then scancodes which do not match
+the filter will be ignored. Otherwise the write will fail with
+an error.</para>
+<para>This value may be reset to 0 if the current protocol is altered.</para>
+
+</section>
+<section id="sys_class_rc_rcN_filter_mask">
+<title>/sys/class/rc/rcN/filter_mask</title>
+<para>Sets the scancode filter mask of bits to compare.
+Use in combination with <constant>/sys/class/rc/rcN/filter</constant> to set the bits
+of the scancode which should be compared against the expected
+value. A value of 0 disables the filter to allow all valid
+scancodes to be processed.</para>
+<para>If the hardware supports it then scancodes which do not match
+the filter will be ignored. Otherwise the write will fail with
+an error.</para>
+<para>This value may be reset to 0 if the current protocol is altered.</para>
+
+</section>
+<section id="sys_class_rc_rcN_wakeup_protocols">
+<title>/sys/class/rc/rcN/wakeup_protocols</title>
+<para>Reading this file returns a list of available protocols to use for the
+wakeup filter, something like:</para>
+<para><constant>rc5 rc6 nec jvc [sony]</constant></para>
+<para>The enabled wakeup protocol is shown in [] brackets.</para>
+<para>Writing "+proto" will add a protocol to the list of enabled wakeup
+protocols.</para>
+<para>Writing "-proto" will remove a protocol from the list of enabled wakeup
+protocols.</para>
+<para>Writing "proto" will use "proto" for wakeup events.</para>
+<para>Writing "none" will disable wakeup.</para>
+<para>Write fails with EINVAL if an invalid protocol combination or unknown
+protocol name is used, or if wakeup is not supported by the hardware.</para>
+
+</section>
+<section id="sys_class_rc_rcN_wakeup_filter">
+<title>/sys/class/rc/rcN/wakeup_filter</title>
+<para>Sets the scancode wakeup filter expected value.
+Use in combination with <constant>/sys/class/rc/rcN/wakeup_filter_mask</constant> to
+set the expected value of the bits set in the wakeup filter mask
+to trigger a system wake event.</para>
+<para>If the hardware supports it and wakeup_filter_mask is not 0 then
+scancodes which match the filter will wake the system from e.g.
+suspend to RAM or power off.
+Otherwise the write will fail with an error.</para>
+<para>This value may be reset to 0 if the wakeup protocol is altered.</para>
+
+</section>
+<section id="sys_class_rc_rcN_wakeup_filter_mask">
+<title>/sys/class/rc/rcN/wakeup_filter_mask</title>
+<para>Sets the scancode wakeup filter mask of bits to compare.
+Use in combination with <constant>/sys/class/rc/rcN/wakeup_filter</constant> to set
+the bits of the scancode which should be compared against the
+expected value to trigger a system wake event.</para>
+<para>If the hardware supports it and wakeup_filter_mask is not 0 then
+scancodes which match the filter will wake the system from e.g.
+suspend to RAM or power off.
+Otherwise the write will fail with an error.</para>
+<para>This value may be reset to 0 if the wakeup protocol is altered.</para>
+</section>
+</section>
+
+<section id="Remote_controllers_tables">
+<title>Remote controller tables</title>
<para>Unfortunately, for several years, there was no effort to create uniform IR keycodes for
different devices. This caused the same IR keyname to be mapped completely differently on
different IR devices. This resulted that the same IR keyname to be mapped completely different on
@@ -175,3 +317,4 @@ keymapping.</para>
</section>
&sub-lirc_device_interface;
+</chapter>
diff --git a/Documentation/DocBook/media/v4l/subdev-formats.xml b/Documentation/DocBook/media/v4l/subdev-formats.xml
index f72c1cc93a9..b2d5a0363cb 100644
--- a/Documentation/DocBook/media/v4l/subdev-formats.xml
+++ b/Documentation/DocBook/media/v4l/subdev-formats.xml
@@ -89,7 +89,7 @@
<constant>V4L2_MBUS_FMT_RGB555_2X8_PADHI_BE</constant>.
</para>
- <para>The following tables list existing packet RGB formats.</para>
+ <para>The following tables list existing packed RGB formats.</para>
<table pgwide="0" frame="none" id="v4l2-mbus-pixelcode-rgb">
<title>RGB formats</title>
@@ -615,7 +615,7 @@
</mediaobject>
</figure>
- <para>The following table lists existing packet Bayer formats. The data
+ <para>The following table lists existing packed Bayer formats. The data
organization is given as an example for the first pixel only.</para>
<table pgwide="0" frame="none" id="v4l2-mbus-pixelcode-bayer">
@@ -1178,7 +1178,7 @@
U, Y, V, Y order will be named <constant>V4L2_MBUS_FMT_UYVY8_2X8</constant>.
</para>
- <para><xref linkend="v4l2-mbus-pixelcode-yuv8"/> list existing packet YUV
+ <para><xref linkend="v4l2-mbus-pixelcode-yuv8"/> lists existing packed YUV
formats and describes the organization of each pixel data in each sample.
When a format pattern is split across multiple samples each of the samples
in the pattern is described.</para>
@@ -1898,6 +1898,134 @@
<entry>y<subscript>1</subscript></entry>
<entry>y<subscript>0</subscript></entry>
</row>
+ <row id="V4L2-MBUS-FMT-UYVY10-2X10">
+ <entry>V4L2_MBUS_FMT_UYVY10_2X10</entry>
+ <entry>0x2018</entry>
+ <entry></entry>
+ &dash-ent-22;
+ <entry>u<subscript>9</subscript></entry>
+ <entry>u<subscript>8</subscript></entry>
+ <entry>u<subscript>7</subscript></entry>
+ <entry>u<subscript>6</subscript></entry>
+ <entry>u<subscript>5</subscript></entry>
+ <entry>u<subscript>4</subscript></entry>
+ <entry>u<subscript>3</subscript></entry>
+ <entry>u<subscript>2</subscript></entry>
+ <entry>u<subscript>1</subscript></entry>
+ <entry>u<subscript>0</subscript></entry>
+ </row>
+ <row>
+ <entry></entry>
+ <entry></entry>
+ <entry></entry>
+ &dash-ent-22;
+ <entry>y<subscript>9</subscript></entry>
+ <entry>y<subscript>8</subscript></entry>
+ <entry>y<subscript>7</subscript></entry>
+ <entry>y<subscript>6</subscript></entry>
+ <entry>y<subscript>5</subscript></entry>
+ <entry>y<subscript>4</subscript></entry>
+ <entry>y<subscript>3</subscript></entry>
+ <entry>y<subscript>2</subscript></entry>
+ <entry>y<subscript>1</subscript></entry>
+ <entry>y<subscript>0</subscript></entry>
+ </row>
+ <row>
+ <entry></entry>
+ <entry></entry>
+ <entry></entry>
+ &dash-ent-22;
+ <entry>v<subscript>9</subscript></entry>
+ <entry>v<subscript>8</subscript></entry>
+ <entry>v<subscript>7</subscript></entry>
+ <entry>v<subscript>6</subscript></entry>
+ <entry>v<subscript>5</subscript></entry>
+ <entry>v<subscript>4</subscript></entry>
+ <entry>v<subscript>3</subscript></entry>
+ <entry>v<subscript>2</subscript></entry>
+ <entry>v<subscript>1</subscript></entry>
+ <entry>v<subscript>0</subscript></entry>
+ </row>
+ <row>
+ <entry></entry>
+ <entry></entry>
+ <entry></entry>
+ &dash-ent-22;
+ <entry>y<subscript>9</subscript></entry>
+ <entry>y<subscript>8</subscript></entry>
+ <entry>y<subscript>7</subscript></entry>
+ <entry>y<subscript>6</subscript></entry>
+ <entry>y<subscript>5</subscript></entry>
+ <entry>y<subscript>4</subscript></entry>
+ <entry>y<subscript>3</subscript></entry>
+ <entry>y<subscript>2</subscript></entry>
+ <entry>y<subscript>1</subscript></entry>
+ <entry>y<subscript>0</subscript></entry>
+ </row>
+ <row id="V4L2-MBUS-FMT-VYUY10-2X10">
+ <entry>V4L2_MBUS_FMT_VYUY10_2X10</entry>
+ <entry>0x2019</entry>
+ <entry></entry>
+ &dash-ent-22;
+ <entry>v<subscript>9</subscript></entry>
+ <entry>v<subscript>8</subscript></entry>
+ <entry>v<subscript>7</subscript></entry>
+ <entry>v<subscript>6</subscript></entry>
+ <entry>v<subscript>5</subscript></entry>
+ <entry>v<subscript>4</subscript></entry>
+ <entry>v<subscript>3</subscript></entry>
+ <entry>v<subscript>2</subscript></entry>
+ <entry>v<subscript>1</subscript></entry>
+ <entry>v<subscript>0</subscript></entry>
+ </row>
+ <row>
+ <entry></entry>
+ <entry></entry>
+ <entry></entry>
+ &dash-ent-22;
+ <entry>y<subscript>9</subscript></entry>
+ <entry>y<subscript>8</subscript></entry>
+ <entry>y<subscript>7</subscript></entry>
+ <entry>y<subscript>6</subscript></entry>
+ <entry>y<subscript>5</subscript></entry>
+ <entry>y<subscript>4</subscript></entry>
+ <entry>y<subscript>3</subscript></entry>
+ <entry>y<subscript>2</subscript></entry>
+ <entry>y<subscript>1</subscript></entry>
+ <entry>y<subscript>0</subscript></entry>
+ </row>
+ <row>
+ <entry></entry>
+ <entry></entry>
+ <entry></entry>
+ &dash-ent-22;
+ <entry>u<subscript>9</subscript></entry>
+ <entry>u<subscript>8</subscript></entry>
+ <entry>u<subscript>7</subscript></entry>
+ <entry>u<subscript>6</subscript></entry>
+ <entry>u<subscript>5</subscript></entry>
+ <entry>u<subscript>4</subscript></entry>
+ <entry>u<subscript>3</subscript></entry>
+ <entry>u<subscript>2</subscript></entry>
+ <entry>u<subscript>1</subscript></entry>
+ <entry>u<subscript>0</subscript></entry>
+ </row>
+ <row>
+ <entry></entry>
+ <entry></entry>
+ <entry></entry>
+ &dash-ent-22;
+ <entry>y<subscript>9</subscript></entry>
+ <entry>y<subscript>8</subscript></entry>
+ <entry>y<subscript>7</subscript></entry>
+ <entry>y<subscript>6</subscript></entry>
+ <entry>y<subscript>5</subscript></entry>
+ <entry>y<subscript>4</subscript></entry>
+ <entry>y<subscript>3</subscript></entry>
+ <entry>y<subscript>2</subscript></entry>
+ <entry>y<subscript>1</subscript></entry>
+ <entry>y<subscript>0</subscript></entry>
+ </row>
<row id="V4L2-MBUS-FMT-YUYV10-2X10">
<entry>V4L2_MBUS_FMT_YUYV10_2X10</entry>
<entry>0x200b</entry>
@@ -2308,6 +2436,110 @@
<entry>v<subscript>1</subscript></entry>
<entry>v<subscript>0</subscript></entry>
</row>
+ <row id="V4L2-MBUS-FMT-UYVY10-1X20">
+ <entry>V4L2_MBUS_FMT_UYVY10_1X20</entry>
+ <entry>0x201a</entry>
+ <entry></entry>
+ &dash-ent-12;
+ <entry>u<subscript>9</subscript></entry>
+ <entry>u<subscript>8</subscript></entry>
+ <entry>u<subscript>7</subscript></entry>
+ <entry>u<subscript>6</subscript></entry>
+ <entry>u<subscript>5</subscript></entry>
+ <entry>u<subscript>4</subscript></entry>
+ <entry>u<subscript>3</subscript></entry>
+ <entry>u<subscript>2</subscript></entry>
+ <entry>u<subscript>1</subscript></entry>
+ <entry>u<subscript>0</subscript></entry>
+ <entry>y<subscript>9</subscript></entry>
+ <entry>y<subscript>8</subscript></entry>
+ <entry>y<subscript>7</subscript></entry>
+ <entry>y<subscript>6</subscript></entry>
+ <entry>y<subscript>5</subscript></entry>
+ <entry>y<subscript>4</subscript></entry>
+ <entry>y<subscript>3</subscript></entry>
+ <entry>y<subscript>2</subscript></entry>
+ <entry>y<subscript>1</subscript></entry>
+ <entry>y<subscript>0</subscript></entry>
+ </row>
+ <row>
+ <entry></entry>
+ <entry></entry>
+ <entry></entry>
+ &dash-ent-12;
+ <entry>v<subscript>9</subscript></entry>
+ <entry>v<subscript>8</subscript></entry>
+ <entry>v<subscript>7</subscript></entry>
+ <entry>v<subscript>6</subscript></entry>
+ <entry>v<subscript>5</subscript></entry>
+ <entry>v<subscript>4</subscript></entry>
+ <entry>v<subscript>3</subscript></entry>
+ <entry>v<subscript>2</subscript></entry>
+ <entry>v<subscript>1</subscript></entry>
+ <entry>v<subscript>0</subscript></entry>
+ <entry>y<subscript>9</subscript></entry>
+ <entry>y<subscript>8</subscript></entry>
+ <entry>y<subscript>7</subscript></entry>
+ <entry>y<subscript>6</subscript></entry>
+ <entry>y<subscript>5</subscript></entry>
+ <entry>y<subscript>4</subscript></entry>
+ <entry>y<subscript>3</subscript></entry>
+ <entry>y<subscript>2</subscript></entry>
+ <entry>y<subscript>1</subscript></entry>
+ <entry>y<subscript>0</subscript></entry>
+ </row>
+ <row id="V4L2-MBUS-FMT-VYUY10-1X20">
+ <entry>V4L2_MBUS_FMT_VYUY10_1X20</entry>
+ <entry>0x201b</entry>
+ <entry></entry>
+ &dash-ent-12;
+ <entry>v<subscript>9</subscript></entry>
+ <entry>v<subscript>8</subscript></entry>
+ <entry>v<subscript>7</subscript></entry>
+ <entry>v<subscript>6</subscript></entry>
+ <entry>v<subscript>5</subscript></entry>
+ <entry>v<subscript>4</subscript></entry>
+ <entry>v<subscript>3</subscript></entry>
+ <entry>v<subscript>2</subscript></entry>
+ <entry>v<subscript>1</subscript></entry>
+ <entry>v<subscript>0</subscript></entry>
+ <entry>y<subscript>9</subscript></entry>
+ <entry>y<subscript>8</subscript></entry>
+ <entry>y<subscript>7</subscript></entry>
+ <entry>y<subscript>6</subscript></entry>
+ <entry>y<subscript>5</subscript></entry>
+ <entry>y<subscript>4</subscript></entry>
+ <entry>y<subscript>3</subscript></entry>
+ <entry>y<subscript>2</subscript></entry>
+ <entry>y<subscript>1</subscript></entry>
+ <entry>y<subscript>0</subscript></entry>
+ </row>
+ <row>
+ <entry></entry>
+ <entry></entry>
+ <entry></entry>
+ &dash-ent-12;
+ <entry>u<subscript>9</subscript></entry>
+ <entry>u<subscript>8</subscript></entry>
+ <entry>u<subscript>7</subscript></entry>
+ <entry>u<subscript>6</subscript></entry>
+ <entry>u<subscript>5</subscript></entry>
+ <entry>u<subscript>4</subscript></entry>
+ <entry>u<subscript>3</subscript></entry>
+ <entry>u<subscript>2</subscript></entry>
+ <entry>u<subscript>1</subscript></entry>
+ <entry>u<subscript>0</subscript></entry>
+ <entry>y<subscript>9</subscript></entry>
+ <entry>y<subscript>8</subscript></entry>
+ <entry>y<subscript>7</subscript></entry>
+ <entry>y<subscript>6</subscript></entry>
+ <entry>y<subscript>5</subscript></entry>
+ <entry>y<subscript>4</subscript></entry>
+ <entry>y<subscript>3</subscript></entry>
+ <entry>y<subscript>2</subscript></entry>
+ <entry>y<subscript>1</subscript></entry>
+ <entry>y<subscript>0</subscript></entry>
+ </row>
<row id="V4L2-MBUS-FMT-YUYV10-1X20">
<entry>V4L2_MBUS_FMT_YUYV10_1X20</entry>
<entry>0x200d</entry>
@@ -2486,6 +2718,691 @@
<entry>v<subscript>1</subscript></entry>
<entry>v<subscript>0</subscript></entry>
</row>
+ <row id="V4L2-MBUS-FMT-UYVY12-2X12">
+ <entry>V4L2_MBUS_FMT_UYVY12_2X12</entry>
+ <entry>0x201c</entry>
+ <entry></entry>
+ &dash-ent-20;
+ <entry>u<subscript>11</subscript></entry>
+ <entry>u<subscript>10</subscript></entry>
+ <entry>u<subscript>9</subscript></entry>
+ <entry>u<subscript>8</subscript></entry>
+ <entry>u<subscript>7</subscript></entry>
+ <entry>u<subscript>6</subscript></entry>
+ <entry>u<subscript>5</subscript></entry>
+ <entry>u<subscript>4</subscript></entry>
+ <entry>u<subscript>3</subscript></entry>
+ <entry>u<subscript>2</subscript></entry>
+ <entry>u<subscript>1</subscript></entry>
+ <entry>u<subscript>0</subscript></entry>
+ </row>
+ <row>
+ <entry></entry>
+ <entry></entry>
+ <entry></entry>
+ &dash-ent-20;
+ <entry>y<subscript>11</subscript></entry>
+ <entry>y<subscript>10</subscript></entry>
+ <entry>y<subscript>9</subscript></entry>
+ <entry>y<subscript>8</subscript></entry>
+ <entry>y<subscript>7</subscript></entry>
+ <entry>y<subscript>6</subscript></entry>
+ <entry>y<subscript>5</subscript></entry>
+ <entry>y<subscript>4</subscript></entry>
+ <entry>y<subscript>3</subscript></entry>
+ <entry>y<subscript>2</subscript></entry>
+ <entry>y<subscript>1</subscript></entry>
+ <entry>y<subscript>0</subscript></entry>
+ </row>
+ <row>
+ <entry></entry>
+ <entry></entry>
+ <entry></entry>
+ &dash-ent-20;
+ <entry>v<subscript>11</subscript></entry>
+ <entry>v<subscript>10</subscript></entry>
+ <entry>v<subscript>9</subscript></entry>
+ <entry>v<subscript>8</subscript></entry>
+ <entry>v<subscript>7</subscript></entry>
+ <entry>v<subscript>6</subscript></entry>
+ <entry>v<subscript>5</subscript></entry>
+ <entry>v<subscript>4</subscript></entry>
+ <entry>v<subscript>3</subscript></entry>
+ <entry>v<subscript>2</subscript></entry>
+ <entry>v<subscript>1</subscript></entry>
+ <entry>v<subscript>0</subscript></entry>
+ </row>
+ <row>
+ <entry></entry>
+ <entry></entry>
+ <entry></entry>
+ &dash-ent-20;
+ <entry>y<subscript>11</subscript></entry>
+ <entry>y<subscript>10</subscript></entry>
+ <entry>y<subscript>9</subscript></entry>
+ <entry>y<subscript>8</subscript></entry>
+ <entry>y<subscript>7</subscript></entry>
+ <entry>y<subscript>6</subscript></entry>
+ <entry>y<subscript>5</subscript></entry>
+ <entry>y<subscript>4</subscript></entry>
+ <entry>y<subscript>3</subscript></entry>
+ <entry>y<subscript>2</subscript></entry>
+ <entry>y<subscript>1</subscript></entry>
+ <entry>y<subscript>0</subscript></entry>
+ </row>
+ <row id="V4L2-MBUS-FMT-VYUY12-2X12">
+ <entry>V4L2_MBUS_FMT_VYUY12_2X12</entry>
+ <entry>0x201d</entry>
+ <entry></entry>
+ &dash-ent-20;
+ <entry>v<subscript>11</subscript></entry>
+ <entry>v<subscript>10</subscript></entry>
+ <entry>v<subscript>9</subscript></entry>
+ <entry>v<subscript>8</subscript></entry>
+ <entry>v<subscript>7</subscript></entry>
+ <entry>v<subscript>6</subscript></entry>
+ <entry>v<subscript>5</subscript></entry>
+ <entry>v<subscript>4</subscript></entry>
+ <entry>v<subscript>3</subscript></entry>
+ <entry>v<subscript>2</subscript></entry>
+ <entry>v<subscript>1</subscript></entry>
+ <entry>v<subscript>0</subscript></entry>
+ </row>
+ <row>
+ <entry></entry>
+ <entry></entry>
+ <entry></entry>
+ &dash-ent-20;
+ <entry>y<subscript>11</subscript></entry>
+ <entry>y<subscript>10</subscript></entry>
+ <entry>y<subscript>9</subscript></entry>
+ <entry>y<subscript>8</subscript></entry>
+ <entry>y<subscript>7</subscript></entry>
+ <entry>y<subscript>6</subscript></entry>
+ <entry>y<subscript>5</subscript></entry>
+ <entry>y<subscript>4</subscript></entry>
+ <entry>y<subscript>3</subscript></entry>
+ <entry>y<subscript>2</subscript></entry>
+ <entry>y<subscript>1</subscript></entry>
+ <entry>y<subscript>0</subscript></entry>
+ </row>
+ <row>
+ <entry></entry>
+ <entry></entry>
+ <entry></entry>
+ &dash-ent-20;
+ <entry>u<subscript>11</subscript></entry>
+ <entry>u<subscript>10</subscript></entry>
+ <entry>u<subscript>9</subscript></entry>
+ <entry>u<subscript>8</subscript></entry>
+ <entry>u<subscript>7</subscript></entry>
+ <entry>u<subscript>6</subscript></entry>
+ <entry>u<subscript>5</subscript></entry>
+ <entry>u<subscript>4</subscript></entry>
+ <entry>u<subscript>3</subscript></entry>
+ <entry>u<subscript>2</subscript></entry>
+ <entry>u<subscript>1</subscript></entry>
+ <entry>u<subscript>0</subscript></entry>
+ </row>
+ <row>
+ <entry></entry>
+ <entry></entry>
+ <entry></entry>
+ &dash-ent-20;
+ <entry>y<subscript>11</subscript></entry>
+ <entry>y<subscript>10</subscript></entry>
+ <entry>y<subscript>9</subscript></entry>
+ <entry>y<subscript>8</subscript></entry>
+ <entry>y<subscript>7</subscript></entry>
+ <entry>y<subscript>6</subscript></entry>
+ <entry>y<subscript>5</subscript></entry>
+ <entry>y<subscript>4</subscript></entry>
+ <entry>y<subscript>3</subscript></entry>
+ <entry>y<subscript>2</subscript></entry>
+ <entry>y<subscript>1</subscript></entry>
+ <entry>y<subscript>0</subscript></entry>
+ </row>
+ <row id="V4L2-MBUS-FMT-YUYV12-2X12">
+ <entry>V4L2_MBUS_FMT_YUYV12_2X12</entry>
+ <entry>0x201e</entry>
+ <entry></entry>
+ &dash-ent-20;
+ <entry>y<subscript>11</subscript></entry>
+ <entry>y<subscript>10</subscript></entry>
+ <entry>y<subscript>9</subscript></entry>
+ <entry>y<subscript>8</subscript></entry>
+ <entry>y<subscript>7</subscript></entry>
+ <entry>y<subscript>6</subscript></entry>
+ <entry>y<subscript>5</subscript></entry>
+ <entry>y<subscript>4</subscript></entry>
+ <entry>y<subscript>3</subscript></entry>
+ <entry>y<subscript>2</subscript></entry>
+ <entry>y<subscript>1</subscript></entry>
+ <entry>y<subscript>0</subscript></entry>
+ </row>
+ <row>
+ <entry></entry>
+ <entry></entry>
+ <entry></entry>
+ &dash-ent-20;
+ <entry>u<subscript>11</subscript></entry>
+ <entry>u<subscript>10</subscript></entry>
+ <entry>u<subscript>9</subscript></entry>
+ <entry>u<subscript>8</subscript></entry>
+ <entry>u<subscript>7</subscript></entry>
+ <entry>u<subscript>6</subscript></entry>
+ <entry>u<subscript>5</subscript></entry>
+ <entry>u<subscript>4</subscript></entry>
+ <entry>u<subscript>3</subscript></entry>
+ <entry>u<subscript>2</subscript></entry>
+ <entry>u<subscript>1</subscript></entry>
+ <entry>u<subscript>0</subscript></entry>
+ </row>
+ <row>
+ <entry></entry>
+ <entry></entry>
+ <entry></entry>
+ &dash-ent-20;
+ <entry>y<subscript>11</subscript></entry>
+ <entry>y<subscript>10</subscript></entry>
+ <entry>y<subscript>9</subscript></entry>
+ <entry>y<subscript>8</subscript></entry>
+ <entry>y<subscript>7</subscript></entry>
+ <entry>y<subscript>6</subscript></entry>
+ <entry>y<subscript>5</subscript></entry>
+ <entry>y<subscript>4</subscript></entry>
+ <entry>y<subscript>3</subscript></entry>
+ <entry>y<subscript>2</subscript></entry>
+ <entry>y<subscript>1</subscript></entry>
+ <entry>y<subscript>0</subscript></entry>
+ </row>
+ <row>
+ <entry></entry>
+ <entry></entry>
+ <entry></entry>
+ &dash-ent-20;
+ <entry>v<subscript>11</subscript></entry>
+ <entry>v<subscript>10</subscript></entry>
+ <entry>v<subscript>9</subscript></entry>
+ <entry>v<subscript>8</subscript></entry>
+ <entry>v<subscript>7</subscript></entry>
+ <entry>v<subscript>6</subscript></entry>
+ <entry>v<subscript>5</subscript></entry>
+ <entry>v<subscript>4</subscript></entry>
+ <entry>v<subscript>3</subscript></entry>
+ <entry>v<subscript>2</subscript></entry>
+ <entry>v<subscript>1</subscript></entry>
+ <entry>v<subscript>0</subscript></entry>
+ </row>
+ <row id="V4L2-MBUS-FMT-YVYU12-2X12">
+ <entry>V4L2_MBUS_FMT_YVYU12_2X12</entry>
+ <entry>0x201f</entry>
+ <entry></entry>
+ &dash-ent-20;
+ <entry>y<subscript>11</subscript></entry>
+ <entry>y<subscript>10</subscript></entry>
+ <entry>y<subscript>9</subscript></entry>
+ <entry>y<subscript>8</subscript></entry>
+ <entry>y<subscript>7</subscript></entry>
+ <entry>y<subscript>6</subscript></entry>
+ <entry>y<subscript>5</subscript></entry>
+ <entry>y<subscript>4</subscript></entry>
+ <entry>y<subscript>3</subscript></entry>
+ <entry>y<subscript>2</subscript></entry>
+ <entry>y<subscript>1</subscript></entry>
+ <entry>y<subscript>0</subscript></entry>
+ </row>
+ <row>
+ <entry></entry>
+ <entry></entry>
+ <entry></entry>
+ &dash-ent-20;
+ <entry>v<subscript>11</subscript></entry>
+ <entry>v<subscript>10</subscript></entry>
+ <entry>v<subscript>9</subscript></entry>
+ <entry>v<subscript>8</subscript></entry>
+ <entry>v<subscript>7</subscript></entry>
+ <entry>v<subscript>6</subscript></entry>
+ <entry>v<subscript>5</subscript></entry>
+ <entry>v<subscript>4</subscript></entry>
+ <entry>v<subscript>3</subscript></entry>
+ <entry>v<subscript>2</subscript></entry>
+ <entry>v<subscript>1</subscript></entry>
+ <entry>v<subscript>0</subscript></entry>
+ </row>
+ <row>
+ <entry></entry>
+ <entry></entry>
+ <entry></entry>
+ &dash-ent-20;
+ <entry>y<subscript>11</subscript></entry>
+ <entry>y<subscript>10</subscript></entry>
+ <entry>y<subscript>9</subscript></entry>
+ <entry>y<subscript>8</subscript></entry>
+ <entry>y<subscript>7</subscript></entry>
+ <entry>y<subscript>6</subscript></entry>
+ <entry>y<subscript>5</subscript></entry>
+ <entry>y<subscript>4</subscript></entry>
+ <entry>y<subscript>3</subscript></entry>
+ <entry>y<subscript>2</subscript></entry>
+ <entry>y<subscript>1</subscript></entry>
+ <entry>y<subscript>0</subscript></entry>
+ </row>
+ <row>
+ <entry></entry>
+ <entry></entry>
+ <entry></entry>
+ &dash-ent-20;
+ <entry>u<subscript>11</subscript></entry>
+ <entry>u<subscript>10</subscript></entry>
+ <entry>u<subscript>9</subscript></entry>
+ <entry>u<subscript>8</subscript></entry>
+ <entry>u<subscript>7</subscript></entry>
+ <entry>u<subscript>6</subscript></entry>
+ <entry>u<subscript>5</subscript></entry>
+ <entry>u<subscript>4</subscript></entry>
+ <entry>u<subscript>3</subscript></entry>
+ <entry>u<subscript>2</subscript></entry>
+ <entry>u<subscript>1</subscript></entry>
+ <entry>u<subscript>0</subscript></entry>
+ </row>
+ <row id="V4L2-MBUS-FMT-UYVY12-1X24">
+ <entry>V4L2_MBUS_FMT_UYVY12_1X24</entry>
+ <entry>0x2020</entry>
+ <entry></entry>
+ &dash-ent-8;
+ <entry>u<subscript>11</subscript></entry>
+ <entry>u<subscript>10</subscript></entry>
+ <entry>u<subscript>9</subscript></entry>
+ <entry>u<subscript>8</subscript></entry>
+ <entry>u<subscript>7</subscript></entry>
+ <entry>u<subscript>6</subscript></entry>
+ <entry>u<subscript>5</subscript></entry>
+ <entry>u<subscript>4</subscript></entry>
+ <entry>u<subscript>3</subscript></entry>
+ <entry>u<subscript>2</subscript></entry>
+ <entry>u<subscript>1</subscript></entry>
+ <entry>u<subscript>0</subscript></entry>
+ <entry>y<subscript>11</subscript></entry>
+ <entry>y<subscript>10</subscript></entry>
+ <entry>y<subscript>9</subscript></entry>
+ <entry>y<subscript>8</subscript></entry>
+ <entry>y<subscript>7</subscript></entry>
+ <entry>y<subscript>6</subscript></entry>
+ <entry>y<subscript>5</subscript></entry>
+ <entry>y<subscript>4</subscript></entry>
+ <entry>y<subscript>3</subscript></entry>
+ <entry>y<subscript>2</subscript></entry>
+ <entry>y<subscript>1</subscript></entry>
+ <entry>y<subscript>0</subscript></entry>
+ </row>
+ <row>
+ <entry></entry>
+ <entry></entry>
+ <entry></entry>
+ &dash-ent-8;
+ <entry>v<subscript>11</subscript></entry>
+ <entry>v<subscript>10</subscript></entry>
+ <entry>v<subscript>9</subscript></entry>
+ <entry>v<subscript>8</subscript></entry>
+ <entry>v<subscript>7</subscript></entry>
+ <entry>v<subscript>6</subscript></entry>
+ <entry>v<subscript>5</subscript></entry>
+ <entry>v<subscript>4</subscript></entry>
+ <entry>v<subscript>3</subscript></entry>
+ <entry>v<subscript>2</subscript></entry>
+ <entry>v<subscript>1</subscript></entry>
+ <entry>v<subscript>0</subscript></entry>
+ <entry>y<subscript>11</subscript></entry>
+ <entry>y<subscript>10</subscript></entry>
+ <entry>y<subscript>9</subscript></entry>
+ <entry>y<subscript>8</subscript></entry>
+ <entry>y<subscript>7</subscript></entry>
+ <entry>y<subscript>6</subscript></entry>
+ <entry>y<subscript>5</subscript></entry>
+ <entry>y<subscript>4</subscript></entry>
+ <entry>y<subscript>3</subscript></entry>
+ <entry>y<subscript>2</subscript></entry>
+ <entry>y<subscript>1</subscript></entry>
+ <entry>y<subscript>0</subscript></entry>
+ </row>
+ <row id="V4L2-MBUS-FMT-VYUY12-1X24">
+ <entry>V4L2_MBUS_FMT_VYUY12_1X24</entry>
+ <entry>0x2021</entry>
+ <entry></entry>
+ &dash-ent-8;
+ <entry>v<subscript>11</subscript></entry>
+ <entry>v<subscript>10</subscript></entry>
+ <entry>v<subscript>9</subscript></entry>
+ <entry>v<subscript>8</subscript></entry>
+ <entry>v<subscript>7</subscript></entry>
+ <entry>v<subscript>6</subscript></entry>
+ <entry>v<subscript>5</subscript></entry>
+ <entry>v<subscript>4</subscript></entry>
+ <entry>v<subscript>3</subscript></entry>
+ <entry>v<subscript>2</subscript></entry>
+ <entry>v<subscript>1</subscript></entry>
+ <entry>v<subscript>0</subscript></entry>
+ <entry>y<subscript>11</subscript></entry>
+ <entry>y<subscript>10</subscript></entry>
+ <entry>y<subscript>9</subscript></entry>
+ <entry>y<subscript>8</subscript></entry>
+ <entry>y<subscript>7</subscript></entry>
+ <entry>y<subscript>6</subscript></entry>
+ <entry>y<subscript>5</subscript></entry>
+ <entry>y<subscript>4</subscript></entry>
+ <entry>y<subscript>3</subscript></entry>
+ <entry>y<subscript>2</subscript></entry>
+ <entry>y<subscript>1</subscript></entry>
+ <entry>y<subscript>0</subscript></entry>
+ </row>
+ <row>
+ <entry></entry>
+ <entry></entry>
+ <entry></entry>
+ &dash-ent-8;
+ <entry>u<subscript>11</subscript></entry>
+ <entry>u<subscript>10</subscript></entry>
+ <entry>u<subscript>9</subscript></entry>
+ <entry>u<subscript>8</subscript></entry>
+ <entry>u<subscript>7</subscript></entry>
+ <entry>u<subscript>6</subscript></entry>
+ <entry>u<subscript>5</subscript></entry>
+ <entry>u<subscript>4</subscript></entry>
+ <entry>u<subscript>3</subscript></entry>
+ <entry>u<subscript>2</subscript></entry>
+ <entry>u<subscript>1</subscript></entry>
+ <entry>u<subscript>0</subscript></entry>
+ <entry>y<subscript>11</subscript></entry>
+ <entry>y<subscript>10</subscript></entry>
+ <entry>y<subscript>9</subscript></entry>
+ <entry>y<subscript>8</subscript></entry>
+ <entry>y<subscript>7</subscript></entry>
+ <entry>y<subscript>6</subscript></entry>
+ <entry>y<subscript>5</subscript></entry>
+ <entry>y<subscript>4</subscript></entry>
+ <entry>y<subscript>3</subscript></entry>
+ <entry>y<subscript>2</subscript></entry>
+ <entry>y<subscript>1</subscript></entry>
+ <entry>y<subscript>0</subscript></entry>
+ </row>
+ <row id="V4L2-MBUS-FMT-YUYV12-1X24">
+ <entry>V4L2_MBUS_FMT_YUYV12_1X24</entry>
+ <entry>0x2022</entry>
+ <entry></entry>
+ &dash-ent-8;
+ <entry>y<subscript>11</subscript></entry>
+ <entry>y<subscript>10</subscript></entry>
+ <entry>y<subscript>9</subscript></entry>
+ <entry>y<subscript>8</subscript></entry>
+ <entry>y<subscript>7</subscript></entry>
+ <entry>y<subscript>6</subscript></entry>
+ <entry>y<subscript>5</subscript></entry>
+ <entry>y<subscript>4</subscript></entry>
+ <entry>y<subscript>3</subscript></entry>
+ <entry>y<subscript>2</subscript></entry>
+ <entry>y<subscript>1</subscript></entry>
+ <entry>y<subscript>0</subscript></entry>
+ <entry>u<subscript>11</subscript></entry>
+ <entry>u<subscript>10</subscript></entry>
+ <entry>u<subscript>9</subscript></entry>
+ <entry>u<subscript>8</subscript></entry>
+ <entry>u<subscript>7</subscript></entry>
+ <entry>u<subscript>6</subscript></entry>
+ <entry>u<subscript>5</subscript></entry>
+ <entry>u<subscript>4</subscript></entry>
+ <entry>u<subscript>3</subscript></entry>
+ <entry>u<subscript>2</subscript></entry>
+ <entry>u<subscript>1</subscript></entry>
+ <entry>u<subscript>0</subscript></entry>
+ </row>
+ <row>
+ <entry></entry>
+ <entry></entry>
+ <entry></entry>
+ &dash-ent-8;
+ <entry>y<subscript>11</subscript></entry>
+ <entry>y<subscript>10</subscript></entry>
+ <entry>y<subscript>9</subscript></entry>
+ <entry>y<subscript>8</subscript></entry>
+ <entry>y<subscript>7</subscript></entry>
+ <entry>y<subscript>6</subscript></entry>
+ <entry>y<subscript>5</subscript></entry>
+ <entry>y<subscript>4</subscript></entry>
+ <entry>y<subscript>3</subscript></entry>
+ <entry>y<subscript>2</subscript></entry>
+ <entry>y<subscript>1</subscript></entry>
+ <entry>y<subscript>0</subscript></entry>
+ <entry>v<subscript>11</subscript></entry>
+ <entry>v<subscript>10</subscript></entry>
+ <entry>v<subscript>9</subscript></entry>
+ <entry>v<subscript>8</subscript></entry>
+ <entry>v<subscript>7</subscript></entry>
+ <entry>v<subscript>6</subscript></entry>
+ <entry>v<subscript>5</subscript></entry>
+ <entry>v<subscript>4</subscript></entry>
+ <entry>v<subscript>3</subscript></entry>
+ <entry>v<subscript>2</subscript></entry>
+ <entry>v<subscript>1</subscript></entry>
+ <entry>v<subscript>0</subscript></entry>
+ </row>
+ <row id="V4L2-MBUS-FMT-YVYU12-1X24">
+ <entry>V4L2_MBUS_FMT_YVYU12_1X24</entry>
+ <entry>0x2023</entry>
+ <entry></entry>
+ &dash-ent-8;
+ <entry>y<subscript>11</subscript></entry>
+ <entry>y<subscript>10</subscript></entry>
+ <entry>y<subscript>9</subscript></entry>
+ <entry>y<subscript>8</subscript></entry>
+ <entry>y<subscript>7</subscript></entry>
+ <entry>y<subscript>6</subscript></entry>
+ <entry>y<subscript>5</subscript></entry>
+ <entry>y<subscript>4</subscript></entry>
+ <entry>y<subscript>3</subscript></entry>
+ <entry>y<subscript>2</subscript></entry>
+ <entry>y<subscript>1</subscript></entry>
+ <entry>y<subscript>0</subscript></entry>
+ <entry>v<subscript>11</subscript></entry>
+ <entry>v<subscript>10</subscript></entry>
+ <entry>v<subscript>9</subscript></entry>
+ <entry>v<subscript>8</subscript></entry>
+ <entry>v<subscript>7</subscript></entry>
+ <entry>v<subscript>6</subscript></entry>
+ <entry>v<subscript>5</subscript></entry>
+ <entry>v<subscript>4</subscript></entry>
+ <entry>v<subscript>3</subscript></entry>
+ <entry>v<subscript>2</subscript></entry>
+ <entry>v<subscript>1</subscript></entry>
+ <entry>v<subscript>0</subscript></entry>
+ </row>
+ <row>
+ <entry></entry>
+ <entry></entry>
+ <entry></entry>
+ &dash-ent-8;
+ <entry>y<subscript>11</subscript></entry>
+ <entry>y<subscript>10</subscript></entry>
+ <entry>y<subscript>9</subscript></entry>
+ <entry>y<subscript>8</subscript></entry>
+ <entry>y<subscript>7</subscript></entry>
+ <entry>y<subscript>6</subscript></entry>
+ <entry>y<subscript>5</subscript></entry>
+ <entry>y<subscript>4</subscript></entry>
+ <entry>y<subscript>3</subscript></entry>
+ <entry>y<subscript>2</subscript></entry>
+ <entry>y<subscript>1</subscript></entry>
+ <entry>y<subscript>0</subscript></entry>
+ <entry>u<subscript>11</subscript></entry>
+ <entry>u<subscript>10</subscript></entry>
+ <entry>u<subscript>9</subscript></entry>
+ <entry>u<subscript>8</subscript></entry>
+ <entry>u<subscript>7</subscript></entry>
+ <entry>u<subscript>6</subscript></entry>
+ <entry>u<subscript>5</subscript></entry>
+ <entry>u<subscript>4</subscript></entry>
+ <entry>u<subscript>3</subscript></entry>
+ <entry>u<subscript>2</subscript></entry>
+ <entry>u<subscript>1</subscript></entry>
+ <entry>u<subscript>0</subscript></entry>
+ </row>
+ </tbody>
+ </tgroup>
+ </table>
+ </section>
+
+ <section>
+ <title>HSV/HSL Formats</title>
+
+ <para>Those formats transfer pixel data as RGB values in a cylindrical-coordinate
+ system using Hue-Saturation-Value or Hue-Saturation-Lightness components. The
+ format code is made of the following information.
+ <itemizedlist>
+ <listitem><para>The hue, saturation, value or lightness and optional alpha
+ components order code, as encoded in a pixel sample. The only currently
+ supported value is AHSV.
+ </para></listitem>
+ <listitem><para>The number of bits per component, for each component. The values
+ can be different for all components. The only currently supported value is 8888.
+ </para></listitem>
+ <listitem><para>The number of bus samples per pixel. Pixels that are wider than
+ the bus width must be transferred in multiple samples. The only currently
+ supported value is 1.</para></listitem>
+ <listitem><para>The bus width.</para></listitem>
+ <listitem><para>For formats where the total number of bits per pixel is smaller
+ than the number of bus samples per pixel times the bus width, a padding
+ value stating if the bytes are padded in their most high order bits
+ (PADHI) or low order bits (PADLO).</para></listitem>
+ <listitem><para>For formats where the number of bus samples per pixel is larger
+ than 1, an endianness value stating if the pixel is transferred MSB first
+ (BE) or LSB first (LE).</para></listitem>
+ </itemizedlist>
+ </para>
+
+ <para>The following table lists existing HSV/HSL formats.</para>
+
+ <table pgwide="0" frame="none" id="v4l2-mbus-pixelcode-hsv">
+ <title>HSV/HSL formats</title>
+ <tgroup cols="27">
+ <colspec colname="id" align="left" />
+ <colspec colname="code" align="center"/>
+ <colspec colname="bit" />
+ <colspec colnum="4" colname="b31" align="center" />
+ <colspec colnum="5" colname="b20" align="center" />
+ <colspec colnum="6" colname="b29" align="center" />
+ <colspec colnum="7" colname="b28" align="center" />
+ <colspec colnum="8" colname="b27" align="center" />
+ <colspec colnum="9" colname="b26" align="center" />
+ <colspec colnum="10" colname="b25" align="center" />
+ <colspec colnum="11" colname="b24" align="center" />
+ <colspec colnum="12" colname="b23" align="center" />
+ <colspec colnum="13" colname="b22" align="center" />
+ <colspec colnum="14" colname="b21" align="center" />
+ <colspec colnum="15" colname="b20" align="center" />
+ <colspec colnum="16" colname="b19" align="center" />
+ <colspec colnum="17" colname="b18" align="center" />
+ <colspec colnum="18" colname="b17" align="center" />
+ <colspec colnum="19" colname="b16" align="center" />
+ <colspec colnum="20" colname="b15" align="center" />
+ <colspec colnum="21" colname="b14" align="center" />
+ <colspec colnum="22" colname="b13" align="center" />
+ <colspec colnum="23" colname="b12" align="center" />
+ <colspec colnum="24" colname="b11" align="center" />
+ <colspec colnum="25" colname="b10" align="center" />
+ <colspec colnum="26" colname="b09" align="center" />
+ <colspec colnum="27" colname="b08" align="center" />
+ <colspec colnum="28" colname="b07" align="center" />
+ <colspec colnum="29" colname="b06" align="center" />
+ <colspec colnum="30" colname="b05" align="center" />
+ <colspec colnum="31" colname="b04" align="center" />
+ <colspec colnum="32" colname="b03" align="center" />
+ <colspec colnum="33" colname="b02" align="center" />
+ <colspec colnum="34" colname="b01" align="center" />
+ <colspec colnum="35" colname="b00" align="center" />
+ <spanspec namest="b31" nameend="b00" spanname="b0" />
+ <thead>
+ <row>
+ <entry>Identifier</entry>
+ <entry>Code</entry>
+ <entry></entry>
+ <entry spanname="b0">Data organization</entry>
+ </row>
+ <row>
+ <entry></entry>
+ <entry></entry>
+ <entry>Bit</entry>
+ <entry>31</entry>
+ <entry>30</entry>
+ <entry>29</entry>
+ <entry>28</entry>
+ <entry>27</entry>
+ <entry>26</entry>
+ <entry>25</entry>
+ <entry>24</entry>
+ <entry>23</entry>
+ <entry>22</entry>
+ <entry>21</entry>
+ <entry>20</entry>
+ <entry>19</entry>
+ <entry>18</entry>
+ <entry>17</entry>
+ <entry>16</entry>
+ <entry>15</entry>
+ <entry>14</entry>
+ <entry>13</entry>
+ <entry>12</entry>
+ <entry>11</entry>
+ <entry>10</entry>
+ <entry>9</entry>
+ <entry>8</entry>
+ <entry>7</entry>
+ <entry>6</entry>
+ <entry>5</entry>
+ <entry>4</entry>
+ <entry>3</entry>
+ <entry>2</entry>
+ <entry>1</entry>
+ <entry>0</entry>
+ </row>
+ </thead>
+ <tbody valign="top">
+ <row id="V4L2-MBUS-FMT-AHSV8888-1X32">
+ <entry>V4L2_MBUS_FMT_AHSV8888_1X32</entry>
+ <entry>0x6001</entry>
+ <entry></entry>
+ <entry>a<subscript>7</subscript></entry>
+ <entry>a<subscript>6</subscript></entry>
+ <entry>a<subscript>5</subscript></entry>
+ <entry>a<subscript>4</subscript></entry>
+ <entry>a<subscript>3</subscript></entry>
+ <entry>a<subscript>2</subscript></entry>
+ <entry>a<subscript>1</subscript></entry>
+ <entry>a<subscript>0</subscript></entry>
+ <entry>h<subscript>7</subscript></entry>
+ <entry>h<subscript>6</subscript></entry>
+ <entry>h<subscript>5</subscript></entry>
+ <entry>h<subscript>4</subscript></entry>
+ <entry>h<subscript>3</subscript></entry>
+ <entry>h<subscript>2</subscript></entry>
+ <entry>h<subscript>1</subscript></entry>
+ <entry>h<subscript>0</subscript></entry>
+ <entry>s<subscript>7</subscript></entry>
+ <entry>s<subscript>6</subscript></entry>
+ <entry>s<subscript>5</subscript></entry>
+ <entry>s<subscript>4</subscript></entry>
+ <entry>s<subscript>3</subscript></entry>
+ <entry>s<subscript>2</subscript></entry>
+ <entry>s<subscript>1</subscript></entry>
+ <entry>s<subscript>0</subscript></entry>
+ <entry>v<subscript>7</subscript></entry>
+ <entry>v<subscript>6</subscript></entry>
+ <entry>v<subscript>5</subscript></entry>
+ <entry>v<subscript>4</subscript></entry>
+ <entry>v<subscript>3</subscript></entry>
+ <entry>v<subscript>2</subscript></entry>
+ <entry>v<subscript>1</subscript></entry>
+ <entry>v<subscript>0</subscript></entry>
+ </row>
</tbody>
</tgroup>
</table>
diff --git a/Documentation/DocBook/media/v4l/v4l2.xml b/Documentation/DocBook/media/v4l/v4l2.xml
index 8469fe13945..b445161b912 100644
--- a/Documentation/DocBook/media/v4l/v4l2.xml
+++ b/Documentation/DocBook/media/v4l/v4l2.xml
@@ -70,7 +70,7 @@ MPEG stream embedded, sliced VBI data format in this specification.
Remote Controller chapter.</contrib>
<affiliation>
<address>
- <email>mchehab@redhat.com</email>
+ <email>m.chehab@samsung.com</email>
</address>
</affiliation>
</author>
@@ -107,6 +107,16 @@ Remote Controller chapter.</contrib>
</address>
</affiliation>
</author>
+ <author>
+ <firstname>Antti</firstname>
+ <surname>Palosaari</surname>
+ <contrib>SDR API.</contrib>
+ <affiliation>
+ <address>
+ <email>crope@iki.fi</email>
+ </address>
+ </affiliation>
+ </author>
</authorgroup>
<copyright>
@@ -125,6 +135,7 @@ Remote Controller chapter.</contrib>
<year>2011</year>
<year>2012</year>
<year>2013</year>
+ <year>2014</year>
<holder>Bill Dirks, Michael H. Schimek, Hans Verkuil, Martin
Rubli, Andy Walls, Muralidharan Karicheri, Mauro Carvalho Chehab,
Pawel Osciak</holder>
@@ -141,6 +152,24 @@ structs, ioctls) must be noted in more detail in the history chapter
applications. -->
<revision>
+ <revnumber>3.15</revnumber>
+ <date>2014-02-03</date>
+ <authorinitials>hv, ap</authorinitials>
+ <revremark>Update several sections of "Common API Elements": "Opening and Closing Devices"
+"Querying Capabilities", "Application Priority", "Video Inputs and Outputs", "Audio Inputs and Outputs"
+"Tuners and Modulators", "Video Standards" and "Digital Video (DV) Timings". Added SDR API.
+ </revremark>
+ </revision>
+
+ <revision>
+ <revnumber>3.14</revnumber>
+ <date>2013-11-25</date>
+ <authorinitials>rr</authorinitials>
+ <revremark>Set width and height as unsigned on v4l2_rect.
+ </revremark>
+ </revision>
+
+ <revision>
<revnumber>3.11</revnumber>
<date>2013-05-26</date>
<authorinitials>hv</authorinitials>
@@ -501,7 +530,7 @@ and discussions on the V4L mailing list.</revremark>
</partinfo>
<title>Video for Linux Two API Specification</title>
- <subtitle>Revision 3.11</subtitle>
+ <subtitle>Revision 3.14</subtitle>
<chapter id="common">
&sub-common;
@@ -529,6 +558,7 @@ and discussions on the V4L mailing list.</revremark>
<section id="ttx"> &sub-dev-teletext; </section>
<section id="radio"> &sub-dev-radio; </section>
<section id="rds"> &sub-dev-rds; </section>
+ <section id="sdr"> &sub-dev-sdr; </section>
<section id="event"> &sub-dev-event; </section>
<section id="subdev"> &sub-dev-subdev; </section>
</chapter>
@@ -577,6 +607,7 @@ and discussions on the V4L mailing list.</revremark>
&sub-g-crop;
&sub-g-ctrl;
&sub-g-dv-timings;
+ &sub-g-edid;
&sub-g-enc-index;
&sub-g-ext-ctrls;
&sub-g-fbuf;
@@ -608,7 +639,6 @@ and discussions on the V4L mailing list.</revremark>
&sub-subdev-enum-frame-size;
&sub-subdev-enum-mbus-code;
&sub-subdev-g-crop;
- &sub-subdev-g-edid;
&sub-subdev-g-fmt;
&sub-subdev-g-frame-interval;
&sub-subdev-g-selection;
diff --git a/Documentation/DocBook/media/v4l/vidioc-cropcap.xml b/Documentation/DocBook/media/v4l/vidioc-cropcap.xml
index bf7cc979fdf..1f5ed64cd75 100644
--- a/Documentation/DocBook/media/v4l/vidioc-cropcap.xml
+++ b/Documentation/DocBook/media/v4l/vidioc-cropcap.xml
@@ -133,18 +133,14 @@ rectangle, in pixels.</entry>
rectangle, in pixels.</entry>
</row>
<row>
- <entry>__s32</entry>
+ <entry>__u32</entry>
<entry><structfield>width</structfield></entry>
<entry>Width of the rectangle, in pixels.</entry>
</row>
<row>
- <entry>__s32</entry>
+ <entry>__u32</entry>
<entry><structfield>height</structfield></entry>
- <entry>Height of the rectangle, in pixels. Width
-and height cannot be negative, the fields are signed for
-hysterical reasons. <!-- video4linux-list@redhat.com
-on 22 Oct 2002 subject "Re:[V4L][patches!] Re:v4l2/kernel-2.5" -->
-</entry>
+ <entry>Height of the rectangle, in pixels.</entry>
</row>
</tbody>
</tgroup>
diff --git a/Documentation/DocBook/media/v4l/vidioc-dqevent.xml b/Documentation/DocBook/media/v4l/vidioc-dqevent.xml
index 89891adb928..820f86e8744 100644
--- a/Documentation/DocBook/media/v4l/vidioc-dqevent.xml
+++ b/Documentation/DocBook/media/v4l/vidioc-dqevent.xml
@@ -242,6 +242,22 @@
</tgroup>
</table>
+ <table frame="none" pgwide="1" id="v4l2-event-src-change">
+ <title>struct <structname>v4l2_event_src_change</structname></title>
+ <tgroup cols="3">
+ &cs-str;
+ <tbody valign="top">
+ <row>
+ <entry>__u32</entry>
+ <entry><structfield>changes</structfield></entry>
+ <entry>
+ A bitmask that tells what has changed. See <xref linkend="src-changes-flags" />.
+ </entry>
+ </row>
+ </tbody>
+ </tgroup>
+ </table>
+
<table pgwide="1" frame="none" id="changes-flags">
<title>Changes</title>
<tgroup cols="3">
@@ -270,6 +286,23 @@
</tbody>
</tgroup>
</table>
+
+ <table pgwide="1" frame="none" id="src-changes-flags">
+ <title>Source Changes</title>
+ <tgroup cols="3">
+ &cs-def;
+ <tbody valign="top">
+ <row>
+ <entry><constant>V4L2_EVENT_SRC_CH_RESOLUTION</constant></entry>
+ <entry>0x0001</entry>
+ <entry>This event gets triggered when a resolution change is
+ detected at an input. This can come from an input connector or
+ from a video decoder.
+ </entry>
+ </row>
+ </tbody>
+ </tgroup>
+ </table>
</refsect1>
<refsect1>
&return-value;
diff --git a/Documentation/DocBook/media/v4l/vidioc-dv-timings-cap.xml b/Documentation/DocBook/media/v4l/vidioc-dv-timings-cap.xml
index cd7720d404e..28a8c1e1c70 100644
--- a/Documentation/DocBook/media/v4l/vidioc-dv-timings-cap.xml
+++ b/Documentation/DocBook/media/v4l/vidioc-dv-timings-cap.xml
@@ -1,11 +1,12 @@
<refentry id="vidioc-dv-timings-cap">
<refmeta>
- <refentrytitle>ioctl VIDIOC_DV_TIMINGS_CAP</refentrytitle>
+ <refentrytitle>ioctl VIDIOC_DV_TIMINGS_CAP, VIDIOC_SUBDEV_DV_TIMINGS_CAP</refentrytitle>
&manvol;
</refmeta>
<refnamediv>
<refname>VIDIOC_DV_TIMINGS_CAP</refname>
+ <refname>VIDIOC_SUBDEV_DV_TIMINGS_CAP</refname>
<refpurpose>The capabilities of the Digital Video receiver/transmitter</refpurpose>
</refnamediv>
@@ -33,7 +34,7 @@
<varlistentry>
<term><parameter>request</parameter></term>
<listitem>
- <para>VIDIOC_DV_TIMINGS_CAP</para>
+ <para>VIDIOC_DV_TIMINGS_CAP, VIDIOC_SUBDEV_DV_TIMINGS_CAP</para>
</listitem>
</varlistentry>
<varlistentry>
@@ -54,10 +55,19 @@
interface and may change in the future.</para>
</note>
- <para>To query the capabilities of the DV receiver/transmitter applications can call
-this ioctl and the driver will fill in the structure. Note that drivers may return
+ <para>To query the capabilities of the DV receiver/transmitter applications
+can call the <constant>VIDIOC_DV_TIMINGS_CAP</constant> ioctl on a video node
+and the driver will fill in the structure. Note that drivers may return
different values after switching the video input or output.</para>
+ <para>When implemented by the driver DV capabilities of subdevices can be
+queried by calling the <constant>VIDIOC_SUBDEV_DV_TIMINGS_CAP</constant> ioctl
+directly on a subdevice node. The capabilities are specific to inputs (for DV
+receivers) or outputs (for DV transmitters), applications must specify the
+desired pad number in the &v4l2-dv-timings-cap; <structfield>pad</structfield>
+field. Attempts to query capabilities on a pad that doesn't support them will
+return an &EINVAL;.</para>
+
<table pgwide="1" frame="none" id="v4l2-bt-timings-cap">
<title>struct <structname>v4l2_bt_timings_cap</structname></title>
<tgroup cols="3">
@@ -127,7 +137,14 @@ different values after switching the video input or output.</para>
</row>
<row>
<entry>__u32</entry>
- <entry><structfield>reserved</structfield>[3]</entry>
+ <entry><structfield>pad</structfield></entry>
+ <entry>Pad number as reported by the media controller API. This field
+ is only used when operating on a subdevice node. When operating on a
+ video node applications must set this field to zero.</entry>
+ </row>
+ <row>
+ <entry>__u32</entry>
+ <entry><structfield>reserved</structfield>[2]</entry>
<entry>Reserved for future extensions. Drivers must set the array to zero.</entry>
</row>
<row>
diff --git a/Documentation/DocBook/media/v4l/vidioc-enum-dv-timings.xml b/Documentation/DocBook/media/v4l/vidioc-enum-dv-timings.xml
index b3e17c1dfaf..b9fdfeacdbc 100644
--- a/Documentation/DocBook/media/v4l/vidioc-enum-dv-timings.xml
+++ b/Documentation/DocBook/media/v4l/vidioc-enum-dv-timings.xml
@@ -1,11 +1,12 @@
<refentry id="vidioc-enum-dv-timings">
<refmeta>
- <refentrytitle>ioctl VIDIOC_ENUM_DV_TIMINGS</refentrytitle>
+ <refentrytitle>ioctl VIDIOC_ENUM_DV_TIMINGS, VIDIOC_SUBDEV_ENUM_DV_TIMINGS</refentrytitle>
&manvol;
</refmeta>
<refnamediv>
<refname>VIDIOC_ENUM_DV_TIMINGS</refname>
+ <refname>VIDIOC_SUBDEV_ENUM_DV_TIMINGS</refname>
<refpurpose>Enumerate supported Digital Video timings</refpurpose>
</refnamediv>
@@ -33,7 +34,7 @@
<varlistentry>
<term><parameter>request</parameter></term>
<listitem>
- <para>VIDIOC_ENUM_DV_TIMINGS</para>
+ <para>VIDIOC_ENUM_DV_TIMINGS, VIDIOC_SUBDEV_ENUM_DV_TIMINGS</para>
</listitem>
</varlistentry>
<varlistentry>
@@ -61,14 +62,21 @@ standards or even custom timings that are not in this list.</para>
<para>To query the available timings, applications initialize the
<structfield>index</structfield> field and zero the reserved array of &v4l2-enum-dv-timings;
-and call the <constant>VIDIOC_ENUM_DV_TIMINGS</constant> ioctl with a pointer to this
-structure. Drivers fill the rest of the structure or return an
+and call the <constant>VIDIOC_ENUM_DV_TIMINGS</constant> ioctl on a video node with a
+pointer to this structure. Drivers fill the rest of the structure or return an
&EINVAL; when the index is out of bounds. To enumerate all supported DV timings,
applications shall begin at index zero, incrementing by one until the
driver returns <errorcode>EINVAL</errorcode>. Note that drivers may enumerate a
different set of DV timings after switching the video input or
output.</para>
+ <para>When implemented by the driver DV timings of subdevices can be queried
+by calling the <constant>VIDIOC_SUBDEV_ENUM_DV_TIMINGS</constant> ioctl directly
+on a subdevice node. The DV timings are specific to inputs (for DV receivers) or
+outputs (for DV transmitters), applications must specify the desired pad number
+in the &v4l2-enum-dv-timings; <structfield>pad</structfield> field. Attempts to
+enumerate timings on a pad that doesn't support them will return an &EINVAL;.</para>
+
<table pgwide="1" frame="none" id="v4l2-enum-dv-timings">
<title>struct <structname>v4l2_enum_dv_timings</structname></title>
<tgroup cols="3">
@@ -82,8 +90,16 @@ application.</entry>
</row>
<row>
<entry>__u32</entry>
- <entry><structfield>reserved</structfield>[3]</entry>
- <entry>Reserved for future extensions. Drivers must set the array to zero.</entry>
+ <entry><structfield>pad</structfield></entry>
+ <entry>Pad number as reported by the media controller API. This field
+ is only used when operating on a subdevice node. When operating on a
+ video node applications must set this field to zero.</entry>
+ </row>
+ <row>
+ <entry>__u32</entry>
+ <entry><structfield>reserved</structfield>[2]</entry>
+ <entry>Reserved for future extensions. Drivers and applications must
+ set the array to zero.</entry>
</row>
<row>
<entry>&v4l2-dv-timings;</entry>
@@ -103,7 +119,7 @@ application.</entry>
<term><errorcode>EINVAL</errorcode></term>
<listitem>
<para>The &v4l2-enum-dv-timings; <structfield>index</structfield>
-is out of bounds.</para>
+is out of bounds or the <structfield>pad</structfield> number is invalid.</para>
</listitem>
</varlistentry>
<varlistentry>
diff --git a/Documentation/DocBook/media/v4l/vidioc-enum-freq-bands.xml b/Documentation/DocBook/media/v4l/vidioc-enum-freq-bands.xml
index 6541ba0175e..4e8ea65f728 100644
--- a/Documentation/DocBook/media/v4l/vidioc-enum-freq-bands.xml
+++ b/Documentation/DocBook/media/v4l/vidioc-enum-freq-bands.xml
@@ -100,7 +100,7 @@ See <xref linkend="v4l2-tuner-type" /></entry>
<entry><structfield>capability</structfield></entry>
<entry spanname="hspan">The tuner/modulator capability flags for
this frequency band, see <xref linkend="tuner-capability" />. The <constant>V4L2_TUNER_CAP_LOW</constant>
-capability must be the same for all frequency bands of the selected tuner/modulator.
+or <constant>V4L2_TUNER_CAP_1HZ</constant> capability must be the same for all frequency bands of the selected tuner/modulator.
So either all bands have that capability set, or none of them have that capability.</entry>
</row>
<row>
@@ -109,7 +109,8 @@ So either all bands have that capability set, or none of them have that capabili
<entry spanname="hspan">The lowest tunable frequency in
units of 62.5 kHz, or if the <structfield>capability</structfield>
flag <constant>V4L2_TUNER_CAP_LOW</constant> is set, in units of 62.5
-Hz, for this frequency band.</entry>
+Hz, for this frequency band. A 1 Hz unit is used when the <structfield>capability</structfield> flag
+<constant>V4L2_TUNER_CAP_1HZ</constant> is set.</entry>
</row>
<row>
<entry>__u32</entry>
@@ -117,7 +118,8 @@ Hz, for this frequency band.</entry>
<entry spanname="hspan">The highest tunable frequency in
units of 62.5 kHz, or if the <structfield>capability</structfield>
flag <constant>V4L2_TUNER_CAP_LOW</constant> is set, in units of 62.5
-Hz, for this frequency band.</entry>
+Hz, for this frequency band. A 1 Hz unit is used when the <structfield>capability</structfield> flag
+<constant>V4L2_TUNER_CAP_1HZ</constant> is set.</entry>
</row>
<row>
<entry>__u32</entry>
diff --git a/Documentation/DocBook/media/v4l/vidioc-expbuf.xml b/Documentation/DocBook/media/v4l/vidioc-expbuf.xml
index e287c8fc803..4165e7bfa4f 100644
--- a/Documentation/DocBook/media/v4l/vidioc-expbuf.xml
+++ b/Documentation/DocBook/media/v4l/vidioc-expbuf.xml
@@ -73,7 +73,8 @@ range from zero to the maximal number of valid planes for the currently active
format. For the single-planar API, applications must set <structfield> plane
</structfield> to zero. Additional flags may be posted in the <structfield>
flags </structfield> field. Refer to a manual for open() for details.
-Currently only O_CLOEXEC is supported. All other fields must be set to zero.
+Currently only O_CLOEXEC, O_RDONLY, O_WRONLY, and O_RDWR are supported. All
+other fields must be set to zero.
In the case of multi-planar API, every plane is exported separately using
multiple <constant> VIDIOC_EXPBUF </constant> calls. </para>
@@ -170,8 +171,9 @@ multi-planar API. Otherwise this value must be set to zero. </entry>
<entry>__u32</entry>
<entry><structfield>flags</structfield></entry>
<entry>Flags for the newly created file, currently only <constant>
-O_CLOEXEC </constant> is supported, refer to the manual of open() for more
-details.</entry>
+O_CLOEXEC </constant>, <constant>O_RDONLY</constant>, <constant>O_WRONLY
+</constant>, and <constant>O_RDWR</constant> are supported, refer to the manual
+of open() for more details.</entry>
</row>
<row>
<entry>__s32</entry>
diff --git a/Documentation/DocBook/media/v4l/vidioc-subdev-g-edid.xml b/Documentation/DocBook/media/v4l/vidioc-g-edid.xml
index bbd18f0e6ed..ce4563b8713 100644
--- a/Documentation/DocBook/media/v4l/vidioc-subdev-g-edid.xml
+++ b/Documentation/DocBook/media/v4l/vidioc-g-edid.xml
@@ -1,12 +1,12 @@
-<refentry id="vidioc-subdev-g-edid">
+<refentry id="vidioc-g-edid">
<refmeta>
- <refentrytitle>ioctl VIDIOC_SUBDEV_G_EDID, VIDIOC_SUBDEV_S_EDID</refentrytitle>
+ <refentrytitle>ioctl VIDIOC_G_EDID, VIDIOC_S_EDID</refentrytitle>
&manvol;
</refmeta>
<refnamediv>
- <refname>VIDIOC_SUBDEV_G_EDID</refname>
- <refname>VIDIOC_SUBDEV_S_EDID</refname>
+ <refname>VIDIOC_G_EDID</refname>
+ <refname>VIDIOC_S_EDID</refname>
<refpurpose>Get or set the EDID of a video receiver/transmitter</refpurpose>
</refnamediv>
@@ -16,7 +16,7 @@
<funcdef>int <function>ioctl</function></funcdef>
<paramdef>int <parameter>fd</parameter></paramdef>
<paramdef>int <parameter>request</parameter></paramdef>
- <paramdef>struct v4l2_subdev_edid *<parameter>argp</parameter></paramdef>
+ <paramdef>struct v4l2_edid *<parameter>argp</parameter></paramdef>
</funcprototype>
</funcsynopsis>
<funcsynopsis>
@@ -24,7 +24,7 @@
<funcdef>int <function>ioctl</function></funcdef>
<paramdef>int <parameter>fd</parameter></paramdef>
<paramdef>int <parameter>request</parameter></paramdef>
- <paramdef>const struct v4l2_subdev_edid *<parameter>argp</parameter></paramdef>
+ <paramdef>const struct v4l2_edid *<parameter>argp</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
@@ -42,7 +42,7 @@
<varlistentry>
<term><parameter>request</parameter></term>
<listitem>
- <para>VIDIOC_SUBDEV_G_EDID, VIDIOC_SUBDEV_S_EDID</para>
+ <para>VIDIOC_G_EDID, VIDIOC_S_EDID</para>
</listitem>
</varlistentry>
<varlistentry>
@@ -56,12 +56,20 @@
<refsect1>
<title>Description</title>
- <para>These ioctls can be used to get or set an EDID associated with an input pad
- from a receiver or an output pad of a transmitter subdevice.</para>
+ <para>These ioctls can be used to get or set an EDID associated with an input
+ from a receiver or an output of a transmitter device. They can be
+ used with subdevice nodes (/dev/v4l-subdevX) or with video nodes (/dev/videoX).</para>
+
+ <para>When used with video nodes the <structfield>pad</structfield> field represents the
+ input (for video capture devices) or output (for video output devices) index as
+ is returned by &VIDIOC-ENUMINPUT; and &VIDIOC-ENUMOUTPUT; respectively. When used
+ with subdevice nodes the <structfield>pad</structfield> field represents the
+ input or output pad of the subdevice. If there is no EDID support for the given
+ <structfield>pad</structfield> value, then the &EINVAL; will be returned.</para>
<para>To get the EDID data the application has to fill in the <structfield>pad</structfield>,
<structfield>start_block</structfield>, <structfield>blocks</structfield> and <structfield>edid</structfield>
- fields and call <constant>VIDIOC_SUBDEV_G_EDID</constant>. The current EDID from block
+ fields and call <constant>VIDIOC_G_EDID</constant>. The current EDID from block
<structfield>start_block</structfield> and of size <structfield>blocks</structfield>
will be placed in the memory <structfield>edid</structfield> points to. The <structfield>edid</structfield>
pointer must point to memory at least <structfield>blocks</structfield>&nbsp;*&nbsp;128 bytes
@@ -91,15 +99,17 @@
data in some way. In any case, the end result is the same: the EDID is no longer available.
</para>
- <table pgwide="1" frame="none" id="v4l2-subdev-edid">
- <title>struct <structname>v4l2_subdev_edid</structname></title>
+ <table pgwide="1" frame="none" id="v4l2-edid">
+ <title>struct <structname>v4l2_edid</structname></title>
<tgroup cols="3">
&cs-str;
<tbody valign="top">
<row>
<entry>__u32</entry>
<entry><structfield>pad</structfield></entry>
- <entry>Pad for which to get/set the EDID blocks.</entry>
+ <entry>Pad for which to get/set the EDID blocks. When used with a video device
+ node the pad represents the input or output index as returned by
+ &VIDIOC-ENUMINPUT; and &VIDIOC-ENUMOUTPUT; respectively.</entry>
</row>
<row>
<entry>__u32</entry>
diff --git a/Documentation/DocBook/media/v4l/vidioc-g-ext-ctrls.xml b/Documentation/DocBook/media/v4l/vidioc-g-ext-ctrls.xml
index b3bb9575b2e..e9f6735c082 100644
--- a/Documentation/DocBook/media/v4l/vidioc-g-ext-ctrls.xml
+++ b/Documentation/DocBook/media/v4l/vidioc-g-ext-ctrls.xml
@@ -327,7 +327,12 @@ These controls are described in <xref
These controls are described in <xref
linkend="fm-rx-controls" />.</entry>
</row>
-
+ <row>
+ <entry><constant>V4L2_CTRL_CLASS_RF_TUNER</constant></entry>
+ <entry>0xa20000</entry>
+ <entry>The class containing RF tuner controls.
+These controls are described in <xref linkend="rf-tuner-controls" />.</entry>
+ </row>
</tbody>
</tgroup>
</table>
diff --git a/Documentation/DocBook/media/v4l/vidioc-g-fmt.xml b/Documentation/DocBook/media/v4l/vidioc-g-fmt.xml
index ee8f56e1bac..4fe19a7a9a3 100644
--- a/Documentation/DocBook/media/v4l/vidioc-g-fmt.xml
+++ b/Documentation/DocBook/media/v4l/vidioc-g-fmt.xml
@@ -172,6 +172,13 @@ capture and output devices.</entry>
</row>
<row>
<entry></entry>
+ <entry>&v4l2-sdr-format;</entry>
+ <entry><structfield>sdr</structfield></entry>
+ <entry>Definition of a data format, see
+<xref linkend="pixfmt" />, used by SDR capture devices.</entry>
+ </row>
+ <row>
+ <entry></entry>
<entry>__u8</entry>
<entry><structfield>raw_data</structfield>[200]</entry>
<entry>Place holder for future extensions.</entry>
diff --git a/Documentation/DocBook/media/v4l/vidioc-g-frequency.xml b/Documentation/DocBook/media/v4l/vidioc-g-frequency.xml
index c7a1c462e72..d1034fb61d1 100644
--- a/Documentation/DocBook/media/v4l/vidioc-g-frequency.xml
+++ b/Documentation/DocBook/media/v4l/vidioc-g-frequency.xml
@@ -109,9 +109,10 @@ See <xref linkend="v4l2-tuner-type" /></entry>
<entry>__u32</entry>
<entry><structfield>frequency</structfield></entry>
<entry>Tuning frequency in units of 62.5 kHz, or if the
-&v4l2-tuner; or &v4l2-modulator; <structfield>capabilities</structfield> flag
+&v4l2-tuner; or &v4l2-modulator; <structfield>capability</structfield> flag
<constant>V4L2_TUNER_CAP_LOW</constant> is set, in units of 62.5
-Hz.</entry>
+Hz. A 1 Hz unit is used when the <structfield>capability</structfield> flag
+<constant>V4L2_TUNER_CAP_1HZ</constant> is set.</entry>
</row>
<row>
<entry>__u32</entry>
diff --git a/Documentation/DocBook/media/v4l/vidioc-g-modulator.xml b/Documentation/DocBook/media/v4l/vidioc-g-modulator.xml
index 7f4ac7e41fa..7068b599a00 100644
--- a/Documentation/DocBook/media/v4l/vidioc-g-modulator.xml
+++ b/Documentation/DocBook/media/v4l/vidioc-g-modulator.xml
@@ -113,7 +113,8 @@ change for example with the current video standard.</entry>
<entry>The lowest tunable frequency in units of 62.5
KHz, or if the <structfield>capability</structfield> flag
<constant>V4L2_TUNER_CAP_LOW</constant> is set, in units of 62.5
-Hz.</entry>
+Hz, or if the <structfield>capability</structfield> flag
+<constant>V4L2_TUNER_CAP_1HZ</constant> is set, in units of 1 Hz.</entry>
</row>
<row>
<entry>__u32</entry>
@@ -121,7 +122,8 @@ Hz.</entry>
<entry>The highest tunable frequency in units of 62.5
KHz, or if the <structfield>capability</structfield> flag
<constant>V4L2_TUNER_CAP_LOW</constant> is set, in units of 62.5
-Hz.</entry>
+Hz, or if the <structfield>capability</structfield> flag
+<constant>V4L2_TUNER_CAP_1HZ</constant> is set, in units of 1 Hz.</entry>
</row>
<row>
<entry>__u32</entry>
diff --git a/Documentation/DocBook/media/v4l/vidioc-g-tuner.xml b/Documentation/DocBook/media/v4l/vidioc-g-tuner.xml
index 6cc82010c73..b0d865933da 100644
--- a/Documentation/DocBook/media/v4l/vidioc-g-tuner.xml
+++ b/Documentation/DocBook/media/v4l/vidioc-g-tuner.xml
@@ -134,7 +134,9 @@ the structure refers to a radio tuner the
<entry spanname="hspan">The lowest tunable frequency in
units of 62.5 kHz, or if the <structfield>capability</structfield>
flag <constant>V4L2_TUNER_CAP_LOW</constant> is set, in units of 62.5
-Hz. If multiple frequency bands are supported, then
+Hz, or if the <structfield>capability</structfield> flag
+<constant>V4L2_TUNER_CAP_1HZ</constant> is set, in units of 1 Hz.
+If multiple frequency bands are supported, then
<structfield>rangelow</structfield> is the lowest frequency
of all the frequency bands.</entry>
</row>
@@ -144,7 +146,9 @@ of all the frequency bands.</entry>
<entry spanname="hspan">The highest tunable frequency in
units of 62.5 kHz, or if the <structfield>capability</structfield>
flag <constant>V4L2_TUNER_CAP_LOW</constant> is set, in units of 62.5
-Hz. If multiple frequency bands are supported, then
+Hz, or if the <structfield>capability</structfield> flag
+<constant>V4L2_TUNER_CAP_1HZ</constant> is set, in units of 1 Hz.
+If multiple frequency bands are supported, then
<structfield>rangehigh</structfield> is the highest frequency
of all the frequency bands.</entry>
</row>
@@ -270,7 +274,7 @@ applications must set the array to zero.</entry>
<entry><constant>V4L2_TUNER_CAP_LOW</constant></entry>
<entry>0x0001</entry>
<entry>When set, tuning frequencies are expressed in units of
-62.5&nbsp;Hz, otherwise in units of 62.5&nbsp;kHz.</entry>
+62.5 Hz instead of 62.5 kHz.</entry>
</row>
<row>
<entry><constant>V4L2_TUNER_CAP_NORM</constant></entry>
@@ -360,6 +364,11 @@ radio tuners.</entry>
<entry>The range to search when using the hardware seek functionality
is programmable, see &VIDIOC-S-HW-FREQ-SEEK; for details.</entry>
</row>
+ <row>
+ <entry><constant>V4L2_TUNER_CAP_1HZ</constant></entry>
+ <entry>0x1000</entry>
+ <entry>When set, tuning frequencies are expressed in units of 1 Hz instead of 62.5 kHz.</entry>
+ </row>
</tbody>
</tgroup>
</table>
diff --git a/Documentation/DocBook/media/v4l/vidioc-querycap.xml b/Documentation/DocBook/media/v4l/vidioc-querycap.xml
index d5a3c97b206..370d49d6fb6 100644
--- a/Documentation/DocBook/media/v4l/vidioc-querycap.xml
+++ b/Documentation/DocBook/media/v4l/vidioc-querycap.xml
@@ -296,6 +296,12 @@ modulator programming see
<xref linkend="tuner" />.</entry>
</row>
<row>
+ <entry><constant>V4L2_CAP_SDR_CAPTURE</constant></entry>
+ <entry>0x00100000</entry>
+ <entry>The device supports the
+<link linkend="sdr">SDR Capture</link> interface.</entry>
+ </row>
+ <row>
<entry><constant>V4L2_CAP_READWRITE</constant></entry>
<entry>0x01000000</entry>
<entry>The device supports the <link
diff --git a/Documentation/DocBook/media/v4l/vidioc-s-hw-freq-seek.xml b/Documentation/DocBook/media/v4l/vidioc-s-hw-freq-seek.xml
index 5b379e75219..a5fc4c4880f 100644
--- a/Documentation/DocBook/media/v4l/vidioc-s-hw-freq-seek.xml
+++ b/Documentation/DocBook/media/v4l/vidioc-s-hw-freq-seek.xml
@@ -121,7 +121,9 @@ field and the &v4l2-tuner; <structfield>index</structfield> field.</entry>
<entry>If non-zero, the lowest tunable frequency of the band to
search in units of 62.5 kHz, or if the &v4l2-tuner;
<structfield>capability</structfield> field has the
-<constant>V4L2_TUNER_CAP_LOW</constant> flag set, in units of 62.5 Hz.
+<constant>V4L2_TUNER_CAP_LOW</constant> flag set, in units of 62.5 Hz or if the &v4l2-tuner;
+<structfield>capability</structfield> field has the
+<constant>V4L2_TUNER_CAP_1HZ</constant> flag set, in units of 1 Hz.
If <structfield>rangelow</structfield> is zero a reasonable default value
is used.</entry>
</row>
@@ -131,7 +133,9 @@ is used.</entry>
<entry>If non-zero, the highest tunable frequency of the band to
search in units of 62.5 kHz, or if the &v4l2-tuner;
<structfield>capability</structfield> field has the
-<constant>V4L2_TUNER_CAP_LOW</constant> flag set, in units of 62.5 Hz.
+<constant>V4L2_TUNER_CAP_LOW</constant> flag set, in units of 62.5 Hz or if the &v4l2-tuner;
+<structfield>capability</structfield> field has the
+<constant>V4L2_TUNER_CAP_1HZ</constant> flag set, in units of 1 Hz.
If <structfield>rangehigh</structfield> is zero a reasonable default value
is used.</entry>
</row>
diff --git a/Documentation/DocBook/media/v4l/vidioc-streamon.xml b/Documentation/DocBook/media/v4l/vidioc-streamon.xml
index 716ea15e54a..df2c63d07ba 100644
--- a/Documentation/DocBook/media/v4l/vidioc-streamon.xml
+++ b/Documentation/DocBook/media/v4l/vidioc-streamon.xml
@@ -52,16 +52,24 @@
<para>The <constant>VIDIOC_STREAMON</constant> and
<constant>VIDIOC_STREAMOFF</constant> ioctl start and stop the capture
or output process during streaming (<link linkend="mmap">memory
-mapping</link> or <link linkend="userp">user pointer</link>) I/O.</para>
+mapping</link>, <link linkend="userp">user pointer</link> or
+<link linkend="dmabuf">DMABUF</link>) I/O.</para>
- <para>Specifically the capture hardware is disabled and no input
+ <para>Capture hardware is disabled and no input
buffers are filled (if there are any empty buffers in the incoming
queue) until <constant>VIDIOC_STREAMON</constant> has been called.
-Accordingly the output hardware is disabled, no video signal is
+Output hardware is disabled and no video signal is
produced until <constant>VIDIOC_STREAMON</constant> has been called.
-The ioctl will succeed only when at least one output buffer is in the
+The ioctl will succeed when at least one output buffer is in the
incoming queue.</para>
+ <para>Memory-to-memory devices will not start until
+<constant>VIDIOC_STREAMON</constant> has been called for both the capture
+and output stream types.</para>
+
+ <para>If <constant>VIDIOC_STREAMON</constant> fails then any already
+queued buffers will remain queued.</para>
+
<para>The <constant>VIDIOC_STREAMOFF</constant> ioctl, apart of
aborting or finishing any DMA in progress, unlocks any user pointer
buffers locked in physical memory, and it removes all buffers from the
@@ -70,14 +78,22 @@ dequeued yet will be lost, likewise all images enqueued for output but
not transmitted yet. I/O returns to the same state as after calling
&VIDIOC-REQBUFS; and can be restarted accordingly.</para>
+ <para>If buffers have been queued with &VIDIOC-QBUF; and
+<constant>VIDIOC_STREAMOFF</constant> is called without ever having
+called <constant>VIDIOC_STREAMON</constant>, then those queued buffers
+will also be removed from the incoming queue and all are returned to the
+same state as after calling &VIDIOC-REQBUFS; and can be restarted
+accordingly.</para>
+
<para>Both ioctls take a pointer to an integer, the desired buffer or
stream type. This is the same as &v4l2-requestbuffers;
<structfield>type</structfield>.</para>
<para>If <constant>VIDIOC_STREAMON</constant> is called when streaming
is already in progress, or if <constant>VIDIOC_STREAMOFF</constant> is called
-when streaming is already stopped, then the ioctl does nothing and 0 is
-returned.</para>
+when streaming is already stopped, then 0 is returned. Nothing happens in the
+case of <constant>VIDIOC_STREAMON</constant>, but <constant>VIDIOC_STREAMOFF</constant>
+will return queued buffers to their starting state as mentioned above.</para>
<para>Note that applications can be preempted for unknown periods right
before or after the <constant>VIDIOC_STREAMON</constant> or
@@ -93,7 +109,7 @@ synchronize with other events.</para>
<varlistentry>
<term><errorcode>EINVAL</errorcode></term>
<listitem>
- <para>The buffer<structfield>type</structfield> is not supported,
+ <para>The buffer <structfield>type</structfield> is not supported,
or no buffers have been allocated (memory mapping) or enqueued
(output) yet.</para>
</listitem>
diff --git a/Documentation/DocBook/media/v4l/vidioc-subscribe-event.xml b/Documentation/DocBook/media/v4l/vidioc-subscribe-event.xml
index 5c70b616d81..17efa870d4d 100644
--- a/Documentation/DocBook/media/v4l/vidioc-subscribe-event.xml
+++ b/Documentation/DocBook/media/v4l/vidioc-subscribe-event.xml
@@ -155,6 +155,26 @@
</entry>
</row>
<row>
+ <entry><constant>V4L2_EVENT_SOURCE_CHANGE</constant></entry>
+ <entry>5</entry>
+ <entry>
+ <para>This event is triggered when a source parameter change is
+ detected during runtime by the video device. It can be a
+ runtime resolution change triggered by a video decoder or the
+ format change happening on an input connector.
+ This event requires that the <structfield>id</structfield>
+ matches the input index (when used with a video device node)
+ or the pad index (when used with a subdevice node) from which
+ you want to receive events.</para>
+
+ <para>This event has a &v4l2-event-src-change; associated
+ with it. The <structfield>changes</structfield> bitfield denotes
+ what has changed for the subscribed pad. If multiple events
+ occurred before application could dequeue them, then the changes
+ will have the ORed value of all the events generated.</para>
+ </entry>
+ </row>
+ <row>
<entry><constant>V4L2_EVENT_PRIVATE_START</constant></entry>
<entry>0x08000000</entry>
<entry>Base event number for driver-private events.</entry>
diff --git a/Documentation/DocBook/media_api.tmpl b/Documentation/DocBook/media_api.tmpl
index 4c8d282545a..03f9a1f8d41 100644
--- a/Documentation/DocBook/media_api.tmpl
+++ b/Documentation/DocBook/media_api.tmpl
@@ -34,22 +34,20 @@
<book id="media_api">
<bookinfo>
-<title>LINUX MEDIA INFRASTRUCTURE API</title>
-
-<copyright>
- <year>2009-2012</year>
- <holder>LinuxTV Developers</holder>
-</copyright>
-
-<legalnotice>
-
-<para>Permission is granted to copy, distribute and/or modify
-this document under the terms of the GNU Free Documentation License,
-Version 1.1 or any later version published by the Free Software
-Foundation. A copy of the license is included in the chapter entitled
-"GNU Free Documentation License"</para>
-</legalnotice>
-
+ <title>LINUX MEDIA INFRASTRUCTURE API</title>
+
+ <copyright>
+ <year>2009-2014</year>
+ <holder>LinuxTV Developers</holder>
+ </copyright>
+
+ <legalnotice>
+ <para>Permission is granted to copy, distribute and/or modify
+ this document under the terms of the GNU Free Documentation License,
+ Version 1.1 or any later version published by the Free Software
+ Foundation. A copy of the license is included in the chapter entitled
+ "GNU Free Documentation License"</para>
+ </legalnotice>
</bookinfo>
<toc></toc> <!-- autogenerated -->
@@ -58,72 +56,32 @@ Foundation. A copy of the license is included in the chapter entitled
<title>Introduction</title>
<para>This document covers the Linux Kernel to Userspace API's used by
- video and radio straming devices, including video cameras,
+ video and radio streaming devices, including video cameras,
analog and digital TV receiver cards, AM/FM receiver cards,
- streaming capture devices.</para>
+ streaming capture and output devices, codec devices and remote
+ controllers.</para>
<para>It is divided into four parts.</para>
- <para>The first part covers radio, capture,
- cameras and analog TV devices.</para>
+ <para>The first part covers radio, video capture and output,
+ cameras, analog TV devices and codecs.</para>
<para>The second part covers the
API used for digital TV and Internet reception via one of the
several digital tv standards. While it is called as DVB API,
in fact it covers several different video standards including
DVB-T, DVB-S, DVB-C and ATSC. The API is currently being updated
- to documment support also for DVB-S2, ISDB-T and ISDB-S.</para>
+ to document support also for DVB-S2, ISDB-T and ISDB-S.</para>
<para>The third part covers the Remote Controller API.</para>
<para>The fourth part covers the Media Controller API.</para>
<para>For additional information and for the latest development code,
see: <ulink url="http://linuxtv.org">http://linuxtv.org</ulink>.</para>
<para>For discussing improvements, reporting troubles, sending new drivers, etc, please mail to: <ulink url="http://vger.kernel.org/vger-lists.html#linux-media">Linux Media Mailing List (LMML).</ulink>.</para>
-
</preface>
-<part id="v4l2spec">
-&sub-v4l2;
-</part>
-<part id="dvbapi">
-&sub-dvbapi;
-</part>
-<part id="v4ldvb_common">
-<partinfo>
-<authorgroup>
-<author>
-<firstname>Mauro</firstname>
-<surname>Chehab</surname>
-<othername role="mi">Carvalho</othername>
-<affiliation><address><email>mchehab@redhat.com</email></address></affiliation>
-<contrib>Initial version.</contrib>
-</author>
-</authorgroup>
-<copyright>
- <year>2009-2012</year>
- <holder>Mauro Carvalho Chehab</holder>
-</copyright>
-
-<revhistory>
-<!-- Put document revisions here, newest first. -->
-<revision>
-<revnumber>1.0.0</revnumber>
-<date>2009-09-06</date>
-<authorinitials>mcc</authorinitials>
-<revremark>Initial revision</revremark>
-</revision>
-</revhistory>
-</partinfo>
-
-<title>Remote Controller API</title>
-<chapter id="remote_controllers">
-&sub-remote_controllers;
-</chapter>
-</part>
-<part id="media_common">
-&sub-media-controller;
-</part>
-
-<chapter id="gen_errors">
-&sub-gen-errors;
-</chapter>
+<part id="v4l2spec">&sub-v4l2;</part>
+<part id="dvbapi">&sub-dvbapi;</part>
+<part id="remotes">&sub-remote_controllers;</part>
+<part id="media_common">&sub-media-controller;</part>
+<chapter id="gen_errors">&sub-gen-errors;</chapter>
&sub-fdl-appendix;
diff --git a/Documentation/DocBook/mtdnand.tmpl b/Documentation/DocBook/mtdnand.tmpl
index a248f42a121..7da8f0402af 100644
--- a/Documentation/DocBook/mtdnand.tmpl
+++ b/Documentation/DocBook/mtdnand.tmpl
@@ -91,7 +91,7 @@
<listitem><para>
[MTD Interface]</para><para>
These functions provide the interface to the MTD kernel API.
- They are not replacable and provide functionality
+ They are not replaceable and provide functionality
which is complete hardware independent.
</para></listitem>
<listitem><para>
@@ -100,14 +100,14 @@
</para></listitem>
<listitem><para>
[GENERIC]</para><para>
- Generic functions are not replacable and provide functionality
+ Generic functions are not replaceable and provide functionality
which is complete hardware independent.
</para></listitem>
<listitem><para>
[DEFAULT]</para><para>
Default functions provide hardware related functionality which is suitable
for most of the implementations. These functions can be replaced by the
- board driver if neccecary. Those functions are called via pointers in the
+ board driver if necessary. Those functions are called via pointers in the
NAND chip description structure. The board driver can set the functions which
should be replaced by board dependent functions before calling nand_scan().
If the function pointer is NULL on entry to nand_scan() then the pointer
@@ -264,7 +264,7 @@ static void board_hwcontrol(struct mtd_info *mtd, int cmd)
is set up nand_scan() is called. This function tries to
detect and identify then chip. If a chip is found all the
internal data fields are initialized accordingly.
- The structure(s) have to be zeroed out first and then filled with the neccecary
+ The structure(s) have to be zeroed out first and then filled with the necessary
information about the device.
</para>
<programlisting>
@@ -327,7 +327,7 @@ module_init(board_init);
<sect1 id="Exit_function">
<title>Exit function</title>
<para>
- The exit function is only neccecary if the driver is
+ The exit function is only necessary if the driver is
compiled as a module. It releases all resources which
are held by the chip driver and unregisters the partitions
in the MTD layer.
@@ -494,7 +494,7 @@ static void board_select_chip (struct mtd_info *mtd, int chip)
in this case. See rts_from4.c and diskonchip.c for
implementation reference. In those cases we must also
use bad block tables on FLASH, because the ECC layout is
- interferring with the bad block marker positions.
+ interfering with the bad block marker positions.
See bad block table support for details.
</para>
</sect2>
@@ -542,7 +542,7 @@ static void board_select_chip (struct mtd_info *mtd, int chip)
<para>
nand_scan() calls the function nand_default_bbt().
nand_default_bbt() selects appropriate default
- bad block table desriptors depending on the chip information
+ bad block table descriptors depending on the chip information
which was retrieved by nand_scan().
</para>
<para>
@@ -554,7 +554,7 @@ static void board_select_chip (struct mtd_info *mtd, int chip)
<sect2 id="Flash_based_tables">
<title>Flash based tables</title>
<para>
- It may be desired or neccecary to keep a bad block table in FLASH.
+ It may be desired or necessary to keep a bad block table in FLASH.
For AG-AND chips this is mandatory, as they have no factory marked
bad blocks. They have factory marked good blocks. The marker pattern
is erased when the block is erased to be reused. So in case of
@@ -565,10 +565,10 @@ static void board_select_chip (struct mtd_info *mtd, int chip)
of the blocks.
</para>
<para>
- The blocks in which the tables are stored are procteted against
+ The blocks in which the tables are stored are protected against
accidental access by marking them bad in the memory bad block
table. The bad block table management functions are allowed
- to circumvernt this protection.
+ to circumvent this protection.
</para>
<para>
The simplest way to activate the FLASH based bad block table support
@@ -592,7 +592,7 @@ static void board_select_chip (struct mtd_info *mtd, int chip)
User defined tables are created by filling out a
nand_bbt_descr structure and storing the pointer in the
nand_chip structure member bbt_td before calling nand_scan().
- If a mirror table is neccecary a second structure must be
+ If a mirror table is necessary a second structure must be
created and a pointer to this structure must be stored
in bbt_md inside the nand_chip structure. If the bbt_md
member is set to NULL then only the main table is used
@@ -666,7 +666,7 @@ static void board_select_chip (struct mtd_info *mtd, int chip)
<para>
For automatic placement some blocks must be reserved for
bad block table storage. The number of reserved blocks is defined
- in the maxblocks member of the babd block table description structure.
+ in the maxblocks member of the bad block table description structure.
Reserving 4 blocks for mirrored tables should be a reasonable number.
This also limits the number of blocks which are scanned for the bad
block table ident pattern.
@@ -1068,11 +1068,11 @@ in this page</entry>
<chapter id="filesystems">
<title>Filesystem support</title>
<para>
- The NAND driver provides all neccecary functions for a
+ The NAND driver provides all necessary functions for a
filesystem via the MTD interface.
</para>
<para>
- Filesystems must be aware of the NAND pecularities and
+ Filesystems must be aware of the NAND peculiarities and
restrictions. One major restrictions of NAND Flash is, that you cannot
write as often as you want to a page. The consecutive writes to a page,
before erasing it again, are restricted to 1-3 writes, depending on the
@@ -1222,9 +1222,7 @@ in this page</entry>
#define NAND_BBT_VERSION 0x00000100
/* Create a bbt if none axists */
#define NAND_BBT_CREATE 0x00000200
-/* Search good / bad pattern through all pages of a block */
-#define NAND_BBT_SCANALLPAGES 0x00000400
-/* Write bbt if neccecary */
+/* Write bbt if necessary */
#define NAND_BBT_WRITE 0x00001000
/* Read and write back block contents when writing bbt */
#define NAND_BBT_SAVECONTENT 0x00002000
diff --git a/Documentation/DocBook/regulator.tmpl b/Documentation/DocBook/regulator.tmpl
index 346e552fa2c..3b08a085d2c 100644
--- a/Documentation/DocBook/regulator.tmpl
+++ b/Documentation/DocBook/regulator.tmpl
@@ -155,7 +155,7 @@
release regulators. Functions are
provided to <link linkend='API-regulator-enable'>enable</link>
and <link linkend='API-regulator-disable'>disable</link> the
- reguator and to get and set the runtime parameters of the
+ regulator and to get and set the runtime parameters of the
regulator.
</para>
<para>
diff --git a/Documentation/DocBook/uio-howto.tmpl b/Documentation/DocBook/uio-howto.tmpl
index 95618159e29..bbe9c1fd5ce 100644
--- a/Documentation/DocBook/uio-howto.tmpl
+++ b/Documentation/DocBook/uio-howto.tmpl
@@ -766,10 +766,10 @@ framework to set up sysfs files for this region. Simply leave it alone.
<para>
The dynamic memory regions will be allocated when the UIO device file,
<varname>/dev/uioX</varname> is opened.
- Simiar to static memory resources, the memory region information for
+ Similar to static memory resources, the memory region information for
dynamic regions is then visible via sysfs at
<varname>/sys/class/uio/uioX/maps/mapY/*</varname>.
- The dynmaic memory regions will be freed when the UIO device file is
+ The dynamic memory regions will be freed when the UIO device file is
closed. When no processes are holding the device file open, the address
returned to userspace is ~0.
</para>
diff --git a/Documentation/DocBook/usb.tmpl b/Documentation/DocBook/usb.tmpl
index 8d57c1888dc..85fc0e28576 100644
--- a/Documentation/DocBook/usb.tmpl
+++ b/Documentation/DocBook/usb.tmpl
@@ -153,7 +153,7 @@
<listitem><para>The Linux USB API supports synchronous calls for
control and bulk messages.
- It also supports asynchnous calls for all kinds of data transfer,
+ It also supports asynchronous calls for all kinds of data transfer,
using request structures called "URBs" (USB Request Blocks).
</para></listitem>
diff --git a/Documentation/DocBook/w1.tmpl b/Documentation/DocBook/w1.tmpl
new file mode 100644
index 00000000000..b0228d4c81b
--- /dev/null
+++ b/Documentation/DocBook/w1.tmpl
@@ -0,0 +1,101 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
+ "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
+
+<book id="w1id">
+ <bookinfo>
+ <title>W1: Dallas' 1-wire bus</title>
+
+ <authorgroup>
+ <author>
+ <firstname>David</firstname>
+ <surname>Fries</surname>
+ <affiliation>
+ <address>
+ <email>David@Fries.net</email>
+ </address>
+ </affiliation>
+ </author>
+
+ </authorgroup>
+
+ <copyright>
+ <year>2013</year>
+ <!--
+ <holder></holder>
+ -->
+ </copyright>
+
+ <legalnotice>
+ <para>
+ This documentation is free software; you can redistribute
+ it and/or modify it under the terms of the GNU General Public
+ License version 2.
+ </para>
+
+ <para>
+ This program is distributed in the hope that it will be
+ useful, but WITHOUT ANY WARRANTY; without even the implied
+ warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
+ For more details see the file COPYING in the source
+ distribution of Linux.
+ </para>
+ </legalnotice>
+ </bookinfo>
+
+ <toc></toc>
+
+ <chapter id="w1_internal">
+ <title>W1 API internal to the kernel</title>
+
+ <sect1 id="w1_internal_api">
+ <title>W1 API internal to the kernel</title>
+ <sect2 id="w1.h">
+ <title>drivers/w1/w1.h</title>
+ <para>W1 core functions.</para>
+!Idrivers/w1/w1.h
+ </sect2>
+
+ <sect2 id="w1.c">
+ <title>drivers/w1/w1.c</title>
+ <para>W1 core functions.</para>
+!Idrivers/w1/w1.c
+ </sect2>
+
+ <sect2 id="w1_family.h">
+ <title>drivers/w1/w1_family.h</title>
+ <para>Allows registering device family operations.</para>
+!Idrivers/w1/w1_family.h
+ </sect2>
+
+ <sect2 id="w1_family.c">
+ <title>drivers/w1/w1_family.c</title>
+ <para>Allows registering device family operations.</para>
+!Edrivers/w1/w1_family.c
+ </sect2>
+
+ <sect2 id="w1_int.c">
+ <title>drivers/w1/w1_int.c</title>
+ <para>W1 internal initialization for master devices.</para>
+!Edrivers/w1/w1_int.c
+ </sect2>
+
+ <sect2 id="w1_netlink.h">
+ <title>drivers/w1/w1_netlink.h</title>
+ <para>W1 external netlink API structures and commands.</para>
+!Idrivers/w1/w1_netlink.h
+ </sect2>
+
+ <sect2 id="w1_io.c">
+ <title>drivers/w1/w1_io.c</title>
+ <para>W1 input/output.</para>
+!Edrivers/w1/w1_io.c
+!Idrivers/w1/w1_io.c
+ </sect2>
+
+ </sect1>
+
+
+ </chapter>
+
+</book>
diff --git a/Documentation/DocBook/writing-an-alsa-driver.tmpl b/Documentation/DocBook/writing-an-alsa-driver.tmpl
index 06741e92598..6f639d9530b 100644
--- a/Documentation/DocBook/writing-an-alsa-driver.tmpl
+++ b/Documentation/DocBook/writing-an-alsa-driver.tmpl
@@ -468,8 +468,6 @@
return err;
}
- snd_card_set_dev(card, &pci->dev);
-
*rchip = chip;
return 0;
}
@@ -492,7 +490,8 @@
}
/* (2) */
- err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
+ err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
+ 0, &card);
if (err < 0)
return err;
@@ -591,7 +590,8 @@
struct snd_card *card;
int err;
....
- err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
+ err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
+ 0, &card);
]]>
</programlisting>
</informalexample>
@@ -809,28 +809,34 @@
<para>
As mentioned above, to create a card instance, call
- <function>snd_card_create()</function>.
+ <function>snd_card_new()</function>.
<informalexample>
<programlisting>
<![CDATA[
struct snd_card *card;
int err;
- err = snd_card_create(index, id, module, extra_size, &card);
+ err = snd_card_new(&pci->dev, index, id, module, extra_size, &card);
]]>
</programlisting>
</informalexample>
</para>
<para>
- The function takes five arguments, the card-index number, the
- id string, the module pointer (usually
+ The function takes six arguments: the parent device pointer,
+ the card-index number, the id string, the module pointer (usually
<constant>THIS_MODULE</constant>),
the size of extra-data space, and the pointer to return the
card instance. The extra_size argument is used to
allocate card-&gt;private_data for the
chip-specific data. Note that these data
- are allocated by <function>snd_card_create()</function>.
+ are allocated by <function>snd_card_new()</function>.
+ </para>
+
+ <para>
+ The first argument, the pointer of struct
+ <structname>device</structname>, specifies the parent device.
+ For PCI devices, typically &amp;pci-&gt; is passed there.
</para>
</section>
@@ -916,16 +922,16 @@
</para>
<section id="card-management-chip-specific-snd-card-new">
- <title>1. Allocating via <function>snd_card_create()</function>.</title>
+ <title>1. Allocating via <function>snd_card_new()</function>.</title>
<para>
As mentioned above, you can pass the extra-data-length
- to the 4th argument of <function>snd_card_create()</function>, i.e.
+ to the 5th argument of <function>snd_card_new()</function>, i.e.
<informalexample>
<programlisting>
<![CDATA[
- err = snd_card_create(index[dev], id[dev], THIS_MODULE,
- sizeof(struct mychip), &card);
+ err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
+ sizeof(struct mychip), &card);
]]>
</programlisting>
</informalexample>
@@ -954,7 +960,7 @@
<para>
After allocating a card instance via
- <function>snd_card_create()</function> (with
+ <function>snd_card_new()</function> (with
<constant>0</constant> on the 4th arg), call
<function>kzalloc()</function>.
@@ -963,7 +969,8 @@
<![CDATA[
struct snd_card *card;
struct mychip *chip;
- err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
+ err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
+ 0, &card);
.....
chip = kzalloc(sizeof(*chip), GFP_KERNEL);
]]>
@@ -1170,8 +1177,6 @@
return err;
}
- snd_card_set_dev(card, &pci->dev);
-
*rchip = chip;
return 0;
}
@@ -1526,30 +1531,6 @@
</section>
- <section id="pci-resource-device-struct">
- <title>Registration of Device Struct</title>
- <para>
- At some point, typically after calling <function>snd_device_new()</function>,
- you need to register the struct <structname>device</structname> of the chip
- you're handling for udev and co. ALSA provides a macro for compatibility with
- older kernels. Simply call like the following:
- <informalexample>
- <programlisting>
-<![CDATA[
- snd_card_set_dev(card, &pci->dev);
-]]>
- </programlisting>
- </informalexample>
- so that it stores the PCI's device pointer to the card. This will be
- referred by ALSA core functions later when the devices are registered.
- </para>
- <para>
- In the case of non-PCI, pass the proper device struct pointer of the BUS
- instead. (In the case of legacy ISA without PnP, you don't have to do
- anything.)
- </para>
- </section>
-
<section id="pci-resource-entries">
<title>PCI Entries</title>
<para>
@@ -5715,7 +5696,7 @@ struct _snd_pcm_runtime {
suspending the PCM operations via
<function>snd_pcm_suspend_all()</function> or
<function>snd_pcm_suspend()</function>. It means that the PCM
- streams are already stoppped when the register snapshot is
+ streams are already stopped when the register snapshot is
taken. But, remember that you don't have to restart the PCM
stream in the resume callback. It'll be restarted via
trigger call with <constant>SNDRV_PCM_TRIGGER_RESUME</constant>
@@ -5740,7 +5721,8 @@ struct _snd_pcm_runtime {
struct mychip *chip;
int err;
....
- err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
+ err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
+ 0, &card);
....
chip = kzalloc(sizeof(*chip), GFP_KERNEL);
....
@@ -5752,7 +5734,7 @@ struct _snd_pcm_runtime {
</informalexample>
When you created the chip data with
- <function>snd_card_create()</function>, it's anyway accessible
+ <function>snd_card_new()</function>, it's anyway accessible
via <structfield>private_data</structfield> field.
<informalexample>
@@ -5766,8 +5748,8 @@ struct _snd_pcm_runtime {
struct mychip *chip;
int err;
....
- err = snd_card_create(index[dev], id[dev], THIS_MODULE,
- sizeof(struct mychip), &card);
+ err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
+ sizeof(struct mychip), &card);
....
chip = card->private_data;
....
diff --git a/Documentation/DocBook/writing_musb_glue_layer.tmpl b/Documentation/DocBook/writing_musb_glue_layer.tmpl
new file mode 100644
index 00000000000..837eca77f27
--- /dev/null
+++ b/Documentation/DocBook/writing_musb_glue_layer.tmpl
@@ -0,0 +1,873 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
+ "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
+
+<book id="Writing-MUSB-Glue-Layer">
+ <bookinfo>
+ <title>Writing an MUSB Glue Layer</title>
+
+ <authorgroup>
+ <author>
+ <firstname>Apelete</firstname>
+ <surname>Seketeli</surname>
+ <affiliation>
+ <address>
+ <email>apelete at seketeli.net</email>
+ </address>
+ </affiliation>
+ </author>
+ </authorgroup>
+
+ <copyright>
+ <year>2014</year>
+ <holder>Apelete Seketeli</holder>
+ </copyright>
+
+ <legalnotice>
+ <para>
+ This documentation is free software; you can redistribute it
+ and/or modify it under the terms of the GNU General Public
+ License as published by the Free Software Foundation; either
+ version 2 of the License, or (at your option) any later version.
+ </para>
+
+ <para>
+ This documentation is distributed in the hope that it will be
+ useful, but WITHOUT ANY WARRANTY; without even the implied
+ warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
+ See the GNU General Public License for more details.
+ </para>
+
+ <para>
+ You should have received a copy of the GNU General Public License
+ along with this documentation; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+ 02111-1307 USA
+ </para>
+
+ <para>
+ For more details see the file COPYING in the Linux kernel source
+ tree.
+ </para>
+ </legalnotice>
+ </bookinfo>
+
+<toc></toc>
+
+ <chapter id="introduction">
+ <title>Introduction</title>
+ <para>
+ The Linux MUSB subsystem is part of the larger Linux USB
+ subsystem. It provides support for embedded USB Device Controllers
+ (UDC) that do not use Universal Host Controller Interface (UHCI)
+ or Open Host Controller Interface (OHCI).
+ </para>
+ <para>
+ Instead, these embedded UDC rely on the USB On-the-Go (OTG)
+ specification which they implement at least partially. The silicon
+ reference design used in most cases is the Multipoint USB
+ Highspeed Dual-Role Controller (MUSB HDRC) found in the Mentor
+ Graphics Inventra™ design.
+ </para>
+ <para>
+ As a self-taught exercise I have written an MUSB glue layer for
+ the Ingenic JZ4740 SoC, modelled after the many MUSB glue layers
+ in the kernel source tree. This layer can be found at
+ drivers/usb/musb/jz4740.c. In this documentation I will walk
+ through the basics of the jz4740.c glue layer, explaining the
+ different pieces and what needs to be done in order to write your
+ own device glue layer.
+ </para>
+ </chapter>
+
+ <chapter id="linux-musb-basics">
+ <title>Linux MUSB Basics</title>
+ <para>
+ To get started on the topic, please read USB On-the-Go Basics (see
+ Resources) which provides an introduction of USB OTG operation at
+ the hardware level. A couple of wiki pages by Texas Instruments
+ and Analog Devices also provide an overview of the Linux kernel
+ MUSB configuration, albeit focused on some specific devices
+ provided by these companies. Finally, getting acquainted with the
+ USB specification at USB home page may come in handy, with
+ practical instance provided through the Writing USB Device Drivers
+ documentation (again, see Resources).
+ </para>
+ <para>
+ Linux USB stack is a layered architecture in which the MUSB
+ controller hardware sits at the lowest. The MUSB controller driver
+ abstract the MUSB controller hardware to the Linux USB stack.
+ </para>
+ <programlisting>
+ ------------------------
+ | | &lt;------- drivers/usb/gadget
+ | Linux USB Core Stack | &lt;------- drivers/usb/host
+ | | &lt;------- drivers/usb/core
+ ------------------------
+ ⬍
+ --------------------------
+ | | &lt;------ drivers/usb/musb/musb_gadget.c
+ | MUSB Controller driver | &lt;------ drivers/usb/musb/musb_host.c
+ | | &lt;------ drivers/usb/musb/musb_core.c
+ --------------------------
+ ⬍
+ ---------------------------------
+ | MUSB Platform Specific Driver |
+ | | &lt;-- drivers/usb/musb/jz4740.c
+ | aka &quot;Glue Layer&quot; |
+ ---------------------------------
+ ⬍
+ ---------------------------------
+ | MUSB Controller Hardware |
+ ---------------------------------
+ </programlisting>
+ <para>
+ As outlined above, the glue layer is actually the platform
+ specific code sitting in between the controller driver and the
+ controller hardware.
+ </para>
+ <para>
+ Just like a Linux USB driver needs to register itself with the
+ Linux USB subsystem, the MUSB glue layer needs first to register
+ itself with the MUSB controller driver. This will allow the
+ controller driver to know about which device the glue layer
+ supports and which functions to call when a supported device is
+ detected or released; remember we are talking about an embedded
+ controller chip here, so no insertion or removal at run-time.
+ </para>
+ <para>
+ All of this information is passed to the MUSB controller driver
+ through a platform_driver structure defined in the glue layer as:
+ </para>
+ <programlisting linenumbering="numbered">
+static struct platform_driver jz4740_driver = {
+ .probe = jz4740_probe,
+ .remove = jz4740_remove,
+ .driver = {
+ .name = "musb-jz4740",
+ },
+};
+ </programlisting>
+ <para>
+ The probe and remove function pointers are called when a matching
+ device is detected and, respectively, released. The name string
+ describes the device supported by this glue layer. In the current
+ case it matches a platform_device structure declared in
+ arch/mips/jz4740/platform.c. Note that we are not using device
+ tree bindings here.
+ </para>
+ <para>
+ In order to register itself to the controller driver, the glue
+ layer goes through a few steps, basically allocating the
+ controller hardware resources and initialising a couple of
+ circuits. To do so, it needs to keep track of the information used
+ throughout these steps. This is done by defining a private
+ jz4740_glue structure:
+ </para>
+ <programlisting linenumbering="numbered">
+struct jz4740_glue {
+ struct device *dev;
+ struct platform_device *musb;
+ struct clk *clk;
+};
+ </programlisting>
+ <para>
+ The dev and musb members are both device structure variables. The
+ first one holds generic information about the device, since it's
+ the basic device structure, and the latter holds information more
+ closely related to the subsystem the device is registered to. The
+ clk variable keeps information related to the device clock
+ operation.
+ </para>
+ <para>
+ Let's go through the steps of the probe function that leads the
+ glue layer to register itself to the controller driver.
+ </para>
+ <para>
+ N.B.: For the sake of readability each function will be split in
+ logical parts, each part being shown as if it was independent from
+ the others.
+ </para>
+ <programlisting linenumbering="numbered">
+static int jz4740_probe(struct platform_device *pdev)
+{
+ struct platform_device *musb;
+ struct jz4740_glue *glue;
+ struct clk *clk;
+ int ret;
+
+ glue = devm_kzalloc(&amp;pdev->dev, sizeof(*glue), GFP_KERNEL);
+ if (!glue)
+ return -ENOMEM;
+
+ musb = platform_device_alloc("musb-hdrc", PLATFORM_DEVID_AUTO);
+ if (!musb) {
+ dev_err(&amp;pdev->dev, "failed to allocate musb device\n");
+ return -ENOMEM;
+ }
+
+ clk = devm_clk_get(&amp;pdev->dev, "udc");
+ if (IS_ERR(clk)) {
+ dev_err(&amp;pdev->dev, "failed to get clock\n");
+ ret = PTR_ERR(clk);
+ goto err_platform_device_put;
+ }
+
+ ret = clk_prepare_enable(clk);
+ if (ret) {
+ dev_err(&amp;pdev->dev, "failed to enable clock\n");
+ goto err_platform_device_put;
+ }
+
+ musb->dev.parent = &amp;pdev->dev;
+
+ glue->dev = &amp;pdev->dev;
+ glue->musb = musb;
+ glue->clk = clk;
+
+ return 0;
+
+err_platform_device_put:
+ platform_device_put(musb);
+ return ret;
+}
+ </programlisting>
+ <para>
+ The first few lines of the probe function allocate and assign the
+ glue, musb and clk variables. The GFP_KERNEL flag (line 8) allows
+ the allocation process to sleep and wait for memory, thus being
+ usable in a blocking situation. The PLATFORM_DEVID_AUTO flag (line
+ 12) allows automatic allocation and management of device IDs in
+ order to avoid device namespace collisions with explicit IDs. With
+ devm_clk_get() (line 18) the glue layer allocates the clock -- the
+ <literal>devm_</literal> prefix indicates that clk_get() is
+ managed: it automatically frees the allocated clock resource data
+ when the device is released -- and enable it.
+ </para>
+ <para>
+ Then comes the registration steps:
+ </para>
+ <programlisting linenumbering="numbered">
+static int jz4740_probe(struct platform_device *pdev)
+{
+ struct musb_hdrc_platform_data *pdata = &amp;jz4740_musb_platform_data;
+
+ pdata->platform_ops = &amp;jz4740_musb_ops;
+
+ platform_set_drvdata(pdev, glue);
+
+ ret = platform_device_add_resources(musb, pdev->resource,
+ pdev->num_resources);
+ if (ret) {
+ dev_err(&amp;pdev->dev, "failed to add resources\n");
+ goto err_clk_disable;
+ }
+
+ ret = platform_device_add_data(musb, pdata, sizeof(*pdata));
+ if (ret) {
+ dev_err(&amp;pdev->dev, "failed to add platform_data\n");
+ goto err_clk_disable;
+ }
+
+ return 0;
+
+err_clk_disable:
+ clk_disable_unprepare(clk);
+err_platform_device_put:
+ platform_device_put(musb);
+ return ret;
+}
+ </programlisting>
+ <para>
+ The first step is to pass the device data privately held by the
+ glue layer on to the controller driver through
+ platform_set_drvdata() (line 7). Next is passing on the device
+ resources information, also privately held at that point, through
+ platform_device_add_resources() (line 9).
+ </para>
+ <para>
+ Finally comes passing on the platform specific data to the
+ controller driver (line 16). Platform data will be discussed in
+ <link linkend="device-platform-data">Chapter 4</link>, but here
+ we are looking at the platform_ops function pointer (line 5) in
+ musb_hdrc_platform_data structure (line 3). This function
+ pointer allows the MUSB controller driver to know which function
+ to call for device operation:
+ </para>
+ <programlisting linenumbering="numbered">
+static const struct musb_platform_ops jz4740_musb_ops = {
+ .init = jz4740_musb_init,
+ .exit = jz4740_musb_exit,
+};
+ </programlisting>
+ <para>
+ Here we have the minimal case where only init and exit functions
+ are called by the controller driver when needed. Fact is the
+ JZ4740 MUSB controller is a basic controller, lacking some
+ features found in other controllers, otherwise we may also have
+ pointers to a few other functions like a power management function
+ or a function to switch between OTG and non-OTG modes, for
+ instance.
+ </para>
+ <para>
+ At that point of the registration process, the controller driver
+ actually calls the init function:
+ </para>
+ <programlisting linenumbering="numbered">
+static int jz4740_musb_init(struct musb *musb)
+{
+ musb->xceiv = usb_get_phy(USB_PHY_TYPE_USB2);
+ if (!musb->xceiv) {
+ pr_err("HS UDC: no transceiver configured\n");
+ return -ENODEV;
+ }
+
+ /* Silicon does not implement ConfigData register.
+ * Set dyn_fifo to avoid reading EP config from hardware.
+ */
+ musb->dyn_fifo = true;
+
+ musb->isr = jz4740_musb_interrupt;
+
+ return 0;
+}
+ </programlisting>
+ <para>
+ The goal of jz4740_musb_init() is to get hold of the transceiver
+ driver data of the MUSB controller hardware and pass it on to the
+ MUSB controller driver, as usual. The transceiver is the circuitry
+ inside the controller hardware responsible for sending/receiving
+ the USB data. Since it is an implementation of the physical layer
+ of the OSI model, the transceiver is also referred to as PHY.
+ </para>
+ <para>
+ Getting hold of the MUSB PHY driver data is done with
+ usb_get_phy() which returns a pointer to the structure
+ containing the driver instance data. The next couple of
+ instructions (line 12 and 14) are used as a quirk and to setup
+ IRQ handling respectively. Quirks and IRQ handling will be
+ discussed later in <link linkend="device-quirks">Chapter
+ 5</link> and <link linkend="handling-irqs">Chapter 3</link>.
+ </para>
+ <programlisting linenumbering="numbered">
+static int jz4740_musb_exit(struct musb *musb)
+{
+ usb_put_phy(musb->xceiv);
+
+ return 0;
+}
+ </programlisting>
+ <para>
+ Acting as the counterpart of init, the exit function releases the
+ MUSB PHY driver when the controller hardware itself is about to be
+ released.
+ </para>
+ <para>
+ Again, note that init and exit are fairly simple in this case due
+ to the basic set of features of the JZ4740 controller hardware.
+ When writing an musb glue layer for a more complex controller
+ hardware, you might need to take care of more processing in those
+ two functions.
+ </para>
+ <para>
+ Returning from the init function, the MUSB controller driver jumps
+ back into the probe function:
+ </para>
+ <programlisting linenumbering="numbered">
+static int jz4740_probe(struct platform_device *pdev)
+{
+ ret = platform_device_add(musb);
+ if (ret) {
+ dev_err(&amp;pdev->dev, "failed to register musb device\n");
+ goto err_clk_disable;
+ }
+
+ return 0;
+
+err_clk_disable:
+ clk_disable_unprepare(clk);
+err_platform_device_put:
+ platform_device_put(musb);
+ return ret;
+}
+ </programlisting>
+ <para>
+ This is the last part of the device registration process where the
+ glue layer adds the controller hardware device to Linux kernel
+ device hierarchy: at this stage, all known information about the
+ device is passed on to the Linux USB core stack.
+ </para>
+ <programlisting linenumbering="numbered">
+static int jz4740_remove(struct platform_device *pdev)
+{
+ struct jz4740_glue *glue = platform_get_drvdata(pdev);
+
+ platform_device_unregister(glue->musb);
+ clk_disable_unprepare(glue->clk);
+
+ return 0;
+}
+ </programlisting>
+ <para>
+ Acting as the counterpart of probe, the remove function unregister
+ the MUSB controller hardware (line 5) and disable the clock (line
+ 6), allowing it to be gated.
+ </para>
+ </chapter>
+
+ <chapter id="handling-irqs">
+ <title>Handling IRQs</title>
+ <para>
+ Additionally to the MUSB controller hardware basic setup and
+ registration, the glue layer is also responsible for handling the
+ IRQs:
+ </para>
+ <programlisting linenumbering="numbered">
+static irqreturn_t jz4740_musb_interrupt(int irq, void *__hci)
+{
+ unsigned long flags;
+ irqreturn_t retval = IRQ_NONE;
+ struct musb *musb = __hci;
+
+ spin_lock_irqsave(&amp;musb->lock, flags);
+
+ musb->int_usb = musb_readb(musb->mregs, MUSB_INTRUSB);
+ musb->int_tx = musb_readw(musb->mregs, MUSB_INTRTX);
+ musb->int_rx = musb_readw(musb->mregs, MUSB_INTRRX);
+
+ /*
+ * The controller is gadget only, the state of the host mode IRQ bits is
+ * undefined. Mask them to make sure that the musb driver core will
+ * never see them set
+ */
+ musb->int_usb &amp;= MUSB_INTR_SUSPEND | MUSB_INTR_RESUME |
+ MUSB_INTR_RESET | MUSB_INTR_SOF;
+
+ if (musb->int_usb || musb->int_tx || musb->int_rx)
+ retval = musb_interrupt(musb);
+
+ spin_unlock_irqrestore(&amp;musb->lock, flags);
+
+ return retval;
+}
+ </programlisting>
+ <para>
+ Here the glue layer mostly has to read the relevant hardware
+ registers and pass their values on to the controller driver which
+ will handle the actual event that triggered the IRQ.
+ </para>
+ <para>
+ The interrupt handler critical section is protected by the
+ spin_lock_irqsave() and counterpart spin_unlock_irqrestore()
+ functions (line 7 and 24 respectively), which prevent the
+ interrupt handler code to be run by two different threads at the
+ same time.
+ </para>
+ <para>
+ Then the relevant interrupt registers are read (line 9 to 11):
+ </para>
+ <itemizedlist>
+ <listitem>
+ <para>
+ MUSB_INTRUSB: indicates which USB interrupts are currently
+ active,
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ MUSB_INTRTX: indicates which of the interrupts for TX
+ endpoints are currently active,
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ MUSB_INTRRX: indicates which of the interrupts for TX
+ endpoints are currently active.
+ </para>
+ </listitem>
+ </itemizedlist>
+ <para>
+ Note that musb_readb() is used to read 8-bit registers at most,
+ while musb_readw() allows us to read at most 16-bit registers.
+ There are other functions that can be used depending on the size
+ of your device registers. See musb_io.h for more information.
+ </para>
+ <para>
+ Instruction on line 18 is another quirk specific to the JZ4740
+ USB device controller, which will be discussed later in <link
+ linkend="device-quirks">Chapter 5</link>.
+ </para>
+ <para>
+ The glue layer still needs to register the IRQ handler though.
+ Remember the instruction on line 14 of the init function:
+ </para>
+ <programlisting linenumbering="numbered">
+static int jz4740_musb_init(struct musb *musb)
+{
+ musb->isr = jz4740_musb_interrupt;
+
+ return 0;
+}
+ </programlisting>
+ <para>
+ This instruction sets a pointer to the glue layer IRQ handler
+ function, in order for the controller hardware to call the handler
+ back when an IRQ comes from the controller hardware. The interrupt
+ handler is now implemented and registered.
+ </para>
+ </chapter>
+
+ <chapter id="device-platform-data">
+ <title>Device Platform Data</title>
+ <para>
+ In order to write an MUSB glue layer, you need to have some data
+ describing the hardware capabilities of your controller hardware,
+ which is called the platform data.
+ </para>
+ <para>
+ Platform data is specific to your hardware, though it may cover a
+ broad range of devices, and is generally found somewhere in the
+ arch/ directory, depending on your device architecture.
+ </para>
+ <para>
+ For instance, platform data for the JZ4740 SoC is found in
+ arch/mips/jz4740/platform.c. In the platform.c file each device of
+ the JZ4740 SoC is described through a set of structures.
+ </para>
+ <para>
+ Here is the part of arch/mips/jz4740/platform.c that covers the
+ USB Device Controller (UDC):
+ </para>
+ <programlisting linenumbering="numbered">
+/* USB Device Controller */
+struct platform_device jz4740_udc_xceiv_device = {
+ .name = "usb_phy_gen_xceiv",
+ .id = 0,
+};
+
+static struct resource jz4740_udc_resources[] = {
+ [0] = {
+ .start = JZ4740_UDC_BASE_ADDR,
+ .end = JZ4740_UDC_BASE_ADDR + 0x10000 - 1,
+ .flags = IORESOURCE_MEM,
+ },
+ [1] = {
+ .start = JZ4740_IRQ_UDC,
+ .end = JZ4740_IRQ_UDC,
+ .flags = IORESOURCE_IRQ,
+ .name = "mc",
+ },
+};
+
+struct platform_device jz4740_udc_device = {
+ .name = "musb-jz4740",
+ .id = -1,
+ .dev = {
+ .dma_mask = &amp;jz4740_udc_device.dev.coherent_dma_mask,
+ .coherent_dma_mask = DMA_BIT_MASK(32),
+ },
+ .num_resources = ARRAY_SIZE(jz4740_udc_resources),
+ .resource = jz4740_udc_resources,
+};
+ </programlisting>
+ <para>
+ The jz4740_udc_xceiv_device platform device structure (line 2)
+ describes the UDC transceiver with a name and id number.
+ </para>
+ <para>
+ At the time of this writing, note that
+ &quot;usb_phy_gen_xceiv&quot; is the specific name to be used for
+ all transceivers that are either built-in with reference USB IP or
+ autonomous and doesn't require any PHY programming. You will need
+ to set CONFIG_NOP_USB_XCEIV=y in the kernel configuration to make
+ use of the corresponding transceiver driver. The id field could be
+ set to -1 (equivalent to PLATFORM_DEVID_NONE), -2 (equivalent to
+ PLATFORM_DEVID_AUTO) or start with 0 for the first device of this
+ kind if we want a specific id number.
+ </para>
+ <para>
+ The jz4740_udc_resources resource structure (line 7) defines the
+ UDC registers base addresses.
+ </para>
+ <para>
+ The first array (line 9 to 11) defines the UDC registers base
+ memory addresses: start points to the first register memory
+ address, end points to the last register memory address and the
+ flags member defines the type of resource we are dealing with. So
+ IORESOURCE_MEM is used to define the registers memory addresses.
+ The second array (line 14 to 17) defines the UDC IRQ registers
+ addresses. Since there is only one IRQ register available for the
+ JZ4740 UDC, start and end point at the same address. The
+ IORESOURCE_IRQ flag tells that we are dealing with IRQ resources,
+ and the name &quot;mc&quot; is in fact hard-coded in the MUSB core
+ in order for the controller driver to retrieve this IRQ resource
+ by querying it by its name.
+ </para>
+ <para>
+ Finally, the jz4740_udc_device platform device structure (line 21)
+ describes the UDC itself.
+ </para>
+ <para>
+ The &quot;musb-jz4740&quot; name (line 22) defines the MUSB
+ driver that is used for this device; remember this is in fact
+ the name that we used in the jz4740_driver platform driver
+ structure in <link linkend="linux-musb-basics">Chapter
+ 2</link>. The id field (line 23) is set to -1 (equivalent to
+ PLATFORM_DEVID_NONE) since we do not need an id for the device:
+ the MUSB controller driver was already set to allocate an
+ automatic id in <link linkend="linux-musb-basics">Chapter
+ 2</link>. In the dev field we care for DMA related information
+ here. The dma_mask field (line 25) defines the width of the DMA
+ mask that is going to be used, and coherent_dma_mask (line 26)
+ has the same purpose but for the alloc_coherent DMA mappings: in
+ both cases we are using a 32 bits mask. Then the resource field
+ (line 29) is simply a pointer to the resource structure defined
+ before, while the num_resources field (line 28) keeps track of
+ the number of arrays defined in the resource structure (in this
+ case there were two resource arrays defined before).
+ </para>
+ <para>
+ With this quick overview of the UDC platform data at the arch/
+ level now done, let's get back to the MUSB glue layer specific
+ platform data in drivers/usb/musb/jz4740.c:
+ </para>
+ <programlisting linenumbering="numbered">
+static struct musb_hdrc_config jz4740_musb_config = {
+ /* Silicon does not implement USB OTG. */
+ .multipoint = 0,
+ /* Max EPs scanned, driver will decide which EP can be used. */
+ .num_eps = 4,
+ /* RAMbits needed to configure EPs from table */
+ .ram_bits = 9,
+ .fifo_cfg = jz4740_musb_fifo_cfg,
+ .fifo_cfg_size = ARRAY_SIZE(jz4740_musb_fifo_cfg),
+};
+
+static struct musb_hdrc_platform_data jz4740_musb_platform_data = {
+ .mode = MUSB_PERIPHERAL,
+ .config = &amp;jz4740_musb_config,
+};
+ </programlisting>
+ <para>
+ First the glue layer configures some aspects of the controller
+ driver operation related to the controller hardware specifics.
+ This is done through the jz4740_musb_config musb_hdrc_config
+ structure.
+ </para>
+ <para>
+ Defining the OTG capability of the controller hardware, the
+ multipoint member (line 3) is set to 0 (equivalent to false)
+ since the JZ4740 UDC is not OTG compatible. Then num_eps (line
+ 5) defines the number of USB endpoints of the controller
+ hardware, including endpoint 0: here we have 3 endpoints +
+ endpoint 0. Next is ram_bits (line 7) which is the width of the
+ RAM address bus for the MUSB controller hardware. This
+ information is needed when the controller driver cannot
+ automatically configure endpoints by reading the relevant
+ controller hardware registers. This issue will be discussed when
+ we get to device quirks in <link linkend="device-quirks">Chapter
+ 5</link>. Last two fields (line 8 and 9) are also about device
+ quirks: fifo_cfg points to the USB endpoints configuration table
+ and fifo_cfg_size keeps track of the size of the number of
+ entries in that configuration table. More on that later in <link
+ linkend="device-quirks">Chapter 5</link>.
+ </para>
+ <para>
+ Then this configuration is embedded inside
+ jz4740_musb_platform_data musb_hdrc_platform_data structure (line
+ 11): config is a pointer to the configuration structure itself,
+ and mode tells the controller driver if the controller hardware
+ may be used as MUSB_HOST only, MUSB_PERIPHERAL only or MUSB_OTG
+ which is a dual mode.
+ </para>
+ <para>
+ Remember that jz4740_musb_platform_data is then used to convey
+ platform data information as we have seen in the probe function
+ in <link linkend="linux-musb-basics">Chapter 2</link>
+ </para>
+ </chapter>
+
+ <chapter id="device-quirks">
+ <title>Device Quirks</title>
+ <para>
+ Completing the platform data specific to your device, you may also
+ need to write some code in the glue layer to work around some
+ device specific limitations. These quirks may be due to some
+ hardware bugs, or simply be the result of an incomplete
+ implementation of the USB On-the-Go specification.
+ </para>
+ <para>
+ The JZ4740 UDC exhibits such quirks, some of which we will discuss
+ here for the sake of insight even though these might not be found
+ in the controller hardware you are working on.
+ </para>
+ <para>
+ Let's get back to the init function first:
+ </para>
+ <programlisting linenumbering="numbered">
+static int jz4740_musb_init(struct musb *musb)
+{
+ musb->xceiv = usb_get_phy(USB_PHY_TYPE_USB2);
+ if (!musb->xceiv) {
+ pr_err("HS UDC: no transceiver configured\n");
+ return -ENODEV;
+ }
+
+ /* Silicon does not implement ConfigData register.
+ * Set dyn_fifo to avoid reading EP config from hardware.
+ */
+ musb->dyn_fifo = true;
+
+ musb->isr = jz4740_musb_interrupt;
+
+ return 0;
+}
+ </programlisting>
+ <para>
+ Instruction on line 12 helps the MUSB controller driver to work
+ around the fact that the controller hardware is missing registers
+ that are used for USB endpoints configuration.
+ </para>
+ <para>
+ Without these registers, the controller driver is unable to read
+ the endpoints configuration from the hardware, so we use line 12
+ instruction to bypass reading the configuration from silicon, and
+ rely on a hard-coded table that describes the endpoints
+ configuration instead:
+ </para>
+ <programlisting linenumbering="numbered">
+static struct musb_fifo_cfg jz4740_musb_fifo_cfg[] = {
+{ .hw_ep_num = 1, .style = FIFO_TX, .maxpacket = 512, },
+{ .hw_ep_num = 1, .style = FIFO_RX, .maxpacket = 512, },
+{ .hw_ep_num = 2, .style = FIFO_TX, .maxpacket = 64, },
+};
+ </programlisting>
+ <para>
+ Looking at the configuration table above, we see that each
+ endpoints is described by three fields: hw_ep_num is the endpoint
+ number, style is its direction (either FIFO_TX for the controller
+ driver to send packets in the controller hardware, or FIFO_RX to
+ receive packets from hardware), and maxpacket defines the maximum
+ size of each data packet that can be transmitted over that
+ endpoint. Reading from the table, the controller driver knows that
+ endpoint 1 can be used to send and receive USB data packets of 512
+ bytes at once (this is in fact a bulk in/out endpoint), and
+ endpoint 2 can be used to send data packets of 64 bytes at once
+ (this is in fact an interrupt endpoint).
+ </para>
+ <para>
+ Note that there is no information about endpoint 0 here: that one
+ is implemented by default in every silicon design, with a
+ predefined configuration according to the USB specification. For
+ more examples of endpoint configuration tables, see musb_core.c.
+ </para>
+ <para>
+ Let's now get back to the interrupt handler function:
+ </para>
+ <programlisting linenumbering="numbered">
+static irqreturn_t jz4740_musb_interrupt(int irq, void *__hci)
+{
+ unsigned long flags;
+ irqreturn_t retval = IRQ_NONE;
+ struct musb *musb = __hci;
+
+ spin_lock_irqsave(&amp;musb->lock, flags);
+
+ musb->int_usb = musb_readb(musb->mregs, MUSB_INTRUSB);
+ musb->int_tx = musb_readw(musb->mregs, MUSB_INTRTX);
+ musb->int_rx = musb_readw(musb->mregs, MUSB_INTRRX);
+
+ /*
+ * The controller is gadget only, the state of the host mode IRQ bits is
+ * undefined. Mask them to make sure that the musb driver core will
+ * never see them set
+ */
+ musb->int_usb &amp;= MUSB_INTR_SUSPEND | MUSB_INTR_RESUME |
+ MUSB_INTR_RESET | MUSB_INTR_SOF;
+
+ if (musb->int_usb || musb->int_tx || musb->int_rx)
+ retval = musb_interrupt(musb);
+
+ spin_unlock_irqrestore(&amp;musb->lock, flags);
+
+ return retval;
+}
+ </programlisting>
+ <para>
+ Instruction on line 18 above is a way for the controller driver to
+ work around the fact that some interrupt bits used for USB host
+ mode operation are missing in the MUSB_INTRUSB register, thus left
+ in an undefined hardware state, since this MUSB controller
+ hardware is used in peripheral mode only. As a consequence, the
+ glue layer masks these missing bits out to avoid parasite
+ interrupts by doing a logical AND operation between the value read
+ from MUSB_INTRUSB and the bits that are actually implemented in
+ the register.
+ </para>
+ <para>
+ These are only a couple of the quirks found in the JZ4740 USB
+ device controller. Some others were directly addressed in the MUSB
+ core since the fixes were generic enough to provide a better
+ handling of the issues for others controller hardware eventually.
+ </para>
+ </chapter>
+
+ <chapter id="conclusion">
+ <title>Conclusion</title>
+ <para>
+ Writing a Linux MUSB glue layer should be a more accessible task,
+ as this documentation tries to show the ins and outs of this
+ exercise.
+ </para>
+ <para>
+ The JZ4740 USB device controller being fairly simple, I hope its
+ glue layer serves as a good example for the curious mind. Used
+ with the current MUSB glue layers, this documentation should
+ provide enough guidance to get started; should anything gets out
+ of hand, the linux-usb mailing list archive is another helpful
+ resource to browse through.
+ </para>
+ </chapter>
+
+ <chapter id="acknowledgements">
+ <title>Acknowledgements</title>
+ <para>
+ Many thanks to Lars-Peter Clausen and Maarten ter Huurne for
+ answering my questions while I was writing the JZ4740 glue layer
+ and for helping me out getting the code in good shape.
+ </para>
+ <para>
+ I would also like to thank the Qi-Hardware community at large for
+ its cheerful guidance and support.
+ </para>
+ </chapter>
+
+ <chapter id="resources">
+ <title>Resources</title>
+ <para>
+ USB Home Page:
+ <ulink url="http://www.usb.org">http://www.usb.org</ulink>
+ </para>
+ <para>
+ linux-usb Mailing List Archives:
+ <ulink url="http://marc.info/?l=linux-usb">http://marc.info/?l=linux-usb</ulink>
+ </para>
+ <para>
+ USB On-the-Go Basics:
+ <ulink url="http://www.maximintegrated.com/app-notes/index.mvp/id/1822">http://www.maximintegrated.com/app-notes/index.mvp/id/1822</ulink>
+ </para>
+ <para>
+ Writing USB Device Drivers:
+ <ulink url="https://www.kernel.org/doc/htmldocs/writing_usb_driver/index.html">https://www.kernel.org/doc/htmldocs/writing_usb_driver/index.html</ulink>
+ </para>
+ <para>
+ Texas Instruments USB Configuration Wiki Page:
+ <ulink url="http://processors.wiki.ti.com/index.php/Usbgeneralpage">http://processors.wiki.ti.com/index.php/Usbgeneralpage</ulink>
+ </para>
+ <para>
+ Analog Devices Blackfin MUSB Configuration:
+ <ulink url="http://docs.blackfin.uclinux.org/doku.php?id=linux-kernel:drivers:musb">http://docs.blackfin.uclinux.org/doku.php?id=linux-kernel:drivers:musb</ulink>
+ </para>
+ </chapter>
+
+</book>
diff --git a/Documentation/EDID/1024x768.S b/Documentation/EDID/1024x768.S
index 4b486fe31b3..6f3e4b75e49 100644
--- a/Documentation/EDID/1024x768.S
+++ b/Documentation/EDID/1024x768.S
@@ -36,7 +36,7 @@
#define DPI 72
#define VFREQ 60 /* Hz */
#define TIMING_NAME "Linux XGA"
-#define ESTABLISHED_TIMINGS_BITS 0x08 /* Bit 3 -> 1024x768 @60 Hz */
+#define ESTABLISHED_TIMING2_BITS 0x08 /* Bit 3 -> 1024x768 @60 Hz */
#define HSYNC_POL 0
#define VSYNC_POL 0
#define CRC 0x55
diff --git a/Documentation/EDID/1280x1024.S b/Documentation/EDID/1280x1024.S
index a2799fe33a4..bd9bef2a65a 100644
--- a/Documentation/EDID/1280x1024.S
+++ b/Documentation/EDID/1280x1024.S
@@ -36,7 +36,7 @@
#define DPI 72
#define VFREQ 60 /* Hz */
#define TIMING_NAME "Linux SXGA"
-#define ESTABLISHED_TIMINGS_BITS 0x00 /* none */
+/* No ESTABLISHED_TIMINGx_BITS */
#define HSYNC_POL 1
#define VSYNC_POL 1
#define CRC 0xa0
diff --git a/Documentation/EDID/1600x1200.S b/Documentation/EDID/1600x1200.S
index 0ded64cfd1f..a45101c6160 100644
--- a/Documentation/EDID/1600x1200.S
+++ b/Documentation/EDID/1600x1200.S
@@ -36,7 +36,7 @@
#define DPI 72
#define VFREQ 60 /* Hz */
#define TIMING_NAME "Linux UXGA"
-#define ESTABLISHED_TIMINGS_BITS 0x00 /* none */
+/* No ESTABLISHED_TIMINGx_BITS */
#define HSYNC_POL 1
#define VSYNC_POL 1
#define CRC 0x9d
diff --git a/Documentation/EDID/1680x1050.S b/Documentation/EDID/1680x1050.S
index 96f67cafcf2..b0d7c69282b 100644
--- a/Documentation/EDID/1680x1050.S
+++ b/Documentation/EDID/1680x1050.S
@@ -36,7 +36,7 @@
#define DPI 96
#define VFREQ 60 /* Hz */
#define TIMING_NAME "Linux WSXGA"
-#define ESTABLISHED_TIMINGS_BITS 0x00 /* none */
+/* No ESTABLISHED_TIMINGx_BITS */
#define HSYNC_POL 1
#define VSYNC_POL 1
#define CRC 0x26
diff --git a/Documentation/EDID/1920x1080.S b/Documentation/EDID/1920x1080.S
index 36ed5d571d0..3084355e81e 100644
--- a/Documentation/EDID/1920x1080.S
+++ b/Documentation/EDID/1920x1080.S
@@ -36,7 +36,7 @@
#define DPI 96
#define VFREQ 60 /* Hz */
#define TIMING_NAME "Linux FHD"
-#define ESTABLISHED_TIMINGS_BITS 0x00 /* none */
+/* No ESTABLISHED_TIMINGx_BITS */
#define HSYNC_POL 1
#define VSYNC_POL 1
#define CRC 0x05
diff --git a/Documentation/EDID/800x600.S b/Documentation/EDID/800x600.S
new file mode 100644
index 00000000000..6644e26d580
--- /dev/null
+++ b/Documentation/EDID/800x600.S
@@ -0,0 +1,41 @@
+/*
+ 800x600.S: EDID data set for standard 800x600 60 Hz monitor
+
+ Copyright (C) 2011 Carsten Emde <C.Emde@osadl.org>
+ Copyright (C) 2014 Linaro Limited
+
+ This program is free software; you can redistribute it and/or
+ modify it under the terms of the GNU General Public License
+ as published by the Free Software Foundation; either version 2
+ of the License, or (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+*/
+
+/* EDID */
+#define VERSION 1
+#define REVISION 3
+
+/* Display */
+#define CLOCK 40000 /* kHz */
+#define XPIX 800
+#define YPIX 600
+#define XY_RATIO XY_RATIO_4_3
+#define XBLANK 256
+#define YBLANK 28
+#define XOFFSET 40
+#define XPULSE 128
+#define YOFFSET (63+1)
+#define YPULSE (63+4)
+#define DPI 72
+#define VFREQ 60 /* Hz */
+#define TIMING_NAME "Linux SVGA"
+#define ESTABLISHED_TIMING1_BITS 0x01 /* Bit 0: 800x600 @ 60Hz */
+#define HSYNC_POL 1
+#define VSYNC_POL 1
+#define CRC 0xc2
+
+#include "edid.S"
diff --git a/Documentation/EDID/HOWTO.txt b/Documentation/EDID/HOWTO.txt
index 7146db1d9e8..835db332289 100644
--- a/Documentation/EDID/HOWTO.txt
+++ b/Documentation/EDID/HOWTO.txt
@@ -18,7 +18,7 @@ CONFIG_DRM_LOAD_EDID_FIRMWARE was introduced. It allows to provide an
individually prepared or corrected EDID data set in the /lib/firmware
directory from where it is loaded via the firmware interface. The code
(see drivers/gpu/drm/drm_edid_load.c) contains built-in data sets for
-commonly used screen resolutions (1024x768, 1280x1024, 1600x1200,
+commonly used screen resolutions (800x600, 1024x768, 1280x1024, 1600x1200,
1680x1050, 1920x1080) as binary blobs, but the kernel source tree does
not contain code to create these data. In order to elucidate the origin
of the built-in binary EDID blobs and to facilitate the creation of
diff --git a/Documentation/EDID/edid.S b/Documentation/EDID/edid.S
index ea97ae275fc..7ac03276d7a 100644
--- a/Documentation/EDID/edid.S
+++ b/Documentation/EDID/edid.S
@@ -33,6 +33,17 @@
#define XY_RATIO_5_4 0b10
#define XY_RATIO_16_9 0b11
+/* Provide defaults for the timing bits */
+#ifndef ESTABLISHED_TIMING1_BITS
+#define ESTABLISHED_TIMING1_BITS 0x00
+#endif
+#ifndef ESTABLISHED_TIMING2_BITS
+#define ESTABLISHED_TIMING2_BITS 0x00
+#endif
+#ifndef ESTABLISHED_TIMING3_BITS
+#define ESTABLISHED_TIMING3_BITS 0x00
+#endif
+
#define mfgname2id(v1,v2,v3) \
((((v1-'@')&0x1f)<<10)+(((v2-'@')&0x1f)<<5)+((v3-'@')&0x1f))
#define swap16(v1) ((v1>>8)+((v1&0xff)<<8))
@@ -139,7 +150,7 @@ white_x_y_msb: .byte 0x50,0x54
Bit 2 640x480 @ 75 Hz
Bit 1 800x600 @ 56 Hz
Bit 0 800x600 @ 60 Hz */
-estbl_timing1: .byte 0x00
+estbl_timing1: .byte ESTABLISHED_TIMING1_BITS
/* Bit 7 800x600 @ 72 Hz
Bit 6 800x600 @ 75 Hz
@@ -149,11 +160,11 @@ estbl_timing1: .byte 0x00
Bit 2 1024x768 @ 72 Hz
Bit 1 1024x768 @ 75 Hz
Bit 0 1280x1024 @ 75 Hz */
-estbl_timing2: .byte ESTABLISHED_TIMINGS_BITS
+estbl_timing2: .byte ESTABLISHED_TIMING2_BITS
/* Bit 7 1152x870 @ 75 Hz (Apple Macintosh II)
Bits 6-0 Other manufacturer-specific display mod */
-estbl_timing3: .byte 0x00
+estbl_timing3: .byte ESTABLISHED_TIMING3_BITS
/* Standard timing */
/* X resolution, less 31, divided by 8 (256-2288 pixels) */
diff --git a/Documentation/HOWTO b/Documentation/HOWTO
index 27faae3e384..57cf5efb044 100644
--- a/Documentation/HOWTO
+++ b/Documentation/HOWTO
@@ -112,7 +112,7 @@ required reading:
Other excellent descriptions of how to create patches properly are:
"The Perfect Patch"
- http://kerneltrap.org/node/3737
+ http://www.ozlabs.org/~akpm/stuff/tpp.txt
"Linux kernel patch submission format"
http://linux.yyz.us/patch-format.html
@@ -579,7 +579,7 @@ all time. It should describe the patch completely, containing:
For more details on what this should all look like, please see the
ChangeLog section of the document:
"The Perfect Patch"
- http://userweb.kernel.org/~akpm/stuff/tpp.txt
+ http://www.ozlabs.org/~akpm/stuff/tpp.txt
diff --git a/Documentation/IRQ-domain.txt b/Documentation/IRQ-domain.txt
index 9bc95942ec2..8a8b82c9ca5 100644
--- a/Documentation/IRQ-domain.txt
+++ b/Documentation/IRQ-domain.txt
@@ -41,8 +41,7 @@ An interrupt controller driver creates and registers an irq_domain by
calling one of the irq_domain_add_*() functions (each mapping method
has a different allocator function, more on that later). The function
will return a pointer to the irq_domain on success. The caller must
-provide the allocator function with an irq_domain_ops structure with
-the .map callback populated as a minimum.
+provide the allocator function with an irq_domain_ops structure.
In most cases, the irq_domain will begin empty without any mappings
between hwirq and IRQ numbers. Mappings are added to the irq_domain
@@ -141,7 +140,7 @@ will use a legacy domain only if an IRQ range is supplied by the
system and will otherwise use a linear domain mapping. The semantics
of this call are such that if an IRQ range is specified then
descriptors will be allocated on-the-fly for it, and if no range is
-specified it will fall through to irq_domain_add_linear() which meand
+specified it will fall through to irq_domain_add_linear() which means
*no* irq descriptors will be allocated.
A typical use case for simple domains is where an irqchip provider
diff --git a/Documentation/PCI/00-INDEX b/Documentation/PCI/00-INDEX
index 812b17fe3ed..147231f1613 100644
--- a/Documentation/PCI/00-INDEX
+++ b/Documentation/PCI/00-INDEX
@@ -2,12 +2,12 @@
- this file
MSI-HOWTO.txt
- the Message Signaled Interrupts (MSI) Driver Guide HOWTO and FAQ.
-PCI-DMA-mapping.txt
- - info for PCI drivers using DMA portably across all platforms
PCIEBUS-HOWTO.txt
- a guide describing the PCI Express Port Bus driver
pci-error-recovery.txt
- info on PCI error recovery
+pci-iov-howto.txt
+ - the PCI Express I/O Virtualization HOWTO
pci.txt
- info on the PCI subsystem for device driver authors
pcieaer-howto.txt
diff --git a/Documentation/PCI/MSI-HOWTO.txt b/Documentation/PCI/MSI-HOWTO.txt
index a09178086c3..10a93696e55 100644
--- a/Documentation/PCI/MSI-HOWTO.txt
+++ b/Documentation/PCI/MSI-HOWTO.txt
@@ -94,81 +94,136 @@ consequently, this function should be called before the driver calls
request_irq(), because an MSI is delivered via a vector that is
different from the vector of a pin-based interrupt.
-4.2.2 pci_enable_msi_block
+4.2.2 pci_enable_msi_range
-int pci_enable_msi_block(struct pci_dev *dev, int count)
+int pci_enable_msi_range(struct pci_dev *dev, int minvec, int maxvec)
-This variation on the above call allows a device driver to request multiple
-MSIs. The MSI specification only allows interrupts to be allocated in
-powers of two, up to a maximum of 2^5 (32).
+This function allows a device driver to request any number of MSI
+interrupts within specified range from 'minvec' to 'maxvec'.
-If this function returns 0, it has succeeded in allocating at least as many
-interrupts as the driver requested (it may have allocated more in order
-to satisfy the power-of-two requirement). In this case, the function
-enables MSI on this device and updates dev->irq to be the lowest of
-the new interrupts assigned to it. The other interrupts assigned to
-the device are in the range dev->irq to dev->irq + count - 1.
+If this function returns a positive number it indicates the number of
+MSI interrupts that have been successfully allocated. In this case
+the device is switched from pin-based interrupt mode to MSI mode and
+updates dev->irq to be the lowest of the new interrupts assigned to it.
+The other interrupts assigned to the device are in the range dev->irq
+to dev->irq + returned value - 1. Device driver can use the returned
+number of successfully allocated MSI interrupts to further allocate
+and initialize device resources.
If this function returns a negative number, it indicates an error and
the driver should not attempt to request any more MSI interrupts for
-this device. If this function returns a positive number, it is
-less than 'count' and indicates the number of interrupts that could have
-been allocated. In neither case is the irq value updated or the device
-switched into MSI mode.
-
-The device driver must decide what action to take if
-pci_enable_msi_block() returns a value less than the number requested.
-For instance, the driver could still make use of fewer interrupts;
-in this case the driver should call pci_enable_msi_block()
-again. Note that it is not guaranteed to succeed, even when the
-'count' has been reduced to the value returned from a previous call to
-pci_enable_msi_block(). This is because there are multiple constraints
-on the number of vectors that can be allocated; pci_enable_msi_block()
-returns as soon as it finds any constraint that doesn't allow the
-call to succeed.
-
-4.2.3 pci_enable_msi_block_auto
-
-int pci_enable_msi_block_auto(struct pci_dev *dev, unsigned int *count)
-
-This variation on pci_enable_msi() call allows a device driver to request
-the maximum possible number of MSIs. The MSI specification only allows
-interrupts to be allocated in powers of two, up to a maximum of 2^5 (32).
-
-If this function returns a positive number, it indicates that it has
-succeeded and the returned value is the number of allocated interrupts. In
-this case, the function enables MSI on this device and updates dev->irq to
-be the lowest of the new interrupts assigned to it. The other interrupts
-assigned to the device are in the range dev->irq to dev->irq + returned
-value - 1.
+this device.
+
+This function should be called before the driver calls request_irq(),
+because MSI interrupts are delivered via vectors that are different
+from the vector of a pin-based interrupt.
+
+It is ideal if drivers can cope with a variable number of MSI interrupts;
+there are many reasons why the platform may not be able to provide the
+exact number that a driver asks for.
+
+There could be devices that can not operate with just any number of MSI
+interrupts within a range. See chapter 4.3.1.3 to get the idea how to
+handle such devices for MSI-X - the same logic applies to MSI.
+
+4.2.1.1 Maximum possible number of MSI interrupts
+
+The typical usage of MSI interrupts is to allocate as many vectors as
+possible, likely up to the limit returned by pci_msi_vec_count() function:
+
+static int foo_driver_enable_msi(struct pci_dev *pdev, int nvec)
+{
+ return pci_enable_msi_range(pdev, 1, nvec);
+}
+
+Note the value of 'minvec' parameter is 1. As 'minvec' is inclusive,
+the value of 0 would be meaningless and could result in error.
+
+Some devices have a minimal limit on number of MSI interrupts.
+In this case the function could look like this:
+
+static int foo_driver_enable_msi(struct pci_dev *pdev, int nvec)
+{
+ return pci_enable_msi_range(pdev, FOO_DRIVER_MINIMUM_NVEC, nvec);
+}
+
+4.2.1.2 Exact number of MSI interrupts
+
+If a driver is unable or unwilling to deal with a variable number of MSI
+interrupts it could request a particular number of interrupts by passing
+that number to pci_enable_msi_range() function as both 'minvec' and 'maxvec'
+parameters:
+
+static int foo_driver_enable_msi(struct pci_dev *pdev, int nvec)
+{
+ return pci_enable_msi_range(pdev, nvec, nvec);
+}
+
+Note, unlike pci_enable_msi_exact() function, which could be also used to
+enable a particular number of MSI-X interrupts, pci_enable_msi_range()
+returns either a negative errno or 'nvec' (not negative errno or 0 - as
+pci_enable_msi_exact() does).
+
+4.2.1.3 Single MSI mode
+
+The most notorious example of the request type described above is
+enabling the single MSI mode for a device. It could be done by passing
+two 1s as 'minvec' and 'maxvec':
+
+static int foo_driver_enable_single_msi(struct pci_dev *pdev)
+{
+ return pci_enable_msi_range(pdev, 1, 1);
+}
+
+Note, unlike pci_enable_msi() function, which could be also used to
+enable the single MSI mode, pci_enable_msi_range() returns either a
+negative errno or 1 (not negative errno or 0 - as pci_enable_msi()
+does).
+
+4.2.3 pci_enable_msi_exact
+
+int pci_enable_msi_exact(struct pci_dev *dev, int nvec)
+
+This variation on pci_enable_msi_range() call allows a device driver to
+request exactly 'nvec' MSIs.
If this function returns a negative number, it indicates an error and
the driver should not attempt to request any more MSI interrupts for
this device.
-If the device driver needs to know the number of interrupts the device
-supports it can pass the pointer count where that number is stored. The
-device driver must decide what action to take if pci_enable_msi_block_auto()
-succeeds, but returns a value less than the number of interrupts supported.
-If the device driver does not need to know the number of interrupts
-supported, it can set the pointer count to NULL.
+By contrast with pci_enable_msi_range() function, pci_enable_msi_exact()
+returns zero in case of success, which indicates MSI interrupts have been
+successfully allocated.
4.2.4 pci_disable_msi
void pci_disable_msi(struct pci_dev *dev)
-This function should be used to undo the effect of pci_enable_msi() or
-pci_enable_msi_block() or pci_enable_msi_block_auto(). Calling it restores
-dev->irq to the pin-based interrupt number and frees the previously
-allocated message signaled interrupt(s). The interrupt may subsequently be
-assigned to another device, so drivers should not cache the value of
-dev->irq.
+This function should be used to undo the effect of pci_enable_msi_range().
+Calling it restores dev->irq to the pin-based interrupt number and frees
+the previously allocated MSIs. The interrupts may subsequently be assigned
+to another device, so drivers should not cache the value of dev->irq.
Before calling this function, a device driver must always call free_irq()
on any interrupt for which it previously called request_irq().
Failure to do so results in a BUG_ON(), leaving the device with
MSI enabled and thus leaking its vector.
+4.2.4 pci_msi_vec_count
+
+int pci_msi_vec_count(struct pci_dev *dev)
+
+This function could be used to retrieve the number of MSI vectors the
+device requested (via the Multiple Message Capable register). The MSI
+specification only allows the returned value to be a power of two,
+up to a maximum of 2^5 (32).
+
+If this function returns a negative number, it indicates the device is
+not capable of sending MSIs.
+
+If this function returns a positive number, it indicates the maximum
+number of MSI interrupt vectors that could be allocated.
+
4.3 Using MSI-X
The MSI-X capability is much more flexible than the MSI capability.
@@ -188,26 +243,31 @@ in each element of the array to indicate for which entries the kernel
should assign interrupts; it is invalid to fill in two entries with the
same number.
-4.3.1 pci_enable_msix
+4.3.1 pci_enable_msix_range
-int pci_enable_msix(struct pci_dev *dev, struct msix_entry *entries, int nvec)
+int pci_enable_msix_range(struct pci_dev *dev, struct msix_entry *entries,
+ int minvec, int maxvec)
-Calling this function asks the PCI subsystem to allocate 'nvec' MSIs.
+Calling this function asks the PCI subsystem to allocate any number of
+MSI-X interrupts within specified range from 'minvec' to 'maxvec'.
The 'entries' argument is a pointer to an array of msix_entry structs
-which should be at least 'nvec' entries in size. On success, the
-device is switched into MSI-X mode and the function returns 0.
-The 'vector' member in each entry is populated with the interrupt number;
+which should be at least 'maxvec' entries in size.
+
+On success, the device is switched into MSI-X mode and the function
+returns the number of MSI-X interrupts that have been successfully
+allocated. In this case the 'vector' member in entries numbered from
+0 to the returned value - 1 is populated with the interrupt number;
the driver should then call request_irq() for each 'vector' that it
decides to use. The device driver is responsible for keeping track of the
interrupts assigned to the MSI-X vectors so it can free them again later.
+Device driver can use the returned number of successfully allocated MSI-X
+interrupts to further allocate and initialize device resources.
If this function returns a negative number, it indicates an error and
the driver should not attempt to allocate any more MSI-X interrupts for
-this device. If it returns a positive number, it indicates the maximum
-number of interrupt vectors that could have been allocated. See example
-below.
+this device.
-This function, in contrast with pci_enable_msi(), does not adjust
+This function, in contrast with pci_enable_msi_range(), does not adjust
dev->irq. The device will not generate interrupts for this interrupt
number once MSI-X is enabled.
@@ -218,28 +278,165 @@ It is ideal if drivers can cope with a variable number of MSI-X interrupts;
there are many reasons why the platform may not be able to provide the
exact number that a driver asks for.
-A request loop to achieve that might look like:
+There could be devices that can not operate with just any number of MSI-X
+interrupts within a range. E.g., an network adapter might need let's say
+four vectors per each queue it provides. Therefore, a number of MSI-X
+interrupts allocated should be a multiple of four. In this case interface
+pci_enable_msix_range() can not be used alone to request MSI-X interrupts
+(since it can allocate any number within the range, without any notion of
+the multiple of four) and the device driver should master a custom logic
+to request the required number of MSI-X interrupts.
+
+4.3.1.1 Maximum possible number of MSI-X interrupts
+
+The typical usage of MSI-X interrupts is to allocate as many vectors as
+possible, likely up to the limit returned by pci_msix_vec_count() function:
+
+static int foo_driver_enable_msix(struct foo_adapter *adapter, int nvec)
+{
+ return pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
+ 1, nvec);
+}
+
+Note the value of 'minvec' parameter is 1. As 'minvec' is inclusive,
+the value of 0 would be meaningless and could result in error.
+
+Some devices have a minimal limit on number of MSI-X interrupts.
+In this case the function could look like this:
static int foo_driver_enable_msix(struct foo_adapter *adapter, int nvec)
{
- while (nvec >= FOO_DRIVER_MINIMUM_NVEC) {
- rc = pci_enable_msix(adapter->pdev,
- adapter->msix_entries, nvec);
- if (rc > 0)
- nvec = rc;
- else
- return rc;
+ return pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
+ FOO_DRIVER_MINIMUM_NVEC, nvec);
+}
+
+4.3.1.2 Exact number of MSI-X interrupts
+
+If a driver is unable or unwilling to deal with a variable number of MSI-X
+interrupts it could request a particular number of interrupts by passing
+that number to pci_enable_msix_range() function as both 'minvec' and 'maxvec'
+parameters:
+
+static int foo_driver_enable_msix(struct foo_adapter *adapter, int nvec)
+{
+ return pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
+ nvec, nvec);
+}
+
+Note, unlike pci_enable_msix_exact() function, which could be also used to
+enable a particular number of MSI-X interrupts, pci_enable_msix_range()
+returns either a negative errno or 'nvec' (not negative errno or 0 - as
+pci_enable_msix_exact() does).
+
+4.3.1.3 Specific requirements to the number of MSI-X interrupts
+
+As noted above, there could be devices that can not operate with just any
+number of MSI-X interrupts within a range. E.g., let's assume a device that
+is only capable sending the number of MSI-X interrupts which is a power of
+two. A routine that enables MSI-X mode for such device might look like this:
+
+/*
+ * Assume 'minvec' and 'maxvec' are non-zero
+ */
+static int foo_driver_enable_msix(struct foo_adapter *adapter,
+ int minvec, int maxvec)
+{
+ int rc;
+
+ minvec = roundup_pow_of_two(minvec);
+ maxvec = rounddown_pow_of_two(maxvec);
+
+ if (minvec > maxvec)
+ return -ERANGE;
+
+retry:
+ rc = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
+ maxvec, maxvec);
+ /*
+ * -ENOSPC is the only error code allowed to be analized
+ */
+ if (rc == -ENOSPC) {
+ if (maxvec == 1)
+ return -ENOSPC;
+
+ maxvec /= 2;
+
+ if (minvec > maxvec)
+ return -ENOSPC;
+
+ goto retry;
}
- return -ENOSPC;
+ return rc;
}
-4.3.2 pci_disable_msix
+Note how pci_enable_msix_range() return value is analized for a fallback -
+any error code other than -ENOSPC indicates a fatal error and should not
+be retried.
+
+4.3.2 pci_enable_msix_exact
+
+int pci_enable_msix_exact(struct pci_dev *dev,
+ struct msix_entry *entries, int nvec)
+
+This variation on pci_enable_msix_range() call allows a device driver to
+request exactly 'nvec' MSI-Xs.
+
+If this function returns a negative number, it indicates an error and
+the driver should not attempt to allocate any more MSI-X interrupts for
+this device.
+
+By contrast with pci_enable_msix_range() function, pci_enable_msix_exact()
+returns zero in case of success, which indicates MSI-X interrupts have been
+successfully allocated.
+
+Another version of a routine that enables MSI-X mode for a device with
+specific requirements described in chapter 4.3.1.3 might look like this:
+
+/*
+ * Assume 'minvec' and 'maxvec' are non-zero
+ */
+static int foo_driver_enable_msix(struct foo_adapter *adapter,
+ int minvec, int maxvec)
+{
+ int rc;
+
+ minvec = roundup_pow_of_two(minvec);
+ maxvec = rounddown_pow_of_two(maxvec);
+
+ if (minvec > maxvec)
+ return -ERANGE;
+
+retry:
+ rc = pci_enable_msix_exact(adapter->pdev,
+ adapter->msix_entries, maxvec);
+
+ /*
+ * -ENOSPC is the only error code allowed to be analyzed
+ */
+ if (rc == -ENOSPC) {
+ if (maxvec == 1)
+ return -ENOSPC;
+
+ maxvec /= 2;
+
+ if (minvec > maxvec)
+ return -ENOSPC;
+
+ goto retry;
+ } else if (rc < 0) {
+ return rc;
+ }
+
+ return maxvec;
+}
+
+4.3.3 pci_disable_msix
void pci_disable_msix(struct pci_dev *dev)
-This function should be used to undo the effect of pci_enable_msix(). It frees
-the previously allocated message signaled interrupts. The interrupts may
+This function should be used to undo the effect of pci_enable_msix_range().
+It frees the previously allocated MSI-X interrupts. The interrupts may
subsequently be assigned to another device, so drivers should not cache
the value of the 'vector' elements over a call to pci_disable_msix().
@@ -255,18 +452,32 @@ MSI-X Table. This address is mapped by the PCI subsystem, and should not
be accessed directly by the device driver. If the driver wishes to
mask or unmask an interrupt, it should call disable_irq() / enable_irq().
+4.3.4 pci_msix_vec_count
+
+int pci_msix_vec_count(struct pci_dev *dev)
+
+This function could be used to retrieve number of entries in the device
+MSI-X table.
+
+If this function returns a negative number, it indicates the device is
+not capable of sending MSI-Xs.
+
+If this function returns a positive number, it indicates the maximum
+number of MSI-X interrupt vectors that could be allocated.
+
4.4 Handling devices implementing both MSI and MSI-X capabilities
If a device implements both MSI and MSI-X capabilities, it can
run in either MSI mode or MSI-X mode, but not both simultaneously.
This is a requirement of the PCI spec, and it is enforced by the
-PCI layer. Calling pci_enable_msi() when MSI-X is already enabled or
-pci_enable_msix() when MSI is already enabled results in an error.
-If a device driver wishes to switch between MSI and MSI-X at runtime,
-it must first quiesce the device, then switch it back to pin-interrupt
-mode, before calling pci_enable_msi() or pci_enable_msix() and resuming
-operation. This is not expected to be a common operation but may be
-useful for debugging or testing during development.
+PCI layer. Calling pci_enable_msi_range() when MSI-X is already
+enabled or pci_enable_msix_range() when MSI is already enabled
+results in an error. If a device driver wishes to switch between MSI
+and MSI-X at runtime, it must first quiesce the device, then switch
+it back to pin-interrupt mode, before calling pci_enable_msi_range()
+or pci_enable_msix_range() and resuming operation. This is not expected
+to be a common operation but may be useful for debugging or testing
+during development.
4.5 Considerations when using MSIs
@@ -381,5 +592,5 @@ or disabled (0). If 0 is found in any of the msi_bus files belonging
to bridges between the PCI root and the device, MSIs are disabled.
It is also worth checking the device driver to see whether it supports MSIs.
-For example, it may contain calls to pci_enable_msi(), pci_enable_msix() or
-pci_enable_msi_block().
+For example, it may contain calls to pci_enable_msi_range() or
+pci_enable_msix_range().
diff --git a/Documentation/PCI/pci-iov-howto.txt b/Documentation/PCI/pci-iov-howto.txt
index 86551cc72e0..2d91ae25198 100644
--- a/Documentation/PCI/pci-iov-howto.txt
+++ b/Documentation/PCI/pci-iov-howto.txt
@@ -68,10 +68,6 @@ To disable SR-IOV capability:
echo 0 > \
/sys/bus/pci/devices/<DOMAIN:BUS:DEVICE.FUNCTION>/sriov_numvfs
-To notify SR-IOV core of Virtual Function Migration:
-(a) In the driver:
- irqreturn_t pci_sriov_migration(struct pci_dev *dev);
-
3.2 Usage example
Following piece of code illustrates the usage of the SR-IOV API.
diff --git a/Documentation/PCI/pci.txt b/Documentation/PCI/pci.txt
index bccf602a87f..9518006f667 100644
--- a/Documentation/PCI/pci.txt
+++ b/Documentation/PCI/pci.txt
@@ -123,8 +123,10 @@ initialization with a pointer to a structure describing the driver
The ID table is an array of struct pci_device_id entries ending with an
-all-zero entry; use of the macro DEFINE_PCI_DEVICE_TABLE is the preferred
-method of declaring the table. Each entry consists of:
+all-zero entry. Definitions with static const are generally preferred.
+Use of the deprecated macro DEFINE_PCI_DEVICE_TABLE should be avoided.
+
+Each entry consists of:
vendor,device Vendor and device ID to match (or PCI_ANY_ID)
@@ -525,8 +527,9 @@ corresponding register block for you.
6. Other interesting functions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-pci_find_slot() Find pci_dev corresponding to given bus and
- slot numbers.
+pci_get_domain_bus_and_slot() Find pci_dev corresponding to given domain,
+ bus and slot and number. If the device is
+ found, its reference count is increased.
pci_set_power_state() Set PCI Power Management state (0=D0 ... 3=D3)
pci_find_capability() Find specified capability in device's capability
list.
@@ -582,7 +585,8 @@ having sane locking.
pci_find_device() Superseded by pci_get_device()
pci_find_subsys() Superseded by pci_get_subsys()
-pci_find_slot() Superseded by pci_get_slot()
+pci_find_slot() Superseded by pci_get_domain_bus_and_slot()
+pci_get_slot() Superseded by pci_get_domain_bus_and_slot()
The alternative is the traditional PCI device driver that walks PCI
diff --git a/Documentation/RCU/00-INDEX b/Documentation/RCU/00-INDEX
index 1d7a885761f..f773a264ae0 100644
--- a/Documentation/RCU/00-INDEX
+++ b/Documentation/RCU/00-INDEX
@@ -8,8 +8,12 @@ listRCU.txt
- Using RCU to Protect Read-Mostly Linked Lists
lockdep.txt
- RCU and lockdep checking
+lockdep-splat.txt
+ - RCU Lockdep splats explained.
NMI-RCU.txt
- Using RCU to Protect Dynamic NMI Handlers
+rcu_dereference.txt
+ - Proper care and feeding of return values from rcu_dereference()
rcubarrier.txt
- RCU and Unloadable Modules
rculist_nulls.txt
diff --git a/Documentation/RCU/RTFP.txt b/Documentation/RCU/RTFP.txt
index 273e654d7d0..2f0fcb2112d 100644
--- a/Documentation/RCU/RTFP.txt
+++ b/Documentation/RCU/RTFP.txt
@@ -31,6 +31,14 @@ has lapsed, so this approach may be used in non-GPL software, if desired.
(In contrast, implementation of RCU is permitted only in software licensed
under either GPL or LGPL. Sorry!!!)
+In 1987, Rashid et al. described lazy TLB-flush [RichardRashid87a].
+At first glance, this has nothing to do with RCU, but nevertheless
+this paper helped inspire the update-side batching used in the later
+RCU implementation in DYNIX/ptx. In 1988, Barbara Liskov published
+a description of Argus that noted that use of out-of-date values can
+be tolerated in some situations. Thus, this paper provides some early
+theoretical justification for use of stale data.
+
In 1990, Pugh [Pugh90] noted that explicitly tracking which threads
were reading a given data structure permitted deferred free to operate
in the presence of non-terminating threads. However, this explicit
@@ -41,11 +49,11 @@ providing a fine-grained locking design, however, it would be interesting
to see how much of the performance advantage reported in 1990 remains
today.
-At about this same time, Adams [Adams91] described ``chaotic relaxation'',
-where the normal barriers between successive iterations of convergent
-numerical algorithms are relaxed, so that iteration $n$ might use
-data from iteration $n-1$ or even $n-2$. This introduces error,
-which typically slows convergence and thus increases the number of
+At about this same time, Andrews [Andrews91textbook] described ``chaotic
+relaxation'', where the normal barriers between successive iterations
+of convergent numerical algorithms are relaxed, so that iteration $n$
+might use data from iteration $n-1$ or even $n-2$. This introduces
+error, which typically slows convergence and thus increases the number of
iterations required. However, this increase is sometimes more than made
up for by a reduction in the number of expensive barrier operations,
which are otherwise required to synchronize the threads at the end
@@ -55,7 +63,8 @@ is thus inapplicable to most data structures in operating-system kernels.
In 1992, Henry (now Alexia) Massalin completed a dissertation advising
parallel programmers to defer processing when feasible to simplify
-synchronization. RCU makes extremely heavy use of this advice.
+synchronization [HMassalinPhD]. RCU makes extremely heavy use of
+this advice.
In 1993, Jacobson [Jacobson93] verbally described what is perhaps the
simplest deferred-free technique: simply waiting a fixed amount of time
@@ -90,27 +99,29 @@ mechanism, which is quite similar to RCU [Gamsa99]. These operating
systems made pervasive use of RCU in place of "existence locks", which
greatly simplifies locking hierarchies and helps avoid deadlocks.
-2001 saw the first RCU presentation involving Linux [McKenney01a]
-at OLS. The resulting abundance of RCU patches was presented the
-following year [McKenney02a], and use of RCU in dcache was first
-described that same year [Linder02a].
+The year 2000 saw an email exchange that would likely have
+led to yet another independent invention of something like RCU
+[RustyRussell2000a,RustyRussell2000b]. Instead, 2001 saw the first
+RCU presentation involving Linux [McKenney01a] at OLS. The resulting
+abundance of RCU patches was presented the following year [McKenney02a],
+and use of RCU in dcache was first described that same year [Linder02a].
Also in 2002, Michael [Michael02b,Michael02a] presented "hazard-pointer"
techniques that defer the destruction of data structures to simplify
non-blocking synchronization (wait-free synchronization, lock-free
synchronization, and obstruction-free synchronization are all examples of
-non-blocking synchronization). In particular, this technique eliminates
-locking, reduces contention, reduces memory latency for readers, and
-parallelizes pipeline stalls and memory latency for writers. However,
-these techniques still impose significant read-side overhead in the
-form of memory barriers. Researchers at Sun worked along similar lines
-in the same timeframe [HerlihyLM02]. These techniques can be thought
-of as inside-out reference counts, where the count is represented by the
-number of hazard pointers referencing a given data structure rather than
-the more conventional counter field within the data structure itself.
-The key advantage of inside-out reference counts is that they can be
-stored in immortal variables, thus allowing races between access and
-deletion to be avoided.
+non-blocking synchronization). The corresponding journal article appeared
+in 2004 [MagedMichael04a]. This technique eliminates locking, reduces
+contention, reduces memory latency for readers, and parallelizes pipeline
+stalls and memory latency for writers. However, these techniques still
+impose significant read-side overhead in the form of memory barriers.
+Researchers at Sun worked along similar lines in the same timeframe
+[HerlihyLM02]. These techniques can be thought of as inside-out reference
+counts, where the count is represented by the number of hazard pointers
+referencing a given data structure rather than the more conventional
+counter field within the data structure itself. The key advantage
+of inside-out reference counts is that they can be stored in immortal
+variables, thus allowing races between access and deletion to be avoided.
By the same token, RCU can be thought of as a "bulk reference count",
where some form of reference counter covers all reference by a given CPU
@@ -123,8 +134,10 @@ can be thought of in other terms as well.
In 2003, the K42 group described how RCU could be used to create
hot-pluggable implementations of operating-system functions [Appavoo03a].
-Later that year saw a paper describing an RCU implementation of System
-V IPC [Arcangeli03], and an introduction to RCU in Linux Journal
+Later that year saw a paper describing an RCU implementation
+of System V IPC [Arcangeli03] (following up on a suggestion by
+Hugh Dickins [Dickins02a] and an implementation by Mingming Cao
+[MingmingCao2002IPCRCU]), and an introduction to RCU in Linux Journal
[McKenney03a].
2004 has seen a Linux-Journal article on use of RCU in dcache
@@ -383,6 +396,21 @@ for Programming Languages and Operating Systems}"
}
}
+@phdthesis{HMassalinPhD
+,author="H. Massalin"
+,title="Synthesis: An Efficient Implementation of Fundamental Operating
+System Services"
+,school="Columbia University"
+,address="New York, NY"
+,year="1992"
+,annotation={
+ Mondo optimizing compiler.
+ Wait-free stuff.
+ Good advice: defer work to avoid synchronization. See page 90
+ (PDF page 106), Section 5.4, fourth bullet point.
+}
+}
+
@unpublished{Jacobson93
,author="Van Jacobson"
,title="Avoid Read-Side Locking Via Delayed Free"
@@ -671,6 +699,20 @@ Orran Krieger and Rusty Russell and Dipankar Sarma and Maneesh Soni"
[Viewed October 18, 2004]"
}
+@conference{Michael02b
+,author="Maged M. Michael"
+,title="High Performance Dynamic Lock-Free Hash Tables and List-Based Sets"
+,Year="2002"
+,Month="August"
+,booktitle="{Proceedings of the 14\textsuperscript{th} Annual ACM
+Symposium on Parallel
+Algorithms and Architecture}"
+,pages="73-82"
+,annotation={
+Like the title says...
+}
+}
+
@Conference{Linder02a
,Author="Hanna Linder and Dipankar Sarma and Maneesh Soni"
,Title="Scalability of the Directory Entry Cache"
@@ -727,6 +769,24 @@ Andrea Arcangeli and Andi Kleen and Orran Krieger and Rusty Russell"
}
}
+@conference{Michael02a
+,author="Maged M. Michael"
+,title="Safe Memory Reclamation for Dynamic Lock-Free Objects Using Atomic
+Reads and Writes"
+,Year="2002"
+,Month="August"
+,booktitle="{Proceedings of the 21\textsuperscript{st} Annual ACM
+Symposium on Principles of Distributed Computing}"
+,pages="21-30"
+,annotation={
+ Each thread keeps an array of pointers to items that it is
+ currently referencing. Sort of an inside-out garbage collection
+ mechanism, but one that requires the accessing code to explicitly
+ state its needs. Also requires read-side memory barriers on
+ most architectures.
+}
+}
+
@unpublished{Dickins02a
,author="Hugh Dickins"
,title="Use RCU for System-V IPC"
@@ -735,6 +795,17 @@ Andrea Arcangeli and Andi Kleen and Orran Krieger and Rusty Russell"
,note="private communication"
}
+@InProceedings{HerlihyLM02
+,author={Maurice Herlihy and Victor Luchangco and Mark Moir}
+,title="The Repeat Offender Problem: A Mechanism for Supporting Dynamic-Sized,
+Lock-Free Data Structures"
+,booktitle={Proceedings of 16\textsuperscript{th} International
+Symposium on Distributed Computing}
+,year=2002
+,month="October"
+,pages="339-353"
+}
+
@unpublished{Sarma02b
,Author="Dipankar Sarma"
,Title="Some dcache\_rcu benchmark numbers"
@@ -749,6 +820,19 @@ Andrea Arcangeli and Andi Kleen and Orran Krieger and Rusty Russell"
}
}
+@unpublished{MingmingCao2002IPCRCU
+,Author="Mingming Cao"
+,Title="[PATCH]updated ipc lock patch"
+,month="October"
+,year="2002"
+,note="Available:
+\url{https://lkml.org/lkml/2002/10/24/262}
+[Viewed February 15, 2014]"
+,annotation={
+ Mingming Cao's patch to introduce RCU to SysV IPC.
+}
+}
+
@unpublished{LinusTorvalds2003a
,Author="Linus Torvalds"
,Title="Re: {[PATCH]} small fixes in brlock.h"
@@ -982,6 +1066,23 @@ Realtime Applications"
}
}
+@article{MagedMichael04a
+,author="Maged M. Michael"
+,title="Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects"
+,Year="2004"
+,Month="June"
+,journal="IEEE Transactions on Parallel and Distributed Systems"
+,volume="15"
+,number="6"
+,pages="491-504"
+,url="Available:
+\url{http://www.research.ibm.com/people/m/michael/ieeetpds-2004.pdf}
+[Viewed March 1, 2005]"
+,annotation={
+ New canonical hazard-pointer citation.
+}
+}
+
@phdthesis{PaulEdwardMcKenneyPhD
,author="Paul E. McKenney"
,title="Exploiting Deferred Destruction:
diff --git a/Documentation/RCU/checklist.txt b/Documentation/RCU/checklist.txt
index 7703ec73a9b..877947130eb 100644
--- a/Documentation/RCU/checklist.txt
+++ b/Documentation/RCU/checklist.txt
@@ -114,12 +114,16 @@ over a rather long period of time, but improvements are always welcome!
http://www.openvms.compaq.com/wizard/wiz_2637.html
The rcu_dereference() primitive is also an excellent
- documentation aid, letting the person reading the code
- know exactly which pointers are protected by RCU.
+ documentation aid, letting the person reading the
+ code know exactly which pointers are protected by RCU.
Please note that compilers can also reorder code, and
they are becoming increasingly aggressive about doing
- just that. The rcu_dereference() primitive therefore
- also prevents destructive compiler optimizations.
+ just that. The rcu_dereference() primitive therefore also
+ prevents destructive compiler optimizations. However,
+ with a bit of devious creativity, it is possible to
+ mishandle the return value from rcu_dereference().
+ Please see rcu_dereference.txt in this directory for
+ more information.
The rcu_dereference() primitive is used by the
various "_rcu()" list-traversal primitives, such
@@ -202,8 +206,8 @@ over a rather long period of time, but improvements are always welcome!
updater uses call_rcu_sched() or synchronize_sched(), then
the corresponding readers must disable preemption, possibly
by calling rcu_read_lock_sched() and rcu_read_unlock_sched().
- If the updater uses synchronize_srcu() or call_srcu(),
- the the corresponding readers must use srcu_read_lock() and
+ If the updater uses synchronize_srcu() or call_srcu(), then
+ the corresponding readers must use srcu_read_lock() and
srcu_read_unlock(), and with the same srcu_struct. The rules for
the expedited primitives are the same as for their non-expedited
counterparts. Mixing things up will result in confusion and
@@ -256,10 +260,10 @@ over a rather long period of time, but improvements are always welcome!
variations on this theme.
b. Limiting update rate. For example, if updates occur only
- once per hour, then no explicit rate limiting is required,
- unless your system is already badly broken. The dcache
- subsystem takes this approach -- updates are guarded
- by a global lock, limiting their rate.
+ once per hour, then no explicit rate limiting is
+ required, unless your system is already badly broken.
+ Older versions of the dcache subsystem take this approach,
+ guarding updates with a global lock, limiting their rate.
c. Trusted update -- if updates can only be done manually by
superuser or some other trusted user, then it might not
@@ -268,7 +272,8 @@ over a rather long period of time, but improvements are always welcome!
the machine.
d. Use call_rcu_bh() rather than call_rcu(), in order to take
- advantage of call_rcu_bh()'s faster grace periods.
+ advantage of call_rcu_bh()'s faster grace periods. (This
+ is only a partial solution, though.)
e. Periodically invoke synchronize_rcu(), permitting a limited
number of updates per grace period.
@@ -276,6 +281,13 @@ over a rather long period of time, but improvements are always welcome!
The same cautions apply to call_rcu_bh(), call_rcu_sched(),
call_srcu(), and kfree_rcu().
+ Note that although these primitives do take action to avoid memory
+ exhaustion when any given CPU has too many callbacks, a determined
+ user could still exhaust memory. This is especially the case
+ if a system with a large number of CPUs has been configured to
+ offload all of its RCU callbacks onto a single CPU, or if the
+ system has relatively little free memory.
+
9. All RCU list-traversal primitives, which include
rcu_dereference(), list_for_each_entry_rcu(), and
list_for_each_safe_rcu(), must be either within an RCU read-side
diff --git a/Documentation/RCU/rcu_dereference.txt b/Documentation/RCU/rcu_dereference.txt
new file mode 100644
index 00000000000..ceb05da5a5a
--- /dev/null
+++ b/Documentation/RCU/rcu_dereference.txt
@@ -0,0 +1,371 @@
+PROPER CARE AND FEEDING OF RETURN VALUES FROM rcu_dereference()
+
+Most of the time, you can use values from rcu_dereference() or one of
+the similar primitives without worries. Dereferencing (prefix "*"),
+field selection ("->"), assignment ("="), address-of ("&"), addition and
+subtraction of constants, and casts all work quite naturally and safely.
+
+It is nevertheless possible to get into trouble with other operations.
+Follow these rules to keep your RCU code working properly:
+
+o You must use one of the rcu_dereference() family of primitives
+ to load an RCU-protected pointer, otherwise CONFIG_PROVE_RCU
+ will complain. Worse yet, your code can see random memory-corruption
+ bugs due to games that compilers and DEC Alpha can play.
+ Without one of the rcu_dereference() primitives, compilers
+ can reload the value, and won't your code have fun with two
+ different values for a single pointer! Without rcu_dereference(),
+ DEC Alpha can load a pointer, dereference that pointer, and
+ return data preceding initialization that preceded the store of
+ the pointer.
+
+ In addition, the volatile cast in rcu_dereference() prevents the
+ compiler from deducing the resulting pointer value. Please see
+ the section entitled "EXAMPLE WHERE THE COMPILER KNOWS TOO MUCH"
+ for an example where the compiler can in fact deduce the exact
+ value of the pointer, and thus cause misordering.
+
+o Do not use single-element RCU-protected arrays. The compiler
+ is within its right to assume that the value of an index into
+ such an array must necessarily evaluate to zero. The compiler
+ could then substitute the constant zero for the computation, so
+ that the array index no longer depended on the value returned
+ by rcu_dereference(). If the array index no longer depends
+ on rcu_dereference(), then both the compiler and the CPU
+ are within their rights to order the array access before the
+ rcu_dereference(), which can cause the array access to return
+ garbage.
+
+o Avoid cancellation when using the "+" and "-" infix arithmetic
+ operators. For example, for a given variable "x", avoid
+ "(x-x)". There are similar arithmetic pitfalls from other
+ arithmetic operatiors, such as "(x*0)", "(x/(x+1))" or "(x%1)".
+ The compiler is within its rights to substitute zero for all of
+ these expressions, so that subsequent accesses no longer depend
+ on the rcu_dereference(), again possibly resulting in bugs due
+ to misordering.
+
+ Of course, if "p" is a pointer from rcu_dereference(), and "a"
+ and "b" are integers that happen to be equal, the expression
+ "p+a-b" is safe because its value still necessarily depends on
+ the rcu_dereference(), thus maintaining proper ordering.
+
+o Avoid all-zero operands to the bitwise "&" operator, and
+ similarly avoid all-ones operands to the bitwise "|" operator.
+ If the compiler is able to deduce the value of such operands,
+ it is within its rights to substitute the corresponding constant
+ for the bitwise operation. Once again, this causes subsequent
+ accesses to no longer depend on the rcu_dereference(), causing
+ bugs due to misordering.
+
+ Please note that single-bit operands to bitwise "&" can also
+ be dangerous. At this point, the compiler knows that the
+ resulting value can only take on one of two possible values.
+ Therefore, a very small amount of additional information will
+ allow the compiler to deduce the exact value, which again can
+ result in misordering.
+
+o If you are using RCU to protect JITed functions, so that the
+ "()" function-invocation operator is applied to a value obtained
+ (directly or indirectly) from rcu_dereference(), you may need to
+ interact directly with the hardware to flush instruction caches.
+ This issue arises on some systems when a newly JITed function is
+ using the same memory that was used by an earlier JITed function.
+
+o Do not use the results from the boolean "&&" and "||" when
+ dereferencing. For example, the following (rather improbable)
+ code is buggy:
+
+ int a[2];
+ int index;
+ int force_zero_index = 1;
+
+ ...
+
+ r1 = rcu_dereference(i1)
+ r2 = a[r1 && force_zero_index]; /* BUGGY!!! */
+
+ The reason this is buggy is that "&&" and "||" are often compiled
+ using branches. While weak-memory machines such as ARM or PowerPC
+ do order stores after such branches, they can speculate loads,
+ which can result in misordering bugs.
+
+o Do not use the results from relational operators ("==", "!=",
+ ">", ">=", "<", or "<=") when dereferencing. For example,
+ the following (quite strange) code is buggy:
+
+ int a[2];
+ int index;
+ int flip_index = 0;
+
+ ...
+
+ r1 = rcu_dereference(i1)
+ r2 = a[r1 != flip_index]; /* BUGGY!!! */
+
+ As before, the reason this is buggy is that relational operators
+ are often compiled using branches. And as before, although
+ weak-memory machines such as ARM or PowerPC do order stores
+ after such branches, but can speculate loads, which can again
+ result in misordering bugs.
+
+o Be very careful about comparing pointers obtained from
+ rcu_dereference() against non-NULL values. As Linus Torvalds
+ explained, if the two pointers are equal, the compiler could
+ substitute the pointer you are comparing against for the pointer
+ obtained from rcu_dereference(). For example:
+
+ p = rcu_dereference(gp);
+ if (p == &default_struct)
+ do_default(p->a);
+
+ Because the compiler now knows that the value of "p" is exactly
+ the address of the variable "default_struct", it is free to
+ transform this code into the following:
+
+ p = rcu_dereference(gp);
+ if (p == &default_struct)
+ do_default(default_struct.a);
+
+ On ARM and Power hardware, the load from "default_struct.a"
+ can now be speculated, such that it might happen before the
+ rcu_dereference(). This could result in bugs due to misordering.
+
+ However, comparisons are OK in the following cases:
+
+ o The comparison was against the NULL pointer. If the
+ compiler knows that the pointer is NULL, you had better
+ not be dereferencing it anyway. If the comparison is
+ non-equal, the compiler is none the wiser. Therefore,
+ it is safe to compare pointers from rcu_dereference()
+ against NULL pointers.
+
+ o The pointer is never dereferenced after being compared.
+ Since there are no subsequent dereferences, the compiler
+ cannot use anything it learned from the comparison
+ to reorder the non-existent subsequent dereferences.
+ This sort of comparison occurs frequently when scanning
+ RCU-protected circular linked lists.
+
+ o The comparison is against a pointer that references memory
+ that was initialized "a long time ago." The reason
+ this is safe is that even if misordering occurs, the
+ misordering will not affect the accesses that follow
+ the comparison. So exactly how long ago is "a long
+ time ago"? Here are some possibilities:
+
+ o Compile time.
+
+ o Boot time.
+
+ o Module-init time for module code.
+
+ o Prior to kthread creation for kthread code.
+
+ o During some prior acquisition of the lock that
+ we now hold.
+
+ o Before mod_timer() time for a timer handler.
+
+ There are many other possibilities involving the Linux
+ kernel's wide array of primitives that cause code to
+ be invoked at a later time.
+
+ o The pointer being compared against also came from
+ rcu_dereference(). In this case, both pointers depend
+ on one rcu_dereference() or another, so you get proper
+ ordering either way.
+
+ That said, this situation can make certain RCU usage
+ bugs more likely to happen. Which can be a good thing,
+ at least if they happen during testing. An example
+ of such an RCU usage bug is shown in the section titled
+ "EXAMPLE OF AMPLIFIED RCU-USAGE BUG".
+
+ o All of the accesses following the comparison are stores,
+ so that a control dependency preserves the needed ordering.
+ That said, it is easy to get control dependencies wrong.
+ Please see the "CONTROL DEPENDENCIES" section of
+ Documentation/memory-barriers.txt for more details.
+
+ o The pointers are not equal -and- the compiler does
+ not have enough information to deduce the value of the
+ pointer. Note that the volatile cast in rcu_dereference()
+ will normally prevent the compiler from knowing too much.
+
+o Disable any value-speculation optimizations that your compiler
+ might provide, especially if you are making use of feedback-based
+ optimizations that take data collected from prior runs. Such
+ value-speculation optimizations reorder operations by design.
+
+ There is one exception to this rule: Value-speculation
+ optimizations that leverage the branch-prediction hardware are
+ safe on strongly ordered systems (such as x86), but not on weakly
+ ordered systems (such as ARM or Power). Choose your compiler
+ command-line options wisely!
+
+
+EXAMPLE OF AMPLIFIED RCU-USAGE BUG
+
+Because updaters can run concurrently with RCU readers, RCU readers can
+see stale and/or inconsistent values. If RCU readers need fresh or
+consistent values, which they sometimes do, they need to take proper
+precautions. To see this, consider the following code fragment:
+
+ struct foo {
+ int a;
+ int b;
+ int c;
+ };
+ struct foo *gp1;
+ struct foo *gp2;
+
+ void updater(void)
+ {
+ struct foo *p;
+
+ p = kmalloc(...);
+ if (p == NULL)
+ deal_with_it();
+ p->a = 42; /* Each field in its own cache line. */
+ p->b = 43;
+ p->c = 44;
+ rcu_assign_pointer(gp1, p);
+ p->b = 143;
+ p->c = 144;
+ rcu_assign_pointer(gp2, p);
+ }
+
+ void reader(void)
+ {
+ struct foo *p;
+ struct foo *q;
+ int r1, r2;
+
+ p = rcu_dereference(gp2);
+ if (p == NULL)
+ return;
+ r1 = p->b; /* Guaranteed to get 143. */
+ q = rcu_dereference(gp1); /* Guaranteed non-NULL. */
+ if (p == q) {
+ /* The compiler decides that q->c is same as p->c. */
+ r2 = p->c; /* Could get 44 on weakly order system. */
+ }
+ do_something_with(r1, r2);
+ }
+
+You might be surprised that the outcome (r1 == 143 && r2 == 44) is possible,
+but you should not be. After all, the updater might have been invoked
+a second time between the time reader() loaded into "r1" and the time
+that it loaded into "r2". The fact that this same result can occur due
+to some reordering from the compiler and CPUs is beside the point.
+
+But suppose that the reader needs a consistent view?
+
+Then one approach is to use locking, for example, as follows:
+
+ struct foo {
+ int a;
+ int b;
+ int c;
+ spinlock_t lock;
+ };
+ struct foo *gp1;
+ struct foo *gp2;
+
+ void updater(void)
+ {
+ struct foo *p;
+
+ p = kmalloc(...);
+ if (p == NULL)
+ deal_with_it();
+ spin_lock(&p->lock);
+ p->a = 42; /* Each field in its own cache line. */
+ p->b = 43;
+ p->c = 44;
+ spin_unlock(&p->lock);
+ rcu_assign_pointer(gp1, p);
+ spin_lock(&p->lock);
+ p->b = 143;
+ p->c = 144;
+ spin_unlock(&p->lock);
+ rcu_assign_pointer(gp2, p);
+ }
+
+ void reader(void)
+ {
+ struct foo *p;
+ struct foo *q;
+ int r1, r2;
+
+ p = rcu_dereference(gp2);
+ if (p == NULL)
+ return;
+ spin_lock(&p->lock);
+ r1 = p->b; /* Guaranteed to get 143. */
+ q = rcu_dereference(gp1); /* Guaranteed non-NULL. */
+ if (p == q) {
+ /* The compiler decides that q->c is same as p->c. */
+ r2 = p->c; /* Locking guarantees r2 == 144. */
+ }
+ spin_unlock(&p->lock);
+ do_something_with(r1, r2);
+ }
+
+As always, use the right tool for the job!
+
+
+EXAMPLE WHERE THE COMPILER KNOWS TOO MUCH
+
+If a pointer obtained from rcu_dereference() compares not-equal to some
+other pointer, the compiler normally has no clue what the value of the
+first pointer might be. This lack of knowledge prevents the compiler
+from carrying out optimizations that otherwise might destroy the ordering
+guarantees that RCU depends on. And the volatile cast in rcu_dereference()
+should prevent the compiler from guessing the value.
+
+But without rcu_dereference(), the compiler knows more than you might
+expect. Consider the following code fragment:
+
+ struct foo {
+ int a;
+ int b;
+ };
+ static struct foo variable1;
+ static struct foo variable2;
+ static struct foo *gp = &variable1;
+
+ void updater(void)
+ {
+ initialize_foo(&variable2);
+ rcu_assign_pointer(gp, &variable2);
+ /*
+ * The above is the only store to gp in this translation unit,
+ * and the address of gp is not exported in any way.
+ */
+ }
+
+ int reader(void)
+ {
+ struct foo *p;
+
+ p = gp;
+ barrier();
+ if (p == &variable1)
+ return p->a; /* Must be variable1.a. */
+ else
+ return p->b; /* Must be variable2.b. */
+ }
+
+Because the compiler can see all stores to "gp", it knows that the only
+possible values of "gp" are "variable1" on the one hand and "variable2"
+on the other. The comparison in reader() therefore tells the compiler
+the exact value of "p" even in the not-equals case. This allows the
+compiler to make the return values independent of the load from "gp",
+in turn destroying the ordering between this load and the loads of the
+return values. This can result in "p->b" returning pre-initialization
+garbage values.
+
+In short, rcu_dereference() is -not- optional when you are going to
+dereference the resulting pointer.
diff --git a/Documentation/RCU/stallwarn.txt b/Documentation/RCU/stallwarn.txt
index 8e9359de1d2..68fe3ad2701 100644
--- a/Documentation/RCU/stallwarn.txt
+++ b/Documentation/RCU/stallwarn.txt
@@ -12,19 +12,19 @@ CONFIG_RCU_CPU_STALL_TIMEOUT
This kernel configuration parameter defines the period of time
that RCU will wait from the beginning of a grace period until it
issues an RCU CPU stall warning. This time period is normally
- sixty seconds.
+ 21 seconds.
This configuration parameter may be changed at runtime via the
/sys/module/rcutree/parameters/rcu_cpu_stall_timeout, however
this parameter is checked only at the beginning of a cycle.
- So if you are 30 seconds into a 70-second stall, setting this
+ So if you are 10 seconds into a 40-second stall, setting this
sysfs parameter to (say) five will shorten the timeout for the
-next- stall, or the following warning for the current stall
(assuming the stall lasts long enough). It will not affect the
timing of the next warning for the current stall.
Stall-warning messages may be enabled and disabled completely via
- /sys/module/rcutree/parameters/rcu_cpu_stall_suppress.
+ /sys/module/rcupdate/parameters/rcu_cpu_stall_suppress.
CONFIG_RCU_CPU_STALL_VERBOSE
@@ -32,7 +32,7 @@ CONFIG_RCU_CPU_STALL_VERBOSE
also dump the stacks of any tasks that are blocking the current
RCU-preempt grace period.
-RCU_CPU_STALL_INFO
+CONFIG_RCU_CPU_STALL_INFO
This kernel configuration parameter causes the stall warning to
print out additional per-CPU diagnostic information, including
@@ -43,7 +43,8 @@ RCU_STALL_DELAY_DELTA
Although the lockdep facility is extremely useful, it does add
some overhead. Therefore, under CONFIG_PROVE_RCU, the
RCU_STALL_DELAY_DELTA macro allows five extra seconds before
- giving an RCU CPU stall warning message.
+ giving an RCU CPU stall warning message. (This is a cpp
+ macro, not a kernel configuration parameter.)
RCU_STALL_RAT_DELAY
@@ -52,7 +53,8 @@ RCU_STALL_RAT_DELAY
However, if the offending CPU does not detect its own stall in
the number of jiffies specified by RCU_STALL_RAT_DELAY, then
some other CPU will complain. This delay is normally set to
- two jiffies.
+ two jiffies. (This is a cpp macro, not a kernel configuration
+ parameter.)
When a CPU detects that it is stalling, it will print a message similar
to the following:
@@ -86,7 +88,12 @@ printing, there will be a spurious stall-warning message:
INFO: rcu_bh_state detected stalls on CPUs/tasks: { } (detected by 4, 2502 jiffies)
-This is rare, but does happen from time to time in real life.
+This is rare, but does happen from time to time in real life. It is also
+possible for a zero-jiffy stall to be flagged in this case, depending
+on how the stall warning and the grace-period initialization happen to
+interact. Please note that it is not possible to entirely eliminate this
+sort of false positive without resorting to things like stop_machine(),
+which is overkill for this sort of problem.
If the CONFIG_RCU_CPU_STALL_INFO kernel configuration parameter is set,
more information is printed with the stall-warning message, for example:
@@ -216,4 +223,5 @@ that portion of the stack which remains the same from trace to trace.
If you can reliably trigger the stall, ftrace can be quite helpful.
RCU bugs can often be debugged with the help of CONFIG_RCU_TRACE
-and with RCU's event tracing.
+and with RCU's event tracing. For information on RCU's event tracing,
+see include/trace/events/rcu.h.
diff --git a/Documentation/RCU/trace.txt b/Documentation/RCU/trace.txt
index f3778f8952d..910870b15ac 100644
--- a/Documentation/RCU/trace.txt
+++ b/Documentation/RCU/trace.txt
@@ -396,14 +396,14 @@ o Each element of the form "3/3 ..>. 0:7 ^0" represents one rcu_node
The output of "cat rcu/rcu_sched/rcu_pending" looks as follows:
- 0!np=26111 qsp=29 rpq=5386 cbr=1 cng=570 gpc=3674 gps=577 nn=15903
- 1!np=28913 qsp=35 rpq=6097 cbr=1 cng=448 gpc=3700 gps=554 nn=18113
- 2!np=32740 qsp=37 rpq=6202 cbr=0 cng=476 gpc=4627 gps=546 nn=20889
- 3 np=23679 qsp=22 rpq=5044 cbr=1 cng=415 gpc=3403 gps=347 nn=14469
- 4!np=30714 qsp=4 rpq=5574 cbr=0 cng=528 gpc=3931 gps=639 nn=20042
- 5 np=28910 qsp=2 rpq=5246 cbr=0 cng=428 gpc=4105 gps=709 nn=18422
- 6!np=38648 qsp=5 rpq=7076 cbr=0 cng=840 gpc=4072 gps=961 nn=25699
- 7 np=37275 qsp=2 rpq=6873 cbr=0 cng=868 gpc=3416 gps=971 nn=25147
+ 0!np=26111 qsp=29 rpq=5386 cbr=1 cng=570 gpc=3674 gps=577 nn=15903 ndw=0
+ 1!np=28913 qsp=35 rpq=6097 cbr=1 cng=448 gpc=3700 gps=554 nn=18113 ndw=0
+ 2!np=32740 qsp=37 rpq=6202 cbr=0 cng=476 gpc=4627 gps=546 nn=20889 ndw=0
+ 3 np=23679 qsp=22 rpq=5044 cbr=1 cng=415 gpc=3403 gps=347 nn=14469 ndw=0
+ 4!np=30714 qsp=4 rpq=5574 cbr=0 cng=528 gpc=3931 gps=639 nn=20042 ndw=0
+ 5 np=28910 qsp=2 rpq=5246 cbr=0 cng=428 gpc=4105 gps=709 nn=18422 ndw=0
+ 6!np=38648 qsp=5 rpq=7076 cbr=0 cng=840 gpc=4072 gps=961 nn=25699 ndw=0
+ 7 np=37275 qsp=2 rpq=6873 cbr=0 cng=868 gpc=3416 gps=971 nn=25147 ndw=0
The fields are as follows:
@@ -432,6 +432,10 @@ o "gpc" is the number of times that an old grace period had
o "gps" is the number of times that a new grace period had started,
but this CPU was not yet aware of it.
+o "ndw" is the number of times that a wakeup of an rcuo
+ callback-offload kthread had to be deferred in order to avoid
+ deadlock.
+
o "nn" is the number of times that this CPU needed nothing.
@@ -443,7 +447,7 @@ The output of "cat rcu/rcuboost" looks as follows:
balk: nt=0 egt=6541 bt=0 nb=0 ny=126 nos=0
This information is output only for rcu_preempt. Each two-line entry
-corresponds to a leaf rcu_node strcuture. The fields are as follows:
+corresponds to a leaf rcu_node structure. The fields are as follows:
o "n:m" is the CPU-number range for the corresponding two-line
entry. In the sample output above, the first entry covers
diff --git a/Documentation/RCU/whatisRCU.txt b/Documentation/RCU/whatisRCU.txt
index 0f0fb7c432c..49b8551a3b6 100644
--- a/Documentation/RCU/whatisRCU.txt
+++ b/Documentation/RCU/whatisRCU.txt
@@ -326,11 +326,11 @@ used as follows:
a. synchronize_rcu() rcu_read_lock() / rcu_read_unlock()
call_rcu() rcu_dereference()
-b. call_rcu_bh() rcu_read_lock_bh() / rcu_read_unlock_bh()
- rcu_dereference_bh()
+b. synchronize_rcu_bh() rcu_read_lock_bh() / rcu_read_unlock_bh()
+ call_rcu_bh() rcu_dereference_bh()
c. synchronize_sched() rcu_read_lock_sched() / rcu_read_unlock_sched()
- preempt_disable() / preempt_enable()
+ call_rcu_sched() preempt_disable() / preempt_enable()
local_irq_save() / local_irq_restore()
hardirq enter / hardirq exit
NMI enter / NMI exit
@@ -794,10 +794,22 @@ in docbook. Here is the list, by category.
RCU list traversal:
+ list_entry_rcu
+ list_first_entry_rcu
+ list_next_rcu
list_for_each_entry_rcu
+ list_for_each_entry_continue_rcu
+ hlist_first_rcu
+ hlist_next_rcu
+ hlist_pprev_rcu
hlist_for_each_entry_rcu
+ hlist_for_each_entry_rcu_bh
+ hlist_for_each_entry_continue_rcu
+ hlist_for_each_entry_continue_rcu_bh
+ hlist_nulls_first_rcu
hlist_nulls_for_each_entry_rcu
- list_for_each_entry_continue_rcu
+ hlist_bl_first_rcu
+ hlist_bl_for_each_entry_rcu
RCU pointer/list update:
@@ -806,28 +818,38 @@ RCU pointer/list update:
list_add_tail_rcu
list_del_rcu
list_replace_rcu
- hlist_del_rcu
hlist_add_after_rcu
hlist_add_before_rcu
hlist_add_head_rcu
+ hlist_del_rcu
+ hlist_del_init_rcu
hlist_replace_rcu
list_splice_init_rcu()
+ hlist_nulls_del_init_rcu
+ hlist_nulls_del_rcu
+ hlist_nulls_add_head_rcu
+ hlist_bl_add_head_rcu
+ hlist_bl_del_init_rcu
+ hlist_bl_del_rcu
+ hlist_bl_set_first_rcu
RCU: Critical sections Grace period Barrier
rcu_read_lock synchronize_net rcu_barrier
rcu_read_unlock synchronize_rcu
rcu_dereference synchronize_rcu_expedited
- call_rcu
- kfree_rcu
-
+ rcu_read_lock_held call_rcu
+ rcu_dereference_check kfree_rcu
+ rcu_dereference_protected
bh: Critical sections Grace period Barrier
rcu_read_lock_bh call_rcu_bh rcu_barrier_bh
rcu_read_unlock_bh synchronize_rcu_bh
rcu_dereference_bh synchronize_rcu_bh_expedited
-
+ rcu_dereference_bh_check
+ rcu_dereference_bh_protected
+ rcu_read_lock_bh_held
sched: Critical sections Grace period Barrier
@@ -835,7 +857,12 @@ sched: Critical sections Grace period Barrier
rcu_read_unlock_sched call_rcu_sched
[preempt_disable] synchronize_sched_expedited
[and friends]
+ rcu_read_lock_sched_notrace
+ rcu_read_unlock_sched_notrace
rcu_dereference_sched
+ rcu_dereference_sched_check
+ rcu_dereference_sched_protected
+ rcu_read_lock_sched_held
SRCU: Critical sections Grace period Barrier
@@ -843,6 +870,8 @@ SRCU: Critical sections Grace period Barrier
srcu_read_lock synchronize_srcu srcu_barrier
srcu_read_unlock call_srcu
srcu_dereference synchronize_srcu_expedited
+ srcu_dereference_check
+ srcu_read_lock_held
SRCU: Initialization/cleanup
init_srcu_struct
@@ -850,9 +879,13 @@ SRCU: Initialization/cleanup
All: lockdep-checked RCU-protected pointer access
- rcu_dereference_check
- rcu_dereference_protected
+ rcu_access_index
rcu_access_pointer
+ rcu_dereference_index_check
+ rcu_dereference_raw
+ rcu_lockdep_assert
+ rcu_sleep_check
+ RCU_NONIDLE
See the comment headers in the source code (or the docbook generated
from them) for more information.
diff --git a/Documentation/SubmittingPatches b/Documentation/SubmittingPatches
index 26b1e31d5a1..7e9abb8a276 100644
--- a/Documentation/SubmittingPatches
+++ b/Documentation/SubmittingPatches
@@ -14,7 +14,10 @@ Read Documentation/SubmitChecklist for a list of items to check
before submitting code. If you are submitting a driver, also read
Documentation/SubmittingDrivers.
-
+Many of these steps describe the default behavior of the git version
+control system; if you use git to prepare your patches, you'll find much
+of the mechanical work done for you, though you'll still need to prepare
+and document a sensible set of patches.
--------------------------------------------
SECTION 1 - CREATING AND SENDING YOUR CHANGE
@@ -25,7 +28,9 @@ SECTION 1 - CREATING AND SENDING YOUR CHANGE
1) "diff -up"
------------
-Use "diff -up" or "diff -uprN" to create patches.
+Use "diff -up" or "diff -uprN" to create patches. git generates patches
+in this form by default; if you're using git, you can skip this section
+entirely.
All changes to the Linux kernel occur in the form of patches, as
generated by diff(1). When creating your patch, make sure to create it
@@ -66,19 +71,14 @@ Make sure your patch does not include any extra files which do not
belong in a patch submission. Make sure to review your patch -after-
generated it with diff(1), to ensure accuracy.
-If your changes produce a lot of deltas, you may want to look into
-splitting them into individual patches which modify things in
-logical stages. This will facilitate easier reviewing by other
-kernel developers, very important if you want your patch accepted.
-There are a number of scripts which can aid in this:
-
-Quilt:
-http://savannah.nongnu.org/projects/quilt
+If your changes produce a lot of deltas, you need to split them into
+individual patches which modify things in logical stages; see section
+#3. This will facilitate easier reviewing by other kernel developers,
+very important if you want your patch accepted.
-Andrew Morton's patch scripts:
-http://userweb.kernel.org/~akpm/stuff/patch-scripts.tar.gz
-Instead of these scripts, quilt is the recommended patch management
-tool (see above).
+If you're using git, "git rebase -i" can help you with this process. If
+you're not using git, quilt <http://savannah.nongnu.org/projects/quilt>
+is another popular alternative.
@@ -106,8 +106,21 @@ I.e., the patch (series) and its description should be self-contained.
This benefits both the patch merger(s) and reviewers. Some reviewers
probably didn't even receive earlier versions of the patch.
+Describe your changes in imperative mood, e.g. "make xyzzy do frotz"
+instead of "[This patch] makes xyzzy do frotz" or "[I] changed xyzzy
+to do frotz", as if you are giving orders to the codebase to change
+its behaviour.
+
If the patch fixes a logged bug entry, refer to that bug entry by
-number and URL.
+number and URL. If the patch follows from a mailing list discussion,
+give a URL to the mailing list archive; use the https://lkml.kernel.org/
+redirector with a Message-Id, to ensure that the links cannot become
+stale.
+
+However, try to make your explanation understandable without external
+resources. In addition to giving a URL to a mailing list archive or
+bug, summarize the relevant points of the discussion that led to the
+patch as submitted.
If you want to refer to a specific commit, don't just refer to the
SHA-1 ID of the commit. Please also include the oneline summary of
@@ -119,6 +132,20 @@ Example:
platform_set_drvdata(), but left the variable "dev" unused,
delete it.
+If your patch fixes a bug in a specific commit, e.g. you found an issue using
+git-bisect, please use the 'Fixes:' tag with the first 12 characters of the
+SHA-1 ID, and the one line summary.
+Example:
+
+ Fixes: e21d2170f366 ("video: remove unnecessary platform_set_drvdata()")
+
+The following git-config settings can be used to add a pretty format for
+outputting the above style in the git log or git show commands
+
+ [core]
+ abbrev = 12
+ [pretty]
+ fixes = Fixes: %h (\"%s\")
3) Separate your changes.
@@ -430,7 +457,7 @@ person it names. This tag documents that potentially interested parties
have been included in the discussion
-14) Using Reported-by:, Tested-by:, Reviewed-by: and Suggested-by:
+14) Using Reported-by:, Tested-by:, Reviewed-by:, Suggested-by: and Fixes:
If this patch fixes a problem reported by somebody else, consider adding a
Reported-by: tag to credit the reporter for their contribution. Please
@@ -485,6 +512,12 @@ idea was not posted in a public forum. That said, if we diligently credit our
idea reporters, they will, hopefully, be inspired to help us again in the
future.
+A Fixes: tag indicates that the patch fixes an issue in a previous commit. It
+is used to make it easy to determine where a bug originated, which can help
+review a bug fix. This tag also assists the stable kernel team in determining
+which stable kernel versions should receive your fix. This is the preferred
+method for indicating a bug fixed by the patch. See #2 above for more details.
+
15) The canonical patch format
@@ -594,7 +627,8 @@ patch.
If you are going to include a diffstat after the "---" marker, please
use diffstat options "-p 1 -w 70" so that filenames are listed from
the top of the kernel source tree and don't use too much horizontal
-space (easily fit in 80 columns, maybe with some indentation).
+space (easily fit in 80 columns, maybe with some indentation). (git
+generates appropriate diffstats by default.)
See more details on the proper patch format in the following
references.
@@ -725,7 +759,7 @@ SECTION 3 - REFERENCES
----------------------
Andrew Morton, "The perfect patch" (tpp).
- <http://userweb.kernel.org/~akpm/stuff/tpp.txt>
+ <http://www.ozlabs.org/~akpm/stuff/tpp.txt>
Jeff Garzik, "Linux kernel patch submission format".
<http://linux.yyz.us/patch-format.html>
@@ -738,7 +772,7 @@ Greg Kroah-Hartman, "How to piss off a kernel subsystem maintainer".
<http://www.kroah.com/log/linux/maintainer-05.html>
NO!!!! No more huge patch bombs to linux-kernel@vger.kernel.org people!
- <http://marc.theaimsgroup.com/?l=linux-kernel&m=112112749912944&w=2>
+ <https://lkml.org/lkml/2005/7/11/336>
Kernel Documentation/CodingStyle:
<http://users.sosdg.org/~qiyong/lxr/source/Documentation/CodingStyle>
diff --git a/Documentation/accounting/getdelays.c b/Documentation/accounting/getdelays.c
index c6a06b71594..f40578026a0 100644
--- a/Documentation/accounting/getdelays.c
+++ b/Documentation/accounting/getdelays.c
@@ -314,6 +314,7 @@ int main(int argc, char *argv[])
break;
case 'm':
strncpy(cpumask, optarg, sizeof(cpumask));
+ cpumask[sizeof(cpumask) - 1] = '\0';
maskset = 1;
printf("cpumask %s maskset %d\n", cpumask, maskset);
break;
diff --git a/Documentation/acpi/apei/einj.txt b/Documentation/acpi/apei/einj.txt
index a58b63da1a3..f51861bcb07 100644
--- a/Documentation/acpi/apei/einj.txt
+++ b/Documentation/acpi/apei/einj.txt
@@ -45,11 +45,22 @@ directory apei/einj. The following files are provided.
injection. Before this, please specify all necessary error
parameters.
+- flags
+ Present for kernel version 3.13 and above. Used to specify which
+ of param{1..4} are valid and should be used by BIOS during injection.
+ Value is a bitmask as specified in ACPI5.0 spec for the
+ SET_ERROR_TYPE_WITH_ADDRESS data structure:
+ Bit 0 - Processor APIC field valid (see param3 below)
+ Bit 1 - Memory address and mask valid (param1 and param2)
+ Bit 2 - PCIe (seg,bus,dev,fn) valid (param4 below)
+ If set to zero, legacy behaviour is used where the type of injection
+ specifies just one bit set, and param1 is multiplexed.
+
- param1
This file is used to set the first error parameter value. Effect of
parameter depends on error_type specified. For example, if error
type is memory related type, the param1 should be a valid physical
- memory address.
+ memory address. [Unless "flag" is set - see above]
- param2
This file is used to set the second error parameter value. Effect of
@@ -58,6 +69,12 @@ directory apei/einj. The following files are provided.
address mask. Linux requires page or narrower granularity, say,
0xfffffffffffff000.
+- param3
+ Used when the 0x1 bit is set in "flag" to specify the APIC id
+
+- param4
+ Used when the 0x4 bit is set in "flag" to specify target PCIe device
+
- notrigger
The EINJ mechanism is a two step process. First inject the error, then
perform some actions to trigger it. Setting "notrigger" to 1 skips the
diff --git a/Documentation/acpi/dsdt-override.txt b/Documentation/acpi/dsdt-override.txt
index febbb1ba4d2..784841caa6e 100644
--- a/Documentation/acpi/dsdt-override.txt
+++ b/Documentation/acpi/dsdt-override.txt
@@ -4,4 +4,4 @@ CONFIG_ACPI_CUSTOM_DSDT builds the image into the kernel.
When to use this method is described in detail on the
Linux/ACPI home page:
-http://www.lesswatts.org/projects/acpi/overridingDSDT.php
+https://01.org/linux-acpi/documentation/overriding-dsdt
diff --git a/Documentation/acpi/enumeration.txt b/Documentation/acpi/enumeration.txt
index aca4e69121b..e182be5e3c8 100644
--- a/Documentation/acpi/enumeration.txt
+++ b/Documentation/acpi/enumeration.txt
@@ -60,12 +60,6 @@ If the driver needs to perform more complex initialization like getting and
configuring GPIOs it can get its ACPI handle and extract this information
from ACPI tables.
-Currently the kernel is not able to automatically determine from which ACPI
-device it should make the corresponding platform device so we need to add
-the ACPI device explicitly to acpi_platform_device_ids list defined in
-drivers/acpi/acpi_platform.c. This limitation is only for the platform
-devices, SPI and I2C devices are created automatically as described below.
-
DMA support
~~~~~~~~~~~
DMA controllers enumerated via ACPI should be registered in the system to
@@ -293,32 +287,28 @@ the device to the driver. For example:
These GPIO numbers are controller relative and path "\\_SB.PCI0.GPI0"
specifies the path to the controller. In order to use these GPIOs in Linux
-we need to translate them to the Linux GPIO numbers.
+we need to translate them to the corresponding Linux GPIO descriptors.
-The driver can do this by including <linux/acpi_gpio.h> and then calling
-acpi_get_gpio(path, gpio). This will return the Linux GPIO number or
-negative errno if there was no translation found.
+There is a standard GPIO API for that and is documented in
+Documentation/gpio/.
-In a simple case of just getting the Linux GPIO number from device
-resources one can use acpi_get_gpio_by_index() helper function. It takes
-pointer to the device and index of the GpioIo/GpioInt descriptor in the
-device resources list. For example:
+In the above example we can get the corresponding two GPIO descriptors with
+a code like this:
- int gpio_irq, gpio_power;
- int ret;
+ #include <linux/gpio/consumer.h>
+ ...
- gpio_irq = acpi_get_gpio_by_index(dev, 1, NULL);
- if (gpio_irq < 0)
- /* handle error */
+ struct gpio_desc *irq_desc, *power_desc;
- gpio_power = acpi_get_gpio_by_index(dev, 0, NULL);
- if (gpio_power < 0)
+ irq_desc = gpiod_get_index(dev, NULL, 1);
+ if (IS_ERR(irq_desc))
/* handle error */
- /* Now we can use the GPIO numbers */
+ power_desc = gpiod_get_index(dev, NULL, 0);
+ if (IS_ERR(power_desc))
+ /* handle error */
-Other GpioIo parameters must be converted first by the driver to be
-suitable to the gpiolib before passing them.
+ /* Now we can use the GPIO descriptors */
-In case of GpioInt resource an additional call to gpio_to_irq() must be
-done before calling request_irq().
+There are also devm_* versions of these functions which release the
+descriptors once the device is released.
diff --git a/Documentation/acpi/namespace.txt b/Documentation/acpi/namespace.txt
index 260f6a3661f..1860cb3865c 100644
--- a/Documentation/acpi/namespace.txt
+++ b/Documentation/acpi/namespace.txt
@@ -235,10 +235,6 @@ Wysocki <rafael.j.wysocki@intel.com>.
named object's type in the second column). In that case the object's
directory in sysfs will contain the 'path' attribute whose value is
the full path to the node from the namespace root.
- struct acpi_device objects are created for the ACPI namespace nodes
- whose _STA control methods return PRESENT or FUNCTIONING. The power
- resource nodes or nodes without _STA are assumed to be both PRESENT
- and FUNCTIONING.
F:
The struct acpi_device object is created for a fixed hardware
feature (as indicated by the fixed feature flag's name in the second
@@ -340,7 +336,7 @@ Wysocki <rafael.j.wysocki@intel.com>.
| +-------------+-------+----------------+
| |
| | +- - - - - - - +- - - - - - +- - - - - - - -+
- | +-| * PNP0C0D:00 | \_SB_.LID0 | acpi:PNP0C0D: |
+ | +-| PNP0C0D:00 | \_SB_.LID0 | acpi:PNP0C0D: |
| | +- - - - - - - +- - - - - - +- - - - - - - -+
| |
| | +------------+------------+-----------------------+
@@ -390,6 +386,3 @@ Wysocki <rafael.j.wysocki@intel.com>.
attribute (as described earlier in this document).
NOTE: N/A indicates the device object does not have the 'path' or the
'modalias' attribute.
- NOTE: The PNP0C0D device listed above is highlighted (marked by "*")
- to indicate it will be created only when its _STA methods return
- PRESENT or FUNCTIONING.
diff --git a/Documentation/arm/00-INDEX b/Documentation/arm/00-INDEX
index 36420e116c9..3b08bc2b04c 100644
--- a/Documentation/arm/00-INDEX
+++ b/Documentation/arm/00-INDEX
@@ -4,6 +4,8 @@ Booting
- requirements for booting
Interrupts
- ARM Interrupt subsystem documentation
+IXP4xx
+ - Intel IXP4xx Network processor.
msm
- MSM specific documentation
Netwinder
@@ -24,8 +26,16 @@ SPEAr
- ST SPEAr platform Linux Overview
VFP/
- Release notes for Linux Kernel Vector Floating Point support code
+cluster-pm-race-avoidance.txt
+ - Algorithm for CPU and Cluster setup/teardown
empeg/
- Ltd's Empeg MP3 Car Audio Player
+firmware.txt
+ - Secure firmware registration and calling.
+kernel_mode_neon.txt
+ - How to use NEON instructions in kernel mode
+kernel_user_helpers.txt
+ - Helper functions in kernel space made available for userspace.
mem_alignment
- alignment abort handler documentation
memory.txt
@@ -34,3 +44,9 @@ nwfpe/
- NWFPE floating point emulator documentation
swp_emulation
- SWP/SWPB emulation handler/logging description
+tcm.txt
+ - ARM Tightly Coupled Memory
+uefi.txt
+ - [U]EFI configuration and runtime services documentation
+vlocks.txt
+ - Voting locks, low-level mechanism relying on memory system atomic writes.
diff --git a/Documentation/arm/Marvell/README b/Documentation/arm/Marvell/README
index 8f08a86e03b..2cce5401e32 100644
--- a/Documentation/arm/Marvell/README
+++ b/Documentation/arm/Marvell/README
@@ -83,13 +83,24 @@ EBU Armada family
88F6710
88F6707
88F6W11
+ Product Brief: http://www.marvell.com/embedded-processors/armada-300/assets/Marvell_ARMADA_370_SoC.pdf
+
+ Armada 375 Flavors:
+ 88F6720
+ Product Brief: http://www.marvell.com/embedded-processors/armada-300/assets/ARMADA_375_SoC-01_product_brief.pdf
+
+ Armada 380/385 Flavors:
+ 88F6810
+ 88F6820
+ 88F6828
Armada XP Flavors:
MV78230
MV78260
MV78460
+ NOTE: not to be confused with the non-SMP 78xx0 SoCs
+ Product Brief: http://www.marvell.com/embedded-processors/armada-xp/assets/Marvell-ArmadaXP-SoC-product%20brief.pdf
- Product Brief: http://www.marvell.com/embedded-processors/armada-xp/assets/Marvell-ArmadaXP-SoC-product%20brief.pdf
No public datasheet available.
Core: Sheeva ARMv7 compatible
@@ -210,6 +221,35 @@ MMP/MMP2 family (communication processor)
Linux kernel mach directory: arch/arm/mach-mmp
Linux kernel plat directory: arch/arm/plat-pxa
+Berlin family (Digital Entertainment)
+-------------------------------------
+
+ Flavors:
+ 88DE3005, Armada 1500-mini
+ Design name: BG2CD
+ Core: ARM Cortex-A9, PL310 L2CC
+ Homepage: http://www.marvell.com/digital-entertainment/armada-1500-mini/
+ 88DE3100, Armada 1500
+ Design name: BG2
+ Core: Marvell PJ4B (ARMv7), Tauros3 L2CC
+ Homepage: http://www.marvell.com/digital-entertainment/armada-1500/
+ Product Brief: http://www.marvell.com/digital-entertainment/armada-1500/assets/Marvell-ARMADA-1500-Product-Brief.pdf
+ 88DE3114, Armada 1500 Pro
+ Design name: BG2-Q
+ Core: Quad Core ARM Cortex-A9, PL310 L2CC
+ Homepage: http://www.marvell.com/digital-entertainment/armada-1500-pro/
+ Product Brief: http://www.marvell.com/digital-entertainment/armada-1500-pro/assets/Marvell_ARMADA_1500_PRO-01_product_brief.pdf
+ 88DE????
+ Design name: BG3
+ Core: ARM Cortex-A15, CA15 integrated L2CC
+
+ Homepage: http://www.marvell.com/digital-entertainment/
+ Directory: arch/arm/mach-berlin
+
+ Comments:
+ * This line of SoCs is based on Marvell Sheeva or ARM Cortex CPUs
+ with Synopsys DesignWare (IRQ, GPIO, Timers, ...) and PXA IP (SDHCI, USB, ETH, ...).
+
Long-term plans
---------------
diff --git a/Documentation/arm/Samsung-S3C24XX/GPIO.txt b/Documentation/arm/Samsung-S3C24XX/GPIO.txt
index 8b46c79679c..0ebd7e2244d 100644
--- a/Documentation/arm/Samsung-S3C24XX/GPIO.txt
+++ b/Documentation/arm/Samsung-S3C24XX/GPIO.txt
@@ -85,21 +85,10 @@ between the calls.
Headers
-------
- See arch/arm/mach-s3c2410/include/mach/regs-gpio.h for the list
+ See arch/arm/mach-s3c24xx/include/mach/regs-gpio.h for the list
of GPIO pins, and the configuration values for them. This
is included by using #include <mach/regs-gpio.h>
- The GPIO management functions are defined in the hardware
- header arch/arm/mach-s3c2410/include/mach/hardware.h which can be
- included by #include <mach/hardware.h>
-
- A useful amount of documentation can be found in the hardware
- header on how the GPIO functions (and others) work.
-
- Whilst a number of these functions do make some checks on what
- is passed to them, for speed of use, they may not always ensure
- that the user supplied data to them is correct.
-
PIN Numbers
-----------
diff --git a/Documentation/arm/memory.txt b/Documentation/arm/memory.txt
index 4bfb9ffbdbc..38dc06d0a79 100644
--- a/Documentation/arm/memory.txt
+++ b/Documentation/arm/memory.txt
@@ -41,16 +41,9 @@ fffe8000 fffeffff DTCM mapping area for platforms with
fffe0000 fffe7fff ITCM mapping area for platforms with
ITCM mounted inside the CPU.
-fff00000 fffdffff Fixmap mapping region. Addresses provided
+ffc00000 ffdfffff Fixmap mapping region. Addresses provided
by fix_to_virt() will be located here.
-ffc00000 ffefffff DMA memory mapping region. Memory returned
- by the dma_alloc_xxx functions will be
- dynamically mapped here.
-
-ff000000 ffbfffff Reserved for future expansion of DMA
- mapping region.
-
fee00000 feffffff Mapping of PCI I/O space. This is a static
mapping within the vmalloc space.
diff --git a/Documentation/arm/sti/stih407-overview.txt b/Documentation/arm/sti/stih407-overview.txt
new file mode 100644
index 00000000000..3343f32f58b
--- /dev/null
+++ b/Documentation/arm/sti/stih407-overview.txt
@@ -0,0 +1,18 @@
+ STiH407 Overview
+ ================
+
+Introduction
+------------
+
+ The STiH407 is the new generation of SoC for Multi-HD, AVC set-top boxes
+ and server/connected client application for satellite, cable, terrestrial
+ and IP-STB markets.
+
+ Features
+ - ARM Cortex-A9 1.5 GHz dual core CPU (28nm)
+ - SATA2, USB 3.0, PCIe, Gbit Ethernet
+
+ Document Author
+ ---------------
+
+ Maxime Coquelin <maxime.coquelin@st.com>, (c) 2014 ST Microelectronics
diff --git a/Documentation/arm/sunxi/README b/Documentation/arm/sunxi/README
index e3f93fb9224..7945238453e 100644
--- a/Documentation/arm/sunxi/README
+++ b/Documentation/arm/sunxi/README
@@ -10,6 +10,10 @@ SunXi family
Linux kernel mach directory: arch/arm/mach-sunxi
Flavors:
+ * ARM926 based SoCs
+ - Allwinner F20 (sun3i)
+ + Not Supported
+
* ARM Cortex-A8 based SoCs
- Allwinner A10 (sun4i)
+ Datasheet
@@ -25,4 +29,24 @@ SunXi family
+ Datasheet
http://dl.linux-sunxi.org/A13/A13%20Datasheet%20-%20v1.12%20%282012-03-29%29.pdf
+ User Manual
- http://dl.linux-sunxi.org/A13/A13%20User%20Manual%20-%20v1.2%20%282013-08-08%29.pdf
+ http://dl.linux-sunxi.org/A13/A13%20User%20Manual%20-%20v1.2%20%282013-01-08%29.pdf
+
+ * Dual ARM Cortex-A7 based SoCs
+ - Allwinner A20 (sun7i)
+ + User Manual
+ http://dl.linux-sunxi.org/A20/A20%20User%20Manual%202013-03-22.pdf
+
+ - Allwinner A23
+ + Not Supported
+
+ * Quad ARM Cortex-A7 based SoCs
+ - Allwinner A31 (sun6i)
+ + Datasheet
+ http://dl.linux-sunxi.org/A31/A31%20Datasheet%20-%20v1.00%20(2012-12-24).pdf
+
+ - Allwinner A31s (sun6i)
+ + Not Supported
+
+ * Quad ARM Cortex-A15, Quad ARM Cortex-A7 based SoCs
+ - Allwinner A80
+ + Not Supported \ No newline at end of file
diff --git a/Documentation/arm/uefi.txt b/Documentation/arm/uefi.txt
new file mode 100644
index 00000000000..d60030a1b90
--- /dev/null
+++ b/Documentation/arm/uefi.txt
@@ -0,0 +1,64 @@
+UEFI, the Unified Extensible Firmware Interface, is a specification
+governing the behaviours of compatible firmware interfaces. It is
+maintained by the UEFI Forum - http://www.uefi.org/.
+
+UEFI is an evolution of its predecessor 'EFI', so the terms EFI and
+UEFI are used somewhat interchangeably in this document and associated
+source code. As a rule, anything new uses 'UEFI', whereas 'EFI' refers
+to legacy code or specifications.
+
+UEFI support in Linux
+=====================
+Booting on a platform with firmware compliant with the UEFI specification
+makes it possible for the kernel to support additional features:
+- UEFI Runtime Services
+- Retrieving various configuration information through the standardised
+ interface of UEFI configuration tables. (ACPI, SMBIOS, ...)
+
+For actually enabling [U]EFI support, enable:
+- CONFIG_EFI=y
+- CONFIG_EFI_VARS=y or m
+
+The implementation depends on receiving information about the UEFI environment
+in a Flattened Device Tree (FDT) - so is only available with CONFIG_OF.
+
+UEFI stub
+=========
+The "stub" is a feature that extends the Image/zImage into a valid UEFI
+PE/COFF executable, including a loader application that makes it possible to
+load the kernel directly from the UEFI shell, boot menu, or one of the
+lightweight bootloaders like Gummiboot or rEFInd.
+
+The kernel image built with stub support remains a valid kernel image for
+booting in non-UEFI environments.
+
+UEFI kernel support on ARM
+==========================
+UEFI kernel support on the ARM architectures (arm and arm64) is only available
+when boot is performed through the stub.
+
+When booting in UEFI mode, the stub deletes any memory nodes from a provided DT.
+Instead, the kernel reads the UEFI memory map.
+
+The stub populates the FDT /chosen node with (and the kernel scans for) the
+following parameters:
+________________________________________________________________________________
+Name | Size | Description
+================================================================================
+linux,uefi-system-table | 64-bit | Physical address of the UEFI System Table.
+--------------------------------------------------------------------------------
+linux,uefi-mmap-start | 64-bit | Physical address of the UEFI memory map,
+ | | populated by the UEFI GetMemoryMap() call.
+--------------------------------------------------------------------------------
+linux,uefi-mmap-size | 32-bit | Size in bytes of the UEFI memory map
+ | | pointed to in previous entry.
+--------------------------------------------------------------------------------
+linux,uefi-mmap-desc-size | 32-bit | Size in bytes of each entry in the UEFI
+ | | memory map.
+--------------------------------------------------------------------------------
+linux,uefi-mmap-desc-ver | 32-bit | Version of the mmap descriptor format.
+--------------------------------------------------------------------------------
+linux,uefi-stub-kern-ver | string | Copy of linux_banner from build.
+--------------------------------------------------------------------------------
+
+For verbose debug messages, specify 'uefi_debug' on the kernel command line.
diff --git a/Documentation/arm64/booting.txt b/Documentation/arm64/booting.txt
index 98df4a03807..37fc4f63217 100644
--- a/Documentation/arm64/booting.txt
+++ b/Documentation/arm64/booting.txt
@@ -85,6 +85,10 @@ The decompressed kernel image contains a 64-byte header as follows:
Header notes:
- code0/code1 are responsible for branching to stext.
+- when booting through EFI, code0/code1 are initially skipped.
+ res5 is an offset to the PE header and the PE header has the EFI
+ entry point (efi_stub_entry). When the stub has done its work, it
+ jumps to code0 to resume the normal boot process.
The image must be placed at the specified offset (currently 0x80000)
from the start of the system RAM and called there. The start of the
@@ -111,13 +115,20 @@ Before jumping into the kernel, the following conditions must be met:
- Caches, MMUs
The MMU must be off.
Instruction cache may be on or off.
- Data cache must be off and invalidated.
- External caches (if present) must be configured and disabled.
+ The address range corresponding to the loaded kernel image must be
+ cleaned to the PoC. In the presence of a system cache or other
+ coherent masters with caches enabled, this will typically require
+ cache maintenance by VA rather than set/way operations.
+ System caches which respect the architected cache maintenance by VA
+ operations must be configured and may be enabled.
+ System caches which do not respect architected cache maintenance by VA
+ operations (not recommended) must be configured and disabled.
- Architected timers
- CNTFRQ must be programmed with the timer frequency.
- If entering the kernel at EL1, CNTHCTL_EL2 must have EL1PCTEN (bit 0)
- set where available.
+ CNTFRQ must be programmed with the timer frequency and CNTVOFF must
+ be programmed with a consistent value on all CPUs. If entering the
+ kernel at EL1, CNTHCTL_EL2 must have EL1PCTEN (bit 0) set where
+ available.
- Coherency
All CPUs to be booted by the kernel must be part of the same coherency
@@ -130,30 +141,46 @@ Before jumping into the kernel, the following conditions must be met:
the kernel image will be entered must be initialised by software at a
higher exception level to prevent execution in an UNKNOWN state.
+The requirements described above for CPU mode, caches, MMUs, architected
+timers, coherency and system registers apply to all CPUs. All CPUs must
+enter the kernel in the same exception level.
+
The boot loader is expected to enter the kernel on each CPU in the
following manner:
- The primary CPU must jump directly to the first instruction of the
kernel image. The device tree blob passed by this CPU must contain
- for each CPU node:
-
- 1. An 'enable-method' property. Currently, the only supported value
- for this field is the string "spin-table".
-
- 2. A 'cpu-release-addr' property identifying a 64-bit,
- zero-initialised memory location.
+ an 'enable-method' property for each cpu node. The supported
+ enable-methods are described below.
It is expected that the bootloader will generate these device tree
properties and insert them into the blob prior to kernel entry.
-- Any secondary CPUs must spin outside of the kernel in a reserved area
- of memory (communicated to the kernel by a /memreserve/ region in the
+- CPUs with a "spin-table" enable-method must have a 'cpu-release-addr'
+ property in their cpu node. This property identifies a
+ naturally-aligned 64-bit zero-initalised memory location.
+
+ These CPUs should spin outside of the kernel in a reserved area of
+ memory (communicated to the kernel by a /memreserve/ region in the
device tree) polling their cpu-release-addr location, which must be
contained in the reserved region. A wfe instruction may be inserted
to reduce the overhead of the busy-loop and a sev will be issued by
the primary CPU. When a read of the location pointed to by the
- cpu-release-addr returns a non-zero value, the CPU must jump directly
- to this value.
+ cpu-release-addr returns a non-zero value, the CPU must jump to this
+ value. The value will be written as a single 64-bit little-endian
+ value, so CPUs must convert the read value to their native endianness
+ before jumping to it.
+
+- CPUs with a "psci" enable method should remain outside of
+ the kernel (i.e. outside of the regions of memory described to the
+ kernel in the memory node, or in a reserved area of memory described
+ to the kernel by a /memreserve/ region in the device tree). The
+ kernel will issue CPU_ON calls as described in ARM document number ARM
+ DEN 0022A ("Power State Coordination Interface System Software on ARM
+ processors") to bring CPUs into the kernel.
+
+ The device tree should contain a 'psci' node, as described in
+ Documentation/devicetree/bindings/arm/psci.txt.
- Secondary CPU general-purpose register settings
x0 = 0 (reserved for future use)
diff --git a/Documentation/arm64/memory.txt b/Documentation/arm64/memory.txt
index 78a377124ef..d50fa618371 100644
--- a/Documentation/arm64/memory.txt
+++ b/Documentation/arm64/memory.txt
@@ -21,7 +21,7 @@ The swapper_pgd_dir address is written to TTBR1 and never written to
TTBR0.
-AArch64 Linux memory layout:
+AArch64 Linux memory layout with 4KB pages:
Start End Size Use
-----------------------------------------------------------------------
@@ -35,17 +35,46 @@ ffffffbc00000000 ffffffbdffffffff 8GB vmemmap
ffffffbe00000000 ffffffbffbbfffff ~8GB [guard, future vmmemap]
-ffffffbffbc00000 ffffffbffbdfffff 2MB earlyprintk device
+ffffffbffa000000 ffffffbffaffffff 16MB PCI I/O space
-ffffffbffbe00000 ffffffbffbe0ffff 64KB PCI I/O space
+ffffffbffb000000 ffffffbffbbfffff 12MB [guard]
-ffffffbbffff0000 ffffffbcffffffff ~2MB [guard]
+ffffffbffbc00000 ffffffbffbdfffff 2MB fixed mappings
+
+ffffffbffbe00000 ffffffbffbffffff 2MB [guard]
ffffffbffc000000 ffffffbfffffffff 64MB modules
ffffffc000000000 ffffffffffffffff 256GB kernel logical memory map
+AArch64 Linux memory layout with 64KB pages:
+
+Start End Size Use
+-----------------------------------------------------------------------
+0000000000000000 000003ffffffffff 4TB user
+
+fffffc0000000000 fffffdfbfffeffff ~2TB vmalloc
+
+fffffdfbffff0000 fffffdfbffffffff 64KB [guard page]
+
+fffffdfc00000000 fffffdfdffffffff 8GB vmemmap
+
+fffffdfe00000000 fffffdfffbbfffff ~8GB [guard, future vmmemap]
+
+fffffdfffa000000 fffffdfffaffffff 16MB PCI I/O space
+
+fffffdfffb000000 fffffdfffbbfffff 12MB [guard]
+
+fffffdfffbc00000 fffffdfffbdfffff 2MB fixed mappings
+
+fffffdfffbe00000 fffffdfffbffffff 2MB [guard]
+
+fffffdfffc000000 fffffdffffffffff 64MB modules
+
+fffffe0000000000 ffffffffffffffff 2TB kernel logical memory map
+
+
Translation table lookup with 4KB pages:
+--------+--------+--------+--------+--------+--------+--------+--------+
diff --git a/Documentation/arm64/tagged-pointers.txt b/Documentation/arm64/tagged-pointers.txt
index 264e9841563..d9995f1f51b 100644
--- a/Documentation/arm64/tagged-pointers.txt
+++ b/Documentation/arm64/tagged-pointers.txt
@@ -18,17 +18,17 @@ this byte for application use, with the following caveats:
parameters containing user virtual addresses *must* have
their top byte cleared before trapping to the kernel.
- (2) Tags are not guaranteed to be preserved when delivering
- signals. This means that signal handlers in applications
- making use of tags cannot rely on the tag information for
- user virtual addresses being maintained for fields inside
- siginfo_t. One exception to this rule is for signals raised
- in response to debug exceptions, where the tag information
+ (2) Non-zero tags are not preserved when delivering signals.
+ This means that signal handlers in applications making use
+ of tags cannot rely on the tag information for user virtual
+ addresses being maintained for fields inside siginfo_t.
+ One exception to this rule is for signals raised in response
+ to watchpoint debug exceptions, where the tag information
will be preserved.
(3) Special care should be taken when using tagged pointers,
since it is likely that C compilers will not hazard two
- addresses differing only in the upper bits.
+ virtual addresses differing only in the upper byte.
The architecture prevents the use of a tagged PC, so the upper byte will
be set to a sign-extension of bit 55 on exception return.
diff --git a/Documentation/assoc_array.txt b/Documentation/assoc_array.txt
new file mode 100644
index 00000000000..2f2c6cdd73c
--- /dev/null
+++ b/Documentation/assoc_array.txt
@@ -0,0 +1,574 @@
+ ========================================
+ GENERIC ASSOCIATIVE ARRAY IMPLEMENTATION
+ ========================================
+
+Contents:
+
+ - Overview.
+
+ - The public API.
+ - Edit script.
+ - Operations table.
+ - Manipulation functions.
+ - Access functions.
+ - Index key form.
+
+ - Internal workings.
+ - Basic internal tree layout.
+ - Shortcuts.
+ - Splitting and collapsing nodes.
+ - Non-recursive iteration.
+ - Simultaneous alteration and iteration.
+
+
+========
+OVERVIEW
+========
+
+This associative array implementation is an object container with the following
+properties:
+
+ (1) Objects are opaque pointers. The implementation does not care where they
+ point (if anywhere) or what they point to (if anything).
+
+ [!] NOTE: Pointers to objects _must_ be zero in the least significant bit.
+
+ (2) Objects do not need to contain linkage blocks for use by the array. This
+ permits an object to be located in multiple arrays simultaneously.
+ Rather, the array is made up of metadata blocks that point to objects.
+
+ (3) Objects require index keys to locate them within the array.
+
+ (4) Index keys must be unique. Inserting an object with the same key as one
+ already in the array will replace the old object.
+
+ (5) Index keys can be of any length and can be of different lengths.
+
+ (6) Index keys should encode the length early on, before any variation due to
+ length is seen.
+
+ (7) Index keys can include a hash to scatter objects throughout the array.
+
+ (8) The array can iterated over. The objects will not necessarily come out in
+ key order.
+
+ (9) The array can be iterated over whilst it is being modified, provided the
+ RCU readlock is being held by the iterator. Note, however, under these
+ circumstances, some objects may be seen more than once. If this is a
+ problem, the iterator should lock against modification. Objects will not
+ be missed, however, unless deleted.
+
+(10) Objects in the array can be looked up by means of their index key.
+
+(11) Objects can be looked up whilst the array is being modified, provided the
+ RCU readlock is being held by the thread doing the look up.
+
+The implementation uses a tree of 16-pointer nodes internally that are indexed
+on each level by nibbles from the index key in the same manner as in a radix
+tree. To improve memory efficiency, shortcuts can be emplaced to skip over
+what would otherwise be a series of single-occupancy nodes. Further, nodes
+pack leaf object pointers into spare space in the node rather than making an
+extra branch until as such time an object needs to be added to a full node.
+
+
+==============
+THE PUBLIC API
+==============
+
+The public API can be found in <linux/assoc_array.h>. The associative array is
+rooted on the following structure:
+
+ struct assoc_array {
+ ...
+ };
+
+The code is selected by enabling CONFIG_ASSOCIATIVE_ARRAY.
+
+
+EDIT SCRIPT
+-----------
+
+The insertion and deletion functions produce an 'edit script' that can later be
+applied to effect the changes without risking ENOMEM. This retains the
+preallocated metadata blocks that will be installed in the internal tree and
+keeps track of the metadata blocks that will be removed from the tree when the
+script is applied.
+
+This is also used to keep track of dead blocks and dead objects after the
+script has been applied so that they can be freed later. The freeing is done
+after an RCU grace period has passed - thus allowing access functions to
+proceed under the RCU read lock.
+
+The script appears as outside of the API as a pointer of the type:
+
+ struct assoc_array_edit;
+
+There are two functions for dealing with the script:
+
+ (1) Apply an edit script.
+
+ void assoc_array_apply_edit(struct assoc_array_edit *edit);
+
+ This will perform the edit functions, interpolating various write barriers
+ to permit accesses under the RCU read lock to continue. The edit script
+ will then be passed to call_rcu() to free it and any dead stuff it points
+ to.
+
+ (2) Cancel an edit script.
+
+ void assoc_array_cancel_edit(struct assoc_array_edit *edit);
+
+ This frees the edit script and all preallocated memory immediately. If
+ this was for insertion, the new object is _not_ released by this function,
+ but must rather be released by the caller.
+
+These functions are guaranteed not to fail.
+
+
+OPERATIONS TABLE
+----------------
+
+Various functions take a table of operations:
+
+ struct assoc_array_ops {
+ ...
+ };
+
+This points to a number of methods, all of which need to be provided:
+
+ (1) Get a chunk of index key from caller data:
+
+ unsigned long (*get_key_chunk)(const void *index_key, int level);
+
+ This should return a chunk of caller-supplied index key starting at the
+ *bit* position given by the level argument. The level argument will be a
+ multiple of ASSOC_ARRAY_KEY_CHUNK_SIZE and the function should return
+ ASSOC_ARRAY_KEY_CHUNK_SIZE bits. No error is possible.
+
+
+ (2) Get a chunk of an object's index key.
+
+ unsigned long (*get_object_key_chunk)(const void *object, int level);
+
+ As the previous function, but gets its data from an object in the array
+ rather than from a caller-supplied index key.
+
+
+ (3) See if this is the object we're looking for.
+
+ bool (*compare_object)(const void *object, const void *index_key);
+
+ Compare the object against an index key and return true if it matches and
+ false if it doesn't.
+
+
+ (4) Diff the index keys of two objects.
+
+ int (*diff_objects)(const void *object, const void *index_key);
+
+ Return the bit position at which the index key of the specified object
+ differs from the given index key or -1 if they are the same.
+
+
+ (5) Free an object.
+
+ void (*free_object)(void *object);
+
+ Free the specified object. Note that this may be called an RCU grace
+ period after assoc_array_apply_edit() was called, so synchronize_rcu() may
+ be necessary on module unloading.
+
+
+MANIPULATION FUNCTIONS
+----------------------
+
+There are a number of functions for manipulating an associative array:
+
+ (1) Initialise an associative array.
+
+ void assoc_array_init(struct assoc_array *array);
+
+ This initialises the base structure for an associative array. It can't
+ fail.
+
+
+ (2) Insert/replace an object in an associative array.
+
+ struct assoc_array_edit *
+ assoc_array_insert(struct assoc_array *array,
+ const struct assoc_array_ops *ops,
+ const void *index_key,
+ void *object);
+
+ This inserts the given object into the array. Note that the least
+ significant bit of the pointer must be zero as it's used to type-mark
+ pointers internally.
+
+ If an object already exists for that key then it will be replaced with the
+ new object and the old one will be freed automatically.
+
+ The index_key argument should hold index key information and is
+ passed to the methods in the ops table when they are called.
+
+ This function makes no alteration to the array itself, but rather returns
+ an edit script that must be applied. -ENOMEM is returned in the case of
+ an out-of-memory error.
+
+ The caller should lock exclusively against other modifiers of the array.
+
+
+ (3) Delete an object from an associative array.
+
+ struct assoc_array_edit *
+ assoc_array_delete(struct assoc_array *array,
+ const struct assoc_array_ops *ops,
+ const void *index_key);
+
+ This deletes an object that matches the specified data from the array.
+
+ The index_key argument should hold index key information and is
+ passed to the methods in the ops table when they are called.
+
+ This function makes no alteration to the array itself, but rather returns
+ an edit script that must be applied. -ENOMEM is returned in the case of
+ an out-of-memory error. NULL will be returned if the specified object is
+ not found within the array.
+
+ The caller should lock exclusively against other modifiers of the array.
+
+
+ (4) Delete all objects from an associative array.
+
+ struct assoc_array_edit *
+ assoc_array_clear(struct assoc_array *array,
+ const struct assoc_array_ops *ops);
+
+ This deletes all the objects from an associative array and leaves it
+ completely empty.
+
+ This function makes no alteration to the array itself, but rather returns
+ an edit script that must be applied. -ENOMEM is returned in the case of
+ an out-of-memory error.
+
+ The caller should lock exclusively against other modifiers of the array.
+
+
+ (5) Destroy an associative array, deleting all objects.
+
+ void assoc_array_destroy(struct assoc_array *array,
+ const struct assoc_array_ops *ops);
+
+ This destroys the contents of the associative array and leaves it
+ completely empty. It is not permitted for another thread to be traversing
+ the array under the RCU read lock at the same time as this function is
+ destroying it as no RCU deferral is performed on memory release -
+ something that would require memory to be allocated.
+
+ The caller should lock exclusively against other modifiers and accessors
+ of the array.
+
+
+ (6) Garbage collect an associative array.
+
+ int assoc_array_gc(struct assoc_array *array,
+ const struct assoc_array_ops *ops,
+ bool (*iterator)(void *object, void *iterator_data),
+ void *iterator_data);
+
+ This iterates over the objects in an associative array and passes each one
+ to iterator(). If iterator() returns true, the object is kept. If it
+ returns false, the object will be freed. If the iterator() function
+ returns true, it must perform any appropriate refcount incrementing on the
+ object before returning.
+
+ The internal tree will be packed down if possible as part of the iteration
+ to reduce the number of nodes in it.
+
+ The iterator_data is passed directly to iterator() and is otherwise
+ ignored by the function.
+
+ The function will return 0 if successful and -ENOMEM if there wasn't
+ enough memory.
+
+ It is possible for other threads to iterate over or search the array under
+ the RCU read lock whilst this function is in progress. The caller should
+ lock exclusively against other modifiers of the array.
+
+
+ACCESS FUNCTIONS
+----------------
+
+There are two functions for accessing an associative array:
+
+ (1) Iterate over all the objects in an associative array.
+
+ int assoc_array_iterate(const struct assoc_array *array,
+ int (*iterator)(const void *object,
+ void *iterator_data),
+ void *iterator_data);
+
+ This passes each object in the array to the iterator callback function.
+ iterator_data is private data for that function.
+
+ This may be used on an array at the same time as the array is being
+ modified, provided the RCU read lock is held. Under such circumstances,
+ it is possible for the iteration function to see some objects twice. If
+ this is a problem, then modification should be locked against. The
+ iteration algorithm should not, however, miss any objects.
+
+ The function will return 0 if no objects were in the array or else it will
+ return the result of the last iterator function called. Iteration stops
+ immediately if any call to the iteration function results in a non-zero
+ return.
+
+
+ (2) Find an object in an associative array.
+
+ void *assoc_array_find(const struct assoc_array *array,
+ const struct assoc_array_ops *ops,
+ const void *index_key);
+
+ This walks through the array's internal tree directly to the object
+ specified by the index key..
+
+ This may be used on an array at the same time as the array is being
+ modified, provided the RCU read lock is held.
+
+ The function will return the object if found (and set *_type to the object
+ type) or will return NULL if the object was not found.
+
+
+INDEX KEY FORM
+--------------
+
+The index key can be of any form, but since the algorithms aren't told how long
+the key is, it is strongly recommended that the index key includes its length
+very early on before any variation due to the length would have an effect on
+comparisons.
+
+This will cause leaves with different length keys to scatter away from each
+other - and those with the same length keys to cluster together.
+
+It is also recommended that the index key begin with a hash of the rest of the
+key to maximise scattering throughout keyspace.
+
+The better the scattering, the wider and lower the internal tree will be.
+
+Poor scattering isn't too much of a problem as there are shortcuts and nodes
+can contain mixtures of leaves and metadata pointers.
+
+The index key is read in chunks of machine word. Each chunk is subdivided into
+one nibble (4 bits) per level, so on a 32-bit CPU this is good for 8 levels and
+on a 64-bit CPU, 16 levels. Unless the scattering is really poor, it is
+unlikely that more than one word of any particular index key will have to be
+used.
+
+
+=================
+INTERNAL WORKINGS
+=================
+
+The associative array data structure has an internal tree. This tree is
+constructed of two types of metadata blocks: nodes and shortcuts.
+
+A node is an array of slots. Each slot can contain one of four things:
+
+ (*) A NULL pointer, indicating that the slot is empty.
+
+ (*) A pointer to an object (a leaf).
+
+ (*) A pointer to a node at the next level.
+
+ (*) A pointer to a shortcut.
+
+
+BASIC INTERNAL TREE LAYOUT
+--------------------------
+
+Ignoring shortcuts for the moment, the nodes form a multilevel tree. The index
+key space is strictly subdivided by the nodes in the tree and nodes occur on
+fixed levels. For example:
+
+ Level: 0 1 2 3
+ =============== =============== =============== ===============
+ NODE D
+ NODE B NODE C +------>+---+
+ +------>+---+ +------>+---+ | | 0 |
+ NODE A | | 0 | | | 0 | | +---+
+ +---+ | +---+ | +---+ | : :
+ | 0 | | : : | : : | +---+
+ +---+ | +---+ | +---+ | | f |
+ | 1 |---+ | 3 |---+ | 7 |---+ +---+
+ +---+ +---+ +---+
+ : : : : | 8 |---+
+ +---+ +---+ +---+ | NODE E
+ | e |---+ | f | : : +------>+---+
+ +---+ | +---+ +---+ | 0 |
+ | f | | | f | +---+
+ +---+ | +---+ : :
+ | NODE F +---+
+ +------>+---+ | f |
+ | 0 | NODE G +---+
+ +---+ +------>+---+
+ : : | | 0 |
+ +---+ | +---+
+ | 6 |---+ : :
+ +---+ +---+
+ : : | f |
+ +---+ +---+
+ | f |
+ +---+
+
+In the above example, there are 7 nodes (A-G), each with 16 slots (0-f).
+Assuming no other meta data nodes in the tree, the key space is divided thusly:
+
+ KEY PREFIX NODE
+ ========== ====
+ 137* D
+ 138* E
+ 13[0-69-f]* C
+ 1[0-24-f]* B
+ e6* G
+ e[0-57-f]* F
+ [02-df]* A
+
+So, for instance, keys with the following example index keys will be found in
+the appropriate nodes:
+
+ INDEX KEY PREFIX NODE
+ =============== ======= ====
+ 13694892892489 13 C
+ 13795289025897 137 D
+ 13889dde88793 138 E
+ 138bbb89003093 138 E
+ 1394879524789 12 C
+ 1458952489 1 B
+ 9431809de993ba - A
+ b4542910809cd - A
+ e5284310def98 e F
+ e68428974237 e6 G
+ e7fffcbd443 e F
+ f3842239082 - A
+
+To save memory, if a node can hold all the leaves in its portion of keyspace,
+then the node will have all those leaves in it and will not have any metadata
+pointers - even if some of those leaves would like to be in the same slot.
+
+A node can contain a heterogeneous mix of leaves and metadata pointers.
+Metadata pointers must be in the slots that match their subdivisions of key
+space. The leaves can be in any slot not occupied by a metadata pointer. It
+is guaranteed that none of the leaves in a node will match a slot occupied by a
+metadata pointer. If the metadata pointer is there, any leaf whose key matches
+the metadata key prefix must be in the subtree that the metadata pointer points
+to.
+
+In the above example list of index keys, node A will contain:
+
+ SLOT CONTENT INDEX KEY (PREFIX)
+ ==== =============== ==================
+ 1 PTR TO NODE B 1*
+ any LEAF 9431809de993ba
+ any LEAF b4542910809cd
+ e PTR TO NODE F e*
+ any LEAF f3842239082
+
+and node B:
+
+ 3 PTR TO NODE C 13*
+ any LEAF 1458952489
+
+
+SHORTCUTS
+---------
+
+Shortcuts are metadata records that jump over a piece of keyspace. A shortcut
+is a replacement for a series of single-occupancy nodes ascending through the
+levels. Shortcuts exist to save memory and to speed up traversal.
+
+It is possible for the root of the tree to be a shortcut - say, for example,
+the tree contains at least 17 nodes all with key prefix '1111'. The insertion
+algorithm will insert a shortcut to skip over the '1111' keyspace in a single
+bound and get to the fourth level where these actually become different.
+
+
+SPLITTING AND COLLAPSING NODES
+------------------------------
+
+Each node has a maximum capacity of 16 leaves and metadata pointers. If the
+insertion algorithm finds that it is trying to insert a 17th object into a
+node, that node will be split such that at least two leaves that have a common
+key segment at that level end up in a separate node rooted on that slot for
+that common key segment.
+
+If the leaves in a full node and the leaf that is being inserted are
+sufficiently similar, then a shortcut will be inserted into the tree.
+
+When the number of objects in the subtree rooted at a node falls to 16 or
+fewer, then the subtree will be collapsed down to a single node - and this will
+ripple towards the root if possible.
+
+
+NON-RECURSIVE ITERATION
+-----------------------
+
+Each node and shortcut contains a back pointer to its parent and the number of
+slot in that parent that points to it. None-recursive iteration uses these to
+proceed rootwards through the tree, going to the parent node, slot N + 1 to
+make sure progress is made without the need for a stack.
+
+The backpointers, however, make simultaneous alteration and iteration tricky.
+
+
+SIMULTANEOUS ALTERATION AND ITERATION
+-------------------------------------
+
+There are a number of cases to consider:
+
+ (1) Simple insert/replace. This involves simply replacing a NULL or old
+ matching leaf pointer with the pointer to the new leaf after a barrier.
+ The metadata blocks don't change otherwise. An old leaf won't be freed
+ until after the RCU grace period.
+
+ (2) Simple delete. This involves just clearing an old matching leaf. The
+ metadata blocks don't change otherwise. The old leaf won't be freed until
+ after the RCU grace period.
+
+ (3) Insertion replacing part of a subtree that we haven't yet entered. This
+ may involve replacement of part of that subtree - but that won't affect
+ the iteration as we won't have reached the pointer to it yet and the
+ ancestry blocks are not replaced (the layout of those does not change).
+
+ (4) Insertion replacing nodes that we're actively processing. This isn't a
+ problem as we've passed the anchoring pointer and won't switch onto the
+ new layout until we follow the back pointers - at which point we've
+ already examined the leaves in the replaced node (we iterate over all the
+ leaves in a node before following any of its metadata pointers).
+
+ We might, however, re-see some leaves that have been split out into a new
+ branch that's in a slot further along than we were at.
+
+ (5) Insertion replacing nodes that we're processing a dependent branch of.
+ This won't affect us until we follow the back pointers. Similar to (4).
+
+ (6) Deletion collapsing a branch under us. This doesn't affect us because the
+ back pointers will get us back to the parent of the new node before we
+ could see the new node. The entire collapsed subtree is thrown away
+ unchanged - and will still be rooted on the same slot, so we shouldn't
+ process it a second time as we'll go back to slot + 1.
+
+Note:
+
+ (*) Under some circumstances, we need to simultaneously change the parent
+ pointer and the parent slot pointer on a node (say, for example, we
+ inserted another node before it and moved it up a level). We cannot do
+ this without locking against a read - so we have to replace that node too.
+
+ However, when we're changing a shortcut into a node this isn't a problem
+ as shortcuts only have one slot and so the parent slot number isn't used
+ when traversing backwards over one. This means that it's okay to change
+ the slot number first - provided suitable barriers are used to make sure
+ the parent slot number is read after the back pointer.
+
+Obsolete blocks and leaves are freed up after an RCU grace period has passed,
+so as long as anyone doing walking or iteration holds the RCU read lock, the
+old superstructure should not go away on them.
diff --git a/Documentation/atomic_ops.txt b/Documentation/atomic_ops.txt
index d9ca5be9b47..68542fe13b8 100644
--- a/Documentation/atomic_ops.txt
+++ b/Documentation/atomic_ops.txt
@@ -285,15 +285,13 @@ If a caller requires memory barrier semantics around an atomic_t
operation which does not return a value, a set of interfaces are
defined which accomplish this:
- void smp_mb__before_atomic_dec(void);
- void smp_mb__after_atomic_dec(void);
- void smp_mb__before_atomic_inc(void);
- void smp_mb__after_atomic_inc(void);
+ void smp_mb__before_atomic(void);
+ void smp_mb__after_atomic(void);
-For example, smp_mb__before_atomic_dec() can be used like so:
+For example, smp_mb__before_atomic() can be used like so:
obj->dead = 1;
- smp_mb__before_atomic_dec();
+ smp_mb__before_atomic();
atomic_dec(&obj->ref_count);
It makes sure that all memory operations preceding the atomic_dec()
@@ -302,15 +300,10 @@ operation. In the above example, it guarantees that the assignment of
"1" to obj->dead will be globally visible to other cpus before the
atomic counter decrement.
-Without the explicit smp_mb__before_atomic_dec() call, the
+Without the explicit smp_mb__before_atomic() call, the
implementation could legally allow the atomic counter update visible
to other cpus before the "obj->dead = 1;" assignment.
-The other three interfaces listed are used to provide explicit
-ordering with respect to memory operations after an atomic_dec() call
-(smp_mb__after_atomic_dec()) and around atomic_inc() calls
-(smp_mb__{before,after}_atomic_inc()).
-
A missing memory barrier in the cases where they are required by the
atomic_t implementation above can have disastrous results. Here is
an example, which follows a pattern occurring frequently in the Linux
@@ -487,12 +480,12 @@ Finally there is the basic operation:
Which returns a boolean indicating if bit "nr" is set in the bitmask
pointed to by "addr".
-If explicit memory barriers are required around clear_bit() (which
-does not return a value, and thus does not need to provide memory
-barrier semantics), two interfaces are provided:
+If explicit memory barriers are required around {set,clear}_bit() (which do
+not return a value, and thus does not need to provide memory barrier
+semantics), two interfaces are provided:
- void smp_mb__before_clear_bit(void);
- void smp_mb__after_clear_bit(void);
+ void smp_mb__before_atomic(void);
+ void smp_mb__after_atomic(void);
They are used as follows, and are akin to their atomic_t operation
brothers:
@@ -500,13 +493,13 @@ brothers:
/* All memory operations before this call will
* be globally visible before the clear_bit().
*/
- smp_mb__before_clear_bit();
+ smp_mb__before_atomic();
clear_bit( ... );
/* The clear_bit() will be visible before all
* subsequent memory operations.
*/
- smp_mb__after_clear_bit();
+ smp_mb__after_atomic();
There are two special bitops with lock barrier semantics (acquire/release,
same as spinlocks). These operate in the same way as their non-_lock/unlock
diff --git a/Documentation/backlight/lp855x-driver.txt b/Documentation/backlight/lp855x-driver.txt
index 1c732f0c675..01bce243d3d 100644
--- a/Documentation/backlight/lp855x-driver.txt
+++ b/Documentation/backlight/lp855x-driver.txt
@@ -4,7 +4,8 @@ Kernel driver lp855x
Backlight driver for LP855x ICs
Supported chips:
- Texas Instruments LP8550, LP8551, LP8552, LP8553, LP8556 and LP8557
+ Texas Instruments LP8550, LP8551, LP8552, LP8553, LP8555, LP8556 and
+ LP8557
Author: Milo(Woogyom) Kim <milo.kim@ti.com>
@@ -24,7 +25,7 @@ Value : pwm based or register based
2) chip_id
The lp855x chip id.
-Value : lp8550/lp8551/lp8552/lp8553/lp8556/lp8557
+Value : lp8550/lp8551/lp8552/lp8553/lp8555/lp8556/lp8557
Platform data for lp855x
------------------------
diff --git a/Documentation/blackfin/00-INDEX b/Documentation/blackfin/00-INDEX
index 2df0365f2df..c54fcdd4ae9 100644
--- a/Documentation/blackfin/00-INDEX
+++ b/Documentation/blackfin/00-INDEX
@@ -1,8 +1,10 @@
00-INDEX
- This file
-
+Makefile
+ - Makefile for gptimers example file.
bfin-gpio-notes.txt
- Notes in developing/using bfin-gpio driver.
-
bfin-spi-notes.txt
- Notes for using bfin spi bus driver.
+gptimers-example.c
+ - gptimers example
diff --git a/Documentation/block/00-INDEX b/Documentation/block/00-INDEX
index d18ecd827c4..e840b47613f 100644
--- a/Documentation/block/00-INDEX
+++ b/Documentation/block/00-INDEX
@@ -6,12 +6,16 @@ capability.txt
- Generic Block Device Capability (/sys/block/<device>/capability)
cfq-iosched.txt
- CFQ IO scheduler tunables
+cmdline-partition.txt
+ - how to specify block device partitions on kernel command line
data-integrity.txt
- Block data integrity
deadline-iosched.txt
- Deadline IO scheduler tunables
ioprio.txt
- Block io priorities (in CFQ scheduler)
+null_blk.txt
+ - Null block for block-layer benchmarking.
queue-sysfs.txt
- Queue's sysfs entries
request.txt
diff --git a/Documentation/block/biodoc.txt b/Documentation/block/biodoc.txt
index 8df5e8e6dce..2101e718670 100644
--- a/Documentation/block/biodoc.txt
+++ b/Documentation/block/biodoc.txt
@@ -447,14 +447,13 @@ struct bio_vec {
* main unit of I/O for the block layer and lower layers (ie drivers)
*/
struct bio {
- sector_t bi_sector;
struct bio *bi_next; /* request queue link */
struct block_device *bi_bdev; /* target device */
unsigned long bi_flags; /* status, command, etc */
unsigned long bi_rw; /* low bits: r/w, high: priority */
unsigned int bi_vcnt; /* how may bio_vec's */
- unsigned int bi_idx; /* current index into bio_vec array */
+ struct bvec_iter bi_iter; /* current index into bio_vec array */
unsigned int bi_size; /* total size in bytes */
unsigned short bi_phys_segments; /* segments after physaddr coalesce*/
@@ -480,7 +479,7 @@ With this multipage bio design:
- Code that traverses the req list can find all the segments of a bio
by using rq_for_each_segment. This handles the fact that a request
has multiple bios, each of which can have multiple segments.
-- Drivers which can't process a large bio in one shot can use the bi_idx
+- Drivers which can't process a large bio in one shot can use the bi_iter
field to keep track of the next bio_vec entry to process.
(e.g a 1MB bio_vec needs to be handled in max 128kB chunks for IDE)
[TBD: Should preferably also have a bi_voffset and bi_vlen to avoid modifying
@@ -589,7 +588,7 @@ driver should not modify these values. The block layer sets up the
nr_sectors and current_nr_sectors fields (based on the corresponding
hard_xxx values and the number of bytes transferred) and updates it on
every transfer that invokes end_that_request_first. It does the same for the
-buffer, bio, bio->bi_idx fields too.
+buffer, bio, bio->bi_iter fields too.
The buffer field is just a virtual address mapping of the current segment
of the i/o buffer in cases where the buffer resides in low-memory. For high
diff --git a/Documentation/block/biovecs.txt b/Documentation/block/biovecs.txt
new file mode 100644
index 00000000000..74a32ad52f5
--- /dev/null
+++ b/Documentation/block/biovecs.txt
@@ -0,0 +1,111 @@
+
+Immutable biovecs and biovec iterators:
+=======================================
+
+Kent Overstreet <kmo@daterainc.com>
+
+As of 3.13, biovecs should never be modified after a bio has been submitted.
+Instead, we have a new struct bvec_iter which represents a range of a biovec -
+the iterator will be modified as the bio is completed, not the biovec.
+
+More specifically, old code that needed to partially complete a bio would
+update bi_sector and bi_size, and advance bi_idx to the next biovec. If it
+ended up partway through a biovec, it would increment bv_offset and decrement
+bv_len by the number of bytes completed in that biovec.
+
+In the new scheme of things, everything that must be mutated in order to
+partially complete a bio is segregated into struct bvec_iter: bi_sector,
+bi_size and bi_idx have been moved there; and instead of modifying bv_offset
+and bv_len, struct bvec_iter has bi_bvec_done, which represents the number of
+bytes completed in the current bvec.
+
+There are a bunch of new helper macros for hiding the gory details - in
+particular, presenting the illusion of partially completed biovecs so that
+normal code doesn't have to deal with bi_bvec_done.
+
+ * Driver code should no longer refer to biovecs directly; we now have
+ bio_iovec() and bio_iovec_iter() macros that return literal struct biovecs,
+ constructed from the raw biovecs but taking into account bi_bvec_done and
+ bi_size.
+
+ bio_for_each_segment() has been updated to take a bvec_iter argument
+ instead of an integer (that corresponded to bi_idx); for a lot of code the
+ conversion just required changing the types of the arguments to
+ bio_for_each_segment().
+
+ * Advancing a bvec_iter is done with bio_advance_iter(); bio_advance() is a
+ wrapper around bio_advance_iter() that operates on bio->bi_iter, and also
+ advances the bio integrity's iter if present.
+
+ There is a lower level advance function - bvec_iter_advance() - which takes
+ a pointer to a biovec, not a bio; this is used by the bio integrity code.
+
+What's all this get us?
+=======================
+
+Having a real iterator, and making biovecs immutable, has a number of
+advantages:
+
+ * Before, iterating over bios was very awkward when you weren't processing
+ exactly one bvec at a time - for example, bio_copy_data() in fs/bio.c,
+ which copies the contents of one bio into another. Because the biovecs
+ wouldn't necessarily be the same size, the old code was tricky convoluted -
+ it had to walk two different bios at the same time, keeping both bi_idx and
+ and offset into the current biovec for each.
+
+ The new code is much more straightforward - have a look. This sort of
+ pattern comes up in a lot of places; a lot of drivers were essentially open
+ coding bvec iterators before, and having common implementation considerably
+ simplifies a lot of code.
+
+ * Before, any code that might need to use the biovec after the bio had been
+ completed (perhaps to copy the data somewhere else, or perhaps to resubmit
+ it somewhere else if there was an error) had to save the entire bvec array
+ - again, this was being done in a fair number of places.
+
+ * Biovecs can be shared between multiple bios - a bvec iter can represent an
+ arbitrary range of an existing biovec, both starting and ending midway
+ through biovecs. This is what enables efficient splitting of arbitrary
+ bios. Note that this means we _only_ use bi_size to determine when we've
+ reached the end of a bio, not bi_vcnt - and the bio_iovec() macro takes
+ bi_size into account when constructing biovecs.
+
+ * Splitting bios is now much simpler. The old bio_split() didn't even work on
+ bios with more than a single bvec! Now, we can efficiently split arbitrary
+ size bios - because the new bio can share the old bio's biovec.
+
+ Care must be taken to ensure the biovec isn't freed while the split bio is
+ still using it, in case the original bio completes first, though. Using
+ bio_chain() when splitting bios helps with this.
+
+ * Submitting partially completed bios is now perfectly fine - this comes up
+ occasionally in stacking block drivers and various code (e.g. md and
+ bcache) had some ugly workarounds for this.
+
+ It used to be the case that submitting a partially completed bio would work
+ fine to _most_ devices, but since accessing the raw bvec array was the
+ norm, not all drivers would respect bi_idx and those would break. Now,
+ since all drivers _must_ go through the bvec iterator - and have been
+ audited to make sure they are - submitting partially completed bios is
+ perfectly fine.
+
+Other implications:
+===================
+
+ * Almost all usage of bi_idx is now incorrect and has been removed; instead,
+ where previously you would have used bi_idx you'd now use a bvec_iter,
+ probably passing it to one of the helper macros.
+
+ I.e. instead of using bio_iovec_idx() (or bio->bi_iovec[bio->bi_idx]), you
+ now use bio_iter_iovec(), which takes a bvec_iter and returns a
+ literal struct bio_vec - constructed on the fly from the raw biovec but
+ taking into account bi_bvec_done (and bi_size).
+
+ * bi_vcnt can't be trusted or relied upon by driver code - i.e. anything that
+ doesn't actually own the bio. The reason is twofold: firstly, it's not
+ actually needed for iterating over the bio anymore - we only use bi_size.
+ Secondly, when cloning a bio and reusing (a portion of) the original bio's
+ biovec, in order to calculate bi_vcnt for the new bio we'd have to iterate
+ over all the biovecs in the new bio - which is silly as it's not needed.
+
+ So, don't use bi_vcnt anymore.
diff --git a/Documentation/block/cmdline-partition.txt b/Documentation/block/cmdline-partition.txt
index 2bbf4cc40c3..525b9f6d7fb 100644
--- a/Documentation/block/cmdline-partition.txt
+++ b/Documentation/block/cmdline-partition.txt
@@ -1,9 +1,9 @@
-Embedded device command line partition
+Embedded device command line partition parsing
=====================================================================
-Read block device partition table from command line.
-The partition used for fixed block device (eMMC) embedded device.
-It is no MBR, save storage space. Bootloader can be easily accessed
+Support for reading the block device partition table from the command line.
+It is typically used for fixed block (eMMC) embedded devices.
+It has no MBR, so saves storage space. Bootloader can be easily accessed
by absolute address of data on the block device.
Users can easily change the partition.
diff --git a/Documentation/block/null_blk.txt b/Documentation/block/null_blk.txt
new file mode 100644
index 00000000000..b2830b43589
--- /dev/null
+++ b/Documentation/block/null_blk.txt
@@ -0,0 +1,72 @@
+Null block device driver
+================================================================================
+
+I. Overview
+
+The null block device (/dev/nullb*) is used for benchmarking the various
+block-layer implementations. It emulates a block device of X gigabytes in size.
+The following instances are possible:
+
+ Single-queue block-layer
+ - Request-based.
+ - Single submission queue per device.
+ - Implements IO scheduling algorithms (CFQ, Deadline, noop).
+ Multi-queue block-layer
+ - Request-based.
+ - Configurable submission queues per device.
+ No block-layer (Known as bio-based)
+ - Bio-based. IO requests are submitted directly to the device driver.
+ - Directly accepts bio data structure and returns them.
+
+All of them have a completion queue for each core in the system.
+
+II. Module parameters applicable for all instances:
+
+queue_mode=[0-2]: Default: 2-Multi-queue
+ Selects which block-layer the module should instantiate with.
+
+ 0: Bio-based.
+ 1: Single-queue.
+ 2: Multi-queue.
+
+home_node=[0--nr_nodes]: Default: NUMA_NO_NODE
+ Selects what CPU node the data structures are allocated from.
+
+gb=[Size in GB]: Default: 250GB
+ The size of the device reported to the system.
+
+bs=[Block size (in bytes)]: Default: 512 bytes
+ The block size reported to the system.
+
+nr_devices=[Number of devices]: Default: 2
+ Number of block devices instantiated. They are instantiated as /dev/nullb0,
+ etc.
+
+irq_mode=[0-2]: Default: 1-Soft-irq
+ The completion mode used for completing IOs to the block-layer.
+
+ 0: None.
+ 1: Soft-irq. Uses IPI to complete IOs across CPU nodes. Simulates the overhead
+ when IOs are issued from another CPU node than the home the device is
+ connected to.
+ 2: Timer: Waits a specific period (completion_nsec) for each IO before
+ completion.
+
+completion_nsec=[ns]: Default: 10.000ns
+ Combined with irq_mode=2 (timer). The time each completion event must wait.
+
+submit_queues=[0..nr_cpus]:
+ The number of submission queues attached to the device driver. If unset, it
+ defaults to 1 on single-queue and bio-based instances. For multi-queue,
+ it is ignored when use_per_node_hctx module parameter is 1.
+
+hw_queue_depth=[0..qdepth]: Default: 64
+ The hardware queue depth of the device.
+
+III: Multi-queue specific parameters
+
+use_per_node_hctx=[0/1]: Default: 0
+ 0: The number of submit queues are set to the value of the submit_queues
+ parameter.
+ 1: The multi-queue block layer is instantiated with a hardware dispatch
+ queue for each CPU node in the system.
diff --git a/Documentation/blockdev/drbd/data-structure-v9.txt b/Documentation/blockdev/drbd/data-structure-v9.txt
new file mode 100644
index 00000000000..1e52a0e3262
--- /dev/null
+++ b/Documentation/blockdev/drbd/data-structure-v9.txt
@@ -0,0 +1,38 @@
+This describes the in kernel data structure for DRBD-9. Starting with
+Linux v3.14 we are reorganizing DRBD to use this data structure.
+
+Basic Data Structure
+====================
+
+A node has a number of DRBD resources. Each such resource has a number of
+devices (aka volumes) and connections to other nodes ("peer nodes"). Each DRBD
+device is represented by a block device locally.
+
+The DRBD objects are interconnected to form a matrix as depicted below; a
+drbd_peer_device object sits at each intersection between a drbd_device and a
+drbd_connection:
+
+ /--------------+---------------+.....+---------------\
+ | resource | device | | device |
+ +--------------+---------------+.....+---------------+
+ | connection | peer_device | | peer_device |
+ +--------------+---------------+.....+---------------+
+ : : : : :
+ : : : : :
+ +--------------+---------------+.....+---------------+
+ | connection | peer_device | | peer_device |
+ \--------------+---------------+.....+---------------/
+
+In this table, horizontally, devices can be accessed from resources by their
+volume number. Likewise, peer_devices can be accessed from connections by
+their volume number. Objects in the vertical direction are connected by double
+linked lists. There are back pointers from peer_devices to their connections a
+devices, and from connections and devices to their resource.
+
+All resources are in the drbd_resources double-linked list. In addition, all
+devices can be accessed by their minor device number via the drbd_devices idr.
+
+The drbd_resource, drbd_connection, and drbd_device objects are reference
+counted. The peer_device objects only serve to establish the links between
+devices and connections; their lifetime is determined by the lifetime of the
+device and connection which they reference.
diff --git a/Documentation/blockdev/floppy.txt b/Documentation/blockdev/floppy.txt
index 470fe4b5e37..e2240f5ab64 100644
--- a/Documentation/blockdev/floppy.txt
+++ b/Documentation/blockdev/floppy.txt
@@ -39,15 +39,15 @@ Module configuration options
============================
If you use the floppy driver as a module, use the following syntax:
-modprobe floppy <options>
+modprobe floppy floppy="<options>"
Example:
- modprobe floppy omnibook messages
+ modprobe floppy floppy="omnibook messages"
If you need certain options enabled every time you load the floppy driver,
you can put:
- options floppy omnibook messages
+ options floppy floppy="omnibook messages"
in a configuration file in /etc/modprobe.d/.
diff --git a/Documentation/blockdev/ramdisk.txt b/Documentation/blockdev/ramdisk.txt
index fa72e97dd66..fe2ef978d85 100644
--- a/Documentation/blockdev/ramdisk.txt
+++ b/Documentation/blockdev/ramdisk.txt
@@ -36,21 +36,30 @@ allowing one to squeeze more programs onto an average installation or
rescue floppy disk.
-2) Kernel Command Line Parameters
+2) Parameters
---------------------------------
+2a) Kernel Command Line Parameters
+
ramdisk_size=N
==============
This parameter tells the RAM disk driver to set up RAM disks of N k size. The
-default is 4096 (4 MB) (8192 (8 MB) on S390).
+default is 4096 (4 MB).
+
+2b) Module parameters
- ramdisk_blocksize=N
- ===================
+ rd_nr
+ =====
+ /dev/ramX devices created.
-This parameter tells the RAM disk driver how many bytes to use per block. The
-default is 1024 (BLOCK_SIZE).
+ max_part
+ ========
+ Maximum partition number.
+ rd_size
+ =======
+ See ramdisk_size.
3) Using "rdev -r"
------------------
diff --git a/Documentation/blockdev/zram.txt b/Documentation/blockdev/zram.txt
new file mode 100644
index 00000000000..0595c3f56cc
--- /dev/null
+++ b/Documentation/blockdev/zram.txt
@@ -0,0 +1,113 @@
+zram: Compressed RAM based block devices
+----------------------------------------
+
+* Introduction
+
+The zram module creates RAM based block devices named /dev/zram<id>
+(<id> = 0, 1, ...). Pages written to these disks are compressed and stored
+in memory itself. These disks allow very fast I/O and compression provides
+good amounts of memory savings. Some of the usecases include /tmp storage,
+use as swap disks, various caches under /var and maybe many more :)
+
+Statistics for individual zram devices are exported through sysfs nodes at
+/sys/block/zram<id>/
+
+* Usage
+
+Following shows a typical sequence of steps for using zram.
+
+1) Load Module:
+ modprobe zram num_devices=4
+ This creates 4 devices: /dev/zram{0,1,2,3}
+ (num_devices parameter is optional. Default: 1)
+
+2) Set max number of compression streams
+ Compression backend may use up to max_comp_streams compression streams,
+ thus allowing up to max_comp_streams concurrent compression operations.
+ By default, compression backend uses single compression stream.
+
+ Examples:
+ #show max compression streams number
+ cat /sys/block/zram0/max_comp_streams
+
+ #set max compression streams number to 3
+ echo 3 > /sys/block/zram0/max_comp_streams
+
+Note:
+In order to enable compression backend's multi stream support max_comp_streams
+must be initially set to desired concurrency level before ZRAM device
+initialisation. Once the device initialised as a single stream compression
+backend (max_comp_streams equals to 1), you will see error if you try to change
+the value of max_comp_streams because single stream compression backend
+implemented as a special case by lock overhead issue and does not support
+dynamic max_comp_streams. Only multi stream backend supports dynamic
+max_comp_streams adjustment.
+
+3) Select compression algorithm
+ Using comp_algorithm device attribute one can see available and
+ currently selected (shown in square brackets) compression algortithms,
+ change selected compression algorithm (once the device is initialised
+ there is no way to change compression algorithm).
+
+ Examples:
+ #show supported compression algorithms
+ cat /sys/block/zram0/comp_algorithm
+ lzo [lz4]
+
+ #select lzo compression algorithm
+ echo lzo > /sys/block/zram0/comp_algorithm
+
+4) Set Disksize
+ Set disk size by writing the value to sysfs node 'disksize'.
+ The value can be either in bytes or you can use mem suffixes.
+ Examples:
+ # Initialize /dev/zram0 with 50MB disksize
+ echo $((50*1024*1024)) > /sys/block/zram0/disksize
+
+ # Using mem suffixes
+ echo 256K > /sys/block/zram0/disksize
+ echo 512M > /sys/block/zram0/disksize
+ echo 1G > /sys/block/zram0/disksize
+
+Note:
+There is little point creating a zram of greater than twice the size of memory
+since we expect a 2:1 compression ratio. Note that zram uses about 0.1% of the
+size of the disk when not in use so a huge zram is wasteful.
+
+5) Activate:
+ mkswap /dev/zram0
+ swapon /dev/zram0
+
+ mkfs.ext4 /dev/zram1
+ mount /dev/zram1 /tmp
+
+6) Stats:
+ Per-device statistics are exported as various nodes under
+ /sys/block/zram<id>/
+ disksize
+ num_reads
+ num_writes
+ failed_reads
+ failed_writes
+ invalid_io
+ notify_free
+ zero_pages
+ orig_data_size
+ compr_data_size
+ mem_used_total
+
+7) Deactivate:
+ swapoff /dev/zram0
+ umount /dev/zram1
+
+8) Reset:
+ Write any positive value to 'reset' sysfs node
+ echo 1 > /sys/block/zram0/reset
+ echo 1 > /sys/block/zram1/reset
+
+ This frees all the memory allocated for the given device and
+ resets the disksize to zero. You must set the disksize again
+ before reusing the device.
+
+Nitin Gupta
+ngupta@vflare.org
diff --git a/Documentation/cgroups/cgroups.txt b/Documentation/cgroups/cgroups.txt
index 638bf17ff86..821de56d158 100644
--- a/Documentation/cgroups/cgroups.txt
+++ b/Documentation/cgroups/cgroups.txt
@@ -24,7 +24,6 @@ CONTENTS:
2.1 Basic Usage
2.2 Attaching processes
2.3 Mounting hierarchies by name
- 2.4 Notification API
3. Kernel API
3.1 Overview
3.2 Synchronization
@@ -472,25 +471,6 @@ you give a subsystem a name.
The name of the subsystem appears as part of the hierarchy description
in /proc/mounts and /proc/<pid>/cgroups.
-2.4 Notification API
---------------------
-
-There is mechanism which allows to get notifications about changing
-status of a cgroup.
-
-To register a new notification handler you need to:
- - create a file descriptor for event notification using eventfd(2);
- - open a control file to be monitored (e.g. memory.usage_in_bytes);
- - write "<event_fd> <control_fd> <args>" to cgroup.event_control.
- Interpretation of args is defined by control file implementation;
-
-eventfd will be woken up by control file implementation or when the
-cgroup is removed.
-
-To unregister a notification handler just close eventfd.
-
-NOTE: Support of notifications should be implemented for the control
-file. See documentation for the subsystem.
3. Kernel API
=============
diff --git a/Documentation/cgroups/memcg_test.txt b/Documentation/cgroups/memcg_test.txt
index ce94a83a7d9..80ac454704b 100644
--- a/Documentation/cgroups/memcg_test.txt
+++ b/Documentation/cgroups/memcg_test.txt
@@ -24,7 +24,7 @@ Please note that implementation details can be changed.
a page/swp_entry may be charged (usage += PAGE_SIZE) at
- mem_cgroup_newpage_charge()
+ mem_cgroup_charge_anon()
Called at new page fault and Copy-On-Write.
mem_cgroup_try_charge_swapin()
@@ -32,7 +32,7 @@ Please note that implementation details can be changed.
Followed by charge-commit-cancel protocol. (With swap accounting)
At commit, a charge recorded in swap_cgroup is removed.
- mem_cgroup_cache_charge()
+ mem_cgroup_charge_file()
Called at add_to_page_cache()
mem_cgroup_cache_charge_swapin()
diff --git a/Documentation/cgroups/memory.txt b/Documentation/cgroups/memory.txt
index 8af4ad12182..02ab997a1ed 100644
--- a/Documentation/cgroups/memory.txt
+++ b/Documentation/cgroups/memory.txt
@@ -270,6 +270,11 @@ When oom event notifier is registered, event will be delivered.
2.7 Kernel Memory Extension (CONFIG_MEMCG_KMEM)
+WARNING: Current implementation lacks reclaim support. That means allocation
+ attempts will fail when close to the limit even if there are plenty of
+ kmem available for reclaim. That makes this option unusable in real
+ life so DO NOT SELECT IT unless for development purposes.
+
With the Kernel memory extension, the Memory Controller is able to limit
the amount of kernel memory used by the system. Kernel memory is fundamentally
different than user memory, since it can't be swapped out, which makes it
@@ -453,15 +458,11 @@ About use_hierarchy, see Section 6.
5.1 force_empty
memory.force_empty interface is provided to make cgroup's memory usage empty.
- You can use this interface only when the cgroup has no tasks.
When writing anything to this
# echo 0 > memory.force_empty
- Almost all pages tracked by this memory cgroup will be unmapped and freed.
- Some pages cannot be freed because they are locked or in-use. Such pages are
- moved to parent (if use_hierarchy==1) or root (if use_hierarchy==0) and this
- cgroup will be empty.
+ the cgroup will be reclaimed and as many pages reclaimed as possible.
The typical use case for this interface is before calling rmdir().
Because rmdir() moves all pages to parent, some out-of-use page caches can be
@@ -535,16 +536,13 @@ Note:
5.3 swappiness
-Similar to /proc/sys/vm/swappiness, but affecting a hierarchy of groups only.
-Please note that unlike the global swappiness, memcg knob set to 0
-really prevents from any swapping even if there is a swap storage
-available. This might lead to memcg OOM killer if there are no file
-pages to reclaim.
+Overrides /proc/sys/vm/swappiness for the particular group. The tunable
+in the root cgroup corresponds to the global swappiness setting.
-Following cgroups' swappiness can't be changed.
-- root cgroup (uses /proc/sys/vm/swappiness).
-- a cgroup which uses hierarchy and it has other cgroup(s) below it.
-- a cgroup which uses hierarchy and not the root of hierarchy.
+Please note that unlike during the global reclaim, limit reclaim
+enforces that 0 swappiness really prevents from any swapping even if
+there is a swap storage available. This might lead to memcg OOM killer
+if there are no file pages to reclaim.
5.4 failcnt
@@ -573,15 +571,19 @@ an memcg since the pages are allowed to be allocated from any physical
node. One of the use cases is evaluating application performance by
combining this information with the application's CPU allocation.
-We export "total", "file", "anon" and "unevictable" pages per-node for
-each memcg. The ouput format of memory.numa_stat is:
+Each memcg's numa_stat file includes "total", "file", "anon" and "unevictable"
+per-node page counts including "hierarchical_<counter>" which sums up all
+hierarchical children's values in addition to the memcg's own value.
+
+The output format of memory.numa_stat is:
total=<total pages> N0=<node 0 pages> N1=<node 1 pages> ...
file=<total file pages> N0=<node 0 pages> N1=<node 1 pages> ...
anon=<total anon pages> N0=<node 0 pages> N1=<node 1 pages> ...
unevictable=<total anon pages> N0=<node 0 pages> N1=<node 1 pages> ...
+hierarchical_<counter>=<counter pages> N0=<node 0 pages> N1=<node 1 pages> ...
-And we have total = file + anon + unevictable.
+The "total" count is sum of file + anon + unevictable.
6. Hierarchy support
@@ -666,7 +668,7 @@ page tables.
8.1 Interface
-This feature is disabled by default. It can be enabledi (and disabled again) by
+This feature is disabled by default. It can be enabled (and disabled again) by
writing to memory.move_charge_at_immigrate of the destination cgroup.
If you want to enable it:
@@ -750,7 +752,6 @@ You can disable the OOM-killer by writing "1" to memory.oom_control file, as:
#echo 1 > memory.oom_control
-This operation is only allowed to the top cgroup of a sub-hierarchy.
If OOM-killer is disabled, tasks under cgroup will hang/sleep
in memory cgroup's OOM-waitqueue when they request accountable memory.
diff --git a/Documentation/cgroups/net_cls.txt b/Documentation/cgroups/net_cls.txt
index 9face6bb578..ec182346dea 100644
--- a/Documentation/cgroups/net_cls.txt
+++ b/Documentation/cgroups/net_cls.txt
@@ -6,6 +6,8 @@ tag network packets with a class identifier (classid).
The Traffic Controller (tc) can be used to assign
different priorities to packets from different cgroups.
+Also, Netfilter (iptables) can use this tag to perform
+actions on such packets.
Creating a net_cls cgroups instance creates a net_cls.classid file.
This net_cls.classid value is initialized to 0.
@@ -32,3 +34,6 @@ tc class add dev eth0 parent 10: classid 10:1 htb rate 40mbit
- creating traffic class 10:1
tc filter add dev eth0 parent 10: protocol ip prio 10 handle 1: cgroup
+
+configuring iptables, basic example:
+iptables -A OUTPUT -m cgroup ! --cgroup 0x100001 -j DROP
diff --git a/Documentation/cgroups/resource_counter.txt b/Documentation/cgroups/resource_counter.txt
index c4d99ed0b41..762ca54eb92 100644
--- a/Documentation/cgroups/resource_counter.txt
+++ b/Documentation/cgroups/resource_counter.txt
@@ -76,15 +76,7 @@ to work with it.
limit_fail_at parameter is set to the particular res_counter element
where the charging failed.
- d. int res_counter_charge_locked
- (struct res_counter *rc, unsigned long val, bool force)
-
- The same as res_counter_charge(), but it must not acquire/release the
- res_counter->lock internally (it must be called with res_counter->lock
- held). The force parameter indicates whether we can bypass the limit.
-
- e. u64 res_counter_uncharge[_locked]
- (struct res_counter *rc, unsigned long val)
+ d. u64 res_counter_uncharge(struct res_counter *rc, unsigned long val)
When a resource is released (freed) it should be de-accounted
from the resource counter it was accounted to. This is called
@@ -93,12 +85,12 @@ to work with it.
The _locked routines imply that the res_counter->lock is taken.
- f. u64 res_counter_uncharge_until
+ e. u64 res_counter_uncharge_until
(struct res_counter *rc, struct res_counter *top,
- unsinged long val)
+ unsigned long val)
- Almost same as res_cunter_uncharge() but propagation of uncharge
- stops when rc == top. This is useful when kill a res_coutner in
+ Almost same as res_counter_uncharge() but propagation of uncharge
+ stops when rc == top. This is useful when kill a res_counter in
child cgroup.
2.1 Other accounting routines
diff --git a/Documentation/cgroups/unified-hierarchy.txt b/Documentation/cgroups/unified-hierarchy.txt
new file mode 100644
index 00000000000..324b182e600
--- /dev/null
+++ b/Documentation/cgroups/unified-hierarchy.txt
@@ -0,0 +1,359 @@
+
+Cgroup unified hierarchy
+
+April, 2014 Tejun Heo <tj@kernel.org>
+
+This document describes the changes made by unified hierarchy and
+their rationales. It will eventually be merged into the main cgroup
+documentation.
+
+CONTENTS
+
+1. Background
+2. Basic Operation
+ 2-1. Mounting
+ 2-2. cgroup.subtree_control
+ 2-3. cgroup.controllers
+3. Structural Constraints
+ 3-1. Top-down
+ 3-2. No internal tasks
+4. Other Changes
+ 4-1. [Un]populated Notification
+ 4-2. Other Core Changes
+ 4-3. Per-Controller Changes
+ 4-3-1. blkio
+ 4-3-2. cpuset
+ 4-3-3. memory
+5. Planned Changes
+ 5-1. CAP for resource control
+
+
+1. Background
+
+cgroup allows an arbitrary number of hierarchies and each hierarchy
+can host any number of controllers. While this seems to provide a
+high level of flexibility, it isn't quite useful in practice.
+
+For example, as there is only one instance of each controller, utility
+type controllers such as freezer which can be useful in all
+hierarchies can only be used in one. The issue is exacerbated by the
+fact that controllers can't be moved around once hierarchies are
+populated. Another issue is that all controllers bound to a hierarchy
+are forced to have exactly the same view of the hierarchy. It isn't
+possible to vary the granularity depending on the specific controller.
+
+In practice, these issues heavily limit which controllers can be put
+on the same hierarchy and most configurations resort to putting each
+controller on its own hierarchy. Only closely related ones, such as
+the cpu and cpuacct controllers, make sense to put on the same
+hierarchy. This often means that userland ends up managing multiple
+similar hierarchies repeating the same steps on each hierarchy
+whenever a hierarchy management operation is necessary.
+
+Unfortunately, support for multiple hierarchies comes at a steep cost.
+Internal implementation in cgroup core proper is dazzlingly
+complicated but more importantly the support for multiple hierarchies
+restricts how cgroup is used in general and what controllers can do.
+
+There's no limit on how many hierarchies there may be, which means
+that a task's cgroup membership can't be described in finite length.
+The key may contain any varying number of entries and is unlimited in
+length, which makes it highly awkward to handle and leads to addition
+of controllers which exist only to identify membership, which in turn
+exacerbates the original problem.
+
+Also, as a controller can't have any expectation regarding what shape
+of hierarchies other controllers would be on, each controller has to
+assume that all other controllers are operating on completely
+orthogonal hierarchies. This makes it impossible, or at least very
+cumbersome, for controllers to cooperate with each other.
+
+In most use cases, putting controllers on hierarchies which are
+completely orthogonal to each other isn't necessary. What usually is
+called for is the ability to have differing levels of granularity
+depending on the specific controller. In other words, hierarchy may
+be collapsed from leaf towards root when viewed from specific
+controllers. For example, a given configuration might not care about
+how memory is distributed beyond a certain level while still wanting
+to control how CPU cycles are distributed.
+
+Unified hierarchy is the next version of cgroup interface. It aims to
+address the aforementioned issues by having more structure while
+retaining enough flexibility for most use cases. Various other
+general and controller-specific interface issues are also addressed in
+the process.
+
+
+2. Basic Operation
+
+2-1. Mounting
+
+Currently, unified hierarchy can be mounted with the following mount
+command. Note that this is still under development and scheduled to
+change soon.
+
+ mount -t cgroup -o __DEVEL__sane_behavior cgroup $MOUNT_POINT
+
+All controllers which are not bound to other hierarchies are
+automatically bound to unified hierarchy and show up at the root of
+it. Controllers which are enabled only in the root of unified
+hierarchy can be bound to other hierarchies at any time. This allows
+mixing unified hierarchy with the traditional multiple hierarchies in
+a fully backward compatible way.
+
+
+2-2. cgroup.subtree_control
+
+All cgroups on unified hierarchy have a "cgroup.subtree_control" file
+which governs which controllers are enabled on the children of the
+cgroup. Let's assume a hierarchy like the following.
+
+ root - A - B - C
+ \ D
+
+root's "cgroup.subtree_control" file determines which controllers are
+enabled on A. A's on B. B's on C and D. This coincides with the
+fact that controllers on the immediate sub-level are used to
+distribute the resources of the parent. In fact, it's natural to
+assume that resource control knobs of a child belong to its parent.
+Enabling a controller in a "cgroup.subtree_control" file declares that
+distribution of the respective resources of the cgroup will be
+controlled. Note that this means that controller enable states are
+shared among siblings.
+
+When read, the file contains a space-separated list of currently
+enabled controllers. A write to the file should contain a
+space-separated list of controllers with '+' or '-' prefixed (without
+the quotes). Controllers prefixed with '+' are enabled and '-'
+disabled. If a controller is listed multiple times, the last entry
+wins. The specific operations are executed atomically - either all
+succeed or fail.
+
+
+2-3. cgroup.controllers
+
+Read-only "cgroup.controllers" file contains a space-separated list of
+controllers which can be enabled in the cgroup's
+"cgroup.subtree_control" file.
+
+In the root cgroup, this lists controllers which are not bound to
+other hierarchies and the content changes as controllers are bound to
+and unbound from other hierarchies.
+
+In non-root cgroups, the content of this file equals that of the
+parent's "cgroup.subtree_control" file as only controllers enabled
+from the parent can be used in its children.
+
+
+3. Structural Constraints
+
+3-1. Top-down
+
+As it doesn't make sense to nest control of an uncontrolled resource,
+all non-root "cgroup.subtree_control" files can only contain
+controllers which are enabled in the parent's "cgroup.subtree_control"
+file. A controller can be enabled only if the parent has the
+controller enabled and a controller can't be disabled if one or more
+children have it enabled.
+
+
+3-2. No internal tasks
+
+One long-standing issue that cgroup faces is the competition between
+tasks belonging to the parent cgroup and its children cgroups. This
+is inherently nasty as two different types of entities compete and
+there is no agreed-upon obvious way to handle it. Different
+controllers are doing different things.
+
+The cpu controller considers tasks and cgroups as equivalents and maps
+nice levels to cgroup weights. This works for some cases but falls
+flat when children should be allocated specific ratios of CPU cycles
+and the number of internal tasks fluctuates - the ratios constantly
+change as the number of competing entities fluctuates. There also are
+other issues. The mapping from nice level to weight isn't obvious or
+universal, and there are various other knobs which simply aren't
+available for tasks.
+
+The blkio controller implicitly creates a hidden leaf node for each
+cgroup to host the tasks. The hidden leaf has its own copies of all
+the knobs with "leaf_" prefixed. While this allows equivalent control
+over internal tasks, it's with serious drawbacks. It always adds an
+extra layer of nesting which may not be necessary, makes the interface
+messy and significantly complicates the implementation.
+
+The memory controller currently doesn't have a way to control what
+happens between internal tasks and child cgroups and the behavior is
+not clearly defined. There have been attempts to add ad-hoc behaviors
+and knobs to tailor the behavior to specific workloads. Continuing
+this direction will lead to problems which will be extremely difficult
+to resolve in the long term.
+
+Multiple controllers struggle with internal tasks and came up with
+different ways to deal with it; unfortunately, all the approaches in
+use now are severely flawed and, furthermore, the widely different
+behaviors make cgroup as whole highly inconsistent.
+
+It is clear that this is something which needs to be addressed from
+cgroup core proper in a uniform way so that controllers don't need to
+worry about it and cgroup as a whole shows a consistent and logical
+behavior. To achieve that, unified hierarchy enforces the following
+structural constraint:
+
+ Except for the root, only cgroups which don't contain any task may
+ have controllers enabled in their "cgroup.subtree_control" files.
+
+Combined with other properties, this guarantees that, when a
+controller is looking at the part of the hierarchy which has it
+enabled, tasks are always only on the leaves. This rules out
+situations where child cgroups compete against internal tasks of the
+parent.
+
+There are two things to note. Firstly, the root cgroup is exempt from
+the restriction. Root contains tasks and anonymous resource
+consumption which can't be associated with any other cgroup and
+requires special treatment from most controllers. How resource
+consumption in the root cgroup is governed is up to each controller.
+
+Secondly, the restriction doesn't take effect if there is no enabled
+controller in the cgroup's "cgroup.subtree_control" file. This is
+important as otherwise it wouldn't be possible to create children of a
+populated cgroup. To control resource distribution of a cgroup, the
+cgroup must create children and transfer all its tasks to the children
+before enabling controllers in its "cgroup.subtree_control" file.
+
+
+4. Other Changes
+
+4-1. [Un]populated Notification
+
+cgroup users often need a way to determine when a cgroup's
+subhierarchy becomes empty so that it can be cleaned up. cgroup
+currently provides release_agent for it; unfortunately, this mechanism
+is riddled with issues.
+
+- It delivers events by forking and execing a userland binary
+ specified as the release_agent. This is a long deprecated method of
+ notification delivery. It's extremely heavy, slow and cumbersome to
+ integrate with larger infrastructure.
+
+- There is single monitoring point at the root. There's no way to
+ delegate management of a subtree.
+
+- The event isn't recursive. It triggers when a cgroup doesn't have
+ any tasks or child cgroups. Events for internal nodes trigger only
+ after all children are removed. This again makes it impossible to
+ delegate management of a subtree.
+
+- Events are filtered from the kernel side. A "notify_on_release"
+ file is used to subscribe to or suppress release events. This is
+ unnecessarily complicated and probably done this way because event
+ delivery itself was expensive.
+
+Unified hierarchy implements an interface file "cgroup.populated"
+which can be used to monitor whether the cgroup's subhierarchy has
+tasks in it or not. Its value is 0 if there is no task in the cgroup
+and its descendants; otherwise, 1. poll and [id]notify events are
+triggered when the value changes.
+
+This is significantly lighter and simpler and trivially allows
+delegating management of subhierarchy - subhierarchy monitoring can
+block further propagation simply by putting itself or another process
+in the subhierarchy and monitor events that it's interested in from
+there without interfering with monitoring higher in the tree.
+
+In unified hierarchy, the release_agent mechanism is no longer
+supported and the interface files "release_agent" and
+"notify_on_release" do not exist.
+
+
+4-2. Other Core Changes
+
+- None of the mount options is allowed.
+
+- remount is disallowed.
+
+- rename(2) is disallowed.
+
+- The "tasks" file is removed. Everything should at process
+ granularity. Use the "cgroup.procs" file instead.
+
+- The "cgroup.procs" file is not sorted. pids will be unique unless
+ they got recycled in-between reads.
+
+- The "cgroup.clone_children" file is removed.
+
+
+4-3. Per-Controller Changes
+
+4-3-1. blkio
+
+- blk-throttle becomes properly hierarchical.
+
+
+4-3-2. cpuset
+
+- Tasks are kept in empty cpusets after hotplug and take on the masks
+ of the nearest non-empty ancestor, instead of being moved to it.
+
+- A task can be moved into an empty cpuset, and again it takes on the
+ masks of the nearest non-empty ancestor.
+
+
+4-3-3. memory
+
+- use_hierarchy is on by default and the cgroup file for the flag is
+ not created.
+
+
+5. Planned Changes
+
+5-1. CAP for resource control
+
+Unified hierarchy will require one of the capabilities(7), which is
+yet to be decided, for all resource control related knobs. Process
+organization operations - creation of sub-cgroups and migration of
+processes in sub-hierarchies may be delegated by changing the
+ownership and/or permissions on the cgroup directory and
+"cgroup.procs" interface file; however, all operations which affect
+resource control - writes to a "cgroup.subtree_control" file or any
+controller-specific knobs - will require an explicit CAP privilege.
+
+This, in part, is to prevent the cgroup interface from being
+inadvertently promoted to programmable API used by non-privileged
+binaries. cgroup exposes various aspects of the system in ways which
+aren't properly abstracted for direct consumption by regular programs.
+This is an administration interface much closer to sysctl knobs than
+system calls. Even the basic access model, being filesystem path
+based, isn't suitable for direct consumption. There's no way to
+access "my cgroup" in a race-free way or make multiple operations
+atomic against migration to another cgroup.
+
+Another aspect is that, for better or for worse, the cgroup interface
+goes through far less scrutiny than regular interfaces for
+unprivileged userland. The upside is that cgroup is able to expose
+useful features which may not be suitable for general consumption in a
+reasonable time frame. It provides a relatively short path between
+internal details and userland-visible interface. Of course, this
+shortcut comes with high risk. We go through what we go through for
+general kernel APIs for good reasons. It may end up leaking internal
+details in a way which can exert significant pain by locking the
+kernel into a contract that can't be maintained in a reasonable
+manner.
+
+Also, due to the specific nature, cgroup and its controllers don't
+tend to attract attention from a wide scope of developers. cgroup's
+short history is already fraught with severely mis-designed
+interfaces, unnecessary commitments to and exposing of internal
+details, broken and dangerous implementations of various features.
+
+Keeping cgroup as an administration interface is both advantageous for
+its role and imperative given its nature. Some of the cgroup features
+may make sense for unprivileged access. If deemed justified, those
+must be further abstracted and implemented as a different interface,
+be it a system call or process-private filesystem, and survive through
+the scrutiny that any interface for general consumption is required to
+go through.
+
+Requiring CAP is not a complete solution but should serve as a
+significant deterrent against spraying cgroup usages in non-privileged
+programs.
diff --git a/Documentation/circular-buffers.txt b/Documentation/circular-buffers.txt
index 8117e5bf606..88951b17926 100644
--- a/Documentation/circular-buffers.txt
+++ b/Documentation/circular-buffers.txt
@@ -160,6 +160,7 @@ The producer will look something like this:
spin_lock(&producer_lock);
unsigned long head = buffer->head;
+ /* The spin_unlock() and next spin_lock() provide needed ordering. */
unsigned long tail = ACCESS_ONCE(buffer->tail);
if (CIRC_SPACE(head, tail, buffer->size) >= 1) {
@@ -168,9 +169,8 @@ The producer will look something like this:
produce_item(item);
- smp_wmb(); /* commit the item before incrementing the head */
-
- buffer->head = (head + 1) & (buffer->size - 1);
+ smp_store_release(buffer->head,
+ (head + 1) & (buffer->size - 1));
/* wake_up() will make sure that the head is committed before
* waking anyone up */
@@ -183,9 +183,14 @@ This will instruct the CPU that the contents of the new item must be written
before the head index makes it available to the consumer and then instructs the
CPU that the revised head index must be written before the consumer is woken.
-Note that wake_up() doesn't have to be the exact mechanism used, but whatever
-is used must guarantee a (write) memory barrier between the update of the head
-index and the change of state of the consumer, if a change of state occurs.
+Note that wake_up() does not guarantee any sort of barrier unless something
+is actually awakened. We therefore cannot rely on it for ordering. However,
+there is always one element of the array left empty. Therefore, the
+producer must produce two elements before it could possibly corrupt the
+element currently being read by the consumer. Therefore, the unlock-lock
+pair between consecutive invocations of the consumer provides the necessary
+ordering between the read of the index indicating that the consumer has
+vacated a given element and the write by the producer to that same element.
THE CONSUMER
@@ -195,21 +200,20 @@ The consumer will look something like this:
spin_lock(&consumer_lock);
- unsigned long head = ACCESS_ONCE(buffer->head);
+ /* Read index before reading contents at that index. */
+ unsigned long head = smp_load_acquire(buffer->head);
unsigned long tail = buffer->tail;
if (CIRC_CNT(head, tail, buffer->size) >= 1) {
- /* read index before reading contents at that index */
- smp_read_barrier_depends();
/* extract one item from the buffer */
struct item *item = buffer[tail];
consume_item(item);
- smp_mb(); /* finish reading descriptor before incrementing tail */
-
- buffer->tail = (tail + 1) & (buffer->size - 1);
+ /* Finish reading descriptor before incrementing tail. */
+ smp_store_release(buffer->tail,
+ (tail + 1) & (buffer->size - 1));
}
spin_unlock(&consumer_lock);
@@ -218,12 +222,17 @@ This will instruct the CPU to make sure the index is up to date before reading
the new item, and then it shall make sure the CPU has finished reading the item
before it writes the new tail pointer, which will erase the item.
-
-Note the use of ACCESS_ONCE() in both algorithms to read the opposition index.
-This prevents the compiler from discarding and reloading its cached value -
-which some compilers will do across smp_read_barrier_depends(). This isn't
-strictly needed if you can be sure that the opposition index will _only_ be
-used the once.
+Note the use of ACCESS_ONCE() and smp_load_acquire() to read the
+opposition index. This prevents the compiler from discarding and
+reloading its cached value - which some compilers will do across
+smp_read_barrier_depends(). This isn't strictly needed if you can
+be sure that the opposition index will _only_ be used the once.
+The smp_load_acquire() additionally forces the CPU to order against
+subsequent memory references. Similarly, smp_store_release() is used
+in both algorithms to write the thread's index. This documents the
+fact that we are writing to something that can be read concurrently,
+prevents the compiler from tearing the store, and enforces ordering
+against previous accesses.
===============
diff --git a/Documentation/clk.txt b/Documentation/clk.txt
index 3aeb5c44044..1fee72f4d33 100644
--- a/Documentation/clk.txt
+++ b/Documentation/clk.txt
@@ -68,16 +68,27 @@ the operations defined in clk.h:
int (*is_enabled)(struct clk_hw *hw);
unsigned long (*recalc_rate)(struct clk_hw *hw,
unsigned long parent_rate);
- long (*round_rate)(struct clk_hw *hw, unsigned long,
- unsigned long *);
+ long (*round_rate)(struct clk_hw *hw,
+ unsigned long rate,
+ unsigned long *parent_rate);
long (*determine_rate)(struct clk_hw *hw,
unsigned long rate,
unsigned long *best_parent_rate,
struct clk **best_parent_clk);
int (*set_parent)(struct clk_hw *hw, u8 index);
u8 (*get_parent)(struct clk_hw *hw);
- int (*set_rate)(struct clk_hw *hw, unsigned long);
+ int (*set_rate)(struct clk_hw *hw,
+ unsigned long rate,
+ unsigned long parent_rate);
+ int (*set_rate_and_parent)(struct clk_hw *hw,
+ unsigned long rate,
+ unsigned long parent_rate,
+ u8 index);
+ unsigned long (*recalc_accuracy)(struct clk_hw *hw,
+ unsigned long parent_accuracy);
void (*init)(struct clk_hw *hw);
+ int (*debug_init)(struct clk_hw *hw,
+ struct dentry *dentry);
};
Part 3 - hardware clk implementations
@@ -202,6 +213,8 @@ optional or must be evaluated on a case-by-case basis.
.set_parent | | | n | y | n |
.get_parent | | | n | y | n |
| | | | | |
+.recalc_accuracy| | | | | |
+ | | | | | |
.init | | | | | |
-----------------------------------------------------------
[1] either one of round_rate or determine_rate is required.
@@ -248,3 +261,37 @@ are sorted out.
To bypass this disabling, include "clk_ignore_unused" in the bootargs to the
kernel.
+
+ Part 7 - Locking
+
+The common clock framework uses two global locks, the prepare lock and the
+enable lock.
+
+The enable lock is a spinlock and is held across calls to the .enable,
+.disable and .is_enabled operations. Those operations are thus not allowed to
+sleep, and calls to the clk_enable(), clk_disable() and clk_is_enabled() API
+functions are allowed in atomic context.
+
+The prepare lock is a mutex and is held across calls to all other operations.
+All those operations are allowed to sleep, and calls to the corresponding API
+functions are not allowed in atomic context.
+
+This effectively divides operations in two groups from a locking perspective.
+
+Drivers don't need to manually protect resources shared between the operations
+of one group, regardless of whether those resources are shared by multiple
+clocks or not. However, access to resources that are shared between operations
+of the two groups needs to be protected by the drivers. An example of such a
+resource would be a register that controls both the clock rate and the clock
+enable/disable state.
+
+The clock framework is reentrant, in that a driver is allowed to call clock
+framework functions from within its implementation of clock operations. This
+can for instance cause a .set_rate operation of one clock being called from
+within the .set_rate operation of another clock. This case must be considered
+in the driver implementations, but the code flow is usually controlled by the
+driver in that case.
+
+Note that locking must also be considered when code outside of the common
+clock framework needs to access resources used by the clock operations. This
+is considered out of scope of this document.
diff --git a/Documentation/connector/cn_test.c b/Documentation/connector/cn_test.c
index adcca0368d6..d12cc944b69 100644
--- a/Documentation/connector/cn_test.c
+++ b/Documentation/connector/cn_test.c
@@ -145,7 +145,7 @@ static void cn_test_timer_func(unsigned long __data)
memcpy(m + 1, data, m->len);
- cn_netlink_send(m, 0, GFP_ATOMIC);
+ cn_netlink_send(m, 0, 0, GFP_ATOMIC);
kfree(m);
}
diff --git a/Documentation/connector/connector.txt b/Documentation/connector/connector.txt
index e5c5f5e6ab7..f6215f95149 100644
--- a/Documentation/connector/connector.txt
+++ b/Documentation/connector/connector.txt
@@ -24,7 +24,8 @@ netlink based networking for inter-process communication in a significantly
easier way:
int cn_add_callback(struct cb_id *id, char *name, void (*callback) (struct cn_msg *, struct netlink_skb_parms *));
-void cn_netlink_send(struct cn_msg *msg, u32 __group, int gfp_mask);
+void cn_netlink_send_multi(struct cn_msg *msg, u16 len, u32 portid, u32 __group, int gfp_mask);
+void cn_netlink_send(struct cn_msg *msg, u32 portid, u32 __group, int gfp_mask);
struct cb_id
{
@@ -71,15 +72,21 @@ void cn_del_callback(struct cb_id *id);
struct cb_id *id - unique connector's user identifier.
-int cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask);
+int cn_netlink_send_multi(struct cn_msg *msg, u16 len, u32 portid, u32 __groups, int gfp_mask);
+int cn_netlink_send(struct cn_msg *msg, u32 portid, u32 __groups, int gfp_mask);
Sends message to the specified groups. It can be safely called from
softirq context, but may silently fail under strong memory pressure.
If there are no listeners for given group -ESRCH can be returned.
struct cn_msg * - message header(with attached data).
+ u16 len - for *_multi multiple cn_msg messages can be sent
+ u32 port - destination port.
+ If non-zero the message will be sent to the
+ given port, which should be set to the
+ original sender.
u32 __group - destination group.
- If __group is zero, then appropriate group will
+ If port and __group is zero, then appropriate group will
be searched through all registered connector users,
and message will be delivered to the group which was
created for user with the same ID as in msg.
@@ -111,7 +118,7 @@ acknowledge number MUST be the same + 1.
If we receive a message and its sequence number is not equal to one we
are expecting, then it is a new message. If we receive a message and
its sequence number is the same as one we are expecting, but its
-acknowledge is not equal to the acknowledge number in the original
+acknowledge is not equal to the sequence number in the original
message + 1, then it is a new message.
Obviously, the protocol header contains the above id.
diff --git a/Documentation/connector/ucon.c b/Documentation/connector/ucon.c
index 4848db8c71f..8a4da64e02a 100644
--- a/Documentation/connector/ucon.c
+++ b/Documentation/connector/ucon.c
@@ -71,7 +71,7 @@ static int netlink_send(int s, struct cn_msg *msg)
nlh->nlmsg_seq = seq++;
nlh->nlmsg_pid = getpid();
nlh->nlmsg_type = NLMSG_DONE;
- nlh->nlmsg_len = NLMSG_LENGTH(size - sizeof(*nlh));
+ nlh->nlmsg_len = size;
nlh->nlmsg_flags = 0;
m = NLMSG_DATA(nlh);
diff --git a/Documentation/cpu-freq/boost.txt b/Documentation/cpu-freq/boost.txt
index 9b4edfcf486..dd62e1334f0 100644
--- a/Documentation/cpu-freq/boost.txt
+++ b/Documentation/cpu-freq/boost.txt
@@ -17,8 +17,8 @@ Introduction
Some CPUs support a functionality to raise the operating frequency of
some cores in a multi-core package if certain conditions apply, mostly
if the whole chip is not fully utilized and below it's intended thermal
-budget. This is done without operating system control by a combination
-of hardware and firmware.
+budget. The decision about boost disable/enable is made either at hardware
+(e.g. x86) or software (e.g ARM).
On Intel CPUs this is called "Turbo Boost", AMD calls it "Turbo-Core",
in technical documentation "Core performance boost". In Linux we use
the term "boost" for convenience.
@@ -48,24 +48,24 @@ be desirable:
User controlled switch
----------------------
-To allow the user to toggle the boosting functionality, the acpi-cpufreq
-driver exports a sysfs knob to disable it. There is a file:
+To allow the user to toggle the boosting functionality, the cpufreq core
+driver exports a sysfs knob to enable or disable it. There is a file:
/sys/devices/system/cpu/cpufreq/boost
which can either read "0" (boosting disabled) or "1" (boosting enabled).
-Reading the file is always supported, even if the processor does not
-support boosting. In this case the file will be read-only and always
-reads as "0". Explicitly changing the permissions and writing to that
-file anyway will return EINVAL.
+The file is exported only when cpufreq driver supports boosting.
+Explicitly changing the permissions and writing to that file anyway will
+return EINVAL.
On supported CPUs one can write either a "0" or a "1" into this file.
This will either disable the boost functionality on all cores in the
-whole system (0) or will allow the hardware to boost at will (1).
+whole system (0) or will allow the software or hardware to boost at will
+(1).
Writing a "1" does not explicitly boost the system, but just allows the
-CPU (and the firmware) to boost at their discretion. Some implementations
-take external factors like the chip's temperature into account, so
-boosting once does not necessarily mean that it will occur every time
-even using the exact same software setup.
+CPU to boost at their discretion. Some implementations take external
+factors like the chip's temperature into account, so boosting once does
+not necessarily mean that it will occur every time even using the exact
+same software setup.
AMD legacy cpb switch
diff --git a/Documentation/cpu-freq/core.txt b/Documentation/cpu-freq/core.txt
index ce0666e5103..70933eadc30 100644
--- a/Documentation/cpu-freq/core.txt
+++ b/Documentation/cpu-freq/core.txt
@@ -20,6 +20,7 @@ Contents:
---------
1. CPUFreq core and interfaces
2. CPUFreq notifiers
+3. CPUFreq Table Generation with Operating Performance Point (OPP)
1. General Information
=======================
@@ -93,6 +94,30 @@ cpu - number of the affected CPU
old - old frequency
new - new frequency
-If the cpufreq core detects the frequency has changed while the system
-was suspended, these notifiers are called with CPUFREQ_RESUMECHANGE as
-second argument.
+3. CPUFreq Table Generation with Operating Performance Point (OPP)
+==================================================================
+For details about OPP, see Documentation/power/opp.txt
+
+dev_pm_opp_init_cpufreq_table - cpufreq framework typically is initialized with
+ cpufreq_frequency_table_cpuinfo which is provided with the list of
+ frequencies that are available for operation. This function provides
+ a ready to use conversion routine to translate the OPP layer's internal
+ information about the available frequencies into a format readily
+ providable to cpufreq.
+
+ WARNING: Do not use this function in interrupt context.
+
+ Example:
+ soc_pm_init()
+ {
+ /* Do things */
+ r = dev_pm_opp_init_cpufreq_table(dev, &freq_table);
+ if (!r)
+ cpufreq_frequency_table_cpuinfo(policy, freq_table);
+ /* Do other things */
+ }
+
+ NOTE: This function is available only if CONFIG_CPU_FREQ is enabled in
+ addition to CONFIG_PM_OPP.
+
+dev_pm_opp_free_cpufreq_table - Free up the table allocated by dev_pm_opp_init_cpufreq_table
diff --git a/Documentation/cpu-freq/cpu-drivers.txt b/Documentation/cpu-freq/cpu-drivers.txt
index 40282e61791..14f4e6336d8 100644
--- a/Documentation/cpu-freq/cpu-drivers.txt
+++ b/Documentation/cpu-freq/cpu-drivers.txt
@@ -23,9 +23,10 @@ Contents:
1.1 Initialization
1.2 Per-CPU Initialization
1.3 verify
-1.4 target or setpolicy?
-1.5 target
+1.4 target/target_index or setpolicy?
+1.5 target/target_index
1.6 setpolicy
+1.7 get_intermediate and target_intermediate
2. Frequency Table Helpers
@@ -56,22 +57,33 @@ cpufreq_driver.init - A pointer to the per-CPU initialization
cpufreq_driver.verify - A pointer to a "verification" function.
cpufreq_driver.setpolicy _or_
-cpufreq_driver.target - See below on the differences.
+cpufreq_driver.target/
+target_index - See below on the differences.
And optionally
-cpufreq_driver.exit - A pointer to a per-CPU cleanup function.
+cpufreq_driver.exit - A pointer to a per-CPU cleanup
+ function called during CPU_POST_DEAD
+ phase of cpu hotplug process.
+
+cpufreq_driver.stop_cpu - A pointer to a per-CPU stop function
+ called during CPU_DOWN_PREPARE phase of
+ cpu hotplug process.
cpufreq_driver.resume - A pointer to a per-CPU resume function
which is called with interrupts disabled
and _before_ the pre-suspend frequency
and/or policy is restored by a call to
- ->target or ->setpolicy.
+ ->target/target_index or ->setpolicy.
cpufreq_driver.attr - A pointer to a NULL-terminated list of
"struct freq_attr" which allow to
export values to sysfs.
+cpufreq_driver.get_intermediate
+and target_intermediate Used to switch to stable frequency while
+ changing CPU frequency.
+
1.2 Per-CPU Initialization
--------------------------
@@ -103,8 +115,8 @@ policy->governor must contain the "default policy" for
this CPU. A few moments later,
cpufreq_driver.verify and either
cpufreq_driver.setpolicy or
- cpufreq_driver.target is called with
- these values.
+ cpufreq_driver.target/target_index is called
+ with these values.
For setting some of these values (cpuinfo.min[max]_freq, policy->min[max]), the
frequency table helpers might be helpful. See the section 2 for more information
@@ -133,20 +145,31 @@ range) is within policy->min and policy->max. If necessary, increase
policy->max first, and only if this is no solution, decrease policy->min.
-1.4 target or setpolicy?
+1.4 target/target_index or setpolicy?
----------------------------
Most cpufreq drivers or even most cpu frequency scaling algorithms
only allow the CPU to be set to one frequency. For these, you use the
-->target call.
+->target/target_index call.
Some cpufreq-capable processors switch the frequency between certain
limits on their own. These shall use the ->setpolicy call
-1.4. target
+1.5. target/target_index
-------------
+The target_index call has two arguments: struct cpufreq_policy *policy,
+and unsigned int index (into the exposed frequency table).
+
+The CPUfreq driver must set the new frequency when called here. The
+actual frequency must be determined by freq_table[index].frequency.
+
+It should always restore to earlier frequency (i.e. policy->restore_freq) in
+case of errors, even if we switched to intermediate frequency earlier.
+
+Deprecated:
+----------
The target call has three arguments: struct cpufreq_policy *policy,
unsigned int target_frequency, unsigned int relation.
@@ -164,7 +187,7 @@ Here again the frequency table helper might assist you - see section 2
for details.
-1.5 setpolicy
+1.6 setpolicy
---------------
The setpolicy call only takes a struct cpufreq_policy *policy as
@@ -175,6 +198,23 @@ setting when policy->policy is CPUFREQ_POLICY_PERFORMANCE, and a
powersaving-oriented setting when CPUFREQ_POLICY_POWERSAVE. Also check
the reference implementation in drivers/cpufreq/longrun.c
+1.7 get_intermediate and target_intermediate
+--------------------------------------------
+
+Only for drivers with target_index() and CPUFREQ_ASYNC_NOTIFICATION unset.
+
+get_intermediate should return a stable intermediate frequency platform wants to
+switch to, and target_intermediate() should set CPU to to that frequency, before
+jumping to the frequency corresponding to 'index'. Core will take care of
+sending notifications and driver doesn't have to handle them in
+target_intermediate() or target_index().
+
+Drivers can return '0' from get_intermediate() in case they don't wish to switch
+to intermediate frequency for some target frequency. In that case core will
+directly call ->target_index().
+
+NOTE: ->target_index() should restore to policy->restore_freq in case of
+failures as core would send notifications for that.
2. Frequency Table Helpers
@@ -213,3 +253,22 @@ is the corresponding frequency table helper for the ->target
stage. Just pass the values to this function, and the unsigned int
index returns the number of the frequency table entry which contains
the frequency the CPU shall be set to.
+
+The following macros can be used as iterators over cpufreq_frequency_table:
+
+cpufreq_for_each_entry(pos, table) - iterates over all entries of frequency
+table.
+
+cpufreq-for_each_valid_entry(pos, table) - iterates over all entries,
+excluding CPUFREQ_ENTRY_INVALID frequencies.
+Use arguments "pos" - a cpufreq_frequency_table * as a loop cursor and
+"table" - the cpufreq_frequency_table * you want to iterate over.
+
+For example:
+
+ struct cpufreq_frequency_table *pos, *driver_freq_table;
+
+ cpufreq_for_each_entry(pos, driver_freq_table) {
+ /* Do something with pos */
+ pos->frequency = ...
+ }
diff --git a/Documentation/cpu-freq/governors.txt b/Documentation/cpu-freq/governors.txt
index 219970ba54b..77ec21574fb 100644
--- a/Documentation/cpu-freq/governors.txt
+++ b/Documentation/cpu-freq/governors.txt
@@ -40,7 +40,7 @@ Most cpufreq drivers (in fact, all except one, longrun) or even most
cpu frequency scaling algorithms only offer the CPU to be set to one
frequency. In order to offer dynamic frequency scaling, the cpufreq
core must be able to tell these drivers of a "target frequency". So
-these specific drivers will be transformed to offer a "->target"
+these specific drivers will be transformed to offer a "->target/target_index"
call instead of the existing "->setpolicy" call. For "longrun", all
stays the same, though.
@@ -71,7 +71,7 @@ CPU can be set to switch independently | CPU can only be set
/ the limits of policy->{min,max}
/ \
/ \
- Using the ->setpolicy call, Using the ->target call,
+ Using the ->setpolicy call, Using the ->target/target_index call,
the limits and the the frequency closest
"policy" is set. to target_freq is set.
It is assured that it
diff --git a/Documentation/cpu-freq/index.txt b/Documentation/cpu-freq/index.txt
index 3d0b915035b..dc024ab4054 100644
--- a/Documentation/cpu-freq/index.txt
+++ b/Documentation/cpu-freq/index.txt
@@ -35,8 +35,8 @@ Mailing List
------------
There is a CPU frequency changing CVS commit and general list where
you can report bugs, problems or submit patches. To post a message,
-send an email to cpufreq@vger.kernel.org, to subscribe go to
-http://vger.kernel.org/vger-lists.html#cpufreq and follow the
+send an email to linux-pm@vger.kernel.org, to subscribe go to
+http://vger.kernel.org/vger-lists.html#linux-pm and follow the
instructions there.
Links
diff --git a/Documentation/cpu-freq/intel-pstate.txt b/Documentation/cpu-freq/intel-pstate.txt
new file mode 100644
index 00000000000..a69ffe1d54d
--- /dev/null
+++ b/Documentation/cpu-freq/intel-pstate.txt
@@ -0,0 +1,43 @@
+Intel P-state driver
+--------------------
+
+This driver implements a scaling driver with an internal governor for
+Intel Core processors. The driver follows the same model as the
+Transmeta scaling driver (longrun.c) and implements the setpolicy()
+instead of target(). Scaling drivers that implement setpolicy() are
+assumed to implement internal governors by the cpufreq core. All the
+logic for selecting the current P state is contained within the
+driver; no external governor is used by the cpufreq core.
+
+Intel SandyBridge+ processors are supported.
+
+New sysfs files for controlling P state selection have been added to
+/sys/devices/system/cpu/intel_pstate/
+
+ max_perf_pct: limits the maximum P state that will be requested by
+ the driver stated as a percentage of the available performance. The
+ available (P states) performance may be reduced by the no_turbo
+ setting described below.
+
+ min_perf_pct: limits the minimum P state that will be requested by
+ the driver stated as a percentage of the max (non-turbo)
+ performance level.
+
+ no_turbo: limits the driver to selecting P states below the turbo
+ frequency range.
+
+For contemporary Intel processors, the frequency is controlled by the
+processor itself and the P-states exposed to software are related to
+performance levels. The idea that frequency can be set to a single
+frequency is fiction for Intel Core processors. Even if the scaling
+driver selects a single P state the actual frequency the processor
+will run at is selected by the processor itself.
+
+New debugfs files have also been added to /sys/kernel/debug/pstate_snb/
+
+ deadband
+ d_gain_pct
+ i_gain_pct
+ p_gain_pct
+ sample_rate_ms
+ setpoint
diff --git a/Documentation/cpu-hotplug.txt b/Documentation/cpu-hotplug.txt
index 786dc82f98c..a0b005d2bd9 100644
--- a/Documentation/cpu-hotplug.txt
+++ b/Documentation/cpu-hotplug.txt
@@ -5,7 +5,7 @@
Rusty Russell <rusty@rustcorp.com.au>
Srivatsa Vaddagiri <vatsa@in.ibm.com>
i386:
- Zwane Mwaikambo <zwane@arm.linux.org.uk>
+ Zwane Mwaikambo <zwanem@gmail.com>
ppc64:
Nathan Lynch <nathanl@austin.ibm.com>
Joel Schopp <jschopp@austin.ibm.com>
@@ -285,7 +285,7 @@ A: This is what you would need in your kernel code to receive notifications.
return NOTIFY_OK;
}
- static struct notifier_block foobar_cpu_notifer =
+ static struct notifier_block foobar_cpu_notifier =
{
.notifier_call = foobar_cpu_callback,
};
@@ -312,12 +312,57 @@ things will happen if a notifier in path sent a BAD notify code.
Q: I don't see my action being called for all CPUs already up and running?
A: Yes, CPU notifiers are called only when new CPUs are on-lined or offlined.
If you need to perform some action for each cpu already in the system, then
+ do this:
for_each_online_cpu(i) {
foobar_cpu_callback(&foobar_cpu_notifier, CPU_UP_PREPARE, i);
foobar_cpu_callback(&foobar_cpu_notifier, CPU_ONLINE, i);
}
+ However, if you want to register a hotplug callback, as well as perform
+ some initialization for CPUs that are already online, then do this:
+
+ Version 1: (Correct)
+ ---------
+
+ cpu_notifier_register_begin();
+
+ for_each_online_cpu(i) {
+ foobar_cpu_callback(&foobar_cpu_notifier,
+ CPU_UP_PREPARE, i);
+ foobar_cpu_callback(&foobar_cpu_notifier,
+ CPU_ONLINE, i);
+ }
+
+ /* Note the use of the double underscored version of the API */
+ __register_cpu_notifier(&foobar_cpu_notifier);
+
+ cpu_notifier_register_done();
+
+ Note that the following code is *NOT* the right way to achieve this,
+ because it is prone to an ABBA deadlock between the cpu_add_remove_lock
+ and the cpu_hotplug.lock.
+
+ Version 2: (Wrong!)
+ ---------
+
+ get_online_cpus();
+
+ for_each_online_cpu(i) {
+ foobar_cpu_callback(&foobar_cpu_notifier,
+ CPU_UP_PREPARE, i);
+ foobar_cpu_callback(&foobar_cpu_notifier,
+ CPU_ONLINE, i);
+ }
+
+ register_cpu_notifier(&foobar_cpu_notifier);
+
+ put_online_cpus();
+
+ So always use the first version shown above when you want to register
+ callbacks as well as initialize the already online CPUs.
+
+
Q: If i would like to develop cpu hotplug support for a new architecture,
what do i need at a minimum?
A: The following are what is required for CPU hotplug infrastructure to work
diff --git a/Documentation/cpuidle/governor.txt b/Documentation/cpuidle/governor.txt
index 12c6bd50c9f..d9020f5e847 100644
--- a/Documentation/cpuidle/governor.txt
+++ b/Documentation/cpuidle/governor.txt
@@ -25,5 +25,4 @@ kernel configuration and platform will be selected by cpuidle.
Interfaces:
extern int cpuidle_register_governor(struct cpuidle_governor *gov);
-extern void cpuidle_unregister_governor(struct cpuidle_governor *gov);
struct cpuidle_governor
diff --git a/Documentation/debugging-via-ohci1394.txt b/Documentation/debugging-via-ohci1394.txt
index 611f5a5499b..5c9a567b3fa 100644
--- a/Documentation/debugging-via-ohci1394.txt
+++ b/Documentation/debugging-via-ohci1394.txt
@@ -22,10 +22,14 @@ locations such as buffers like the printk buffer or the process table.
Retrieving a full system memory dump is also possible over the FireWire,
using data transfer rates in the order of 10MB/s or more.
-Memory access is currently limited to the low 4G of physical address
-space which can be a problem on IA64 machines where memory is located
-mostly above that limit, but it is rarely a problem on more common
-hardware such as hardware based on x86, x86-64 and PowerPC.
+With most FireWire controllers, memory access is limited to the low 4 GB
+of physical address space. This can be a problem on IA64 machines where
+memory is located mostly above that limit, but it is rarely a problem on
+more common hardware such as x86, x86-64 and PowerPC.
+
+At least LSI FW643e and FW643e2 controllers are known to support access to
+physical addresses above 4 GB, but this feature is currently not enabled by
+Linux.
Together with a early initialization of the OHCI-1394 controller for debugging,
this facility proved most useful for examining long debugs logs in the printk
@@ -36,17 +40,11 @@ available (notebooks) or too slow for extensive debug information (like ACPI).
Drivers
-------
-The ohci1394 driver in drivers/ieee1394 initializes the OHCI-1394 controllers
-to a working state and enables physical DMA by default for all remote nodes.
-This can be turned off by ohci1394's module parameter phys_dma=0.
-
-The alternative firewire-ohci driver in drivers/firewire uses filtered physical
+The firewire-ohci driver in drivers/firewire uses filtered physical
DMA by default, which is more secure but not suitable for remote debugging.
-Compile the driver with CONFIG_FIREWIRE_OHCI_REMOTE_DMA (Kernel hacking menu:
-Remote debugging over FireWire with firewire-ohci) to get unfiltered physical
-DMA.
+Pass the remote_dma=1 parameter to the driver to get unfiltered physical DMA.
-Because ohci1394 and firewire-ohci depend on the PCI enumeration to be
+Because the firewire-ohci driver depends on the PCI enumeration to be
completed, an initialization routine which runs pretty early has been
implemented for x86. This routine runs long before console_init() can be
called, i.e. before the printk buffer appears on the console.
@@ -64,7 +62,7 @@ be used to view the printk buffer of a remote machine, even with live update.
Bernhard Kaindl enhanced firescope to support accessing 64-bit machines
from 32-bit firescope and vice versa:
-- http://halobates.de/firewire/firescope-0.2.2.tar.bz2
+- http://v3.sk/~lkundrak/firescope/
and he implemented fast system dump (alpha version - read README.txt):
- http://halobates.de/firewire/firedump-0.1.tar.bz2
@@ -92,11 +90,11 @@ Step-by-step instructions for using firescope with early OHCI initialization:
1) Verify that your hardware is supported:
- Load the ohci1394 or the fw-ohci module and check your kernel logs.
+ Load the firewire-ohci module and check your kernel logs.
You should see a line similar to
- ohci1394: fw-host0: OHCI-1394 1.1 (PCI): IRQ=[18] MMIO=[fe9ff800-fe9fffff]
- ... Max Packet=[2048] IR/IT contexts=[4/8]
+ firewire_ohci 0000:15:00.1: added OHCI v1.0 device as card 2, 4 IR + 4 IT
+ ... contexts, quirks 0x11
when loading the driver. If you have no supported controller, many PCI,
CardBus and even some Express cards which are fully compliant to OHCI-1394
@@ -105,6 +103,10 @@ Step-by-step instructions for using firescope with early OHCI initialization:
compliant, they are based on TI PCILynx chips and require drivers for Win-
dows operating systems.
+ The mentioned kernel log message contains the string "physUB" if the
+ controller implements a writable Physical Upper Bound register. This is
+ required for physical DMA above 4 GB (but not utilized by Linux yet).
+
2) Establish a working FireWire cable connection:
Any FireWire cable, as long at it provides electrically and mechanically
@@ -113,20 +115,18 @@ Step-by-step instructions for using firescope with early OHCI initialization:
If an driver is running on both machines you should see a line like
- ieee1394: Node added: ID:BUS[0-01:1023] GUID[0090270001b84bba]
+ firewire_core 0000:15:00.1: created device fw1: GUID 00061b0020105917, S400
on both machines in the kernel log when the cable is plugged in
and connects the two machines.
3) Test physical DMA using firescope:
- On the debug host,
- - load the raw1394 module,
- - make sure that /dev/raw1394 is accessible,
+ On the debug host, make sure that /dev/fw* is accessible,
then start firescope:
$ firescope
- Port 0 (ohci1394) opened, 2 nodes detected
+ Port 0 (/dev/fw1) opened, 2 nodes detected
FireScope
---------
diff --git a/Documentation/device-mapper/cache-policies.txt b/Documentation/device-mapper/cache-policies.txt
index d7c440b444c..66c2774c0c6 100644
--- a/Documentation/device-mapper/cache-policies.txt
+++ b/Documentation/device-mapper/cache-policies.txt
@@ -30,16 +30,21 @@ multiqueue
This policy is the default.
-The multiqueue policy has two sets of 16 queues: one set for entries
-waiting for the cache and another one for those in the cache.
+The multiqueue policy has three sets of 16 queues: one set for entries
+waiting for the cache and another two for those in the cache (a set for
+clean entries and a set for dirty entries).
+
Cache entries in the queues are aged based on logical time. Entry into
the cache is based on variable thresholds and queue selection is based
on hit count on entry. The policy aims to take different cache miss
costs into account and to adjust to varying load patterns automatically.
Message and constructor argument pairs are:
- 'sequential_threshold <#nr_sequential_ios>' and
- 'random_threshold <#nr_random_ios>'.
+ 'sequential_threshold <#nr_sequential_ios>'
+ 'random_threshold <#nr_random_ios>'
+ 'read_promote_adjustment <value>'
+ 'write_promote_adjustment <value>'
+ 'discard_promote_adjustment <value>'
The sequential threshold indicates the number of contiguous I/Os
required before a stream is treated as sequential. The random threshold
@@ -53,6 +58,15 @@ since spindles tend to have good bandwidth. The io_tracker counts
contiguous I/Os to try to spot when the io is in one of these sequential
modes.
+Internally the mq policy maintains a promotion threshold variable. If
+the hit count of a block not in the cache goes above this threshold it
+gets promoted to the cache. The read, write and discard promote adjustment
+tunables allow you to tweak the promotion threshold by adding a small
+value based on the io type. They default to 4, 8 and 1 respectively.
+If you're trying to quickly warm a new cache device you may wish to
+reduce these to encourage promotion. Remember to switch them back to
+their defaults after the cache fills though.
+
cleaner
-------
diff --git a/Documentation/device-mapper/cache.txt b/Documentation/device-mapper/cache.txt
index 33d45ee0b73..68c0f517c60 100644
--- a/Documentation/device-mapper/cache.txt
+++ b/Documentation/device-mapper/cache.txt
@@ -68,10 +68,11 @@ So large block sizes are bad because they waste cache space. And small
block sizes are bad because they increase the amount of metadata (both
in core and on disk).
-Writeback/writethrough
-----------------------
+Cache operating modes
+---------------------
-The cache has two modes, writeback and writethrough.
+The cache has three operating modes: writeback, writethrough and
+passthrough.
If writeback, the default, is selected then a write to a block that is
cached will go only to the cache and the block will be marked dirty in
@@ -81,8 +82,31 @@ If writethrough is selected then a write to a cached block will not
complete until it has hit both the origin and cache devices. Clean
blocks should remain clean.
+If passthrough is selected, useful when the cache contents are not known
+to be coherent with the origin device, then all reads are served from
+the origin device (all reads miss the cache) and all writes are
+forwarded to the origin device; additionally, write hits cause cache
+block invalidates. To enable passthrough mode the cache must be clean.
+Passthrough mode allows a cache device to be activated without having to
+worry about coherency. Coherency that exists is maintained, although
+the cache will gradually cool as writes take place. If the coherency of
+the cache can later be verified, or established through use of the
+"invalidate_cblocks" message, the cache device can be transitioned to
+writethrough or writeback mode while still warm. Otherwise, the cache
+contents can be discarded prior to transitioning to the desired
+operating mode.
+
A simple cleaner policy is provided, which will clean (write back) all
-dirty blocks in a cache. Useful for decommissioning a cache.
+dirty blocks in a cache. Useful for decommissioning a cache or when
+shrinking a cache. Shrinking the cache's fast device requires all cache
+blocks, in the area of the cache being removed, to be clean. If the
+area being removed from the cache still contains dirty blocks the resize
+will fail. Care must be taken to never reduce the volume used for the
+cache's fast device until the cache is clean. This is of particular
+importance if writeback mode is used. Writethrough and passthrough
+modes already maintain a clean cache. Future support to partially clean
+the cache, above a specified threshold, will allow for keeping the cache
+warm and in writeback mode during resize.
Migration throttling
--------------------
@@ -100,12 +124,11 @@ the default being 204800 sectors (or 100MB).
Updating on-disk metadata
-------------------------
-On-disk metadata is committed every time a REQ_SYNC or REQ_FUA bio is
-written. If no such requests are made then commits will occur every
-second. This means the cache behaves like a physical disk that has a
-write cache (the same is true of the thin-provisioning target). If
-power is lost you may lose some recent writes. The metadata should
-always be consistent in spite of any crash.
+On-disk metadata is committed every time a FLUSH or FUA bio is written.
+If no such requests are made then commits will occur every second. This
+means the cache behaves like a physical disk that has a volatile write
+cache. If power is lost you may lose some recent writes. The metadata
+should always be consistent in spite of any crash.
The 'dirty' state for a cache block changes far too frequently for us
to keep updating it on the fly. So we treat it as a hint. In normal
@@ -161,7 +184,7 @@ Constructor
block size : cache unit size in sectors
#feature args : number of feature arguments passed
- feature args : writethrough. (The default is writeback.)
+ feature args : writethrough or passthrough (The default is writeback.)
policy : the replacement policy to use
#policy args : an even number of arguments corresponding to
@@ -177,6 +200,13 @@ Optional feature arguments are:
back cache block contents later for performance reasons,
so they may differ from the corresponding origin blocks.
+ passthrough : a degraded mode useful for various cache coherency
+ situations (e.g., rolling back snapshots of
+ underlying storage). Reads and writes always go to
+ the origin. If a write goes to a cached origin
+ block, then the cache block is invalidated.
+ To enable passthrough mode the cache must be clean.
+
A policy called 'default' is always registered. This is an alias for
the policy we currently think is giving best all round performance.
@@ -186,36 +216,43 @@ the characteristics of a specific policy, always request it by name.
Status
------
-<#used metadata blocks>/<#total metadata blocks> <#read hits> <#read misses>
-<#write hits> <#write misses> <#demotions> <#promotions> <#blocks in cache>
-<#dirty> <#features> <features>* <#core args> <core args>* <#policy args>
-<policy args>*
-
-#used metadata blocks : Number of metadata blocks used
-#total metadata blocks : Total number of metadata blocks
-#read hits : Number of times a READ bio has been mapped
+<metadata block size> <#used metadata blocks>/<#total metadata blocks>
+<cache block size> <#used cache blocks>/<#total cache blocks>
+<#read hits> <#read misses> <#write hits> <#write misses>
+<#demotions> <#promotions> <#dirty> <#features> <features>*
+<#core args> <core args>* <policy name> <#policy args> <policy args>*
+
+metadata block size : Fixed block size for each metadata block in
+ sectors
+#used metadata blocks : Number of metadata blocks used
+#total metadata blocks : Total number of metadata blocks
+cache block size : Configurable block size for the cache device
+ in sectors
+#used cache blocks : Number of blocks resident in the cache
+#total cache blocks : Total number of cache blocks
+#read hits : Number of times a READ bio has been mapped
to the cache
-#read misses : Number of times a READ bio has been mapped
+#read misses : Number of times a READ bio has been mapped
to the origin
-#write hits : Number of times a WRITE bio has been mapped
+#write hits : Number of times a WRITE bio has been mapped
to the cache
-#write misses : Number of times a WRITE bio has been
+#write misses : Number of times a WRITE bio has been
mapped to the origin
-#demotions : Number of times a block has been removed
+#demotions : Number of times a block has been removed
from the cache
-#promotions : Number of times a block has been moved to
+#promotions : Number of times a block has been moved to
the cache
-#blocks in cache : Number of blocks resident in the cache
-#dirty : Number of blocks in the cache that differ
+#dirty : Number of blocks in the cache that differ
from the origin
-#feature args : Number of feature args to follow
-feature args : 'writethrough' (optional)
-#core args : Number of core arguments (must be even)
-core args : Key/value pairs for tuning the core
+#feature args : Number of feature args to follow
+feature args : 'writethrough' (optional)
+#core args : Number of core arguments (must be even)
+core args : Key/value pairs for tuning the core
e.g. migration_threshold
-#policy args : Number of policy arguments to follow (must be even)
-policy args : Key/value pairs
- e.g. 'sequential_threshold 1024
+policy name : Name of the policy
+#policy args : Number of policy arguments to follow (must be even)
+policy args : Key/value pairs
+ e.g. sequential_threshold
Messages
--------
@@ -231,12 +268,28 @@ The message format is:
E.g.
dmsetup message my_cache 0 sequential_threshold 1024
+
+Invalidation is removing an entry from the cache without writing it
+back. Cache blocks can be invalidated via the invalidate_cblocks
+message, which takes an arbitrary number of cblock ranges. Each cblock
+range's end value is "one past the end", meaning 5-10 expresses a range
+of values from 5 to 9. Each cblock must be expressed as a decimal
+value, in the future a variant message that takes cblock ranges
+expressed in hexidecimal may be needed to better support efficient
+invalidation of larger caches. The cache must be in passthrough mode
+when invalidate_cblocks is used.
+
+ invalidate_cblocks [<cblock>|<cblock begin>-<cblock end>]*
+
+E.g.
+ dmsetup message my_cache 0 invalidate_cblocks 2345 3456-4567 5678-6789
+
Examples
========
The test suite can be found here:
-https://github.com/jthornber/thinp-test-suite
+https://github.com/jthornber/device-mapper-test-suite
dmsetup create my_cache --table '0 41943040 cache /dev/mapper/metadata \
/dev/mapper/ssd /dev/mapper/origin 512 1 writeback default 0'
diff --git a/Documentation/device-mapper/dm-crypt.txt b/Documentation/device-mapper/dm-crypt.txt
index 2c656ae43ba..c81839b52c4 100644
--- a/Documentation/device-mapper/dm-crypt.txt
+++ b/Documentation/device-mapper/dm-crypt.txt
@@ -4,12 +4,15 @@ dm-crypt
Device-Mapper's "crypt" target provides transparent encryption of block devices
using the kernel crypto API.
+For a more detailed description of supported parameters see:
+http://code.google.com/p/cryptsetup/wiki/DMCrypt
+
Parameters: <cipher> <key> <iv_offset> <device path> \
<offset> [<#opt_params> <opt_params>]
<cipher>
Encryption cipher and an optional IV generation mode.
- (In format cipher[:keycount]-chainmode-ivopts:ivmode).
+ (In format cipher[:keycount]-chainmode-ivmode[:ivopts]).
Examples:
des
aes-cbc-essiv:sha256
@@ -19,7 +22,11 @@ Parameters: <cipher> <key> <iv_offset> <device path> \
<key>
Key used for encryption. It is encoded as a hexadecimal number.
- You can only use key sizes that are valid for the selected cipher.
+ You can only use key sizes that are valid for the selected cipher
+ in combination with the selected iv mode.
+ Note that for some iv modes the key string can contain additional
+ keys (for example IV seed) so the key contains more parts concatenated
+ into a single string.
<keycount>
Multi-key compatibility mode. You can define <keycount> keys and
diff --git a/Documentation/device-mapper/era.txt b/Documentation/device-mapper/era.txt
new file mode 100644
index 00000000000..3c6d01be356
--- /dev/null
+++ b/Documentation/device-mapper/era.txt
@@ -0,0 +1,108 @@
+Introduction
+============
+
+dm-era is a target that behaves similar to the linear target. In
+addition it keeps track of which blocks were written within a user
+defined period of time called an 'era'. Each era target instance
+maintains the current era as a monotonically increasing 32-bit
+counter.
+
+Use cases include tracking changed blocks for backup software, and
+partially invalidating the contents of a cache to restore cache
+coherency after rolling back a vendor snapshot.
+
+Constructor
+===========
+
+ era <metadata dev> <origin dev> <block size>
+
+ metadata dev : fast device holding the persistent metadata
+ origin dev : device holding data blocks that may change
+ block size : block size of origin data device, granularity that is
+ tracked by the target
+
+Messages
+========
+
+None of the dm messages take any arguments.
+
+checkpoint
+----------
+
+Possibly move to a new era. You shouldn't assume the era has
+incremented. After sending this message, you should check the
+current era via the status line.
+
+take_metadata_snap
+------------------
+
+Create a clone of the metadata, to allow a userland process to read it.
+
+drop_metadata_snap
+------------------
+
+Drop the metadata snapshot.
+
+Status
+======
+
+<metadata block size> <#used metadata blocks>/<#total metadata blocks>
+<current era> <held metadata root | '-'>
+
+metadata block size : Fixed block size for each metadata block in
+ sectors
+#used metadata blocks : Number of metadata blocks used
+#total metadata blocks : Total number of metadata blocks
+current era : The current era
+held metadata root : The location, in blocks, of the metadata root
+ that has been 'held' for userspace read
+ access. '-' indicates there is no held root
+
+Detailed use case
+=================
+
+The scenario of invalidating a cache when rolling back a vendor
+snapshot was the primary use case when developing this target:
+
+Taking a vendor snapshot
+------------------------
+
+- Send a checkpoint message to the era target
+- Make a note of the current era in its status line
+- Take vendor snapshot (the era and snapshot should be forever
+ associated now).
+
+Rolling back to an vendor snapshot
+----------------------------------
+
+- Cache enters passthrough mode (see: dm-cache's docs in cache.txt)
+- Rollback vendor storage
+- Take metadata snapshot
+- Ascertain which blocks have been written since the snapshot was taken
+ by checking each block's era
+- Invalidate those blocks in the caching software
+- Cache returns to writeback/writethrough mode
+
+Memory usage
+============
+
+The target uses a bitset to record writes in the current era. It also
+has a spare bitset ready for switching over to a new era. Other than
+that it uses a few 4k blocks for updating metadata.
+
+ (4 * nr_blocks) bytes + buffers
+
+Resilience
+==========
+
+Metadata is updated on disk before a write to a previously unwritten
+block is performed. As such dm-era should not be effected by a hard
+crash such as power failure.
+
+Userland tools
+==============
+
+Userland tools are found in the increasingly poorly named
+thin-provisioning-tools project:
+
+ https://github.com/jthornber/thin-provisioning-tools
diff --git a/Documentation/device-mapper/thin-provisioning.txt b/Documentation/device-mapper/thin-provisioning.txt
index 50c44cf79b0..2f5173500bd 100644
--- a/Documentation/device-mapper/thin-provisioning.txt
+++ b/Documentation/device-mapper/thin-provisioning.txt
@@ -116,6 +116,35 @@ Resuming a device with a new table itself triggers an event so the
userspace daemon can use this to detect a situation where a new table
already exceeds the threshold.
+A low water mark for the metadata device is maintained in the kernel and
+will trigger a dm event if free space on the metadata device drops below
+it.
+
+Updating on-disk metadata
+-------------------------
+
+On-disk metadata is committed every time a FLUSH or FUA bio is written.
+If no such requests are made then commits will occur every second. This
+means the thin-provisioning target behaves like a physical disk that has
+a volatile write cache. If power is lost you may lose some recent
+writes. The metadata should always be consistent in spite of any crash.
+
+If data space is exhausted the pool will either error or queue IO
+according to the configuration (see: error_if_no_space). If metadata
+space is exhausted or a metadata operation fails: the pool will error IO
+until the pool is taken offline and repair is performed to 1) fix any
+potential inconsistencies and 2) clear the flag that imposes repair.
+Once the pool's metadata device is repaired it may be resized, which
+will allow the pool to return to normal operation. Note that if a pool
+is flagged as needing repair, the pool's data and metadata devices
+cannot be resized until repair is performed. It should also be noted
+that when the pool's metadata space is exhausted the current metadata
+transaction is aborted. Given that the pool will cache IO whose
+completion may have already been acknowledged to upper IO layers
+(e.g. filesystem) it is strongly suggested that consistency checks
+(e.g. fsck) be performed on those layers when repair of the pool is
+required.
+
Thin provisioning
-----------------
@@ -235,6 +264,8 @@ i) Constructor
read_only: Don't allow any changes to be made to the pool
metadata.
+ error_if_no_space: Error IOs, instead of queueing, if no space.
+
Data block size must be between 64KB (128 sectors) and 1GB
(2097152 sectors) inclusive.
@@ -256,10 +287,9 @@ ii) Status
should register for the event and then check the target's status.
held metadata root:
- The location, in sectors, of the metadata root that has been
+ The location, in blocks, of the metadata root that has been
'held' for userspace read access. '-' indicates there is no
- held root. This feature is not yet implemented so '-' is
- always returned.
+ held root.
discard_passdown|no_discard_passdown
Whether or not discards are actually being passed down to the
@@ -276,6 +306,14 @@ ii) Status
contain the string 'Fail'. The userspace recovery tools
should then be used.
+ error_if_no_space|queue_if_no_space
+ If the pool runs out of data or metadata space, the pool will
+ either queue or error the IO destined to the data device. The
+ default is to queue the IO until more space is added or the
+ 'no_space_timeout' expires. The 'no_space_timeout' dm-thin-pool
+ module parameter can be used to change this timeout -- it
+ defaults to 60 seconds but may be disabled using a value of 0.
+
iii) Messages
create_thin <dev id>
diff --git a/Documentation/devices.txt b/Documentation/devices.txt
index 23721d3be3e..87b4c5e82d3 100644
--- a/Documentation/devices.txt
+++ b/Documentation/devices.txt
@@ -353,6 +353,7 @@ Your cooperation is appreciated.
133 = /dev/exttrp External device trap
134 = /dev/apm_bios Advanced Power Management BIOS
135 = /dev/rtc Real Time Clock
+ 137 = /dev/vhci Bluetooth virtual HCI driver
139 = /dev/openprom SPARC OpenBoot PROM
140 = /dev/relay8 Berkshire Products Octal relay card
141 = /dev/relay16 Berkshire Products ISO-16 relay card
@@ -409,11 +410,14 @@ Your cooperation is appreciated.
193 = /dev/d7s SPARC 7-segment display
194 = /dev/zkshim Zero-Knowledge network shim control
195 = /dev/elographics/e2201 Elographics touchscreen E271-2201
+ 196 = /dev/vfio/vfio VFIO userspace driver interface
+ 197 = /dev/pxa3xx-gcu PXA3xx graphics controller unit driver
198 = /dev/sexec Signed executable interface
199 = /dev/scanners/cuecat :CueCat barcode scanner
200 = /dev/net/tun TAP/TUN network device
201 = /dev/button/gulpb Transmeta GULP-B buttons
202 = /dev/emd/ctl Enhanced Metadisk RAID (EMD) control
+ 203 = /dev/cuse Cuse (character device in user-space)
204 = /dev/video/em8300 EM8300 DVD decoder control
205 = /dev/video/em8300_mv EM8300 DVD decoder video
206 = /dev/video/em8300_ma EM8300 DVD decoder audio
@@ -449,6 +453,7 @@ Your cooperation is appreciated.
236 = /dev/mapper/control Device-Mapper control device
237 = /dev/loop-control Loopback control device
238 = /dev/vhost-net Host kernel accelerator for virtio net
+ 239 = /dev/uhid User-space I/O driver support for HID subsystem
240-254 Reserved for local use
255 Reserved for MISC_DYNAMIC_MINOR
@@ -1489,10 +1494,17 @@ Your cooperation is appreciated.
64 = /dev/radio0 Radio device
...
127 = /dev/radio63 Radio device
+ 128 = /dev/swradio0 Software Defined Radio device
+ ...
+ 191 = /dev/swradio63 Software Defined Radio device
224 = /dev/vbi0 Vertical blank interrupt
...
255 = /dev/vbi31 Vertical blank interrupt
+ Minor numbers are allocated dynamically unless
+ CONFIG_VIDEO_FIXED_MINOR_RANGES (default n)
+ configuration option is set.
+
81 block I2O hard disk
0 = /dev/i2o/hdq 17th I2O hard disk, whole disk
16 = /dev/i2o/hdr 18th I2O hard disk, whole disk
diff --git a/Documentation/devicetree/00-INDEX b/Documentation/devicetree/00-INDEX
index b78f691fd84..8c4102c6a5e 100644
--- a/Documentation/devicetree/00-INDEX
+++ b/Documentation/devicetree/00-INDEX
@@ -8,3 +8,5 @@ https://lists.ozlabs.org/listinfo/devicetree-discuss
- this file
booting-without-of.txt
- Booting Linux without Open Firmware, describes history and format of device trees.
+usage-model.txt
+ - How Linux uses DT and what DT aims to solve. \ No newline at end of file
diff --git a/Documentation/devicetree/bindings/ABI.txt b/Documentation/devicetree/bindings/ABI.txt
new file mode 100644
index 00000000000..d25f8d37968
--- /dev/null
+++ b/Documentation/devicetree/bindings/ABI.txt
@@ -0,0 +1,39 @@
+
+ Devicetree (DT) ABI
+
+I. Regarding stable bindings/ABI, we quote from the 2013 ARM mini-summit
+ summary document:
+
+ "That still leaves the question of, what does a stable binding look
+ like? Certainly a stable binding means that a newer kernel will not
+ break on an older device tree, but that doesn't mean the binding is
+ frozen for all time. Grant said there are ways to change bindings that
+ don't result in breakage. For instance, if a new property is added,
+ then default to the previous behaviour if it is missing. If a binding
+ truly needs an incompatible change, then change the compatible string
+ at the same time. The driver can bind against both the old and the
+ new. These guidelines aren't new, but they desperately need to be
+ documented."
+
+II. General binding rules
+
+ 1) Maintainers, don't let perfect be the enemy of good. Don't hold up a
+ binding because it isn't perfect.
+
+ 2) Use specific compatible strings so that if we need to add a feature (DMA)
+ in the future, we can create a new compatible string. See I.
+
+ 3) Bindings can be augmented, but the driver shouldn't break when given
+ the old binding. ie. add additional properties, but don't change the
+ meaning of an existing property. For drivers, default to the original
+ behaviour when a newly added property is missing.
+
+ 4) Don't submit bindings for staging or unstable. That will be decided by
+ the devicetree maintainers *after* discussion on the mailinglist.
+
+III. Notes
+
+ 1) This document is intended as a general familiarization with the process as
+ decided at the 2013 Kernel Summit. When in doubt, the current word of the
+ devicetree maintainers overrules this document. In that situation, a patch
+ updating this document would be appreciated.
diff --git a/Documentation/devicetree/bindings/arc/pmu.txt b/Documentation/devicetree/bindings/arc/pmu.txt
new file mode 100644
index 00000000000..49d517340de
--- /dev/null
+++ b/Documentation/devicetree/bindings/arc/pmu.txt
@@ -0,0 +1,24 @@
+* ARC Performance Monitor Unit
+
+The ARC 700 can be configured with a pipeline performance monitor for counting
+CPU and cache events like cache misses and hits.
+
+Note that:
+ * ARC 700 refers to a family of ARC processor cores;
+ - There is only one type of PMU available for the whole family;
+ - The PMU may support different sets of events; supported events are probed
+ at boot time, as required by the reference manual.
+
+ * The ARC 700 PMU does not support interrupts; although HW events may be
+ counted, the HW events themselves cannot serve as a trigger for a sample.
+
+Required properties:
+
+- compatible : should contain
+ "snps,arc700-pmu"
+
+Example:
+
+pmu {
+ compatible = "snps,arc700-pmu";
+};
diff --git a/Documentation/devicetree/bindings/arm/arch_timer.txt b/Documentation/devicetree/bindings/arm/arch_timer.txt
index 06fc7602593..37b2cafa4e5 100644
--- a/Documentation/devicetree/bindings/arm/arch_timer.txt
+++ b/Documentation/devicetree/bindings/arm/arch_timer.txt
@@ -19,6 +19,9 @@ to deliver its interrupts via SPIs.
- clock-frequency : The frequency of the main counter, in Hz. Optional.
+- always-on : a boolean property. If present, the timer is powered through an
+ always-on power domain, therefore it never loses context.
+
Example:
timer {
diff --git a/Documentation/devicetree/bindings/arm/arm-boards b/Documentation/devicetree/bindings/arm/arm-boards
index db5858e32d3..3509707f932 100644
--- a/Documentation/devicetree/bindings/arm/arm-boards
+++ b/Documentation/devicetree/bindings/arm/arm-boards
@@ -9,9 +9,61 @@ Required properties (in root node):
FPGA type interrupt controllers, see the versatile-fpga-irq binding doc.
-In the root node the Integrator/CP must have a /cpcon node pointing
-to the CP control registers, and the Integrator/AP must have a
-/syscon node pointing to the Integrator/AP system controller.
+Required nodes:
+
+- core-module: the root node to the Integrator platforms must have
+ a core-module with regs and the compatible string
+ "arm,core-module-integrator"
+- external-bus-interface: the root node to the Integrator platforms
+ must have an external bus interface with regs and the
+ compatible-string "arm,external-bus-interface"
+
+ Required properties for the core module:
+ - regs: the location and size of the core module registers, one
+ range of 0x200 bytes.
+
+- syscon: the root node of the Integrator platforms must have a
+ system controller node pointong to the control registers,
+ with the compatible string
+ "arm,integrator-ap-syscon"
+ "arm,integrator-cp-syscon"
+ respectively.
+
+ Required properties for the system controller:
+ - regs: the location and size of the system controller registers,
+ one range of 0x100 bytes.
+
+ Required properties for the AP system controller:
+ - interrupts: the AP syscon node must include the logical module
+ interrupts, stated in order of module instance <module 0>,
+ <module 1>, <module 2> ... for the CP system controller this
+ is not required not of any use.
+
+/dts-v1/;
+/include/ "integrator.dtsi"
+
+/ {
+ model = "ARM Integrator/AP";
+ compatible = "arm,integrator-ap";
+
+ core-module@10000000 {
+ compatible = "arm,core-module-integrator";
+ reg = <0x10000000 0x200>;
+ };
+
+ ebi@12000000 {
+ compatible = "arm,external-bus-interface";
+ reg = <0x12000000 0x100>;
+ };
+
+ syscon {
+ compatible = "arm,integrator-ap-syscon";
+ reg = <0x11000000 0x100>;
+ interrupt-parent = <&pic>;
+ /* These are the logic module IRQs */
+ interrupts = <9>, <10>, <11>, <12>;
+ };
+};
ARM Versatile Application and Platform Baseboards
diff --git a/Documentation/devicetree/bindings/arm/armada-370-xp-pmsu.txt b/Documentation/devicetree/bindings/arm/armada-370-xp-pmsu.txt
index 926b4d6aae7..26799ef562d 100644
--- a/Documentation/devicetree/bindings/arm/armada-370-xp-pmsu.txt
+++ b/Documentation/devicetree/bindings/arm/armada-370-xp-pmsu.txt
@@ -1,20 +1,21 @@
Power Management Service Unit(PMSU)
-----------------------------------
-Available on Marvell SOCs: Armada 370 and Armada XP
+Available on Marvell SOCs: Armada 370, Armada 38x and Armada XP
Required properties:
-- compatible: "marvell,armada-370-xp-pmsu"
+- compatible: should be one of:
+ - "marvell,armada-370-pmsu" for Armada 370 or Armada XP
+ - "marvell,armada-380-pmsu" for Armada 38x
+ - "marvell,armada-370-xp-pmsu" was used for Armada 370/XP but is now
+ deprecated and will be removed
-- reg: Should contain PMSU registers location and length. First pair
- for the per-CPU SW Reset Control registers, second pair for the
- Power Management Service Unit.
+- reg: Should contain PMSU registers location and length.
Example:
-armada-370-xp-pmsu@d0022000 {
- compatible = "marvell,armada-370-xp-pmsu";
- reg = <0xd0022100 0x430>,
- <0xd0020800 0x20>;
+armada-370-xp-pmsu@22000 {
+ compatible = "marvell,armada-370-pmsu";
+ reg = <0x22000 0x1000>;
};
diff --git a/Documentation/devicetree/bindings/arm/armada-375.txt b/Documentation/devicetree/bindings/arm/armada-375.txt
new file mode 100644
index 00000000000..867d0b80cb8
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/armada-375.txt
@@ -0,0 +1,9 @@
+Marvell Armada 375 Platforms Device Tree Bindings
+-------------------------------------------------
+
+Boards with a SoC of the Marvell Armada 375 family shall have the
+following property:
+
+Required root node property:
+
+compatible: must contain "marvell,armada375"
diff --git a/Documentation/devicetree/bindings/arm/armada-38x.txt b/Documentation/devicetree/bindings/arm/armada-38x.txt
new file mode 100644
index 00000000000..ad9f8ed4d9b
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/armada-38x.txt
@@ -0,0 +1,20 @@
+Marvell Armada 38x Platforms Device Tree Bindings
+-------------------------------------------------
+
+Boards with a SoC of the Marvell Armada 38x family shall have the
+following property:
+
+Required root node property:
+
+ - compatible: must contain "marvell,armada380"
+
+In addition, boards using the Marvell Armada 385 SoC shall have the
+following property before the previous one:
+
+Required root node property:
+
+compatible: must contain "marvell,armada385"
+
+Example:
+
+compatible = "marvell,a385-rd", "marvell,armada385", "marvell,armada380";
diff --git a/Documentation/devicetree/bindings/arm/armada-cpu-reset.txt b/Documentation/devicetree/bindings/arm/armada-cpu-reset.txt
new file mode 100644
index 00000000000..b63a7b6ab99
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/armada-cpu-reset.txt
@@ -0,0 +1,14 @@
+Marvell Armada CPU reset controller
+===================================
+
+Required properties:
+
+- compatible: Should be "marvell,armada-370-cpu-reset".
+
+- reg: should be register base and length as documented in the
+ datasheet for the CPU reset registers
+
+cpurst: cpurst@20800 {
+ compatible = "marvell,armada-370-cpu-reset";
+ reg = <0x20800 0x20>;
+};
diff --git a/Documentation/devicetree/bindings/arm/atmel-aic.txt b/Documentation/devicetree/bindings/arm/atmel-aic.txt
index ad031211b5b..2742e9cfd6b 100644
--- a/Documentation/devicetree/bindings/arm/atmel-aic.txt
+++ b/Documentation/devicetree/bindings/arm/atmel-aic.txt
@@ -2,6 +2,7 @@
Required properties:
- compatible: Should be "atmel,<chip>-aic"
+ <chip> can be "at91rm9200" or "sama5d3"
- interrupt-controller: Identifies the node as an interrupt controller.
- interrupt-parent: For single AIC system, it is an empty property.
- #interrupt-cells: The number of cells to define the interrupts. It should be 3.
diff --git a/Documentation/devicetree/bindings/arm/atmel-at91.txt b/Documentation/devicetree/bindings/arm/atmel-at91.txt
index 1196290082d..16f60b41c14 100644
--- a/Documentation/devicetree/bindings/arm/atmel-at91.txt
+++ b/Documentation/devicetree/bindings/arm/atmel-at91.txt
@@ -20,6 +20,10 @@ TC/TCLIB Timer required properties:
- interrupts: Should contain all interrupts for the TC block
Note that you can specify several interrupt cells if the TC
block has one interrupt per channel.
+- clock-names: tuple listing input clock names.
+ Required elements: "t0_clk"
+ Optional elements: "t1_clk", "t2_clk"
+- clocks: phandles to input clocks.
Examples:
@@ -28,6 +32,8 @@ One interrupt per TC block:
compatible = "atmel,at91rm9200-tcb";
reg = <0xfff7c000 0x100>;
interrupts = <18 4>;
+ clocks = <&tcb0_clk>;
+ clock-names = "t0_clk";
};
One interrupt per TC channel in a TC block:
@@ -35,6 +41,8 @@ One interrupt per TC channel in a TC block:
compatible = "atmel,at91rm9200-tcb";
reg = <0xfffdc000 0x100>;
interrupts = <26 4 27 4 28 4>;
+ clocks = <&tcb1_clk>;
+ clock-names = "t0_clk";
};
RSTC Reset Controller required properties:
@@ -50,7 +58,8 @@ Example:
};
RAMC SDRAM/DDR Controller required properties:
-- compatible: Should be "atmel,at91sam9260-sdramc",
+- compatible: Should be "atmel,at91rm9200-sdramc",
+ "atmel,at91sam9260-sdramc",
"atmel,at91sam9g45-ddramc",
- reg: Should contain registers location and length
For at91sam9263 and at91sam9g45 you must specify 2 entries.
diff --git a/Documentation/devicetree/bindings/arm/axxia.txt b/Documentation/devicetree/bindings/arm/axxia.txt
new file mode 100644
index 00000000000..7b4ef9c0769
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/axxia.txt
@@ -0,0 +1,12 @@
+Axxia AXM55xx device tree bindings
+
+Boards using the AXM55xx SoC need to have the following properties:
+
+Required root node property:
+
+ - compatible = "lsi,axm5516"
+
+Boards:
+
+ LSI AXM5516 Validation board (Amarillo)
+ compatible = "lsi,axm5516-amarillo", "lsi,axm5516"
diff --git a/Documentation/devicetree/bindings/arm/bcm/bcm21664.txt b/Documentation/devicetree/bindings/arm/bcm/bcm21664.txt
new file mode 100644
index 00000000000..e0774255e1a
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/bcm/bcm21664.txt
@@ -0,0 +1,15 @@
+Broadcom BCM21664 device tree bindings
+--------------------------------------
+
+This document describes the device tree bindings for boards with the BCM21664
+SoC.
+
+Required root node property:
+ - compatible: brcm,bcm21664
+
+Example:
+ / {
+ model = "BCM21664 SoC";
+ compatible = "brcm,bcm21664";
+ [...]
+ }
diff --git a/Documentation/devicetree/bindings/arm/bcm/kona-resetmgr.txt b/Documentation/devicetree/bindings/arm/bcm/kona-resetmgr.txt
new file mode 100644
index 00000000000..93f31ca1ef4
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/bcm/kona-resetmgr.txt
@@ -0,0 +1,14 @@
+Broadcom Kona Family Reset Manager
+----------------------------------
+
+The reset manager is used on the Broadcom BCM21664 SoC.
+
+Required properties:
+ - compatible: brcm,bcm21664-resetmgr
+ - reg: memory address & range
+
+Example:
+ brcm,resetmgr@35001f00 {
+ compatible = "brcm,bcm21664-resetmgr";
+ reg = <0x35001f00 0x24>;
+ };
diff --git a/Documentation/devicetree/bindings/arm/bcm/kona-timer.txt b/Documentation/devicetree/bindings/arm/bcm/kona-timer.txt
index 17d88b233d1..39adf54b438 100644
--- a/Documentation/devicetree/bindings/arm/bcm/kona-timer.txt
+++ b/Documentation/devicetree/bindings/arm/bcm/kona-timer.txt
@@ -8,13 +8,18 @@ Required properties:
- DEPRECATED: compatible : "bcm,kona-timer"
- reg : Register range for the timer
- interrupts : interrupt for the timer
+- clocks: phandle + clock specifier pair of the external clock
- clock-frequency: frequency that the clock operates
+Only one of clocks or clock-frequency should be specified.
+
+Refer to clocks/clock-bindings.txt for generic clock consumer properties.
+
Example:
timer@35006000 {
compatible = "brcm,kona-timer";
reg = <0x35006000 0x1000>;
interrupts = <0x0 7 0x4>;
- clock-frequency = <32768>;
+ clocks = <&hub_timer_clk>;
};
diff --git a/Documentation/devicetree/bindings/arm/bcm4708.txt b/Documentation/devicetree/bindings/arm/bcm4708.txt
new file mode 100644
index 00000000000..6b0f49f6f49
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/bcm4708.txt
@@ -0,0 +1,8 @@
+Broadcom BCM4708 device tree bindings
+-------------------------------------------
+
+Boards with the BCM4708 SoC shall have the following properties:
+
+Required root node property:
+
+compatible = "brcm,bcm4708";
diff --git a/Documentation/devicetree/bindings/arm/calxeda/mem-ctrlr.txt b/Documentation/devicetree/bindings/arm/calxeda/mem-ctrlr.txt
index f770ac0893d..049675944b7 100644
--- a/Documentation/devicetree/bindings/arm/calxeda/mem-ctrlr.txt
+++ b/Documentation/devicetree/bindings/arm/calxeda/mem-ctrlr.txt
@@ -1,7 +1,9 @@
Calxeda DDR memory controller
Properties:
-- compatible : Should be "calxeda,hb-ddr-ctrl"
+- compatible : Should be:
+ - "calxeda,hb-ddr-ctrl" for ECX-1000
+ - "calxeda,ecx-2000-ddr-ctrl" for ECX-2000
- reg : Address and size for DDR controller registers.
- interrupts : Interrupt for DDR controller.
diff --git a/Documentation/devicetree/bindings/arm/cci.txt b/Documentation/devicetree/bindings/arm/cci.txt
index 92d36e2aa87..f28d82bbbc5 100644
--- a/Documentation/devicetree/bindings/arm/cci.txt
+++ b/Documentation/devicetree/bindings/arm/cci.txt
@@ -36,14 +36,18 @@ specific to ARM.
- reg
Usage: required
- Value type: <prop-encoded-array>
+ Value type: Integer cells. A register entry, expressed as a pair
+ of cells, containing base and size.
Definition: A standard property. Specifies base physical
address of CCI control registers common to all
interfaces.
- ranges:
Usage: required
- Value type: <prop-encoded-array>
+ Value type: Integer cells. An array of range entries, expressed
+ as a tuple of cells, containing child address,
+ parent address and the size of the region in the
+ child address space.
Definition: A standard property. Follow rules in the ePAPR for
hierarchical bus addressing. CCI interfaces
addresses refer to the parent node addressing
@@ -74,11 +78,49 @@ specific to ARM.
- reg:
Usage: required
- Value type: <prop-encoded-array>
+ Value type: Integer cells. A register entry, expressed
+ as a pair of cells, containing base and
+ size.
Definition: the base address and size of the
corresponding interface programming
registers.
+ - CCI PMU node
+
+ Parent node must be CCI interconnect node.
+
+ A CCI pmu node must contain the following properties:
+
+ - compatible
+ Usage: required
+ Value type: <string>
+ Definition: must be "arm,cci-400-pmu"
+
+ - reg:
+ Usage: required
+ Value type: Integer cells. A register entry, expressed
+ as a pair of cells, containing base and
+ size.
+ Definition: the base address and size of the
+ corresponding interface programming
+ registers.
+
+ - interrupts:
+ Usage: required
+ Value type: Integer cells. Array of interrupt specifier
+ entries, as defined in
+ ../interrupt-controller/interrupts.txt.
+ Definition: list of counter overflow interrupts, one per
+ counter. The interrupts must be specified
+ starting with the cycle counter overflow
+ interrupt, followed by counter0 overflow
+ interrupt, counter1 overflow interrupt,...
+ ,counterN overflow interrupt.
+
+ The CCI PMU has an interrupt signal for each
+ counter. The number of interrupts must be
+ equal to the number of counters.
+
* CCI interconnect bus masters
Description: masters in the device tree connected to a CCI port
@@ -144,7 +186,7 @@ Example:
#address-cells = <1>;
#size-cells = <1>;
reg = <0x0 0x2c090000 0 0x1000>;
- ranges = <0x0 0x0 0x2c090000 0x6000>;
+ ranges = <0x0 0x0 0x2c090000 0x10000>;
cci_control0: slave-if@1000 {
compatible = "arm,cci-400-ctrl-if";
@@ -163,6 +205,16 @@ Example:
interface-type = "ace";
reg = <0x5000 0x1000>;
};
+
+ pmu@9000 {
+ compatible = "arm,cci-400-pmu";
+ reg = <0x9000 0x5000>;
+ interrupts = <0 101 4>,
+ <0 102 4>,
+ <0 103 4>,
+ <0 104 4>,
+ <0 105 4>;
+ };
};
This CCI node corresponds to a CCI component whose control registers sits
diff --git a/Documentation/devicetree/bindings/arm/coherency-fabric.txt b/Documentation/devicetree/bindings/arm/coherency-fabric.txt
index 17d8cd10755..8dd46617c88 100644
--- a/Documentation/devicetree/bindings/arm/coherency-fabric.txt
+++ b/Documentation/devicetree/bindings/arm/coherency-fabric.txt
@@ -1,16 +1,33 @@
Coherency fabric
----------------
-Available on Marvell SOCs: Armada 370 and Armada XP
+Available on Marvell SOCs: Armada 370, Armada 375, Armada 38x and Armada XP
Required properties:
-- compatible: "marvell,coherency-fabric"
+- compatible: the possible values are:
+
+ * "marvell,coherency-fabric", to be used for the coherency fabric of
+ the Armada 370 and Armada XP.
+
+ * "marvell,armada-375-coherency-fabric", for the Armada 375 coherency
+ fabric.
+
+ * "marvell,armada-380-coherency-fabric", for the Armada 38x coherency
+ fabric.
- reg: Should contain coherency fabric registers location and
- length. First pair for the coherency fabric registers, second pair
- for the per-CPU fabric registers registers.
+ length.
+
+ * For "marvell,coherency-fabric", the first pair for the coherency
+ fabric registers, second pair for the per-CPU fabric registers.
-Example:
+ * For "marvell,armada-375-coherency-fabric", only one pair is needed
+ for the per-CPU fabric registers.
+
+ * For "marvell,armada-380-coherency-fabric", only one pair is needed
+ for the per-CPU fabric registers.
+
+Examples:
coherency-fabric@d0020200 {
compatible = "marvell,coherency-fabric";
@@ -19,3 +36,8 @@ coherency-fabric@d0020200 {
};
+coherency-fabric@21810 {
+ compatible = "marvell,armada-375-coherency-fabric";
+ reg = <0x21810 0x1c>;
+};
+
diff --git a/Documentation/devicetree/bindings/arm/cpus.txt b/Documentation/devicetree/bindings/arm/cpus.txt
index f32494dbfe1..1fe72a0778c 100644
--- a/Documentation/devicetree/bindings/arm/cpus.txt
+++ b/Documentation/devicetree/bindings/arm/cpus.txt
@@ -1,77 +1,413 @@
-* ARM CPUs binding description
+=================
+ARM CPUs bindings
+=================
The device tree allows to describe the layout of CPUs in a system through
the "cpus" node, which in turn contains a number of subnodes (ie "cpu")
defining properties for every cpu.
-Bindings for CPU nodes follow the ePAPR standard, available from:
-
-http://devicetree.org
-
-For the ARM architecture every CPU node must contain the following properties:
-
-- device_type: must be "cpu"
-- reg: property matching the CPU MPIDR[23:0] register bits
- reg[31:24] bits must be set to 0
-- compatible: should be one of:
- "arm,arm1020"
- "arm,arm1020e"
- "arm,arm1022"
- "arm,arm1026"
- "arm,arm720"
- "arm,arm740"
- "arm,arm7tdmi"
- "arm,arm920"
- "arm,arm922"
- "arm,arm925"
- "arm,arm926"
- "arm,arm940"
- "arm,arm946"
- "arm,arm9tdmi"
- "arm,cortex-a5"
- "arm,cortex-a7"
- "arm,cortex-a8"
- "arm,cortex-a9"
- "arm,cortex-a15"
- "arm,arm1136"
- "arm,arm1156"
- "arm,arm1176"
- "arm,arm11mpcore"
- "faraday,fa526"
- "intel,sa110"
- "intel,sa1100"
- "marvell,feroceon"
- "marvell,mohawk"
- "marvell,xsc3"
- "marvell,xscale"
-
-Example:
+Bindings for CPU nodes follow the ePAPR v1.1 standard, available from:
+
+https://www.power.org/documentation/epapr-version-1-1/
+
+with updates for 32-bit and 64-bit ARM systems provided in this document.
+
+================================
+Convention used in this document
+================================
+
+This document follows the conventions described in the ePAPR v1.1, with
+the addition:
+
+- square brackets define bitfields, eg reg[7:0] value of the bitfield in
+ the reg property contained in bits 7 down to 0
+
+=====================================
+cpus and cpu node bindings definition
+=====================================
+
+The ARM architecture, in accordance with the ePAPR, requires the cpus and cpu
+nodes to be present and contain the properties described below.
+
+- cpus node
+
+ Description: Container of cpu nodes
+
+ The node name must be "cpus".
+
+ A cpus node must define the following properties:
+
+ - #address-cells
+ Usage: required
+ Value type: <u32>
+
+ Definition depends on ARM architecture version and
+ configuration:
+
+ # On uniprocessor ARM architectures previous to v7
+ value must be 1, to enable a simple enumeration
+ scheme for processors that do not have a HW CPU
+ identification register.
+ # On 32-bit ARM 11 MPcore, ARM v7 or later systems
+ value must be 1, that corresponds to CPUID/MPIDR
+ registers sizes.
+ # On ARM v8 64-bit systems value should be set to 2,
+ that corresponds to the MPIDR_EL1 register size.
+ If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
+ in the system, #address-cells can be set to 1, since
+ MPIDR_EL1[63:32] bits are not used for CPUs
+ identification.
+ - #size-cells
+ Usage: required
+ Value type: <u32>
+ Definition: must be set to 0
+
+- cpu node
+
+ Description: Describes a CPU in an ARM based system
+
+ PROPERTIES
+
+ - device_type
+ Usage: required
+ Value type: <string>
+ Definition: must be "cpu"
+ - reg
+ Usage and definition depend on ARM architecture version and
+ configuration:
+
+ # On uniprocessor ARM architectures previous to v7
+ this property is required and must be set to 0.
+
+ # On ARM 11 MPcore based systems this property is
+ required and matches the CPUID[11:0] register bits.
+
+ Bits [11:0] in the reg cell must be set to
+ bits [11:0] in CPU ID register.
+
+ All other bits in the reg cell must be set to 0.
+
+ # On 32-bit ARM v7 or later systems this property is
+ required and matches the CPU MPIDR[23:0] register
+ bits.
+
+ Bits [23:0] in the reg cell must be set to
+ bits [23:0] in MPIDR.
+
+ All other bits in the reg cell must be set to 0.
+
+ # On ARM v8 64-bit systems this property is required
+ and matches the MPIDR_EL1 register affinity bits.
+
+ * If cpus node's #address-cells property is set to 2
+
+ The first reg cell bits [7:0] must be set to
+ bits [39:32] of MPIDR_EL1.
+
+ The second reg cell bits [23:0] must be set to
+ bits [23:0] of MPIDR_EL1.
+
+ * If cpus node's #address-cells property is set to 1
+
+ The reg cell bits [23:0] must be set to bits [23:0]
+ of MPIDR_EL1.
+
+ All other bits in the reg cells must be set to 0.
+
+ - compatible:
+ Usage: required
+ Value type: <string>
+ Definition: should be one of:
+ "arm,arm710t"
+ "arm,arm720t"
+ "arm,arm740t"
+ "arm,arm7ej-s"
+ "arm,arm7tdmi"
+ "arm,arm7tdmi-s"
+ "arm,arm9es"
+ "arm,arm9ej-s"
+ "arm,arm920t"
+ "arm,arm922t"
+ "arm,arm925"
+ "arm,arm926e-s"
+ "arm,arm926ej-s"
+ "arm,arm940t"
+ "arm,arm946e-s"
+ "arm,arm966e-s"
+ "arm,arm968e-s"
+ "arm,arm9tdmi"
+ "arm,arm1020e"
+ "arm,arm1020t"
+ "arm,arm1022e"
+ "arm,arm1026ej-s"
+ "arm,arm1136j-s"
+ "arm,arm1136jf-s"
+ "arm,arm1156t2-s"
+ "arm,arm1156t2f-s"
+ "arm,arm1176jzf"
+ "arm,arm1176jz-s"
+ "arm,arm1176jzf-s"
+ "arm,arm11mpcore"
+ "arm,cortex-a5"
+ "arm,cortex-a7"
+ "arm,cortex-a8"
+ "arm,cortex-a9"
+ "arm,cortex-a15"
+ "arm,cortex-a53"
+ "arm,cortex-a57"
+ "arm,cortex-m0"
+ "arm,cortex-m0+"
+ "arm,cortex-m1"
+ "arm,cortex-m3"
+ "arm,cortex-m4"
+ "arm,cortex-r4"
+ "arm,cortex-r5"
+ "arm,cortex-r7"
+ "faraday,fa526"
+ "intel,sa110"
+ "intel,sa1100"
+ "marvell,feroceon"
+ "marvell,mohawk"
+ "marvell,pj4a"
+ "marvell,pj4b"
+ "marvell,sheeva-v5"
+ "qcom,krait"
+ "qcom,scorpion"
+ - enable-method
+ Value type: <stringlist>
+ Usage and definition depend on ARM architecture version.
+ # On ARM v8 64-bit this property is required and must
+ be one of:
+ "psci"
+ "spin-table"
+ # On ARM 32-bit systems this property is optional and
+ can be one of:
+ "allwinner,sun6i-a31"
+ "arm,psci"
+ "marvell,armada-375-smp"
+ "marvell,armada-380-smp"
+ "marvell,armada-xp-smp"
+ "qcom,gcc-msm8660"
+ "qcom,kpss-acc-v1"
+ "qcom,kpss-acc-v2"
+ "rockchip,rk3066-smp"
+
+ - cpu-release-addr
+ Usage: required for systems that have an "enable-method"
+ property value of "spin-table".
+ Value type: <prop-encoded-array>
+ Definition:
+ # On ARM v8 64-bit systems must be a two cell
+ property identifying a 64-bit zero-initialised
+ memory location.
+
+ - qcom,saw
+ Usage: required for systems that have an "enable-method"
+ property value of "qcom,kpss-acc-v1" or
+ "qcom,kpss-acc-v2"
+ Value type: <phandle>
+ Definition: Specifies the SAW[1] node associated with this CPU.
+
+ - qcom,acc
+ Usage: required for systems that have an "enable-method"
+ property value of "qcom,kpss-acc-v1" or
+ "qcom,kpss-acc-v2"
+ Value type: <phandle>
+ Definition: Specifies the ACC[2] node associated with this CPU.
+
+
+Example 1 (dual-cluster big.LITTLE system 32-bit):
cpus {
#size-cells = <0>;
#address-cells = <1>;
- CPU0: cpu@0 {
+ cpu@0 {
device_type = "cpu";
compatible = "arm,cortex-a15";
reg = <0x0>;
};
- CPU1: cpu@1 {
+ cpu@1 {
device_type = "cpu";
compatible = "arm,cortex-a15";
reg = <0x1>;
};
- CPU2: cpu@100 {
+ cpu@100 {
device_type = "cpu";
compatible = "arm,cortex-a7";
reg = <0x100>;
};
- CPU3: cpu@101 {
+ cpu@101 {
device_type = "cpu";
compatible = "arm,cortex-a7";
reg = <0x101>;
};
};
+
+Example 2 (Cortex-A8 uniprocessor 32-bit system):
+
+ cpus {
+ #size-cells = <0>;
+ #address-cells = <1>;
+
+ cpu@0 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a8";
+ reg = <0x0>;
+ };
+ };
+
+Example 3 (ARM 926EJ-S uniprocessor 32-bit system):
+
+ cpus {
+ #size-cells = <0>;
+ #address-cells = <1>;
+
+ cpu@0 {
+ device_type = "cpu";
+ compatible = "arm,arm926ej-s";
+ reg = <0x0>;
+ };
+ };
+
+Example 4 (ARM Cortex-A57 64-bit system):
+
+cpus {
+ #size-cells = <0>;
+ #address-cells = <2>;
+
+ cpu@0 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x0 0x0>;
+ enable-method = "spin-table";
+ cpu-release-addr = <0 0x20000000>;
+ };
+
+ cpu@1 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x0 0x1>;
+ enable-method = "spin-table";
+ cpu-release-addr = <0 0x20000000>;
+ };
+
+ cpu@100 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x0 0x100>;
+ enable-method = "spin-table";
+ cpu-release-addr = <0 0x20000000>;
+ };
+
+ cpu@101 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x0 0x101>;
+ enable-method = "spin-table";
+ cpu-release-addr = <0 0x20000000>;
+ };
+
+ cpu@10000 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x0 0x10000>;
+ enable-method = "spin-table";
+ cpu-release-addr = <0 0x20000000>;
+ };
+
+ cpu@10001 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x0 0x10001>;
+ enable-method = "spin-table";
+ cpu-release-addr = <0 0x20000000>;
+ };
+
+ cpu@10100 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x0 0x10100>;
+ enable-method = "spin-table";
+ cpu-release-addr = <0 0x20000000>;
+ };
+
+ cpu@10101 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x0 0x10101>;
+ enable-method = "spin-table";
+ cpu-release-addr = <0 0x20000000>;
+ };
+
+ cpu@100000000 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x1 0x0>;
+ enable-method = "spin-table";
+ cpu-release-addr = <0 0x20000000>;
+ };
+
+ cpu@100000001 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x1 0x1>;
+ enable-method = "spin-table";
+ cpu-release-addr = <0 0x20000000>;
+ };
+
+ cpu@100000100 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x1 0x100>;
+ enable-method = "spin-table";
+ cpu-release-addr = <0 0x20000000>;
+ };
+
+ cpu@100000101 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x1 0x101>;
+ enable-method = "spin-table";
+ cpu-release-addr = <0 0x20000000>;
+ };
+
+ cpu@100010000 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x1 0x10000>;
+ enable-method = "spin-table";
+ cpu-release-addr = <0 0x20000000>;
+ };
+
+ cpu@100010001 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x1 0x10001>;
+ enable-method = "spin-table";
+ cpu-release-addr = <0 0x20000000>;
+ };
+
+ cpu@100010100 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x1 0x10100>;
+ enable-method = "spin-table";
+ cpu-release-addr = <0 0x20000000>;
+ };
+
+ cpu@100010101 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x1 0x10101>;
+ enable-method = "spin-table";
+ cpu-release-addr = <0 0x20000000>;
+ };
+};
+
+--
+[1] arm/msm/qcom,saw2.txt
+[2] arm/msm/qcom,kpss-acc.txt
diff --git a/Documentation/devicetree/bindings/arm/davinci/nand.txt b/Documentation/devicetree/bindings/arm/davinci/nand.txt
deleted file mode 100644
index 3545ea704b5..00000000000
--- a/Documentation/devicetree/bindings/arm/davinci/nand.txt
+++ /dev/null
@@ -1,46 +0,0 @@
-* Texas Instruments Davinci NAND
-
-This file provides information, what the device node for the
-davinci nand interface contain.
-
-Required properties:
-- compatible: "ti,davinci-nand";
-- reg : contain 2 offset/length values:
- - offset and length for the access window
- - offset and length for accessing the aemif control registers
-- ti,davinci-chipselect: Indicates on the davinci_nand driver which
- chipselect is used for accessing the nand.
-
-Recommended properties :
-- ti,davinci-mask-ale: mask for ale
-- ti,davinci-mask-cle: mask for cle
-- ti,davinci-mask-chipsel: mask for chipselect
-- ti,davinci-ecc-mode: ECC mode valid values for davinci driver:
- - "none"
- - "soft"
- - "hw"
-- ti,davinci-ecc-bits: used ECC bits, currently supported 1 or 4.
-- ti,davinci-nand-buswidth: buswidth 8 or 16
-- ti,davinci-nand-use-bbt: use flash based bad block table support.
-
-nand device bindings may contain additional sub-nodes describing
-partitions of the address space. See partition.txt for more detail.
-
-Example(da850 EVM ):
-nand_cs3@62000000 {
- compatible = "ti,davinci-nand";
- reg = <0x62000000 0x807ff
- 0x68000000 0x8000>;
- ti,davinci-chipselect = <1>;
- ti,davinci-mask-ale = <0>;
- ti,davinci-mask-cle = <0>;
- ti,davinci-mask-chipsel = <0>;
- ti,davinci-ecc-mode = "hw";
- ti,davinci-ecc-bits = <4>;
- ti,davinci-nand-use-bbt;
-
- partition@180000 {
- label = "ubifs";
- reg = <0x180000 0x7e80000>;
- };
-};
diff --git a/Documentation/devicetree/bindings/arm/exynos/power_domain.txt b/Documentation/devicetree/bindings/arm/exynos/power_domain.txt
index 5216b419016..8b4f7b7fe88 100644
--- a/Documentation/devicetree/bindings/arm/exynos/power_domain.txt
+++ b/Documentation/devicetree/bindings/arm/exynos/power_domain.txt
@@ -9,6 +9,18 @@ Required Properties:
- reg: physical base address of the controller and length of memory mapped
region.
+Optional Properties:
+- clocks: List of clock handles. The parent clocks of the input clocks to the
+ devices in this power domain are set to oscclk before power gating
+ and restored back after powering on a domain. This is required for
+ all domains which are powered on and off and not required for unused
+ domains.
+- clock-names: The following clocks can be specified:
+ - oscclk: Oscillator clock.
+ - pclkN, clkN: Pairs of parent of input clock and input clock to the
+ devices in this power domain. Maximum of 4 pairs (N = 0 to 3)
+ are supported currently.
+
Node of a device using power domains must have a samsung,power-domain property
defined with a phandle to respective power domain.
@@ -19,6 +31,14 @@ Example:
reg = <0x10023C00 0x10>;
};
+ mfc_pd: power-domain@10044060 {
+ compatible = "samsung,exynos4210-pd";
+ reg = <0x10044060 0x20>;
+ clocks = <&clock CLK_FIN_PLL>, <&clock CLK_MOUT_SW_ACLK333>,
+ <&clock CLK_MOUT_USER_ACLK333>;
+ clock-names = "oscclk", "pclk0", "clk0";
+ };
+
Example of the node using power domain:
node {
diff --git a/Documentation/devicetree/bindings/arm/exynos/smp-sysram.txt b/Documentation/devicetree/bindings/arm/exynos/smp-sysram.txt
new file mode 100644
index 00000000000..4a0a4f70a0c
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/exynos/smp-sysram.txt
@@ -0,0 +1,38 @@
+Samsung Exynos SYSRAM for SMP bringup:
+------------------------------------
+
+Samsung SMP-capable Exynos SoCs use part of the SYSRAM for the bringup
+of the secondary cores. Once the core gets powered up it executes the
+code that is residing at some specific location of the SYSRAM.
+
+Therefore reserved section sub-nodes have to be added to the mmio-sram
+declaration. These nodes are of two types depending upon secure or
+non-secure execution environment.
+
+Required sub-node properties:
+- compatible : depending upon boot mode, should be
+ "samsung,exynos4210-sysram" : for Secure SYSRAM
+ "samsung,exynos4210-sysram-ns" : for Non-secure SYSRAM
+
+The rest of the properties should follow the generic mmio-sram discription
+found in ../../misc/sysram.txt
+
+Example:
+
+ sysram@02020000 {
+ compatible = "mmio-sram";
+ reg = <0x02020000 0x54000>;
+ #address-cells = <1>;
+ #size-cells = <1>;
+ ranges = <0 0x02020000 0x54000>;
+
+ smp-sysram@0 {
+ compatible = "samsung,exynos4210-sysram";
+ reg = <0x0 0x1000>;
+ };
+
+ smp-sysram@53000 {
+ compatible = "samsung,exynos4210-sysram-ns";
+ reg = <0x53000 0x1000>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/arm/firmware/tlm,trusted-foundations.txt b/Documentation/devicetree/bindings/arm/firmware/tlm,trusted-foundations.txt
new file mode 100644
index 00000000000..780d0392a66
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/firmware/tlm,trusted-foundations.txt
@@ -0,0 +1,20 @@
+Trusted Foundations
+-------------------
+
+Boards that use the Trusted Foundations secure monitor can signal its
+presence by declaring a node compatible with "tlm,trusted-foundations"
+under the /firmware/ node
+
+Required properties:
+- compatible: "tlm,trusted-foundations"
+- tlm,version-major: major version number of Trusted Foundations firmware
+- tlm,version-minor: minor version number of Trusted Foundations firmware
+
+Example:
+ firmware {
+ trusted-foundations {
+ compatible = "tlm,trusted-foundations";
+ tlm,version-major = <2>;
+ tlm,version-minor = <8>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/arm/gic.txt b/Documentation/devicetree/bindings/arm/gic.txt
index 3dfb0c0384f..5573c08d318 100644
--- a/Documentation/devicetree/bindings/arm/gic.txt
+++ b/Documentation/devicetree/bindings/arm/gic.txt
@@ -11,6 +11,7 @@ have PPIs or SGIs.
Main node required properties:
- compatible : should be one of:
+ "arm,gic-400"
"arm,cortex-a15-gic"
"arm,cortex-a9-gic"
"arm,cortex-a7-gic"
@@ -49,6 +50,11 @@ Optional
regions, used when the GIC doesn't have banked registers. The offset is
cpu-offset * cpu-nr.
+- arm,routable-irqs : Total number of gic irq inputs which are not directly
+ connected from the peripherals, but are routed dynamically
+ by a crossbar/multiplexer preceding the GIC. The GIC irq
+ input line is assigned dynamically when the corresponding
+ peripheral's crossbar line is mapped.
Example:
intc: interrupt-controller@fff11000 {
@@ -56,6 +62,7 @@ Example:
#interrupt-cells = <3>;
#address-cells = <1>;
interrupt-controller;
+ arm,routable-irqs = <160>;
reg = <0xfff11000 0x1000>,
<0xfff10100 0x100>;
};
diff --git a/Documentation/devicetree/bindings/arm/global_timer.txt b/Documentation/devicetree/bindings/arm/global_timer.txt
index 1e548981eda..bdae3a81879 100644
--- a/Documentation/devicetree/bindings/arm/global_timer.txt
+++ b/Documentation/devicetree/bindings/arm/global_timer.txt
@@ -4,8 +4,11 @@
** Timer node required properties:
-- compatible : Should be "arm,cortex-a9-global-timer"
- Driver supports versions r2p0 and above.
+- compatible : should contain
+ * "arm,cortex-a5-global-timer" for Cortex-A5 global timers.
+ * "arm,cortex-a9-global-timer" for Cortex-A9 global
+ timers or any compatible implementation. Note: driver
+ supports versions r2p0 and above.
- interrupts : One interrupt to each core
diff --git a/Documentation/devicetree/bindings/arm/hisilicon/hisilicon.txt b/Documentation/devicetree/bindings/arm/hisilicon/hisilicon.txt
new file mode 100644
index 00000000000..df0a452b852
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/hisilicon/hisilicon.txt
@@ -0,0 +1,46 @@
+Hisilicon Platforms Device Tree Bindings
+----------------------------------------------------
+
+Hi4511 Board
+Required root node properties:
+ - compatible = "hisilicon,hi3620-hi4511";
+
+Hisilicon system controller
+
+Required properties:
+- compatible : "hisilicon,sysctrl"
+- reg : Register address and size
+
+Optional properties:
+- smp-offset : offset in sysctrl for notifying slave cpu booting
+ cpu 1, reg;
+ cpu 2, reg + 0x4;
+ cpu 3, reg + 0x8;
+ If reg value is not zero, cpun exit wfi and go
+- resume-offset : offset in sysctrl for notifying cpu0 when resume
+- reboot-offset : offset in sysctrl for system reboot
+
+Example:
+
+ /* for Hi3620 */
+ sysctrl: system-controller@fc802000 {
+ compatible = "hisilicon,sysctrl";
+ reg = <0xfc802000 0x1000>;
+ smp-offset = <0x31c>;
+ resume-offset = <0x308>;
+ reboot-offset = <0x4>;
+ };
+
+PCTRL: Peripheral misc control register
+
+Required Properties:
+- compatible: "hisilicon,pctrl"
+- reg: Address and size of pctrl.
+
+Example:
+
+ /* for Hi3620 */
+ pctrl: pctrl@fca09000 {
+ compatible = "hisilicon,pctrl";
+ reg = <0xfca09000 0x1000>;
+ };
diff --git a/Documentation/devicetree/bindings/arm/keystone/keystone.txt b/Documentation/devicetree/bindings/arm/keystone/keystone.txt
index 63c0e6ae5cf..59d7a46f85e 100644
--- a/Documentation/devicetree/bindings/arm/keystone/keystone.txt
+++ b/Documentation/devicetree/bindings/arm/keystone/keystone.txt
@@ -8,3 +8,13 @@ Required properties:
- compatible: All TI specific devices present in Keystone SOC should be in
the form "ti,keystone-*". Generic devices like gic, arch_timers, ns16550
type UART should use the specified compatible for those devices.
+
+Boards:
+- Keystone 2 Hawking/Kepler EVM
+ compatible = "ti,k2hk-evm","ti,keystone"
+
+- Keystone 2 Lamarr EVM
+ compatible = "ti,k2l-evm","ti,keystone"
+
+- Keystone 2 Edison EVM
+ compatible = "ti,k2e-evm","ti,keystone"
diff --git a/Documentation/devicetree/bindings/arm/l2cc.txt b/Documentation/devicetree/bindings/arm/l2cc.txt
index c0c7626fd0f..af527ee111c 100644
--- a/Documentation/devicetree/bindings/arm/l2cc.txt
+++ b/Documentation/devicetree/bindings/arm/l2cc.txt
@@ -7,20 +7,21 @@ The ARM L2 cache representation in the device tree should be done as follows:
Required properties:
- compatible : should be one of:
- "arm,pl310-cache"
- "arm,l220-cache"
- "arm,l210-cache"
- "marvell,aurora-system-cache": Marvell Controller designed to be
+ "arm,pl310-cache"
+ "arm,l220-cache"
+ "arm,l210-cache"
+ "bcm,bcm11351-a2-pl310-cache": DEPRECATED by "brcm,bcm11351-a2-pl310-cache"
+ "brcm,bcm11351-a2-pl310-cache": For Broadcom bcm11351 chipset where an
+ offset needs to be added to the address before passing down to the L2
+ cache controller
+ "marvell,aurora-system-cache": Marvell Controller designed to be
compatible with the ARM one, with system cache mode (meaning
maintenance operations on L1 are broadcasted to the L2 and L2
performs the same operation).
- "marvell,"aurora-outer-cache: Marvell Controller designed to be
- compatible with the ARM one with outer cache mode.
- "brcm,bcm11351-a2-pl310-cache": For Broadcom bcm11351 chipset where an
- offset needs to be added to the address before passing down to the L2
- cache controller
- "bcm,bcm11351-a2-pl310-cache": DEPRECATED by
- "brcm,bcm11351-a2-pl310-cache"
+ "marvell,aurora-outer-cache": Marvell Controller designed to be
+ compatible with the ARM one with outer cache mode.
+ "marvell,tauros3-cache": Marvell Tauros3 cache controller, compatible
+ with arm,pl310-cache controller.
- cache-unified : Specifies the cache is a unified cache.
- cache-level : Should be set to 2 for a level 2 cache.
- reg : Physical base address and size of cache controller's memory mapped
@@ -39,6 +40,9 @@ Optional properties:
- arm,filter-ranges : <start length> Starting address and length of window to
filter. Addresses in the filter window are directed to the M1 port. Other
addresses will go to the M0 port.
+- arm,io-coherent : indicates that the system is operating in an hardware
+ I/O coherent mode. Valid only when the arm,pl310-cache compatible
+ string is used.
- interrupts : 1 combined interrupt.
- cache-id-part: cache id part number to be used if it is not present
on hardware
diff --git a/Documentation/devicetree/bindings/arm/marvell,berlin.txt b/Documentation/devicetree/bindings/arm/marvell,berlin.txt
new file mode 100644
index 00000000000..94013a9a876
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/marvell,berlin.txt
@@ -0,0 +1,126 @@
+Marvell Berlin SoC Family Device Tree Bindings
+---------------------------------------------------------------
+
+Boards with a SoC of the Marvell Berlin family, e.g. Armada 1500
+shall have the following properties:
+
+* Required root node properties:
+compatible: must contain "marvell,berlin"
+
+In addition, the above compatible shall be extended with the specific
+SoC and board used. Currently known SoC compatibles are:
+ "marvell,berlin2" for Marvell Armada 1500 (BG2, 88DE3100),
+ "marvell,berlin2cd" for Marvell Armada 1500-mini (BG2CD, 88DE3005)
+ "marvell,berlin2ct" for Marvell Armada ? (BG2CT, 88DE????)
+ "marvell,berlin2q" for Marvell Armada 1500-pro (BG2Q, 88DE3114)
+ "marvell,berlin3" for Marvell Armada ? (BG3, 88DE????)
+
+* Example:
+
+/ {
+ model = "Sony NSZ-GS7";
+ compatible = "sony,nsz-gs7", "marvell,berlin2", "marvell,berlin";
+
+ ...
+}
+
+* Marvell Berlin2 chip control binding
+
+Marvell Berlin SoCs have a chip control register set providing several
+individual registers dealing with pinmux, padmux, clock, reset, and secondary
+CPU boot address. Unfortunately, the individual registers are spread among the
+chip control registers, so there should be a single DT node only providing the
+different functions which are described below.
+
+Required properties:
+- compatible: shall be one of
+ "marvell,berlin2-chip-ctrl" for BG2
+ "marvell,berlin2cd-chip-ctrl" for BG2CD
+ "marvell,berlin2q-chip-ctrl" for BG2Q
+- reg: address and length of following register sets for
+ BG2/BG2CD: chip control register set
+ BG2Q: chip control register set and cpu pll registers
+
+* Marvell Berlin2 system control binding
+
+Marvell Berlin SoCs have a system control register set providing several
+individual registers dealing with pinmux, padmux, and reset.
+
+Required properties:
+- compatible: should be one of
+ "marvell,berlin2-system-ctrl" for BG2
+ "marvell,berlin2cd-system-ctrl" for BG2CD
+ "marvell,berlin2q-system-ctrl" for BG2Q
+- reg: address and length of the system control register set
+
+* Clock provider binding
+
+As clock related registers are spread among the chip control registers, the
+chip control node also provides the clocks. Marvell Berlin2 (BG2, BG2CD, BG2Q)
+SoCs share the same IP for PLLs and clocks, with some minor differences in
+features and register layout.
+
+Required properties:
+- #clock-cells: shall be set to 1
+- clocks: clock specifiers referencing the core clock input clocks
+- clock-names: array of strings describing the input clock specifiers above.
+ Allowed clock-names for the reference clocks are
+ "refclk" for the SoCs osciallator input on all SoCs,
+ and SoC-specific input clocks for
+ BG2/BG2CD: "video_ext0" for the external video clock input
+
+Clocks provided by core clocks shall be referenced by a clock specifier
+indexing one of the provided clocks. Refer to dt-bindings/clock/berlin<soc>.h
+for the corresponding index mapping.
+
+* Pin controller binding
+
+Pin control registers are part of both register sets, chip control and system
+control. The pins controlled are organized in groups, so no actual pin
+information is needed.
+
+A pin-controller node should contain subnodes representing the pin group
+configurations, one per function. Each subnode has the group name and the muxing
+function used.
+
+Be aware the Marvell Berlin datasheets use the keyword 'mode' for what is called
+a 'function' in the pin-controller subsystem.
+
+Required subnode-properties:
+- groups: a list of strings describing the group names.
+- function: a string describing the function used to mux the groups.
+
+Example:
+
+chip: chip-control@ea0000 {
+ compatible = "marvell,berlin2-chip-ctrl";
+ #clock-cells = <1>;
+ reg = <0xea0000 0x400>;
+ clocks = <&refclk>, <&externaldev 0>;
+ clock-names = "refclk", "video_ext0";
+
+ spi1_pmux: spi1-pmux {
+ groups = "G0";
+ function = "spi1";
+ };
+};
+
+sysctrl: system-controller@d000 {
+ compatible = "marvell,berlin2-system-ctrl";
+ reg = <0xd000 0x100>;
+
+ uart0_pmux: uart0-pmux {
+ groups = "GSM4";
+ function = "uart0";
+ };
+
+ uart1_pmux: uart1-pmux {
+ groups = "GSM5";
+ function = "uart1";
+ };
+
+ uart2_pmux: uart2-pmux {
+ groups = "GSM3";
+ function = "uart2";
+ };
+};
diff --git a/Documentation/devicetree/bindings/arm/marvell,dove.txt b/Documentation/devicetree/bindings/arm/marvell,dove.txt
new file mode 100644
index 00000000000..aaaf64c56e4
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/marvell,dove.txt
@@ -0,0 +1,22 @@
+Marvell Dove Platforms Device Tree Bindings
+-----------------------------------------------
+
+Boards with a Marvell Dove SoC shall have the following properties:
+
+Required root node property:
+- compatible: must contain "marvell,dove";
+
+* Global Configuration registers
+
+Global Configuration registers of Dove SoC are shared by a syscon node.
+
+Required properties:
+- compatible: must contain "marvell,dove-global-config" and "syscon".
+- reg: base address and size of the Global Configuration registers.
+
+Example:
+
+gconf: global-config@e802c {
+ compatible = "marvell,dove-global-config", "syscon";
+ reg = <0xe802c 0x14>;
+};
diff --git a/Documentation/devicetree/bindings/arm/marvell,kirkwood.txt b/Documentation/devicetree/bindings/arm/marvell,kirkwood.txt
new file mode 100644
index 00000000000..925ecbf6e7b
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/marvell,kirkwood.txt
@@ -0,0 +1,97 @@
+Marvell Kirkwood SoC Family Device Tree Bindings
+------------------------------------------------
+
+Boards with a SoC of the Marvell Kirkwook family, eg 88f6281
+
+* Required root node properties:
+compatible: must contain "marvell,kirkwood"
+
+In addition, the above compatible shall be extended with the specific
+SoC. Currently known SoC compatibles are:
+
+"marvell,kirkwood-88f6192"
+"marvell,kirkwood-88f6281"
+"marvell,kirkwood-88f6282"
+"marvell,kirkwood-88f6283"
+"marvell,kirkwood-88f6702"
+"marvell,kirkwood-98DX4122"
+
+And in addition, the compatible shall be extended with the specific
+board. Currently known boards are:
+
+"buffalo,lschlv2"
+"buffalo,lsxhl"
+"buffalo,lsxl"
+"dlink,dns-320"
+"dlink,dns-320-a1"
+"dlink,dns-325"
+"dlink,dns-325-a1"
+"dlink,dns-kirkwood"
+"excito,b3"
+"globalscale,dreamplug-003-ds2001"
+"globalscale,guruplug"
+"globalscale,guruplug-server-plus"
+"globalscale,sheevaplug"
+"globalscale,sheevaplug"
+"globalscale,sheevaplug-esata"
+"globalscale,sheevaplug-esata-rev13"
+"iom,iconnect"
+"iom,iconnect-1.1"
+"iom,ix2-200"
+"keymile,km_kirkwood"
+"lacie,cloudbox"
+"lacie,inetspace_v2"
+"lacie,laplug"
+"lacie,netspace_lite_v2"
+"lacie,netspace_max_v2"
+"lacie,netspace_mini_v2"
+"lacie,netspace_v2"
+"marvell,db-88f6281-bp"
+"marvell,db-88f6282-bp"
+"marvell,mv88f6281gtw-ge"
+"marvell,rd88f6281"
+"marvell,rd88f6281"
+"marvell,rd88f6281-a0"
+"marvell,rd88f6281-a1"
+"mpl,cec4"
+"mpl,cec4-10"
+"netgear,readynas"
+"netgear,readynas"
+"netgear,readynas-duo-v2"
+"netgear,readynas-nv+-v2"
+"plathome,openblocks-a6"
+"plathome,openblocks-a7"
+"raidsonic,ib-nas6210"
+"raidsonic,ib-nas6210-b"
+"raidsonic,ib-nas6220"
+"raidsonic,ib-nas6220-b"
+"raidsonic,ib-nas62x0"
+"seagate,dockstar"
+"seagate,goflexnet"
+"synology,ds109"
+"synology,ds110jv10"
+"synology,ds110jv20"
+"synology,ds110jv30"
+"synology,ds111"
+"synology,ds209"
+"synology,ds210jv10"
+"synology,ds210jv20"
+"synology,ds212"
+"synology,ds212jv10"
+"synology,ds212jv20"
+"synology,ds212pv10"
+"synology,ds409"
+"synology,ds409slim"
+"synology,ds410j"
+"synology,ds411"
+"synology,ds411j"
+"synology,ds411slim"
+"synology,ds413jv10"
+"synology,rs212"
+"synology,rs409"
+"synology,rs411"
+"synology,rs812"
+"usi,topkick"
+"usi,topkick-1281P2"
+"zyxel,nsa310"
+"zyxel,nsa310a"
diff --git a/Documentation/devicetree/bindings/arm/moxart.txt b/Documentation/devicetree/bindings/arm/moxart.txt
new file mode 100644
index 00000000000..11087edb065
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/moxart.txt
@@ -0,0 +1,12 @@
+MOXA ART device tree bindings
+
+Boards with the MOXA ART SoC shall have the following properties:
+
+Required root node property:
+
+compatible = "moxa,moxart";
+
+Boards:
+
+- UC-7112-LX: embedded computer
+ compatible = "moxa,moxart-uc-7112-lx", "moxa,moxart"
diff --git a/Documentation/devicetree/bindings/arm/mrvl/feroceon.txt b/Documentation/devicetree/bindings/arm/mrvl/feroceon.txt
new file mode 100644
index 00000000000..0d244b999d1
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/mrvl/feroceon.txt
@@ -0,0 +1,16 @@
+* Marvell Feroceon Cache
+
+Required properties:
+- compatible : Should be either "marvell,feroceon-cache" or
+ "marvell,kirkwood-cache".
+
+Optional properties:
+- reg : Address of the L2 cache control register. Mandatory for
+ "marvell,kirkwood-cache", not used by "marvell,feroceon-cache"
+
+
+Example:
+ l2: l2-cache@20128 {
+ compatible = "marvell,kirkwood-cache";
+ reg = <0x20128 0x4>;
+ };
diff --git a/Documentation/devicetree/bindings/arm/msm/qcom,kpss-acc.txt b/Documentation/devicetree/bindings/arm/msm/qcom,kpss-acc.txt
new file mode 100644
index 00000000000..1333db9acfe
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/msm/qcom,kpss-acc.txt
@@ -0,0 +1,30 @@
+Krait Processor Sub-system (KPSS) Application Clock Controller (ACC)
+
+The KPSS ACC provides clock, power domain, and reset control to a Krait CPU.
+There is one ACC register region per CPU within the KPSS remapped region as
+well as an alias register region that remaps accesses to the ACC associated
+with the CPU accessing the region.
+
+PROPERTIES
+
+- compatible:
+ Usage: required
+ Value type: <string>
+ Definition: should be one of:
+ "qcom,kpss-acc-v1"
+ "qcom,kpss-acc-v2"
+
+- reg:
+ Usage: required
+ Value type: <prop-encoded-array>
+ Definition: the first element specifies the base address and size of
+ the register region. An optional second element specifies
+ the base address and size of the alias register region.
+
+Example:
+
+ clock-controller@2088000 {
+ compatible = "qcom,kpss-acc-v2";
+ reg = <0x02088000 0x1000>,
+ <0x02008000 0x1000>;
+ };
diff --git a/Documentation/devicetree/bindings/arm/msm/qcom,saw2.txt b/Documentation/devicetree/bindings/arm/msm/qcom,saw2.txt
new file mode 100644
index 00000000000..1505fb8e131
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/msm/qcom,saw2.txt
@@ -0,0 +1,35 @@
+SPM AVS Wrapper 2 (SAW2)
+
+The SAW2 is a wrapper around the Subsystem Power Manager (SPM) and the
+Adaptive Voltage Scaling (AVS) hardware. The SPM is a programmable
+micro-controller that transitions a piece of hardware (like a processor or
+subsystem) into and out of low power modes via a direct connection to
+the PMIC. It can also be wired up to interact with other processors in the
+system, notifying them when a low power state is entered or exited.
+
+PROPERTIES
+
+- compatible:
+ Usage: required
+ Value type: <string>
+ Definition: shall contain "qcom,saw2". A more specific value should be
+ one of:
+ "qcom,saw2-v1"
+ "qcom,saw2-v1.1"
+ "qcom,saw2-v2"
+ "qcom,saw2-v2.1"
+
+- reg:
+ Usage: required
+ Value type: <prop-encoded-array>
+ Definition: the first element specifies the base address and size of
+ the register region. An optional second element specifies
+ the base address and size of the alias register region.
+
+
+Example:
+
+ regulator@2099000 {
+ compatible = "qcom,saw2";
+ reg = <0x02099000 0x1000>, <0x02009000 0x1000>;
+ };
diff --git a/Documentation/devicetree/bindings/arm/mvebu-system-controller.txt b/Documentation/devicetree/bindings/arm/mvebu-system-controller.txt
index 081c6a786c8..d24ab2ebf8a 100644
--- a/Documentation/devicetree/bindings/arm/mvebu-system-controller.txt
+++ b/Documentation/devicetree/bindings/arm/mvebu-system-controller.txt
@@ -1,12 +1,13 @@
MVEBU System Controller
-----------------------
-MVEBU (Marvell SOCs: Armada 370/XP, Dove, mv78xx0, Kirkwood, Orion5x)
+MVEBU (Marvell SOCs: Armada 370/375/XP, Dove, mv78xx0, Kirkwood, Orion5x)
Required properties:
- compatible: one of:
- "marvell,orion-system-controller"
- "marvell,armada-370-xp-system-controller"
+ - "marvell,armada-375-system-controller"
- reg: Should contain system controller registers location and length.
Example:
diff --git a/Documentation/devicetree/bindings/arm/omap/crossbar.txt b/Documentation/devicetree/bindings/arm/omap/crossbar.txt
new file mode 100644
index 00000000000..fb88585cfb9
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/omap/crossbar.txt
@@ -0,0 +1,27 @@
+Some socs have a large number of interrupts requests to service
+the needs of its many peripherals and subsystems. All of the
+interrupt lines from the subsystems are not needed at the same
+time, so they have to be muxed to the irq-controller appropriately.
+In such places a interrupt controllers are preceded by an CROSSBAR
+that provides flexibility in muxing the device requests to the controller
+inputs.
+
+Required properties:
+- compatible : Should be "ti,irq-crossbar"
+- reg: Base address and the size of the crossbar registers.
+- ti,max-irqs: Total number of irqs available at the interrupt controller.
+- ti,reg-size: Size of a individual register in bytes. Every individual
+ register is assumed to be of same size. Valid sizes are 1, 2, 4.
+- ti,irqs-reserved: List of the reserved irq lines that are not muxed using
+ crossbar. These interrupt lines are reserved in the soc,
+ so crossbar bar driver should not consider them as free
+ lines.
+
+Examples:
+ crossbar_mpu: @4a020000 {
+ compatible = "ti,irq-crossbar";
+ reg = <0x4a002a48 0x130>;
+ ti,max-irqs = <160>;
+ ti,reg-size = <2>;
+ ti,irqs-reserved = <0 1 2 3 5 6 131 132 139 140>;
+ };
diff --git a/Documentation/devicetree/bindings/arm/omap/dmm.txt b/Documentation/devicetree/bindings/arm/omap/dmm.txt
new file mode 100644
index 00000000000..8bd6d0a238a
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/omap/dmm.txt
@@ -0,0 +1,22 @@
+OMAP Dynamic Memory Manager (DMM) bindings
+
+The dynamic memory manager (DMM) is a module located immediately in front of the
+SDRAM controllers (called EMIFs on OMAP). DMM manages various aspects of memory
+accesses such as priority generation amongst initiators, configuration of SDRAM
+interleaving, optimizing transfer of 2D block objects, and provide MMU-like page
+translation for initiators which need contiguous dma bus addresses.
+
+Required properties:
+- compatible: Should contain "ti,omap4-dmm" for OMAP4 family
+ Should contain "ti,omap5-dmm" for OMAP5 and DRA7x family
+- reg: Contains DMM register address range (base address and length)
+- interrupts: Should contain an interrupt-specifier for DMM_IRQ.
+- ti,hwmods: Name of the hwmod associated to DMM, which is typically "dmm"
+
+Example:
+
+dmm@4e000000 {
+ compatible = "ti,omap4-dmm";
+ reg = <0x4e000000 0x800>;
+ ti,hwmods = "dmm";
+};
diff --git a/Documentation/devicetree/bindings/arm/omap/l3-noc.txt b/Documentation/devicetree/bindings/arm/omap/l3-noc.txt
index c0105de55cb..974624ea68f 100644
--- a/Documentation/devicetree/bindings/arm/omap/l3-noc.txt
+++ b/Documentation/devicetree/bindings/arm/omap/l3-noc.txt
@@ -6,6 +6,8 @@ provided by Arteris.
Required properties:
- compatible : Should be "ti,omap3-l3-smx" for OMAP3 family
Should be "ti,omap4-l3-noc" for OMAP4 family
+ Should be "ti,dra7-l3-noc" for DRA7 family
+ Should be "ti,am4372-l3-noc" for AM43 family
- reg: Contains L3 register address range for each noc domain.
- ti,hwmods: "l3_main_1", ... One hwmod for each noc domain.
diff --git a/Documentation/devicetree/bindings/arm/omap/mpu.txt b/Documentation/devicetree/bindings/arm/omap/mpu.txt
index 1a5a42ce21b..83f405bde13 100644
--- a/Documentation/devicetree/bindings/arm/omap/mpu.txt
+++ b/Documentation/devicetree/bindings/arm/omap/mpu.txt
@@ -7,10 +7,18 @@ The MPU contain CPUs, GIC, L2 cache and a local PRCM.
Required properties:
- compatible : Should be "ti,omap3-mpu" for OMAP3
Should be "ti,omap4-mpu" for OMAP4
+ Should be "ti,omap5-mpu" for OMAP5
- ti,hwmods: "mpu"
Examples:
+- For an OMAP5 SMP system:
+
+mpu {
+ compatible = "ti,omap5-mpu";
+ ti,hwmods = "mpu"
+};
+
- For an OMAP4 SMP system:
mpu {
diff --git a/Documentation/devicetree/bindings/arm/omap/omap.txt b/Documentation/devicetree/bindings/arm/omap/omap.txt
index 91b7049affa..d22b216f5d2 100644
--- a/Documentation/devicetree/bindings/arm/omap/omap.txt
+++ b/Documentation/devicetree/bindings/arm/omap/omap.txt
@@ -21,7 +21,8 @@ Required properties:
Optional properties:
- ti,no_idle_on_suspend: When present, it prevents the PM to idle the module
during suspend.
-
+- ti,no-reset-on-init: When present, the module should not be reset at init
+- ti,no-idle-on-init: When present, the module should not be idled at init
Example:
@@ -30,6 +31,62 @@ spinlock@1 {
ti,hwmods = "spinlock";
};
+SoC Type (optional):
+
+- General Purpose devices
+ compatible = "ti,gp"
+- High Security devices
+ compatible = "ti,hs"
+
+SoC Families:
+
+- OMAP2 generic - defaults to OMAP2420
+ compatible = "ti,omap2"
+- OMAP3 generic - defaults to OMAP3430
+ compatible = "ti,omap3"
+- OMAP4 generic - defaults to OMAP4430
+ compatible = "ti,omap4"
+- OMAP5 generic - defaults to OMAP5430
+ compatible = "ti,omap5"
+- DRA7 generic - defaults to DRA742
+ compatible = "ti,dra7"
+- AM43x generic - defaults to AM4372
+ compatible = "ti,am43"
+
+SoCs:
+
+- OMAP2420
+ compatible = "ti,omap2420", "ti,omap2"
+- OMAP2430
+ compatible = "ti,omap2430", "ti,omap2"
+
+- OMAP3430
+ compatible = "ti,omap3430", "ti,omap3"
+- AM3517
+ compatible = "ti,am3517", "ti,omap3"
+- OMAP3630
+ compatible = "ti,omap36xx", "ti,omap3"
+- AM33xx
+ compatible = "ti,am33xx", "ti,omap3"
+
+- OMAP4430
+ compatible = "ti,omap4430", "ti,omap4"
+- OMAP4460
+ compatible = "ti,omap4460", "ti,omap4"
+
+- OMAP5430
+ compatible = "ti,omap5430", "ti,omap5"
+- OMAP5432
+ compatible = "ti,omap5432", "ti,omap5"
+
+- DRA742
+ compatible = "ti,dra742", "ti,dra74", "ti,dra7"
+
+- DRA722
+ compatible = "ti,dra722", "ti,dra72", "ti,dra7"
+
+- AM4372
+ compatible = "ti,am4372", "ti,am43"
Boards:
@@ -37,7 +94,7 @@ Boards:
compatible = "ti,omap3-beagle", "ti,omap3"
- OMAP3 Tobi with Overo : Commercial expansion board with daughter board
- compatible = "ti,omap3-tobi", "ti,omap3-overo", "ti,omap3"
+ compatible = "gumstix,omap3-overo-tobi", "gumstix,omap3-overo", "ti,omap3"
- OMAP4 SDP : Software Development Board
compatible = "ti,omap4-sdp", "ti,omap4430"
@@ -45,6 +102,15 @@ Boards:
- OMAP4 PandaBoard : Low cost community board
compatible = "ti,omap4-panda", "ti,omap4430"
+- OMAP4 DuoVero with Parlor : Commercial expansion board with daughter board
+ compatible = "gumstix,omap4-duovero-parlor", "gumstix,omap4-duovero", "ti,omap4430", "ti,omap4";
+
+- OMAP4 VAR-STK-OM44 : Commercial dev kit with VAR-OM44CustomBoard and VAR-SOM-OM44 w/WLAN
+ compatible = "variscite,var-stk-om44", "variscite,var-som-om44", "ti,omap4460", "ti,omap4";
+
+- OMAP4 VAR-DVK-OM44 : Commercial dev kit with VAR-OM44CustomBoard, VAR-SOM-OM44 w/WLAN and LCD touchscreen
+ compatible = "variscite,var-dvk-om44", "variscite,var-som-om44", "ti,omap4460", "ti,omap4";
+
- OMAP3 EVM : Software Development Board for OMAP35x, AM/DM37x
compatible = "ti,omap3-evm", "ti,omap3"
@@ -60,5 +126,11 @@ Boards:
- AM43x EPOS EVM
compatible = "ti,am43x-epos-evm", "ti,am4372", "ti,am43"
-- DRA7 EVM: Software Developement Board for DRA7XX
- compatible = "ti,dra7-evm", "ti,dra7"
+- AM437x GP EVM
+ compatible = "ti,am437x-gp-evm", "ti,am4372", "ti,am43"
+
+- DRA742 EVM: Software Development Board for DRA742
+ compatible = "ti,dra7-evm", "ti,dra742", "ti,dra74", "ti,dra7"
+
+- DRA722 EVM: Software Development Board for DRA722
+ compatible = "ti,dra72-evm", "ti,dra722", "ti,dra72", "ti,dra7"
diff --git a/Documentation/devicetree/bindings/arm/pmu.txt b/Documentation/devicetree/bindings/arm/pmu.txt
index 343781b9f24..75ef91d08f3 100644
--- a/Documentation/devicetree/bindings/arm/pmu.txt
+++ b/Documentation/devicetree/bindings/arm/pmu.txt
@@ -7,7 +7,10 @@ representation in the device tree should be done as under:-
Required properties:
- compatible : should be one of
+ "arm,armv8-pmuv3"
+ "arm,cortex-a17-pmu"
"arm,cortex-a15-pmu"
+ "arm,cortex-a12-pmu"
"arm,cortex-a9-pmu"
"arm,cortex-a8-pmu"
"arm,cortex-a7-pmu"
@@ -15,7 +18,14 @@ Required properties:
"arm,arm11mpcore-pmu"
"arm,arm1176-pmu"
"arm,arm1136-pmu"
-- interrupts : 1 combined interrupt or 1 per core.
+ "qcom,krait-pmu"
+- interrupts : 1 combined interrupt or 1 per core. If the interrupt is a per-cpu
+ interrupt (PPI) then 1 interrupt should be specified.
+
+Optional properties:
+
+- qcom,no-pc-write : Indicates that this PMU doesn't support the 0xc and 0xd
+ events.
Example:
diff --git a/Documentation/devicetree/bindings/arm/psci.txt b/Documentation/devicetree/bindings/arm/psci.txt
index 433afe9cb59..b4a58f39223 100644
--- a/Documentation/devicetree/bindings/arm/psci.txt
+++ b/Documentation/devicetree/bindings/arm/psci.txt
@@ -21,7 +21,15 @@ to #0.
Main node required properties:
- - compatible : Must be "arm,psci"
+ - compatible : should contain at least one of:
+
+ * "arm,psci" : for implementations complying to PSCI versions prior to
+ 0.2. For these cases function IDs must be provided.
+
+ * "arm,psci-0.2" : for implementations complying to PSCI 0.2. Function
+ IDs are not required and should be ignored by an OS with PSCI 0.2
+ support, but are permitted to be present for compatibility with
+ existing software when "arm,psci" is later in the compatible list.
- method : The method of calling the PSCI firmware. Permitted
values are:
@@ -45,6 +53,8 @@ Main node optional properties:
Example:
+Case 1: PSCI v0.1 only.
+
psci {
compatible = "arm,psci";
method = "smc";
@@ -53,3 +63,28 @@ Example:
cpu_on = <0x95c10002>;
migrate = <0x95c10003>;
};
+
+
+Case 2: PSCI v0.2 only
+
+ psci {
+ compatible = "arm,psci-0.2";
+ method = "smc";
+ };
+
+Case 3: PSCI v0.2 and PSCI v0.1.
+
+ A DTB may provide IDs for use by kernels without PSCI 0.2 support,
+ enabling firmware and hypervisors to support existing and new kernels.
+ These IDs will be ignored by kernels with PSCI 0.2 support, which will
+ use the standard PSCI 0.2 IDs exclusively.
+
+ psci {
+ compatible = "arm,psci-0.2", "arm,psci";
+ method = "hvc";
+
+ cpu_on = < arbitrary value >;
+ cpu_off = < arbitrary value >;
+
+ ...
+ };
diff --git a/Documentation/devicetree/bindings/arm/rockchip.txt b/Documentation/devicetree/bindings/arm/rockchip.txt
new file mode 100644
index 00000000000..857f12636eb
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/rockchip.txt
@@ -0,0 +1,10 @@
+Rockchip platforms device tree bindings
+---------------------------------------
+
+- bq Curie 2 tablet:
+ Required root node properties:
+ - compatible = "mundoreader,bq-curie2", "rockchip,rk3066a";
+
+- Radxa Rock board:
+ Required root node properties:
+ - compatible = "radxa,rock", "rockchip,rk3188";
diff --git a/Documentation/devicetree/bindings/arm/rockchip/pmu.txt b/Documentation/devicetree/bindings/arm/rockchip/pmu.txt
new file mode 100644
index 00000000000..3ee9b428b2f
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/rockchip/pmu.txt
@@ -0,0 +1,16 @@
+Rockchip power-management-unit:
+-------------------------------
+
+The pmu is used to turn off and on different power domains of the SoCs
+This includes the power to the CPU cores.
+
+Required node properties:
+- compatible value : = "rockchip,rk3066-pmu";
+- reg : physical base address and the size of the registers window
+
+Example:
+
+ pmu@20004000 {
+ compatible = "rockchip,rk3066-pmu";
+ reg = <0x20004000 0x100>;
+ };
diff --git a/Documentation/devicetree/bindings/arm/rockchip/smp-sram.txt b/Documentation/devicetree/bindings/arm/rockchip/smp-sram.txt
new file mode 100644
index 00000000000..d9416fb8db6
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/rockchip/smp-sram.txt
@@ -0,0 +1,30 @@
+Rockchip SRAM for smp bringup:
+------------------------------
+
+Rockchip's smp-capable SoCs use the first part of the sram for the bringup
+of the cores. Once the core gets powered up it executes the code that is
+residing at the very beginning of the sram.
+
+Therefore a reserved section sub-node has to be added to the mmio-sram
+declaration.
+
+Required sub-node properties:
+- compatible : should be "rockchip,rk3066-smp-sram"
+
+The rest of the properties should follow the generic mmio-sram discription
+found in ../../misc/sram.txt
+
+Example:
+
+ sram: sram@10080000 {
+ compatible = "mmio-sram";
+ reg = <0x10080000 0x10000>;
+ #address-cells = <1>;
+ #size-cells = <1>;
+ ranges;
+
+ smp-sram@10080000 {
+ compatible = "rockchip,rk3066-smp-sram";
+ reg = <0x10080000 0x50>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/arm/samsung/exynos-adc.txt b/Documentation/devicetree/bindings/arm/samsung/exynos-adc.txt
index 47ada1dff21..832fe8cc24d 100644
--- a/Documentation/devicetree/bindings/arm/samsung/exynos-adc.txt
+++ b/Documentation/devicetree/bindings/arm/samsung/exynos-adc.txt
@@ -48,8 +48,8 @@ adc@12D10000 {
/* NTC thermistor is a hwmon device */
ncp15wb473@0 {
- compatible = "ntc,ncp15wb473";
- pullup-uV = <1800000>;
+ compatible = "murata,ncp15wb473";
+ pullup-uv = <1800000>;
pullup-ohm = <47000>;
pulldown-ohm = <0>;
io-channels = <&adc 4>;
diff --git a/Documentation/devicetree/bindings/arm/samsung/pmu.txt b/Documentation/devicetree/bindings/arm/samsung/pmu.txt
new file mode 100644
index 00000000000..2a4ab046a8a
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/samsung/pmu.txt
@@ -0,0 +1,19 @@
+SAMSUNG Exynos SoC series PMU Registers
+
+Properties:
+ - compatible : should contain two values. First value must be one from following list:
+ - "samsung,exynos3250-pmu" - for Exynos3250 SoC,
+ - "samsung,exynos4210-pmu" - for Exynos4210 SoC,
+ - "samsung,exynos4212-pmu" - for Exynos4212 SoC,
+ - "samsung,exynos4412-pmu" - for Exynos4412 SoC,
+ - "samsung,exynos5250-pmu" - for Exynos5250 SoC,
+ - "samsung,exynos5420-pmu" - for Exynos5420 SoC.
+ second value must be always "syscon".
+
+ - reg : offset and length of the register set.
+
+Example :
+pmu_system_controller: system-controller@10040000 {
+ compatible = "samsung,exynos5250-pmu", "syscon";
+ reg = <0x10040000 0x5000>;
+};
diff --git a/Documentation/devicetree/bindings/arm/samsung/sysreg.txt b/Documentation/devicetree/bindings/arm/samsung/sysreg.txt
index 5039c0a12f5..4fced6e9d5e 100644
--- a/Documentation/devicetree/bindings/arm/samsung/sysreg.txt
+++ b/Documentation/devicetree/bindings/arm/samsung/sysreg.txt
@@ -1,7 +1,19 @@
SAMSUNG S5P/Exynos SoC series System Registers (SYSREG)
Properties:
- - name : should be 'sysreg';
- - compatible : should contain "samsung,<chip name>-sysreg", "syscon";
- For Exynos4 SoC series it should be "samsung,exynos4-sysreg", "syscon";
+ - compatible : should contain two values. First value must be one from following list:
+ - "samsung,exynos4-sysreg" - for Exynos4 based SoCs,
+ - "samsung,exynos5-sysreg" - for Exynos5 based SoCs.
+ second value must be always "syscon".
- reg : offset and length of the register set.
+
+Example:
+ syscon@10010000 {
+ compatible = "samsung,exynos4-sysreg", "syscon";
+ reg = <0x10010000 0x400>;
+ };
+
+ syscon@10050000 {
+ compatible = "samsung,exynos5-sysreg", "syscon";
+ reg = <0x10050000 0x5000>;
+ };
diff --git a/Documentation/devicetree/bindings/arm/sti.txt b/Documentation/devicetree/bindings/arm/sti.txt
new file mode 100644
index 00000000000..92f16c78bb6
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/sti.txt
@@ -0,0 +1,15 @@
+ST STi Platforms Device Tree Bindings
+---------------------------------------
+
+Boards with the ST STiH415 SoC shall have the following properties:
+Required root node property:
+compatible = "st,stih415";
+
+Boards with the ST STiH416 SoC shall have the following properties:
+Required root node property:
+compatible = "st,stih416";
+
+Boards with the ST STiH407 SoC shall have the following properties:
+Required root node property:
+compatible = "st,stih407";
+
diff --git a/Documentation/devicetree/bindings/arm/tegra.txt b/Documentation/devicetree/bindings/arm/tegra.txt
index ed9c8533443..558ed4b4ef3 100644
--- a/Documentation/devicetree/bindings/arm/tegra.txt
+++ b/Documentation/devicetree/bindings/arm/tegra.txt
@@ -32,3 +32,8 @@ board-specific compatible values:
nvidia,whistler
toradex,colibri_t20-512
toradex,iris
+
+Trusted Foundations
+-------------------------------------------
+Tegra supports the Trusted Foundation secure monitor. See the
+"tlm,trusted-foundations" binding's documentation for more details.
diff --git a/Documentation/devicetree/bindings/arm/tegra/nvidia,tegra20-pmc.txt b/Documentation/devicetree/bindings/arm/tegra/nvidia,tegra20-pmc.txt
index 1608a54e90e..68ac65f82a1 100644
--- a/Documentation/devicetree/bindings/arm/tegra/nvidia,tegra20-pmc.txt
+++ b/Documentation/devicetree/bindings/arm/tegra/nvidia,tegra20-pmc.txt
@@ -9,6 +9,7 @@ Required properties:
- compatible : Should contain "nvidia,tegra<chip>-pmc".
- reg : Offset and length of the register set for the device
- clocks : Must contain an entry for each entry in clock-names.
+ See ../clocks/clock-bindings.txt for details.
- clock-names : Must include the following entries:
"pclk" (The Tegra clock of that name),
"clk32k_in" (The 32KHz clock input to Tegra).
diff --git a/Documentation/devicetree/bindings/arm/topology.txt b/Documentation/devicetree/bindings/arm/topology.txt
new file mode 100644
index 00000000000..1061faf5f60
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/topology.txt
@@ -0,0 +1,475 @@
+===========================================
+ARM topology binding description
+===========================================
+
+===========================================
+1 - Introduction
+===========================================
+
+In an ARM system, the hierarchy of CPUs is defined through three entities that
+are used to describe the layout of physical CPUs in the system:
+
+- cluster
+- core
+- thread
+
+The cpu nodes (bindings defined in [1]) represent the devices that
+correspond to physical CPUs and are to be mapped to the hierarchy levels.
+
+The bottom hierarchy level sits at core or thread level depending on whether
+symmetric multi-threading (SMT) is supported or not.
+
+For instance in a system where CPUs support SMT, "cpu" nodes represent all
+threads existing in the system and map to the hierarchy level "thread" above.
+In systems where SMT is not supported "cpu" nodes represent all cores present
+in the system and map to the hierarchy level "core" above.
+
+ARM topology bindings allow one to associate cpu nodes with hierarchical groups
+corresponding to the system hierarchy; syntactically they are defined as device
+tree nodes.
+
+The remainder of this document provides the topology bindings for ARM, based
+on the ePAPR standard, available from:
+
+http://www.power.org/documentation/epapr-version-1-1/
+
+If not stated otherwise, whenever a reference to a cpu node phandle is made its
+value must point to a cpu node compliant with the cpu node bindings as
+documented in [1].
+A topology description containing phandles to cpu nodes that are not compliant
+with bindings standardized in [1] is therefore considered invalid.
+
+===========================================
+2 - cpu-map node
+===========================================
+
+The ARM CPU topology is defined within the cpu-map node, which is a direct
+child of the cpus node and provides a container where the actual topology
+nodes are listed.
+
+- cpu-map node
+
+ Usage: Optional - On ARM SMP systems provide CPUs topology to the OS.
+ ARM uniprocessor systems do not require a topology
+ description and therefore should not define a
+ cpu-map node.
+
+ Description: The cpu-map node is just a container node where its
+ subnodes describe the CPU topology.
+
+ Node name must be "cpu-map".
+
+ The cpu-map node's parent node must be the cpus node.
+
+ The cpu-map node's child nodes can be:
+
+ - one or more cluster nodes
+
+ Any other configuration is considered invalid.
+
+The cpu-map node can only contain three types of child nodes:
+
+- cluster node
+- core node
+- thread node
+
+whose bindings are described in paragraph 3.
+
+The nodes describing the CPU topology (cluster/core/thread) can only
+be defined within the cpu-map node and every core/thread in the system
+must be defined within the topology. Any other configuration is
+invalid and therefore must be ignored.
+
+===========================================
+2.1 - cpu-map child nodes naming convention
+===========================================
+
+cpu-map child nodes must follow a naming convention where the node name
+must be "clusterN", "coreN", "threadN" depending on the node type (ie
+cluster/core/thread) (where N = {0, 1, ...} is the node number; nodes which
+are siblings within a single common parent node must be given a unique and
+sequential N value, starting from 0).
+cpu-map child nodes which do not share a common parent node can have the same
+name (ie same number N as other cpu-map child nodes at different device tree
+levels) since name uniqueness will be guaranteed by the device tree hierarchy.
+
+===========================================
+3 - cluster/core/thread node bindings
+===========================================
+
+Bindings for cluster/cpu/thread nodes are defined as follows:
+
+- cluster node
+
+ Description: must be declared within a cpu-map node, one node
+ per cluster. A system can contain several layers of
+ clustering and cluster nodes can be contained in parent
+ cluster nodes.
+
+ The cluster node name must be "clusterN" as described in 2.1 above.
+ A cluster node can not be a leaf node.
+
+ A cluster node's child nodes must be:
+
+ - one or more cluster nodes; or
+ - one or more core nodes
+
+ Any other configuration is considered invalid.
+
+- core node
+
+ Description: must be declared in a cluster node, one node per core in
+ the cluster. If the system does not support SMT, core
+ nodes are leaf nodes, otherwise they become containers of
+ thread nodes.
+
+ The core node name must be "coreN" as described in 2.1 above.
+
+ A core node must be a leaf node if SMT is not supported.
+
+ Properties for core nodes that are leaf nodes:
+
+ - cpu
+ Usage: required
+ Value type: <phandle>
+ Definition: a phandle to the cpu node that corresponds to the
+ core node.
+
+ If a core node is not a leaf node (CPUs supporting SMT) a core node's
+ child nodes can be:
+
+ - one or more thread nodes
+
+ Any other configuration is considered invalid.
+
+- thread node
+
+ Description: must be declared in a core node, one node per thread
+ in the core if the system supports SMT. Thread nodes are
+ always leaf nodes in the device tree.
+
+ The thread node name must be "threadN" as described in 2.1 above.
+
+ A thread node must be a leaf node.
+
+ A thread node must contain the following property:
+
+ - cpu
+ Usage: required
+ Value type: <phandle>
+ Definition: a phandle to the cpu node that corresponds to
+ the thread node.
+
+===========================================
+4 - Example dts
+===========================================
+
+Example 1 (ARM 64-bit, 16-cpu system, two clusters of clusters):
+
+cpus {
+ #size-cells = <0>;
+ #address-cells = <2>;
+
+ cpu-map {
+ cluster0 {
+ cluster0 {
+ core0 {
+ thread0 {
+ cpu = <&CPU0>;
+ };
+ thread1 {
+ cpu = <&CPU1>;
+ };
+ };
+
+ core1 {
+ thread0 {
+ cpu = <&CPU2>;
+ };
+ thread1 {
+ cpu = <&CPU3>;
+ };
+ };
+ };
+
+ cluster1 {
+ core0 {
+ thread0 {
+ cpu = <&CPU4>;
+ };
+ thread1 {
+ cpu = <&CPU5>;
+ };
+ };
+
+ core1 {
+ thread0 {
+ cpu = <&CPU6>;
+ };
+ thread1 {
+ cpu = <&CPU7>;
+ };
+ };
+ };
+ };
+
+ cluster1 {
+ cluster0 {
+ core0 {
+ thread0 {
+ cpu = <&CPU8>;
+ };
+ thread1 {
+ cpu = <&CPU9>;
+ };
+ };
+ core1 {
+ thread0 {
+ cpu = <&CPU10>;
+ };
+ thread1 {
+ cpu = <&CPU11>;
+ };
+ };
+ };
+
+ cluster1 {
+ core0 {
+ thread0 {
+ cpu = <&CPU12>;
+ };
+ thread1 {
+ cpu = <&CPU13>;
+ };
+ };
+ core1 {
+ thread0 {
+ cpu = <&CPU14>;
+ };
+ thread1 {
+ cpu = <&CPU15>;
+ };
+ };
+ };
+ };
+ };
+
+ CPU0: cpu@0 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x0 0x0>;
+ enable-method = "spin-table";
+ cpu-release-addr = <0 0x20000000>;
+ };
+
+ CPU1: cpu@1 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x0 0x1>;
+ enable-method = "spin-table";
+ cpu-release-addr = <0 0x20000000>;
+ };
+
+ CPU2: cpu@100 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x0 0x100>;
+ enable-method = "spin-table";
+ cpu-release-addr = <0 0x20000000>;
+ };
+
+ CPU3: cpu@101 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x0 0x101>;
+ enable-method = "spin-table";
+ cpu-release-addr = <0 0x20000000>;
+ };
+
+ CPU4: cpu@10000 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x0 0x10000>;
+ enable-method = "spin-table";
+ cpu-release-addr = <0 0x20000000>;
+ };
+
+ CPU5: cpu@10001 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x0 0x10001>;
+ enable-method = "spin-table";
+ cpu-release-addr = <0 0x20000000>;
+ };
+
+ CPU6: cpu@10100 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x0 0x10100>;
+ enable-method = "spin-table";
+ cpu-release-addr = <0 0x20000000>;
+ };
+
+ CPU7: cpu@10101 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x0 0x10101>;
+ enable-method = "spin-table";
+ cpu-release-addr = <0 0x20000000>;
+ };
+
+ CPU8: cpu@100000000 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x1 0x0>;
+ enable-method = "spin-table";
+ cpu-release-addr = <0 0x20000000>;
+ };
+
+ CPU9: cpu@100000001 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x1 0x1>;
+ enable-method = "spin-table";
+ cpu-release-addr = <0 0x20000000>;
+ };
+
+ CPU10: cpu@100000100 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x1 0x100>;
+ enable-method = "spin-table";
+ cpu-release-addr = <0 0x20000000>;
+ };
+
+ CPU11: cpu@100000101 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x1 0x101>;
+ enable-method = "spin-table";
+ cpu-release-addr = <0 0x20000000>;
+ };
+
+ CPU12: cpu@100010000 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x1 0x10000>;
+ enable-method = "spin-table";
+ cpu-release-addr = <0 0x20000000>;
+ };
+
+ CPU13: cpu@100010001 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x1 0x10001>;
+ enable-method = "spin-table";
+ cpu-release-addr = <0 0x20000000>;
+ };
+
+ CPU14: cpu@100010100 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x1 0x10100>;
+ enable-method = "spin-table";
+ cpu-release-addr = <0 0x20000000>;
+ };
+
+ CPU15: cpu@100010101 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x1 0x10101>;
+ enable-method = "spin-table";
+ cpu-release-addr = <0 0x20000000>;
+ };
+};
+
+Example 2 (ARM 32-bit, dual-cluster, 8-cpu system, no SMT):
+
+cpus {
+ #size-cells = <0>;
+ #address-cells = <1>;
+
+ cpu-map {
+ cluster0 {
+ core0 {
+ cpu = <&CPU0>;
+ };
+ core1 {
+ cpu = <&CPU1>;
+ };
+ core2 {
+ cpu = <&CPU2>;
+ };
+ core3 {
+ cpu = <&CPU3>;
+ };
+ };
+
+ cluster1 {
+ core0 {
+ cpu = <&CPU4>;
+ };
+ core1 {
+ cpu = <&CPU5>;
+ };
+ core2 {
+ cpu = <&CPU6>;
+ };
+ core3 {
+ cpu = <&CPU7>;
+ };
+ };
+ };
+
+ CPU0: cpu@0 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a15";
+ reg = <0x0>;
+ };
+
+ CPU1: cpu@1 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a15";
+ reg = <0x1>;
+ };
+
+ CPU2: cpu@2 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a15";
+ reg = <0x2>;
+ };
+
+ CPU3: cpu@3 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a15";
+ reg = <0x3>;
+ };
+
+ CPU4: cpu@100 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a7";
+ reg = <0x100>;
+ };
+
+ CPU5: cpu@101 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a7";
+ reg = <0x101>;
+ };
+
+ CPU6: cpu@102 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a7";
+ reg = <0x102>;
+ };
+
+ CPU7: cpu@103 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a7";
+ reg = <0x103>;
+ };
+};
+
+===============================================================================
+[1] ARM Linux kernel documentation
+ Documentation/devicetree/bindings/arm/cpus.txt
diff --git a/Documentation/devicetree/bindings/arm/versatile-fpga-irq.txt b/Documentation/devicetree/bindings/arm/versatile-fpga-irq.txt
index 9989eda755d..c9cf605bb99 100644
--- a/Documentation/devicetree/bindings/arm/versatile-fpga-irq.txt
+++ b/Documentation/devicetree/bindings/arm/versatile-fpga-irq.txt
@@ -29,3 +29,8 @@ pic: pic@14000000 {
clear-mask = <0xffffffff>;
valid-mask = <0x003fffff>;
};
+
+Optional properties:
+- interrupts: if the FPGA IRQ controller is cascaded, i.e. if its IRQ
+ output is simply connected to the input of another IRQ controller,
+ then the parent IRQ shall be specified in this property.
diff --git a/Documentation/devicetree/bindings/arm/vexpress-sysreg.txt b/Documentation/devicetree/bindings/arm/vexpress-sysreg.txt
index 5580e9c4bd8..00318d083c9 100644
--- a/Documentation/devicetree/bindings/arm/vexpress-sysreg.txt
+++ b/Documentation/devicetree/bindings/arm/vexpress-sysreg.txt
@@ -8,6 +8,8 @@ interrupt generation, MMC and NOR Flash control etc.
Required node properties:
- compatible value : = "arm,vexpress,sysreg";
- reg : physical base address and the size of the registers window
+
+Deprecated properties, replaced by GPIO subnodes (see below):
- gpio-controller : specifies that the node is a GPIO controller
- #gpio-cells : size of the GPIO specifier, should be 2:
- first cell is the pseudo-GPIO line number:
@@ -16,35 +18,86 @@ Required node properties:
2 - NOR FLASH WPn
- second cell can take standard GPIO flags (currently ignored).
+Control registers providing pseudo-GPIO lines must be represented
+by subnodes, each of them requiring the following properties:
+- compatible value : one of
+ "arm,vexpress-sysreg,sys_led"
+ "arm,vexpress-sysreg,sys_mci"
+ "arm,vexpress-sysreg,sys_flash"
+- gpio-controller : makes the node a GPIO controller
+- #gpio-cells : size of the GPIO specifier, must be 2:
+ - first cell is the function number:
+ - for sys_led : 0..7 = LED 0..7
+ - for sys_mci : 0 = MMC CARDIN, 1 = MMC WPROT
+ - for sys_flash : 0 = NOR FLASH WPn
+ - second cell can take standard GPIO flags (currently ignored).
+
Example:
v2m_sysreg: sysreg@10000000 {
compatible = "arm,vexpress-sysreg";
reg = <0x10000000 0x1000>;
- gpio-controller;
- #gpio-cells = <2>;
+
+ v2m_led_gpios: sys_led@08 {
+ compatible = "arm,vexpress-sysreg,sys_led";
+ gpio-controller;
+ #gpio-cells = <2>;
+ };
+
+ v2m_mmc_gpios: sys_mci@48 {
+ compatible = "arm,vexpress-sysreg,sys_mci";
+ gpio-controller;
+ #gpio-cells = <2>;
+ };
+
+ v2m_flash_gpios: sys_flash@4c {
+ compatible = "arm,vexpress-sysreg,sys_flash";
+ gpio-controller;
+ #gpio-cells = <2>;
+ };
};
This block also can also act a bridge to the platform's configuration
bus via "system control" interface, addressing devices with site number,
position in the board stack, config controller, function and device
-numbers - see motherboard's TRM for more details.
-
-The node describing a config device must refer to the sysreg node via
-"arm,vexpress,config-bridge" phandle (can be also defined in the node's
-parent) and relies on the board topology properties - see main vexpress
-node documentation for more details. It must also define the following
-property:
-- arm,vexpress-sysreg,func : must contain two cells:
- - first cell defines function number (eg. 1 for clock generator,
- 2 for voltage regulators etc.)
- - device number (eg. osc 0, osc 1 etc.)
+numbers - see motherboard's TRM for more details. All configuration
+controller accessible via this interface must reference the sysreg
+node via "arm,vexpress,config-bridge" phandle and define appropriate
+topology properties - see main vexpress node documentation for more
+details. Each child of such node describes one function and must
+define the following properties:
+- compatible value : must be one of (corresponding to the TRM):
+ "arm,vexpress-amp"
+ "arm,vexpress-dvimode"
+ "arm,vexpress-energy"
+ "arm,vexpress-muxfpga"
+ "arm,vexpress-osc"
+ "arm,vexpress-power"
+ "arm,vexpress-reboot"
+ "arm,vexpress-reset"
+ "arm,vexpress-scc"
+ "arm,vexpress-shutdown"
+ "arm,vexpress-temp"
+ "arm,vexpress-volt"
+- arm,vexpress-sysreg,func : must contain a set of two cells long groups:
+ - first cell of each group defines the function number
+ (eg. 1 for clock generator, 2 for voltage regulators etc.)
+ - second cell of each group defines device number (eg. osc 0,
+ osc 1 etc.)
+ - some functions (eg. energy meter, with its 64 bit long counter)
+ are using more than one function/device number pair
Example:
mcc {
+ compatible = "arm,vexpress,config-bus";
arm,vexpress,config-bridge = <&v2m_sysreg>;
osc@0 {
compatible = "arm,vexpress-osc";
arm,vexpress-sysreg,func = <1 0>;
};
+
+ energy@0 {
+ compatible = "arm,vexpress-energy";
+ arm,vexpress-sysreg,func = <13 0>, <13 1>;
+ };
};
diff --git a/Documentation/devicetree/bindings/arm/vexpress.txt b/Documentation/devicetree/bindings/arm/vexpress.txt
index ae49161e478..39844cd0bcc 100644
--- a/Documentation/devicetree/bindings/arm/vexpress.txt
+++ b/Documentation/devicetree/bindings/arm/vexpress.txt
@@ -80,12 +80,17 @@ but also control clock generators, voltage regulators, gather
environmental data like temperature, power consumption etc. Even
the video output switch (FPGA) is controlled that way.
-Nodes describing devices controlled by this infrastructure should
-point at the bridge device node:
+The controllers are not mapped into normal memory address space
+and must be accessed through bridges - other devices capable
+of generating transactions on the configuration bus.
+
+The nodes describing configuration controllers must define
+the following properties:
+- compatible value:
+ compatible = "arm,vexpress,config-bus";
- bridge phandle:
arm,vexpress,config-bridge = <phandle>;
-This property can be also defined in a parent node (eg. for a DCC)
-and is effective for all children.
+and children describing available functions.
Platform topology
@@ -197,7 +202,7 @@ Example of a VE tile description (simplified)
};
dcc {
- compatible = "simple-bus";
+ compatible = "arm,vexpress,config-bus";
arm,vexpress,config-bridge = <&v2m_sysreg>;
osc@0 {
diff --git a/Documentation/devicetree/bindings/arm/vic.txt b/Documentation/devicetree/bindings/arm/vic.txt
index 266716b2343..dd527216c5f 100644
--- a/Documentation/devicetree/bindings/arm/vic.txt
+++ b/Documentation/devicetree/bindings/arm/vic.txt
@@ -18,6 +18,15 @@ Required properties:
Optional properties:
- interrupts : Interrupt source for parent controllers if the VIC is nested.
+- valid-mask : A one cell big bit mask of valid interrupt sources. Each bit
+ represents single interrupt source, starting from source 0 at LSb and ending
+ at source 31 at MSb. A bit that is set means that the source is wired and
+ clear means otherwise. If unspecified, defaults to all valid.
+- valid-wakeup-mask : A one cell big bit mask of interrupt sources that can be
+ configured as wake up source for the system. Order of bits is the same as for
+ valid-mask property. A set bit means that this interrupt source can be
+ configured as a wake up source for the system. If unspecied, defaults to all
+ interrupt sources configurable as wake up sources.
Example:
@@ -26,4 +35,7 @@ Example:
interrupt-controller;
#interrupt-cells = <1>;
reg = <0x60000 0x1000>;
+
+ valid-mask = <0xffffff7f>;
+ valid-wakeup-mask = <0x0000ff7f>;
};
diff --git a/Documentation/devicetree/bindings/ata/ahci-platform.txt b/Documentation/devicetree/bindings/ata/ahci-platform.txt
index 89de1564950..c96d8dcf98f 100644
--- a/Documentation/devicetree/bindings/ata/ahci-platform.txt
+++ b/Documentation/devicetree/bindings/ata/ahci-platform.txt
@@ -4,17 +4,39 @@ SATA nodes are defined to describe on-chip Serial ATA controllers.
Each SATA controller should have its own node.
Required properties:
-- compatible : compatible list, contains "snps,spear-ahci"
+- compatible : compatible string, one of:
+ - "allwinner,sun4i-a10-ahci"
+ - "fsl,imx53-ahci"
+ - "fsl,imx6q-ahci"
+ - "hisilicon,hisi-ahci"
+ - "ibm,476gtr-ahci"
+ - "marvell,armada-380-ahci"
+ - "snps,dwc-ahci"
+ - "snps,exynos5440-ahci"
+ - "snps,spear-ahci"
- interrupts : <interrupt mapping for SATA IRQ>
- reg : <registers mapping>
Optional properties:
- dma-coherent : Present if dma operations are coherent
+- clocks : a list of phandle + clock specifier pairs
+- target-supply : regulator for SATA target power
-Example:
+"fsl,imx53-ahci", "fsl,imx6q-ahci" required properties:
+- clocks : must contain the sata, sata_ref and ahb clocks
+- clock-names : must contain "ahb" for the ahb clock
+
+Examples:
sata@ffe08000 {
compatible = "snps,spear-ahci";
reg = <0xffe08000 0x1000>;
interrupts = <115>;
-
};
+
+ ahci: sata@01c18000 {
+ compatible = "allwinner,sun4i-a10-ahci";
+ reg = <0x01c18000 0x1000>;
+ interrupts = <56>;
+ clocks = <&pll6 0>, <&ahb_gates 25>;
+ target-supply = <&reg_ahci_5v>;
+ };
diff --git a/Documentation/devicetree/bindings/ata/apm-xgene.txt b/Documentation/devicetree/bindings/ata/apm-xgene.txt
new file mode 100644
index 00000000000..a668f0e7d00
--- /dev/null
+++ b/Documentation/devicetree/bindings/ata/apm-xgene.txt
@@ -0,0 +1,79 @@
+* APM X-Gene 6.0 Gb/s SATA host controller nodes
+
+SATA host controller nodes are defined to describe on-chip Serial ATA
+controllers. Each SATA controller (pair of ports) have its own node.
+
+Required properties:
+- compatible : Shall contain:
+ * "apm,xgene-ahci"
+- reg : First memory resource shall be the AHCI memory
+ resource.
+ Second memory resource shall be the host controller
+ core memory resource.
+ Third memory resource shall be the host controller
+ diagnostic memory resource.
+ 4th memory resource shall be the host controller
+ AXI memory resource.
+ 5th optional memory resource shall be the host
+ controller MUX memory resource if required.
+- interrupts : Interrupt-specifier for SATA host controller IRQ.
+- clocks : Reference to the clock entry.
+- phys : A list of phandles + phy-specifiers, one for each
+ entry in phy-names.
+- phy-names : Should contain:
+ * "sata-phy" for the SATA 6.0Gbps PHY
+
+Optional properties:
+- dma-coherent : Present if dma operations are coherent
+- status : Shall be "ok" if enabled or "disabled" if disabled.
+ Default is "ok".
+
+Example:
+ sataclk: sataclk {
+ compatible = "fixed-clock";
+ #clock-cells = <1>;
+ clock-frequency = <100000000>;
+ clock-output-names = "sataclk";
+ };
+
+ phy2: phy@1f22a000 {
+ compatible = "apm,xgene-phy";
+ reg = <0x0 0x1f22a000 0x0 0x100>;
+ #phy-cells = <1>;
+ };
+
+ phy3: phy@1f23a000 {
+ compatible = "apm,xgene-phy";
+ reg = <0x0 0x1f23a000 0x0 0x100>;
+ #phy-cells = <1>;
+ };
+
+ sata2: sata@1a400000 {
+ compatible = "apm,xgene-ahci";
+ reg = <0x0 0x1a400000 0x0 0x1000>,
+ <0x0 0x1f220000 0x0 0x1000>,
+ <0x0 0x1f22d000 0x0 0x1000>,
+ <0x0 0x1f22e000 0x0 0x1000>,
+ <0x0 0x1f227000 0x0 0x1000>;
+ interrupts = <0x0 0x87 0x4>;
+ dma-coherent;
+ status = "ok";
+ clocks = <&sataclk 0>;
+ phys = <&phy2 0>;
+ phy-names = "sata-phy";
+ };
+
+ sata3: sata@1a800000 {
+ compatible = "apm,xgene-ahci-pcie";
+ reg = <0x0 0x1a800000 0x0 0x1000>,
+ <0x0 0x1f230000 0x0 0x1000>,
+ <0x0 0x1f23d000 0x0 0x1000>,
+ <0x0 0x1f23e000 0x0 0x1000>,
+ <0x0 0x1f237000 0x0 0x1000>;
+ interrupts = <0x0 0x88 0x4>;
+ dma-coherent;
+ status = "ok";
+ clocks = <&sataclk 0>;
+ phys = <&phy3 0>;
+ phy-names = "sata-phy";
+ };
diff --git a/Documentation/devicetree/bindings/ata/exynos-sata-phy.txt b/Documentation/devicetree/bindings/ata/exynos-sata-phy.txt
deleted file mode 100644
index 37824fac688..00000000000
--- a/Documentation/devicetree/bindings/ata/exynos-sata-phy.txt
+++ /dev/null
@@ -1,14 +0,0 @@
-* Samsung SATA PHY Controller
-
-SATA PHY nodes are defined to describe on-chip SATA Physical layer controllers.
-Each SATA PHY controller should have its own node.
-
-Required properties:
-- compatible : compatible list, contains "samsung,exynos5-sata-phy"
-- reg : <registers mapping>
-
-Example:
- sata@ffe07000 {
- compatible = "samsung,exynos5-sata-phy";
- reg = <0xffe07000 0x1000>;
- };
diff --git a/Documentation/devicetree/bindings/ata/exynos-sata.txt b/Documentation/devicetree/bindings/ata/exynos-sata.txt
index 0849f1025e3..cb48448247e 100644
--- a/Documentation/devicetree/bindings/ata/exynos-sata.txt
+++ b/Documentation/devicetree/bindings/ata/exynos-sata.txt
@@ -4,14 +4,27 @@ SATA nodes are defined to describe on-chip Serial ATA controllers.
Each SATA controller should have its own node.
Required properties:
-- compatible : compatible list, contains "samsung,exynos5-sata"
-- interrupts : <interrupt mapping for SATA IRQ>
-- reg : <registers mapping>
-- samsung,sata-freq : <frequency in MHz>
+- compatible : compatible list, contains "samsung,exynos5-sata"
+- interrupts : <interrupt mapping for SATA IRQ>
+- reg : <registers mapping>
+- samsung,sata-freq : <frequency in MHz>
+- phys : Must contain exactly one entry as specified
+ in phy-bindings.txt
+- phy-names : Must be "sata-phy"
+
+Optional properties:
+- clocks : Must contain an entry for each entry in clock-names.
+- clock-names : Shall be "sata" for the external SATA bus clock,
+ and "sclk_sata" for the internal controller clock.
Example:
- sata@ffe08000 {
- compatible = "samsung,exynos5-sata";
- reg = <0xffe08000 0x1000>;
- interrupts = <115>;
- };
+ sata@122f0000 {
+ compatible = "snps,dwc-ahci";
+ samsung,sata-freq = <66>;
+ reg = <0x122f0000 0x1ff>;
+ interrupts = <0 115 0>;
+ clocks = <&clock 277>, <&clock 143>;
+ clock-names = "sata", "sclk_sata";
+ phys = <&sata_phy>;
+ phy-names = "sata-phy";
+ };
diff --git a/Documentation/devicetree/bindings/ata/marvell.txt b/Documentation/devicetree/bindings/ata/marvell.txt
index b5cdd20cde9..1c8351604d3 100644
--- a/Documentation/devicetree/bindings/ata/marvell.txt
+++ b/Documentation/devicetree/bindings/ata/marvell.txt
@@ -1,7 +1,7 @@
* Marvell Orion SATA
Required Properties:
-- compatibility : "marvell,orion-sata"
+- compatibility : "marvell,orion-sata" or "marvell,armada-370-sata"
- reg : Address range of controller
- interrupts : Interrupt controller is using
- nr-ports : Number of SATA ports in use.
diff --git a/Documentation/devicetree/bindings/ata/sata_rcar.txt b/Documentation/devicetree/bindings/ata/sata_rcar.txt
new file mode 100644
index 00000000000..1e6111333fa
--- /dev/null
+++ b/Documentation/devicetree/bindings/ata/sata_rcar.txt
@@ -0,0 +1,18 @@
+* Renesas R-Car SATA
+
+Required properties:
+- compatible : should contain one of the following:
+ - "renesas,sata-r8a7779" for R-Car H1
+ - "renesas,sata-r8a7790" for R-Car H2
+ - "renesas,sata-r8a7791" for R-Car M2
+- reg : address and length of the SATA registers;
+- interrupts : must consist of one interrupt specifier.
+
+Example:
+
+sata: sata@fc600000 {
+ compatible = "renesas,sata-r8a7779";
+ reg = <0xfc600000 0x2000>;
+ interrupt-parent = <&gic>;
+ interrupts = <0 100 IRQ_TYPE_LEVEL_HIGH>;
+};
diff --git a/Documentation/devicetree/bindings/bus/brcm,gisb-arb.txt b/Documentation/devicetree/bindings/bus/brcm,gisb-arb.txt
new file mode 100644
index 00000000000..e2d501d20c9
--- /dev/null
+++ b/Documentation/devicetree/bindings/bus/brcm,gisb-arb.txt
@@ -0,0 +1,30 @@
+Broadcom GISB bus Arbiter controller
+
+Required properties:
+
+- compatible: should be "brcm,gisb-arb"
+- reg: specifies the base physical address and size of the registers
+- interrupt-parent: specifies the phandle to the parent interrupt controller
+ this arbiter gets interrupt line from
+- interrupts: specifies the two interrupts (timeout and TEA) to be used from
+ the parent interrupt controller
+
+Optional properties:
+
+- brcm,gisb-arb-master-mask: 32-bits wide bitmask used to specify which GISB
+ masters are valid at the system level
+- brcm,gisb-arb-master-names: string list of the litteral name of the GISB
+ masters. Should match the number of bits set in brcm,gisb-master-mask and
+ the order in which they appear
+
+Example:
+
+gisb-arb@f0400000 {
+ compatible = "brcm,gisb-arb";
+ reg = <0xf0400000 0x800>;
+ interrupts = <0>, <2>;
+ interrupt-parent = <&sun_l2_intc>;
+
+ brcm,gisb-arb-master-mask = <0x7>;
+ brcm,gisb-arb-master-names = "bsp_0", "scpu_0", "cpu_0";
+};
diff --git a/Documentation/devicetree/bindings/bus/imx-weim.txt b/Documentation/devicetree/bindings/bus/imx-weim.txt
index 0fd76c40520..6630d842c7a 100644
--- a/Documentation/devicetree/bindings/bus/imx-weim.txt
+++ b/Documentation/devicetree/bindings/bus/imx-weim.txt
@@ -8,7 +8,12 @@ The actual devices are instantiated from the child nodes of a WEIM node.
Required properties:
- - compatible: Should be set to "fsl,<soc>-weim"
+ - compatible: Should contain one of the following:
+ "fsl,imx1-weim"
+ "fsl,imx27-weim"
+ "fsl,imx51-weim"
+ "fsl,imx50-weim"
+ "fsl,imx6q-weim"
- reg: A resource specifier for the register space
(see the example below)
- clocks: the clock, see the example below.
@@ -19,6 +24,26 @@ Required properties:
<cs-number> 0 <physical address of mapping> <size>
+Optional properties:
+
+ - fsl,weim-cs-gpr: For "fsl,imx50-weim" and "fsl,imx6q-weim" type of
+ devices, it should be the phandle to the system General
+ Purpose Register controller that contains WEIM CS GPR
+ register, e.g. IOMUXC_GPR1 on i.MX6Q. IOMUXC_GPR1[11:0]
+ should be set up as one of the following 4 possible
+ values depending on the CS space configuration.
+
+ IOMUXC_GPR1[11:0] CS0 CS1 CS2 CS3
+ ---------------------------------------------
+ 05 128M 0M 0M 0M
+ 033 64M 64M 0M 0M
+ 0113 64M 32M 32M 0M
+ 01111 32M 32M 32M 32M
+
+ In case that the property is absent, the reset value or
+ what bootloader sets up in IOMUXC_GPR1[11:0] will be
+ used.
+
Timing property for child nodes. It is mandatory, not optional.
- fsl,weim-cs-timing: The timing array, contains timing values for the
@@ -43,6 +68,7 @@ Example for an imx6q-sabreauto board, the NOR flash connected to the WEIM:
#address-cells = <2>;
#size-cells = <1>;
ranges = <0 0 0x08000000 0x08000000>;
+ fsl,weim-cs-gpr = <&gpr>;
nor@0,0 {
compatible = "cfi-flash";
diff --git a/Documentation/devicetree/bindings/bus/mvebu-mbus.txt b/Documentation/devicetree/bindings/bus/mvebu-mbus.txt
index 7586fb68c07..5fa44f52a0b 100644
--- a/Documentation/devicetree/bindings/bus/mvebu-mbus.txt
+++ b/Documentation/devicetree/bindings/bus/mvebu-mbus.txt
@@ -197,7 +197,7 @@ to be set by the operating system and that are guaranteed to be free of overlaps
with one another or with the system memory ranges.
Each entry in the property refers to exactly one window. If the operating system
-choses to use a different set of mbus windows, it must ensure that any address
+chooses to use a different set of mbus windows, it must ensure that any address
translations performed from downstream devices are adapted accordingly.
The operating system may insert additional mbus windows that do not conflict
diff --git a/Documentation/devicetree/bindings/clock/altr_socfpga.txt b/Documentation/devicetree/bindings/clock/altr_socfpga.txt
index 0045433eae1..f72e80e0dad 100644
--- a/Documentation/devicetree/bindings/clock/altr_socfpga.txt
+++ b/Documentation/devicetree/bindings/clock/altr_socfpga.txt
@@ -21,5 +21,10 @@ Optional properties:
- fixed-divider : If clocks have a fixed divider value, use this property.
- clk-gate : For "socfpga-gate-clk", clk-gate contains the gating register
and the bit index.
-- div-reg : For "socfpga-gate-clk", div-reg contains the divider register, bit shift,
- and width.
+- div-reg : For "socfpga-gate-clk" and "socfpga-periph-clock", div-reg contains
+ the divider register, bit shift, and width.
+- clk-phase : For the sdmmc_clk, contains the value of the clock phase that controls
+ the SDMMC CIU clock. The first value is the clk_sample(smpsel), and the second
+ value is the cclk_in_drv(drvsel). The clk-phase is used to enable the correct
+ hold/delay times that is needed for the SD/MMC CIU clock. The values of both
+ can be 0-315 degrees, in 45 degree increments.
diff --git a/Documentation/devicetree/bindings/clock/arm-integrator.txt b/Documentation/devicetree/bindings/clock/arm-integrator.txt
new file mode 100644
index 00000000000..652914b17b9
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/arm-integrator.txt
@@ -0,0 +1,34 @@
+Clock bindings for ARM Integrator Core Module clocks
+
+Auxilary Oscillator Clock
+
+This is a configurable clock fed from a 24 MHz chrystal,
+used for generating e.g. video clocks. It is located on the
+core module and there is only one of these.
+
+This clock node *must* be a subnode of the core module, since
+it obtains the base address for it's address range from its
+parent node.
+
+
+Required properties:
+- compatible: must be "arm,integrator-cm-auxosc"
+- #clock-cells: must be <0>
+
+Optional properties:
+- clocks: parent clock(s)
+
+Example:
+
+core-module@10000000 {
+ xtal24mhz: xtal24mhz@24M {
+ #clock-cells = <0>;
+ compatible = "fixed-clock";
+ clock-frequency = <24000000>;
+ };
+ auxosc: cm_aux_osc@25M {
+ #clock-cells = <0>;
+ compatible = "arm,integrator-cm-auxosc";
+ clocks = <&xtal24mhz>;
+ };
+};
diff --git a/Documentation/devicetree/bindings/clock/at91-clock.txt b/Documentation/devicetree/bindings/clock/at91-clock.txt
new file mode 100644
index 00000000000..b3d544ca522
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/at91-clock.txt
@@ -0,0 +1,449 @@
+Device Tree Clock bindings for arch-at91
+
+This binding uses the common clock binding[1].
+
+[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
+
+Required properties:
+- compatible : shall be one of the following:
+ "atmel,at91sam9x5-sckc":
+ at91 SCKC (Slow Clock Controller)
+ This node contains the slow clock definitions.
+
+ "atmel,at91sam9x5-clk-slow-osc":
+ at91 slow oscillator
+
+ "atmel,at91sam9x5-clk-slow-rc-osc":
+ at91 internal slow RC oscillator
+
+ "atmel,at91rm9200-pmc" or
+ "atmel,at91sam9g45-pmc" or
+ "atmel,at91sam9n12-pmc" or
+ "atmel,at91sam9x5-pmc" or
+ "atmel,sama5d3-pmc":
+ at91 PMC (Power Management Controller)
+ All at91 specific clocks (clocks defined below) must be child
+ node of the PMC node.
+
+ "atmel,at91sam9x5-clk-slow" (under sckc node)
+ or
+ "atmel,at91sam9260-clk-slow" (under pmc node):
+ at91 slow clk
+
+ "atmel,at91rm9200-clk-main-osc"
+ "atmel,at91sam9x5-clk-main-rc-osc"
+ at91 main clk sources
+
+ "atmel,at91sam9x5-clk-main"
+ "atmel,at91rm9200-clk-main":
+ at91 main clock
+
+ "atmel,at91rm9200-clk-master" or
+ "atmel,at91sam9x5-clk-master":
+ at91 master clock
+
+ "atmel,at91sam9x5-clk-peripheral" or
+ "atmel,at91rm9200-clk-peripheral":
+ at91 peripheral clocks
+
+ "atmel,at91rm9200-clk-pll" or
+ "atmel,at91sam9g45-clk-pll" or
+ "atmel,at91sam9g20-clk-pllb" or
+ "atmel,sama5d3-clk-pll":
+ at91 pll clocks
+
+ "atmel,at91sam9x5-clk-plldiv":
+ at91 plla divisor
+
+ "atmel,at91rm9200-clk-programmable" or
+ "atmel,at91sam9g45-clk-programmable" or
+ "atmel,at91sam9x5-clk-programmable":
+ at91 programmable clocks
+
+ "atmel,at91sam9x5-clk-smd":
+ at91 SMD (Soft Modem) clock
+
+ "atmel,at91rm9200-clk-system":
+ at91 system clocks
+
+ "atmel,at91rm9200-clk-usb" or
+ "atmel,at91sam9x5-clk-usb" or
+ "atmel,at91sam9n12-clk-usb":
+ at91 usb clock
+
+ "atmel,at91sam9x5-clk-utmi":
+ at91 utmi clock
+
+Required properties for SCKC node:
+- reg : defines the IO memory reserved for the SCKC.
+- #size-cells : shall be 0 (reg is used to encode clk id).
+- #address-cells : shall be 1 (reg is used to encode clk id).
+
+
+For example:
+ sckc: sckc@fffffe50 {
+ compatible = "atmel,sama5d3-pmc";
+ reg = <0xfffffe50 0x4>
+ #size-cells = <0>;
+ #address-cells = <1>;
+
+ /* put at91 slow clocks here */
+ };
+
+
+Required properties for internal slow RC oscillator:
+- #clock-cells : from common clock binding; shall be set to 0.
+- clock-frequency : define the internal RC oscillator frequency.
+
+Optional properties:
+- clock-accuracy : define the internal RC oscillator accuracy.
+
+For example:
+ slow_rc_osc: slow_rc_osc {
+ compatible = "atmel,at91sam9x5-clk-slow-rc-osc";
+ clock-frequency = <32768>;
+ clock-accuracy = <50000000>;
+ };
+
+Required properties for slow oscillator:
+- #clock-cells : from common clock binding; shall be set to 0.
+- clocks : shall encode the main osc source clk sources (see atmel datasheet).
+
+Optional properties:
+- atmel,osc-bypass : boolean property. Set this when a clock signal is directly
+ provided on XIN.
+
+For example:
+ slow_osc: slow_osc {
+ compatible = "atmel,at91rm9200-clk-slow-osc";
+ #clock-cells = <0>;
+ clocks = <&slow_xtal>;
+ };
+
+Required properties for slow clock:
+- #clock-cells : from common clock binding; shall be set to 0.
+- clocks : shall encode the slow clk sources (see atmel datasheet).
+
+For example:
+ clk32k: slck {
+ compatible = "atmel,at91sam9x5-clk-slow";
+ #clock-cells = <0>;
+ clocks = <&slow_rc_osc &slow_osc>;
+ };
+
+Required properties for PMC node:
+- reg : defines the IO memory reserved for the PMC.
+- #size-cells : shall be 0 (reg is used to encode clk id).
+- #address-cells : shall be 1 (reg is used to encode clk id).
+- interrupts : shall be set to PMC interrupt line.
+- interrupt-controller : tell that the PMC is an interrupt controller.
+- #interrupt-cells : must be set to 1. The first cell encodes the interrupt id,
+ and reflect the bit position in the PMC_ER/DR/SR registers.
+ You can use the dt macros defined in dt-bindings/clock/at91.h.
+ 0 (AT91_PMC_MOSCS) -> main oscillator ready
+ 1 (AT91_PMC_LOCKA) -> PLL A ready
+ 2 (AT91_PMC_LOCKB) -> PLL B ready
+ 3 (AT91_PMC_MCKRDY) -> master clock ready
+ 6 (AT91_PMC_LOCKU) -> UTMI PLL clock ready
+ 8 .. 15 (AT91_PMC_PCKRDY(id)) -> programmable clock ready
+ 16 (AT91_PMC_MOSCSELS) -> main oscillator selected
+ 17 (AT91_PMC_MOSCRCS) -> RC main oscillator stabilized
+ 18 (AT91_PMC_CFDEV) -> clock failure detected
+
+For example:
+ pmc: pmc@fffffc00 {
+ compatible = "atmel,sama5d3-pmc";
+ interrupts = <1 4 7>;
+ interrupt-controller;
+ #interrupt-cells = <2>;
+ #size-cells = <0>;
+ #address-cells = <1>;
+
+ /* put at91 clocks here */
+ };
+
+Required properties for main clock internal RC oscillator:
+- interrupt-parent : must reference the PMC node.
+- interrupts : shall be set to "<0>".
+- clock-frequency : define the internal RC oscillator frequency.
+
+Optional properties:
+- clock-accuracy : define the internal RC oscillator accuracy.
+
+For example:
+ main_rc_osc: main_rc_osc {
+ compatible = "atmel,at91sam9x5-clk-main-rc-osc";
+ interrupt-parent = <&pmc>;
+ interrupts = <0>;
+ clock-frequency = <12000000>;
+ clock-accuracy = <50000000>;
+ };
+
+Required properties for main clock oscillator:
+- interrupt-parent : must reference the PMC node.
+- interrupts : shall be set to "<0>".
+- #clock-cells : from common clock binding; shall be set to 0.
+- clocks : shall encode the main osc source clk sources (see atmel datasheet).
+
+Optional properties:
+- atmel,osc-bypass : boolean property. Specified if a clock signal is provided
+ on XIN.
+
+ clock signal is directly provided on XIN pin.
+
+For example:
+ main_osc: main_osc {
+ compatible = "atmel,at91rm9200-clk-main-osc";
+ interrupt-parent = <&pmc>;
+ interrupts = <0>;
+ #clock-cells = <0>;
+ clocks = <&main_xtal>;
+ };
+
+Required properties for main clock:
+- interrupt-parent : must reference the PMC node.
+- interrupts : shall be set to "<0>".
+- #clock-cells : from common clock binding; shall be set to 0.
+- clocks : shall encode the main clk sources (see atmel datasheet).
+
+For example:
+ main: mainck {
+ compatible = "atmel,at91sam9x5-clk-main";
+ interrupt-parent = <&pmc>;
+ interrupts = <0>;
+ #clock-cells = <0>;
+ clocks = <&main_rc_osc &main_osc>;
+ };
+
+Required properties for master clock:
+- interrupt-parent : must reference the PMC node.
+- interrupts : shall be set to "<3>".
+- #clock-cells : from common clock binding; shall be set to 0.
+- clocks : shall be the master clock sources (see atmel datasheet) phandles.
+ e.g. "<&ck32k>, <&main>, <&plla>, <&pllb>".
+- atmel,clk-output-range : minimum and maximum clock frequency (two u32
+ fields).
+ e.g. output = <0 133000000>; <=> 0 to 133MHz.
+- atmel,clk-divisors : master clock divisors table (four u32 fields).
+ 0 <=> reserved value.
+ e.g. divisors = <1 2 4 6>;
+- atmel,master-clk-have-div3-pres : some SoC use the reserved value 7 in the
+ PRES field as CLOCK_DIV3 (e.g sam9x5).
+
+For example:
+ mck: mck {
+ compatible = "atmel,at91rm9200-clk-master";
+ interrupt-parent = <&pmc>;
+ interrupts = <3>;
+ #clock-cells = <0>;
+ atmel,clk-output-range = <0 133000000>;
+ atmel,clk-divisors = <1 2 4 0>;
+ };
+
+Required properties for peripheral clocks:
+- #size-cells : shall be 0 (reg is used to encode clk id).
+- #address-cells : shall be 1 (reg is used to encode clk id).
+- clocks : shall be the master clock phandle.
+ e.g. clocks = <&mck>;
+- name: device tree node describing a specific system clock.
+ * #clock-cells : from common clock binding; shall be set to 0.
+ * reg: peripheral id. See Atmel's datasheets to get a full
+ list of peripheral ids.
+ * atmel,clk-output-range : minimum and maximum clock frequency
+ (two u32 fields). Only valid on at91sam9x5-clk-peripheral
+ compatible IPs.
+
+For example:
+ periph: periphck {
+ compatible = "atmel,at91sam9x5-clk-peripheral";
+ #size-cells = <0>;
+ #address-cells = <1>;
+ clocks = <&mck>;
+
+ ssc0_clk {
+ #clock-cells = <0>;
+ reg = <2>;
+ atmel,clk-output-range = <0 133000000>;
+ };
+
+ usart0_clk {
+ #clock-cells = <0>;
+ reg = <3>;
+ atmel,clk-output-range = <0 66000000>;
+ };
+ };
+
+
+Required properties for pll clocks:
+- interrupt-parent : must reference the PMC node.
+- interrupts : shall be set to "<1>".
+- #clock-cells : from common clock binding; shall be set to 0.
+- clocks : shall be the main clock phandle.
+- reg : pll id.
+ 0 -> PLL A
+ 1 -> PLL B
+- atmel,clk-input-range : minimum and maximum source clock frequency (two u32
+ fields).
+ e.g. input = <1 32000000>; <=> 1 to 32MHz.
+- #atmel,pll-clk-output-range-cells : number of cells reserved for pll output
+ range description. Sould be set to 2, 3
+ or 4.
+ * 1st and 2nd cells represent the frequency range (min-max).
+ * 3rd cell is optional and represents the OUT field value for the given
+ range.
+ * 4th cell is optional and represents the ICPLL field (PLLICPR
+ register)
+- atmel,pll-clk-output-ranges : pll output frequency ranges + optional parameter
+ depending on #atmel,pll-output-range-cells
+ property value.
+
+For example:
+ plla: pllack {
+ compatible = "atmel,at91sam9g45-clk-pll";
+ interrupt-parent = <&pmc>;
+ interrupts = <1>;
+ #clock-cells = <0>;
+ clocks = <&main>;
+ reg = <0>;
+ atmel,clk-input-range = <2000000 32000000>;
+ #atmel,pll-clk-output-range-cells = <4>;
+ atmel,pll-clk-output-ranges = <74500000 800000000 0 0
+ 69500000 750000000 1 0
+ 64500000 700000000 2 0
+ 59500000 650000000 3 0
+ 54500000 600000000 0 1
+ 49500000 550000000 1 1
+ 44500000 500000000 2 1
+ 40000000 450000000 3 1>;
+ };
+
+Required properties for plldiv clocks (plldiv = pll / 2):
+- #clock-cells : from common clock binding; shall be set to 0.
+- clocks : shall be the plla clock phandle.
+
+The pll divisor is equal to 2 and cannot be changed.
+
+For example:
+ plladiv: plladivck {
+ compatible = "atmel,at91sam9x5-clk-plldiv";
+ #clock-cells = <0>;
+ clocks = <&plla>;
+ };
+
+Required properties for programmable clocks:
+- interrupt-parent : must reference the PMC node.
+- #size-cells : shall be 0 (reg is used to encode clk id).
+- #address-cells : shall be 1 (reg is used to encode clk id).
+- clocks : shall be the programmable clock source phandles.
+ e.g. clocks = <&clk32k>, <&main>, <&plla>, <&pllb>;
+- name: device tree node describing a specific prog clock.
+ * #clock-cells : from common clock binding; shall be set to 0.
+ * reg : programmable clock id (register offset from PCKx
+ register).
+ * interrupts : shall be set to "<(8 + id)>".
+
+For example:
+ prog: progck {
+ compatible = "atmel,at91sam9g45-clk-programmable";
+ #size-cells = <0>;
+ #address-cells = <1>;
+ interrupt-parent = <&pmc>;
+ clocks = <&clk32k>, <&main>, <&plladiv>, <&utmi>, <&mck>;
+
+ prog0 {
+ #clock-cells = <0>;
+ reg = <0>;
+ interrupts = <8>;
+ };
+
+ prog1 {
+ #clock-cells = <0>;
+ reg = <1>;
+ interrupts = <9>;
+ };
+ };
+
+
+Required properties for smd clock:
+- #clock-cells : from common clock binding; shall be set to 0.
+- clocks : shall be the smd clock source phandles.
+ e.g. clocks = <&plladiv>, <&utmi>;
+
+For example:
+ smd: smdck {
+ compatible = "atmel,at91sam9x5-clk-smd";
+ #clock-cells = <0>;
+ clocks = <&plladiv>, <&utmi>;
+ };
+
+Required properties for system clocks:
+- #size-cells : shall be 0 (reg is used to encode clk id).
+- #address-cells : shall be 1 (reg is used to encode clk id).
+- name: device tree node describing a specific system clock.
+ * #clock-cells : from common clock binding; shall be set to 0.
+ * reg: system clock id (bit position in SCER/SCDR/SCSR registers).
+ See Atmel's datasheet to get a full list of system clock ids.
+
+For example:
+ system: systemck {
+ compatible = "atmel,at91rm9200-clk-system";
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ ddrck {
+ #clock-cells = <0>;
+ reg = <2>;
+ clocks = <&mck>;
+ };
+
+ uhpck {
+ #clock-cells = <0>;
+ reg = <6>;
+ clocks = <&usb>;
+ };
+
+ udpck {
+ #clock-cells = <0>;
+ reg = <7>;
+ clocks = <&usb>;
+ };
+ };
+
+
+Required properties for usb clock:
+- #clock-cells : from common clock binding; shall be set to 0.
+- clocks : shall be the smd clock source phandles.
+ e.g. clocks = <&pllb>;
+- atmel,clk-divisors (only available for "atmel,at91rm9200-clk-usb"):
+ usb clock divisor table.
+ e.g. divisors = <1 2 4 0>;
+
+For example:
+ usb: usbck {
+ compatible = "atmel,at91sam9x5-clk-usb";
+ #clock-cells = <0>;
+ clocks = <&plladiv>, <&utmi>;
+ };
+
+ usb: usbck {
+ compatible = "atmel,at91rm9200-clk-usb";
+ #clock-cells = <0>;
+ clocks = <&pllb>;
+ atmel,clk-divisors = <1 2 4 0>;
+ };
+
+
+Required properties for utmi clock:
+- interrupt-parent : must reference the PMC node.
+- interrupts : shall be set to "<AT91_PMC_LOCKU IRQ_TYPE_LEVEL_HIGH>".
+- #clock-cells : from common clock binding; shall be set to 0.
+- clocks : shall be the main clock source phandle.
+
+For example:
+ utmi: utmick {
+ compatible = "atmel,at91sam9x5-clk-utmi";
+ interrupt-parent = <&pmc>;
+ interrupts = <AT91_PMC_LOCKU IRQ_TYPE_LEVEL_HIGH>;
+ #clock-cells = <0>;
+ clocks = <&main>;
+ };
diff --git a/Documentation/devicetree/bindings/clock/axi-clkgen.txt b/Documentation/devicetree/bindings/clock/axi-clkgen.txt
index 028b493e97f..20e1704e7df 100644
--- a/Documentation/devicetree/bindings/clock/axi-clkgen.txt
+++ b/Documentation/devicetree/bindings/clock/axi-clkgen.txt
@@ -5,7 +5,7 @@ This binding uses the common clock binding[1].
[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
Required properties:
-- compatible : shall be "adi,axi-clkgen".
+- compatible : shall be "adi,axi-clkgen-1.00.a" or "adi,axi-clkgen-2.00.a".
- #clock-cells : from common clock binding; Should always be set to 0.
- reg : Address and length of the axi-clkgen register set.
- clocks : Phandle and clock specifier for the parent clock.
diff --git a/Documentation/devicetree/bindings/clock/bcm-kona-clock.txt b/Documentation/devicetree/bindings/clock/bcm-kona-clock.txt
new file mode 100644
index 00000000000..5286e260fca
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/bcm-kona-clock.txt
@@ -0,0 +1,139 @@
+Broadcom Kona Family Clocks
+
+This binding is associated with Broadcom SoCs having "Kona" style
+clock control units (CCUs). A CCU is a clock provider that manages
+a set of clock signals. Each CCU is represented by a node in the
+device tree.
+
+This binding uses the common clock binding:
+ Documentation/devicetree/bindings/clock/clock-bindings.txt
+
+Required properties:
+- compatible
+ Shall have a value of the form "brcm,<model>-<which>-ccu",
+ where <model> is a Broadcom SoC model number and <which> is
+ the name of a defined CCU. For example:
+ "brcm,bcm11351-root-ccu"
+ The compatible strings used for each supported SoC family
+ are defined below.
+- reg
+ Shall define the base and range of the address space
+ containing clock control registers
+- #clock-cells
+ Shall have value <1>. The permitted clock-specifier values
+ are defined below.
+- clock-output-names
+ Shall be an ordered list of strings defining the names of
+ the clocks provided by the CCU.
+
+Device tree example:
+
+ slave_ccu: slave_ccu {
+ compatible = "brcm,bcm11351-slave-ccu";
+ reg = <0x3e011000 0x0f00>;
+ #clock-cells = <1>;
+ clock-output-names = "uartb",
+ "uartb2",
+ "uartb3",
+ "uartb4";
+ };
+
+ ref_crystal_clk: ref_crystal {
+ #clock-cells = <0>;
+ compatible = "fixed-clock";
+ clock-frequency = <26000000>;
+ };
+
+ uart@3e002000 {
+ compatible = "brcm,bcm11351-dw-apb-uart", "snps,dw-apb-uart";
+ status = "disabled";
+ reg = <0x3e002000 0x1000>;
+ clocks = <&slave_ccu BCM281XX_SLAVE_CCU_UARTB3>;
+ interrupts = <GIC_SPI 65 IRQ_TYPE_LEVEL_HIGH>;
+ reg-shift = <2>;
+ reg-io-width = <4>;
+ };
+
+BCM281XX family
+---------------
+CCU compatible string values for SoCs in the BCM281XX family are:
+ "brcm,bcm11351-root-ccu"
+ "brcm,bcm11351-aon-ccu"
+ "brcm,bcm11351-hub-ccu"
+ "brcm,bcm11351-master-ccu"
+ "brcm,bcm11351-slave-ccu"
+
+The following table defines the set of CCUs and clock specifiers for
+BCM281XX family clocks. When a clock consumer references a clocks,
+its symbolic specifier (rather than its numeric index value) should
+be used. These specifiers are defined in:
+ "include/dt-bindings/clock/bcm281xx.h"
+
+ CCU Clock Type Index Specifier
+ --- ----- ---- ----- ---------
+ root frac_1m peri 0 BCM281XX_ROOT_CCU_FRAC_1M
+
+ aon hub_timer peri 0 BCM281XX_AON_CCU_HUB_TIMER
+ aon pmu_bsc peri 1 BCM281XX_AON_CCU_PMU_BSC
+ aon pmu_bsc_var peri 2 BCM281XX_AON_CCU_PMU_BSC_VAR
+
+ hub tmon_1m peri 0 BCM281XX_HUB_CCU_TMON_1M
+
+ master sdio1 peri 0 BCM281XX_MASTER_CCU_SDIO1
+ master sdio2 peri 1 BCM281XX_MASTER_CCU_SDIO2
+ master sdio3 peri 2 BCM281XX_MASTER_CCU_SDIO3
+ master sdio4 peri 3 BCM281XX_MASTER_CCU_SDIO4
+ master dmac peri 4 BCM281XX_MASTER_CCU_DMAC
+ master usb_ic peri 5 BCM281XX_MASTER_CCU_USB_IC
+ master hsic2_48m peri 6 BCM281XX_MASTER_CCU_HSIC_48M
+ master hsic2_12m peri 7 BCM281XX_MASTER_CCU_HSIC_12M
+
+ slave uartb peri 0 BCM281XX_SLAVE_CCU_UARTB
+ slave uartb2 peri 1 BCM281XX_SLAVE_CCU_UARTB2
+ slave uartb3 peri 2 BCM281XX_SLAVE_CCU_UARTB3
+ slave uartb4 peri 3 BCM281XX_SLAVE_CCU_UARTB4
+ slave ssp0 peri 4 BCM281XX_SLAVE_CCU_SSP0
+ slave ssp2 peri 5 BCM281XX_SLAVE_CCU_SSP2
+ slave bsc1 peri 6 BCM281XX_SLAVE_CCU_BSC1
+ slave bsc2 peri 7 BCM281XX_SLAVE_CCU_BSC2
+ slave bsc3 peri 8 BCM281XX_SLAVE_CCU_BSC3
+ slave pwm peri 9 BCM281XX_SLAVE_CCU_PWM
+
+
+BCM21664 family
+---------------
+CCU compatible string values for SoCs in the BCM21664 family are:
+ "brcm,bcm21664-root-ccu"
+ "brcm,bcm21664-aon-ccu"
+ "brcm,bcm21664-master-ccu"
+ "brcm,bcm21664-slave-ccu"
+
+The following table defines the set of CCUs and clock specifiers for
+BCM21664 family clocks. When a clock consumer references a clocks,
+its symbolic specifier (rather than its numeric index value) should
+be used. These specifiers are defined in:
+ "include/dt-bindings/clock/bcm21664.h"
+
+ CCU Clock Type Index Specifier
+ --- ----- ---- ----- ---------
+ root frac_1m peri 0 BCM21664_ROOT_CCU_FRAC_1M
+
+ aon hub_timer peri 0 BCM21664_AON_CCU_HUB_TIMER
+
+ master sdio1 peri 0 BCM21664_MASTER_CCU_SDIO1
+ master sdio2 peri 1 BCM21664_MASTER_CCU_SDIO2
+ master sdio3 peri 2 BCM21664_MASTER_CCU_SDIO3
+ master sdio4 peri 3 BCM21664_MASTER_CCU_SDIO4
+ master sdio1_sleep peri 4 BCM21664_MASTER_CCU_SDIO1_SLEEP
+ master sdio2_sleep peri 5 BCM21664_MASTER_CCU_SDIO2_SLEEP
+ master sdio3_sleep peri 6 BCM21664_MASTER_CCU_SDIO3_SLEEP
+ master sdio4_sleep peri 7 BCM21664_MASTER_CCU_SDIO4_SLEEP
+
+ slave uartb peri 0 BCM21664_SLAVE_CCU_UARTB
+ slave uartb2 peri 1 BCM21664_SLAVE_CCU_UARTB2
+ slave uartb3 peri 2 BCM21664_SLAVE_CCU_UARTB3
+ slave uartb4 peri 3 BCM21664_SLAVE_CCU_UARTB4
+ slave bsc1 peri 4 BCM21664_SLAVE_CCU_BSC1
+ slave bsc2 peri 5 BCM21664_SLAVE_CCU_BSC2
+ slave bsc3 peri 6 BCM21664_SLAVE_CCU_BSC3
+ slave bsc4 peri 7 BCM21664_SLAVE_CCU_BSC4
diff --git a/Documentation/devicetree/bindings/clock/clk-exynos-audss.txt b/Documentation/devicetree/bindings/clock/clk-exynos-audss.txt
index 75e2e1999f8..180e8835569 100644
--- a/Documentation/devicetree/bindings/clock/clk-exynos-audss.txt
+++ b/Documentation/devicetree/bindings/clock/clk-exynos-audss.txt
@@ -8,12 +8,29 @@ Required Properties:
- compatible: should be one of the following:
- "samsung,exynos4210-audss-clock" - controller compatible with all Exynos4 SoCs.
- - "samsung,exynos5250-audss-clock" - controller compatible with all Exynos5 SoCs.
-
+ - "samsung,exynos5250-audss-clock" - controller compatible with Exynos5250
+ SoCs.
+ - "samsung,exynos5420-audss-clock" - controller compatible with Exynos5420
+ SoCs.
- reg: physical base address and length of the controller's register set.
- #clock-cells: should be 1.
+- clocks:
+ - pll_ref: Fixed rate PLL reference clock, parent of mout_audss. "fin_pll"
+ is used if not specified.
+ - pll_in: Input PLL to the AudioSS block, parent of mout_audss. "fout_epll"
+ is used if not specified.
+ - cdclk: External i2s clock, parent of mout_i2s. "cdclk0" is used if not
+ specified.
+ - sclk_audio: Audio bus clock, parent of mout_i2s. "sclk_audio0" is used if
+ not specified.
+ - sclk_pcm_in: PCM clock, parent of sclk_pcm. "sclk_pcm0" is used if not
+ specified.
+
+- clock-names: Aliases for the above clocks. They should be "pll_ref",
+ "pll_in", "cdclk", "sclk_audio", and "sclk_pcm_in" respectively.
+
The following is the list of clocks generated by the controller. Each clock is
assigned an identifier and client nodes use this identifier to specify the
clock which they consume. Some of the clocks are available only on a particular
@@ -34,16 +51,30 @@ i2s_bus 6
sclk_i2s 7
pcm_bus 8
sclk_pcm 9
+adma 10 Exynos5420
+
+Example 1: An example of a clock controller node using the default input
+ clock names is listed below.
+
+clock_audss: audss-clock-controller@3810000 {
+ compatible = "samsung,exynos5250-audss-clock";
+ reg = <0x03810000 0x0C>;
+ #clock-cells = <1>;
+};
-Example 1: An example of a clock controller node is listed below.
+Example 2: An example of a clock controller node with the input clocks
+ specified.
clock_audss: audss-clock-controller@3810000 {
compatible = "samsung,exynos5250-audss-clock";
reg = <0x03810000 0x0C>;
#clock-cells = <1>;
+ clocks = <&clock 1>, <&clock 7>, <&clock 138>, <&clock 160>,
+ <&ext_i2s_clk>;
+ clock-names = "pll_ref", "pll_in", "sclk_audio", "sclk_pcm_in", "cdclk";
};
-Example 2: I2S controller node that consumes the clock generated by the clock
+Example 3: I2S controller node that consumes the clock generated by the clock
controller. Refer to the standard clock bindings for information
about 'clocks' and 'clock-names' property.
diff --git a/Documentation/devicetree/bindings/clock/clock-bindings.txt b/Documentation/devicetree/bindings/clock/clock-bindings.txt
index eb65d417f8c..f15787817d6 100644
--- a/Documentation/devicetree/bindings/clock/clock-bindings.txt
+++ b/Documentation/devicetree/bindings/clock/clock-bindings.txt
@@ -5,7 +5,7 @@ Sources of clock signal can be represented by any node in the device
tree. Those nodes are designated as clock providers. Clock consumer
nodes use a phandle and clock specifier pair to connect clock provider
outputs to clock inputs. Similar to the gpio specifiers, a clock
-specifier is an array of one more more cells identifying the clock
+specifier is an array of zero, one or more cells identifying the clock
output on a device. The length of a clock specifier is defined by the
value of a #clock-cells property in the clock provider node.
@@ -44,6 +44,22 @@ For example:
clocks by index. The names should reflect the clock output signal
names for the device.
+clock-indices: If the identifying number for the clocks in the node
+ is not linear from zero, then this allows the mapping of
+ identifiers into the clock-output-names array.
+
+For example, if we have two clocks <&oscillator 1> and <&oscillator 3>:
+
+ oscillator {
+ compatible = "myclocktype";
+ #clock-cells = <1>;
+ clock-indices = <1>, <3>;
+ clock-output-names = "clka", "clkb";
+ }
+
+ This ensures we do not have any empty strings in clock-output-names
+
+
==Clock consumers==
Required properties:
diff --git a/Documentation/devicetree/bindings/clock/efm32-clock.txt b/Documentation/devicetree/bindings/clock/efm32-clock.txt
new file mode 100644
index 00000000000..263d293f6a1
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/efm32-clock.txt
@@ -0,0 +1,11 @@
+* Clock bindings for Energy Micro efm32 Giant Gecko's Clock Management Unit
+
+Required properties:
+- compatible: Should be "efm32gg,cmu"
+- reg: Base address and length of the register set
+- interrupts: Interrupt used by the CMU
+- #clock-cells: Should be <1>
+
+The clock consumer should specify the desired clock by having the clock ID in
+its "clocks" phandle cell. The header efm32-clk.h contains a list of available
+IDs.
diff --git a/Documentation/devicetree/bindings/clock/emev2-clock.txt b/Documentation/devicetree/bindings/clock/emev2-clock.txt
new file mode 100644
index 00000000000..60bbb1a8c69
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/emev2-clock.txt
@@ -0,0 +1,98 @@
+Device tree Clock bindings for Renesas EMMA Mobile EV2
+
+This binding uses the common clock binding.
+
+* SMU
+System Management Unit described in user's manual R19UH0037EJ1000_SMU.
+This is not a clock provider, but clocks under SMU depend on it.
+
+Required properties:
+- compatible: Should be "renesas,emev2-smu"
+- reg: Address and Size of SMU registers
+
+* SMU_CLKDIV
+Function block with an input mux and a divider, which corresponds to
+"Serial clock generator" in fig."Clock System Overview" of the manual,
+and "xxx frequency division setting register" (XXXCLKDIV) registers.
+This makes internal (neither input nor output) clock that is provided
+to input of xxxGCLK block.
+
+Required properties:
+- compatible: Should be "renesas,emev2-smu-clkdiv"
+- reg: Byte offset from SMU base and Bit position in the register
+- clocks: Parent clocks. Input clocks as described in clock-bindings.txt
+- #clock-cells: Should be <0>
+
+* SMU_GCLK
+Clock gating node shown as "Clock stop processing block" in the
+fig."Clock System Overview" of the manual.
+Registers are "xxx clock gate control register" (XXXGCLKCTRL).
+
+Required properties:
+- compatible: Should be "renesas,emev2-smu-gclk"
+- reg: Byte offset from SMU base and Bit position in the register
+- clocks: Input clock as described in clock-bindings.txt
+- #clock-cells: Should be <0>
+
+Example of provider:
+
+usia_u0_sclkdiv: usia_u0_sclkdiv {
+ compatible = "renesas,emev2-smu-clkdiv";
+ reg = <0x610 0>;
+ clocks = <&pll3_fo>, <&pll4_fo>, <&pll1_fo>, <&osc1_fo>;
+ #clock-cells = <0>;
+};
+
+usia_u0_sclk: usia_u0_sclk {
+ compatible = "renesas,emev2-smu-gclk";
+ reg = <0x4a0 1>;
+ clocks = <&usia_u0_sclkdiv>;
+ #clock-cells = <0>;
+};
+
+Example of consumer:
+
+uart@e1020000 {
+ compatible = "renesas,em-uart";
+ reg = <0xe1020000 0x38>;
+ interrupts = <0 8 0>;
+ clocks = <&usia_u0_sclk>;
+ clock-names = "sclk";
+};
+
+Example of clock-tree description:
+
+ This describes a clock path in the clock tree
+ c32ki -> pll3_fo -> usia_u0_sclkdiv -> usia_u0_sclk
+
+smu@e0110000 {
+ compatible = "renesas,emev2-smu";
+ reg = <0xe0110000 0x10000>;
+ #address-cells = <2>;
+ #size-cells = <0>;
+
+ c32ki: c32ki {
+ compatible = "fixed-clock";
+ clock-frequency = <32768>;
+ #clock-cells = <0>;
+ };
+ pll3_fo: pll3_fo {
+ compatible = "fixed-factor-clock";
+ clocks = <&c32ki>;
+ clock-div = <1>;
+ clock-mult = <7000>;
+ #clock-cells = <0>;
+ };
+ usia_u0_sclkdiv: usia_u0_sclkdiv {
+ compatible = "renesas,emev2-smu-clkdiv";
+ reg = <0x610 0>;
+ clocks = <&pll3_fo>;
+ #clock-cells = <0>;
+ };
+ usia_u0_sclk: usia_u0_sclk {
+ compatible = "renesas,emev2-smu-gclk";
+ reg = <0x4a0 1>;
+ clocks = <&usia_u0_sclkdiv>;
+ #clock-cells = <0>;
+ };
+};
diff --git a/Documentation/devicetree/bindings/clock/exynos3250-clock.txt b/Documentation/devicetree/bindings/clock/exynos3250-clock.txt
new file mode 100644
index 00000000000..aadc9c59e2d
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/exynos3250-clock.txt
@@ -0,0 +1,41 @@
+* Samsung Exynos3250 Clock Controller
+
+The Exynos3250 clock controller generates and supplies clock to various
+controllers within the Exynos3250 SoC.
+
+Required Properties:
+
+- compatible: should be one of the following.
+ - "samsung,exynos3250-cmu" - controller compatible with Exynos3250 SoC.
+
+- reg: physical base address of the controller and length of memory mapped
+ region.
+
+- #clock-cells: should be 1.
+
+Each clock is assigned an identifier and client nodes can use this identifier
+to specify the clock which they consume.
+
+All available clocks are defined as preprocessor macros in
+dt-bindings/clock/exynos3250.h header and can be used in device
+tree sources.
+
+Example 1: An example of a clock controller node is listed below.
+
+ cmu: clock-controller@10030000 {
+ compatible = "samsung,exynos3250-cmu";
+ reg = <0x10030000 0x20000>;
+ #clock-cells = <1>;
+ };
+
+Example 2: UART controller node that consumes the clock generated by the clock
+ controller. Refer to the standard clock bindings for information
+ about 'clocks' and 'clock-names' property.
+
+ serial@13800000 {
+ compatible = "samsung,exynos4210-uart";
+ reg = <0x13800000 0x100>;
+ interrupts = <0 109 0>;
+ clocks = <&cmu CLK_UART0>, <&cmu CLK_SCLK_UART0>;
+ clock-names = "uart", "clk_uart_baud0";
+ };
diff --git a/Documentation/devicetree/bindings/clock/exynos4-clock.txt b/Documentation/devicetree/bindings/clock/exynos4-clock.txt
index c6bf8a6c8f5..f5a5b19ed3b 100644
--- a/Documentation/devicetree/bindings/clock/exynos4-clock.txt
+++ b/Documentation/devicetree/bindings/clock/exynos4-clock.txt
@@ -6,7 +6,7 @@ SoC's in the Exynos4 family.
Required Properties:
-- comptible: should be one of the following.
+- compatible: should be one of the following.
- "samsung,exynos4210-clock" - controller compatible with Exynos4210 SoC.
- "samsung,exynos4412-clock" - controller compatible with Exynos4412 SoC.
@@ -15,259 +15,12 @@ Required Properties:
- #clock-cells: should be 1.
-The following is the list of clocks generated by the controller. Each clock is
-assigned an identifier and client nodes use this identifier to specify the
-clock which they consume. Some of the clocks are available only on a particular
-Exynos4 SoC and this is specified where applicable.
-
-
- [Core Clocks]
-
- Clock ID SoC (if specific)
- -----------------------------------------------
-
- xxti 1
- xusbxti 2
- fin_pll 3
- fout_apll 4
- fout_mpll 5
- fout_epll 6
- fout_vpll 7
- sclk_apll 8
- sclk_mpll 9
- sclk_epll 10
- sclk_vpll 11
- arm_clk 12
- aclk200 13
- aclk100 14
- aclk160 15
- aclk133 16
- mout_mpll_user_t 17 Exynos4x12
- mout_mpll_user_c 18 Exynos4x12
- mout_core 19
- mout_apll 20
-
-
- [Clock Gate for Special Clocks]
-
- Clock ID SoC (if specific)
- -----------------------------------------------
-
- sclk_fimc0 128
- sclk_fimc1 129
- sclk_fimc2 130
- sclk_fimc3 131
- sclk_cam0 132
- sclk_cam1 133
- sclk_csis0 134
- sclk_csis1 135
- sclk_hdmi 136
- sclk_mixer 137
- sclk_dac 138
- sclk_pixel 139
- sclk_fimd0 140
- sclk_mdnie0 141 Exynos4412
- sclk_mdnie_pwm0 12 142 Exynos4412
- sclk_mipi0 143
- sclk_audio0 144
- sclk_mmc0 145
- sclk_mmc1 146
- sclk_mmc2 147
- sclk_mmc3 148
- sclk_mmc4 149
- sclk_sata 150 Exynos4210
- sclk_uart0 151
- sclk_uart1 152
- sclk_uart2 153
- sclk_uart3 154
- sclk_uart4 155
- sclk_audio1 156
- sclk_audio2 157
- sclk_spdif 158
- sclk_spi0 159
- sclk_spi1 160
- sclk_spi2 161
- sclk_slimbus 162
- sclk_fimd1 163 Exynos4210
- sclk_mipi1 164 Exynos4210
- sclk_pcm1 165
- sclk_pcm2 166
- sclk_i2s1 167
- sclk_i2s2 168
- sclk_mipihsi 169 Exynos4412
- sclk_mfc 170
- sclk_pcm0 171
- sclk_g3d 172
- sclk_pwm_isp 173 Exynos4x12
- sclk_spi0_isp 174 Exynos4x12
- sclk_spi1_isp 175 Exynos4x12
- sclk_uart_isp 176 Exynos4x12
- sclk_fimg2d 177
-
- [Peripheral Clock Gates]
-
- Clock ID SoC (if specific)
- -----------------------------------------------
-
- fimc0 256
- fimc1 257
- fimc2 258
- fimc3 259
- csis0 260
- csis1 261
- jpeg 262
- smmu_fimc0 263
- smmu_fimc1 264
- smmu_fimc2 265
- smmu_fimc3 266
- smmu_jpeg 267
- vp 268
- mixer 269
- tvenc 270 Exynos4210
- hdmi 271
- smmu_tv 272
- mfc 273
- smmu_mfcl 274
- smmu_mfcr 275
- g3d 276
- g2d 277
- rotator 278 Exynos4210
- mdma 279 Exynos4210
- smmu_g2d 280 Exynos4210
- smmu_rotator 281 Exynos4210
- smmu_mdma 282 Exynos4210
- fimd0 283
- mie0 284
- mdnie0 285 Exynos4412
- dsim0 286
- smmu_fimd0 287
- fimd1 288 Exynos4210
- mie1 289 Exynos4210
- dsim1 290 Exynos4210
- smmu_fimd1 291 Exynos4210
- pdma0 292
- pdma1 293
- pcie_phy 294
- sata_phy 295 Exynos4210
- tsi 296
- sdmmc0 297
- sdmmc1 298
- sdmmc2 299
- sdmmc3 300
- sdmmc4 301
- sata 302 Exynos4210
- sromc 303
- usb_host 304
- usb_device 305
- pcie 306
- onenand 307
- nfcon 308
- smmu_pcie 309
- gps 310
- smmu_gps 311
- uart0 312
- uart1 313
- uart2 314
- uart3 315
- uart4 316
- i2c0 317
- i2c1 318
- i2c2 319
- i2c3 320
- i2c4 321
- i2c5 322
- i2c6 323
- i2c7 324
- i2c_hdmi 325
- tsadc 326
- spi0 327
- spi1 328
- spi2 329
- i2s1 330
- i2s2 331
- pcm0 332
- i2s0 333
- pcm1 334
- pcm2 335
- pwm 336
- slimbus 337
- spdif 338
- ac97 339
- modemif 340
- chipid 341
- sysreg 342
- hdmi_cec 343
- mct 344
- wdt 345
- rtc 346
- keyif 347
- audss 348
- mipi_hsi 349 Exynos4210
- mdma2 350 Exynos4210
- pixelasyncm0 351
- pixelasyncm1 352
- fimc_lite0 353 Exynos4x12
- fimc_lite1 354 Exynos4x12
- ppmuispx 355 Exynos4x12
- ppmuispmx 356 Exynos4x12
- fimc_isp 357 Exynos4x12
- fimc_drc 358 Exynos4x12
- fimc_fd 359 Exynos4x12
- mcuisp 360 Exynos4x12
- gicisp 361 Exynos4x12
- smmu_isp 362 Exynos4x12
- smmu_drc 363 Exynos4x12
- smmu_fd 364 Exynos4x12
- smmu_lite0 365 Exynos4x12
- smmu_lite1 366 Exynos4x12
- mcuctl_isp 367 Exynos4x12
- mpwm_isp 368 Exynos4x12
- i2c0_isp 369 Exynos4x12
- i2c1_isp 370 Exynos4x12
- mtcadc_isp 371 Exynos4x12
- pwm_isp 372 Exynos4x12
- wdt_isp 373 Exynos4x12
- uart_isp 374 Exynos4x12
- asyncaxim 375 Exynos4x12
- smmu_ispcx 376 Exynos4x12
- spi0_isp 377 Exynos4x12
- spi1_isp 378 Exynos4x12
- pwm_isp_sclk 379 Exynos4x12
- spi0_isp_sclk 380 Exynos4x12
- spi1_isp_sclk 381 Exynos4x12
- uart_isp_sclk 382 Exynos4x12
- tmu_apbif 383
-
- [Mux Clocks]
-
- Clock ID SoC (if specific)
- -----------------------------------------------
-
- mout_fimc0 384
- mout_fimc1 385
- mout_fimc2 386
- mout_fimc3 387
- mout_cam0 388
- mout_cam1 389
- mout_csis0 390
- mout_csis1 391
- mout_g3d0 392
- mout_g3d1 393
- mout_g3d 394
- aclk400_mcuisp 395 Exynos4x12
-
- [Div Clocks]
-
- Clock ID SoC (if specific)
- -----------------------------------------------
-
- div_isp0 450 Exynos4x12
- div_isp1 451 Exynos4x12
- div_mcuisp0 452 Exynos4x12
- div_mcuisp1 453 Exynos4x12
- div_aclk200 454 Exynos4x12
- div_aclk400_mcuisp 455 Exynos4x12
+Each clock is assigned an identifier and client nodes can use this identifier
+to specify the clock which they consume.
+All available clocks are defined as preprocessor macros in
+dt-bindings/clock/exynos4.h header and can be used in device
+tree sources.
Example 1: An example of a clock controller node is listed below.
@@ -285,6 +38,6 @@ Example 2: UART controller node that consumes the clock generated by the clock
compatible = "samsung,exynos4210-uart";
reg = <0x13820000 0x100>;
interrupts = <0 54 0>;
- clocks = <&clock 314>, <&clock 153>;
+ clocks = <&clock CLK_UART2>, <&clock CLK_SCLK_UART2>;
clock-names = "uart", "clk_uart_baud0";
};
diff --git a/Documentation/devicetree/bindings/clock/exynos5250-clock.txt b/Documentation/devicetree/bindings/clock/exynos5250-clock.txt
index 24765c146e3..536eacd1063 100644
--- a/Documentation/devicetree/bindings/clock/exynos5250-clock.txt
+++ b/Documentation/devicetree/bindings/clock/exynos5250-clock.txt
@@ -5,7 +5,7 @@ controllers within the Exynos5250 SoC.
Required Properties:
-- comptible: should be one of the following.
+- compatible: should be one of the following.
- "samsung,exynos5250-clock" - controller compatible with Exynos5250 SoC.
- reg: physical base address of the controller and length of memory mapped
@@ -13,160 +13,12 @@ Required Properties:
- #clock-cells: should be 1.
-The following is the list of clocks generated by the controller. Each clock is
-assigned an identifier and client nodes use this identifier to specify the
-clock which they consume.
-
-
- [Core Clocks]
-
- Clock ID
- ----------------------------
-
- fin_pll 1
-
- [Clock Gate for Special Clocks]
-
- Clock ID
- ----------------------------
-
- sclk_cam_bayer 128
- sclk_cam0 129
- sclk_cam1 130
- sclk_gscl_wa 131
- sclk_gscl_wb 132
- sclk_fimd1 133
- sclk_mipi1 134
- sclk_dp 135
- sclk_hdmi 136
- sclk_pixel 137
- sclk_audio0 138
- sclk_mmc0 139
- sclk_mmc1 140
- sclk_mmc2 141
- sclk_mmc3 142
- sclk_sata 143
- sclk_usb3 144
- sclk_jpeg 145
- sclk_uart0 146
- sclk_uart1 147
- sclk_uart2 148
- sclk_uart3 149
- sclk_pwm 150
- sclk_audio1 151
- sclk_audio2 152
- sclk_spdif 153
- sclk_spi0 154
- sclk_spi1 155
- sclk_spi2 156
- div_i2s1 157
- div_i2s2 158
- sclk_hdmiphy 159
-
-
- [Peripheral Clock Gates]
-
- Clock ID
- ----------------------------
-
- gscl0 256
- gscl1 257
- gscl2 258
- gscl3 259
- gscl_wa 260
- gscl_wb 261
- smmu_gscl0 262
- smmu_gscl1 263
- smmu_gscl2 264
- smmu_gscl3 265
- mfc 266
- smmu_mfcl 267
- smmu_mfcr 268
- rotator 269
- jpeg 270
- mdma1 271
- smmu_rotator 272
- smmu_jpeg 273
- smmu_mdma1 274
- pdma0 275
- pdma1 276
- sata 277
- usbotg 278
- mipi_hsi 279
- sdmmc0 280
- sdmmc1 281
- sdmmc2 282
- sdmmc3 283
- sromc 284
- usb2 285
- usb3 286
- sata_phyctrl 287
- sata_phyi2c 288
- uart0 289
- uart1 290
- uart2 291
- uart3 292
- uart4 293
- i2c0 294
- i2c1 295
- i2c2 296
- i2c3 297
- i2c4 298
- i2c5 299
- i2c6 300
- i2c7 301
- i2c_hdmi 302
- adc 303
- spi0 304
- spi1 305
- spi2 306
- i2s1 307
- i2s2 308
- pcm1 309
- pcm2 310
- pwm 311
- spdif 312
- ac97 313
- hsi2c0 314
- hsi2c1 315
- hs12c2 316
- hs12c3 317
- chipid 318
- sysreg 319
- pmu 320
- cmu_top 321
- cmu_core 322
- cmu_mem 323
- tzpc0 324
- tzpc1 325
- tzpc2 326
- tzpc3 327
- tzpc4 328
- tzpc5 329
- tzpc6 330
- tzpc7 331
- tzpc8 332
- tzpc9 333
- hdmi_cec 334
- mct 335
- wdt 336
- rtc 337
- tmu 338
- fimd1 339
- mie1 340
- dsim0 341
- dp 342
- mixer 343
- hdmi 344
- g2d 345
-
-
- [Clock Muxes]
-
- Clock ID
- ----------------------------
- mout_hdmi 1024
+Each clock is assigned an identifier and client nodes can use this identifier
+to specify the clock which they consume.
+All available clocks are defined as preprocessor macros in
+dt-bindings/clock/exynos5250.h header and can be used in device
+tree sources.
Example 1: An example of a clock controller node is listed below.
@@ -184,6 +36,6 @@ Example 2: UART controller node that consumes the clock generated by the clock
compatible = "samsung,exynos4210-uart";
reg = <0x13820000 0x100>;
interrupts = <0 54 0>;
- clocks = <&clock 314>, <&clock 153>;
+ clocks = <&clock CLK_UART2>, <&clock CLK_SCLK_UART2>;
clock-names = "uart", "clk_uart_baud0";
};
diff --git a/Documentation/devicetree/bindings/clock/exynos5260-clock.txt b/Documentation/devicetree/bindings/clock/exynos5260-clock.txt
new file mode 100644
index 00000000000..5496b2fac48
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/exynos5260-clock.txt
@@ -0,0 +1,190 @@
+* Samsung Exynos5260 Clock Controller
+
+Exynos5260 has 13 clock controllers which are instantiated
+independently from the device-tree. These clock controllers
+generate and supply clocks to various hardware blocks within
+the SoC.
+
+Each clock is assigned an identifier and client nodes can use
+this identifier to specify the clock which they consume. All
+available clocks are defined as preprocessor macros in
+dt-bindings/clock/exynos5260-clk.h header and can be used in
+device tree sources.
+
+External clocks:
+
+There are several clocks that are generated outside the SoC. It
+is expected that they are defined using standard clock bindings
+with following clock-output-names:
+
+ - "fin_pll" - PLL input clock from XXTI
+ - "xrtcxti" - input clock from XRTCXTI
+ - "ioclk_pcm_extclk" - pcm external operation clock
+ - "ioclk_spdif_extclk" - spdif external operation clock
+ - "ioclk_i2s_cdclk" - i2s0 codec clock
+
+Phy clocks:
+
+There are several clocks which are generated by specific PHYs.
+These clocks are fed into the clock controller and then routed to
+the hardware blocks. These clocks are defined as fixed clocks in the
+driver with following names:
+
+ - "phyclk_dptx_phy_ch3_txd_clk" - dp phy clock for channel 3
+ - "phyclk_dptx_phy_ch2_txd_clk" - dp phy clock for channel 2
+ - "phyclk_dptx_phy_ch1_txd_clk" - dp phy clock for channel 1
+ - "phyclk_dptx_phy_ch0_txd_clk" - dp phy clock for channel 0
+ - "phyclk_hdmi_phy_tmds_clko" - hdmi phy tmds clock
+ - "phyclk_hdmi_phy_pixel_clko" - hdmi phy pixel clock
+ - "phyclk_hdmi_link_o_tmds_clkhi" - hdmi phy for hdmi link
+ - "phyclk_dptx_phy_o_ref_clk_24m" - dp phy reference clock
+ - "phyclk_dptx_phy_clk_div2"
+ - "phyclk_mipi_dphy_4l_m_rxclkesc0"
+ - "phyclk_usbhost20_phy_phyclock" - usb 2.0 phy clock
+ - "phyclk_usbhost20_phy_freeclk"
+ - "phyclk_usbhost20_phy_clk48mohci"
+ - "phyclk_usbdrd30_udrd30_pipe_pclk"
+ - "phyclk_usbdrd30_udrd30_phyclock" - usb 3.0 phy clock
+
+Required Properties for Clock Controller:
+
+ - compatible: should be one of the following.
+ 1) "samsung,exynos5260-clock-top"
+ 2) "samsung,exynos5260-clock-peri"
+ 3) "samsung,exynos5260-clock-egl"
+ 4) "samsung,exynos5260-clock-kfc"
+ 5) "samsung,exynos5260-clock-g2d"
+ 6) "samsung,exynos5260-clock-mif"
+ 7) "samsung,exynos5260-clock-mfc"
+ 8) "samsung,exynos5260-clock-g3d"
+ 9) "samsung,exynos5260-clock-fsys"
+ 10) "samsung,exynos5260-clock-aud"
+ 11) "samsung,exynos5260-clock-isp"
+ 12) "samsung,exynos5260-clock-gscl"
+ 13) "samsung,exynos5260-clock-disp"
+
+ - reg: physical base address of the controller and the length of
+ memory mapped region.
+
+ - #clock-cells: should be 1.
+
+ - clocks: list of clock identifiers which are fed as the input to
+ the given clock controller. Please refer the next section to find
+ the input clocks for a given controller.
+
+ - clock-names: list of names of clocks which are fed as the input
+ to the given clock controller.
+
+Input clocks for top clock controller:
+ - fin_pll
+ - dout_mem_pll
+ - dout_bus_pll
+ - dout_media_pll
+
+Input clocks for peri clock controller:
+ - fin_pll
+ - ioclk_pcm_extclk
+ - ioclk_i2s_cdclk
+ - ioclk_spdif_extclk
+ - phyclk_hdmi_phy_ref_cko
+ - dout_aclk_peri_66
+ - dout_sclk_peri_uart0
+ - dout_sclk_peri_uart1
+ - dout_sclk_peri_uart2
+ - dout_sclk_peri_spi0_b
+ - dout_sclk_peri_spi1_b
+ - dout_sclk_peri_spi2_b
+ - dout_aclk_peri_aud
+ - dout_sclk_peri_spi0_b
+
+Input clocks for egl clock controller:
+ - fin_pll
+ - dout_bus_pll
+
+Input clocks for kfc clock controller:
+ - fin_pll
+ - dout_media_pll
+
+Input clocks for g2d clock controller:
+ - fin_pll
+ - dout_aclk_g2d_333
+
+Input clocks for mif clock controller:
+ - fin_pll
+
+Input clocks for mfc clock controller:
+ - fin_pll
+ - dout_aclk_mfc_333
+
+Input clocks for g3d clock controller:
+ - fin_pll
+
+Input clocks for fsys clock controller:
+ - fin_pll
+ - phyclk_usbhost20_phy_phyclock
+ - phyclk_usbhost20_phy_freeclk
+ - phyclk_usbhost20_phy_clk48mohci
+ - phyclk_usbdrd30_udrd30_pipe_pclk
+ - phyclk_usbdrd30_udrd30_phyclock
+ - dout_aclk_fsys_200
+
+Input clocks for aud clock controller:
+ - fin_pll
+ - fout_aud_pll
+ - ioclk_i2s_cdclk
+ - ioclk_pcm_extclk
+
+Input clocks for isp clock controller:
+ - fin_pll
+ - dout_aclk_isp1_266
+ - dout_aclk_isp1_400
+ - mout_aclk_isp1_266
+
+Input clocks for gscl clock controller:
+ - fin_pll
+ - dout_aclk_gscl_400
+ - dout_aclk_gscl_333
+
+Input clocks for disp clock controller:
+ - fin_pll
+ - phyclk_dptx_phy_ch3_txd_clk
+ - phyclk_dptx_phy_ch2_txd_clk
+ - phyclk_dptx_phy_ch1_txd_clk
+ - phyclk_dptx_phy_ch0_txd_clk
+ - phyclk_hdmi_phy_tmds_clko
+ - phyclk_hdmi_phy_ref_clko
+ - phyclk_hdmi_phy_pixel_clko
+ - phyclk_hdmi_link_o_tmds_clkhi
+ - phyclk_mipi_dphy_4l_m_txbyte_clkhs
+ - phyclk_dptx_phy_o_ref_clk_24m
+ - phyclk_dptx_phy_clk_div2
+ - phyclk_mipi_dphy_4l_m_rxclkesc0
+ - phyclk_hdmi_phy_ref_cko
+ - ioclk_spdif_extclk
+ - dout_aclk_peri_aud
+ - dout_aclk_disp_222
+ - dout_sclk_disp_pixel
+ - dout_aclk_disp_333
+
+Example 1: An example of a clock controller node is listed below.
+
+ clock_mfc: clock-controller@11090000 {
+ compatible = "samsung,exynos5260-clock-mfc";
+ clock = <&fin_pll>, <&clock_top TOP_DOUT_ACLK_MFC_333>;
+ clock-names = "fin_pll", "dout_aclk_mfc_333";
+ reg = <0x11090000 0x10000>;
+ #clock-cells = <1>;
+ };
+
+Example 2: UART controller node that consumes the clock generated by the
+ peri clock controller. Refer to the standard clock bindings for
+ information about 'clocks' and 'clock-names' property.
+
+ serial@12C00000 {
+ compatible = "samsung,exynos4210-uart";
+ reg = <0x12C00000 0x100>;
+ interrupts = <0 146 0>;
+ clocks = <&clock_peri PERI_PCLK_UART0>, <&clock_peri PERI_SCLK_UART0>;
+ clock-names = "uart", "clk_uart_baud0";
+ };
+
diff --git a/Documentation/devicetree/bindings/clock/exynos5410-clock.txt b/Documentation/devicetree/bindings/clock/exynos5410-clock.txt
new file mode 100644
index 00000000000..aeab635b07b
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/exynos5410-clock.txt
@@ -0,0 +1,45 @@
+* Samsung Exynos5410 Clock Controller
+
+The Exynos5410 clock controller generates and supplies clock to various
+controllers within the Exynos5410 SoC.
+
+Required Properties:
+
+- compatible: should be "samsung,exynos5410-clock"
+
+- reg: physical base address of the controller and length of memory mapped
+ region.
+
+- #clock-cells: should be 1.
+
+All available clocks are defined as preprocessor macros in
+dt-bindings/clock/exynos5410.h header and can be used in device
+tree sources.
+
+External clock:
+
+There is clock that is generated outside the SoC. It
+is expected that it is defined using standard clock bindings
+with following clock-output-name:
+
+ - "fin_pll" - PLL input clock from XXTI
+
+Example 1: An example of a clock controller node is listed below.
+
+ clock: clock-controller@0x10010000 {
+ compatible = "samsung,exynos5410-clock";
+ reg = <0x10010000 0x30000>;
+ #clock-cells = <1>;
+ };
+
+Example 2: UART controller node that consumes the clock generated by the clock
+ controller. Refer to the standard clock bindings for information
+ about 'clocks' and 'clock-names' property.
+
+ serial@12C20000 {
+ compatible = "samsung,exynos4210-uart";
+ reg = <0x12C00000 0x100>;
+ interrupts = <0 51 0>;
+ clocks = <&clock CLK_UART0>, <&clock CLK_SCLK_UART0>;
+ clock-names = "uart", "clk_uart_baud0";
+ };
diff --git a/Documentation/devicetree/bindings/clock/exynos5420-clock.txt b/Documentation/devicetree/bindings/clock/exynos5420-clock.txt
index 32aa34ecad3..d54f42cf044 100644
--- a/Documentation/devicetree/bindings/clock/exynos5420-clock.txt
+++ b/Documentation/devicetree/bindings/clock/exynos5420-clock.txt
@@ -1,196 +1,25 @@
* Samsung Exynos5420 Clock Controller
The Exynos5420 clock controller generates and supplies clock to various
-controllers within the Exynos5420 SoC.
+controllers within the Exynos5420 SoC and for the Exynos5800 SoC.
Required Properties:
-- comptible: should be one of the following.
+- compatible: should be one of the following.
- "samsung,exynos5420-clock" - controller compatible with Exynos5420 SoC.
+ - "samsung,exynos5800-clock" - controller compatible with Exynos5800 SoC.
- reg: physical base address of the controller and length of memory mapped
region.
- #clock-cells: should be 1.
-The following is the list of clocks generated by the controller. Each clock is
-assigned an identifier and client nodes use this identifier to specify the
-clock which they consume.
+Each clock is assigned an identifier and client nodes can use this identifier
+to specify the clock which they consume.
-
- [Core Clocks]
-
- Clock ID
- ----------------------------
-
- fin_pll 1
-
- [Clock Gate for Special Clocks]
-
- Clock ID
- ----------------------------
- sclk_uart0 128
- sclk_uart1 129
- sclk_uart2 130
- sclk_uart3 131
- sclk_mmc0 132
- sclk_mmc1 133
- sclk_mmc2 134
- sclk_spi0 135
- sclk_spi1 136
- sclk_spi2 137
- sclk_i2s1 138
- sclk_i2s2 139
- sclk_pcm1 140
- sclk_pcm2 141
- sclk_spdif 142
- sclk_hdmi 143
- sclk_pixel 144
- sclk_dp1 145
- sclk_mipi1 146
- sclk_fimd1 147
- sclk_maudio0 148
- sclk_maupcm0 149
- sclk_usbd300 150
- sclk_usbd301 151
- sclk_usbphy300 152
- sclk_usbphy301 153
- sclk_unipro 154
- sclk_pwm 155
- sclk_gscl_wa 156
- sclk_gscl_wb 157
- sclk_hdmiphy 158
-
- [Peripheral Clock Gates]
-
- Clock ID
- ----------------------------
-
- aclk66_peric 256
- uart0 257
- uart1 258
- uart2 259
- uart3 260
- i2c0 261
- i2c1 262
- i2c2 263
- i2c3 264
- i2c4 265
- i2c5 266
- i2c6 267
- i2c7 268
- i2c_hdmi 269
- tsadc 270
- spi0 271
- spi1 272
- spi2 273
- keyif 274
- i2s1 275
- i2s2 276
- pcm1 277
- pcm2 278
- pwm 279
- spdif 280
- i2c8 281
- i2c9 282
- i2c10 283
- aclk66_psgen 300
- chipid 301
- sysreg 302
- tzpc0 303
- tzpc1 304
- tzpc2 305
- tzpc3 306
- tzpc4 307
- tzpc5 308
- tzpc6 309
- tzpc7 310
- tzpc8 311
- tzpc9 312
- hdmi_cec 313
- seckey 314
- mct 315
- wdt 316
- rtc 317
- tmu 318
- tmu_gpu 319
- pclk66_gpio 330
- aclk200_fsys2 350
- mmc0 351
- mmc1 352
- mmc2 353
- sromc 354
- ufs 355
- aclk200_fsys 360
- tsi 361
- pdma0 362
- pdma1 363
- rtic 364
- usbh20 365
- usbd300 366
- usbd301 377
- aclk400_mscl 380
- mscl0 381
- mscl1 382
- mscl2 383
- smmu_mscl0 384
- smmu_mscl1 385
- smmu_mscl2 386
- aclk333 400
- mfc 401
- smmu_mfcl 402
- smmu_mfcr 403
- aclk200_disp1 410
- dsim1 411
- dp1 412
- hdmi 413
- aclk300_disp1 420
- fimd1 421
- smmu_fimd1 422
- aclk166 430
- mixer 431
- aclk266 440
- rotator 441
- mdma1 442
- smmu_rotator 443
- smmu_mdma1 444
- aclk300_jpeg 450
- jpeg 451
- jpeg2 452
- smmu_jpeg 453
- aclk300_gscl 460
- smmu_gscl0 461
- smmu_gscl1 462
- gscl_wa 463
- gscl_wb 464
- gscl0 465
- gscl1 466
- clk_3aa 467
- aclk266_g2d 470
- sss 471
- slim_sss 472
- mdma0 473
- aclk333_g2d 480
- g2d 481
- aclk333_432_gscl 490
- smmu_3aa 491
- smmu_fimcl0 492
- smmu_fimcl1 493
- smmu_fimcl3 494
- fimc_lite3 495
- aclk_g3d 500
- g3d 501
- smmu_mixer 502
-
- Mux ID
- ----------------------------
-
- mout_hdmi 640
-
- Divider ID
- ----------------------------
-
- dout_pixel 768
+All available clocks are defined as preprocessor macros in
+dt-bindings/clock/exynos5420.h header and can be used in device
+tree sources.
Example 1: An example of a clock controller node is listed below.
@@ -208,6 +37,6 @@ Example 2: UART controller node that consumes the clock generated by the clock
compatible = "samsung,exynos4210-uart";
reg = <0x13820000 0x100>;
interrupts = <0 54 0>;
- clocks = <&clock 259>, <&clock 130>;
+ clocks = <&clock CLK_UART2>, <&clock CLK_SCLK_UART2>;
clock-names = "uart", "clk_uart_baud0";
};
diff --git a/Documentation/devicetree/bindings/clock/exynos5440-clock.txt b/Documentation/devicetree/bindings/clock/exynos5440-clock.txt
index 4499e9966bc..5f7005f7305 100644
--- a/Documentation/devicetree/bindings/clock/exynos5440-clock.txt
+++ b/Documentation/devicetree/bindings/clock/exynos5440-clock.txt
@@ -5,52 +5,19 @@ controllers within the Exynos5440 SoC.
Required Properties:
-- comptible: should be "samsung,exynos5440-clock".
+- compatible: should be "samsung,exynos5440-clock".
- reg: physical base address of the controller and length of memory mapped
region.
- #clock-cells: should be 1.
-The following is the list of clocks generated by the controller. Each clock is
-assigned an identifier and client nodes use this identifier to specify the
-clock which they consume.
-
-
- [Core Clocks]
-
- Clock ID
- ----------------------------
-
- xtal 1
- arm_clk 2
-
- [Peripheral Clock Gates]
-
- Clock ID
- ----------------------------
-
- spi_baud 16
- pb0_250 17
- pr0_250 18
- pr1_250 19
- b_250 20
- b_125 21
- b_200 22
- sata 23
- usb 24
- gmac0 25
- cs250 26
- pb0_250_o 27
- pr0_250_o 28
- pr1_250_o 29
- b_250_o 30
- b_125_o 31
- b_200_o 32
- sata_o 33
- usb_o 34
- gmac0_o 35
- cs250_o 36
+Each clock is assigned an identifier and client nodes can use this identifier
+to specify the clock which they consume.
+
+All available clocks are defined as preprocessor macros in
+dt-bindings/clock/exynos5440.h header and can be used in device
+tree sources.
Example: An example of a clock controller node is listed below.
diff --git a/Documentation/devicetree/bindings/clock/fixed-clock.txt b/Documentation/devicetree/bindings/clock/fixed-clock.txt
index 0b1fe782409..0641a663ad6 100644
--- a/Documentation/devicetree/bindings/clock/fixed-clock.txt
+++ b/Documentation/devicetree/bindings/clock/fixed-clock.txt
@@ -10,7 +10,8 @@ Required properties:
- clock-frequency : frequency of clock in Hz. Should be a single cell.
Optional properties:
-- gpios : From common gpio binding; gpio connection to clock enable pin.
+- clock-accuracy : accuracy of clock in ppb (parts per billion).
+ Should be a single cell.
- clock-output-names : From common clock binding.
Example:
@@ -18,4 +19,5 @@ Example:
compatible = "fixed-clock";
#clock-cells = <0>;
clock-frequency = <1000000000>;
+ clock-accuracy = <100>;
};
diff --git a/Documentation/devicetree/bindings/clock/fixed-factor-clock.txt b/Documentation/devicetree/bindings/clock/fixed-factor-clock.txt
index 5757f9abfc2..1bae8527eb9 100644
--- a/Documentation/devicetree/bindings/clock/fixed-factor-clock.txt
+++ b/Documentation/devicetree/bindings/clock/fixed-factor-clock.txt
@@ -19,6 +19,6 @@ Example:
compatible = "fixed-factor-clock";
clocks = <&parentclk>;
#clock-cells = <0>;
- div = <2>;
- mult = <1>;
+ clock-div = <2>;
+ clock-mult = <1>;
};
diff --git a/Documentation/devicetree/bindings/clock/hi3620-clock.txt b/Documentation/devicetree/bindings/clock/hi3620-clock.txt
new file mode 100644
index 00000000000..dad6269f52c
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/hi3620-clock.txt
@@ -0,0 +1,20 @@
+* Hisilicon Hi3620 Clock Controller
+
+The Hi3620 clock controller generates and supplies clock to various
+controllers within the Hi3620 SoC.
+
+Required Properties:
+
+- compatible: should be one of the following.
+ - "hisilicon,hi3620-clock" - controller compatible with Hi3620 SoC.
+ - "hisilicon,hi3620-mmc-clock" - controller specific for Hi3620 mmc.
+
+- reg: physical base address of the controller and length of memory mapped
+ region.
+
+- #clock-cells: should be 1.
+
+Each clock is assigned an identifier and client nodes use this identifier
+to specify the clock which they consume.
+
+All these identifier could be found in <dt-bindings/clock/hi3620-clock.h>.
diff --git a/Documentation/devicetree/bindings/clock/hix5hd2-clock.txt b/Documentation/devicetree/bindings/clock/hix5hd2-clock.txt
new file mode 100644
index 00000000000..7894a64887c
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/hix5hd2-clock.txt
@@ -0,0 +1,31 @@
+* Hisilicon Hix5hd2 Clock Controller
+
+The hix5hd2 clock controller generates and supplies clock to various
+controllers within the hix5hd2 SoC.
+
+Required Properties:
+
+- compatible: should be "hisilicon,hix5hd2-clock"
+- reg: Address and length of the register set
+- #clock-cells: Should be <1>
+
+Each clock is assigned an identifier and client nodes use this identifier
+to specify the clock which they consume.
+
+All these identifier could be found in <dt-bindings/clock/hix5hd2-clock.h>.
+
+Examples:
+ clock: clock@f8a22000 {
+ compatible = "hisilicon,hix5hd2-clock";
+ reg = <0xf8a22000 0x1000>;
+ #clock-cells = <1>;
+ };
+
+ uart0: uart@f8b00000 {
+ compatible = "arm,pl011", "arm,primecell";
+ reg = <0xf8b00000 0x1000>;
+ interrupts = <0 49 4>;
+ clocks = <&clock HIX5HD2_FIXED_83M>;
+ clock-names = "apb_pclk";
+ status = "disabled";
+ };
diff --git a/Documentation/devicetree/bindings/clock/imx25-clock.txt b/Documentation/devicetree/bindings/clock/imx25-clock.txt
index db4f2f05c4d..ba6b312ff8a 100644
--- a/Documentation/devicetree/bindings/clock/imx25-clock.txt
+++ b/Documentation/devicetree/bindings/clock/imx25-clock.txt
@@ -139,6 +139,9 @@ clocks and IDs.
uart5_ipg 124
reserved 125
wdt_ipg 126
+ cko_div 127
+ cko_sel 128
+ cko 129
Examples:
diff --git a/Documentation/devicetree/bindings/clock/imx27-clock.txt b/Documentation/devicetree/bindings/clock/imx27-clock.txt
index 7a207039373..6bc9fd2c663 100644
--- a/Documentation/devicetree/bindings/clock/imx27-clock.txt
+++ b/Documentation/devicetree/bindings/clock/imx27-clock.txt
@@ -98,7 +98,12 @@ clocks and IDs.
fpm 83
mpll_osc_sel 84
mpll_sel 85
- spll_gate 86
+ spll_gate 86
+ mshc_div 87
+ rtic_ipg_gate 88
+ mshc_ipg_gate 89
+ rtic_ahb_gate 90
+ mshc_baud_gate 91
Examples:
diff --git a/Documentation/devicetree/bindings/clock/imx35-clock.txt b/Documentation/devicetree/bindings/clock/imx35-clock.txt
new file mode 100644
index 00000000000..a70356452a8
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/imx35-clock.txt
@@ -0,0 +1,113 @@
+* Clock bindings for Freescale i.MX35
+
+Required properties:
+- compatible: Should be "fsl,imx35-ccm"
+- reg: Address and length of the register set
+- interrupts: Should contain CCM interrupt
+- #clock-cells: Should be <1>
+
+The clock consumer should specify the desired clock by having the clock
+ID in its "clocks" phandle cell. The following is a full list of i.MX35
+clocks and IDs.
+
+ Clock ID
+ ---------------------------
+ ckih 0
+ mpll 1
+ ppll 2
+ mpll_075 3
+ arm 4
+ hsp 5
+ hsp_div 6
+ hsp_sel 7
+ ahb 8
+ ipg 9
+ arm_per_div 10
+ ahb_per_div 11
+ ipg_per 12
+ uart_sel 13
+ uart_div 14
+ esdhc_sel 15
+ esdhc1_div 16
+ esdhc2_div 17
+ esdhc3_div 18
+ spdif_sel 19
+ spdif_div_pre 20
+ spdif_div_post 21
+ ssi_sel 22
+ ssi1_div_pre 23
+ ssi1_div_post 24
+ ssi2_div_pre 25
+ ssi2_div_post 26
+ usb_sel 27
+ usb_div 28
+ nfc_div 29
+ asrc_gate 30
+ pata_gate 31
+ audmux_gate 32
+ can1_gate 33
+ can2_gate 34
+ cspi1_gate 35
+ cspi2_gate 36
+ ect_gate 37
+ edio_gate 38
+ emi_gate 39
+ epit1_gate 40
+ epit2_gate 41
+ esai_gate 42
+ esdhc1_gate 43
+ esdhc2_gate 44
+ esdhc3_gate 45
+ fec_gate 46
+ gpio1_gate 47
+ gpio2_gate 48
+ gpio3_gate 49
+ gpt_gate 50
+ i2c1_gate 51
+ i2c2_gate 52
+ i2c3_gate 53
+ iomuxc_gate 54
+ ipu_gate 55
+ kpp_gate 56
+ mlb_gate 57
+ mshc_gate 58
+ owire_gate 59
+ pwm_gate 60
+ rngc_gate 61
+ rtc_gate 62
+ rtic_gate 63
+ scc_gate 64
+ sdma_gate 65
+ spba_gate 66
+ spdif_gate 67
+ ssi1_gate 68
+ ssi2_gate 69
+ uart1_gate 70
+ uart2_gate 71
+ uart3_gate 72
+ usbotg_gate 73
+ wdog_gate 74
+ max_gate 75
+ admux_gate 76
+ csi_gate 77
+ csi_div 78
+ csi_sel 79
+ iim_gate 80
+ gpu2d_gate 81
+
+Examples:
+
+clks: ccm@53f80000 {
+ compatible = "fsl,imx35-ccm";
+ reg = <0x53f80000 0x4000>;
+ interrupts = <31>;
+ #clock-cells = <1>;
+};
+
+esdhc1: esdhc@53fb4000 {
+ compatible = "fsl,imx35-esdhc";
+ reg = <0x53fb4000 0x4000>;
+ interrupts = <7>;
+ clocks = <&clks 9>, <&clks 8>, <&clks 43>;
+ clock-names = "ipg", "ahb", "per";
+};
diff --git a/Documentation/devicetree/bindings/clock/imx5-clock.txt b/Documentation/devicetree/bindings/clock/imx5-clock.txt
index 4c029a8739d..cadc4d29ada 100644
--- a/Documentation/devicetree/bindings/clock/imx5-clock.txt
+++ b/Documentation/devicetree/bindings/clock/imx5-clock.txt
@@ -7,197 +7,8 @@ Required properties:
- #clock-cells: Should be <1>
The clock consumer should specify the desired clock by having the clock
-ID in its "clocks" phandle cell. The following is a full list of i.MX5
-clocks and IDs.
-
- Clock ID
- ---------------------------
- dummy 0
- ckil 1
- osc 2
- ckih1 3
- ckih2 4
- ahb 5
- ipg 6
- axi_a 7
- axi_b 8
- uart_pred 9
- uart_root 10
- esdhc_a_pred 11
- esdhc_b_pred 12
- esdhc_c_s 13
- esdhc_d_s 14
- emi_sel 15
- emi_slow_podf 16
- nfc_podf 17
- ecspi_pred 18
- ecspi_podf 19
- usboh3_pred 20
- usboh3_podf 21
- usb_phy_pred 22
- usb_phy_podf 23
- cpu_podf 24
- di_pred 25
- tve_s 27
- uart1_ipg_gate 28
- uart1_per_gate 29
- uart2_ipg_gate 30
- uart2_per_gate 31
- uart3_ipg_gate 32
- uart3_per_gate 33
- i2c1_gate 34
- i2c2_gate 35
- gpt_ipg_gate 36
- pwm1_ipg_gate 37
- pwm1_hf_gate 38
- pwm2_ipg_gate 39
- pwm2_hf_gate 40
- gpt_hf_gate 41
- fec_gate 42
- usboh3_per_gate 43
- esdhc1_ipg_gate 44
- esdhc2_ipg_gate 45
- esdhc3_ipg_gate 46
- esdhc4_ipg_gate 47
- ssi1_ipg_gate 48
- ssi2_ipg_gate 49
- ssi3_ipg_gate 50
- ecspi1_ipg_gate 51
- ecspi1_per_gate 52
- ecspi2_ipg_gate 53
- ecspi2_per_gate 54
- cspi_ipg_gate 55
- sdma_gate 56
- emi_slow_gate 57
- ipu_s 58
- ipu_gate 59
- nfc_gate 60
- ipu_di1_gate 61
- vpu_s 62
- vpu_gate 63
- vpu_reference_gate 64
- uart4_ipg_gate 65
- uart4_per_gate 66
- uart5_ipg_gate 67
- uart5_per_gate 68
- tve_gate 69
- tve_pred 70
- esdhc1_per_gate 71
- esdhc2_per_gate 72
- esdhc3_per_gate 73
- esdhc4_per_gate 74
- usb_phy_gate 75
- hsi2c_gate 76
- mipi_hsc1_gate 77
- mipi_hsc2_gate 78
- mipi_esc_gate 79
- mipi_hsp_gate 80
- ldb_di1_div_3_5 81
- ldb_di1_div 82
- ldb_di0_div_3_5 83
- ldb_di0_div 84
- ldb_di1_gate 85
- can2_serial_gate 86
- can2_ipg_gate 87
- i2c3_gate 88
- lp_apm 89
- periph_apm 90
- main_bus 91
- ahb_max 92
- aips_tz1 93
- aips_tz2 94
- tmax1 95
- tmax2 96
- tmax3 97
- spba 98
- uart_sel 99
- esdhc_a_sel 100
- esdhc_b_sel 101
- esdhc_a_podf 102
- esdhc_b_podf 103
- ecspi_sel 104
- usboh3_sel 105
- usb_phy_sel 106
- iim_gate 107
- usboh3_gate 108
- emi_fast_gate 109
- ipu_di0_gate 110
- gpc_dvfs 111
- pll1_sw 112
- pll2_sw 113
- pll3_sw 114
- ipu_di0_sel 115
- ipu_di1_sel 116
- tve_ext_sel 117
- mx51_mipi 118
- pll4_sw 119
- ldb_di1_sel 120
- di_pll4_podf 121
- ldb_di0_sel 122
- ldb_di0_gate 123
- usb_phy1_gate 124
- usb_phy2_gate 125
- per_lp_apm 126
- per_pred1 127
- per_pred2 128
- per_podf 129
- per_root 130
- ssi_apm 131
- ssi1_root_sel 132
- ssi2_root_sel 133
- ssi3_root_sel 134
- ssi_ext1_sel 135
- ssi_ext2_sel 136
- ssi_ext1_com_sel 137
- ssi_ext2_com_sel 138
- ssi1_root_pred 139
- ssi1_root_podf 140
- ssi2_root_pred 141
- ssi2_root_podf 142
- ssi_ext1_pred 143
- ssi_ext1_podf 144
- ssi_ext2_pred 145
- ssi_ext2_podf 146
- ssi1_root_gate 147
- ssi2_root_gate 148
- ssi3_root_gate 149
- ssi_ext1_gate 150
- ssi_ext2_gate 151
- epit1_ipg_gate 152
- epit1_hf_gate 153
- epit2_ipg_gate 154
- epit2_hf_gate 155
- can_sel 156
- can1_serial_gate 157
- can1_ipg_gate 158
- owire_gate 159
- gpu3d_s 160
- gpu2d_s 161
- gpu3d_gate 162
- gpu2d_gate 163
- garb_gate 164
- cko1_sel 165
- cko1_podf 166
- cko1 167
- cko2_sel 168
- cko2_podf 169
- cko2 170
- srtc_gate 171
- pata_gate 172
- sata_gate 173
- spdif_xtal_sel 174
- spdif0_sel 175
- spdif1_sel 176
- spdif0_pred 177
- spdif0_podf 178
- spdif1_pred 179
- spdif1_podf 180
- spdif0_com_sel 181
- spdif1_com_sel 182
- spdif0_gate 183
- spdif1_gate 184
- spdif_ipg_gate 185
- ocram 186
+ID in its "clocks" phandle cell. See include/dt-bindings/clock/imx5-clock.h
+for the full list of i.MX5 clock IDs.
Examples (for mx53):
@@ -212,7 +23,7 @@ can1: can@53fc8000 {
compatible = "fsl,imx53-flexcan", "fsl,p1010-flexcan";
reg = <0x53fc8000 0x4000>;
interrupts = <82>;
- clocks = <&clks 158>, <&clks 157>;
+ clocks = <&clks IMX5_CLK_CAN1_IPG_GATE>, <&clks IMX5_CLK_CAN1_SERIAL_GATE>;
clock-names = "ipg", "per";
status = "disabled";
};
diff --git a/Documentation/devicetree/bindings/clock/imx6q-clock.txt b/Documentation/devicetree/bindings/clock/imx6q-clock.txt
index 5a90a724b52..90ec91fe5ce 100644
--- a/Documentation/devicetree/bindings/clock/imx6q-clock.txt
+++ b/Documentation/devicetree/bindings/clock/imx6q-clock.txt
@@ -215,6 +215,12 @@ clocks and IDs.
cko2 200
cko 201
vdoa 202
+ pll4_audio_div 203
+ lvds1_sel 204
+ lvds2_sel 205
+ lvds1_gate 206
+ lvds2_gate 207
+ esai_ahb 208
Examples:
diff --git a/Documentation/devicetree/bindings/clock/imx6sx-clock.txt b/Documentation/devicetree/bindings/clock/imx6sx-clock.txt
new file mode 100644
index 00000000000..22362b9b7ba
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/imx6sx-clock.txt
@@ -0,0 +1,13 @@
+* Clock bindings for Freescale i.MX6 SoloX
+
+Required properties:
+- compatible: Should be "fsl,imx6sx-ccm"
+- reg: Address and length of the register set
+- #clock-cells: Should be <1>
+- clocks: list of clock specifiers, must contain an entry for each required
+ entry in clock-names
+- clock-names: should include entries "ckil", "osc", "ipp_di0" and "ipp_di1"
+
+The clock consumer should specify the desired clock by having the clock
+ID in its "clocks" phandle cell. See include/dt-bindings/clock/imx6sx-clock.h
+for the full list of i.MX6 SoloX clock IDs.
diff --git a/Documentation/devicetree/bindings/clock/keystone-gate.txt b/Documentation/devicetree/bindings/clock/keystone-gate.txt
new file mode 100644
index 00000000000..c5aa187026e
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/keystone-gate.txt
@@ -0,0 +1,29 @@
+Status: Unstable - ABI compatibility may be broken in the future
+
+Binding for Keystone gate control driver which uses PSC controller IP.
+
+This binding uses the common clock binding[1].
+
+[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
+
+Required properties:
+- compatible : shall be "ti,keystone,psc-clock".
+- #clock-cells : from common clock binding; shall be set to 0.
+- clocks : parent clock phandle
+- reg : psc control and domain address address space
+- reg-names : psc control and domain registers
+- domain-id : psc domain id needed to check the transition state register
+
+Optional properties:
+- clock-output-names : From common clock binding to override the
+ default output clock name
+Example:
+ clkusb: clkusb {
+ #clock-cells = <0>;
+ compatible = "ti,keystone,psc-clock";
+ clocks = <&chipclk16>;
+ clock-output-names = "usb";
+ reg = <0x02350008 0xb00>, <0x02350000 0x400>;
+ reg-names = "control", "domain";
+ domain-id = <0>;
+ };
diff --git a/Documentation/devicetree/bindings/clock/keystone-pll.txt b/Documentation/devicetree/bindings/clock/keystone-pll.txt
new file mode 100644
index 00000000000..225990f79b7
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/keystone-pll.txt
@@ -0,0 +1,84 @@
+Status: Unstable - ABI compatibility may be broken in the future
+
+Binding for keystone PLLs. The main PLL IP typically has a multiplier,
+a divider and a post divider. The additional PLL IPs like ARMPLL, DDRPLL
+and PAPLL are controlled by the memory mapped register where as the Main
+PLL is controlled by a PLL controller registers along with memory mapped
+registers.
+
+This binding uses the common clock binding[1].
+
+[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
+
+Required properties:
+- #clock-cells : from common clock binding; shall be set to 0.
+- compatible : shall be "ti,keystone,main-pll-clock" or "ti,keystone,pll-clock"
+- clocks : parent clock phandle
+- reg - pll control0 and pll multipler registers
+- reg-names : control and multiplier. The multiplier is applicable only for
+ main pll clock
+- fixed-postdiv : fixed post divider value. If absent, use clkod register bits
+ for postdiv
+
+Example:
+ mainpllclk: mainpllclk@2310110 {
+ #clock-cells = <0>;
+ compatible = "ti,keystone,main-pll-clock";
+ clocks = <&refclksys>;
+ reg = <0x02620350 4>, <0x02310110 4>;
+ reg-names = "control", "multiplier";
+ fixed-postdiv = <2>;
+ };
+
+ papllclk: papllclk@2620358 {
+ #clock-cells = <0>;
+ compatible = "ti,keystone,pll-clock";
+ clocks = <&refclkpass>;
+ clock-output-names = "pa-pll-clk";
+ reg = <0x02620358 4>;
+ reg-names = "control";
+ };
+
+Required properties:
+- #clock-cells : from common clock binding; shall be set to 0.
+- compatible : shall be "ti,keystone,pll-mux-clock"
+- clocks : link phandles of parent clocks
+- reg - pll mux register
+- bit-shift : number of bits to shift the bit-mask
+- bit-mask : arbitrary bitmask for programming the mux
+
+Optional properties:
+- clock-output-names : From common clock binding.
+
+Example:
+ mainmuxclk: mainmuxclk@2310108 {
+ #clock-cells = <0>;
+ compatible = "ti,keystone,pll-mux-clock";
+ clocks = <&mainpllclk>, <&refclkmain>;
+ reg = <0x02310108 4>;
+ bit-shift = <23>;
+ bit-mask = <1>;
+ clock-output-names = "mainmuxclk";
+ };
+
+Required properties:
+- #clock-cells : from common clock binding; shall be set to 0.
+- compatible : shall be "ti,keystone,pll-divider-clock"
+- clocks : parent clock phandle
+- reg - pll mux register
+- bit-shift : number of bits to shift the bit-mask
+- bit-mask : arbitrary bitmask for programming the divider
+
+Optional properties:
+- clock-output-names : From common clock binding.
+
+Example:
+ gemtraceclk: gemtraceclk@2310120 {
+ #clock-cells = <0>;
+ compatible = "ti,keystone,pll-divider-clock";
+ clocks = <&mainmuxclk>;
+ reg = <0x02310120 4>;
+ bit-shift = <0>;
+ bit-mask = <8>;
+ clock-output-names = "gemtraceclk";
+ };
diff --git a/Documentation/devicetree/bindings/clock/lsi,axm5516-clks.txt b/Documentation/devicetree/bindings/clock/lsi,axm5516-clks.txt
new file mode 100644
index 00000000000..3ce97cfe999
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/lsi,axm5516-clks.txt
@@ -0,0 +1,29 @@
+AXM5516 clock driver bindings
+-----------------------------
+
+Required properties :
+- compatible : shall contain "lsi,axm5516-clks"
+- reg : shall contain base register location and length
+- #clock-cells : shall contain 1
+
+The consumer specifies the desired clock by having the clock ID in its "clocks"
+phandle cell. See <dt-bindings/clock/lsi,axxia-clock.h> for the list of
+supported clock IDs.
+
+Example:
+
+ clks: clock-controller@2010020000 {
+ compatible = "lsi,axm5516-clks";
+ #clock-cells = <1>;
+ reg = <0x20 0x10020000 0 0x20000>;
+ };
+
+ serial0: uart@2010080000 {
+ compatible = "arm,pl011", "arm,primecell";
+ reg = <0x20 0x10080000 0 0x1000>;
+ interrupts = <GIC_SPI 56 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&clks AXXIA_CLK_PER>;
+ clock-names = "apb_pclk";
+ };
+ };
+
diff --git a/Documentation/devicetree/bindings/clock/maxim,max77686.txt b/Documentation/devicetree/bindings/clock/maxim,max77686.txt
new file mode 100644
index 00000000000..96ce71bbd74
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/maxim,max77686.txt
@@ -0,0 +1,38 @@
+Binding for Maxim MAX77686 32k clock generator block
+
+This is a part of device tree bindings of MAX77686 multi-function device.
+More information can be found in bindings/mfd/max77686.txt file.
+
+The MAX77686 contains three 32.768khz clock outputs that can be controlled
+(gated/ungated) over I2C.
+
+Following properties should be presend in main device node of the MFD chip.
+
+Required properties:
+- #clock-cells: simple one-cell clock specifier format is used, where the
+ only cell is used as an index of the clock inside the provider. Following
+ indices are allowed:
+ - 0: 32khz_ap clock,
+ - 1: 32khz_cp clock,
+ - 2: 32khz_pmic clock.
+
+Example: Node of the MFD chip
+
+ max77686: max77686@09 {
+ compatible = "maxim,max77686";
+ interrupt-parent = <&wakeup_eint>;
+ interrupts = <26 0>;
+ reg = <0x09>;
+ #clock-cells = <1>;
+
+ /* ... */
+ };
+
+Example: Clock consumer node
+
+ foo@0 {
+ compatible = "bar,foo";
+ /* ... */
+ clock-names = "my-clock";
+ clocks = <&max77686 2>;
+ };
diff --git a/Documentation/devicetree/bindings/clock/moxa,moxart-clock.txt b/Documentation/devicetree/bindings/clock/moxa,moxart-clock.txt
new file mode 100644
index 00000000000..fedea84314a
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/moxa,moxart-clock.txt
@@ -0,0 +1,48 @@
+Device Tree Clock bindings for arch-moxart
+
+This binding uses the common clock binding[1].
+
+[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
+
+MOXA ART SoCs allow to determine PLL output and APB frequencies
+by reading registers holding multiplier and divisor information.
+
+
+PLL:
+
+Required properties:
+- compatible : Must be "moxa,moxart-pll-clock"
+- #clock-cells : Should be 0
+- reg : Should contain registers location and length
+- clocks : Should contain phandle + clock-specifier for the parent clock
+
+Optional properties:
+- clock-output-names : Should contain clock name
+
+
+APB:
+
+Required properties:
+- compatible : Must be "moxa,moxart-apb-clock"
+- #clock-cells : Should be 0
+- reg : Should contain registers location and length
+- clocks : Should contain phandle + clock-specifier for the parent clock
+
+Optional properties:
+- clock-output-names : Should contain clock name
+
+
+For example:
+
+ clk_pll: clk_pll@98100000 {
+ compatible = "moxa,moxart-pll-clock";
+ #clock-cells = <0>;
+ reg = <0x98100000 0x34>;
+ };
+
+ clk_apb: clk_apb@98100000 {
+ compatible = "moxa,moxart-apb-clock";
+ #clock-cells = <0>;
+ reg = <0x98100000 0x34>;
+ clocks = <&clk_pll>;
+ };
diff --git a/Documentation/devicetree/bindings/clock/mvebu-core-clock.txt b/Documentation/devicetree/bindings/clock/mvebu-core-clock.txt
index 1e662948661..dc5ea5b22da 100644
--- a/Documentation/devicetree/bindings/clock/mvebu-core-clock.txt
+++ b/Documentation/devicetree/bindings/clock/mvebu-core-clock.txt
@@ -11,19 +11,41 @@ The following is a list of provided IDs and clock names on Armada 370/XP:
3 = hclk (DRAM control clock)
4 = dramclk (DDR clock)
+The following is a list of provided IDs and clock names on Armada 375:
+ 0 = tclk (Internal Bus clock)
+ 1 = cpuclk (CPU clock)
+ 2 = l2clk (L2 Cache clock)
+ 3 = ddrclk (DDR clock)
+
+The following is a list of provided IDs and clock names on Armada 380/385:
+ 0 = tclk (Internal Bus clock)
+ 1 = cpuclk (CPU clock)
+ 2 = l2clk (L2 Cache clock)
+ 3 = ddrclk (DDR clock)
+
The following is a list of provided IDs and clock names on Kirkwood and Dove:
0 = tclk (Internal Bus clock)
1 = cpuclk (CPU0 clock)
2 = l2clk (L2 Cache clock derived from CPU0 clock)
3 = ddrclk (DDR controller clock derived from CPU0 clock)
+The following is a list of provided IDs and clock names on Orion5x:
+ 0 = tclk (Internal Bus clock)
+ 1 = cpuclk (CPU0 clock)
+ 2 = ddrclk (DDR controller clock derived from CPU0 clock)
+
Required properties:
- compatible : shall be one of the following:
"marvell,armada-370-core-clock" - For Armada 370 SoC core clocks
+ "marvell,armada-375-core-clock" - For Armada 375 SoC core clocks
+ "marvell,armada-380-core-clock" - For Armada 380/385 SoC core clocks
"marvell,armada-xp-core-clock" - For Armada XP SoC core clocks
"marvell,dove-core-clock" - for Dove SoC core clocks
"marvell,kirkwood-core-clock" - for Kirkwood SoC (except mv88f6180)
"marvell,mv88f6180-core-clock" - for Kirkwood MV88f6180 SoC
+ "marvell,mv88f5182-core-clock" - for Orion MV88F5182 SoC
+ "marvell,mv88f5281-core-clock" - for Orion MV88F5281 SoC
+ "marvell,mv88f6183-core-clock" - for Orion MV88F6183 SoC
- reg : shall be the register address of the Sample-At-Reset (SAR) register
- #clock-cells : from common clock binding; shall be set to 1
diff --git a/Documentation/devicetree/bindings/clock/mvebu-corediv-clock.txt b/Documentation/devicetree/bindings/clock/mvebu-corediv-clock.txt
new file mode 100644
index 00000000000..520562a7dc2
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/mvebu-corediv-clock.txt
@@ -0,0 +1,22 @@
+* Core Divider Clock bindings for Marvell MVEBU SoCs
+
+The following is a list of provided IDs and clock names on Armada 370/XP:
+ 0 = nand (NAND clock)
+
+Required properties:
+- compatible : must be "marvell,armada-370-corediv-clock",
+ "marvell,armada-375-corediv-clock",
+ "marvell,armada-380-corediv-clock",
+
+- reg : must be the register address of Core Divider control register
+- #clock-cells : from common clock binding; shall be set to 1
+- clocks : must be set to the parent's phandle
+
+Example:
+
+corediv_clk: corediv-clocks@18740 {
+ compatible = "marvell,armada-370-corediv-clock";
+ reg = <0x18740 0xc>;
+ #clock-cells = <1>;
+ clocks = <&pll>;
+};
diff --git a/Documentation/devicetree/bindings/clock/mvebu-gated-clock.txt b/Documentation/devicetree/bindings/clock/mvebu-gated-clock.txt
index cffc93d97f5..76477be742b 100644
--- a/Documentation/devicetree/bindings/clock/mvebu-gated-clock.txt
+++ b/Documentation/devicetree/bindings/clock/mvebu-gated-clock.txt
@@ -1,10 +1,11 @@
-* Gated Clock bindings for Marvell Orion SoCs
+* Gated Clock bindings for Marvell EBU SoCs
-Marvell Dove and Kirkwood allow some peripheral clocks to be gated to save
-some power. The clock consumer should specify the desired clock by having
-the clock ID in its "clocks" phandle cell. The clock ID is directly mapped to
-the corresponding clock gating control bit in HW to ease manual clock lookup
-in datasheet.
+Marvell Armada 370/375/380/385/XP, Dove and Kirkwood allow some
+peripheral clocks to be gated to save some power. The clock consumer
+should specify the desired clock by having the clock ID in its
+"clocks" phandle cell. The clock ID is directly mapped to the
+corresponding clock gating control bit in HW to ease manual clock
+lookup in datasheet.
The following is a list of provided IDs for Armada 370:
ID Clock Peripheral
@@ -22,6 +23,60 @@ ID Clock Peripheral
28 ddr DDR Cntrl
30 sata1 SATA Host 0
+The following is a list of provided IDs for Armada 375:
+ID Clock Peripheral
+-----------------------------------
+2 mu Management Unit
+3 pp Packet Processor
+4 ptp PTP
+5 pex0 PCIe 0 Clock out
+6 pex1 PCIe 1 Clock out
+8 audio Audio Cntrl
+11 nd_clk Nand Flash Cntrl
+14 sata0_link SATA 0 Link
+15 sata0_core SATA 0 Core
+16 usb3 USB3 Host
+17 sdio SDHCI Host
+18 usb USB Host
+19 gop Gigabit Ethernet MAC
+20 sata1_link SATA 1 Link
+21 sata1_core SATA 1 Core
+22 xor0 XOR DMA 0
+23 xor1 XOR DMA 0
+24 copro Coprocessor
+25 tdm Time Division Mplx
+28 crypto0_enc Cryptographic Unit Port 0 Encryption
+29 crypto0_core Cryptographic Unit Port 0 Core
+30 crypto1_enc Cryptographic Unit Port 1 Encryption
+31 crypto1_core Cryptographic Unit Port 1 Core
+
+The following is a list of provided IDs for Armada 380/385:
+ID Clock Peripheral
+-----------------------------------
+0 audio Audio
+2 ge2 Gigabit Ethernet 2
+3 ge1 Gigabit Ethernet 1
+4 ge0 Gigabit Ethernet 0
+5 pex1 PCIe 1
+6 pex2 PCIe 2
+7 pex3 PCIe 3
+8 pex0 PCIe 0
+9 usb3h0 USB3 Host 0
+10 usb3h1 USB3 Host 1
+11 usb3d USB3 Device
+13 bm Buffer Management
+14 crypto0z Cryptographic 0 Z
+15 sata0 SATA 0
+16 crypto1z Cryptographic 1 Z
+17 sdio SDIO
+18 usb2 USB 2
+21 crypto1 Cryptographic 1
+22 xor0 XOR 0
+23 crypto0 Cryptographic 0
+25 tdm Time Division Multiplexing
+28 xor1 XOR 1
+30 sata1 SATA 1
+
The following is a list of provided IDs for Armada XP:
ID Clock Peripheral
-----------------------------------
@@ -94,6 +149,10 @@ ID Clock Peripheral
Required properties:
- compatible : shall be one of the following:
+ "marvell,armada-370-gating-clock" - for Armada 370 SoC clock gating
+ "marvell,armada-375-gating-clock" - for Armada 375 SoC clock gating
+ "marvell,armada-380-gating-clock" - for Armada 380/385 SoC clock gating
+ "marvell,armada-xp-gating-clock" - for Armada XP SoC clock gating
"marvell,dove-gating-clock" - for Dove SoC clock gating
"marvell,kirkwood-gating-clock" - for Kirkwood SoC clock gating
- reg : shall be the register address of the Clock Gating Control register
diff --git a/Documentation/devicetree/bindings/clock/nvidia,tegra114-car.txt b/Documentation/devicetree/bindings/clock/nvidia,tegra114-car.txt
index 0c80c267710..9acea9d9316 100644
--- a/Documentation/devicetree/bindings/clock/nvidia,tegra114-car.txt
+++ b/Documentation/devicetree/bindings/clock/nvidia,tegra114-car.txt
@@ -15,6 +15,9 @@ Required properties :
In clock consumers, this cell represents the clock ID exposed by the
CAR. The assignments may be found in header file
<dt-bindings/clock/tegra114-car.h>.
+- #reset-cells : Should be 1.
+ In clock consumers, this cell represents the bit number in the CAR's
+ array of CLK_RST_CONTROLLER_RST_DEVICES_* registers.
Example SoC include file:
@@ -23,6 +26,7 @@ Example SoC include file:
compatible = "nvidia,tegra114-car";
reg = <0x60006000 0x1000>;
#clock-cells = <1>;
+ #reset-cells = <1>;
};
usb@c5004000 {
diff --git a/Documentation/devicetree/bindings/clock/nvidia,tegra124-car.txt b/Documentation/devicetree/bindings/clock/nvidia,tegra124-car.txt
new file mode 100644
index 00000000000..ded5d6212c8
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/nvidia,tegra124-car.txt
@@ -0,0 +1,63 @@
+NVIDIA Tegra124 Clock And Reset Controller
+
+This binding uses the common clock binding:
+Documentation/devicetree/bindings/clock/clock-bindings.txt
+
+The CAR (Clock And Reset) Controller on Tegra is the HW module responsible
+for muxing and gating Tegra's clocks, and setting their rates.
+
+Required properties :
+- compatible : Should be "nvidia,tegra124-car"
+- reg : Should contain CAR registers location and length
+- clocks : Should contain phandle and clock specifiers for two clocks:
+ the 32 KHz "32k_in", and the board-specific oscillator "osc".
+- #clock-cells : Should be 1.
+ In clock consumers, this cell represents the clock ID exposed by the
+ CAR. The assignments may be found in header file
+ <dt-bindings/clock/tegra124-car.h>.
+- #reset-cells : Should be 1.
+ In clock consumers, this cell represents the bit number in the CAR's
+ array of CLK_RST_CONTROLLER_RST_DEVICES_* registers.
+
+Example SoC include file:
+
+/ {
+ tegra_car: clock {
+ compatible = "nvidia,tegra124-car";
+ reg = <0x60006000 0x1000>;
+ #clock-cells = <1>;
+ #reset-cells = <1>;
+ };
+
+ usb@c5004000 {
+ clocks = <&tegra_car TEGRA124_CLK_USB2>;
+ };
+};
+
+Example board file:
+
+/ {
+ clocks {
+ compatible = "simple-bus";
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ osc: clock@0 {
+ compatible = "fixed-clock";
+ reg = <0>;
+ #clock-cells = <0>;
+ clock-frequency = <112400000>;
+ };
+
+ clk_32k: clock@1 {
+ compatible = "fixed-clock";
+ reg = <1>;
+ #clock-cells = <0>;
+ clock-frequency = <32768>;
+ };
+ };
+
+ &tegra_car {
+ clocks = <&clk_32k> <&osc>;
+ };
+};
diff --git a/Documentation/devicetree/bindings/clock/nvidia,tegra20-car.txt b/Documentation/devicetree/bindings/clock/nvidia,tegra20-car.txt
index fcfed5bf73f..6c5901b503d 100644
--- a/Documentation/devicetree/bindings/clock/nvidia,tegra20-car.txt
+++ b/Documentation/devicetree/bindings/clock/nvidia,tegra20-car.txt
@@ -15,6 +15,9 @@ Required properties :
In clock consumers, this cell represents the clock ID exposed by the
CAR. The assignments may be found in header file
<dt-bindings/clock/tegra20-car.h>.
+- #reset-cells : Should be 1.
+ In clock consumers, this cell represents the bit number in the CAR's
+ array of CLK_RST_CONTROLLER_RST_DEVICES_* registers.
Example SoC include file:
@@ -23,6 +26,7 @@ Example SoC include file:
compatible = "nvidia,tegra20-car";
reg = <0x60006000 0x1000>;
#clock-cells = <1>;
+ #reset-cells = <1>;
};
usb@c5004000 {
diff --git a/Documentation/devicetree/bindings/clock/nvidia,tegra30-car.txt b/Documentation/devicetree/bindings/clock/nvidia,tegra30-car.txt
index 0f714081e98..63618cde12d 100644
--- a/Documentation/devicetree/bindings/clock/nvidia,tegra30-car.txt
+++ b/Documentation/devicetree/bindings/clock/nvidia,tegra30-car.txt
@@ -15,6 +15,9 @@ Required properties :
In clock consumers, this cell represents the clock ID exposed by the
CAR. The assignments may be found in header file
<dt-bindings/clock/tegra30-car.h>.
+- #reset-cells : Should be 1.
+ In clock consumers, this cell represents the bit number in the CAR's
+ array of CLK_RST_CONTROLLER_RST_DEVICES_* registers.
Example SoC include file:
@@ -23,6 +26,7 @@ Example SoC include file:
compatible = "nvidia,tegra30-car";
reg = <0x60006000 0x1000>;
#clock-cells = <1>;
+ #reset-cells = <1>;
};
usb@c5004000 {
diff --git a/Documentation/devicetree/bindings/clock/qcom,gcc.txt b/Documentation/devicetree/bindings/clock/qcom,gcc.txt
new file mode 100644
index 00000000000..9cfcb4f2bc9
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/qcom,gcc.txt
@@ -0,0 +1,24 @@
+Qualcomm Global Clock & Reset Controller Binding
+------------------------------------------------
+
+Required properties :
+- compatible : shall contain only one of the following:
+
+ "qcom,gcc-apq8064"
+ "qcom,gcc-msm8660"
+ "qcom,gcc-msm8960"
+ "qcom,gcc-msm8974"
+ "qcom,gcc-msm8974pro"
+ "qcom,gcc-msm8974pro-ac"
+
+- reg : shall contain base register location and length
+- #clock-cells : shall contain 1
+- #reset-cells : shall contain 1
+
+Example:
+ clock-controller@900000 {
+ compatible = "qcom,gcc-msm8960";
+ reg = <0x900000 0x4000>;
+ #clock-cells = <1>;
+ #reset-cells = <1>;
+ };
diff --git a/Documentation/devicetree/bindings/clock/qcom,mmcc.txt b/Documentation/devicetree/bindings/clock/qcom,mmcc.txt
new file mode 100644
index 00000000000..d572e9964c5
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/qcom,mmcc.txt
@@ -0,0 +1,21 @@
+Qualcomm Multimedia Clock & Reset Controller Binding
+----------------------------------------------------
+
+Required properties :
+- compatible : shall contain only one of the following:
+
+ "qcom,mmcc-msm8660"
+ "qcom,mmcc-msm8960"
+ "qcom,mmcc-msm8974"
+
+- reg : shall contain base register location and length
+- #clock-cells : shall contain 1
+- #reset-cells : shall contain 1
+
+Example:
+ clock-controller@4000000 {
+ compatible = "qcom,mmcc-msm8960";
+ reg = <0x4000000 0x1000>;
+ #clock-cells = <1>;
+ #reset-cells = <1>;
+ };
diff --git a/Documentation/devicetree/bindings/clock/qoriq-clock.txt b/Documentation/devicetree/bindings/clock/qoriq-clock.txt
new file mode 100644
index 00000000000..5666812fc42
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/qoriq-clock.txt
@@ -0,0 +1,142 @@
+* Clock Block on Freescale CoreNet Platforms
+
+Freescale CoreNet chips take primary clocking input from the external
+SYSCLK signal. The SYSCLK input (frequency) is multiplied using
+multiple phase locked loops (PLL) to create a variety of frequencies
+which can then be passed to a variety of internal logic, including
+cores and peripheral IP blocks.
+Please refer to the Reference Manual for details.
+
+All references to "1.0" and "2.0" refer to the QorIQ chassis version to
+which the chip complies.
+
+Chassis Version Example Chips
+--------------- -------------
+1.0 p4080, p5020, p5040
+2.0 t4240, b4860, t1040
+
+1. Clock Block Binding
+
+Required properties:
+- compatible: Should contain a specific clock block compatible string
+ and a single chassis clock compatible string.
+ Clock block strings include, but not limited to, one of the:
+ * "fsl,p2041-clockgen"
+ * "fsl,p3041-clockgen"
+ * "fsl,p4080-clockgen"
+ * "fsl,p5020-clockgen"
+ * "fsl,p5040-clockgen"
+ * "fsl,t4240-clockgen"
+ * "fsl,b4420-clockgen"
+ * "fsl,b4860-clockgen"
+ Chassis clock strings include:
+ * "fsl,qoriq-clockgen-1.0": for chassis 1.0 clocks
+ * "fsl,qoriq-clockgen-2.0": for chassis 2.0 clocks
+- reg: Describes the address of the device's resources within the
+ address space defined by its parent bus, and resource zero
+ represents the clock register set
+- clock-frequency: Input system clock frequency
+
+Recommended properties:
+- ranges: Allows valid translation between child's address space and
+ parent's. Must be present if the device has sub-nodes.
+- #address-cells: Specifies the number of cells used to represent
+ physical base addresses. Must be present if the device has
+ sub-nodes and set to 1 if present
+- #size-cells: Specifies the number of cells used to represent
+ the size of an address. Must be present if the device has
+ sub-nodes and set to 1 if present
+
+2. Clock Provider/Consumer Binding
+
+Most of the bindings are from the common clock binding[1].
+ [1] Documentation/devicetree/bindings/clock/clock-bindings.txt
+
+Required properties:
+- compatible : Should include one of the following:
+ * "fsl,qoriq-core-pll-1.0" for core PLL clocks (v1.0)
+ * "fsl,qoriq-core-pll-2.0" for core PLL clocks (v2.0)
+ * "fsl,qoriq-core-mux-1.0" for core mux clocks (v1.0)
+ * "fsl,qoriq-core-mux-2.0" for core mux clocks (v2.0)
+ * "fsl,qoriq-sysclk-1.0": for input system clock (v1.0).
+ It takes parent's clock-frequency as its clock.
+ * "fsl,qoriq-sysclk-2.0": for input system clock (v2.0).
+ It takes parent's clock-frequency as its clock.
+- #clock-cells: From common clock binding. The number of cells in a
+ clock-specifier. Should be <0> for "fsl,qoriq-sysclk-[1,2].0"
+ clocks, or <1> for "fsl,qoriq-core-pll-[1,2].0" clocks.
+ For "fsl,qoriq-core-pll-[1,2].0" clocks, the single
+ clock-specifier cell may take the following values:
+ * 0 - equal to the PLL frequency
+ * 1 - equal to the PLL frequency divided by 2
+ * 2 - equal to the PLL frequency divided by 4
+
+Recommended properties:
+- clocks: Should be the phandle of input parent clock
+- clock-names: From common clock binding, indicates the clock name
+- clock-output-names: From common clock binding, indicates the names of
+ output clocks
+- reg: Should be the offset and length of clock block base address.
+ The length should be 4.
+
+Example for clock block and clock provider:
+/ {
+ clockgen: global-utilities@e1000 {
+ compatible = "fsl,p5020-clockgen", "fsl,qoriq-clockgen-1.0";
+ ranges = <0x0 0xe1000 0x1000>;
+ clock-frequency = <133333333>;
+ reg = <0xe1000 0x1000>;
+ #address-cells = <1>;
+ #size-cells = <1>;
+
+ sysclk: sysclk {
+ #clock-cells = <0>;
+ compatible = "fsl,qoriq-sysclk-1.0";
+ clock-output-names = "sysclk";
+ };
+
+ pll0: pll0@800 {
+ #clock-cells = <1>;
+ reg = <0x800 0x4>;
+ compatible = "fsl,qoriq-core-pll-1.0";
+ clocks = <&sysclk>;
+ clock-output-names = "pll0", "pll0-div2";
+ };
+
+ pll1: pll1@820 {
+ #clock-cells = <1>;
+ reg = <0x820 0x4>;
+ compatible = "fsl,qoriq-core-pll-1.0";
+ clocks = <&sysclk>;
+ clock-output-names = "pll1", "pll1-div2";
+ };
+
+ mux0: mux0@0 {
+ #clock-cells = <0>;
+ reg = <0x0 0x4>;
+ compatible = "fsl,qoriq-core-mux-1.0";
+ clocks = <&pll0 0>, <&pll0 1>, <&pll1 0>, <&pll1 1>;
+ clock-names = "pll0", "pll0-div2", "pll1", "pll1-div2";
+ clock-output-names = "cmux0";
+ };
+
+ mux1: mux1@20 {
+ #clock-cells = <0>;
+ reg = <0x20 0x4>;
+ compatible = "fsl,qoriq-core-mux-1.0";
+ clocks = <&pll0 0>, <&pll0 1>, <&pll1 0>, <&pll1 1>;
+ clock-names = "pll0", "pll0-div2", "pll1", "pll1-div2";
+ clock-output-names = "cmux1";
+ };
+ };
+ }
+
+Example for clock consumer:
+
+/ {
+ cpu0: PowerPC,e5500@0 {
+ ...
+ clocks = <&mux0>;
+ ...
+ };
+ }
diff --git a/Documentation/devicetree/bindings/clock/renesas,cpg-div6-clocks.txt b/Documentation/devicetree/bindings/clock/renesas,cpg-div6-clocks.txt
new file mode 100644
index 00000000000..952e373178d
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/renesas,cpg-div6-clocks.txt
@@ -0,0 +1,28 @@
+* Renesas CPG DIV6 Clock
+
+The CPG DIV6 clocks are variable factor clocks provided by the Clock Pulse
+Generator (CPG). They clock input is divided by a configurable factor from 1
+to 64.
+
+Required Properties:
+
+ - compatible: Must be one of the following
+ - "renesas,r8a7790-div6-clock" for R8A7790 (R-Car H2) DIV6 clocks
+ - "renesas,r8a7791-div6-clock" for R8A7791 (R-Car M2) DIV6 clocks
+ - "renesas,cpg-div6-clock" for generic DIV6 clocks
+ - reg: Base address and length of the memory resource used by the DIV6 clock
+ - clocks: Reference to the parent clock
+ - #clock-cells: Must be 0
+ - clock-output-names: The name of the clock as a free-form string
+
+
+Example
+-------
+
+ sd2_clk: sd2_clk@e6150078 {
+ compatible = "renesas,r8a7790-div6-clock", "renesas,cpg-div6-clock";
+ reg = <0 0xe6150078 0 4>;
+ clocks = <&pll1_div2_clk>;
+ #clock-cells = <0>;
+ clock-output-names = "sd2";
+ };
diff --git a/Documentation/devicetree/bindings/clock/renesas,cpg-mstp-clocks.txt b/Documentation/devicetree/bindings/clock/renesas,cpg-mstp-clocks.txt
new file mode 100644
index 00000000000..8a92b5fb354
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/renesas,cpg-mstp-clocks.txt
@@ -0,0 +1,53 @@
+* Renesas CPG Module Stop (MSTP) Clocks
+
+The CPG can gate SoC device clocks. The gates are organized in groups of up to
+32 gates.
+
+This device tree binding describes a single 32 gate clocks group per node.
+Clocks are referenced by user nodes by the MSTP node phandle and the clock
+index in the group, from 0 to 31.
+
+Required Properties:
+
+ - compatible: Must be one of the following
+ - "renesas,r7s72100-mstp-clocks" for R7S72100 (RZ) MSTP gate clocks
+ - "renesas,r8a7779-mstp-clocks" for R8A7779 (R-Car H1) MSTP gate clocks
+ - "renesas,r8a7790-mstp-clocks" for R8A7790 (R-Car H2) MSTP gate clocks
+ - "renesas,r8a7791-mstp-clocks" for R8A7791 (R-Car M2) MSTP gate clocks
+ - "renesas,cpg-mstp-clock" for generic MSTP gate clocks
+ - reg: Base address and length of the I/O mapped registers used by the MSTP
+ clocks. The first register is the clock control register and is mandatory.
+ The second register is the clock status register and is optional when not
+ implemented in hardware.
+ - clocks: Reference to the parent clocks, one per output clock. The parents
+ must appear in the same order as the output clocks.
+ - #clock-cells: Must be 1
+ - clock-output-names: The name of the clocks as free-form strings
+ - renesas,clock-indices: Indices of the gate clocks into the group (0 to 31)
+
+The clocks, clock-output-names and renesas,clock-indices properties contain one
+entry per gate clock. The MSTP groups are sparsely populated. Unimplemented
+gate clocks must not be declared.
+
+
+Example
+-------
+
+ #include <dt-bindings/clock/r8a7790-clock.h>
+
+ mstp3_clks: mstp3_clks@e615013c {
+ compatible = "renesas,r8a7790-mstp-clocks", "renesas,cpg-mstp-clocks";
+ reg = <0 0xe615013c 0 4>, <0 0xe6150048 0 4>;
+ clocks = <&cp_clk>, <&mmc1_clk>, <&sd3_clk>, <&sd2_clk>,
+ <&cpg_clocks R8A7790_CLK_SD1>, <&cpg_clocks R8A7790_CLK_SD0>,
+ <&mmc0_clk>;
+ #clock-cells = <1>;
+ clock-output-names =
+ "tpu0", "mmcif1", "sdhi3", "sdhi2",
+ "sdhi1", "sdhi0", "mmcif0";
+ clock-indices = <
+ R8A7790_CLK_TPU0 R8A7790_CLK_MMCIF1 R8A7790_CLK_SDHI3
+ R8A7790_CLK_SDHI2 R8A7790_CLK_SDHI1 R8A7790_CLK_SDHI0
+ R8A7790_CLK_MMCIF0
+ >;
+ };
diff --git a/Documentation/devicetree/bindings/clock/renesas,r8a7740-cpg-clocks.txt b/Documentation/devicetree/bindings/clock/renesas,r8a7740-cpg-clocks.txt
new file mode 100644
index 00000000000..2c03302f86e
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/renesas,r8a7740-cpg-clocks.txt
@@ -0,0 +1,41 @@
+These bindings should be considered EXPERIMENTAL for now.
+
+* Renesas R8A7740 Clock Pulse Generator (CPG)
+
+The CPG generates core clocks for the R8A7740 SoC. It includes three PLLs
+and several fixed ratio and variable ratio dividers.
+
+Required Properties:
+
+ - compatible: Must be "renesas,r8a7740-cpg-clocks"
+
+ - reg: Base address and length of the memory resource used by the CPG
+
+ - clocks: Reference to the three parent clocks
+ - #clock-cells: Must be 1
+ - clock-output-names: The names of the clocks. Supported clocks are
+ "system", "pllc0", "pllc1", "pllc2", "r", "usb24s", "i", "zg", "b",
+ "m1", "hp", "hpp", "usbp", "s", "zb", "m3", and "cp".
+
+ - renesas,mode: board-specific settings of the MD_CK* bits
+
+
+Example
+-------
+
+cpg_clocks: cpg_clocks@e6150000 {
+ compatible = "renesas,r8a7740-cpg-clocks";
+ reg = <0xe6150000 0x10000>;
+ clocks = <&extal1_clk>, <&extal2_clk>, <&extalr_clk>;
+ #clock-cells = <1>;
+ clock-output-names = "system", "pllc0", "pllc1",
+ "pllc2", "r",
+ "usb24s",
+ "i", "zg", "b", "m1", "hp",
+ "hpp", "usbp", "s", "zb", "m3",
+ "cp";
+};
+
+&cpg_clocks {
+ renesas,mode = <0x05>;
+};
diff --git a/Documentation/devicetree/bindings/clock/renesas,r8a7779-cpg-clocks.txt b/Documentation/devicetree/bindings/clock/renesas,r8a7779-cpg-clocks.txt
new file mode 100644
index 00000000000..ed3c8cb12f4
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/renesas,r8a7779-cpg-clocks.txt
@@ -0,0 +1,27 @@
+* Renesas R8A7779 Clock Pulse Generator (CPG)
+
+The CPG generates core clocks for the R8A7779. It includes one PLL and
+several fixed ratio dividers
+
+Required Properties:
+
+ - compatible: Must be "renesas,r8a7779-cpg-clocks"
+ - reg: Base address and length of the memory resource used by the CPG
+
+ - clocks: Reference to the parent clock
+ - #clock-cells: Must be 1
+ - clock-output-names: The names of the clocks. Supported clocks are "plla",
+ "z", "zs", "s", "s1", "p", "b", "out".
+
+
+Example
+-------
+
+ cpg_clocks: cpg_clocks@ffc80000 {
+ compatible = "renesas,r8a7779-cpg-clocks";
+ reg = <0 0xffc80000 0 0x30>;
+ clocks = <&extal_clk>;
+ #clock-cells = <1>;
+ clock-output-names = "plla", "z", "zs", "s", "s1", "p",
+ "b", "out";
+ };
diff --git a/Documentation/devicetree/bindings/clock/renesas,rcar-gen2-cpg-clocks.txt b/Documentation/devicetree/bindings/clock/renesas,rcar-gen2-cpg-clocks.txt
new file mode 100644
index 00000000000..7b41c2fe54d
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/renesas,rcar-gen2-cpg-clocks.txt
@@ -0,0 +1,32 @@
+* Renesas R-Car Gen2 Clock Pulse Generator (CPG)
+
+The CPG generates core clocks for the R-Car Gen2 SoCs. It includes three PLLs
+and several fixed ratio dividers.
+
+Required Properties:
+
+ - compatible: Must be one of
+ - "renesas,r8a7790-cpg-clocks" for the r8a7790 CPG
+ - "renesas,r8a7791-cpg-clocks" for the r8a7791 CPG
+ - "renesas,rcar-gen2-cpg-clocks" for the generic R-Car Gen2 CPG
+
+ - reg: Base address and length of the memory resource used by the CPG
+
+ - clocks: Reference to the parent clock
+ - #clock-cells: Must be 1
+ - clock-output-names: The names of the clocks. Supported clocks are "main",
+ "pll0", "pll1", "pll3", "lb", "qspi", "sdh", "sd0", "sd1" and "z"
+
+
+Example
+-------
+
+ cpg_clocks: cpg_clocks@e6150000 {
+ compatible = "renesas,r8a7790-cpg-clocks",
+ "renesas,rcar-gen2-cpg-clocks";
+ reg = <0 0xe6150000 0 0x1000>;
+ clocks = <&extal_clk>;
+ #clock-cells = <1>;
+ clock-output-names = "main", "pll0, "pll1", "pll3",
+ "lb", "qspi", "sdh", "sd0", "sd1", "z";
+ };
diff --git a/Documentation/devicetree/bindings/clock/renesas,rz-cpg-clocks.txt b/Documentation/devicetree/bindings/clock/renesas,rz-cpg-clocks.txt
new file mode 100644
index 00000000000..98a25749252
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/renesas,rz-cpg-clocks.txt
@@ -0,0 +1,29 @@
+* Renesas RZ Clock Pulse Generator (CPG)
+
+The CPG generates core clocks for the RZ SoCs. It includes the PLL, variable
+CPU and GPU clocks, and several fixed ratio dividers.
+
+Required Properties:
+
+ - compatible: Must be one of
+ - "renesas,r7s72100-cpg-clocks" for the r7s72100 CPG
+ - "renesas,rz-cpg-clocks" for the generic RZ CPG
+ - reg: Base address and length of the memory resource used by the CPG
+ - clocks: References to possible parent clocks. Order must match clock modes
+ in the datasheet. For the r7s72100, this is extal, usb_x1.
+ - #clock-cells: Must be 1
+ - clock-output-names: The names of the clocks. Supported clocks are "pll",
+ "i", and "g"
+
+
+Example
+-------
+
+ cpg_clocks: cpg_clocks@fcfe0000 {
+ #clock-cells = <1>;
+ compatible = "renesas,r7s72100-cpg-clocks",
+ "renesas,rz-cpg-clocks";
+ reg = <0xfcfe0000 0x18>;
+ clocks = <&extal_clk>, <&usb_x1_clk>;
+ clock-output-names = "pll", "i", "g";
+ };
diff --git a/Documentation/devicetree/bindings/clock/samsung,s3c2410-clock.txt b/Documentation/devicetree/bindings/clock/samsung,s3c2410-clock.txt
new file mode 100644
index 00000000000..822505e715a
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/samsung,s3c2410-clock.txt
@@ -0,0 +1,50 @@
+* Samsung S3C2410 Clock Controller
+
+The S3C2410 clock controller generates and supplies clock to various controllers
+within the SoC. The clock binding described here is applicable to the s3c2410,
+s3c2440 and s3c2442 SoCs in the s3c24x family.
+
+Required Properties:
+
+- compatible: should be one of the following.
+ - "samsung,s3c2410-clock" - controller compatible with S3C2410 SoC.
+ - "samsung,s3c2440-clock" - controller compatible with S3C2440 SoC.
+ - "samsung,s3c2442-clock" - controller compatible with S3C2442 SoC.
+- reg: physical base address of the controller and length of memory mapped
+ region.
+- #clock-cells: should be 1.
+
+Each clock is assigned an identifier and client nodes can use this identifier
+to specify the clock which they consume. Some of the clocks are available only
+on a particular SoC.
+
+All available clocks are defined as preprocessor macros in
+dt-bindings/clock/s3c2410.h header and can be used in device
+tree sources.
+
+External clocks:
+
+The xti clock used as input for the plls is generated outside the SoC. It is
+expected that is are defined using standard clock bindings with a
+clock-output-names value of "xti".
+
+Example: Clock controller node:
+
+ clocks: clock-controller@4c000000 {
+ compatible = "samsung,s3c2410-clock";
+ reg = <0x4c000000 0x20>;
+ #clock-cells = <1>;
+ };
+
+Example: UART controller node that consumes the clock generated by the clock
+ controller (refer to the standard clock bindings for information about
+ "clocks" and "clock-names" properties):
+
+ serial@50004000 {
+ compatible = "samsung,s3c2440-uart";
+ reg = <0x50004000 0x4000>;
+ interrupts = <1 23 3 4>, <1 23 4 4>;
+ clock-names = "uart", "clk_uart_baud2";
+ clocks = <&clocks PCLK_UART0>, <&clocks PCLK_UART0>;
+ status = "disabled";
+ };
diff --git a/Documentation/devicetree/bindings/clock/samsung,s3c2412-clock.txt b/Documentation/devicetree/bindings/clock/samsung,s3c2412-clock.txt
new file mode 100644
index 00000000000..2b430960ba4
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/samsung,s3c2412-clock.txt
@@ -0,0 +1,50 @@
+* Samsung S3C2412 Clock Controller
+
+The S3C2412 clock controller generates and supplies clock to various controllers
+within the SoC. The clock binding described here is applicable to the s3c2412
+and s3c2413 SoCs in the s3c24x family.
+
+Required Properties:
+
+- compatible: should be "samsung,s3c2412-clock"
+- reg: physical base address of the controller and length of memory mapped
+ region.
+- #clock-cells: should be 1.
+
+Each clock is assigned an identifier and client nodes can use this identifier
+to specify the clock which they consume. Some of the clocks are available only
+on a particular SoC.
+
+All available clocks are defined as preprocessor macros in
+dt-bindings/clock/s3c2412.h header and can be used in device
+tree sources.
+
+External clocks:
+
+There are several clocks that are generated outside the SoC. It is expected
+that they are defined using standard clock bindings with following
+clock-output-names:
+ - "xti" - crystal input - required,
+ - "ext" - external clock source - optional,
+
+Example: Clock controller node:
+
+ clocks: clock-controller@4c000000 {
+ compatible = "samsung,s3c2412-clock";
+ reg = <0x4c000000 0x20>;
+ #clock-cells = <1>;
+ };
+
+Example: UART controller node that consumes the clock generated by the clock
+ controller (refer to the standard clock bindings for information about
+ "clocks" and "clock-names" properties):
+
+ serial@50004000 {
+ compatible = "samsung,s3c2412-uart";
+ reg = <0x50004000 0x4000>;
+ interrupts = <1 23 3 4>, <1 23 4 4>;
+ clock-names = "uart", "clk_uart_baud2", "clk_uart_baud3";
+ clocks = <&clocks PCLK_UART0>, <&clocks PCLK_UART0>,
+ <&clocks SCLK_UART>;
+ status = "disabled";
+ };
diff --git a/Documentation/devicetree/bindings/clock/samsung,s3c2443-clock.txt b/Documentation/devicetree/bindings/clock/samsung,s3c2443-clock.txt
new file mode 100644
index 00000000000..e67bb05478a
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/samsung,s3c2443-clock.txt
@@ -0,0 +1,56 @@
+* Samsung S3C2443 Clock Controller
+
+The S3C2443 clock controller generates and supplies clock to various controllers
+within the SoC. The clock binding described here is applicable to all SoCs in
+the s3c24x family starting with the s3c2443.
+
+Required Properties:
+
+- compatible: should be one of the following.
+ - "samsung,s3c2416-clock" - controller compatible with S3C2416 SoC.
+ - "samsung,s3c2443-clock" - controller compatible with S3C2443 SoC.
+ - "samsung,s3c2450-clock" - controller compatible with S3C2450 SoC.
+- reg: physical base address of the controller and length of memory mapped
+ region.
+- #clock-cells: should be 1.
+
+Each clock is assigned an identifier and client nodes can use this identifier
+to specify the clock which they consume. Some of the clocks are available only
+on a particular SoC.
+
+All available clocks are defined as preprocessor macros in
+dt-bindings/clock/s3c2443.h header and can be used in device
+tree sources.
+
+External clocks:
+
+There are several clocks that are generated outside the SoC. It is expected
+that they are defined using standard clock bindings with following
+clock-output-names:
+ - "xti" - crystal input - required,
+ - "ext" - external clock source - optional,
+ - "ext_i2s" - external I2S clock - optional,
+ - "ext_uart" - external uart clock - optional,
+
+Example: Clock controller node:
+
+ clocks: clock-controller@4c000000 {
+ compatible = "samsung,s3c2416-clock";
+ reg = <0x4c000000 0x40>;
+ #clock-cells = <1>;
+ };
+
+Example: UART controller node that consumes the clock generated by the clock
+ controller (refer to the standard clock bindings for information about
+ "clocks" and "clock-names" properties):
+
+ serial@50004000 {
+ compatible = "samsung,s3c2440-uart";
+ reg = <0x50004000 0x4000>;
+ interrupts = <1 23 3 4>, <1 23 4 4>;
+ clock-names = "uart", "clk_uart_baud2",
+ "clk_uart_baud3";
+ clocks = <&clocks PCLK_UART0>, <&clocks PCLK_UART0>,
+ <&clocks SCLK_UART>;
+ status = "disabled";
+ };
diff --git a/Documentation/devicetree/bindings/clock/silabs,si570.txt b/Documentation/devicetree/bindings/clock/silabs,si570.txt
new file mode 100644
index 00000000000..c09f21e1d98
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/silabs,si570.txt
@@ -0,0 +1,39 @@
+Binding for Silicon Labs 570, 571, 598 and 599 programmable
+I2C clock generators.
+
+Reference
+This binding uses the common clock binding[1]. Details about the devices can be
+found in the data sheets[2][3].
+
+[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
+[2] Si570/571 Data Sheet
+ http://www.silabs.com/Support%20Documents/TechnicalDocs/si570.pdf
+[3] Si598/599 Data Sheet
+ http://www.silabs.com/Support%20Documents/TechnicalDocs/si598-99.pdf
+
+Required properties:
+ - compatible: Shall be one of "silabs,si570", "silabs,si571",
+ "silabs,si598", "silabs,si599"
+ - reg: I2C device address.
+ - #clock-cells: From common clock bindings: Shall be 0.
+ - factory-fout: Factory set default frequency. This frequency is part specific.
+ The correct frequency for the part used has to be provided in
+ order to generate the correct output frequencies. For more
+ details, please refer to the data sheet.
+ - temperature-stability: Temperature stability of the device in PPM. Should be
+ one of: 7, 20, 50 or 100.
+
+Optional properties:
+ - clock-output-names: From common clock bindings. Recommended to be "si570".
+ - clock-frequency: Output frequency to generate. This defines the output
+ frequency set during boot. It can be reprogrammed during
+ runtime through the common clock framework.
+
+Example:
+ si570: clock-generator@5d {
+ #clock-cells = <0>;
+ compatible = "silabs,si570";
+ temperature-stability = <50>;
+ reg = <0x5d>;
+ factory-fout = <156250000>;
+ };
diff --git a/Documentation/devicetree/bindings/clock/st/st,clkgen-divmux.txt b/Documentation/devicetree/bindings/clock/st/st,clkgen-divmux.txt
new file mode 100644
index 00000000000..ae56315fcec
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/st/st,clkgen-divmux.txt
@@ -0,0 +1,49 @@
+Binding for a ST divider and multiplexer clock driver.
+
+This binding uses the common clock binding[1].
+Base address is located to the parent node. See clock binding[2]
+
+[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
+[2] Documentation/devicetree/bindings/clock/st/st,clkgen.txt
+
+Required properties:
+
+- compatible : shall be:
+ "st,clkgena-divmux-c65-hs", "st,clkgena-divmux"
+ "st,clkgena-divmux-c65-ls", "st,clkgena-divmux"
+ "st,clkgena-divmux-c32-odf0", "st,clkgena-divmux"
+ "st,clkgena-divmux-c32-odf1", "st,clkgena-divmux"
+ "st,clkgena-divmux-c32-odf2", "st,clkgena-divmux"
+ "st,clkgena-divmux-c32-odf3", "st,clkgena-divmux"
+
+- #clock-cells : From common clock binding; shall be set to 1.
+
+- clocks : From common clock binding
+
+- clock-output-names : From common clock binding.
+
+Example:
+
+ clockgenA@fd345000 {
+ reg = <0xfd345000 0xb50>;
+
+ CLK_M_A1_DIV1: CLK_M_A1_DIV1 {
+ #clock-cells = <1>;
+ compatible = "st,clkgena-divmux-c32-odf1",
+ "st,clkgena-divmux";
+
+ clocks = <&CLK_M_A1_OSC_PREDIV>,
+ <&CLK_M_A1_PLL0 1>, /* PLL0 PHI1 */
+ <&CLK_M_A1_PLL1 1>; /* PLL1 PHI1 */
+
+ clock-output-names = "CLK_M_RX_ICN_TS",
+ "CLK_M_RX_ICN_VDP_0",
+ "", /* Unused */
+ "CLK_M_PRV_T1_BUS",
+ "CLK_M_ICN_REG_12",
+ "CLK_M_ICN_REG_10",
+ "", /* Unused */
+ "CLK_M_ICN_ST231";
+ };
+ };
+
diff --git a/Documentation/devicetree/bindings/clock/st/st,clkgen-mux.txt b/Documentation/devicetree/bindings/clock/st/st,clkgen-mux.txt
new file mode 100644
index 00000000000..943e0808e21
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/st/st,clkgen-mux.txt
@@ -0,0 +1,36 @@
+Binding for a ST multiplexed clock driver.
+
+This binding supports only simple indexed multiplexers, it does not
+support table based parent index to hardware value translations.
+
+This binding uses the common clock binding[1].
+
+[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
+
+Required properties:
+
+- compatible : shall be:
+ "st,stih416-clkgenc-vcc-hd", "st,clkgen-mux"
+ "st,stih416-clkgenf-vcc-fvdp", "st,clkgen-mux"
+ "st,stih416-clkgenf-vcc-hva", "st,clkgen-mux"
+ "st,stih416-clkgenf-vcc-hd", "st,clkgen-mux"
+ "st,stih416-clkgenf-vcc-sd", "st,clkgen-mux"
+ "st,stih415-clkgen-a9-mux", "st,clkgen-mux"
+ "st,stih416-clkgen-a9-mux", "st,clkgen-mux"
+
+
+- #clock-cells : from common clock binding; shall be set to 0.
+
+- reg : A Base address and length of the register set.
+
+- clocks : from common clock binding
+
+Example:
+
+ CLK_M_HVA: CLK_M_HVA {
+ #clock-cells = <0>;
+ compatible = "st,stih416-clkgenf-vcc-hva", "st,clkgen-mux";
+ reg = <0xfd690868 4>;
+
+ clocks = <&CLOCKGEN_F 1>, <&CLK_M_A1_DIV0 3>;
+ };
diff --git a/Documentation/devicetree/bindings/clock/st/st,clkgen-pll.txt b/Documentation/devicetree/bindings/clock/st/st,clkgen-pll.txt
new file mode 100644
index 00000000000..81eb3855ab9
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/st/st,clkgen-pll.txt
@@ -0,0 +1,48 @@
+Binding for a ST pll clock driver.
+
+This binding uses the common clock binding[1].
+Base address is located to the parent node. See clock binding[2]
+
+[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
+[2] Documentation/devicetree/bindings/clock/st/st,clkgen.txt
+
+Required properties:
+
+- compatible : shall be:
+ "st,clkgena-prediv-c65", "st,clkgena-prediv"
+ "st,clkgena-prediv-c32", "st,clkgena-prediv"
+
+ "st,clkgena-plls-c65"
+ "st,plls-c32-a1x-0", "st,clkgen-plls-c32"
+ "st,plls-c32-a1x-1", "st,clkgen-plls-c32"
+ "st,stih415-plls-c32-a9", "st,clkgen-plls-c32"
+ "st,stih415-plls-c32-ddr", "st,clkgen-plls-c32"
+ "st,stih416-plls-c32-a9", "st,clkgen-plls-c32"
+ "st,stih416-plls-c32-ddr", "st,clkgen-plls-c32"
+
+ "st,stih415-gpu-pll-c32", "st,clkgengpu-pll-c32"
+ "st,stih416-gpu-pll-c32", "st,clkgengpu-pll-c32"
+
+
+- #clock-cells : From common clock binding; shall be set to 1.
+
+- clocks : From common clock binding
+
+- clock-output-names : From common clock binding.
+
+Example:
+
+ clockgenA@fee62000 {
+ reg = <0xfee62000 0xb48>;
+
+ CLK_S_A0_PLL: CLK_S_A0_PLL {
+ #clock-cells = <1>;
+ compatible = "st,clkgena-plls-c65";
+
+ clocks = <&CLK_SYSIN>;
+
+ clock-output-names = "CLK_S_A0_PLL0_HS",
+ "CLK_S_A0_PLL0_LS",
+ "CLK_S_A0_PLL1";
+ };
+ };
diff --git a/Documentation/devicetree/bindings/clock/st/st,clkgen-prediv.txt b/Documentation/devicetree/bindings/clock/st/st,clkgen-prediv.txt
new file mode 100644
index 00000000000..566c9d79ed3
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/st/st,clkgen-prediv.txt
@@ -0,0 +1,36 @@
+Binding for a ST pre-divider clock driver.
+
+This binding uses the common clock binding[1].
+Base address is located to the parent node. See clock binding[2]
+
+[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
+[2] Documentation/devicetree/bindings/clock/st/st,clkgen.txt
+
+Required properties:
+
+- compatible : shall be:
+ "st,clkgena-prediv-c65", "st,clkgena-prediv"
+ "st,clkgena-prediv-c32", "st,clkgena-prediv"
+
+- #clock-cells : From common clock binding; shall be set to 0.
+
+- clocks : From common clock binding
+
+- clock-output-names : From common clock binding.
+
+Example:
+
+ clockgenA@fd345000 {
+ reg = <0xfd345000 0xb50>;
+
+ CLK_M_A2_OSC_PREDIV: CLK_M_A2_OSC_PREDIV {
+ #clock-cells = <0>;
+ compatible = "st,clkgena-prediv-c32",
+ "st,clkgena-prediv";
+
+ clocks = <&CLK_SYSIN>;
+
+ clock-output-names = "CLK_M_A2_OSC_PREDIV";
+ };
+ };
+
diff --git a/Documentation/devicetree/bindings/clock/st/st,clkgen-vcc.txt b/Documentation/devicetree/bindings/clock/st/st,clkgen-vcc.txt
new file mode 100644
index 00000000000..4e3ff28b04c
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/st/st,clkgen-vcc.txt
@@ -0,0 +1,53 @@
+Binding for a type of STMicroelectronics clock crossbar (VCC).
+
+The crossbar can take up to 4 input clocks and control up to 16
+output clocks. Not all inputs or outputs have to be in use in a
+particular instantiation. Each output can be individually enabled,
+select any of the input clocks and apply a divide (by 1,2,4 or 8) to
+that selected clock.
+
+This binding uses the common clock binding[1].
+
+[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
+
+Required properties:
+
+- compatible : shall be:
+ "st,stih416-clkgenc", "st,vcc"
+ "st,stih416-clkgenf", "st,vcc"
+
+- #clock-cells : from common clock binding; shall be set to 1.
+
+- reg : A Base address and length of the register set.
+
+- clocks : from common clock binding
+
+- clock-output-names : From common clock binding. The block has 16
+ clock outputs but not all of them in a specific instance
+ have to be used in the SoC. If a clock name is left as
+ an empty string then no clock will be created for the
+ output associated with that string index. If fewer than
+ 16 strings are provided then no clocks will be created
+ for the remaining outputs.
+
+Example:
+
+ CLOCKGEN_C_VCC: CLOCKGEN_C_VCC {
+ #clock-cells = <1>;
+ compatible = "st,stih416-clkgenc", "st,clkgen-vcc";
+ reg = <0xfe8308ac 12>;
+
+ clocks = <&CLK_S_VCC_HD>, <&CLOCKGEN_C 1>,
+ <&CLK_S_TMDS_FROMPHY>, <&CLOCKGEN_C 2>;
+
+ clock-output-names =
+ "CLK_S_PIX_HDMI", "CLK_S_PIX_DVO",
+ "CLK_S_OUT_DVO", "CLK_S_PIX_HD",
+ "CLK_S_HDDAC", "CLK_S_DENC",
+ "CLK_S_SDDAC", "CLK_S_PIX_MAIN",
+ "CLK_S_PIX_AUX", "CLK_S_STFE_FRC_0",
+ "CLK_S_REF_MCRU", "CLK_S_SLAVE_MCRU",
+ "CLK_S_TMDS_HDMI", "CLK_S_HDMI_REJECT_PLL",
+ "CLK_S_THSENS";
+ };
+
diff --git a/Documentation/devicetree/bindings/clock/st/st,clkgen.txt b/Documentation/devicetree/bindings/clock/st/st,clkgen.txt
new file mode 100644
index 00000000000..49ec5ae18b5
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/st/st,clkgen.txt
@@ -0,0 +1,83 @@
+Binding for a Clockgen hardware block found on
+certain STMicroelectronics consumer electronics SoC devices.
+
+A Clockgen node can contain pll, diviser or multiplexer nodes.
+
+We will find only the base address of the Clockgen, this base
+address is common of all subnode.
+
+ clockgen_node {
+ reg = <>;
+
+ pll_node {
+ ...
+ };
+
+ prediv_node {
+ ...
+ };
+
+ divmux_node {
+ ...
+ };
+
+ quadfs_node {
+ ...
+ };
+ ...
+ };
+
+This binding uses the common clock binding[1].
+Each subnode should use the binding discribe in [2]..[4]
+
+[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
+[2] Documentation/devicetree/bindings/clock/st,quadfs.txt
+[3] Documentation/devicetree/bindings/clock/st,quadfs.txt
+[4] Documentation/devicetree/bindings/clock/st,quadfs.txt
+
+Required properties:
+- reg : A Base address and length of the register set.
+
+Example:
+
+ clockgenA@fee62000 {
+
+ reg = <0xfee62000 0xb48>;
+
+ CLK_S_A0_PLL: CLK_S_A0_PLL {
+ #clock-cells = <1>;
+ compatible = "st,clkgena-plls-c65";
+
+ clocks = <&CLK_SYSIN>;
+
+ clock-output-names = "CLK_S_A0_PLL0_HS",
+ "CLK_S_A0_PLL0_LS",
+ "CLK_S_A0_PLL1";
+ };
+
+ CLK_S_A0_OSC_PREDIV: CLK_S_A0_OSC_PREDIV {
+ #clock-cells = <0>;
+ compatible = "st,clkgena-prediv-c65",
+ "st,clkgena-prediv";
+
+ clocks = <&CLK_SYSIN>;
+
+ clock-output-names = "CLK_S_A0_OSC_PREDIV";
+ };
+
+ CLK_S_A0_HS: CLK_S_A0_HS {
+ #clock-cells = <1>;
+ compatible = "st,clkgena-divmux-c65-hs",
+ "st,clkgena-divmux";
+
+ clocks = <&CLK_S_A0_OSC_PREDIV>,
+ <&CLK_S_A0_PLL 0>, /* PLL0 HS */
+ <&CLK_S_A0_PLL 2>; /* PLL1 */
+
+ clock-output-names = "CLK_S_FDMA_0",
+ "CLK_S_FDMA_1",
+ ""; /* CLK_S_JIT_SENSE */
+ /* Fourth output unused */
+ };
+ };
+
diff --git a/Documentation/devicetree/bindings/clock/st/st,quadfs.txt b/Documentation/devicetree/bindings/clock/st/st,quadfs.txt
new file mode 100644
index 00000000000..ec86d62ca28
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/st/st,quadfs.txt
@@ -0,0 +1,45 @@
+Binding for a type of quad channel digital frequency synthesizer found on
+certain STMicroelectronics consumer electronics SoC devices.
+
+This version contains a programmable PLL which can generate up to 216, 432
+or 660MHz (from a 30MHz oscillator input) as the input to the digital
+synthesizers.
+
+This binding uses the common clock binding[1].
+
+[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
+
+Required properties:
+- compatible : shall be:
+ "st,stih416-quadfs216", "st,quadfs"
+ "st,stih416-quadfs432", "st,quadfs"
+ "st,stih416-quadfs660-E", "st,quadfs"
+ "st,stih416-quadfs660-F", "st,quadfs"
+
+- #clock-cells : from common clock binding; shall be set to 1.
+
+- reg : A Base address and length of the register set.
+
+- clocks : from common clock binding
+
+- clock-output-names : From common clock binding. The block has 4
+ clock outputs but not all of them in a specific instance
+ have to be used in the SoC. If a clock name is left as
+ an empty string then no clock will be created for the
+ output associated with that string index. If fewer than
+ 4 strings are provided then no clocks will be created
+ for the remaining outputs.
+
+Example:
+
+ CLOCKGEN_E: CLOCKGEN_E {
+ #clock-cells = <1>;
+ compatible = "st,stih416-quadfs660-E", "st,quadfs";
+ reg = <0xfd3208bc 0xB0>;
+
+ clocks = <&CLK_SYSIN>;
+ clock-output-names = "CLK_M_PIX_MDTP_0",
+ "CLK_M_PIX_MDTP_1",
+ "CLK_M_PIX_MDTP_2",
+ "CLK_M_MPELPC";
+ };
diff --git a/Documentation/devicetree/bindings/clock/sunxi.txt b/Documentation/devicetree/bindings/clock/sunxi.txt
index 00a5c26454e..b9ec668bfe6 100644
--- a/Documentation/devicetree/bindings/clock/sunxi.txt
+++ b/Documentation/devicetree/bindings/clock/sunxi.txt
@@ -6,67 +6,133 @@ This binding uses the common clock binding[1].
Required properties:
- compatible : shall be one of the following:
- "allwinner,sun4i-osc-clk" - for a gatable oscillator
- "allwinner,sun4i-pll1-clk" - for the main PLL clock
+ "allwinner,sun4i-a10-osc-clk" - for a gatable oscillator
+ "allwinner,sun4i-a10-pll1-clk" - for the main PLL clock and PLL4
"allwinner,sun6i-a31-pll1-clk" - for the main PLL clock on A31
- "allwinner,sun4i-cpu-clk" - for the CPU multiplexer clock
- "allwinner,sun4i-axi-clk" - for the AXI clock
- "allwinner,sun4i-axi-gates-clk" - for the AXI gates
- "allwinner,sun4i-ahb-clk" - for the AHB clock
- "allwinner,sun4i-ahb-gates-clk" - for the AHB gates on A10
+ "allwinner,sun4i-a10-pll5-clk" - for the PLL5 clock
+ "allwinner,sun4i-a10-pll6-clk" - for the PLL6 clock
+ "allwinner,sun6i-a31-pll6-clk" - for the PLL6 clock on A31
+ "allwinner,sun4i-a10-cpu-clk" - for the CPU multiplexer clock
+ "allwinner,sun4i-a10-axi-clk" - for the AXI clock
+ "allwinner,sun4i-a10-axi-gates-clk" - for the AXI gates
+ "allwinner,sun4i-a10-ahb-clk" - for the AHB clock
+ "allwinner,sun4i-a10-ahb-gates-clk" - for the AHB gates on A10
"allwinner,sun5i-a13-ahb-gates-clk" - for the AHB gates on A13
"allwinner,sun5i-a10s-ahb-gates-clk" - for the AHB gates on A10s
"allwinner,sun7i-a20-ahb-gates-clk" - for the AHB gates on A20
+ "allwinner,sun6i-a31-ar100-clk" - for the AR100 on A31
"allwinner,sun6i-a31-ahb1-mux-clk" - for the AHB1 multiplexer on A31
"allwinner,sun6i-a31-ahb1-gates-clk" - for the AHB1 gates on A31
- "allwinner,sun4i-apb0-clk" - for the APB0 clock
- "allwinner,sun4i-apb0-gates-clk" - for the APB0 gates on A10
+ "allwinner,sun4i-a10-apb0-clk" - for the APB0 clock
+ "allwinner,sun6i-a31-apb0-clk" - for the APB0 clock on A31
+ "allwinner,sun4i-a10-apb0-gates-clk" - for the APB0 gates on A10
"allwinner,sun5i-a13-apb0-gates-clk" - for the APB0 gates on A13
"allwinner,sun5i-a10s-apb0-gates-clk" - for the APB0 gates on A10s
+ "allwinner,sun6i-a31-apb0-gates-clk" - for the APB0 gates on A31
"allwinner,sun7i-a20-apb0-gates-clk" - for the APB0 gates on A20
- "allwinner,sun4i-apb1-clk" - for the APB1 clock
- "allwinner,sun4i-apb1-mux-clk" - for the APB1 clock muxing
- "allwinner,sun4i-apb1-gates-clk" - for the APB1 gates on A10
+ "allwinner,sun4i-a10-apb1-clk" - for the APB1 clock
+ "allwinner,sun4i-a10-apb1-mux-clk" - for the APB1 clock muxing
+ "allwinner,sun4i-a10-apb1-gates-clk" - for the APB1 gates on A10
"allwinner,sun5i-a13-apb1-gates-clk" - for the APB1 gates on A13
"allwinner,sun5i-a10s-apb1-gates-clk" - for the APB1 gates on A10s
"allwinner,sun6i-a31-apb1-gates-clk" - for the APB1 gates on A31
"allwinner,sun7i-a20-apb1-gates-clk" - for the APB1 gates on A20
"allwinner,sun6i-a31-apb2-div-clk" - for the APB2 gates on A31
"allwinner,sun6i-a31-apb2-gates-clk" - for the APB2 gates on A31
+ "allwinner,sun4i-a10-mod0-clk" - for the module 0 family of clocks
+ "allwinner,sun7i-a20-out-clk" - for the external output clocks
+ "allwinner,sun7i-a20-gmac-clk" - for the GMAC clock module on A20/A31
+ "allwinner,sun4i-a10-usb-clk" - for usb gates + resets on A10 / A20
+ "allwinner,sun5i-a13-usb-clk" - for usb gates + resets on A13
+ "allwinner,sun6i-a31-usb-clk" - for usb gates + resets on A31
Required properties for all clocks:
- reg : shall be the control register address for the clock.
-- clocks : shall be the input parent clock(s) phandle for the clock
+- clocks : shall be the input parent clock(s) phandle for the clock. For
+ multiplexed clocks, the list order must match the hardware
+ programming order.
- #clock-cells : from common clock binding; shall be set to 0 except for
- "allwinner,*-gates-clk" where it shall be set to 1
+ "allwinner,*-gates-clk", "allwinner,sun4i-pll5-clk" and
+ "allwinner,sun4i-pll6-clk" where it shall be set to 1
+- clock-output-names : shall be the corresponding names of the outputs.
+ If the clock module only has one output, the name shall be the
+ module name.
-Additionally, "allwinner,*-gates-clk" clocks require:
-- clock-output-names : the corresponding gate names that the clock controls
+And "allwinner,*-usb-clk" clocks also require:
+- reset-cells : shall be set to 1
+
+For "allwinner,sun7i-a20-gmac-clk", the parent clocks shall be fixed rate
+dummy clocks at 25 MHz and 125 MHz, respectively. See example.
Clock consumers should specify the desired clocks they use with a
"clocks" phandle cell. Consumers that are using a gated clock should
-provide an additional ID in their clock property. The values of this
-ID are documented in sunxi/<soc>-gates.txt.
+provide an additional ID in their clock property. This ID is the
+offset of the bit controlling this particular gate in the register.
For example:
-osc24M: osc24M@01c20050 {
+osc24M: clk@01c20050 {
#clock-cells = <0>;
- compatible = "allwinner,sun4i-osc-clk";
+ compatible = "allwinner,sun4i-a10-osc-clk";
reg = <0x01c20050 0x4>;
clocks = <&osc24M_fixed>;
+ clock-output-names = "osc24M";
};
-pll1: pll1@01c20000 {
+pll1: clk@01c20000 {
#clock-cells = <0>;
- compatible = "allwinner,sun4i-pll1-clk";
+ compatible = "allwinner,sun4i-a10-pll1-clk";
reg = <0x01c20000 0x4>;
clocks = <&osc24M>;
+ clock-output-names = "pll1";
+};
+
+pll5: clk@01c20020 {
+ #clock-cells = <1>;
+ compatible = "allwinner,sun4i-pll5-clk";
+ reg = <0x01c20020 0x4>;
+ clocks = <&osc24M>;
+ clock-output-names = "pll5_ddr", "pll5_other";
};
cpu: cpu@01c20054 {
#clock-cells = <0>;
- compatible = "allwinner,sun4i-cpu-clk";
+ compatible = "allwinner,sun4i-a10-cpu-clk";
reg = <0x01c20054 0x4>;
clocks = <&osc32k>, <&osc24M>, <&pll1>;
+ clock-output-names = "cpu";
+};
+
+mmc0_clk: clk@01c20088 {
+ #clock-cells = <0>;
+ compatible = "allwinner,sun4i-mod0-clk";
+ reg = <0x01c20088 0x4>;
+ clocks = <&osc24M>, <&pll6 1>, <&pll5 1>;
+ clock-output-names = "mmc0";
+};
+
+mii_phy_tx_clk: clk@2 {
+ #clock-cells = <0>;
+ compatible = "fixed-clock";
+ clock-frequency = <25000000>;
+ clock-output-names = "mii_phy_tx";
+};
+
+gmac_int_tx_clk: clk@3 {
+ #clock-cells = <0>;
+ compatible = "fixed-clock";
+ clock-frequency = <125000000>;
+ clock-output-names = "gmac_int_tx";
+};
+
+gmac_clk: clk@01c20164 {
+ #clock-cells = <0>;
+ compatible = "allwinner,sun7i-a20-gmac-clk";
+ reg = <0x01c20164 0x4>;
+ /*
+ * The first clock must be fixed at 25MHz;
+ * the second clock must be fixed at 125MHz
+ */
+ clocks = <&mii_phy_tx_clk>, <&gmac_int_tx_clk>;
+ clock-output-names = "gmac";
};
diff --git a/Documentation/devicetree/bindings/clock/sunxi/sun4i-a10-gates.txt b/Documentation/devicetree/bindings/clock/sunxi/sun4i-a10-gates.txt
deleted file mode 100644
index 6a03475bbfe..00000000000
--- a/Documentation/devicetree/bindings/clock/sunxi/sun4i-a10-gates.txt
+++ /dev/null
@@ -1,93 +0,0 @@
-Gate clock outputs
-------------------
-
- * AXI gates ("allwinner,sun4i-axi-gates-clk")
-
- DRAM 0
-
- * AHB gates ("allwinner,sun4i-ahb-gates-clk")
-
- USB0 0
- EHCI0 1
- OHCI0 2*
- EHCI1 3
- OHCI1 4*
- SS 5
- DMA 6
- BIST 7
- MMC0 8
- MMC1 9
- MMC2 10
- MMC3 11
- MS 12**
- NAND 13
- SDRAM 14
-
- ACE 16
- EMAC 17
- TS 18
-
- SPI0 20
- SPI1 21
- SPI2 22
- SPI3 23
- PATA 24
- SATA 25**
- GPS 26*
-
- VE 32
- TVD 33
- TVE0 34
- TVE1 35
- LCD0 36
- LCD1 37
-
- CSI0 40
- CSI1 41
-
- HDMI 43
- DE_BE0 44
- DE_BE1 45
- DE_FE1 46
- DE_FE1 47
-
- MP 50
-
- MALI400 52
-
- * APB0 gates ("allwinner,sun4i-apb0-gates-clk")
-
- CODEC 0
- SPDIF 1*
- AC97 2
- IIS 3
-
- PIO 5
- IR0 6
- IR1 7
-
- KEYPAD 10
-
- * APB1 gates ("allwinner,sun4i-apb1-gates-clk")
-
- I2C0 0
- I2C1 1
- I2C2 2
-
- CAN 4
- SCR 5
- PS20 6
- PS21 7
-
- UART0 16
- UART1 17
- UART2 18
- UART3 19
- UART4 20
- UART5 21
- UART6 22
- UART7 23
-
-Notation:
- [*]: The datasheet didn't mention these, but they are present on AW code
- [**]: The datasheet had this marked as "NC" but they are used on AW code
diff --git a/Documentation/devicetree/bindings/clock/sunxi/sun5i-a10s-gates.txt b/Documentation/devicetree/bindings/clock/sunxi/sun5i-a10s-gates.txt
deleted file mode 100644
index d24279fe142..00000000000
--- a/Documentation/devicetree/bindings/clock/sunxi/sun5i-a10s-gates.txt
+++ /dev/null
@@ -1,75 +0,0 @@
-Gate clock outputs
-------------------
-
- * AXI gates ("allwinner,sun4i-axi-gates-clk")
-
- DRAM 0
-
- * AHB gates ("allwinner,sun5i-a10s-ahb-gates-clk")
-
- USB0 0
- EHCI0 1
- OHCI0 2
-
- SS 5
- DMA 6
- BIST 7
- MMC0 8
- MMC1 9
- MMC2 10
-
- NAND 13
- SDRAM 14
-
- EMAC 17
- TS 18
-
- SPI0 20
- SPI1 21
- SPI2 22
-
- GPS 26
-
- HSTIMER 28
-
- VE 32
-
- TVE 34
-
- LCD 36
-
- CSI 40
-
- HDMI 43
- DE_BE 44
-
- DE_FE 46
-
- IEP 51
- MALI400 52
-
- * APB0 gates ("allwinner,sun5i-a10s-apb0-gates-clk")
-
- CODEC 0
-
- IIS 3
-
- PIO 5
- IR 6
-
- KEYPAD 10
-
- * APB1 gates ("allwinner,sun5i-a10s-apb1-gates-clk")
-
- I2C0 0
- I2C1 1
- I2C2 2
-
- UART0 16
- UART1 17
- UART2 18
- UART3 19
-
-Notation:
- [*]: The datasheet didn't mention these, but they are present on AW code
- [**]: The datasheet had this marked as "NC" but they are used on AW code
diff --git a/Documentation/devicetree/bindings/clock/sunxi/sun5i-a13-gates.txt b/Documentation/devicetree/bindings/clock/sunxi/sun5i-a13-gates.txt
deleted file mode 100644
index 006b6dfc470..00000000000
--- a/Documentation/devicetree/bindings/clock/sunxi/sun5i-a13-gates.txt
+++ /dev/null
@@ -1,58 +0,0 @@
-Gate clock outputs
-------------------
-
- * AXI gates ("allwinner,sun4i-axi-gates-clk")
-
- DRAM 0
-
- * AHB gates ("allwinner,sun5i-a13-ahb-gates-clk")
-
- USBOTG 0
- EHCI 1
- OHCI 2
-
- SS 5
- DMA 6
- BIST 7
- MMC0 8
- MMC1 9
- MMC2 10
-
- NAND 13
- SDRAM 14
-
- SPI0 20
- SPI1 21
- SPI2 22
-
- STIMER 28
-
- VE 32
-
- LCD 36
-
- CSI 40
-
- DE_BE 44
-
- DE_FE 46
-
- IEP 51
- MALI400 52
-
- * APB0 gates ("allwinner,sun5i-a13-apb0-gates-clk")
-
- CODEC 0
-
- PIO 5
- IR 6
-
- * APB1 gates ("allwinner,sun5i-a13-apb1-gates-clk")
-
- I2C0 0
- I2C1 1
- I2C2 2
-
- UART1 17
-
- UART3 19
diff --git a/Documentation/devicetree/bindings/clock/sunxi/sun6i-a31-gates.txt b/Documentation/devicetree/bindings/clock/sunxi/sun6i-a31-gates.txt
deleted file mode 100644
index fe44932b5c6..00000000000
--- a/Documentation/devicetree/bindings/clock/sunxi/sun6i-a31-gates.txt
+++ /dev/null
@@ -1,83 +0,0 @@
-Gate clock outputs
-------------------
-
- * AHB1 gates ("allwinner,sun6i-a31-ahb1-gates-clk")
-
- MIPI DSI 1
-
- SS 5
- DMA 6
-
- MMC0 8
- MMC1 9
- MMC2 10
- MMC3 11
-
- NAND1 12
- NAND0 13
- SDRAM 14
-
- GMAC 17
- TS 18
- HSTIMER 19
- SPI0 20
- SPI1 21
- SPI2 22
- SPI3 23
- USB_OTG 24
-
- EHCI0 26
- EHCI1 27
-
- OHCI0 29
- OHCI1 30
- OHCI2 31
- VE 32
-
- LCD0 36
- LCD1 37
-
- CSI 40
-
- HDMI 43
- DE_BE0 44
- DE_BE1 45
- DE_FE1 46
- DE_FE1 47
-
- MP 50
-
- GPU 52
-
- DEU0 55
- DEU1 56
- DRC0 57
- DRC1 58
-
- * APB1 gates ("allwinner,sun6i-a31-apb1-gates-clk")
-
- CODEC 0
-
- DIGITAL MIC 4
- PIO 5
-
- DAUDIO0 12
- DAUDIO1 13
-
- * APB2 gates ("allwinner,sun6i-a31-apb2-gates-clk")
-
- I2C0 0
- I2C1 1
- I2C2 2
- I2C3 3
-
- UART0 16
- UART1 17
- UART2 18
- UART3 19
- UART4 20
- UART5 21
-
-Notation:
- [*]: The datasheet didn't mention these, but they are present on AW code
- [**]: The datasheet had this marked as "NC" but they are used on AW code
diff --git a/Documentation/devicetree/bindings/clock/sunxi/sun7i-a20-gates.txt b/Documentation/devicetree/bindings/clock/sunxi/sun7i-a20-gates.txt
deleted file mode 100644
index 357f4fdc02e..00000000000
--- a/Documentation/devicetree/bindings/clock/sunxi/sun7i-a20-gates.txt
+++ /dev/null
@@ -1,98 +0,0 @@
-Gate clock outputs
-------------------
-
- * AXI gates ("allwinner,sun4i-axi-gates-clk")
-
- DRAM 0
-
- * AHB gates ("allwinner,sun7i-a20-ahb-gates-clk")
-
- USB0 0
- EHCI0 1
- OHCI0 2
- EHCI1 3
- OHCI1 4
- SS 5
- DMA 6
- BIST 7
- MMC0 8
- MMC1 9
- MMC2 10
- MMC3 11
- MS 12
- NAND 13
- SDRAM 14
-
- ACE 16
- EMAC 17
- TS 18
-
- SPI0 20
- SPI1 21
- SPI2 22
- SPI3 23
-
- SATA 25
-
- HSTIMER 28
-
- VE 32
- TVD 33
- TVE0 34
- TVE1 35
- LCD0 36
- LCD1 37
-
- CSI0 40
- CSI1 41
-
- HDMI1 42
- HDMI0 43
- DE_BE0 44
- DE_BE1 45
- DE_FE1 46
- DE_FE1 47
-
- GMAC 49
- MP 50
-
- MALI400 52
-
- * APB0 gates ("allwinner,sun7i-a20-apb0-gates-clk")
-
- CODEC 0
- SPDIF 1
- AC97 2
- IIS0 3
- IIS1 4
- PIO 5
- IR0 6
- IR1 7
- IIS2 8
-
- KEYPAD 10
-
- * APB1 gates ("allwinner,sun7i-a20-apb1-gates-clk")
-
- I2C0 0
- I2C1 1
- I2C2 2
- I2C3 3
- CAN 4
- SCR 5
- PS20 6
- PS21 7
-
- I2C4 15
- UART0 16
- UART1 17
- UART2 18
- UART3 19
- UART4 20
- UART5 21
- UART6 22
- UART7 23
-
-Notation:
- [*]: The datasheet didn't mention these, but they are present on AW code
- [**]: The datasheet had this marked as "NC" but they are used on AW code
diff --git a/Documentation/devicetree/bindings/clock/ti-keystone-pllctrl.txt b/Documentation/devicetree/bindings/clock/ti-keystone-pllctrl.txt
new file mode 100644
index 00000000000..3e6a81e9980
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/ti-keystone-pllctrl.txt
@@ -0,0 +1,20 @@
+* Device tree bindings for Texas Instruments keystone pll controller
+
+The main pll controller used to drive theC66x CorePacs, the switch fabric,
+and a majority of the peripheral clocks (all but the ARM CorePacs, DDR3 and
+the NETCP modules) requires a PLL Controller to manage the various clock
+divisions, gating, and synchronization.
+
+Required properties:
+
+- compatible: "ti,keystone-pllctrl", "syscon"
+
+- reg: contains offset/length value for pll controller
+ registers space.
+
+Example:
+
+pllctrl: pll-controller@0x02310000 {
+ compatible = "ti,keystone-pllctrl", "syscon";
+ reg = <0x02310000 0x200>;
+};
diff --git a/Documentation/devicetree/bindings/clock/ti/apll.txt b/Documentation/devicetree/bindings/clock/ti/apll.txt
new file mode 100644
index 00000000000..ade4dd4c30f
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/ti/apll.txt
@@ -0,0 +1,45 @@
+Binding for Texas Instruments APLL clock.
+
+Binding status: Unstable - ABI compatibility may be broken in the future
+
+This binding uses the common clock binding[1]. It assumes a
+register-mapped APLL with usually two selectable input clocks
+(reference clock and bypass clock), with analog phase locked
+loop logic for multiplying the input clock to a desired output
+clock. This clock also typically supports different operation
+modes (locked, low power stop etc.) APLL mostly behaves like
+a subtype of a DPLL [2], although a simplified one at that.
+
+[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
+[2] Documentation/devicetree/bindings/clock/ti/dpll.txt
+
+Required properties:
+- compatible : shall be "ti,dra7-apll-clock" or "ti,omap2-apll-clock"
+- #clock-cells : from common clock binding; shall be set to 0.
+- clocks : link phandles of parent clocks (clk-ref and clk-bypass)
+- reg : address and length of the register set for controlling the APLL.
+ It contains the information of registers in the following order:
+ "control" - contains the control register offset
+ "idlest" - contains the idlest register offset
+ "autoidle" - contains the autoidle register offset (OMAP2 only)
+- ti,clock-frequency : static clock frequency for the clock (OMAP2 only)
+- ti,idlest-shift : bit-shift for the idlest field (OMAP2 only)
+- ti,bit-shift : bit-shift for enable and autoidle fields (OMAP2 only)
+
+Examples:
+ apll_pcie_ck: apll_pcie_ck {
+ #clock-cells = <0>;
+ clocks = <&apll_pcie_in_clk_mux>, <&dpll_pcie_ref_ck>;
+ reg = <0x021c>, <0x0220>;
+ compatible = "ti,dra7-apll-clock";
+ };
+
+ apll96_ck: apll96_ck {
+ #clock-cells = <0>;
+ compatible = "ti,omap2-apll-clock";
+ clocks = <&sys_ck>;
+ ti,bit-shift = <2>;
+ ti,idlest-shift = <8>;
+ ti,clock-frequency = <96000000>;
+ reg = <0x0500>, <0x0530>, <0x0520>;
+ };
diff --git a/Documentation/devicetree/bindings/clock/ti/autoidle.txt b/Documentation/devicetree/bindings/clock/ti/autoidle.txt
new file mode 100644
index 00000000000..7c735dde9fe
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/ti/autoidle.txt
@@ -0,0 +1,39 @@
+Binding for Texas Instruments autoidle clock.
+
+Binding status: Unstable - ABI compatibility may be broken in the future
+
+This binding uses the common clock binding[1]. It assumes a register mapped
+clock which can be put to idle automatically by hardware based on the usage
+and a configuration bit setting. Autoidle clock is never an individual
+clock, it is always a derivative of some basic clock like a gate, divider,
+or fixed-factor.
+
+[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
+
+Required properties:
+- reg : offset for the register controlling the autoidle
+- ti,autoidle-shift : bit shift of the autoidle enable bit
+- ti,invert-autoidle-bit : autoidle is enabled by setting the bit to 0
+
+Examples:
+ dpll_core_m4_ck: dpll_core_m4_ck {
+ #clock-cells = <0>;
+ compatible = "ti,divider-clock";
+ clocks = <&dpll_core_x2_ck>;
+ ti,max-div = <31>;
+ ti,autoidle-shift = <8>;
+ reg = <0x2d38>;
+ ti,index-starts-at-one;
+ ti,invert-autoidle-bit;
+ };
+
+ dpll_usb_clkdcoldo_ck: dpll_usb_clkdcoldo_ck {
+ #clock-cells = <0>;
+ compatible = "ti,fixed-factor-clock";
+ clocks = <&dpll_usb_ck>;
+ ti,clock-div = <1>;
+ ti,autoidle-shift = <8>;
+ reg = <0x01b4>;
+ ti,clock-mult = <1>;
+ ti,invert-autoidle-bit;
+ };
diff --git a/Documentation/devicetree/bindings/clock/ti/clockdomain.txt b/Documentation/devicetree/bindings/clock/ti/clockdomain.txt
new file mode 100644
index 00000000000..cb76b3f2b34
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/ti/clockdomain.txt
@@ -0,0 +1,24 @@
+Binding for Texas Instruments clockdomain.
+
+Binding status: Unstable - ABI compatibility may be broken in the future
+
+This binding uses the common clock binding[1] in consumer role.
+Every clock on TI SoC belongs to one clockdomain, but software
+only needs this information for specific clocks which require
+their parent clockdomain to be controlled when the clock is
+enabled/disabled. This binding doesn't define a new clock
+binding type, it is used to group existing clock nodes under
+hardware hierarchy.
+
+[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
+
+Required properties:
+- compatible : shall be "ti,clockdomain"
+- #clock-cells : from common clock binding; shall be set to 0.
+- clocks : link phandles of clocks within this domain
+
+Examples:
+ dss_clkdm: dss_clkdm {
+ compatible = "ti,clockdomain";
+ clocks = <&dss1_alwon_fck_3430es2>, <&dss_ick_3430es2>;
+ };
diff --git a/Documentation/devicetree/bindings/clock/ti/composite.txt b/Documentation/devicetree/bindings/clock/ti/composite.txt
new file mode 100644
index 00000000000..5f43c4706b0
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/ti/composite.txt
@@ -0,0 +1,54 @@
+Binding for TI composite clock.
+
+Binding status: Unstable - ABI compatibility may be broken in the future
+
+This binding uses the common clock binding[1]. It assumes a
+register-mapped composite clock with multiple different sub-types;
+
+a multiplexer clock with multiple input clock signals or parents, one
+of which can be selected as output, this behaves exactly as [2]
+
+an adjustable clock rate divider, this behaves exactly as [3]
+
+a gating function which can be used to enable and disable the output
+clock, this behaves exactly as [4]
+
+The binding must provide a list of the component clocks that shall be
+merged to this clock. The component clocks shall be of one of the
+"ti,*composite*-clock" types.
+
+[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
+[2] Documentation/devicetree/bindings/clock/ti/mux.txt
+[3] Documentation/devicetree/bindings/clock/ti/divider.txt
+[4] Documentation/devicetree/bindings/clock/ti/gate.txt
+
+Required properties:
+- compatible : shall be: "ti,composite-clock"
+- clocks : link phandles of component clocks
+- #clock-cells : from common clock binding; shall be set to 0.
+
+Examples:
+
+usb_l4_gate_ick: usb_l4_gate_ick {
+ #clock-cells = <0>;
+ compatible = "ti,composite-interface-clock";
+ clocks = <&l4_ick>;
+ ti,bit-shift = <5>;
+ reg = <0x0a10>;
+};
+
+usb_l4_div_ick: usb_l4_div_ick {
+ #clock-cells = <0>;
+ compatible = "ti,composite-divider-clock";
+ clocks = <&l4_ick>;
+ ti,bit-shift = <4>;
+ ti,max-div = <1>;
+ reg = <0x0a40>;
+ ti,index-starts-at-one;
+};
+
+usb_l4_ick: usb_l4_ick {
+ #clock-cells = <0>;
+ compatible = "ti,composite-clock";
+ clocks = <&usb_l4_gate_ick>, <&usb_l4_div_ick>;
+};
diff --git a/Documentation/devicetree/bindings/clock/ti/divider.txt b/Documentation/devicetree/bindings/clock/ti/divider.txt
new file mode 100644
index 00000000000..35a6f5c7e5c
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/ti/divider.txt
@@ -0,0 +1,114 @@
+Binding for TI divider clock
+
+Binding status: Unstable - ABI compatibility may be broken in the future
+
+This binding uses the common clock binding[1]. It assumes a
+register-mapped adjustable clock rate divider that does not gate and has
+only one input clock or parent. By default the value programmed into
+the register is one less than the actual divisor value. E.g:
+
+register value actual divisor value
+0 1
+1 2
+2 3
+
+This assumption may be modified by the following optional properties:
+
+ti,index-starts-at-one - valid divisor values start at 1, not the default
+of 0. E.g:
+register value actual divisor value
+1 1
+2 2
+3 3
+
+ti,index-power-of-two - valid divisor values are powers of two. E.g:
+register value actual divisor value
+0 1
+1 2
+2 4
+
+Additionally an array of valid dividers may be supplied like so:
+
+ ti,dividers = <4>, <8>, <0>, <16>;
+
+Which will map the resulting values to a divisor table by their index:
+register value actual divisor value
+0 4
+1 8
+2 <invalid divisor, skipped>
+3 16
+
+Any zero value in this array means the corresponding bit-value is invalid
+and must not be used.
+
+The binding must also provide the register to control the divider and
+unless the divider array is provided, min and max dividers. Optionally
+the number of bits to shift that mask, if necessary. If the shift value
+is missing it is the same as supplying a zero shift.
+
+This binding can also optionally provide support to the hardware autoidle
+feature, see [2].
+
+[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
+[2] Documentation/devicetree/bindings/clock/ti/autoidle.txt
+
+Required properties:
+- compatible : shall be "ti,divider-clock" or "ti,composite-divider-clock".
+- #clock-cells : from common clock binding; shall be set to 0.
+- clocks : link to phandle of parent clock
+- reg : offset for register controlling adjustable divider
+
+Optional properties:
+- clock-output-names : from common clock binding.
+- ti,dividers : array of integers defining divisors
+- ti,bit-shift : number of bits to shift the divider value, defaults to 0
+- ti,min-div : min divisor for dividing the input clock rate, only
+ needed if the first divisor is offset from the default value (1)
+- ti,max-div : max divisor for dividing the input clock rate, only needed
+ if ti,dividers is not defined.
+- ti,index-starts-at-one : valid divisor programming starts at 1, not zero,
+ only valid if ti,dividers is not defined.
+- ti,index-power-of-two : valid divisor programming must be a power of two,
+ only valid if ti,dividers is not defined.
+- ti,autoidle-shift : bit shift of the autoidle enable bit for the clock,
+ see [2]
+- ti,invert-autoidle-bit : autoidle is enabled by setting the bit to 0,
+ see [2]
+- ti,set-rate-parent : clk_set_rate is propagated to parent
+
+Examples:
+dpll_usb_m2_ck: dpll_usb_m2_ck@4a008190 {
+ #clock-cells = <0>;
+ compatible = "ti,divider-clock";
+ clocks = <&dpll_usb_ck>;
+ ti,max-div = <127>;
+ reg = <0x190>;
+ ti,index-starts-at-one;
+};
+
+aess_fclk: aess_fclk@4a004528 {
+ #clock-cells = <0>;
+ compatible = "ti,divider-clock";
+ clocks = <&abe_clk>;
+ ti,bit-shift = <24>;
+ reg = <0x528>;
+ ti,max-div = <2>;
+};
+
+dpll_core_m3x2_div_ck: dpll_core_m3x2_div_ck {
+ #clock-cells = <0>;
+ compatible = "ti,composite-divider-clock";
+ clocks = <&dpll_core_x2_ck>;
+ ti,max-div = <31>;
+ reg = <0x0134>;
+ ti,index-starts-at-one;
+};
+
+ssi_ssr_div_fck_3430es2: ssi_ssr_div_fck_3430es2 {
+ #clock-cells = <0>;
+ compatible = "ti,composite-divider-clock";
+ clocks = <&corex2_fck>;
+ ti,bit-shift = <8>;
+ reg = <0x0a40>;
+ ti,dividers = <0>, <1>, <2>, <3>, <4>, <0>, <6>, <0>, <8>;
+};
diff --git a/Documentation/devicetree/bindings/clock/ti/dpll.txt b/Documentation/devicetree/bindings/clock/ti/dpll.txt
new file mode 100644
index 00000000000..df57009ff8e
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/ti/dpll.txt
@@ -0,0 +1,85 @@
+Binding for Texas Instruments DPLL clock.
+
+Binding status: Unstable - ABI compatibility may be broken in the future
+
+This binding uses the common clock binding[1]. It assumes a
+register-mapped DPLL with usually two selectable input clocks
+(reference clock and bypass clock), with digital phase locked
+loop logic for multiplying the input clock to a desired output
+clock. This clock also typically supports different operation
+modes (locked, low power stop etc.) This binding has several
+sub-types, which effectively result in slightly different setup
+for the actual DPLL clock.
+
+[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
+
+Required properties:
+- compatible : shall be one of:
+ "ti,omap3-dpll-clock",
+ "ti,omap3-dpll-core-clock",
+ "ti,omap3-dpll-per-clock",
+ "ti,omap3-dpll-per-j-type-clock",
+ "ti,omap4-dpll-clock",
+ "ti,omap4-dpll-x2-clock",
+ "ti,omap4-dpll-core-clock",
+ "ti,omap4-dpll-m4xen-clock",
+ "ti,omap4-dpll-j-type-clock",
+ "ti,omap5-mpu-dpll-clock",
+ "ti,am3-dpll-no-gate-clock",
+ "ti,am3-dpll-j-type-clock",
+ "ti,am3-dpll-no-gate-j-type-clock",
+ "ti,am3-dpll-clock",
+ "ti,am3-dpll-core-clock",
+ "ti,am3-dpll-x2-clock",
+ "ti,omap2-dpll-core-clock",
+
+- #clock-cells : from common clock binding; shall be set to 0.
+- clocks : link phandles of parent clocks, first entry lists reference clock
+ and second entry bypass clock
+- reg : offsets for the register set for controlling the DPLL.
+ Registers are listed in following order:
+ "control" - contains the control register base address
+ "idlest" - contains the idle status register base address
+ "mult-div1" - contains the multiplier / divider register base address
+ "autoidle" - contains the autoidle register base address (optional)
+ ti,am3-* dpll types do not have autoidle register
+ ti,omap2-* dpll type does not support idlest / autoidle registers
+
+Optional properties:
+- DPLL mode setting - defining any one or more of the following overrides
+ default setting.
+ - ti,low-power-stop : DPLL supports low power stop mode, gating output
+ - ti,low-power-bypass : DPLL output matches rate of parent bypass clock
+ - ti,lock : DPLL locks in programmed rate
+
+Examples:
+ dpll_core_ck: dpll_core_ck@44e00490 {
+ #clock-cells = <0>;
+ compatible = "ti,omap4-dpll-core-clock";
+ clocks = <&sys_clkin_ck>, <&sys_clkin_ck>;
+ reg = <0x490>, <0x45c>, <0x488>, <0x468>;
+ };
+
+ dpll2_ck: dpll2_ck@48004004 {
+ #clock-cells = <0>;
+ compatible = "ti,omap3-dpll-clock";
+ clocks = <&sys_ck>, <&dpll2_fck>;
+ ti,low-power-stop;
+ ti,low-power-bypass;
+ ti,lock;
+ reg = <0x4>, <0x24>, <0x34>, <0x40>;
+ };
+
+ dpll_core_ck: dpll_core_ck@44e00490 {
+ #clock-cells = <0>;
+ compatible = "ti,am3-dpll-core-clock";
+ clocks = <&sys_clkin_ck>, <&sys_clkin_ck>;
+ reg = <0x90>, <0x5c>, <0x68>;
+ };
+
+ dpll_ck: dpll_ck {
+ #clock-cells = <0>;
+ compatible = "ti,omap2-dpll-core-clock";
+ clocks = <&sys_ck>, <&sys_ck>;
+ reg = <0x0500>, <0x0540>;
+ };
diff --git a/Documentation/devicetree/bindings/clock/ti/dra7-atl.txt b/Documentation/devicetree/bindings/clock/ti/dra7-atl.txt
new file mode 100644
index 00000000000..585e8c191f5
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/ti/dra7-atl.txt
@@ -0,0 +1,96 @@
+Device Tree Clock bindings for ATL (Audio Tracking Logic) of DRA7 SoC.
+
+The ATL IP is used to generate clock to be used to synchronize baseband and
+audio codec. A single ATL IP provides four ATL clock instances sharing the same
+functional clock but can be configured to provide different clocks.
+ATL can maintain a clock averages to some desired frequency based on the bws/aws
+signals - can compensate the drift between the two ws signal.
+
+In order to provide the support for ATL and it's output clocks (which can be used
+internally within the SoC or external components) two sets of bindings is needed:
+
+Clock tree binding:
+This binding uses the common clock binding[1].
+To be able to integrate the ATL clocks with DT clock tree.
+Provides ccf level representation of the ATL clocks to be used by drivers.
+Since the clock instances are part of a single IP this binding is used as a node
+for the DT clock tree, the IP driver is needed to handle the actual configuration
+of the IP.
+
+[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
+
+Required properties:
+- compatible : shall be "ti,dra7-atl-clock"
+- #clock-cells : from common clock binding; shall be set to 0.
+- clocks : link phandles to functional clock of ATL
+
+Binding for the IP driver:
+This binding is used to configure the IP driver which is going to handle the
+configuration of the IP for the ATL clock instances.
+
+Required properties:
+- compatible : shall be "ti,dra7-atl"
+- reg : base address for the ATL IP
+- ti,provided-clocks : List of phandles to the clocks associated with the ATL
+- clocks : link phandles to functional clock of ATL
+- clock-names : Shall be set to "fck"
+- ti,hwmods : Shall be set to "atl"
+
+Optional properties:
+Configuration of ATL instances:
+- atl{0/1/2/3} {
+ - bws : Baseband word select signal selection
+ - aws : Audio word select signal selection
+};
+
+For valid word select signals, see the dt-bindings/clk/ti-dra7-atl.h include
+file.
+
+Examples:
+/* clock bindings for atl provided clocks */
+atl_clkin0_ck: atl_clkin0_ck {
+ #clock-cells = <0>;
+ compatible = "ti,dra7-atl-clock";
+ clocks = <&atl_gfclk_mux>;
+};
+
+atl_clkin1_ck: atl_clkin1_ck {
+ #clock-cells = <0>;
+ compatible = "ti,dra7-atl-clock";
+ clocks = <&atl_gfclk_mux>;
+};
+
+atl_clkin2_ck: atl_clkin2_ck {
+ #clock-cells = <0>;
+ compatible = "ti,dra7-atl-clock";
+ clocks = <&atl_gfclk_mux>;
+};
+
+atl_clkin3_ck: atl_clkin3_ck {
+ #clock-cells = <0>;
+ compatible = "ti,dra7-atl-clock";
+ clocks = <&atl_gfclk_mux>;
+};
+
+/* binding for the IP */
+atl: atl@4843c000 {
+ compatible = "ti,dra7-atl";
+ reg = <0x4843c000 0x3ff>;
+ ti,hwmods = "atl";
+ ti,provided-clocks = <&atl_clkin0_ck>, <&atl_clkin1_ck>,
+ <&atl_clkin2_ck>, <&atl_clkin3_ck>;
+ clocks = <&atl_gfclk_mux>;
+ clock-names = "fck";
+ status = "disabled";
+};
+
+#include <dt-bindings/clk/ti-dra7-atl.h>
+
+&atl {
+ status = "okay";
+
+ atl2 {
+ bws = <DRA7_ATL_WS_MCASP2_FSX>;
+ aws = <DRA7_ATL_WS_MCASP3_FSX>;
+ };
+};
diff --git a/Documentation/devicetree/bindings/clock/ti/fixed-factor-clock.txt b/Documentation/devicetree/bindings/clock/ti/fixed-factor-clock.txt
new file mode 100644
index 00000000000..662b36d53bf
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/ti/fixed-factor-clock.txt
@@ -0,0 +1,43 @@
+Binding for TI fixed factor rate clock sources.
+
+Binding status: Unstable - ABI compatibility may be broken in the future
+
+This binding uses the common clock binding[1], and also uses the autoidle
+support from TI autoidle clock [2].
+
+[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
+[2] Documentation/devicetree/bindings/clock/ti/autoidle.txt
+
+Required properties:
+- compatible : shall be "ti,fixed-factor-clock".
+- #clock-cells : from common clock binding; shall be set to 0.
+- ti,clock-div: fixed divider.
+- ti,clock-mult: fixed multiplier.
+- clocks: parent clock.
+
+Optional properties:
+- ti,autoidle-shift: bit shift of the autoidle enable bit for the clock,
+ see [2]
+- reg: offset for the autoidle register of this clock, see [2]
+- ti,invert-autoidle-bit: autoidle is enabled by setting the bit to 0, see [2]
+- ti,set-rate-parent: clk_set_rate is propagated to parent
+
+Example:
+ clock {
+ compatible = "ti,fixed-factor-clock";
+ clocks = <&parentclk>;
+ #clock-cells = <0>;
+ ti,clock-div = <2>;
+ ti,clock-mult = <1>;
+ };
+
+ dpll_usb_clkdcoldo_ck: dpll_usb_clkdcoldo_ck {
+ #clock-cells = <0>;
+ compatible = "ti,fixed-factor-clock";
+ clocks = <&dpll_usb_ck>;
+ ti,clock-div = <1>;
+ ti,autoidle-shift = <8>;
+ reg = <0x01b4>;
+ ti,clock-mult = <1>;
+ ti,invert-autoidle-bit;
+ };
diff --git a/Documentation/devicetree/bindings/clock/ti/gate.txt b/Documentation/devicetree/bindings/clock/ti/gate.txt
new file mode 100644
index 00000000000..03f8fdee62a
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/ti/gate.txt
@@ -0,0 +1,106 @@
+Binding for Texas Instruments gate clock.
+
+Binding status: Unstable - ABI compatibility may be broken in the future
+
+This binding uses the common clock binding[1]. This clock is
+quite much similar to the basic gate-clock [2], however,
+it supports a number of additional features. If no register
+is provided for this clock, the code assumes that a clockdomain
+will be controlled instead and the corresponding hw-ops for
+that is used.
+
+[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
+[2] Documentation/devicetree/bindings/clock/gate-clock.txt
+[3] Documentation/devicetree/bindings/clock/ti/clockdomain.txt
+
+Required properties:
+- compatible : shall be one of:
+ "ti,gate-clock" - basic gate clock
+ "ti,wait-gate-clock" - gate clock which waits until clock is active before
+ returning from clk_enable()
+ "ti,dss-gate-clock" - gate clock with DSS specific hardware handling
+ "ti,am35xx-gate-clock" - gate clock with AM35xx specific hardware handling
+ "ti,clkdm-gate-clock" - clockdomain gate clock, which derives its functional
+ clock directly from a clockdomain, see [3] how
+ to map clockdomains properly
+ "ti,hsdiv-gate-clock" - gate clock with OMAP36xx specific hardware handling,
+ required for a hardware errata
+ "ti,composite-gate-clock" - composite gate clock, to be part of composite
+ clock
+ "ti,composite-no-wait-gate-clock" - composite gate clock that does not wait
+ for clock to be active before returning
+ from clk_enable()
+- #clock-cells : from common clock binding; shall be set to 0
+- clocks : link to phandle of parent clock
+- reg : offset for register controlling adjustable gate, not needed for
+ ti,clkdm-gate-clock type
+
+Optional properties:
+- ti,bit-shift : bit shift for programming the clock gate, invalid for
+ ti,clkdm-gate-clock type
+- ti,set-bit-to-disable : inverts default gate programming. Setting the bit
+ gates the clock and clearing the bit ungates the clock.
+
+Examples:
+ mmchs2_fck: mmchs2_fck@48004a00 {
+ #clock-cells = <0>;
+ compatible = "ti,gate-clock";
+ clocks = <&core_96m_fck>;
+ reg = <0x0a00>;
+ ti,bit-shift = <25>;
+ };
+
+ uart4_fck_am35xx: uart4_fck_am35xx {
+ #clock-cells = <0>;
+ compatible = "ti,wait-gate-clock";
+ clocks = <&core_48m_fck>;
+ reg = <0x0a00>;
+ ti,bit-shift = <23>;
+ };
+
+ dss1_alwon_fck_3430es2: dss1_alwon_fck_3430es2@48004e00 {
+ #clock-cells = <0>;
+ compatible = "ti,dss-gate-clock";
+ clocks = <&dpll4_m4x2_ck>;
+ reg = <0x0e00>;
+ ti,bit-shift = <0>;
+ };
+
+ emac_ick: emac_ick@4800259c {
+ #clock-cells = <0>;
+ compatible = "ti,am35xx-gate-clock";
+ clocks = <&ipss_ick>;
+ reg = <0x059c>;
+ ti,bit-shift = <1>;
+ };
+
+ emu_src_ck: emu_src_ck {
+ #clock-cells = <0>;
+ compatible = "ti,clkdm-gate-clock";
+ clocks = <&emu_src_mux_ck>;
+ };
+
+ dpll4_m2x2_ck: dpll4_m2x2_ck@48004d00 {
+ #clock-cells = <0>;
+ compatible = "ti,hsdiv-gate-clock";
+ clocks = <&dpll4_m2x2_mul_ck>;
+ ti,bit-shift = <0x1b>;
+ reg = <0x0d00>;
+ ti,set-bit-to-disable;
+ };
+
+ vlynq_gate_fck: vlynq_gate_fck {
+ #clock-cells = <0>;
+ compatible = "ti,composite-gate-clock";
+ clocks = <&core_ck>;
+ ti,bit-shift = <3>;
+ reg = <0x0200>;
+ };
+
+ sys_clkout2_src_gate: sys_clkout2_src_gate {
+ #clock-cells = <0>;
+ compatible = "ti,composite-no-wait-gate-clock";
+ clocks = <&core_ck>;
+ ti,bit-shift = <15>;
+ reg = <0x0070>;
+ };
diff --git a/Documentation/devicetree/bindings/clock/ti/interface.txt b/Documentation/devicetree/bindings/clock/ti/interface.txt
new file mode 100644
index 00000000000..3111a409fea
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/ti/interface.txt
@@ -0,0 +1,56 @@
+Binding for Texas Instruments interface clock.
+
+Binding status: Unstable - ABI compatibility may be broken in the future
+
+This binding uses the common clock binding[1]. This clock is
+quite much similar to the basic gate-clock [2], however,
+it supports a number of additional features, including
+companion clock finding (match corresponding functional gate
+clock) and hardware autoidle enable / disable.
+
+[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
+[2] Documentation/devicetree/bindings/clock/gate-clock.txt
+
+Required properties:
+- compatible : shall be one of:
+ "ti,omap3-interface-clock" - basic OMAP3 interface clock
+ "ti,omap3-no-wait-interface-clock" - interface clock which has no hardware
+ capability for waiting clock to be ready
+ "ti,omap3-hsotgusb-interface-clock" - interface clock with USB specific HW
+ handling
+ "ti,omap3-dss-interface-clock" - interface clock with DSS specific HW handling
+ "ti,omap3-ssi-interface-clock" - interface clock with SSI specific HW handling
+ "ti,am35xx-interface-clock" - interface clock with AM35xx specific HW handling
+ "ti,omap2430-interface-clock" - interface clock with OMAP2430 specific HW
+ handling
+- #clock-cells : from common clock binding; shall be set to 0
+- clocks : link to phandle of parent clock
+- reg : base address for the control register
+
+Optional properties:
+- ti,bit-shift : bit shift for the bit enabling/disabling the clock (default 0)
+
+Examples:
+ aes1_ick: aes1_ick@48004a14 {
+ #clock-cells = <0>;
+ compatible = "ti,omap3-interface-clock";
+ clocks = <&security_l4_ick2>;
+ reg = <0x48004a14 0x4>;
+ ti,bit-shift = <3>;
+ };
+
+ cam_ick: cam_ick@48004f10 {
+ #clock-cells = <0>;
+ compatible = "ti,omap3-no-wait-interface-clock";
+ clocks = <&l4_ick>;
+ reg = <0x48004f10 0x4>;
+ ti,bit-shift = <0>;
+ };
+
+ ssi_ick_3430es2: ssi_ick_3430es2@48004a10 {
+ #clock-cells = <0>;
+ compatible = "ti,omap3-ssi-interface-clock";
+ clocks = <&ssi_l4_ick>;
+ reg = <0x48004a10 0x4>;
+ ti,bit-shift = <0>;
+ };
diff --git a/Documentation/devicetree/bindings/clock/ti/mux.txt b/Documentation/devicetree/bindings/clock/ti/mux.txt
new file mode 100644
index 00000000000..2d0d170f800
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/ti/mux.txt
@@ -0,0 +1,76 @@
+Binding for TI mux clock.
+
+Binding status: Unstable - ABI compatibility may be broken in the future
+
+This binding uses the common clock binding[1]. It assumes a
+register-mapped multiplexer with multiple input clock signals or
+parents, one of which can be selected as output. This clock does not
+gate or adjust the parent rate via a divider or multiplier.
+
+By default the "clocks" property lists the parents in the same order
+as they are programmed into the regster. E.g:
+
+ clocks = <&foo_clock>, <&bar_clock>, <&baz_clock>;
+
+results in programming the register as follows:
+
+register value selected parent clock
+0 foo_clock
+1 bar_clock
+2 baz_clock
+
+Some clock controller IPs do not allow a value of zero to be programmed
+into the register, instead indexing begins at 1. The optional property
+"index-starts-at-one" modified the scheme as follows:
+
+register value selected clock parent
+1 foo_clock
+2 bar_clock
+3 baz_clock
+
+The binding must provide the register to control the mux. Optionally
+the number of bits to shift the control field in the register can be
+supplied. If the shift value is missing it is the same as supplying
+a zero shift.
+
+[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
+
+Required properties:
+- compatible : shall be "ti,mux-clock" or "ti,composite-mux-clock".
+- #clock-cells : from common clock binding; shall be set to 0.
+- clocks : link phandles of parent clocks
+- reg : register offset for register controlling adjustable mux
+
+Optional properties:
+- ti,bit-shift : number of bits to shift the bit-mask, defaults to
+ 0 if not present
+- ti,index-starts-at-one : valid input select programming starts at 1, not
+ zero
+- ti,set-rate-parent : clk_set_rate is propagated to parent clock,
+ not supported by the composite-mux-clock subtype
+
+Examples:
+
+sys_clkin_ck: sys_clkin_ck@4a306110 {
+ #clock-cells = <0>;
+ compatible = "ti,mux-clock";
+ clocks = <&virt_12000000_ck>, <&virt_13000000_ck>, <&virt_16800000_ck>, <&virt_19200000_ck>, <&virt_26000000_ck>, <&virt_27000000_ck>, <&virt_38400000_ck>;
+ reg = <0x0110>;
+ ti,index-starts-at-one;
+};
+
+abe_dpll_bypass_clk_mux_ck: abe_dpll_bypass_clk_mux_ck@4a306108 {
+ #clock-cells = <0>;
+ compatible = "ti,mux-clock";
+ clocks = <&sys_clkin_ck>, <&sys_32k_ck>;
+ ti,bit-shift = <24>;
+ reg = <0x0108>;
+};
+
+mcbsp5_mux_fck: mcbsp5_mux_fck {
+ #clock-cells = <0>;
+ compatible = "ti,composite-mux-clock";
+ clocks = <&core_96m_fck>, <&mcbsp_clks>;
+ ti,bit-shift = <4>;
+ reg = <0x02d8>;
+};
diff --git a/Documentation/devicetree/bindings/clock/xgene.txt b/Documentation/devicetree/bindings/clock/xgene.txt
new file mode 100644
index 00000000000..1c4ef773fee
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/xgene.txt
@@ -0,0 +1,111 @@
+Device Tree Clock bindings for APM X-Gene
+
+This binding uses the common clock binding[1].
+
+[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
+
+Required properties:
+- compatible : shall be one of the following:
+ "apm,xgene-socpll-clock" - for a X-Gene SoC PLL clock
+ "apm,xgene-pcppll-clock" - for a X-Gene PCP PLL clock
+ "apm,xgene-device-clock" - for a X-Gene device clock
+
+Required properties for SoC or PCP PLL clocks:
+- reg : shall be the physical PLL register address for the pll clock.
+- clocks : shall be the input parent clock phandle for the clock. This should
+ be the reference clock.
+- #clock-cells : shall be set to 1.
+- clock-output-names : shall be the name of the PLL referenced by derive
+ clock.
+Optional properties for PLL clocks:
+- clock-names : shall be the name of the PLL. If missing, use the device name.
+
+Required properties for device clocks:
+- reg : shall be a list of address and length pairs describing the CSR
+ reset and/or the divider. Either may be omitted, but at least
+ one must be present.
+ - reg-names : shall be a string list describing the reg resource. This
+ may include "csr-reg" and/or "div-reg". If this property
+ is not present, the reg property is assumed to describe
+ only "csr-reg".
+- clocks : shall be the input parent clock phandle for the clock.
+- #clock-cells : shall be set to 1.
+- clock-output-names : shall be the name of the device referenced.
+Optional properties for device clocks:
+- clock-names : shall be the name of the device clock. If missing, use the
+ device name.
+- csr-offset : Offset to the CSR reset register from the reset address base.
+ Default is 0.
+- csr-mask : CSR reset mask bit. Default is 0xF.
+- enable-offset : Offset to the enable register from the reset address base.
+ Default is 0x8.
+- enable-mask : CSR enable mask bit. Default is 0xF.
+- divider-offset : Offset to the divider CSR register from the divider base.
+ Default is 0x0.
+- divider-width : Width of the divider register. Default is 0.
+- divider-shift : Bit shift of the divider register. Default is 0.
+
+For example:
+
+ pcppll: pcppll@17000100 {
+ compatible = "apm,xgene-pcppll-clock";
+ #clock-cells = <1>;
+ clocks = <&refclk 0>;
+ clock-names = "pcppll";
+ reg = <0x0 0x17000100 0x0 0x1000>;
+ clock-output-names = "pcppll";
+ type = <0>;
+ };
+
+ socpll: socpll@17000120 {
+ compatible = "apm,xgene-socpll-clock";
+ #clock-cells = <1>;
+ clocks = <&refclk 0>;
+ clock-names = "socpll";
+ reg = <0x0 0x17000120 0x0 0x1000>;
+ clock-output-names = "socpll";
+ type = <1>;
+ };
+
+ qmlclk: qmlclk {
+ compatible = "apm,xgene-device-clock";
+ #clock-cells = <1>;
+ clocks = <&socplldiv2 0>;
+ clock-names = "qmlclk";
+ reg = <0x0 0x1703C000 0x0 0x1000>;
+ reg-name = "csr-reg";
+ clock-output-names = "qmlclk";
+ };
+
+ ethclk: ethclk {
+ compatible = "apm,xgene-device-clock";
+ #clock-cells = <1>;
+ clocks = <&socplldiv2 0>;
+ clock-names = "ethclk";
+ reg = <0x0 0x17000000 0x0 0x1000>;
+ reg-names = "div-reg";
+ divider-offset = <0x238>;
+ divider-width = <0x9>;
+ divider-shift = <0x0>;
+ clock-output-names = "ethclk";
+ };
+
+ apbclk: apbclk {
+ compatible = "apm,xgene-device-clock";
+ #clock-cells = <1>;
+ clocks = <&ahbclk 0>;
+ clock-names = "apbclk";
+ reg = <0x0 0x1F2AC000 0x0 0x1000
+ 0x0 0x1F2AC000 0x0 0x1000>;
+ reg-names = "csr-reg", "div-reg";
+ csr-offset = <0x0>;
+ csr-mask = <0x200>;
+ enable-offset = <0x8>;
+ enable-mask = <0x200>;
+ divider-offset = <0x10>;
+ divider-width = <0x2>;
+ divider-shift = <0x0>;
+ flags = <0x8>;
+ clock-output-names = "apbclk";
+ };
+
diff --git a/Documentation/devicetree/bindings/clock/zynq-7000.txt b/Documentation/devicetree/bindings/clock/zynq-7000.txt
index d99af878f5d..d93746cf297 100644
--- a/Documentation/devicetree/bindings/clock/zynq-7000.txt
+++ b/Documentation/devicetree/bindings/clock/zynq-7000.txt
@@ -14,6 +14,7 @@ for all clock consumers of PS clocks.
Required properties:
- #clock-cells : Must be 1
- compatible : "xlnx,ps7-clkc"
+ - reg : SLCR offset and size taken via syscon < 0x100 0x100 >
- ps-clk-frequency : Frequency of the oscillator providing ps_clk in HZ
(usually 33 MHz oscillators are used for Zynq platforms)
- clock-output-names : List of strings used to name the clock outputs. Shall be
@@ -22,6 +23,10 @@ Required properties:
Optional properties:
- clocks : as described in the clock bindings
- clock-names : as described in the clock bindings
+ - fclk-enable : Bit mask to enable FCLKs statically at boot time.
+ Bit [0..3] correspond to FCLK0..FCLK3. The corresponding
+ FCLK will only be enabled if it is actually running at
+ boot time.
Clock inputs:
The following strings are optional parameters to the 'clock-names' property in
@@ -83,10 +88,11 @@ Clock outputs:
47: dbg_apb
Example:
- clkc: clkc {
+ clkc: clkc@100 {
#clock-cells = <1>;
compatible = "xlnx,ps7-clkc";
ps-clk-frequency = <33333333>;
+ reg = <0x100 0x100>;
clock-output-names = "armpll", "ddrpll", "iopll", "cpu_6or4x",
"cpu_3or2x", "cpu_2x", "cpu_1x", "ddr2x", "ddr3x",
"dci", "lqspi", "smc", "pcap", "gem0", "gem1",
diff --git a/Documentation/devicetree/bindings/cpufreq/cpufreq-cpu0.txt b/Documentation/devicetree/bindings/cpufreq/cpufreq-cpu0.txt
index 051f764bedb..366690cb86a 100644
--- a/Documentation/devicetree/bindings/cpufreq/cpufreq-cpu0.txt
+++ b/Documentation/devicetree/bindings/cpufreq/cpufreq-cpu0.txt
@@ -8,13 +8,19 @@ Both required and optional properties listed below must be defined
under node /cpus/cpu@0.
Required properties:
-- operating-points: Refer to Documentation/devicetree/bindings/power/opp.txt
- for details
+- None
Optional properties:
+- operating-points: Refer to Documentation/devicetree/bindings/power/opp.txt for
+ details. OPPs *must* be supplied either via DT, i.e. this property, or
+ populated at runtime.
- clock-latency: Specify the possible maximum transition latency for clock,
in unit of nanoseconds.
- voltage-tolerance: Specify the CPU voltage tolerance in percentage.
+- #cooling-cells:
+- cooling-min-level:
+- cooling-max-level:
+ Please refer to Documentation/devicetree/bindings/thermal/thermal.txt.
Examples:
@@ -33,6 +39,9 @@ cpus {
198000 850000
>;
clock-latency = <61036>; /* two CLK32 periods */
+ #cooling-cells = <2>;
+ cooling-min-level = <0>;
+ cooling-max-level = <2>;
};
cpu@1 {
diff --git a/Documentation/devicetree/bindings/crypto/atmel-crypto.txt b/Documentation/devicetree/bindings/crypto/atmel-crypto.txt
new file mode 100644
index 00000000000..f2aab3dc2b5
--- /dev/null
+++ b/Documentation/devicetree/bindings/crypto/atmel-crypto.txt
@@ -0,0 +1,68 @@
+* Atmel HW cryptographic accelerators
+
+These are the HW cryptographic accelerators found on some Atmel products.
+
+* Advanced Encryption Standard (AES)
+
+Required properties:
+- compatible : Should be "atmel,at91sam9g46-aes".
+- reg: Should contain AES registers location and length.
+- interrupts: Should contain the IRQ line for the AES.
+- dmas: List of two DMA specifiers as described in
+ atmel-dma.txt and dma.txt files.
+- dma-names: Contains one identifier string for each DMA specifier
+ in the dmas property.
+
+Example:
+aes@f8038000 {
+ compatible = "atmel,at91sam9g46-aes";
+ reg = <0xf8038000 0x100>;
+ interrupts = <43 4 0>;
+ dmas = <&dma1 2 18>,
+ <&dma1 2 19>;
+ dma-names = "tx", "rx";
+
+* Triple Data Encryption Standard (Triple DES)
+
+Required properties:
+- compatible : Should be "atmel,at91sam9g46-tdes".
+- reg: Should contain TDES registers location and length.
+- interrupts: Should contain the IRQ line for the TDES.
+
+Optional properties:
+- dmas: List of two DMA specifiers as described in
+ atmel-dma.txt and dma.txt files.
+- dma-names: Contains one identifier string for each DMA specifier
+ in the dmas property.
+
+Example:
+tdes@f803c000 {
+ compatible = "atmel,at91sam9g46-tdes";
+ reg = <0xf803c000 0x100>;
+ interrupts = <44 4 0>;
+ dmas = <&dma1 2 20>,
+ <&dma1 2 21>;
+ dma-names = "tx", "rx";
+};
+
+* Secure Hash Algorithm (SHA)
+
+Required properties:
+- compatible : Should be "atmel,at91sam9g46-sha".
+- reg: Should contain SHA registers location and length.
+- interrupts: Should contain the IRQ line for the SHA.
+
+Optional properties:
+- dmas: One DMA specifiers as described in
+ atmel-dma.txt and dma.txt files.
+- dma-names: Contains one identifier string for each DMA specifier
+ in the dmas property. Only one "tx" string needed.
+
+Example:
+sha@f8034000 {
+ compatible = "atmel,at91sam9g46-sha";
+ reg = <0xf8034000 0x100>;
+ interrupts = <42 4 0>;
+ dmas = <&dma1 2 17>;
+ dma-names = "tx";
+};
diff --git a/Documentation/devicetree/bindings/crypto/fsl-dcp.txt b/Documentation/devicetree/bindings/crypto/fsl-dcp.txt
new file mode 100644
index 00000000000..6949e50f1f1
--- /dev/null
+++ b/Documentation/devicetree/bindings/crypto/fsl-dcp.txt
@@ -0,0 +1,17 @@
+Freescale DCP (Data Co-Processor) found on i.MX23/i.MX28 .
+
+Required properties:
+- compatible : Should be "fsl,<soc>-dcp"
+- reg : Should contain MXS DCP registers location and length
+- interrupts : Should contain MXS DCP interrupt numbers, VMI IRQ and DCP IRQ
+ must be supplied, optionally Secure IRQ can be present, but
+ is currently not implemented and not used.
+
+Example:
+
+dcp@80028000 {
+ compatible = "fsl,imx28-dcp", "fsl,imx23-dcp";
+ reg = <0x80028000 0x2000>;
+ interrupts = <52 53>;
+ status = "okay";
+};
diff --git a/Documentation/devicetree/bindings/crypto/omap-aes.txt b/Documentation/devicetree/bindings/crypto/omap-aes.txt
new file mode 100644
index 00000000000..fd9717653cb
--- /dev/null
+++ b/Documentation/devicetree/bindings/crypto/omap-aes.txt
@@ -0,0 +1,31 @@
+OMAP SoC AES crypto Module
+
+Required properties:
+
+- compatible : Should contain entries for this and backward compatible
+ AES versions:
+ - "ti,omap2-aes" for OMAP2.
+ - "ti,omap3-aes" for OMAP3.
+ - "ti,omap4-aes" for OMAP4 and AM33XX.
+ Note that the OMAP2 and 3 versions are compatible (OMAP3 supports
+ more algorithms) but they are incompatible with OMAP4.
+- ti,hwmods: Name of the hwmod associated with the AES module
+- reg : Offset and length of the register set for the module
+- interrupts : the interrupt-specifier for the AES module.
+
+Optional properties:
+- dmas: DMA specifiers for tx and rx dma. See the DMA client binding,
+ Documentation/devicetree/bindings/dma/dma.txt
+- dma-names: DMA request names should include "tx" and "rx" if present.
+
+Example:
+ /* AM335x */
+ aes: aes@53500000 {
+ compatible = "ti,omap4-aes";
+ ti,hwmods = "aes";
+ reg = <0x53500000 0xa0>;
+ interrupts = <102>;
+ dmas = <&edma 6>,
+ <&edma 5>;
+ dma-names = "tx", "rx";
+ };
diff --git a/Documentation/devicetree/bindings/crypto/omap-des.txt b/Documentation/devicetree/bindings/crypto/omap-des.txt
new file mode 100644
index 00000000000..e8c63bf2e16
--- /dev/null
+++ b/Documentation/devicetree/bindings/crypto/omap-des.txt
@@ -0,0 +1,30 @@
+OMAP SoC DES crypto Module
+
+Required properties:
+
+- compatible : Should contain "ti,omap4-des"
+- ti,hwmods: Name of the hwmod associated with the DES module
+- reg : Offset and length of the register set for the module
+- interrupts : the interrupt-specifier for the DES module
+- clocks : A phandle to the functional clock node of the DES module
+ corresponding to each entry in clock-names
+- clock-names : Name of the functional clock, should be "fck"
+
+Optional properties:
+- dmas: DMA specifiers for tx and rx dma. See the DMA client binding,
+ Documentation/devicetree/bindings/dma/dma.txt
+ Each entry corresponds to an entry in dma-names
+- dma-names: DMA request names should include "tx" and "rx" if present
+
+Example:
+ /* DRA7xx SoC */
+ des: des@480a5000 {
+ compatible = "ti,omap4-des";
+ ti,hwmods = "des";
+ reg = <0x480a5000 0xa0>;
+ interrupts = <GIC_SPI 82 IRQ_TYPE_LEVEL_HIGH>;
+ dmas = <&sdma 117>, <&sdma 116>;
+ dma-names = "tx", "rx";
+ clocks = <&l3_iclk_div>;
+ clock-names = "fck";
+ };
diff --git a/Documentation/devicetree/bindings/crypto/omap-sham.txt b/Documentation/devicetree/bindings/crypto/omap-sham.txt
new file mode 100644
index 00000000000..ad911556961
--- /dev/null
+++ b/Documentation/devicetree/bindings/crypto/omap-sham.txt
@@ -0,0 +1,28 @@
+OMAP SoC SHA crypto Module
+
+Required properties:
+
+- compatible : Should contain entries for this and backward compatible
+ SHAM versions:
+ - "ti,omap2-sham" for OMAP2 & OMAP3.
+ - "ti,omap4-sham" for OMAP4 and AM33XX.
+ - "ti,omap5-sham" for OMAP5, DRA7 and AM43XX.
+- ti,hwmods: Name of the hwmod associated with the SHAM module
+- reg : Offset and length of the register set for the module
+- interrupts : the interrupt-specifier for the SHAM module.
+
+Optional properties:
+- dmas: DMA specifiers for the rx dma. See the DMA client binding,
+ Documentation/devicetree/bindings/dma/dma.txt
+- dma-names: DMA request name. Should be "rx" if a dma is present.
+
+Example:
+ /* AM335x */
+ sham: sham@53100000 {
+ compatible = "ti,omap4-sham";
+ ti,hwmods = "sham";
+ reg = <0x53100000 0x200>;
+ interrupts = <109>;
+ dmas = <&edma 36>;
+ dma-names = "rx";
+ };
diff --git a/Documentation/devicetree/bindings/crypto/samsung-sss.txt b/Documentation/devicetree/bindings/crypto/samsung-sss.txt
new file mode 100644
index 00000000000..a6dafa83c6d
--- /dev/null
+++ b/Documentation/devicetree/bindings/crypto/samsung-sss.txt
@@ -0,0 +1,34 @@
+Samsung SoC SSS (Security SubSystem) module
+
+The SSS module in S5PV210 SoC supports the following:
+-- Feeder (FeedCtrl)
+-- Advanced Encryption Standard (AES)
+-- Data Encryption Standard (DES)/3DES
+-- Public Key Accelerator (PKA)
+-- SHA-1/SHA-256/MD5/HMAC (SHA-1/SHA-256/MD5)/PRNG
+-- PRNG: Pseudo Random Number Generator
+
+The SSS module in Exynos4 (Exynos4210) and
+Exynos5 (Exynos5420 and Exynos5250) SoCs
+supports the following also:
+-- ARCFOUR (ARC4)
+-- True Random Number Generator (TRNG)
+-- Secure Key Manager
+
+Required properties:
+
+- compatible : Should contain entries for this and backward compatible
+ SSS versions:
+ - "samsung,s5pv210-secss" for S5PV210 SoC.
+ - "samsung,exynos4210-secss" for Exynos4210, Exynos4212, Exynos4412, Exynos5250,
+ Exynos5260 and Exynos5420 SoCs.
+- reg : Offset and length of the register set for the module
+- interrupts : interrupt specifiers of SSS module interrupts, should contain
+ following entries:
+ - first : feed control interrupt (required for all variants),
+ - second : hash interrupt (required only for samsung,s5pv210-secss).
+
+- clocks : list of clock phandle and specifier pairs for all clocks listed in
+ clock-names property.
+- clock-names : list of device clock input names; should contain one entry
+ "secss".
diff --git a/Documentation/devicetree/bindings/dma/atmel-dma.txt b/Documentation/devicetree/bindings/dma/atmel-dma.txt
index e1f343c7a34..f69bcf5a634 100644
--- a/Documentation/devicetree/bindings/dma/atmel-dma.txt
+++ b/Documentation/devicetree/bindings/dma/atmel-dma.txt
@@ -28,7 +28,7 @@ The three cells in order are:
dependent:
- bit 7-0: peripheral identifier for the hardware handshaking interface. The
identifier can be different for tx and rx.
- - bit 11-8: FIFO configuration. 0 for half FIFO, 1 for ALAP, 1 for ASAP.
+ - bit 11-8: FIFO configuration. 0 for half FIFO, 1 for ALAP, 2 for ASAP.
Example:
diff --git a/Documentation/devicetree/bindings/dma/bcm2835-dma.txt b/Documentation/devicetree/bindings/dma/bcm2835-dma.txt
new file mode 100644
index 00000000000..1396078d15a
--- /dev/null
+++ b/Documentation/devicetree/bindings/dma/bcm2835-dma.txt
@@ -0,0 +1,57 @@
+* BCM2835 DMA controller
+
+The BCM2835 DMA controller has 16 channels in total.
+Only the lower 13 channels have an associated IRQ.
+Some arbitrary channels are used by the firmware
+(1,3,6,7 in the current firmware version).
+The channels 0,2 and 3 have special functionality
+and should not be used by the driver.
+
+Required properties:
+- compatible: Should be "brcm,bcm2835-dma".
+- reg: Should contain DMA registers location and length.
+- interrupts: Should contain the DMA interrupts associated
+ to the DMA channels in ascending order.
+- #dma-cells: Must be <1>, the cell in the dmas property of the
+ client device represents the DREQ number.
+- brcm,dma-channel-mask: Bit mask representing the channels
+ not used by the firmware in ascending order,
+ i.e. first channel corresponds to LSB.
+
+Example:
+
+dma: dma@7e007000 {
+ compatible = "brcm,bcm2835-dma";
+ reg = <0x7e007000 0xf00>;
+ interrupts = <1 16>,
+ <1 17>,
+ <1 18>,
+ <1 19>,
+ <1 20>,
+ <1 21>,
+ <1 22>,
+ <1 23>,
+ <1 24>,
+ <1 25>,
+ <1 26>,
+ <1 27>,
+ <1 28>;
+
+ #dma-cells = <1>;
+ brcm,dma-channel-mask = <0x7f35>;
+};
+
+DMA clients connected to the BCM2835 DMA controller must use the format
+described in the dma.txt file, using a two-cell specifier for each channel.
+
+Example:
+
+bcm2835_i2s: i2s@7e203000 {
+ compatible = "brcm,bcm2835-i2s";
+ reg = < 0x7e203000 0x20>,
+ < 0x7e101098 0x02>;
+
+ dmas = <&dma 2>,
+ <&dma 3>;
+ dma-names = "tx", "rx";
+};
diff --git a/Documentation/devicetree/bindings/dma/dma.txt b/Documentation/devicetree/bindings/dma/dma.txt
index 8f504e6bae1..82104271e75 100644
--- a/Documentation/devicetree/bindings/dma/dma.txt
+++ b/Documentation/devicetree/bindings/dma/dma.txt
@@ -14,7 +14,7 @@ Required property:
Optional properties:
- dma-channels: Number of DMA channels supported by the controller.
-- dma-requests: Number of DMA requests signals supported by the
+- dma-requests: Number of DMA request signals supported by the
controller.
Example:
@@ -44,7 +44,7 @@ Required property:
#dma-cells property in the node referenced by phandle
containing DMA controller specific information. This
typically contains a DMA request line number or a
- channel number, but can contain any data that is used
+ channel number, but can contain any data that is
required for configuring a channel.
- dma-names: Contains one identifier string for each DMA specifier in
the dmas property. The specific strings that can be used
diff --git a/Documentation/devicetree/bindings/dma/fsl-edma.txt b/Documentation/devicetree/bindings/dma/fsl-edma.txt
new file mode 100644
index 00000000000..191d7bd8a6f
--- /dev/null
+++ b/Documentation/devicetree/bindings/dma/fsl-edma.txt
@@ -0,0 +1,76 @@
+* Freescale enhanced Direct Memory Access(eDMA) Controller
+
+ The eDMA channels have multiplex capability by programmble memory-mapped
+registers. channels are split into two groups, called DMAMUX0 and DMAMUX1,
+specific DMA request source can only be multiplexed by any channel of certain
+group, DMAMUX0 or DMAMUX1, but not both.
+
+* eDMA Controller
+Required properties:
+- compatible :
+ - "fsl,vf610-edma" for eDMA used similar to that on Vybrid vf610 SoC
+- reg : Specifies base physical address(s) and size of the eDMA registers.
+ The 1st region is eDMA control register's address and size.
+ The 2nd and the 3rd regions are programmable channel multiplexing
+ control register's address and size.
+- interrupts : A list of interrupt-specifiers, one for each entry in
+ interrupt-names.
+- interrupt-names : Should contain:
+ "edma-tx" - the transmission interrupt
+ "edma-err" - the error interrupt
+- #dma-cells : Must be <2>.
+ The 1st cell specifies the DMAMUX(0 for DMAMUX0 and 1 for DMAMUX1).
+ Specific request source can only be multiplexed by specific channels
+ group called DMAMUX.
+ The 2nd cell specifies the request source(slot) ID.
+ See the SoC's reference manual for all the supported request sources.
+- dma-channels : Number of channels supported by the controller
+- clock-names : A list of channel group clock names. Should contain:
+ "dmamux0" - clock name of mux0 group
+ "dmamux1" - clock name of mux1 group
+- clocks : A list of phandle and clock-specifier pairs, one for each entry in
+ clock-names.
+
+Optional properties:
+- big-endian: If present registers and hardware scatter/gather descriptors
+ of the eDMA are implemented in big endian mode, otherwise in little
+ mode.
+
+
+Examples:
+
+edma0: dma-controller@40018000 {
+ #dma-cells = <2>;
+ compatible = "fsl,vf610-edma";
+ reg = <0x40018000 0x2000>,
+ <0x40024000 0x1000>,
+ <0x40025000 0x1000>;
+ interrupts = <0 8 IRQ_TYPE_LEVEL_HIGH>,
+ <0 9 IRQ_TYPE_LEVEL_HIGH>;
+ interrupt-names = "edma-tx", "edma-err";
+ dma-channels = <32>;
+ clock-names = "dmamux0", "dmamux1";
+ clocks = <&clks VF610_CLK_DMAMUX0>,
+ <&clks VF610_CLK_DMAMUX1>;
+};
+
+
+* DMA clients
+DMA client drivers that uses the DMA function must use the format described
+in the dma.txt file, using a two-cell specifier for each channel: the 1st
+specifies the channel group(DMAMUX) in which this request can be multiplexed,
+and the 2nd specifies the request source.
+
+Examples:
+
+sai2: sai@40031000 {
+ compatible = "fsl,vf610-sai";
+ reg = <0x40031000 0x1000>;
+ interrupts = <0 86 IRQ_TYPE_LEVEL_HIGH>;
+ clock-names = "sai";
+ clocks = <&clks VF610_CLK_SAI2>;
+ dma-names = "tx", "rx";
+ dmas = <&edma0 0 21>,
+ <&edma0 0 20>;
+ status = "disabled";
+};
diff --git a/Documentation/devicetree/bindings/dma/fsl-imx-sdma.txt b/Documentation/devicetree/bindings/dma/fsl-imx-sdma.txt
index 4fa814d3832..e577196a12c 100644
--- a/Documentation/devicetree/bindings/dma/fsl-imx-sdma.txt
+++ b/Documentation/devicetree/bindings/dma/fsl-imx-sdma.txt
@@ -1,12 +1,16 @@
* Freescale Smart Direct Memory Access (SDMA) Controller for i.MX
Required properties:
-- compatible : Should be "fsl,imx31-sdma", "fsl,imx31-to1-sdma",
- "fsl,imx31-to2-sdma", "fsl,imx35-sdma", "fsl,imx35-to1-sdma",
- "fsl,imx35-to2-sdma", "fsl,imx51-sdma", "fsl,imx53-sdma" or
- "fsl,imx6q-sdma". The -to variants should be preferred since they
- allow to determnine the correct ROM script addresses needed for
- the driver to work without additional firmware.
+- compatible : Should be one of
+ "fsl,imx25-sdma"
+ "fsl,imx31-sdma", "fsl,imx31-to1-sdma", "fsl,imx31-to2-sdma"
+ "fsl,imx35-sdma", "fsl,imx35-to1-sdma", "fsl,imx35-to2-sdma"
+ "fsl,imx51-sdma"
+ "fsl,imx53-sdma"
+ "fsl,imx6q-sdma"
+ The -to variants should be preferred since they allow to determine the
+ correct ROM script addresses needed for the driver to work without additional
+ firmware.
- reg : Should contain SDMA registers location and length
- interrupts : Should contain SDMA interrupt
- #dma-cells : Must be <3>.
@@ -42,6 +46,7 @@ The full ID of peripheral types can be found below.
19 IPU Memory
20 ASRC
21 ESAI
+ 22 SSI Dual FIFO (needs firmware ver >= 2)
The third cell specifies the transfer priority as below.
diff --git a/Documentation/devicetree/bindings/dma/mmp-dma.txt b/Documentation/devicetree/bindings/dma/mmp-dma.txt
index a4fa4efa1d8..7a802f64e5b 100644
--- a/Documentation/devicetree/bindings/dma/mmp-dma.txt
+++ b/Documentation/devicetree/bindings/dma/mmp-dma.txt
@@ -1,17 +1,20 @@
* MARVELL MMP DMA controller
Marvell Peripheral DMA Controller
-Used platfroms: pxa688, pxa910, pxa3xx, etc
+Used platforms: pxa688, pxa910, pxa3xx, etc
Required properties:
- compatible: Should be "marvell,pdma-1.0"
- reg: Should contain DMA registers location and length.
- interrupts: Either contain all of the per-channel DMA interrupts
or one irq for pdma device
-- #dma-channels: Number of DMA channels supported by the controller.
+
+Optional properties:
+- #dma-channels: Number of DMA channels supported by the controller (defaults
+ to 32 when not specified)
"marvell,pdma-1.0"
-Used platfroms: pxa25x, pxa27x, pxa3xx, pxa93x, pxa168, pxa910, pxa688.
+Used platforms: pxa25x, pxa27x, pxa3xx, pxa93x, pxa168, pxa910, pxa688.
Examples:
@@ -45,7 +48,7 @@ pdma: dma-controller@d4000000 {
Marvell Two Channel DMA Controller used specifically for audio
-Used platfroms: pxa688, pxa910
+Used platforms: pxa688, pxa910
Required properties:
- compatible: Should be "marvell,adma-1.0" or "marvell,pxa910-squ"
diff --git a/Documentation/devicetree/bindings/dma/moxa,moxart-dma.txt b/Documentation/devicetree/bindings/dma/moxa,moxart-dma.txt
new file mode 100644
index 00000000000..8a9f3559335
--- /dev/null
+++ b/Documentation/devicetree/bindings/dma/moxa,moxart-dma.txt
@@ -0,0 +1,45 @@
+MOXA ART DMA Controller
+
+See dma.txt first
+
+Required properties:
+
+- compatible : Must be "moxa,moxart-dma"
+- reg : Should contain registers location and length
+- interrupts : Should contain an interrupt-specifier for the sole
+ interrupt generated by the device
+- #dma-cells : Should be 1, a single cell holding a line request number
+
+Example:
+
+ dma: dma@90500000 {
+ compatible = "moxa,moxart-dma";
+ reg = <0x90500080 0x40>;
+ interrupts = <24 0>;
+ #dma-cells = <1>;
+ };
+
+
+Clients:
+
+DMA clients connected to the MOXA ART DMA controller must use the format
+described in the dma.txt file, using a two-cell specifier for each channel:
+a phandle plus one integer cells.
+The two cells in order are:
+
+1. A phandle pointing to the DMA controller.
+2. Peripheral identifier for the hardware handshaking interface.
+
+Example:
+Use specific request line passing from dma
+For example, MMC request line is 5
+
+ sdhci: sdhci@98e00000 {
+ compatible = "moxa,moxart-sdhci";
+ reg = <0x98e00000 0x5C>;
+ interrupts = <5 0>;
+ clocks = <&clk_apb>;
+ dmas = <&dma 5>,
+ <&dma 5>;
+ dma-names = "tx", "rx";
+ };
diff --git a/Documentation/devicetree/bindings/dma/qcom_bam_dma.txt b/Documentation/devicetree/bindings/dma/qcom_bam_dma.txt
new file mode 100644
index 00000000000..d75a9d76702
--- /dev/null
+++ b/Documentation/devicetree/bindings/dma/qcom_bam_dma.txt
@@ -0,0 +1,41 @@
+QCOM BAM DMA controller
+
+Required properties:
+- compatible: must contain "qcom,bam-v1.4.0" for MSM8974
+- reg: Address range for DMA registers
+- interrupts: Should contain the one interrupt shared by all channels
+- #dma-cells: must be <1>, the cell in the dmas property of the client device
+ represents the channel number
+- clocks: required clock
+- clock-names: must contain "bam_clk" entry
+- qcom,ee : indicates the active Execution Environment identifier (0-7) used in
+ the secure world.
+
+Example:
+
+ uart-bam: dma@f9984000 = {
+ compatible = "qcom,bam-v1.4.0";
+ reg = <0xf9984000 0x15000>;
+ interrupts = <0 94 0>;
+ clocks = <&gcc GCC_BAM_DMA_AHB_CLK>;
+ clock-names = "bam_clk";
+ #dma-cells = <1>;
+ qcom,ee = <0>;
+ };
+
+DMA clients must use the format described in the dma.txt file, using a two cell
+specifier for each channel.
+
+Example:
+ serial@f991e000 {
+ compatible = "qcom,msm-uart";
+ reg = <0xf991e000 0x1000>
+ <0xf9944000 0x19000>;
+ interrupts = <0 108 0>;
+ clocks = <&gcc GCC_BLSP1_UART2_APPS_CLK>,
+ <&gcc GCC_BLSP1_AHB_CLK>;
+ clock-names = "core", "iface";
+
+ dmas = <&uart-bam 0>, <&uart-bam 1>;
+ dma-names = "rx", "tx";
+ };
diff --git a/Documentation/devicetree/bindings/dma/sirfsoc-dma.txt b/Documentation/devicetree/bindings/dma/sirfsoc-dma.txt
new file mode 100644
index 00000000000..ecbc96ad36f
--- /dev/null
+++ b/Documentation/devicetree/bindings/dma/sirfsoc-dma.txt
@@ -0,0 +1,43 @@
+* CSR SiRFSoC DMA controller
+
+See dma.txt first
+
+Required properties:
+- compatible: Should be "sirf,prima2-dmac" or "sirf,marco-dmac"
+- reg: Should contain DMA registers location and length.
+- interrupts: Should contain one interrupt shared by all channel
+- #dma-cells: must be <1>. used to represent the number of integer
+ cells in the dmas property of client device.
+- clocks: clock required
+
+Example:
+
+Controller:
+dmac0: dma-controller@b00b0000 {
+ compatible = "sirf,prima2-dmac";
+ reg = <0xb00b0000 0x10000>;
+ interrupts = <12>;
+ clocks = <&clks 24>;
+ #dma-cells = <1>;
+};
+
+
+Client:
+Fill the specific dma request line in dmas. In the below example, spi0 read
+channel request line is 9 of the 2nd dma controller, while write channel uses
+4 of the 2nd dma controller; spi1 read channel request line is 12 of the 1st
+dma controller, while write channel uses 13 of the 1st dma controller:
+
+spi0: spi@b00d0000 {
+ compatible = "sirf,prima2-spi";
+ dmas = <&dmac1 9>,
+ <&dmac1 4>;
+ dma-names = "rx", "tx";
+};
+
+spi1: spi@b0170000 {
+ compatible = "sirf,prima2-spi";
+ dmas = <&dmac0 12>,
+ <&dmac0 13>;
+ dma-names = "rx", "tx";
+};
diff --git a/Documentation/devicetree/bindings/dma/ste-dma40.txt b/Documentation/devicetree/bindings/dma/ste-dma40.txt
index a8c21c256ba..1f5729f1062 100644
--- a/Documentation/devicetree/bindings/dma/ste-dma40.txt
+++ b/Documentation/devicetree/bindings/dma/ste-dma40.txt
@@ -50,6 +50,9 @@ Each dmas request consists of 4 cells:
0x00000008: Use fixed channel:
Use automatic channel selection when unset
Use DMA request line number when set
+ 0x00000010: Set channel as high priority:
+ Normal priority when unset
+ High priority when set
Example:
diff --git a/Documentation/devicetree/bindings/dma/tegra20-apbdma.txt b/Documentation/devicetree/bindings/dma/tegra20-apbdma.txt
index 90fa7da525b..c6908e7c42c 100644
--- a/Documentation/devicetree/bindings/dma/tegra20-apbdma.txt
+++ b/Documentation/devicetree/bindings/dma/tegra20-apbdma.txt
@@ -5,6 +5,16 @@ Required properties:
- reg: Should contain DMA registers location and length. This shuld include
all of the per-channel registers.
- interrupts: Should contain all of the per-channel DMA interrupts.
+- clocks: Must contain one entry, for the module clock.
+ See ../clocks/clock-bindings.txt for details.
+- resets : Must contain an entry for each entry in reset-names.
+ See ../reset/reset.txt for details.
+- reset-names : Must include the following entries:
+ - dma
+- #dma-cells : Must be <1>. This dictates the length of DMA specifiers in
+ client nodes' dmas properties. The specifier represents the DMA request
+ select value for the peripheral. For more details, consult the Tegra TRM's
+ documentation of the APB DMA channel control register REQ_SEL field.
Examples:
@@ -27,4 +37,8 @@ apbdma: dma@6000a000 {
0 149 0x04
0 150 0x04
0 151 0x04 >;
+ clocks = <&tegra_car 34>;
+ resets = <&tegra_car 34>;
+ reset-names = "dma";
+ #dma-cells = <1>;
};
diff --git a/Documentation/devicetree/bindings/dma/ti-edma.txt b/Documentation/devicetree/bindings/dma/ti-edma.txt
index 9fbbdb783a7..5ba525a1003 100644
--- a/Documentation/devicetree/bindings/dma/ti-edma.txt
+++ b/Documentation/devicetree/bindings/dma/ti-edma.txt
@@ -2,11 +2,8 @@ TI EDMA
Required properties:
- compatible : "ti,edma3"
-- ti,edma-regions: Number of regions
-- ti,edma-slots: Number of slots
- #dma-cells: Should be set to <1>
Clients should use a single channel number per DMA request.
-- dma-channels: Specify total DMA channels per CC
- reg: Memory map for accessing module
- interrupt-parent: Interrupt controller the interrupt is routed through
- interrupts: Exactly 3 interrupts need to be specified in the order:
@@ -17,6 +14,13 @@ Optional properties:
- ti,hwmods: Name of the hwmods associated to the EDMA
- ti,edma-xbar-event-map: Crossbar event to channel map
+Deprecated properties:
+Listed here in case one wants to boot an old kernel with new DTB. These
+properties might need to be added to the new DTS files.
+- ti,edma-regions: Number of regions
+- ti,edma-slots: Number of slots
+- dma-channels: Specify total DMA channels per CC
+
Example:
edma: edma@49000000 {
@@ -26,9 +30,6 @@ edma: edma@49000000 {
compatible = "ti,edma3";
ti,hwmods = "tpcc", "tptc0", "tptc1", "tptc2";
#dma-cells = <1>;
- dma-channels = <64>;
- ti,edma-regions = <4>;
- ti,edma-slots = <256>;
- ti,edma-xbar-event-map = <1 12
- 2 13>;
+ ti,edma-xbar-event-map = /bits/ 16 <1 12
+ 2 13>;
};
diff --git a/Documentation/devicetree/bindings/dma/xilinx/xilinx_vdma.txt b/Documentation/devicetree/bindings/dma/xilinx/xilinx_vdma.txt
new file mode 100644
index 00000000000..1405ed071bb
--- /dev/null
+++ b/Documentation/devicetree/bindings/dma/xilinx/xilinx_vdma.txt
@@ -0,0 +1,75 @@
+Xilinx AXI VDMA engine, it does transfers between memory and video devices.
+It can be configured to have one channel or two channels. If configured
+as two channels, one is to transmit to the video device and another is
+to receive from the video device.
+
+Required properties:
+- compatible: Should be "xlnx,axi-vdma-1.00.a"
+- #dma-cells: Should be <1>, see "dmas" property below
+- reg: Should contain VDMA registers location and length.
+- xlnx,num-fstores: Should be the number of framebuffers as configured in h/w.
+- dma-channel child node: Should have at least one channel and can have up to
+ two channels per device. This node specifies the properties of each
+ DMA channel (see child node properties below).
+
+Optional properties:
+- xlnx,include-sg: Tells configured for Scatter-mode in
+ the hardware.
+- xlnx,flush-fsync: Tells which channel to Flush on Frame sync.
+ It takes following values:
+ {1}, flush both channels
+ {2}, flush mm2s channel
+ {3}, flush s2mm channel
+
+Required child node properties:
+- compatible: It should be either "xlnx,axi-vdma-mm2s-channel" or
+ "xlnx,axi-vdma-s2mm-channel".
+- interrupts: Should contain per channel VDMA interrupts.
+- xlnx,data-width: Should contain the stream data width, take values
+ {32,64...1024}.
+
+Optional child node properties:
+- xlnx,include-dre: Tells hardware is configured for Data
+ Realignment Engine.
+- xlnx,genlock-mode: Tells Genlock synchronization is
+ enabled/disabled in hardware.
+
+Example:
+++++++++
+
+axi_vdma_0: axivdma@40030000 {
+ compatible = "xlnx,axi-vdma-1.00.a";
+ #dma_cells = <1>;
+ reg = < 0x40030000 0x10000 >;
+ xlnx,num-fstores = <0x8>;
+ xlnx,flush-fsync = <0x1>;
+ dma-channel@40030000 {
+ compatible = "xlnx,axi-vdma-mm2s-channel";
+ interrupts = < 0 54 4 >;
+ xlnx,datawidth = <0x40>;
+ } ;
+ dma-channel@40030030 {
+ compatible = "xlnx,axi-vdma-s2mm-channel";
+ interrupts = < 0 53 4 >;
+ xlnx,datawidth = <0x40>;
+ } ;
+} ;
+
+
+* DMA client
+
+Required properties:
+- dmas: a list of <[Video DMA device phandle] [Channel ID]> pairs,
+ where Channel ID is '0' for write/tx and '1' for read/rx
+ channel.
+- dma-names: a list of DMA channel names, one per "dmas" entry
+
+Example:
+++++++++
+
+vdmatest_0: vdmatest@0 {
+ compatible ="xlnx,axi-vdma-test-1.00.a";
+ dmas = <&axi_vdma_0 0
+ &axi_vdma_0 1>;
+ dma-names = "vdma0", "vdma1";
+} ;
diff --git a/Documentation/devicetree/bindings/drm/bridge/ptn3460.txt b/Documentation/devicetree/bindings/drm/bridge/ptn3460.txt
new file mode 100644
index 00000000000..52b93b2c674
--- /dev/null
+++ b/Documentation/devicetree/bindings/drm/bridge/ptn3460.txt
@@ -0,0 +1,27 @@
+ptn3460 bridge bindings
+
+Required properties:
+ - compatible: "nxp,ptn3460"
+ - reg: i2c address of the bridge
+ - powerdown-gpio: OF device-tree gpio specification
+ - reset-gpio: OF device-tree gpio specification
+ - edid-emulation: The EDID emulation entry to use
+ +-------+------------+------------------+
+ | Value | Resolution | Description |
+ | 0 | 1024x768 | NXP Generic |
+ | 1 | 1920x1080 | NXP Generic |
+ | 2 | 1920x1080 | NXP Generic |
+ | 3 | 1600x900 | Samsung LTM200KT |
+ | 4 | 1920x1080 | Samsung LTM230HT |
+ | 5 | 1366x768 | NXP Generic |
+ | 6 | 1600x900 | ChiMei M215HGE |
+ +-------+------------+------------------+
+
+Example:
+ lvds-bridge@20 {
+ compatible = "nxp,ptn3460";
+ reg = <0x20>;
+ powerdown-gpio = <&gpy2 5 1 0 0>;
+ reset-gpio = <&gpx1 5 1 0 0>;
+ edid-emulation = <5>;
+ };
diff --git a/Documentation/devicetree/bindings/drm/i2c/tda998x.txt b/Documentation/devicetree/bindings/drm/i2c/tda998x.txt
new file mode 100644
index 00000000000..d7df01c5bb3
--- /dev/null
+++ b/Documentation/devicetree/bindings/drm/i2c/tda998x.txt
@@ -0,0 +1,27 @@
+Device-Tree bindings for the NXP TDA998x HDMI transmitter
+
+Required properties;
+ - compatible: must be "nxp,tda998x"
+
+Optional properties:
+ - interrupts: interrupt number and trigger type
+ default: polling
+
+ - pinctrl-0: pin control group to be used for
+ screen plug/unplug interrupt.
+
+ - pinctrl-names: must contain a "default" entry.
+
+ - video-ports: 24 bits value which defines how the video controller
+ output is wired to the TDA998x input - default: <0x230145>
+
+Example:
+
+ tda998x: hdmi-encoder {
+ compatible = "nxp,tda998x";
+ reg = <0x70>;
+ interrupt-parent = <&gpio0>;
+ interrupts = <27 2>; /* falling edge */
+ pinctrl-0 = <&pmx_camera>;
+ pinctrl-names = "default";
+ };
diff --git a/Documentation/devicetree/bindings/extcon/extcon-palmas.txt b/Documentation/devicetree/bindings/extcon/extcon-palmas.txt
index 7dab6a8f4a0..45414bbcd94 100644
--- a/Documentation/devicetree/bindings/extcon/extcon-palmas.txt
+++ b/Documentation/devicetree/bindings/extcon/extcon-palmas.txt
@@ -2,7 +2,11 @@ EXTCON FOR PALMAS/TWL CHIPS
PALMAS USB COMPARATOR
Required Properties:
- - compatible : Should be "ti,palmas-usb" or "ti,twl6035-usb"
+ - compatible: should contain one of:
+ * "ti,palmas-usb-vid".
+ * "ti,twl6035-usb-vid".
+ * "ti,palmas-usb" (DEPRECATED - use "ti,palmas-usb-vid").
+ * "ti,twl6035-usb" (DEPRECATED - use "ti,twl6035-usb-vid").
Optional Properties:
- ti,wakeup : To enable the wakeup comparator in probe
diff --git a/Documentation/devicetree/bindings/gpio/8xxx_gpio.txt b/Documentation/devicetree/bindings/gpio/8xxx_gpio.txt
index b0019eb5330..798cfc9d383 100644
--- a/Documentation/devicetree/bindings/gpio/8xxx_gpio.txt
+++ b/Documentation/devicetree/bindings/gpio/8xxx_gpio.txt
@@ -5,16 +5,42 @@ This is for the non-QE/CPM/GUTs GPIO controllers as found on
Every GPIO controller node must have #gpio-cells property defined,
this information will be used to translate gpio-specifiers.
+See bindings/gpio/gpio.txt for details of how to specify GPIO
+information for devices.
+
+The GPIO module usually is connected to the SoC's internal interrupt
+controller, see bindings/interrupt-controller/interrupts.txt (the
+interrupt client nodes section) for details how to specify this GPIO
+module's interrupt.
+
+The GPIO module may serve as another interrupt controller (cascaded to
+the SoC's internal interrupt controller). See the interrupt controller
+nodes section in bindings/interrupt-controller/interrupts.txt for
+details.
Required properties:
-- compatible : "fsl,<CHIP>-gpio" followed by "fsl,mpc8349-gpio" for
- 83xx, "fsl,mpc8572-gpio" for 85xx and "fsl,mpc8610-gpio" for 86xx.
-- #gpio-cells : Should be two. The first cell is the pin number and the
- second cell is used to specify optional parameters (currently unused).
- - interrupts : Interrupt mapping for GPIO IRQ.
- - interrupt-parent : Phandle for the interrupt controller that
- services interrupts for this device.
-- gpio-controller : Marks the port as GPIO controller.
+- compatible: "fsl,<chip>-gpio" followed by "fsl,mpc8349-gpio"
+ for 83xx, "fsl,mpc8572-gpio" for 85xx, or
+ "fsl,mpc8610-gpio" for 86xx.
+- #gpio-cells: Should be two. The first cell is the pin number
+ and the second cell is used to specify optional
+ parameters (currently unused).
+- interrupt-parent: Phandle for the interrupt controller that
+ services interrupts for this device.
+- interrupts: Interrupt mapping for GPIO IRQ.
+- gpio-controller: Marks the port as GPIO controller.
+
+Optional properties:
+- interrupt-controller: Empty boolean property which marks the GPIO
+ module as an IRQ controller.
+- #interrupt-cells: Should be two. Defines the number of integer
+ cells required to specify an interrupt within
+ this interrupt controller. The first cell
+ defines the pin number, the second cell
+ defines additional flags (trigger type,
+ trigger polarity). Note that the available
+ set of trigger conditions supported by the
+ GPIO module depends on the actual SoC.
Example of gpio-controller nodes for a MPC8347 SoC:
@@ -22,39 +48,27 @@ Example of gpio-controller nodes for a MPC8347 SoC:
#gpio-cells = <2>;
compatible = "fsl,mpc8347-gpio", "fsl,mpc8349-gpio";
reg = <0xc00 0x100>;
- interrupts = <74 0x8>;
interrupt-parent = <&ipic>;
+ interrupts = <74 0x8>;
gpio-controller;
+ interrupt-controller;
+ #interrupt-cells = <2>;
};
gpio2: gpio-controller@d00 {
#gpio-cells = <2>;
compatible = "fsl,mpc8347-gpio", "fsl,mpc8349-gpio";
reg = <0xd00 0x100>;
- interrupts = <75 0x8>;
interrupt-parent = <&ipic>;
+ interrupts = <75 0x8>;
gpio-controller;
};
-See booting-without-of.txt for details of how to specify GPIO
-information for devices.
-
-To use GPIO pins as interrupt sources for peripherals, specify the
-GPIO controller as the interrupt parent and define GPIO number +
-trigger mode using the interrupts property, which is defined like
-this:
-
-interrupts = <number trigger>, where:
- - number: GPIO pin (0..31)
- - trigger: trigger mode:
- 2 = trigger on falling edge
- 3 = trigger on both edges
-
-Example of device using this is:
+Example of a peripheral using the GPIO module as an IRQ controller:
funkyfpga@0 {
compatible = "funky-fpga";
...
- interrupts = <4 3>;
interrupt-parent = <&gpio1>;
+ interrupts = <4 3>;
};
diff --git a/Documentation/devicetree/bindings/gpio/abilis,tb10x-gpio.txt b/Documentation/devicetree/bindings/gpio/abilis,tb10x-gpio.txt
new file mode 100644
index 00000000000..00611aceed3
--- /dev/null
+++ b/Documentation/devicetree/bindings/gpio/abilis,tb10x-gpio.txt
@@ -0,0 +1,36 @@
+* Abilis TB10x GPIO controller
+
+Required Properties:
+- compatible: Should be "abilis,tb10x-gpio"
+- reg: Address and length of the register set for the device
+- gpio-controller: Marks the device node as a gpio controller.
+- #gpio-cells: Should be <2>. The first cell is the pin number and the
+ second cell is used to specify optional parameters:
+ - bit 0 specifies polarity (0 for normal, 1 for inverted).
+- abilis,ngpio: the number of GPIO pins this driver controls.
+
+Optional Properties:
+- interrupt-controller: Marks the device node as an interrupt controller.
+- #interrupt-cells: Should be <1>. Interrupts are triggered on both edges.
+- interrupts: Defines the interrupt line connecting this GPIO controller to
+ its parent interrupt controller.
+- interrupt-parent: Defines the parent interrupt controller.
+
+GPIO ranges are specified as described in
+Documentation/devicetree/bindings/gpio/gpio.txt
+
+Example:
+
+ gpioa: gpio@FF140000 {
+ compatible = "abilis,tb10x-gpio";
+ interrupt-controller;
+ #interrupt-cells = <1>;
+ interrupt-parent = <&tb10x_ictl>;
+ interrupts = <27 2>;
+ reg = <0xFF140000 0x1000>;
+ gpio-controller;
+ #gpio-cells = <2>;
+ abilis,ngpio = <3>;
+ gpio-ranges = <&iomux 0 0 0>;
+ gpio-ranges-group-names = "gpioa_pins";
+ };
diff --git a/Documentation/devicetree/bindings/gpio/cirrus,clps711x-mctrl-gpio.txt b/Documentation/devicetree/bindings/gpio/cirrus,clps711x-mctrl-gpio.txt
new file mode 100644
index 00000000000..94ae9f82dcf
--- /dev/null
+++ b/Documentation/devicetree/bindings/gpio/cirrus,clps711x-mctrl-gpio.txt
@@ -0,0 +1,17 @@
+* ARM Cirrus Logic CLPS711X SYSFLG1 MCTRL GPIOs
+
+Required properties:
+- compatible: Should contain "cirrus,clps711x-mctrl-gpio".
+- gpio-controller: Marks the device node as a gpio controller.
+- #gpio-cells: Should be two. The first cell is the pin number and
+ the second cell is used to specify the gpio polarity:
+ 0 = Active high,
+ 1 = Active low.
+
+Example:
+ sysgpio: sysgpio {
+ compatible = "cirrus,ep7312-mctrl-gpio",
+ "cirrus,clps711x-mctrl-gpio";
+ gpio-controller;
+ #gpio-cells = <2>;
+ };
diff --git a/Documentation/devicetree/bindings/gpio/gpio-bcm-kona.txt b/Documentation/devicetree/bindings/gpio/gpio-bcm-kona.txt
new file mode 100644
index 00000000000..4a63bc96b68
--- /dev/null
+++ b/Documentation/devicetree/bindings/gpio/gpio-bcm-kona.txt
@@ -0,0 +1,52 @@
+Broadcom Kona Family GPIO
+=========================
+
+This GPIO driver is used in the following Broadcom SoCs:
+ BCM11130, BCM11140, BCM11351, BCM28145, BCM28155
+
+The Broadcom GPIO Controller IP can be configured prior to synthesis to
+support up to 8 banks of 32 GPIOs where each bank has its own IRQ. The
+GPIO controller only supports edge, not level, triggering of interrupts.
+
+Required properties
+-------------------
+
+- compatible: "brcm,bcm11351-gpio", "brcm,kona-gpio"
+- reg: Physical base address and length of the controller's registers.
+- interrupts: The interrupt outputs from the controller. There is one GPIO
+ interrupt per GPIO bank. The number of interrupts listed depends on the
+ number of GPIO banks on the SoC. The interrupts must be ordered by bank,
+ starting with bank 0. There is always a 1:1 mapping between banks and
+ IRQs.
+- #gpio-cells: Should be <2>. The first cell is the pin number, the second
+ cell is used to specify optional parameters:
+ - bit 0 specifies polarity (0 for normal, 1 for inverted)
+ See also "gpio-specifier" in .../devicetree/bindings/gpio/gpio.txt.
+- #interrupt-cells: Should be <2>. The first cell is the GPIO number. The
+ second cell is used to specify flags. The following subset of flags is
+ supported:
+ - trigger type (bits[1:0]):
+ 1 = low-to-high edge triggered.
+ 2 = high-to-low edge triggered.
+ 3 = low-to-high or high-to-low edge triggered
+ Valid values are 1, 2, 3
+ See also .../devicetree/bindings/interrupt-controller/interrupts.txt.
+- gpio-controller: Marks the device node as a GPIO controller.
+- interrupt-controller: Marks the device node as an interrupt controller.
+
+Example:
+ gpio: gpio@35003000 {
+ compatible = "brcm,bcm11351-gpio", "brcm,kona-gpio";
+ reg = <0x35003000 0x800>;
+ interrupts =
+ <GIC_SPI 106 IRQ_TYPE_LEVEL_HIGH
+ GIC_SPI 115 IRQ_TYPE_LEVEL_HIGH
+ GIC_SPI 114 IRQ_TYPE_LEVEL_HIGH
+ GIC_SPI 113 IRQ_TYPE_LEVEL_HIGH
+ GIC_SPI 112 IRQ_TYPE_LEVEL_HIGH
+ GIC_SPI 111 IRQ_TYPE_LEVEL_HIGH>;
+ #gpio-cells = <2>;
+ #interrupt-cells = <2>;
+ gpio-controller;
+ interrupt-controller;
+ };
diff --git a/Documentation/devicetree/bindings/gpio/gpio-davinci.txt b/Documentation/devicetree/bindings/gpio/gpio-davinci.txt
new file mode 100644
index 00000000000..5079ba7d656
--- /dev/null
+++ b/Documentation/devicetree/bindings/gpio/gpio-davinci.txt
@@ -0,0 +1,62 @@
+Davinci/Keystone GPIO controller bindings
+
+Required Properties:
+- compatible: should be "ti,dm6441-gpio", "ti,keystone-gpio"
+
+- reg: Physical base address of the controller and the size of memory mapped
+ registers.
+
+- gpio-controller : Marks the device node as a gpio controller.
+
+- #gpio-cells : Should be two.
+ - first cell is the pin number
+ - second cell is used to specify optional parameters (unused)
+
+- interrupt-parent: phandle of the parent interrupt controller.
+
+- interrupts: Array of GPIO interrupt number. Only banked or unbanked IRQs are
+ supported at a time.
+
+- ti,ngpio: The number of GPIO pins supported.
+
+- ti,davinci-gpio-unbanked: The number of GPIOs that have an individual interrupt
+ line to processor.
+
+The GPIO controller also acts as an interrupt controller. It uses the default
+two cells specifier as described in Documentation/devicetree/bindings/
+interrupt-controller/interrupts.txt.
+
+Example:
+
+gpio: gpio@1e26000 {
+ compatible = "ti,dm6441-gpio";
+ gpio-controller;
+ #gpio-cells = <2>;
+ reg = <0x226000 0x1000>;
+ interrupt-parent = <&intc>;
+ interrupts = <42 IRQ_TYPE_EDGE_BOTH 43 IRQ_TYPE_EDGE_BOTH
+ 44 IRQ_TYPE_EDGE_BOTH 45 IRQ_TYPE_EDGE_BOTH
+ 46 IRQ_TYPE_EDGE_BOTH 47 IRQ_TYPE_EDGE_BOTH
+ 48 IRQ_TYPE_EDGE_BOTH 49 IRQ_TYPE_EDGE_BOTH
+ 50 IRQ_TYPE_EDGE_BOTH>;
+ ti,ngpio = <144>;
+ ti,davinci-gpio-unbanked = <0>;
+ interrupt-controller;
+ #interrupt-cells = <2>;
+};
+
+leds {
+ compatible = "gpio-leds";
+
+ led1 {
+ label = "davinci:green:usr1";
+ gpios = <&gpio 10 GPIO_ACTIVE_HIGH>;
+ ...
+ };
+
+ led2 {
+ label = "davinci:red:debug1";
+ gpios = <&gpio 11 GPIO_ACTIVE_HIGH>;
+ ...
+ };
+};
diff --git a/Documentation/devicetree/bindings/gpio/gpio-lp3943.txt b/Documentation/devicetree/bindings/gpio/gpio-lp3943.txt
new file mode 100644
index 00000000000..80fcb7d70e1
--- /dev/null
+++ b/Documentation/devicetree/bindings/gpio/gpio-lp3943.txt
@@ -0,0 +1,37 @@
+TI/National Semiconductor LP3943 GPIO controller
+
+Required properties:
+ - compatible: "ti,lp3943-gpio"
+ - gpio-controller: Marks the device node as a GPIO controller.
+ - #gpio-cells: Should be 2. See gpio.txt in this directory for a
+ description of the cells format.
+
+Example:
+Simple LED controls with LP3943 GPIO controller
+
+&i2c4 {
+ lp3943@60 {
+ compatible = "ti,lp3943";
+ reg = <0x60>;
+
+ gpioex: gpio {
+ compatible = "ti,lp3943-gpio";
+ gpio-controller;
+ #gpio-cells = <2>;
+ };
+ };
+};
+
+leds {
+ compatible = "gpio-leds";
+ indicator1 {
+ label = "indi1";
+ gpios = <&gpioex 9 GPIO_ACTIVE_LOW>;
+ };
+
+ indicator2 {
+ label = "indi2";
+ gpios = <&gpioex 10 GPIO_ACTIVE_LOW>;
+ default-state = "off";
+ };
+};
diff --git a/Documentation/devicetree/bindings/gpio/gpio-mcp23s08.txt b/Documentation/devicetree/bindings/gpio/gpio-mcp23s08.txt
index daa30174bcc..c306a2d0f2b 100644
--- a/Documentation/devicetree/bindings/gpio/gpio-mcp23s08.txt
+++ b/Documentation/devicetree/bindings/gpio/gpio-mcp23s08.txt
@@ -38,12 +38,38 @@ Required device specific properties (only for SPI chips):
removed.
- spi-max-frequency = The maximum frequency this chip is able to handle
-Example I2C:
+Optional properties:
+- #interrupt-cells : Should be two.
+ - first cell is the pin number
+ - second cell is used to specify flags.
+- interrupt-controller: Marks the device node as a interrupt controller.
+NOTE: The interrupt functionality is only supported for i2c versions of the
+chips. The spi chips can also do the interrupts, but this is not supported by
+the linux driver yet.
+
+Optional device specific properties:
+- microchip,irq-mirror: Sets the mirror flag in the IOCON register. Devices
+ with two interrupt outputs (these are the devices ending with 17 and
+ those that have 16 IOs) have two IO banks: IO 0-7 form bank 1 and
+ IO 8-15 are bank 2. These chips have two different interrupt outputs:
+ One for bank 1 and another for bank 2. If irq-mirror is set, both
+ interrupts are generated regardless of the bank that an input change
+ occurred on. If it is not set, the interrupt are only generated for the
+ bank they belong to.
+ On devices with only one interrupt output this property is useless.
+
+Example I2C (with interrupt):
gpiom1: gpio@20 {
compatible = "microchip,mcp23017";
gpio-controller;
#gpio-cells = <2>;
reg = <0x20>;
+
+ interrupt-parent = <&gpio1>;
+ interrupts = <17 IRQ_TYPE_LEVEL_LOW>;
+ interrupt-controller;
+ #interrupt-cells=<2>;
+ microchip,irq-mirror;
};
Example SPI:
diff --git a/Documentation/devicetree/bindings/gpio/gpio-pcf857x.txt b/Documentation/devicetree/bindings/gpio/gpio-pcf857x.txt
new file mode 100644
index 00000000000..d63194a2c84
--- /dev/null
+++ b/Documentation/devicetree/bindings/gpio/gpio-pcf857x.txt
@@ -0,0 +1,71 @@
+* PCF857x-compatible I/O expanders
+
+The PCF857x-compatible chips have "quasi-bidirectional" I/O lines that can be
+driven high by a pull-up current source or driven low to ground. This combines
+the direction and output level into a single bit per line, which can't be read
+back. We can't actually know at initialization time whether a line is configured
+(a) as output and driving the signal low/high, or (b) as input and reporting a
+low/high value, without knowing the last value written since the chip came out
+of reset (if any). The only reliable solution for setting up line direction is
+thus to do it explicitly.
+
+Required Properties:
+
+ - compatible: should be one of the following.
+ - "maxim,max7328": For the Maxim MAX7378
+ - "maxim,max7329": For the Maxim MAX7329
+ - "nxp,pca8574": For the NXP PCA8574
+ - "nxp,pca8575": For the NXP PCA8575
+ - "nxp,pca9670": For the NXP PCA9670
+ - "nxp,pca9671": For the NXP PCA9671
+ - "nxp,pca9672": For the NXP PCA9672
+ - "nxp,pca9673": For the NXP PCA9673
+ - "nxp,pca9674": For the NXP PCA9674
+ - "nxp,pca9675": For the NXP PCA9675
+ - "nxp,pcf8574": For the NXP PCF8574
+ - "nxp,pcf8574a": For the NXP PCF8574A
+ - "nxp,pcf8575": For the NXP PCF8575
+ - "ti,tca9554": For the TI TCA9554
+
+ - reg: I2C slave address.
+
+ - gpio-controller: Marks the device node as a gpio controller.
+ - #gpio-cells: Should be 2. The first cell is the GPIO number and the second
+ cell specifies GPIO flags, as defined in <dt-bindings/gpio/gpio.h>. Only the
+ GPIO_ACTIVE_HIGH and GPIO_ACTIVE_LOW flags are supported.
+
+Optional Properties:
+
+ - lines-initial-states: Bitmask that specifies the initial state of each
+ line. When a bit is set to zero, the corresponding line will be initialized to
+ the input (pulled-up) state. When the bit is set to one, the line will be
+ initialized the the low-level output state. If the property is not specified
+ all lines will be initialized to the input state.
+
+ The I/O expander can detect input state changes, and thus optionally act as
+ an interrupt controller. When the expander interrupt line is connected all the
+ following properties must be set. For more information please see the
+ interrupt controller device tree bindings documentation available at
+ Documentation/devicetree/bindings/interrupt-controller/interrupts.txt.
+
+ - interrupt-controller: Identifies the node as an interrupt controller.
+ - #interrupt-cells: Number of cells to encode an interrupt source, shall be 2.
+ - interrupt-parent: phandle of the parent interrupt controller.
+ - interrupts: Interrupt specifier for the controllers interrupt.
+
+
+Please refer to gpio.txt in this directory for details of the common GPIO
+bindings used by client devices.
+
+Example: PCF8575 I/O expander node
+
+ pcf8575: gpio@20 {
+ compatible = "nxp,pcf8575";
+ reg = <0x20>;
+ interrupt-parent = <&irqpin2>;
+ interrupts = <3 0>;
+ gpio-controller;
+ #gpio-cells = <2>;
+ interrupt-controller;
+ #interrupt-cells = <2>;
+ };
diff --git a/Documentation/devicetree/bindings/gpio/gpio-zevio.txt b/Documentation/devicetree/bindings/gpio/gpio-zevio.txt
new file mode 100644
index 00000000000..a37bd9ae273
--- /dev/null
+++ b/Documentation/devicetree/bindings/gpio/gpio-zevio.txt
@@ -0,0 +1,16 @@
+Zevio GPIO controller
+
+Required properties:
+- compatible: Should be "lsi,zevio-gpio"
+- reg: Address and length of the register set for the device
+- #gpio-cells: Should be two. The first cell is the pin number and the
+ second cell is used to specify optional parameters (currently unused).
+- gpio-controller: Marks the device node as a GPIO controller.
+
+Example:
+ gpio: gpio@90000000 {
+ compatible = "lsi,zevio-gpio";
+ reg = <0x90000000 0x1000>;
+ gpio-controller;
+ #gpio-cells = <2>;
+ };
diff --git a/Documentation/devicetree/bindings/gpio/gpio.txt b/Documentation/devicetree/bindings/gpio/gpio.txt
index 6cec6ff20d2..3fb8f53071b 100644
--- a/Documentation/devicetree/bindings/gpio/gpio.txt
+++ b/Documentation/devicetree/bindings/gpio/gpio.txt
@@ -13,11 +13,11 @@ properties, each containing a 'gpio-list':
gpio-specifier : Array of #gpio-cells specifying specific gpio
(controller specific)
-GPIO properties should be named "[<name>-]gpios". Exact
+GPIO properties should be named "[<name>-]gpios". The exact
meaning of each gpios property must be documented in the device tree
binding for each device.
-For example, the following could be used to describe gpios pins to use
+For example, the following could be used to describe GPIO pins used
as chip select lines; with chip selects 0, 1 and 3 populated, and chip
select 2 left empty:
@@ -44,35 +44,79 @@ whether pin is open-drain and whether pin is logically inverted.
Exact meaning of each specifier cell is controller specific, and must
be documented in the device tree binding for the device.
-Example of the node using GPIOs:
+Example of a node using GPIOs:
node {
gpios = <&qe_pio_e 18 0>;
};
In this example gpio-specifier is "18 0" and encodes GPIO pin number,
-and empty GPIO flags as accepted by the "qe_pio_e" gpio-controller.
+and GPIO flags as accepted by the "qe_pio_e" gpio-controller.
+
+1.1) GPIO specifier best practices
+----------------------------------
+
+A gpio-specifier should contain a flag indicating the GPIO polarity; active-
+high or active-low. If it does, the follow best practices should be followed:
+
+The gpio-specifier's polarity flag should represent the physical level at the
+GPIO controller that achieves (or represents, for inputs) a logically asserted
+value at the device. The exact definition of logically asserted should be
+defined by the binding for the device. If the board inverts the signal between
+the GPIO controller and the device, then the gpio-specifier will represent the
+opposite physical level than the signal at the device's pin.
+
+When the device's signal polarity is configurable, the binding for the
+device must either:
+
+a) Define a single static polarity for the signal, with the expectation that
+any software using that binding would statically program the device to use
+that signal polarity.
+
+The static choice of polarity may be either:
+
+a1) (Preferred) Dictated by a binding-specific DT property.
+
+or:
+
+a2) Defined statically by the DT binding itself.
+
+In particular, the polarity cannot be derived from the gpio-specifier, since
+that would prevent the DT from separately representing the two orthogonal
+concepts of configurable signal polarity in the device, and possible board-
+level signal inversion.
+
+or:
+
+b) Pick a single option for device signal polarity, and document this choice
+in the binding. The gpio-specifier should represent the polarity of the signal
+(at the GPIO controller) assuming that the device is configured for this
+particular signal polarity choice. If software chooses to program the device
+to generate or receive a signal of the opposite polarity, software will be
+responsible for correctly interpreting (inverting) the GPIO signal at the GPIO
+controller.
2) gpio-controller nodes
------------------------
-Every GPIO controller node must both an empty "gpio-controller"
-property, and have #gpio-cells contain the size of the gpio-specifier.
+Every GPIO controller node must contain both an empty "gpio-controller"
+property, and a #gpio-cells integer property, which indicates the number of
+cells in a gpio-specifier.
Example of two SOC GPIO banks defined as gpio-controller nodes:
qe_pio_a: gpio-controller@1400 {
- #gpio-cells = <2>;
compatible = "fsl,qe-pario-bank-a", "fsl,qe-pario-bank";
reg = <0x1400 0x18>;
gpio-controller;
+ #gpio-cells = <2>;
};
qe_pio_e: gpio-controller@1460 {
- #gpio-cells = <2>;
compatible = "fsl,qe-pario-bank-e", "fsl,qe-pario-bank";
reg = <0x1460 0x18>;
gpio-controller;
+ #gpio-cells = <2>;
};
2.1) gpio- and pin-controller interaction
@@ -87,8 +131,10 @@ controllers. The gpio-ranges property described below represents this, and
contains information structures as follows:
gpio-range-list ::= <single-gpio-range> [gpio-range-list]
- single-gpio-range ::=
+ single-gpio-range ::= <numeric-gpio-range> | <named-gpio-range>
+ numeric-gpio-range ::=
<pinctrl-phandle> <gpio-base> <pinctrl-base> <count>
+ named-gpio-range ::= <pinctrl-phandle> <gpio-base> '<0 0>'
gpio-phandle : phandle to pin controller node.
gpio-base : Base GPIO ID in the GPIO controller
pinctrl-base : Base pinctrl pin ID in the pin controller
@@ -97,6 +143,19 @@ contains information structures as follows:
The "pin controller node" mentioned above must conform to the bindings
described in ../pinctrl/pinctrl-bindings.txt.
+In case named gpio ranges are used (ranges with both <pinctrl-base> and
+<count> set to 0), the property gpio-ranges-group-names contains one string
+for every single-gpio-range in gpio-ranges:
+ gpiorange-names-list ::= <gpiorange-name> [gpiorange-names-list]
+ gpiorange-name : Name of the pingroup associated to the GPIO range in
+ the respective pin controller.
+
+Elements of gpiorange-names-list corresponding to numeric ranges contain
+the empty string. Elements of gpiorange-names-list corresponding to named
+ranges contain the name of a pin group defined in the respective pin
+controller. The number of pins/GPIOs in the range is the number of pins in
+that pin group.
+
Previous versions of this binding required all pin controller nodes that
were referenced by any gpio-ranges property to contain a property named
#gpio-range-cells with value <3>. This requirement is now deprecated.
@@ -104,7 +163,7 @@ However, that property may still exist in older device trees for
compatibility reasons, and would still be required even in new device
trees that need to be compatible with older software.
-Example:
+Example 1:
qe_pio_e: gpio-controller@1460 {
#gpio-cells = <2>;
@@ -117,3 +176,24 @@ Example:
Here, a single GPIO controller has GPIOs 0..9 routed to pin controller
pinctrl1's pins 20..29, and GPIOs 10..19 routed to pin controller pinctrl2's
pins 50..59.
+
+Example 2:
+
+ gpio_pio_i: gpio-controller@14B0 {
+ #gpio-cells = <2>;
+ compatible = "fsl,qe-pario-bank-e", "fsl,qe-pario-bank";
+ reg = <0x1480 0x18>;
+ gpio-controller;
+ gpio-ranges = <&pinctrl1 0 20 10>,
+ <&pinctrl2 10 0 0>,
+ <&pinctrl1 15 0 10>,
+ <&pinctrl2 25 0 0>;
+ gpio-ranges-group-names = "",
+ "foo",
+ "",
+ "bar";
+ };
+
+Here, three GPIO ranges are defined wrt. two pin controllers. pinctrl1 GPIO
+ranges are defined using pin numbers whereas the GPIO ranges wrt. pinctrl2
+are named "foo" and "bar".
diff --git a/Documentation/devicetree/bindings/gpio/moxa,moxart-gpio.txt b/Documentation/devicetree/bindings/gpio/moxa,moxart-gpio.txt
new file mode 100644
index 00000000000..f8e8f185a3d
--- /dev/null
+++ b/Documentation/devicetree/bindings/gpio/moxa,moxart-gpio.txt
@@ -0,0 +1,19 @@
+MOXA ART GPIO Controller
+
+Required properties:
+
+- #gpio-cells : Should be 2, The first cell is the pin number,
+ the second cell is used to specify polarity:
+ 0 = active high
+ 1 = active low
+- compatible : Must be "moxa,moxart-gpio"
+- reg : Should contain registers location and length
+
+Example:
+
+ gpio: gpio@98700000 {
+ gpio-controller;
+ #gpio-cells = <2>;
+ compatible = "moxa,moxart-gpio";
+ reg = <0x98700000 0xC>;
+ };
diff --git a/Documentation/devicetree/bindings/gpio/renesas,gpio-rcar.txt b/Documentation/devicetree/bindings/gpio/renesas,gpio-rcar.txt
index 8655df9440d..941a26aa432 100644
--- a/Documentation/devicetree/bindings/gpio/renesas,gpio-rcar.txt
+++ b/Documentation/devicetree/bindings/gpio/renesas,gpio-rcar.txt
@@ -2,10 +2,11 @@
Required Properties:
- - compatible: should be one of the following.
+ - compatible: should contain one of the following.
- "renesas,gpio-r8a7778": for R8A7778 (R-Mobile M1) compatible GPIO controller.
- "renesas,gpio-r8a7779": for R8A7779 (R-Car H1) compatible GPIO controller.
- "renesas,gpio-r8a7790": for R8A7790 (R-Car H2) compatible GPIO controller.
+ - "renesas,gpio-r8a7791": for R8A7791 (R-Car M2) compatible GPIO controller.
- "renesas,gpio-rcar": for generic R-Car GPIO controller.
- reg: Base address and length of each memory resource used by the GPIO
@@ -20,6 +21,12 @@ Required Properties:
GPIO_ACTIVE_HIGH and GPIO_ACTIVE_LOW flags are supported.
- gpio-ranges: Range of pins managed by the GPIO controller.
+Optional properties:
+
+ - clocks: Must contain a reference to the functional clock. The property is
+ mandatory if the hardware implements a controllable functional clock for
+ the GPIO instance.
+
Please refer to gpio.txt in this directory for details of gpio-ranges property
and the common GPIO bindings used by client devices.
diff --git a/Documentation/devicetree/bindings/gpio/snps-dwapb-gpio.txt b/Documentation/devicetree/bindings/gpio/snps-dwapb-gpio.txt
new file mode 100644
index 00000000000..dd5d2c0394b
--- /dev/null
+++ b/Documentation/devicetree/bindings/gpio/snps-dwapb-gpio.txt
@@ -0,0 +1,60 @@
+* Synopsys DesignWare APB GPIO controller
+
+Required properties:
+- compatible : Should contain "snps,dw-apb-gpio"
+- reg : Address and length of the register set for the device.
+- #address-cells : should be 1 (for addressing port subnodes).
+- #size-cells : should be 0 (port subnodes).
+
+The GPIO controller has a configurable number of ports, each of which are
+represented as child nodes with the following properties:
+
+Required properties:
+- compatible : "snps,dw-apb-gpio-port"
+- gpio-controller : Marks the device node as a gpio controller.
+- #gpio-cells : Should be two. The first cell is the pin number and
+ the second cell is used to specify the gpio polarity:
+ 0 = active high
+ 1 = active low
+- reg : The integer port index of the port, a single cell.
+
+Optional properties:
+- interrupt-controller : The first port may be configured to be an interrupt
+controller.
+- #interrupt-cells : Specifies the number of cells needed to encode an
+ interrupt. Shall be set to 2. The first cell defines the interrupt number,
+ the second encodes the triger flags encoded as described in
+ Documentation/devicetree/bindings/interrupts.txt
+- interrupt-parent : The parent interrupt controller.
+- interrupts : The interrupt to the parent controller raised when GPIOs
+ generate the interrupts.
+- snps,nr-gpios : The number of pins in the port, a single cell.
+
+Example:
+
+gpio: gpio@20000 {
+ compatible = "snps,dw-apb-gpio";
+ reg = <0x20000 0x1000>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ porta: gpio-controller@0 {
+ compatible = "snps,dw-apb-gpio-port";
+ gpio-controller;
+ #gpio-cells = <2>;
+ snps,nr-gpios = <8>;
+ reg = <0>;
+ interrupt-controller;
+ #interrupt-cells = <2>;
+ interrupt-parent = <&vic1>;
+ interrupts = <0>;
+ };
+
+ portb: gpio-controller@1 {
+ compatible = "snps,dw-apb-gpio-port";
+ gpio-controller;
+ #gpio-cells = <2>;
+ snps,nr-gpios = <8>;
+ reg = <1>;
+ };
+};
diff --git a/Documentation/devicetree/bindings/gpu/nvidia,tegra20-host1x.txt b/Documentation/devicetree/bindings/gpu/nvidia,tegra20-host1x.txt
index b4fa934ae3a..b48f4ef31d9 100644
--- a/Documentation/devicetree/bindings/gpu/nvidia,tegra20-host1x.txt
+++ b/Documentation/devicetree/bindings/gpu/nvidia,tegra20-host1x.txt
@@ -9,6 +9,12 @@ Required properties:
- #size-cells: The number of cells used to represent the size of an address
range in the host1x address space. Should be 1.
- ranges: The mapping of the host1x address space to the CPU address space.
+- clocks: Must contain one entry, for the module clock.
+ See ../clocks/clock-bindings.txt for details.
+- resets: Must contain an entry for each entry in reset-names.
+ See ../reset/reset.txt for details.
+- reset-names: Must include the following entries:
+ - host1x
The host1x top-level node defines a number of children, each representing one
of the following host1x client modules:
@@ -19,6 +25,12 @@ of the following host1x client modules:
- compatible: "nvidia,tegra<chip>-mpe"
- reg: Physical base address and length of the controller's registers.
- interrupts: The interrupt outputs from the controller.
+ - clocks: Must contain one entry, for the module clock.
+ See ../clocks/clock-bindings.txt for details.
+ - resets: Must contain an entry for each entry in reset-names.
+ See ../reset/reset.txt for details.
+ - reset-names: Must include the following entries:
+ - mpe
- vi: video input
@@ -26,6 +38,12 @@ of the following host1x client modules:
- compatible: "nvidia,tegra<chip>-vi"
- reg: Physical base address and length of the controller's registers.
- interrupts: The interrupt outputs from the controller.
+ - clocks: Must contain one entry, for the module clock.
+ See ../clocks/clock-bindings.txt for details.
+ - resets: Must contain an entry for each entry in reset-names.
+ See ../reset/reset.txt for details.
+ - reset-names: Must include the following entries:
+ - vi
- epp: encoder pre-processor
@@ -33,6 +51,12 @@ of the following host1x client modules:
- compatible: "nvidia,tegra<chip>-epp"
- reg: Physical base address and length of the controller's registers.
- interrupts: The interrupt outputs from the controller.
+ - clocks: Must contain one entry, for the module clock.
+ See ../clocks/clock-bindings.txt for details.
+ - resets: Must contain an entry for each entry in reset-names.
+ See ../reset/reset.txt for details.
+ - reset-names: Must include the following entries:
+ - epp
- isp: image signal processor
@@ -40,6 +64,12 @@ of the following host1x client modules:
- compatible: "nvidia,tegra<chip>-isp"
- reg: Physical base address and length of the controller's registers.
- interrupts: The interrupt outputs from the controller.
+ - clocks: Must contain one entry, for the module clock.
+ See ../clocks/clock-bindings.txt for details.
+ - resets: Must contain an entry for each entry in reset-names.
+ See ../reset/reset.txt for details.
+ - reset-names: Must include the following entries:
+ - isp
- gr2d: 2D graphics engine
@@ -47,12 +77,30 @@ of the following host1x client modules:
- compatible: "nvidia,tegra<chip>-gr2d"
- reg: Physical base address and length of the controller's registers.
- interrupts: The interrupt outputs from the controller.
+ - clocks: Must contain one entry, for the module clock.
+ See ../clocks/clock-bindings.txt for details.
+ - resets: Must contain an entry for each entry in reset-names.
+ See ../reset/reset.txt for details.
+ - reset-names: Must include the following entries:
+ - 2d
- gr3d: 3D graphics engine
Required properties:
- compatible: "nvidia,tegra<chip>-gr3d"
- reg: Physical base address and length of the controller's registers.
+ - clocks: Must contain an entry for each entry in clock-names.
+ See ../clocks/clock-bindings.txt for details.
+ - clock-names: Must include the following entries:
+ (This property may be omitted if the only clock in the list is "3d")
+ - 3d
+ This MUST be the first entry.
+ - 3d2 (Only required on SoCs with two 3D clocks)
+ - resets: Must contain an entry for each entry in reset-names.
+ See ../reset/reset.txt for details.
+ - reset-names: Must include the following entries:
+ - 3d
+ - 3d2 (Only required on SoCs with two 3D clocks)
- dc: display controller
@@ -60,6 +108,19 @@ of the following host1x client modules:
- compatible: "nvidia,tegra<chip>-dc"
- reg: Physical base address and length of the controller's registers.
- interrupts: The interrupt outputs from the controller.
+ - clocks: Must contain an entry for each entry in clock-names.
+ See ../clocks/clock-bindings.txt for details.
+ - clock-names: Must include the following entries:
+ - dc
+ This MUST be the first entry.
+ - parent
+ - resets: Must contain an entry for each entry in reset-names.
+ See ../reset/reset.txt for details.
+ - reset-names: Must include the following entries:
+ - dc
+ - nvidia,head: The number of the display controller head. This is used to
+ setup the various types of output to receive video data from the given
+ head.
Each display controller node has a child node, named "rgb", that represents
the RGB output associated with the controller. It can take the following
@@ -67,6 +128,7 @@ of the following host1x client modules:
- nvidia,ddc-i2c-bus: phandle of an I2C controller used for DDC EDID probing
- nvidia,hpd-gpio: specifies a GPIO used for hotplug detection
- nvidia,edid: supplies a binary EDID blob
+ - nvidia,panel: phandle of a display panel
- hdmi: High Definition Multimedia Interface
@@ -74,13 +136,25 @@ of the following host1x client modules:
- compatible: "nvidia,tegra<chip>-hdmi"
- reg: Physical base address and length of the controller's registers.
- interrupts: The interrupt outputs from the controller.
+ - hdmi-supply: supply for the +5V HDMI connector pin
- vdd-supply: regulator for supply voltage
- pll-supply: regulator for PLL
+ - clocks: Must contain an entry for each entry in clock-names.
+ See ../clocks/clock-bindings.txt for details.
+ - clock-names: Must include the following entries:
+ - hdmi
+ This MUST be the first entry.
+ - parent
+ - resets: Must contain an entry for each entry in reset-names.
+ See ../reset/reset.txt for details.
+ - reset-names: Must include the following entries:
+ - hdmi
Optional properties:
- nvidia,ddc-i2c-bus: phandle of an I2C controller used for DDC EDID probing
- nvidia,hpd-gpio: specifies a GPIO used for hotplug detection
- nvidia,edid: supplies a binary EDID blob
+ - nvidia,panel: phandle of a display panel
- tvo: TV encoder output
@@ -88,12 +162,77 @@ of the following host1x client modules:
- compatible: "nvidia,tegra<chip>-tvo"
- reg: Physical base address and length of the controller's registers.
- interrupts: The interrupt outputs from the controller.
+ - clocks: Must contain one entry, for the module clock.
+ See ../clocks/clock-bindings.txt for details.
- dsi: display serial interface
Required properties:
- compatible: "nvidia,tegra<chip>-dsi"
- reg: Physical base address and length of the controller's registers.
+ - clocks: Must contain an entry for each entry in clock-names.
+ See ../clocks/clock-bindings.txt for details.
+ - clock-names: Must include the following entries:
+ - dsi
+ This MUST be the first entry.
+ - lp
+ - parent
+ - resets: Must contain an entry for each entry in reset-names.
+ See ../reset/reset.txt for details.
+ - reset-names: Must include the following entries:
+ - dsi
+ - avdd-dsi-supply: phandle of a supply that powers the DSI controller
+ - nvidia,mipi-calibrate: Should contain a phandle and a specifier specifying
+ which pads are used by this DSI output and need to be calibrated. See also
+ ../mipi/nvidia,tegra114-mipi.txt.
+
+ Optional properties:
+ - nvidia,ddc-i2c-bus: phandle of an I2C controller used for DDC EDID probing
+ - nvidia,hpd-gpio: specifies a GPIO used for hotplug detection
+ - nvidia,edid: supplies a binary EDID blob
+ - nvidia,panel: phandle of a display panel
+
+- sor: serial output resource
+
+ Required properties:
+ - compatible: "nvidia,tegra124-sor"
+ - reg: Physical base address and length of the controller's registers.
+ - interrupts: The interrupt outputs from the controller.
+ - clocks: Must contain an entry for each entry in clock-names.
+ See ../clocks/clock-bindings.txt for details.
+ - clock-names: Must include the following entries:
+ - sor: clock input for the SOR hardware
+ - parent: input for the pixel clock
+ - dp: reference clock for the SOR clock
+ - safe: safe reference for the SOR clock during power up
+ - resets: Must contain an entry for each entry in reset-names.
+ See ../reset/reset.txt for details.
+ - reset-names: Must include the following entries:
+ - sor
+
+ Optional properties:
+ - nvidia,ddc-i2c-bus: phandle of an I2C controller used for DDC EDID probing
+ - nvidia,hpd-gpio: specifies a GPIO used for hotplug detection
+ - nvidia,edid: supplies a binary EDID blob
+ - nvidia,panel: phandle of a display panel
+
+ Optional properties when driving an eDP output:
+ - nvidia,dpaux: phandle to a DispayPort AUX interface
+
+- dpaux: DisplayPort AUX interface
+ - compatible: "nvidia,tegra124-dpaux"
+ - reg: Physical base address and length of the controller's registers.
+ - interrupts: The interrupt outputs from the controller.
+ - clocks: Must contain an entry for each entry in clock-names.
+ See ../clocks/clock-bindings.txt for details.
+ - clock-names: Must include the following entries:
+ - dpaux: clock input for the DPAUX hardware
+ - parent: reference clock
+ - resets: Must contain an entry for each entry in reset-names.
+ See ../reset/reset.txt for details.
+ - reset-names: Must include the following entries:
+ - dpaux
+ - vdd-supply: phandle of a supply that powers the DisplayPort link
Example:
@@ -105,6 +244,9 @@ Example:
reg = <0x50000000 0x00024000>;
interrupts = <0 65 0x04 /* mpcore syncpt */
0 67 0x04>; /* mpcore general */
+ clocks = <&tegra_car TEGRA20_CLK_HOST1X>;
+ resets = <&tegra_car 28>;
+ reset-names = "host1x";
#address-cells = <1>;
#size-cells = <1>;
@@ -115,41 +257,64 @@ Example:
compatible = "nvidia,tegra20-mpe";
reg = <0x54040000 0x00040000>;
interrupts = <0 68 0x04>;
+ clocks = <&tegra_car TEGRA20_CLK_MPE>;
+ resets = <&tegra_car 60>;
+ reset-names = "mpe";
};
vi {
compatible = "nvidia,tegra20-vi";
reg = <0x54080000 0x00040000>;
interrupts = <0 69 0x04>;
+ clocks = <&tegra_car TEGRA20_CLK_VI>;
+ resets = <&tegra_car 100>;
+ reset-names = "vi";
};
epp {
compatible = "nvidia,tegra20-epp";
reg = <0x540c0000 0x00040000>;
interrupts = <0 70 0x04>;
+ clocks = <&tegra_car TEGRA20_CLK_EPP>;
+ resets = <&tegra_car 19>;
+ reset-names = "epp";
};
isp {
compatible = "nvidia,tegra20-isp";
reg = <0x54100000 0x00040000>;
interrupts = <0 71 0x04>;
+ clocks = <&tegra_car TEGRA20_CLK_ISP>;
+ resets = <&tegra_car 23>;
+ reset-names = "isp";
};
gr2d {
compatible = "nvidia,tegra20-gr2d";
reg = <0x54140000 0x00040000>;
interrupts = <0 72 0x04>;
+ clocks = <&tegra_car TEGRA20_CLK_GR2D>;
+ resets = <&tegra_car 21>;
+ reset-names = "2d";
};
gr3d {
compatible = "nvidia,tegra20-gr3d";
reg = <0x54180000 0x00040000>;
+ clocks = <&tegra_car TEGRA20_CLK_GR3D>;
+ resets = <&tegra_car 24>;
+ reset-names = "3d";
};
dc@54200000 {
compatible = "nvidia,tegra20-dc";
reg = <0x54200000 0x00040000>;
interrupts = <0 73 0x04>;
+ clocks = <&tegra_car TEGRA20_CLK_DISP1>,
+ <&tegra_car TEGRA20_CLK_PLL_P>;
+ clock-names = "dc", "parent";
+ resets = <&tegra_car 27>;
+ reset-names = "dc";
rgb {
status = "disabled";
@@ -160,6 +325,11 @@ Example:
compatible = "nvidia,tegra20-dc";
reg = <0x54240000 0x00040000>;
interrupts = <0 74 0x04>;
+ clocks = <&tegra_car TEGRA20_CLK_DISP2>,
+ <&tegra_car TEGRA20_CLK_PLL_P>;
+ clock-names = "dc", "parent";
+ resets = <&tegra_car 26>;
+ reset-names = "dc";
rgb {
status = "disabled";
@@ -170,6 +340,11 @@ Example:
compatible = "nvidia,tegra20-hdmi";
reg = <0x54280000 0x00040000>;
interrupts = <0 75 0x04>;
+ clocks = <&tegra_car TEGRA20_CLK_HDMI>,
+ <&tegra_car TEGRA20_CLK_PLL_D_OUT0>;
+ clock-names = "hdmi", "parent";
+ resets = <&tegra_car 51>;
+ reset-names = "hdmi";
status = "disabled";
};
@@ -177,12 +352,18 @@ Example:
compatible = "nvidia,tegra20-tvo";
reg = <0x542c0000 0x00040000>;
interrupts = <0 76 0x04>;
+ clocks = <&tegra_car TEGRA20_CLK_TVO>;
status = "disabled";
};
dsi {
compatible = "nvidia,tegra20-dsi";
reg = <0x54300000 0x00040000>;
+ clocks = <&tegra_car TEGRA20_CLK_DSI>,
+ <&tegra_car TEGRA20_CLK_PLL_D_OUT0>;
+ clock-names = "dsi", "parent";
+ resets = <&tegra_car 48>;
+ reset-names = "dsi";
status = "disabled";
};
};
diff --git a/Documentation/devicetree/bindings/graph.txt b/Documentation/devicetree/bindings/graph.txt
new file mode 100644
index 00000000000..1a69c078adf
--- /dev/null
+++ b/Documentation/devicetree/bindings/graph.txt
@@ -0,0 +1,129 @@
+Common bindings for device graphs
+
+General concept
+---------------
+
+The hierarchical organisation of the device tree is well suited to describe
+control flow to devices, but there can be more complex connections between
+devices that work together to form a logical compound device, following an
+arbitrarily complex graph.
+There already is a simple directed graph between devices tree nodes using
+phandle properties pointing to other nodes to describe connections that
+can not be inferred from device tree parent-child relationships. The device
+tree graph bindings described herein abstract more complex devices that can
+have multiple specifiable ports, each of which can be linked to one or more
+ports of other devices.
+
+These common bindings do not contain any information about the direction or
+type of the connections, they just map their existence. Specific properties
+may be described by specialized bindings depending on the type of connection.
+
+To see how this binding applies to video pipelines, for example, see
+Documentation/device-tree/bindings/media/video-interfaces.txt.
+Here the ports describe data interfaces, and the links between them are
+the connecting data buses. A single port with multiple connections can
+correspond to multiple devices being connected to the same physical bus.
+
+Organisation of ports and endpoints
+-----------------------------------
+
+Ports are described by child 'port' nodes contained in the device node.
+Each port node contains an 'endpoint' subnode for each remote device port
+connected to this port. If a single port is connected to more than one
+remote device, an 'endpoint' child node must be provided for each link.
+If more than one port is present in a device node or there is more than one
+endpoint at a port, or a port node needs to be associated with a selected
+hardware interface, a common scheme using '#address-cells', '#size-cells'
+and 'reg' properties is used number the nodes.
+
+device {
+ ...
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ port@0 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ reg = <0>;
+
+ endpoint@0 {
+ reg = <0>;
+ ...
+ };
+ endpoint@1 {
+ reg = <1>;
+ ...
+ };
+ };
+
+ port@1 {
+ reg = <1>;
+
+ endpoint { ... };
+ };
+};
+
+All 'port' nodes can be grouped under an optional 'ports' node, which
+allows to specify #address-cells, #size-cells properties for the 'port'
+nodes independently from any other child device nodes a device might
+have.
+
+device {
+ ...
+ ports {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ port@0 {
+ ...
+ endpoint@0 { ... };
+ endpoint@1 { ... };
+ };
+
+ port@1 { ... };
+ };
+};
+
+Links between endpoints
+-----------------------
+
+Each endpoint should contain a 'remote-endpoint' phandle property that points
+to the corresponding endpoint in the port of the remote device. In turn, the
+remote endpoint should contain a 'remote-endpoint' property. If it has one,
+it must not point to another than the local endpoint. Two endpoints with their
+'remote-endpoint' phandles pointing at each other form a link between the
+containing ports.
+
+device-1 {
+ port {
+ device_1_output: endpoint {
+ remote-endpoint = <&device_2_input>;
+ };
+ };
+};
+
+device-2 {
+ port {
+ device_2_input: endpoint {
+ remote-endpoint = <&device_1_output>;
+ };
+ };
+};
+
+
+Required properties
+-------------------
+
+If there is more than one 'port' or more than one 'endpoint' node or 'reg'
+property is present in port and/or endpoint nodes the following properties
+are required in a relevant parent node:
+
+ - #address-cells : number of cells required to define port/endpoint
+ identifier, should be 1.
+ - #size-cells : should be zero.
+
+Optional endpoint properties
+----------------------------
+
+- remote-endpoint: phandle to an 'endpoint' subnode of a remote device node.
+
diff --git a/Documentation/devicetree/bindings/hsi/client-devices.txt b/Documentation/devicetree/bindings/hsi/client-devices.txt
new file mode 100644
index 00000000000..104c9a3e57a
--- /dev/null
+++ b/Documentation/devicetree/bindings/hsi/client-devices.txt
@@ -0,0 +1,44 @@
+Each HSI port is supposed to have one child node, which
+symbols the remote device connected to the HSI port. The
+following properties are standardized for HSI clients:
+
+Required HSI configuration properties:
+
+- hsi-channel-ids: A list of channel ids
+
+- hsi-rx-mode: Receiver Bit transmission mode ("stream" or "frame")
+- hsi-tx-mode: Transmitter Bit transmission mode ("stream" or "frame")
+- hsi-mode: May be used instead hsi-rx-mode and hsi-tx-mode if
+ the transmission mode is the same for receiver and
+ transmitter
+- hsi-speed-kbps: Max bit transmission speed in kbit/s
+- hsi-flow: RX flow type ("synchronized" or "pipeline")
+- hsi-arb-mode: Arbitration mode for TX frame ("round-robin", "priority")
+
+Optional HSI configuration properties:
+
+- hsi-channel-names: A list with one name per channel specified in the
+ hsi-channel-ids property
+
+
+Device Tree node example for an HSI client:
+
+hsi-controller {
+ hsi-port {
+ modem: hsi-client {
+ compatible = "nokia,n900-modem";
+
+ hsi-channel-ids = <0>, <1>, <2>, <3>;
+ hsi-channel-names = "mcsaab-control",
+ "speech-control",
+ "speech-data",
+ "mcsaab-data";
+ hsi-speed-kbps = <55000>;
+ hsi-mode = "frame";
+ hsi-flow = "synchronized";
+ hsi-arb-mode = "round-robin";
+
+ /* more client specific properties */
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/hsi/nokia-modem.txt b/Documentation/devicetree/bindings/hsi/nokia-modem.txt
new file mode 100644
index 00000000000..8a979780452
--- /dev/null
+++ b/Documentation/devicetree/bindings/hsi/nokia-modem.txt
@@ -0,0 +1,57 @@
+Nokia modem client bindings
+
+The Nokia modem HSI client follows the common HSI client binding
+and inherits all required properties. The following additional
+properties are needed by the Nokia modem HSI client:
+
+Required properties:
+- compatible: Should be one of
+ "nokia,n900-modem"
+- hsi-channel-names: Should contain the following strings
+ "mcsaab-control"
+ "speech-control"
+ "speech-data"
+ "mcsaab-data"
+- gpios: Should provide a GPIO handler for each GPIO listed in
+ gpio-names
+- gpio-names: Should contain the following strings
+ "cmt_apeslpx"
+ "cmt_rst_rq"
+ "cmt_en"
+ "cmt_rst"
+ "cmt_bsi"
+- interrupts: Should be IRQ handle for modem's reset indication
+
+Example:
+
+&ssi_port {
+ modem: hsi-client {
+ compatible = "nokia,n900-modem";
+
+ pinctrl-names = "default";
+ pinctrl-0 = <&modem_pins>;
+
+ hsi-channel-ids = <0>, <1>, <2>, <3>;
+ hsi-channel-names = "mcsaab-control",
+ "speech-control",
+ "speech-data",
+ "mcsaab-data";
+ hsi-speed-kbps = <55000>;
+ hsi-mode = "frame";
+ hsi-flow = "synchronized";
+ hsi-arb-mode = "round-robin";
+
+ interrupts-extended = <&gpio3 8 IRQ_TYPE_EDGE_FALLING>; /* 72 */
+
+ gpios = <&gpio3 6 GPIO_ACTIVE_HIGH>, /* 70 */
+ <&gpio3 9 GPIO_ACTIVE_HIGH>, /* 73 */
+ <&gpio3 10 GPIO_ACTIVE_HIGH>, /* 74 */
+ <&gpio3 11 GPIO_ACTIVE_HIGH>, /* 75 */
+ <&gpio5 29 GPIO_ACTIVE_HIGH>; /* 157 */
+ gpio-names = "cmt_apeslpx",
+ "cmt_rst_rq",
+ "cmt_en",
+ "cmt_rst",
+ "cmt_bsi";
+ };
+};
diff --git a/Documentation/devicetree/bindings/hsi/omap-ssi.txt b/Documentation/devicetree/bindings/hsi/omap-ssi.txt
new file mode 100644
index 00000000000..f26625e4269
--- /dev/null
+++ b/Documentation/devicetree/bindings/hsi/omap-ssi.txt
@@ -0,0 +1,97 @@
+OMAP SSI controller bindings
+
+OMAP Synchronous Serial Interface (SSI) controller implements a legacy
+variant of MIPI's High Speed Synchronous Serial Interface (HSI).
+
+Required properties:
+- compatible: Should include "ti,omap3-ssi".
+- reg-names: Contains the values "sys" and "gdd" (in this order).
+- reg: Contains a matching register specifier for each entry
+ in reg-names.
+- interrupt-names: Contains the value "gdd_mpu".
+- interrupts: Contains matching interrupt information for each entry
+ in interrupt-names.
+- ranges: Represents the bus address mapping between the main
+ controller node and the child nodes below.
+- clock-names: Must include the following entries:
+ "ssi_ssr_fck": The OMAP clock of that name
+ "ssi_sst_fck": The OMAP clock of that name
+ "ssi_ick": The OMAP clock of that name
+- clocks: Contains a matching clock specifier for each entry in
+ clock-names.
+- #address-cells: Should be set to <1>
+- #size-cells: Should be set to <1>
+
+Each port is represented as a sub-node of the ti,omap3-ssi device.
+
+Required Port sub-node properties:
+- compatible: Should be set to the following value
+ ti,omap3-ssi-port (applicable to OMAP34xx devices)
+- reg-names: Contains the values "tx" and "rx" (in this order).
+- reg: Contains a matching register specifier for each entry
+ in reg-names.
+- interrupt-parent Should be a phandle for the interrupt controller
+- interrupts: Should contain interrupt specifiers for mpu interrupts
+ 0 and 1 (in this order).
+- ti,ssi-cawake-gpio: Defines which GPIO pin is used to signify CAWAKE
+ events for the port. This is an optional board-specific
+ property. If it's missing the port will not be
+ enabled.
+
+Example for Nokia N900:
+
+ssi-controller@48058000 {
+ compatible = "ti,omap3-ssi";
+
+ /* needed until hwmod is updated to use the compatible string */
+ ti,hwmods = "ssi";
+
+ reg = <0x48058000 0x1000>,
+ <0x48059000 0x1000>;
+ reg-names = "sys",
+ "gdd";
+
+ interrupts = <55>;
+ interrupt-names = "gdd_mpu";
+
+ clocks = <&ssi_ssr_fck>,
+ <&ssi_sst_fck>,
+ <&ssi_ick>;
+ clock-names = "ssi_ssr_fck",
+ "ssi_sst_fck",
+ "ssi_ick";
+
+ #address-cells = <1>;
+ #size-cells = <1>;
+ ranges;
+
+ ssi-port@4805a000 {
+ compatible = "ti,omap3-ssi-port";
+
+ reg = <0x4805a000 0x800>,
+ <0x4805a800 0x800>;
+ reg-names = "tx",
+ "rx";
+
+ interrupt-parent = <&intc>;
+ interrupts = <67>,
+ <68>;
+
+ ti,ssi-cawake-gpio = <&gpio5 23 GPIO_ACTIVE_HIGH>; /* 151 */
+ }
+
+ ssi-port@4805a000 {
+ compatible = "ti,omap3-ssi-port";
+
+ reg = <0x4805b000 0x800>,
+ <0x4805b800 0x800>;
+ reg-names = "tx",
+ "rx";
+
+ interrupt-parent = <&intc>;
+ interrupts = <69>,
+ <70>;
+
+ status = "disabled"; /* second port is not used on N900 */
+ }
+}
diff --git a/Documentation/devicetree/bindings/hwmon/lm90.txt b/Documentation/devicetree/bindings/hwmon/lm90.txt
new file mode 100644
index 00000000000..e8632486b9e
--- /dev/null
+++ b/Documentation/devicetree/bindings/hwmon/lm90.txt
@@ -0,0 +1,44 @@
+* LM90 series thermometer.
+
+Required node properties:
+- compatible: manufacturer and chip name, one of
+ "adi,adm1032"
+ "adi,adt7461"
+ "adi,adt7461a"
+ "gmt,g781"
+ "national,lm90"
+ "national,lm86"
+ "national,lm89"
+ "national,lm99"
+ "dallas,max6646"
+ "dallas,max6647"
+ "dallas,max6649"
+ "dallas,max6657"
+ "dallas,max6658"
+ "dallas,max6659"
+ "dallas,max6680"
+ "dallas,max6681"
+ "dallas,max6695"
+ "dallas,max6696"
+ "onnn,nct1008"
+ "winbond,w83l771"
+ "nxp,sa56004"
+
+- reg: I2C bus address of the device
+
+- vcc-supply: vcc regulator for the supply voltage.
+
+Optional properties:
+- interrupts: Contains a single interrupt specifier which describes the
+ LM90 "-ALERT" pin output.
+ See interrupt-controller/interrupts.txt for the format.
+
+Example LM90 node:
+
+temp-sensor {
+ compatible = "onnn,nct1008";
+ reg = <0x4c>;
+ vcc-supply = <&palmas_ldo6_reg>;
+ interrupt-parent = <&gpio>;
+ interrupts = <TEGRA_GPIO(O, 4) IRQ_TYPE_LEVEL_LOW>;
+}
diff --git a/Documentation/devicetree/bindings/hwmon/ntc_thermistor.txt b/Documentation/devicetree/bindings/hwmon/ntc_thermistor.txt
index c6f66674f19..b117b2e9e1a 100644
--- a/Documentation/devicetree/bindings/hwmon/ntc_thermistor.txt
+++ b/Documentation/devicetree/bindings/hwmon/ntc_thermistor.txt
@@ -3,11 +3,19 @@ NTC Thermistor hwmon sensors
Requires node properties:
- "compatible" value : one of
- "ntc,ncp15wb473"
- "ntc,ncp18wb473"
- "ntc,ncp21wb473"
- "ntc,ncp03wb473"
- "ntc,ncp15wl333"
+ "murata,ncp15wb473"
+ "murata,ncp18wb473"
+ "murata,ncp21wb473"
+ "murata,ncp03wb473"
+ "murata,ncp15wl333"
+
+/* Usage of vendor name "ntc" is deprecated */
+<DEPRECATED> "ntc,ncp15wb473"
+<DEPRECATED> "ntc,ncp18wb473"
+<DEPRECATED> "ntc,ncp21wb473"
+<DEPRECATED> "ntc,ncp03wb473"
+<DEPRECATED> "ntc,ncp15wl333"
+
- "pullup-uv" Pull up voltage in micro volts
- "pullup-ohm" Pull up resistor value in ohms
- "pulldown-ohm" Pull down resistor value in ohms
@@ -21,7 +29,7 @@ Read more about iio bindings at
Example:
ncp15wb473@0 {
- compatible = "ntc,ncp15wb473";
+ compatible = "murata,ncp15wb473";
pullup-uv = <1800000>;
pullup-ohm = <47000>;
pulldown-ohm = <0>;
diff --git a/Documentation/devicetree/bindings/hwrng/omap_rng.txt b/Documentation/devicetree/bindings/hwrng/omap_rng.txt
new file mode 100644
index 00000000000..6a62acd8695
--- /dev/null
+++ b/Documentation/devicetree/bindings/hwrng/omap_rng.txt
@@ -0,0 +1,22 @@
+OMAP SoC HWRNG Module
+
+Required properties:
+
+- compatible : Should contain entries for this and backward compatible
+ RNG versions:
+ - "ti,omap2-rng" for OMAP2.
+ - "ti,omap4-rng" for OMAP4, OMAP5 and AM33XX.
+ Note that these two versions are incompatible.
+- ti,hwmods: Name of the hwmod associated with the RNG module
+- reg : Offset and length of the register set for the module
+- interrupts : the interrupt number for the RNG module.
+ Only used for "ti,omap4-rng".
+
+Example:
+/* AM335x */
+rng: rng@48310000 {
+ compatible = "ti,omap4-rng";
+ ti,hwmods = "rng";
+ reg = <0x48310000 0x2000>;
+ interrupts = <111>;
+};
diff --git a/Documentation/devicetree/bindings/i2c/i2c-arb-gpio-challenge.txt b/Documentation/devicetree/bindings/i2c/i2c-arb-gpio-challenge.txt
index 1ac8ea8ade1..bfeabb84394 100644
--- a/Documentation/devicetree/bindings/i2c/i2c-arb-gpio-challenge.txt
+++ b/Documentation/devicetree/bindings/i2c/i2c-arb-gpio-challenge.txt
@@ -8,6 +8,12 @@ the standard I2C multi-master rules. Using GPIOs is generally useful in
the case where there is a device on the bus that has errata and/or bugs
that makes standard multimaster mode not feasible.
+Note that this scheme works well enough but has some downsides:
+* It is nonstandard (not using standard I2C multimaster)
+* Having two masters on a bus in general makes it relatively hard to debug
+ problems (hard to tell if i2c issues were caused by one master, another, or
+ some device on the bus).
+
Algorithm:
diff --git a/Documentation/devicetree/bindings/i2c/i2c-at91.txt b/Documentation/devicetree/bindings/i2c/i2c-at91.txt
index b689a0d9441..388f0a275fb 100644
--- a/Documentation/devicetree/bindings/i2c/i2c-at91.txt
+++ b/Documentation/devicetree/bindings/i2c/i2c-at91.txt
@@ -9,8 +9,10 @@ Required properties :
- interrupts: interrupt number to the cpu.
- #address-cells = <1>;
- #size-cells = <0>;
+- clocks: phandles to input clocks.
Optional properties:
+- clock-frequency: Desired I2C bus frequency in Hz, otherwise defaults to 100000
- Child nodes conforming to i2c bus binding
Examples :
@@ -21,6 +23,8 @@ i2c0: i2c@fff84000 {
interrupts = <12 4 6>;
#address-cells = <1>;
#size-cells = <0>;
+ clocks = <&twi0_clk>;
+ clock-frequency = <400000>;
24c512@50 {
compatible = "24c512";
diff --git a/Documentation/devicetree/bindings/i2c/i2c-bcm-kona.txt b/Documentation/devicetree/bindings/i2c/i2c-bcm-kona.txt
new file mode 100644
index 00000000000..1b87b741fa8
--- /dev/null
+++ b/Documentation/devicetree/bindings/i2c/i2c-bcm-kona.txt
@@ -0,0 +1,35 @@
+Broadcom Kona Family I2C
+=========================
+
+This I2C controller is used in the following Broadcom SoCs:
+
+ BCM11130
+ BCM11140
+ BCM11351
+ BCM28145
+ BCM28155
+
+Required Properties
+-------------------
+- compatible: "brcm,bcm11351-i2c", "brcm,kona-i2c"
+- reg: Physical base address and length of controller registers
+- interrupts: The interrupt number used by the controller
+- clocks: clock specifier for the kona i2c external clock
+- clock-frequency: The I2C bus frequency in Hz
+- #address-cells: Should be <1>
+- #size-cells: Should be <0>
+
+Refer to clocks/clock-bindings.txt for generic clock consumer
+properties.
+
+Example:
+
+i2c@3e016000 {
+ compatible = "brcm,bcm11351-i2c","brcm,kona-i2c";
+ reg = <0x3e016000 0x80>;
+ interrupts = <GIC_SPI 103 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&bsc1_clk>;
+ clock-frequency = <400000>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+};
diff --git a/Documentation/devicetree/bindings/i2c/i2c-cadence.txt b/Documentation/devicetree/bindings/i2c/i2c-cadence.txt
new file mode 100644
index 00000000000..7cb0b5608f4
--- /dev/null
+++ b/Documentation/devicetree/bindings/i2c/i2c-cadence.txt
@@ -0,0 +1,24 @@
+Binding for the Cadence I2C controller
+
+Required properties:
+ - reg: Physical base address and size of the controller's register area.
+ - compatible: Compatibility string. Must be 'cdns,i2c-r1p10'.
+ - clocks: Input clock specifier. Refer to common clock bindings.
+ - interrupts: Interrupt specifier. Refer to interrupt bindings.
+ - #address-cells: Should be 1.
+ - #size-cells: Should be 0.
+
+Optional properties:
+ - clock-frequency: Desired operating frequency, in Hz, of the bus.
+ - clock-names: Input clock name, should be 'pclk'.
+
+Example:
+ i2c@e0004000 {
+ compatible = "cdns,i2c-r1p10";
+ clocks = <&clkc 38>;
+ interrupts = <GIC_SPI 25 IRQ_TYPE_LEVEL_HIGH>;
+ reg = <0xe0004000 0x1000>;
+ clock-frequency = <400000>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ };
diff --git a/Documentation/devicetree/bindings/i2c/i2c-cros-ec-tunnel.txt b/Documentation/devicetree/bindings/i2c/i2c-cros-ec-tunnel.txt
new file mode 100644
index 00000000000..898f030eba6
--- /dev/null
+++ b/Documentation/devicetree/bindings/i2c/i2c-cros-ec-tunnel.txt
@@ -0,0 +1,39 @@
+I2C bus that tunnels through the ChromeOS EC (cros-ec)
+======================================================
+On some ChromeOS board designs we've got a connection to the EC (embedded
+controller) but no direct connection to some devices on the other side of
+the EC (like a battery and PMIC). To get access to those devices we need
+to tunnel our i2c commands through the EC.
+
+The node for this device should be under a cros-ec node like google,cros-ec-spi
+or google,cros-ec-i2c.
+
+
+Required properties:
+- compatible: google,cros-ec-i2c-tunnel
+- google,remote-bus: The EC bus we'd like to talk to.
+
+Optional child nodes:
+- One node per I2C device connected to the tunnelled I2C bus.
+
+
+Example:
+ cros-ec@0 {
+ compatible = "google,cros-ec-spi";
+
+ ...
+
+ i2c-tunnel {
+ compatible = "google,cros-ec-i2c-tunnel";
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ google,remote-bus = <0>;
+
+ battery: sbs-battery@b {
+ compatible = "sbs,sbs-battery";
+ reg = <0xb>;
+ sbs,poll-retry-count = <1>;
+ };
+ };
+ }
diff --git a/Documentation/devicetree/bindings/i2c/i2c-designware.txt b/Documentation/devicetree/bindings/i2c/i2c-designware.txt
index 7fd7fa25e9b..5199b0c8cf7 100644
--- a/Documentation/devicetree/bindings/i2c/i2c-designware.txt
+++ b/Documentation/devicetree/bindings/i2c/i2c-designware.txt
@@ -14,6 +14,12 @@ Optional properties :
- i2c-sda-hold-time-ns : should contain the SDA hold time in nanoseconds.
This option is only supported in hardware blocks version 1.11a or newer.
+ - i2c-scl-falling-time : should contain the SCL falling time in nanoseconds.
+ This value which is by default 300ns is used to compute the tLOW period.
+
+ - i2c-sda-falling-time : should contain the SDA falling time in nanoseconds.
+ This value which is by default 300ns is used to compute the tHIGH period.
+
Example :
i2c@f0000 {
@@ -34,4 +40,6 @@ Example :
interrupts = <12 1>;
clock-frequency = <400000>;
i2c-sda-hold-time-ns = <300>;
+ i2c-sda-falling-time-ns = <300>;
+ i2c-scl-falling-time-ns = <300>;
};
diff --git a/Documentation/devicetree/bindings/i2c/i2c-efm32.txt b/Documentation/devicetree/bindings/i2c/i2c-efm32.txt
new file mode 100644
index 00000000000..fc15ac51943
--- /dev/null
+++ b/Documentation/devicetree/bindings/i2c/i2c-efm32.txt
@@ -0,0 +1,34 @@
+* Energymicro efm32 i2c controller
+
+Required properties :
+
+ - reg : Offset and length of the register set for the device
+ - compatible : should be "energymicro,efm32-i2c"
+ - interrupts : the interrupt number
+ - clocks : reference to the module clock
+
+Recommended properties :
+
+ - clock-frequency : maximal I2C bus clock frequency in Hz.
+ - efm32,location : Decides the location of the USART I/O pins.
+ Allowed range : [0 .. 6]
+
+Example:
+ i2c0: i2c@4000a000 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ compatible = "energymicro,efm32-i2c";
+ reg = <0x4000a000 0x400>;
+ interrupts = <9>;
+ clocks = <&cmu clk_HFPERCLKI2C0>;
+ clock-frequency = <100000>;
+ status = "ok";
+ efm32,location = <3>;
+
+ eeprom@50 {
+ compatible = "microchip,24c02";
+ reg = <0x50>;
+ pagesize = <16>;
+ };
+ };
+
diff --git a/Documentation/devicetree/bindings/i2c/i2c-exynos5.txt b/Documentation/devicetree/bindings/i2c/i2c-exynos5.txt
new file mode 100644
index 00000000000..d4745e31f5c
--- /dev/null
+++ b/Documentation/devicetree/bindings/i2c/i2c-exynos5.txt
@@ -0,0 +1,51 @@
+* Samsung's High Speed I2C controller
+
+The Samsung's High Speed I2C controller is used to interface with I2C devices
+at various speeds ranging from 100khz to 3.4Mhz.
+
+Required properties:
+ - compatible: value should be.
+ -> "samsung,exynos5-hsi2c", (DEPRECATED)
+ for i2c compatible with HSI2C available
+ on Exynos5250 and Exynos5420 SoCs.
+ -> "samsung,exynos5250-hsi2c", for i2c compatible with HSI2C available
+ on Exynos5250 and Exynos5420 SoCs.
+ -> "samsung,exynos5260-hsi2c", for i2c compatible with HSI2C available
+ on Exynos5260 SoCs.
+
+ - reg: physical base address of the controller and length of memory mapped
+ region.
+ - interrupts: interrupt number to the cpu.
+ - #address-cells: always 1 (for i2c addresses)
+ - #size-cells: always 0
+
+ - Pinctrl:
+ - pinctrl-0: Pin control group to be used for this controller.
+ - pinctrl-names: Should contain only one value - "default".
+
+Optional properties:
+ - clock-frequency: Desired operating frequency in Hz of the bus.
+ -> If not specified, the bus operates in fast-speed mode at
+ at 100khz.
+ -> If specified, the bus operates in high-speed mode only if the
+ clock-frequency is >= 1Mhz.
+
+Example:
+
+hsi2c@12ca0000 {
+ compatible = "samsung,exynos5250-hsi2c";
+ reg = <0x12ca0000 0x100>;
+ interrupts = <56>;
+ clock-frequency = <100000>;
+
+ pinctrl-0 = <&i2c4_bus>;
+ pinctrl-names = "default";
+
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ s2mps11_pmic@66 {
+ compatible = "samsung,s2mps11-pmic";
+ reg = <0x66>;
+ };
+};
diff --git a/Documentation/devicetree/bindings/i2c/i2c-mux-pca954x.txt b/Documentation/devicetree/bindings/i2c/i2c-mux-pca954x.txt
new file mode 100644
index 00000000000..34a3fb6f848
--- /dev/null
+++ b/Documentation/devicetree/bindings/i2c/i2c-mux-pca954x.txt
@@ -0,0 +1,50 @@
+* NXP PCA954x I2C bus switch
+
+Required Properties:
+
+ - compatible: Must contain one of the following.
+ "nxp,pca9540", "nxp,pca9542", "nxp,pca9543", "nxp,pca9544",
+ "nxp,pca9545", "nxp,pca9546", "nxp,pca9547", "nxp,pca9548"
+
+ - reg: The I2C address of the device.
+
+ The following required properties are defined externally:
+
+ - Standard I2C mux properties. See i2c-mux.txt in this directory.
+ - I2C child bus nodes. See i2c-mux.txt in this directory.
+
+Optional Properties:
+
+ - reset-gpios: Reference to the GPIO connected to the reset input.
+
+
+Example:
+
+ i2c-switch@74 {
+ compatible = "nxp,pca9548";
+ #address-cells = <1>;
+ #size-cells = <0>;
+ reg = <0x74>;
+
+ i2c@2 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ reg = <2>;
+
+ eeprom@54 {
+ compatible = "at,24c08";
+ reg = <0x54>;
+ };
+ };
+
+ i2c@4 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ reg = <4>;
+
+ rtc@51 {
+ compatible = "nxp,pcf8563";
+ reg = <0x51>;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/i2c/i2c-mv64xxx.txt b/Documentation/devicetree/bindings/i2c/i2c-mv64xxx.txt
index 82e8f6f1717..5c30026921a 100644
--- a/Documentation/devicetree/bindings/i2c/i2c-mv64xxx.txt
+++ b/Documentation/devicetree/bindings/i2c/i2c-mv64xxx.txt
@@ -4,8 +4,16 @@
Required properties :
- reg : Offset and length of the register set for the device
- - compatible : Should be "marvell,mv64xxx-i2c" or "allwinner,sun4i-i2c"
- or "marvell,mv78230-i2c"
+ - compatible : Should be either:
+ - "allwinner,sun4i-a10-i2c"
+ - "allwinner,sun6i-a31-i2c"
+ - "marvell,mv64xxx-i2c"
+ - "marvell,mv78230-i2c"
+ - "marvell,mv78230-a0-i2c"
+ * Note: Only use "marvell,mv78230-a0-i2c" for a
+ very rare, initial version of the SoC which
+ had broken offload support. Linux
+ auto-detects this and sets it appropriately.
- interrupts : The interrupt number
Optional properties :
@@ -13,6 +21,10 @@ Optional properties :
- clock-frequency : Desired I2C bus clock frequency in Hz. If not set the
default frequency is 100kHz
+ - resets : phandle to the parent reset controller. Mandatory
+ whenever you're using the "allwinner,sun6i-a31-i2c"
+ compatible.
+
Examples:
i2c@11000 {
diff --git a/Documentation/devicetree/bindings/i2c/i2c-omap.txt b/Documentation/devicetree/bindings/i2c/i2c-omap.txt
index 56564aa4b44..7e49839d412 100644
--- a/Documentation/devicetree/bindings/i2c/i2c-omap.txt
+++ b/Documentation/devicetree/bindings/i2c/i2c-omap.txt
@@ -1,7 +1,8 @@
I2C for OMAP platforms
Required properties :
-- compatible : Must be "ti,omap3-i2c" or "ti,omap4-i2c"
+- compatible : Must be "ti,omap2420-i2c", "ti,omap2430-i2c", "ti,omap3-i2c"
+ or "ti,omap4-i2c"
- ti,hwmods : Must be "i2c<n>", n being the instance number (1-based)
- #address-cells = <1>;
- #size-cells = <0>;
diff --git a/Documentation/devicetree/bindings/i2c/i2c-rcar.txt b/Documentation/devicetree/bindings/i2c/i2c-rcar.txt
new file mode 100644
index 00000000000..16b3e07aa98
--- /dev/null
+++ b/Documentation/devicetree/bindings/i2c/i2c-rcar.txt
@@ -0,0 +1,32 @@
+I2C for R-Car platforms
+
+Required properties:
+- compatible: Must be one of
+ "renesas,i2c-rcar"
+ "renesas,i2c-r8a7778"
+ "renesas,i2c-r8a7779"
+ "renesas,i2c-r8a7790"
+ "renesas,i2c-r8a7791"
+ "renesas,i2c-r8a7792"
+ "renesas,i2c-r8a7793"
+ "renesas,i2c-r8a7794"
+- reg: physical base address of the controller and length of memory mapped
+ region.
+- interrupts: interrupt specifier.
+
+Optional properties:
+- clock-frequency: desired I2C bus clock frequency in Hz. The absence of this
+ propoerty indicates the default frequency 100 kHz.
+- clocks: clock specifier.
+
+Examples :
+
+i2c0: i2c@e6508000 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ compatible = "renesas,i2c-r8a7791";
+ reg = <0 0xe6508000 0 0x40>;
+ interrupts = <0 287 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&mstp9_clks R8A7791_CLK_I2C0>;
+ clock-frequency = <400000>;
+};
diff --git a/Documentation/devicetree/bindings/i2c/i2c-riic.txt b/Documentation/devicetree/bindings/i2c/i2c-riic.txt
new file mode 100644
index 00000000000..0bcc4716c31
--- /dev/null
+++ b/Documentation/devicetree/bindings/i2c/i2c-riic.txt
@@ -0,0 +1,29 @@
+Device tree configuration for Renesas RIIC driver
+
+Required properties:
+- compatible : "renesas,riic-<soctype>". "renesas,riic-rz" as fallback
+- reg : address start and address range size of device
+- interrupts : 8 interrupts (TEI, RI, TI, SPI, STI, NAKI, ALI, TMOI)
+- clock-frequency : frequency of bus clock in Hz
+- #address-cells : should be <1>
+- #size-cells : should be <0>
+
+Pinctrl properties might be needed, too. See there.
+
+Example:
+
+ i2c0: i2c@fcfee000 {
+ compatible = "renesas,riic-r7s72100", "renesas,riic-rz";
+ reg = <0xfcfee000 0x44>;
+ interrupts = <0 157 IRQ_TYPE_LEVEL_HIGH>,
+ <0 158 IRQ_TYPE_EDGE_RISING>,
+ <0 159 IRQ_TYPE_EDGE_RISING>,
+ <0 160 IRQ_TYPE_LEVEL_HIGH>,
+ <0 161 IRQ_TYPE_LEVEL_HIGH>,
+ <0 162 IRQ_TYPE_LEVEL_HIGH>,
+ <0 163 IRQ_TYPE_LEVEL_HIGH>,
+ <0 164 IRQ_TYPE_LEVEL_HIGH>;
+ clock-frequency = <100000>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ };
diff --git a/Documentation/devicetree/bindings/i2c/i2c-rk3x.txt b/Documentation/devicetree/bindings/i2c/i2c-rk3x.txt
new file mode 100644
index 00000000000..dde6c22ce91
--- /dev/null
+++ b/Documentation/devicetree/bindings/i2c/i2c-rk3x.txt
@@ -0,0 +1,42 @@
+* Rockchip RK3xxx I2C controller
+
+This driver interfaces with the native I2C controller present in Rockchip
+RK3xxx SoCs.
+
+Required properties :
+
+ - reg : Offset and length of the register set for the device
+ - compatible : should be "rockchip,rk3066-i2c", "rockchip,rk3188-i2c" or
+ "rockchip,rk3288-i2c".
+ - interrupts : interrupt number
+ - clocks : parent clock
+
+Required on RK3066, RK3188 :
+
+ - rockchip,grf : the phandle of the syscon node for the general register
+ file (GRF)
+ - on those SoCs an alias with the correct I2C bus ID (bit offset in the GRF)
+ is also required.
+
+Optional properties :
+
+ - clock-frequency : SCL frequency to use (in Hz). If omitted, 100kHz is used.
+
+Example:
+
+aliases {
+ i2c0 = &i2c0;
+}
+
+i2c0: i2c@2002d000 {
+ compatible = "rockchip,rk3188-i2c";
+ reg = <0x2002d000 0x1000>;
+ interrupts = <GIC_SPI 40 IRQ_TYPE_LEVEL_HIGH>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ rockchip,grf = <&grf>;
+
+ clock-names = "i2c";
+ clocks = <&cru PCLK_I2C0>;
+};
diff --git a/Documentation/devicetree/bindings/i2c/i2c-s3c2410.txt b/Documentation/devicetree/bindings/i2c/i2c-s3c2410.txt
index 296eb453612..278de8e64bb 100644
--- a/Documentation/devicetree/bindings/i2c/i2c-s3c2410.txt
+++ b/Documentation/devicetree/bindings/i2c/i2c-s3c2410.txt
@@ -10,6 +10,8 @@ Required properties:
inside HDMIPHY block found on several samsung SoCs
(d) "samsung, exynos5440-i2c", for s3c2440-like i2c used
on EXYNOS5440 which does not need GPIO configuration.
+ (e) "samsung, exynos5-sata-phy-i2c", for s3c2440-like i2c used as
+ a host to SATA PHY controller on an internal bus.
- reg: physical base address of the controller and length of memory mapped
region.
- interrupts: interrupt number to the cpu.
diff --git a/Documentation/devicetree/bindings/i2c/i2c-sh_mobile.txt b/Documentation/devicetree/bindings/i2c/i2c-sh_mobile.txt
new file mode 100644
index 00000000000..d2153ce36fa
--- /dev/null
+++ b/Documentation/devicetree/bindings/i2c/i2c-sh_mobile.txt
@@ -0,0 +1,26 @@
+Device tree configuration for Renesas IIC (sh_mobile) driver
+
+Required properties:
+- compatible : "renesas,iic-<soctype>". "renesas,rmobile-iic" as fallback
+- reg : address start and address range size of device
+- interrupts : interrupt of device
+- clocks : clock for device
+- #address-cells : should be <1>
+- #size-cells : should be <0>
+
+Optional properties:
+- clock-frequency : frequency of bus clock in Hz. Default 100kHz if unset.
+
+Pinctrl properties might be needed, too. See there.
+
+Example:
+
+ iic0: i2c@e6500000 {
+ compatible = "renesas,iic-r8a7790", "renesas,rmobile-iic";
+ reg = <0 0xe6500000 0 0x425>;
+ interrupts = <0 174 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&mstp3_clks R8A7790_CLK_IIC0>;
+ clock-frequency = <400000>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ };
diff --git a/Documentation/devicetree/bindings/i2c/i2c-st.txt b/Documentation/devicetree/bindings/i2c/i2c-st.txt
new file mode 100644
index 00000000000..437e0db3823
--- /dev/null
+++ b/Documentation/devicetree/bindings/i2c/i2c-st.txt
@@ -0,0 +1,41 @@
+ST SSC binding, for I2C mode operation
+
+Required properties :
+- compatible : Must be "st,comms-ssc-i2c" or "st,comms-ssc4-i2c"
+- reg : Offset and length of the register set for the device
+- interrupts : the interrupt specifier
+- clock-names: Must contain "ssc".
+- clocks: Must contain an entry for each name in clock-names. See the common
+ clock bindings.
+- A pinctrl state named "default" must be defined to set pins in mode of
+ operation for I2C transfer.
+
+Optional properties :
+- clock-frequency : Desired I2C bus clock frequency in Hz. If not specified,
+ the default 100 kHz frequency will be used. As only Normal and Fast modes
+ are supported, possible values are 100000 and 400000.
+- st,i2c-min-scl-pulse-width-us : The minimum valid SCL pulse width that is
+ allowed through the deglitch circuit. In units of us.
+- st,i2c-min-sda-pulse-width-us : The minimum valid SDA pulse width that is
+ allowed through the deglitch circuit. In units of us.
+- A pinctrl state named "idle" could be defined to set pins in idle state
+ when I2C instance is not performing a transfer.
+- A pinctrl state named "sleep" could be defined to set pins in sleep state
+ when driver enters in suspend.
+
+
+
+Example :
+
+i2c0: i2c@fed40000 {
+ compatible = "st,comms-ssc4-i2c";
+ reg = <0xfed40000 0x110>;
+ interrupts = <GIC_SPI 187 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&CLK_S_ICN_REG_0>;
+ clock-names = "ssc";
+ clock-frequency = <400000>;
+ pinctrl-names = "default";
+ pinctrl-0 = <&pinctrl_i2c0_default>;
+ st,i2c-min-scl-pulse-width-us = <0>;
+ st,i2c-min-sda-pulse-width-us = <5>;
+};
diff --git a/Documentation/devicetree/bindings/i2c/i2c-sunxi-p2wi.txt b/Documentation/devicetree/bindings/i2c/i2c-sunxi-p2wi.txt
new file mode 100644
index 00000000000..6b765485af7
--- /dev/null
+++ b/Documentation/devicetree/bindings/i2c/i2c-sunxi-p2wi.txt
@@ -0,0 +1,41 @@
+
+* Allwinner P2WI (Push/Pull 2 Wire Interface) controller
+
+Required properties :
+
+ - reg : Offset and length of the register set for the device.
+ - compatible : Should one of the following:
+ - "allwinner,sun6i-a31-p2wi"
+ - interrupts : The interrupt line connected to the P2WI peripheral.
+ - clocks : The gate clk connected to the P2WI peripheral.
+ - resets : The reset line connected to the P2WI peripheral.
+
+Optional properties :
+
+ - clock-frequency : Desired P2WI bus clock frequency in Hz. If not set the
+default frequency is 100kHz
+
+A P2WI may contain one child node encoding a P2WI slave device.
+
+Slave device properties:
+ Required properties:
+ - reg : the I2C slave address used during the initialization
+ process to switch from I2C to P2WI mode
+
+Example:
+
+ p2wi@01f03400 {
+ compatible = "allwinner,sun6i-a31-p2wi";
+ reg = <0x01f03400 0x400>;
+ interrupts = <0 39 4>;
+ clocks = <&apb0_gates 3>;
+ clock-frequency = <6000000>;
+ resets = <&apb0_rst 3>;
+
+ axp221: pmic@68 {
+ compatible = "x-powers,axp221";
+ reg = <0x68>;
+
+ /* ... */
+ };
+ };
diff --git a/Documentation/devicetree/bindings/i2c/nvidia,tegra20-i2c.txt b/Documentation/devicetree/bindings/i2c/nvidia,tegra20-i2c.txt
index ef77cc7a0e4..87507e9ce6d 100644
--- a/Documentation/devicetree/bindings/i2c/nvidia,tegra20-i2c.txt
+++ b/Documentation/devicetree/bindings/i2c/nvidia,tegra20-i2c.txt
@@ -39,12 +39,23 @@ Required properties:
- interrupts: Should contain I2C controller interrupts.
- address-cells: Address cells for I2C device address.
- size-cells: Size of the I2C device address.
-- clocks: Clock ID as per
- Documentation/devicetree/bindings/clock/tegra<chip-id>.txt
- for I2C controller.
-- clock-names: Name of the clock:
- Tegra20/Tegra30 I2C controller: "div-clk and "fast-clk".
- Tegra114 I2C controller: "div-clk".
+- clocks: Must contain an entry for each entry in clock-names.
+ See ../clocks/clock-bindings.txt for details.
+- clock-names: Must include the following entries:
+ Tegra20/Tegra30:
+ - div-clk
+ - fast-clk
+ Tegra114:
+ - div-clk
+- resets: Must contain an entry for each entry in reset-names.
+ See ../reset/reset.txt for details.
+- reset-names: Must include the following entries:
+ - i2c
+- dmas: Must contain an entry for each entry in clock-names.
+ See ../dma/dma.txt for details.
+- dma-names: Must include the following entries:
+ - rx
+ - tx
Example:
@@ -56,5 +67,9 @@ Example:
#size-cells = <0>;
clocks = <&tegra_car 12>, <&tegra_car 124>;
clock-names = "div-clk", "fast-clk";
+ resets = <&tegra_car 12>;
+ reset-names = "i2c";
+ dmas = <&apbdma 16>, <&apbdma 16>;
+ dma-names = "rx", "tx";
status = "disabled";
};
diff --git a/Documentation/devicetree/bindings/i2c/qcom,i2c-qup.txt b/Documentation/devicetree/bindings/i2c/qcom,i2c-qup.txt
new file mode 100644
index 00000000000..dc71754a56a
--- /dev/null
+++ b/Documentation/devicetree/bindings/i2c/qcom,i2c-qup.txt
@@ -0,0 +1,40 @@
+Qualcomm Universal Peripheral (QUP) I2C controller
+
+Required properties:
+ - compatible: Should be:
+ * "qcom,i2c-qup-v1.1.1" for 8660, 8960 and 8064.
+ * "qcom,i2c-qup-v2.1.1" for 8974 v1.
+ * "qcom,i2c-qup-v2.2.1" for 8974 v2 and later.
+ - reg: Should contain QUP register address and length.
+ - interrupts: Should contain I2C interrupt.
+
+ - clocks: A list of phandles + clock-specifiers, one for each entry in
+ clock-names.
+ - clock-names: Should contain:
+ * "core" for the core clock
+ * "iface" for the AHB clock
+
+ - #address-cells: Should be <1> Address cells for i2c device address
+ - #size-cells: Should be <0> as i2c addresses have no size component
+
+Optional properties:
+ - clock-frequency: Should specify the desired i2c bus clock frequency in Hz,
+ defaults to 100kHz if omitted.
+
+Child nodes should conform to i2c bus binding.
+
+Example:
+
+ i2c@f9924000 {
+ compatible = "qcom,i2c-qup-v2.2.1";
+ reg = <0xf9924000 0x1000>;
+ interrupts = <0 96 0>;
+
+ clocks = <&gcc GCC_BLSP1_QUP2_I2C_APPS_CLK>, <&gcc GCC_BLSP1_AHB_CLK>;
+ clock-names = "core", "iface";
+
+ clock-frequency = <355000>;
+
+ #address-cells = <1>;
+ #size-cells = <0>;
+ };
diff --git a/Documentation/devicetree/bindings/i2c/trivial-devices.txt b/Documentation/devicetree/bindings/i2c/trivial-devices.txt
index ad6a73852f0..bef86e57c38 100644
--- a/Documentation/devicetree/bindings/i2c/trivial-devices.txt
+++ b/Documentation/devicetree/bindings/i2c/trivial-devices.txt
@@ -13,9 +13,26 @@ ad,ad7414 SMBus/I2C Digital Temperature Sensor in 6-Pin SOT with SMBus Alert an
ad,adm9240 ADM9240: Complete System Hardware Monitor for uProcessor-Based Systems
adi,adt7461 +/-1C TDM Extended Temp Range I.C
adt7461 +/-1C TDM Extended Temp Range I.C
+adi,adt7473 +/-1C TDM Extended Temp Range I.C
+adi,adt7475 +/-1C TDM Extended Temp Range I.C
+adi,adt7476 +/-1C TDM Extended Temp Range I.C
+adi,adt7490 +/-1C TDM Extended Temp Range I.C
at,24c08 i2c serial eeprom (24cxx)
+atmel,24c00 i2c serial eeprom (24cxx)
+atmel,24c01 i2c serial eeprom (24cxx)
atmel,24c02 i2c serial eeprom (24cxx)
+atmel,24c04 i2c serial eeprom (24cxx)
+atmel,24c16 i2c serial eeprom (24cxx)
+atmel,24c32 i2c serial eeprom (24cxx)
+atmel,24c64 i2c serial eeprom (24cxx)
+atmel,24c128 i2c serial eeprom (24cxx)
+atmel,24c256 i2c serial eeprom (24cxx)
+atmel,24c512 i2c serial eeprom (24cxx)
+atmel,24c1024 i2c serial eeprom (24cxx)
+atmel,at97sc3204t i2c trusted platform module (TPM)
+capella,cm32181 CM32181: Ambient Light Sensor
catalyst,24c32 i2c serial eeprom
+cirrus,cs42l51 Cirrus Logic CS42L51 audio codec
dallas,ds1307 64 x 8, Serial, I2C Real-Time Clock
dallas,ds1338 I2C RTC with 56-Byte NV RAM
dallas,ds1339 I2C Serial Real-Time Clock
@@ -35,15 +52,20 @@ fsl,mc13892 MC13892: Power Management Integrated Circuit (PMIC) for i.MX35/51
fsl,mma8450 MMA8450Q: Xtrinsic Low-power, 3-axis Xtrinsic Accelerometer
fsl,mpr121 MPR121: Proximity Capacitive Touch Sensor Controller
fsl,sgtl5000 SGTL5000: Ultra Low-Power Audio Codec
+gmt,g751 G751: Digital Temperature Sensor and Thermal Watchdog with Two-Wire Interface
infineon,slb9635tt Infineon SLB9635 (Soft-) I2C TPM (old protocol, max 100khz)
infineon,slb9645tt Infineon SLB9645 I2C TPM (new protocol, max 400khz)
+isl,isl12057 Intersil ISL12057 I2C RTC Chip
maxim,ds1050 5 Bit Programmable, Pulse-Width Modulator
maxim,max1237 Low-Power, 4-/12-Channel, 2-Wire Serial, 12-Bit ADCs
maxim,max6625 9-Bit/12-Bit Temperature Sensors with I²C-Compatible Serial Interface
mc,rv3029c2 Real Time Clock Module with I2C-Bus
+national,lm63 Temperature sensor with integrated fan control
national,lm75 I2C TEMP SENSOR
national,lm80 Serial Interface ACPI-Compatible Microprocessor System Hardware Monitor
+national,lm85 Temperature sensor with integrated fan control
national,lm92 ±0.33°C Accurate, 12-Bit + Sign Temperature Sensor and Thermal Window Comparator with Two-Wire Interface
+nuvoton,npct501 i2c trusted platform module (TPM)
nxp,pca9556 Octal SMBus and I2C registered interface
nxp,pca9557 8-bit I2C-bus and SMBus I/O port with reset
nxp,pcf8563 Real-time clock/calendar
@@ -53,6 +75,7 @@ plx,pex8648 48-Lane, 12-Port PCI Express Gen 2 (5.0 GT/s) Switch
ramtron,24c64 i2c serial eeprom (24cxx)
ricoh,rs5c372a I2C bus SERIAL INTERFACE REAL-TIME CLOCK IC
samsung,24ad0xd1 S524AD0XF1 (128K/256K-bit Serial EEPROM for Low Power)
+sii,s35390a 2-wire CMOS real-time clock
st-micro,24c256 i2c serial eeprom (24cxx)
stm,m41t00 Serial Access TIMEKEEPER
stm,m41t62 Serial real-time clock (RTC) with alarm
@@ -61,3 +84,4 @@ taos,tsl2550 Ambient Light Sensor with SMBUS/Two Wire Serial Interface
ti,tsc2003 I2C Touch-Screen Controller
ti,tmp102 Low Power Digital Temperature Sensor with SMBUS/Two Wire Serial Interface
ti,tmp275 Digital Temperature Sensor
+winbond,wpct301 i2c trusted platform module (TPM)
diff --git a/Documentation/devicetree/bindings/arm/atmel-adc.txt b/Documentation/devicetree/bindings/iio/adc/at91_adc.txt
index 723c205cb10..0f813dec5e0 100644
--- a/Documentation/devicetree/bindings/arm/atmel-adc.txt
+++ b/Documentation/devicetree/bindings/iio/adc/at91_adc.txt
@@ -5,26 +5,35 @@ Required properties:
<chip> can be "at91sam9260", "at91sam9g45" or "at91sam9x5"
- reg: Should contain ADC registers location and length
- interrupts: Should contain the IRQ line for the ADC
- - atmel,adc-channels-used: Bitmask of the channels muxed and enable for this
+ - clock-names: tuple listing input clock names.
+ Required elements: "adc_clk", "adc_op_clk".
+ - clocks: phandles to input clocks.
+ - atmel,adc-channels-used: Bitmask of the channels muxed and enabled for this
device
- - atmel,adc-num-channels: Number of channels available in the ADC
- atmel,adc-startup-time: Startup Time of the ADC in microseconds as
defined in the datasheet
- atmel,adc-vref: Reference voltage in millivolts for the conversions
- - atmel,adc-res: List of resolution in bits supported by the ADC. List size
+ - atmel,adc-res: List of resolutions in bits supported by the ADC. List size
must be two at least.
- atmel,adc-res-names: Contains one identifier string for each resolution
in atmel,adc-res property. "lowres" and "highres"
identifiers are required.
Optional properties:
- - atmel,adc-use-external: Boolean to enable of external triggers
+ - atmel,adc-use-external-triggers: Boolean to enable the external triggers
- atmel,adc-use-res: String corresponding to an identifier from
atmel,adc-res-names property. If not specified, the highest
resolution will be used.
- atmel,adc-sleep-mode: Boolean to enable sleep mode when no conversion
- atmel,adc-sample-hold-time: Sample and Hold Time in microseconds
-
+ - atmel,adc-ts-wires: Number of touchscreen wires. Should be 4 or 5. If this
+ value is set, then the adc driver will enable touchscreen
+ support.
+ NOTE: when adc touchscreen is enabled, the adc hardware trigger will be
+ disabled. Since touchscreen will occupy the trigger register.
+ - atmel,adc-ts-pressure-threshold: a pressure threshold for touchscreen. It
+ makes touch detection more precise.
+
Optional trigger Nodes:
- Required properties:
* trigger-name: Name of the trigger exposed to the user
@@ -35,40 +44,43 @@ Optional trigger Nodes:
Examples:
adc0: adc@fffb0000 {
+ #address-cells = <1>;
+ #size-cells = <0>;
compatible = "atmel,at91sam9260-adc";
reg = <0xfffb0000 0x100>;
- interrupts = <20 4>;
- atmel,adc-channel-base = <0x30>;
+ interrupts = <20 IRQ_TYPE_LEVEL_HIGH 0>;
+ clocks = <&adc_clk>, <&adc_op_clk>;
+ clock-names = "adc_clk", "adc_op_clk";
atmel,adc-channels-used = <0xff>;
- atmel,adc-drdy-mask = <0x10000>;
- atmel,adc-num-channels = <8>;
atmel,adc-startup-time = <40>;
- atmel,adc-status-register = <0x1c>;
- atmel,adc-trigger-register = <0x08>;
- atmel,adc-use-external;
+ atmel,adc-use-external-triggers;
atmel,adc-vref = <3300>;
atmel,adc-res = <8 10>;
atmel,adc-res-names = "lowres", "highres";
atmel,adc-use-res = "lowres";
trigger@0 {
+ reg = <0>;
trigger-name = "external-rising";
trigger-value = <0x1>;
trigger-external;
};
trigger@1 {
+ reg = <1>;
trigger-name = "external-falling";
trigger-value = <0x2>;
trigger-external;
};
trigger@2 {
+ reg = <2>;
trigger-name = "external-any";
trigger-value = <0x3>;
trigger-external;
};
trigger@3 {
+ reg = <3>;
trigger-name = "continuous";
trigger-value = <0x6>;
};
diff --git a/Documentation/devicetree/bindings/iio/adc/twl4030-madc.txt b/Documentation/devicetree/bindings/iio/adc/twl4030-madc.txt
new file mode 100644
index 00000000000..6bdd21404b5
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/adc/twl4030-madc.txt
@@ -0,0 +1,24 @@
+* TWL4030 Monitoring Analog to Digital Converter (MADC)
+
+The MADC subsystem in the TWL4030 consists of a 10-bit ADC
+combined with a 16-input analog multiplexer.
+
+Required properties:
+ - compatible: Should contain "ti,twl4030-madc".
+ - interrupts: IRQ line for the MADC submodule.
+ - #io-channel-cells: Should be set to <1>.
+
+Optional properties:
+ - ti,system-uses-second-madc-irq: boolean, set if the second madc irq register
+ should be used, which is intended to be used
+ by Co-Processors (e.g. a modem).
+
+Example:
+
+&twl {
+ madc {
+ compatible = "ti,twl4030-madc";
+ interrupts = <3>;
+ #io-channel-cells = <1>;
+ };
+};
diff --git a/Documentation/devicetree/bindings/iio/adc/vf610-adc.txt b/Documentation/devicetree/bindings/iio/adc/vf610-adc.txt
new file mode 100644
index 00000000000..dcebff1928e
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/adc/vf610-adc.txt
@@ -0,0 +1,22 @@
+Freescale vf610 Analog to Digital Converter bindings
+
+The devicetree bindings are for the new ADC driver written for
+vf610/i.MX6slx and upward SoCs from Freescale.
+
+Required properties:
+- compatible: Should contain "fsl,vf610-adc"
+- reg: Offset and length of the register set for the device
+- interrupts: Should contain the interrupt for the device
+- clocks: The clock is needed by the ADC controller, ADC clock source is ipg clock.
+- clock-names: Must contain "adc", matching entry in the clocks property.
+- vref-supply: The regulator supply ADC refrence voltage.
+
+Example:
+adc0: adc@4003b000 {
+ compatible = "fsl,vf610-adc";
+ reg = <0x4003b000 0x1000>;
+ interrupts = <0 53 0x04>;
+ clocks = <&clks VF610_CLK_ADC0>;
+ clock-names = "adc";
+ vref-supply = <&reg_vcc_3v3_mcu>;
+};
diff --git a/Documentation/devicetree/bindings/iio/adc/xilinx-xadc.txt b/Documentation/devicetree/bindings/iio/adc/xilinx-xadc.txt
new file mode 100644
index 00000000000..d9ee909d2b7
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/adc/xilinx-xadc.txt
@@ -0,0 +1,113 @@
+Xilinx XADC device driver
+
+This binding document describes the bindings for both of them since the
+bindings are very similar. The Xilinx XADC is a ADC that can be found in the
+series 7 FPGAs from Xilinx. The XADC has a DRP interface for communication.
+Currently two different frontends for the DRP interface exist. One that is only
+available on the ZYNQ family as a hardmacro in the SoC portion of the ZYNQ. The
+other one is available on all series 7 platforms and is a softmacro with a AXI
+interface. This binding document describes the bindings for both of them since
+the bindings are very similar.
+
+Required properties:
+ - compatible: Should be one of
+ * "xlnx,zynq-xadc-1.00.a": When using the ZYNQ device
+ configuration interface to interface to the XADC hardmacro.
+ * "xlnx,axi-xadc-1.00.a": When using the axi-xadc pcore to
+ interface to the XADC hardmacro.
+ - reg: Address and length of the register set for the device
+ - interrupts: Interrupt for the XADC control interface.
+ - clocks: When using the ZYNQ this must be the ZYNQ PCAP clock,
+ when using the AXI-XADC pcore this must be the clock that provides the
+ clock to the AXI bus interface of the core.
+
+Optional properties:
+ - interrupt-parent: phandle to the parent interrupt controller
+ - xlnx,external-mux:
+ * "none": No external multiplexer is used, this is the default
+ if the property is omitted.
+ * "single": External multiplexer mode is used with one
+ multiplexer.
+ * "dual": External multiplexer mode is used with two
+ multiplexers for simultaneous sampling.
+ - xlnx,external-mux-channel: Configures which pair of pins is used to
+ sample data in external mux mode.
+ Valid values for single external multiplexer mode are:
+ 0: VP/VN
+ 1: VAUXP[0]/VAUXN[0]
+ 2: VAUXP[1]/VAUXN[1]
+ ...
+ 16: VAUXP[15]/VAUXN[15]
+ Valid values for dual external multiplexer mode are:
+ 1: VAUXP[0]/VAUXN[0] - VAUXP[8]/VAUXN[8]
+ 2: VAUXP[1]/VAUXN[1] - VAUXP[9]/VAUXN[9]
+ ...
+ 8: VAUXP[7]/VAUXN[7] - VAUXP[15]/VAUXN[15]
+
+ This property needs to be present if the device is configured for
+ external multiplexer mode (either single or dual). If the device is
+ not using external multiplexer mode the property is ignored.
+ - xnlx,channels: List of external channels that are connected to the ADC
+ Required properties:
+ * #address-cells: Should be 1.
+ * #size-cells: Should be 0.
+
+ The child nodes of this node represent the external channels which are
+ connected to the ADC. If the property is no present no external
+ channels will be assumed to be connected.
+
+ Each child node represents one channel and has the following
+ properties:
+ Required properties:
+ * reg: Pair of pins the the channel is connected to.
+ 0: VP/VN
+ 1: VAUXP[0]/VAUXN[0]
+ 2: VAUXP[1]/VAUXN[1]
+ ...
+ 16: VAUXP[15]/VAUXN[15]
+ Note each channel number should only be used at most
+ once.
+ Optional properties:
+ * xlnx,bipolar: If set the channel is used in bipolar
+ mode.
+
+
+Examples:
+ xadc@f8007100 {
+ compatible = "xlnx,zynq-xadc-1.00.a";
+ reg = <0xf8007100 0x20>;
+ interrupts = <0 7 4>;
+ interrupt-parent = <&gic>;
+ clocks = <&pcap_clk>;
+
+ xlnx,channels {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ channel@0 {
+ reg = <0>;
+ };
+ channel@1 {
+ reg = <1>;
+ };
+ channel@8 {
+ reg = <8>;
+ };
+ };
+ };
+
+ xadc@43200000 {
+ compatible = "xlnx,axi-xadc-1.00.a";
+ reg = <0x43200000 0x1000>;
+ interrupts = <0 53 4>;
+ interrupt-parent = <&gic>;
+ clocks = <&fpga1_clk>;
+
+ xlnx,channels {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ channel@0 {
+ reg = <0>;
+ xlnx,bipolar;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/iio/humidity/dht11.txt b/Documentation/devicetree/bindings/iio/humidity/dht11.txt
new file mode 100644
index 00000000000..ecc24c199fd
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/humidity/dht11.txt
@@ -0,0 +1,14 @@
+* DHT11 humidity/temperature sensor (and compatibles like DHT22)
+
+Required properties:
+ - compatible: Should be "dht11"
+ - gpios: Should specify the GPIO connected to the sensor's data
+ line, see "gpios property" in
+ Documentation/devicetree/bindings/gpio/gpio.txt.
+
+Example:
+
+humidity_sensor {
+ compatible = "dht11";
+ gpios = <&gpio0 6 0>;
+}
diff --git a/Documentation/devicetree/bindings/iio/light/cm36651.txt b/Documentation/devicetree/bindings/iio/light/cm36651.txt
new file mode 100644
index 00000000000..c03e19db455
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/light/cm36651.txt
@@ -0,0 +1,26 @@
+* Capella CM36651 I2C Proximity and Color Light sensor
+
+Required properties:
+- compatible: must be "capella,cm36651"
+- reg: the I2C address of the device
+- interrupts: interrupt-specifier for the sole interrupt
+ generated by the device
+- vled-supply: regulator for the IR LED. IR_LED is a part
+ of the cm36651 for proximity detection.
+ As covered in ../../regulator/regulator.txt
+
+Example:
+
+ i2c_cm36651: i2c-gpio {
+ /* ... */
+
+ cm36651@18 {
+ compatible = "capella,cm36651";
+ reg = <0x18>;
+ interrupt-parent = <&gpx0>;
+ interrupts = <2 0>;
+ vled-supply = <&ps_als_reg>;
+ };
+
+ /* ... */
+ };
diff --git a/Documentation/devicetree/bindings/iio/light/gp2ap020a00f.txt b/Documentation/devicetree/bindings/iio/light/gp2ap020a00f.txt
new file mode 100644
index 00000000000..9231c82317a
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/light/gp2ap020a00f.txt
@@ -0,0 +1,21 @@
+* Sharp GP2AP020A00F I2C Proximity/ALS sensor
+
+The proximity detector sensor requires power supply
+for its built-in led. It is also defined by this binding.
+
+Required properties:
+
+ - compatible : should be "sharp,gp2ap020a00f"
+ - reg : the I2C slave address of the light sensor
+ - interrupts : interrupt specifier for the sole interrupt generated
+ by the device
+ - vled-supply : VLED power supply, as covered in ../regulator/regulator.txt
+
+Example:
+
+gp2ap020a00f@39 {
+ compatible = "sharp,gp2ap020a00f";
+ reg = <0x39>;
+ interrupts = <2 0>;
+ vled-supply = <...>;
+};
diff --git a/Documentation/devicetree/bindings/iio/light/tsl2563.txt b/Documentation/devicetree/bindings/iio/light/tsl2563.txt
new file mode 100644
index 00000000000..f91e809e736
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/light/tsl2563.txt
@@ -0,0 +1,19 @@
+* AMS TAOS TSL2563 ambient light sensor
+
+Required properties:
+
+ - compatible : should be "amstaos,tsl2563"
+ - reg : the I2C address of the sensor
+
+Optional properties:
+
+ - amstaos,cover-comp-gain : integer used as multiplier for gain
+ compensation (default = 1)
+
+Example:
+
+tsl2563@29 {
+ compatible = "amstaos,tsl2563";
+ reg = <0x29>;
+ amstaos,cover-comp-gain = <16>;
+};
diff --git a/Documentation/devicetree/bindings/iio/magnetometer/hmc5843.txt b/Documentation/devicetree/bindings/iio/magnetometer/hmc5843.txt
new file mode 100644
index 00000000000..90d5f34db04
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/magnetometer/hmc5843.txt
@@ -0,0 +1,17 @@
+* Honeywell HMC5843 magnetometer sensor
+
+Required properties:
+
+ - compatible : should be "honeywell,hmc5843"
+ - reg : the I2C address of the magnetometer - typically 0x1e
+
+Optional properties:
+
+ - gpios : should be device tree identifier of the magnetometer DRDY pin
+
+Example:
+
+hmc5843@1e {
+ compatible = "honeywell,hmc5843"
+ reg = <0x1e>;
+};
diff --git a/Documentation/devicetree/bindings/iio/proximity/as3935.txt b/Documentation/devicetree/bindings/iio/proximity/as3935.txt
new file mode 100644
index 00000000000..ae23dd8da73
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/proximity/as3935.txt
@@ -0,0 +1,28 @@
+Austrian Microsystems AS3935 Franklin lightning sensor device driver
+
+Required properties:
+ - compatible: must be "ams,as3935"
+ - reg: SPI chip select number for the device
+ - spi-cpha: SPI Mode 1. Refer to spi/spi-bus.txt for generic SPI
+ slave node bindings.
+ - interrupt-parent : should be the phandle for the interrupt controller
+ - interrupts : the sole interrupt generated by the device
+
+ Refer to interrupt-controller/interrupts.txt for generic
+ interrupt client node bindings.
+
+Optional properties:
+ - ams,tuning-capacitor-pf: Calibration tuning capacitor stepping
+ value 0 - 120pF. This will require using the calibration data from
+ the manufacturer.
+
+Example:
+
+as3935@0 {
+ compatible = "ams,as3935";
+ reg = <0>;
+ spi-cpha;
+ interrupt-parent = <&gpio1>;
+ interrupts = <16 1>;
+ ams,tuning-capacitor-pf = <80>;
+};
diff --git a/Documentation/devicetree/bindings/input/clps711x-keypad.txt b/Documentation/devicetree/bindings/input/clps711x-keypad.txt
new file mode 100644
index 00000000000..e68d2bbc6c0
--- /dev/null
+++ b/Documentation/devicetree/bindings/input/clps711x-keypad.txt
@@ -0,0 +1,27 @@
+* Cirrus Logic CLPS711X matrix keypad device tree bindings
+
+Required Properties:
+- compatible: Shall contain "cirrus,clps711x-keypad".
+- row-gpios: List of GPIOs used as row lines.
+- poll-interval: Poll interval time in milliseconds.
+- linux,keymap: The definition can be found at
+ bindings/input/matrix-keymap.txt.
+
+Optional Properties:
+- autorepeat: Enable autorepeat feature.
+
+Example:
+ keypad {
+ compatible = "cirrus,ep7312-keypad", "cirrus,clps711x-keypad";
+ autorepeat;
+ poll-interval = <120>;
+ row-gpios = <&porta 0 0>,
+ <&porta 1 0>;
+
+ linux,keymap = <
+ MATRIX_KEY(0, 0, KEY_UP)
+ MATRIX_KEY(0, 1, KEY_DOWN)
+ MATRIX_KEY(1, 0, KEY_LEFT)
+ MATRIX_KEY(1, 1, KEY_RIGHT)
+ >;
+ };
diff --git a/Documentation/devicetree/bindings/input/gpio-beeper.txt b/Documentation/devicetree/bindings/input/gpio-beeper.txt
new file mode 100644
index 00000000000..a5086e37fce
--- /dev/null
+++ b/Documentation/devicetree/bindings/input/gpio-beeper.txt
@@ -0,0 +1,13 @@
+* GPIO beeper device tree bindings
+
+Register a beeper connected to GPIO pin.
+
+Required properties:
+- compatible: Should be "gpio-beeper".
+- gpios: From common gpio binding; gpio connection to beeper enable pin.
+
+Example:
+ beeper: beeper {
+ compatible = "gpio-beeper";
+ gpios = <&gpio3 23 GPIO_ACTIVE_HIGH>;
+ };
diff --git a/Documentation/devicetree/bindings/gpio/gpio_keys.txt b/Documentation/devicetree/bindings/input/gpio-keys.txt
index 5c2c02140a6..5c2c02140a6 100644
--- a/Documentation/devicetree/bindings/gpio/gpio_keys.txt
+++ b/Documentation/devicetree/bindings/input/gpio-keys.txt
diff --git a/Documentation/devicetree/bindings/input/nvidia,tegra20-kbc.txt b/Documentation/devicetree/bindings/input/nvidia,tegra20-kbc.txt
index 2995fae7ee4..0382b8bd69c 100644
--- a/Documentation/devicetree/bindings/input/nvidia,tegra20-kbc.txt
+++ b/Documentation/devicetree/bindings/input/nvidia,tegra20-kbc.txt
@@ -13,6 +13,12 @@ Required properties:
array of pin numbers which is used as column.
- linux,keymap: The keymap for keys as described in the binding document
devicetree/bindings/input/matrix-keymap.txt.
+- clocks: Must contain one entry, for the module clock.
+ See ../clocks/clock-bindings.txt for details.
+- resets: Must contain an entry for each entry in reset-names.
+ See ../reset/reset.txt for details.
+- reset-names: Must include the following entries:
+ - kbc
Optional properties, in addition to those specified by the shared
matrix-keyboard bindings:
@@ -31,6 +37,9 @@ keyboard: keyboard {
compatible = "nvidia,tegra20-kbc";
reg = <0x7000e200 0x100>;
interrupts = <0 85 0x04>;
+ clocks = <&tegra_car 36>;
+ resets = <&tegra_car 36>;
+ reset-names = "kbc";
nvidia,ghost-filter;
nvidia,debounce-delay-ms = <640>;
nvidia,kbc-row-pins = <0 1 2>; /* pin 0, 1, 2 as rows */
diff --git a/Documentation/devicetree/bindings/input/qcom,pm8xxx-keypad.txt b/Documentation/devicetree/bindings/input/qcom,pm8xxx-keypad.txt
new file mode 100644
index 00000000000..7d8cb92831d
--- /dev/null
+++ b/Documentation/devicetree/bindings/input/qcom,pm8xxx-keypad.txt
@@ -0,0 +1,89 @@
+Qualcomm PM8xxx PMIC Keypad
+
+PROPERTIES
+
+- compatible:
+ Usage: required
+ Value type: <string>
+ Definition: must be one of:
+ "qcom,pm8058-keypad"
+ "qcom,pm8921-keypad"
+
+- reg:
+ Usage: required
+ Value type: <prop-encoded-array>
+ Definition: address of keypad control register
+
+- interrupts:
+ Usage: required
+ Value type: <prop-encoded-array>
+ Definition: the first interrupt specifies the key sense interrupt
+ and the second interrupt specifies the key stuck interrupt.
+ The format of the specifier is defined by the binding
+ document describing the node's interrupt parent.
+
+- linux,keymap:
+ Usage: required
+ Value type: <prop-encoded-array>
+ Definition: the linux keymap. More information can be found in
+ input/matrix-keymap.txt.
+
+- linux,keypad-no-autorepeat:
+ Usage: optional
+ Value type: <bool>
+ Definition: don't enable autorepeat feature.
+
+- linux,keypad-wakeup:
+ Usage: optional
+ Value type: <bool>
+ Definition: use any event on keypad as wakeup event.
+
+- keypad,num-rows:
+ Usage: required
+ Value type: <u32>
+ Definition: number of rows in the keymap. More information can be found
+ in input/matrix-keymap.txt.
+
+- keypad,num-columns:
+ Usage: required
+ Value type: <u32>
+ Definition: number of columns in the keymap. More information can be
+ found in input/matrix-keymap.txt.
+
+- debounce:
+ Usage: optional
+ Value type: <u32>
+ Definition: time in microseconds that key must be pressed or release
+ for key sense interrupt to trigger.
+
+- scan-delay:
+ Usage: optional
+ Value type: <u32>
+ Definition: time in microseconds to pause between successive scans
+ of the matrix array.
+
+- row-hold:
+ Usage: optional
+ Value type: <u32>
+ Definition: time in nanoseconds to pause between scans of each row in
+ the matrix array.
+
+EXAMPLE
+
+ keypad@148 {
+ compatible = "qcom,pm8921-keypad";
+ reg = <0x148>;
+ interrupt-parent = <&pmicintc>;
+ interrupts = <74 1>, <75 1>;
+ linux,keymap = <
+ MATRIX_KEY(0, 0, KEY_VOLUMEUP)
+ MATRIX_KEY(0, 1, KEY_VOLUMEDOWN)
+ MATRIX_KEY(0, 2, KEY_CAMERA_FOCUS)
+ MATRIX_KEY(0, 3, KEY_CAMERA)
+ >;
+ keypad,num-rows = <1>;
+ keypad,num-columns = <5>;
+ debounce = <15>;
+ scan-delay = <32>;
+ row-hold = <91500>;
+ };
diff --git a/Documentation/devicetree/bindings/input/qcom,pm8xxx-pwrkey.txt b/Documentation/devicetree/bindings/input/qcom,pm8xxx-pwrkey.txt
new file mode 100644
index 00000000000..588536cc96e
--- /dev/null
+++ b/Documentation/devicetree/bindings/input/qcom,pm8xxx-pwrkey.txt
@@ -0,0 +1,46 @@
+Qualcomm PM8xxx PMIC Power Key
+
+PROPERTIES
+
+- compatible:
+ Usage: required
+ Value type: <string>
+ Definition: must be one of:
+ "qcom,pm8058-pwrkey"
+ "qcom,pm8921-pwrkey"
+
+- reg:
+ Usage: required
+ Value type: <prop-encoded-array>
+ Definition: address of power key control register
+
+- interrupts:
+ Usage: required
+ Value type: <prop-encoded-array>
+ Definition: the first interrupt specifies the key release interrupt
+ and the second interrupt specifies the key press interrupt.
+ The format of the specifier is defined by the binding
+ document describing the node's interrupt parent.
+
+- debounce:
+ Usage: optional
+ Value type: <u32>
+ Definition: time in microseconds that key must be pressed or release
+ for state change interrupt to trigger.
+
+- pull-up:
+ Usage: optional
+ Value type: <empty>
+ Definition: presence of this property indicates that the KPDPWR_N pin
+ should be configured for pull up.
+
+EXAMPLE
+
+ pwrkey@1c {
+ compatible = "qcom,pm8921-pwrkey";
+ reg = <0x1c>;
+ interrupt-parent = <&pmicintc>;
+ interrupts = <50 1>, <51 1>;
+ debounce = <15625>;
+ pull-up;
+ };
diff --git a/Documentation/devicetree/bindings/input/qcom,pm8xxx-vib.txt b/Documentation/devicetree/bindings/input/qcom,pm8xxx-vib.txt
new file mode 100644
index 00000000000..4ed467b1e40
--- /dev/null
+++ b/Documentation/devicetree/bindings/input/qcom,pm8xxx-vib.txt
@@ -0,0 +1,22 @@
+Qualcomm PM8xxx PMIC Vibrator
+
+PROPERTIES
+
+- compatible:
+ Usage: required
+ Value type: <string>
+ Definition: must be one of:
+ "qcom,pm8058-vib"
+ "qcom,pm8921-vib"
+
+- reg:
+ Usage: required
+ Value type: <prop-encoded-array>
+ Definition: address of vibration control register
+
+EXAMPLE
+
+ vibrator@4a {
+ compatible = "qcom,pm8058-vib";
+ reg = <0x4a>;
+ };
diff --git a/Documentation/devicetree/bindings/input/st-keyscan.txt b/Documentation/devicetree/bindings/input/st-keyscan.txt
new file mode 100644
index 00000000000..51eb428e5c8
--- /dev/null
+++ b/Documentation/devicetree/bindings/input/st-keyscan.txt
@@ -0,0 +1,60 @@
+* ST Keyscan controller Device Tree bindings
+
+The ST keyscan controller Device Tree binding is based on the
+matrix-keymap.
+
+Required properties:
+- compatible: "st,sti-keyscan"
+
+- reg: Register base address and size of st-keyscan controller.
+
+- interrupts: Interrupt number for the st-keyscan controller.
+
+- clocks: Must contain one entry, for the module clock.
+ See ../clocks/clock-bindings.txt for details.
+
+- pinctrl: Should specify pin control groups used for this controller.
+ See ../pinctrl/pinctrl-bindings.txt for details.
+
+- linux,keymap: The keymap for keys as described in the binding document
+ devicetree/bindings/input/matrix-keymap.txt.
+
+- keypad,num-rows: Number of row lines connected to the keypad controller.
+
+- keypad,num-columns: Number of column lines connected to the keypad
+ controller.
+
+Optional property:
+- st,debounce_us: Debouncing interval time in microseconds
+
+Example:
+
+keyscan: keyscan@fe4b0000 {
+ compatible = "st,sti-keyscan";
+ reg = <0xfe4b0000 0x2000>;
+ interrupts = <GIC_SPI 212 IRQ_TYPE_NONE>;
+ clocks = <&CLK_SYSIN>;
+ pinctrl-names = "default";
+ pinctrl-0 = <&pinctrl_keyscan>;
+
+ keypad,num-rows = <4>;
+ keypad,num-columns = <4>;
+ st,debounce_us = <5000>;
+
+ linux,keymap = < MATRIX_KEY(0x00, 0x00, KEY_F13)
+ MATRIX_KEY(0x00, 0x01, KEY_F9)
+ MATRIX_KEY(0x00, 0x02, KEY_F5)
+ MATRIX_KEY(0x00, 0x03, KEY_F1)
+ MATRIX_KEY(0x01, 0x00, KEY_F14)
+ MATRIX_KEY(0x01, 0x01, KEY_F10)
+ MATRIX_KEY(0x01, 0x02, KEY_F6)
+ MATRIX_KEY(0x01, 0x03, KEY_F2)
+ MATRIX_KEY(0x02, 0x00, KEY_F15)
+ MATRIX_KEY(0x02, 0x01, KEY_F11)
+ MATRIX_KEY(0x02, 0x02, KEY_F7)
+ MATRIX_KEY(0x02, 0x03, KEY_F3)
+ MATRIX_KEY(0x03, 0x00, KEY_F16)
+ MATRIX_KEY(0x03, 0x01, KEY_F12)
+ MATRIX_KEY(0x03, 0x02, KEY_F8)
+ MATRIX_KEY(0x03, 0x03, KEY_F4) >;
+ };
diff --git a/Documentation/devicetree/bindings/input/touchscreen/edt-ft5x06.txt b/Documentation/devicetree/bindings/input/touchscreen/edt-ft5x06.txt
new file mode 100644
index 00000000000..76db96704a6
--- /dev/null
+++ b/Documentation/devicetree/bindings/input/touchscreen/edt-ft5x06.txt
@@ -0,0 +1,55 @@
+FocalTech EDT-FT5x06 Polytouch driver
+=====================================
+
+There are 3 variants of the chip for various touch panel sizes
+FT5206GE1 2.8" .. 3.8"
+FT5306DE4 4.3" .. 7"
+FT5406EE8 7" .. 8.9"
+
+The software interface is identical for all those chips, so that
+currently there is no need for the driver to distinguish between the
+different chips. Nevertheless distinct compatible strings are used so
+that a distinction can be added if necessary without changing the DT
+bindings.
+
+
+Required properties:
+ - compatible: "edt,edt-ft5206"
+ or: "edt,edt-ft5306"
+ or: "edt,edt-ft5406"
+
+ - reg: I2C slave address of the chip (0x38)
+ - interrupt-parent: a phandle pointing to the interrupt controller
+ serving the interrupt for this chip
+ - interrupts: interrupt specification for the touchdetect
+ interrupt
+
+Optional properties:
+ - reset-gpios: GPIO specification for the RESET input
+ - wake-gpios: GPIO specification for the WAKE input
+
+ - pinctrl-names: should be "default"
+ - pinctrl-0: a phandle pointing to the pin settings for the
+ control gpios
+
+ - threshold: allows setting the "click"-threshold in the range
+ from 20 to 80.
+
+ - gain: allows setting the sensitivity in the range from 0 to
+ 31. Note that lower values indicate higher
+ sensitivity.
+
+ - offset: allows setting the edge compensation in the range from
+ 0 to 31.
+
+Example:
+ polytouch: edt-ft5x06@38 {
+ compatible = "edt,edt-ft5406", "edt,edt-ft5x06";
+ reg = <0x38>;
+ pinctrl-names = "default";
+ pinctrl-0 = <&edt_ft5x06_pins>;
+ interrupt-parent = <&gpio2>;
+ interrupts = <5 0>;
+ reset-gpios = <&gpio2 6 1>;
+ wake-gpios = <&gpio4 9 0>;
+ };
diff --git a/Documentation/devicetree/bindings/input/touchscreen/sun4i.txt b/Documentation/devicetree/bindings/input/touchscreen/sun4i.txt
new file mode 100644
index 00000000000..aef57791f40
--- /dev/null
+++ b/Documentation/devicetree/bindings/input/touchscreen/sun4i.txt
@@ -0,0 +1,20 @@
+sun4i resistive touchscreen controller
+--------------------------------------
+
+Required properties:
+ - compatible: "allwinner,sun4i-a10-ts"
+ - reg: mmio address range of the chip
+ - interrupts: interrupt to which the chip is connected
+
+Optional properties:
+ - allwinner,ts-attached: boolean indicating that an actual touchscreen is
+ attached to the controller
+
+Example:
+
+ rtp: rtp@01c25000 {
+ compatible = "allwinner,sun4i-a10-ts";
+ reg = <0x01c25000 0x100>;
+ interrupts = <29>;
+ allwinner,ts-attached;
+ };
diff --git a/Documentation/devicetree/bindings/input/touchscreen/ti-tsc-adc.txt b/Documentation/devicetree/bindings/input/touchscreen/ti-tsc-adc.txt
index 491c97b7838..878549ba814 100644
--- a/Documentation/devicetree/bindings/input/touchscreen/ti-tsc-adc.txt
+++ b/Documentation/devicetree/bindings/input/touchscreen/ti-tsc-adc.txt
@@ -6,7 +6,7 @@ Required properties:
ti,wires: Wires refer to application modes i.e. 4/5/8 wire touchscreen
support on the platform.
ti,x-plate-resistance: X plate resistance
- ti,coordiante-readouts: The sequencer supports a total of 16
+ ti,coordinate-readouts: The sequencer supports a total of 16
programmable steps each step is used to
read a single coordinate. A single
readout is enough but multiple reads can
diff --git a/Documentation/devicetree/bindings/input/touchscreen/touchscreen.txt b/Documentation/devicetree/bindings/input/touchscreen/touchscreen.txt
new file mode 100644
index 00000000000..d8e06163c54
--- /dev/null
+++ b/Documentation/devicetree/bindings/input/touchscreen/touchscreen.txt
@@ -0,0 +1,27 @@
+General Touchscreen Properties:
+
+Optional properties for Touchscreens:
+ - touchscreen-size-x : horizontal resolution of touchscreen
+ (in pixels)
+ - touchscreen-size-y : vertical resolution of touchscreen
+ (in pixels)
+ - touchscreen-max-pressure : maximum reported pressure (arbitrary range
+ dependent on the controller)
+ - touchscreen-fuzz-x : horizontal noise value of the absolute input
+ device (in pixels)
+ - touchscreen-fuzz-y : vertical noise value of the absolute input
+ device (in pixels)
+ - touchscreen-fuzz-pressure : pressure noise value of the absolute input
+ device (arbitrary range dependent on the
+ controller)
+ - touchscreen-inverted-x : X axis is inverted (boolean)
+ - touchscreen-inverted-y : Y axis is inverted (boolean)
+
+Deprecated properties for Touchscreens:
+ - x-size : deprecated name for touchscreen-size-x
+ - y-size : deprecated name for touchscreen-size-y
+ - moving-threshold : deprecated name for a combination of
+ touchscreen-fuzz-x and touchscreen-fuzz-y
+ - contact-threshold : deprecated name for touchscreen-fuzz-pressure
+ - x-invert : deprecated name for touchscreen-inverted-x
+ - y-invert : deprecated name for touchscreen-inverted-y
diff --git a/Documentation/devicetree/bindings/input/touchscreen/tsc2005.txt b/Documentation/devicetree/bindings/input/touchscreen/tsc2005.txt
new file mode 100644
index 00000000000..4b641c7bf1c
--- /dev/null
+++ b/Documentation/devicetree/bindings/input/touchscreen/tsc2005.txt
@@ -0,0 +1,42 @@
+* Texas Instruments tsc2005 touchscreen controller
+
+Required properties:
+ - compatible : "ti,tsc2005"
+ - reg : SPI device address
+ - spi-max-frequency : Maximal SPI speed
+ - interrupts : IRQ specifier
+ - reset-gpios : GPIO specifier
+ - vio-supply : Regulator specifier
+
+Optional properties:
+ - ti,x-plate-ohms : integer, resistance of the touchscreen's X plates
+ in ohm (defaults to 280)
+ - ti,esd-recovery-timeout-ms : integer, if the touchscreen does not respond after
+ the configured time (in milli seconds), the driver
+ will reset it. This is disabled by default.
+ - properties defined in touchscreen.txt
+
+Example:
+
+&mcspi1 {
+ tsc2005@0 {
+ compatible = "ti,tsc2005";
+ spi-max-frequency = <6000000>;
+ reg = <0>;
+
+ vio-supply = <&vio>;
+
+ reset-gpios = <&gpio4 8 GPIO_ACTIVE_HIGH>; /* 104 */
+ interrupts-extended = <&gpio4 4 IRQ_TYPE_EDGE_RISING>; /* 100 */
+
+ touchscreen-fuzz-x = <4>;
+ touchscreen-fuzz-y = <7>;
+ touchscreen-fuzz-pressure = <2>;
+ touchscreen-max-x = <4096>;
+ touchscreen-max-y = <4096>;
+ touchscreen-max-pressure = <2048>;
+
+ ti,x-plate-ohms = <280>;
+ ti,esd-recovery-timeout-ms = <8000>;
+ };
+}
diff --git a/Documentation/devicetree/bindings/input/touchscreen/tsc2007.txt b/Documentation/devicetree/bindings/input/touchscreen/tsc2007.txt
new file mode 100644
index 00000000000..ec365e17223
--- /dev/null
+++ b/Documentation/devicetree/bindings/input/touchscreen/tsc2007.txt
@@ -0,0 +1,41 @@
+* Texas Instruments tsc2007 touchscreen controller
+
+Required properties:
+- compatible: must be "ti,tsc2007".
+- reg: I2C address of the chip.
+- ti,x-plate-ohms: X-plate resistance in ohms.
+
+Optional properties:
+- gpios: the interrupt gpio the chip is connected to (trough the penirq pin).
+ The penirq pin goes to low when the panel is touched.
+ (see GPIO binding[1] for more details).
+- interrupt-parent: the phandle for the gpio controller
+ (see interrupt binding[0]).
+- interrupts: (gpio) interrupt to which the chip is connected
+ (see interrupt binding[0]).
+- ti,max-rt: maximum pressure.
+- ti,fuzzx: specifies the absolute input fuzz x value.
+ If set, it will permit noise in the data up to +- the value given to the fuzz
+ parameter, that is used to filter noise from the event stream.
+- ti,fuzzy: specifies the absolute input fuzz y value.
+- ti,fuzzz: specifies the absolute input fuzz z value.
+- ti,poll-period: how much time to wait (in milliseconds) before reading again the
+ values from the tsc2007.
+
+[0]: Documentation/devicetree/bindings/interrupt-controller/interrupts.txt
+[1]: Documentation/devicetree/bindings/gpio/gpio.txt
+
+Example:
+ &i2c1 {
+ /* ... */
+ tsc2007@49 {
+ compatible = "ti,tsc2007";
+ reg = <0x49>;
+ interrupt-parent = <&gpio4>;
+ interrupts = <0x0 0x8>;
+ gpios = <&gpio4 0 0>;
+ ti,x-plate-ohms = <180>;
+ };
+
+ /* ... */
+ };
diff --git a/Documentation/devicetree/bindings/input/touchscreen/zforce_ts.txt b/Documentation/devicetree/bindings/input/touchscreen/zforce_ts.txt
new file mode 100644
index 00000000000..2faf1f1fa39
--- /dev/null
+++ b/Documentation/devicetree/bindings/input/touchscreen/zforce_ts.txt
@@ -0,0 +1,30 @@
+* Neonode infrared touchscreen controller
+
+Required properties:
+- compatible: must be "neonode,zforce"
+- reg: I2C address of the chip
+- interrupts: interrupt to which the chip is connected
+- gpios: gpios the chip is connected to
+ first one is the interrupt gpio and second one the reset gpio
+- x-size: horizontal resolution of touchscreen
+- y-size: vertical resolution of touchscreen
+
+Example:
+
+ i2c@00000000 {
+ /* ... */
+
+ zforce_ts@50 {
+ compatible = "neonode,zforce";
+ reg = <0x50>;
+ interrupts = <2 0>;
+
+ gpios = <&gpio5 6 0>, /* INT */
+ <&gpio5 9 0>; /* RST */
+
+ x-size = <800>;
+ y-size = <600>;
+ };
+
+ /* ... */
+ };
diff --git a/Documentation/devicetree/bindings/input/twl4030-keypad.txt b/Documentation/devicetree/bindings/input/twl4030-keypad.txt
new file mode 100644
index 00000000000..e4be2f76a71
--- /dev/null
+++ b/Documentation/devicetree/bindings/input/twl4030-keypad.txt
@@ -0,0 +1,27 @@
+* TWL4030's Keypad Controller device tree bindings
+
+TWL4030's Keypad controller is used to interface a SoC with a matrix-type
+keypad device. The keypad controller supports multiple row and column lines.
+A key can be placed at each intersection of a unique row and a unique column.
+The keypad controller can sense a key-press and key-release and report the
+event using a interrupt to the cpu.
+
+This binding is based on the matrix-keymap binding with the following
+changes:
+
+ * keypad,num-rows and keypad,num-columns are required.
+
+Required SoC Specific Properties:
+- compatible: should be one of the following
+ - "ti,twl4030-keypad": For controllers compatible with twl4030 keypad
+ controller.
+- interrupt: should be one of the following
+ - <1>: For controllers compatible with twl4030 keypad controller.
+
+Example:
+ twl_keypad: keypad {
+ compatible = "ti,twl4030-keypad";
+ interrupts = <1>;
+ keypad,num-rows = <8>;
+ keypad,num-columns = <8>;
+ };
diff --git a/Documentation/devicetree/bindings/input/twl4030-pwrbutton.txt b/Documentation/devicetree/bindings/input/twl4030-pwrbutton.txt
new file mode 100644
index 00000000000..c864a46cddc
--- /dev/null
+++ b/Documentation/devicetree/bindings/input/twl4030-pwrbutton.txt
@@ -0,0 +1,21 @@
+Texas Instruments TWL family (twl4030) pwrbutton module
+
+This module is part of the TWL4030. For more details about the whole
+chip see Documentation/devicetree/bindings/mfd/twl-familly.txt.
+
+This module provides a simple power button event via an Interrupt.
+
+Required properties:
+- compatible: should be one of the following
+ - "ti,twl4030-pwrbutton": For controllers compatible with twl4030
+- interrupts: should be one of the following
+ - <8>: For controllers compatible with twl4030
+
+Example:
+
+&twl {
+ twl_pwrbutton: pwrbutton {
+ compatible = "ti,twl4030-pwrbutton";
+ interrupts = <8>;
+ };
+};
diff --git a/Documentation/devicetree/bindings/interrupt-controller/allwinner,sun4i-ic.txt b/Documentation/devicetree/bindings/interrupt-controller/allwinner,sun4i-ic.txt
index 57edb30dbbc..b290ca150d3 100644
--- a/Documentation/devicetree/bindings/interrupt-controller/allwinner,sun4i-ic.txt
+++ b/Documentation/devicetree/bindings/interrupt-controller/allwinner,sun4i-ic.txt
@@ -2,20 +2,17 @@ Allwinner Sunxi Interrupt Controller
Required properties:
-- compatible : should be "allwinner,sun4i-ic"
+- compatible : should be "allwinner,sun4i-a10-ic"
- reg : Specifies base physical address and size of the registers.
- interrupt-controller : Identifies the node as an interrupt controller
- #interrupt-cells : Specifies the number of cells needed to encode an
interrupt source. The value shall be 1.
-For the valid interrupt sources for your SoC, see the documentation in
-sunxi/<soc>.txt
-
Example:
intc: interrupt-controller {
- compatible = "allwinner,sun4i-ic";
+ compatible = "allwinner,sun4i-a10-ic";
reg = <0x01c20400 0x400>;
interrupt-controller;
- #interrupt-cells = <2>;
+ #interrupt-cells = <1>;
};
diff --git a/Documentation/devicetree/bindings/interrupt-controller/allwinner,sun67i-sc-nmi.txt b/Documentation/devicetree/bindings/interrupt-controller/allwinner,sun67i-sc-nmi.txt
new file mode 100644
index 00000000000..d1c5cdabc3e
--- /dev/null
+++ b/Documentation/devicetree/bindings/interrupt-controller/allwinner,sun67i-sc-nmi.txt
@@ -0,0 +1,27 @@
+Allwinner Sunxi NMI Controller
+==============================
+
+Required properties:
+
+- compatible : should be "allwinner,sun7i-a20-sc-nmi" or
+ "allwinner,sun6i-a31-sc-nmi"
+- reg : Specifies base physical address and size of the registers.
+- interrupt-controller : Identifies the node as an interrupt controller
+- #interrupt-cells : Specifies the number of cells needed to encode an
+ interrupt source. The value shall be 2. The first cell is the IRQ number, the
+ second cell the trigger type as defined in interrupt.txt in this directory.
+- interrupt-parent: Specifies the parent interrupt controller.
+- interrupts: Specifies the interrupt line (NMI) which is handled by
+ the interrupt controller in the parent controller's notation. This value
+ shall be the NMI.
+
+Example:
+
+sc-nmi-intc@01c00030 {
+ compatible = "allwinner,sun7i-a20-sc-nmi";
+ interrupt-controller;
+ #interrupt-cells = <2>;
+ reg = <0x01c00030 0x0c>;
+ interrupt-parent = <&gic>;
+ interrupts = <0 0 4>;
+};
diff --git a/Documentation/devicetree/bindings/interrupt-controller/brcm,l2-intc.txt b/Documentation/devicetree/bindings/interrupt-controller/brcm,l2-intc.txt
new file mode 100644
index 00000000000..448273a30a1
--- /dev/null
+++ b/Documentation/devicetree/bindings/interrupt-controller/brcm,l2-intc.txt
@@ -0,0 +1,29 @@
+Broadcom Generic Level 2 Interrupt Controller
+
+Required properties:
+
+- compatible: should be "brcm,l2-intc"
+- reg: specifies the base physical address and size of the registers
+- interrupt-controller: identifies the node as an interrupt controller
+- #interrupt-cells: specifies the number of cells needed to encode an
+ interrupt source. Should be 1.
+- interrupt-parent: specifies the phandle to the parent interrupt controller
+ this controller is cacaded from
+- interrupts: specifies the interrupt line in the interrupt-parent irq space
+ to be used for cascading
+
+Optional properties:
+
+- brcm,irq-can-wake: If present, this means the L2 controller can be used as a
+ wakeup source for system suspend/resume.
+
+Example:
+
+hif_intr2_intc: interrupt-controller@f0441000 {
+ compatible = "brcm,l2-intc";
+ reg = <0xf0441000 0x30>;
+ interrupt-controller;
+ #interrupt-cells = <1>;
+ interrupt-parent = <&intc>;
+ interrupts = <0x0 0x20 0x0>;
+};
diff --git a/Documentation/devicetree/bindings/interrupt-controller/cirrus,clps711x-intc.txt b/Documentation/devicetree/bindings/interrupt-controller/cirrus,clps711x-intc.txt
new file mode 100644
index 00000000000..759339c34e4
--- /dev/null
+++ b/Documentation/devicetree/bindings/interrupt-controller/cirrus,clps711x-intc.txt
@@ -0,0 +1,41 @@
+Cirrus Logic CLPS711X Interrupt Controller
+
+Required properties:
+
+- compatible: Should be "cirrus,clps711x-intc".
+- reg: Specifies base physical address of the registers set.
+- interrupt-controller: Identifies the node as an interrupt controller.
+- #interrupt-cells: Specifies the number of cells needed to encode an
+ interrupt source. The value shall be 1.
+
+The interrupt sources are as follows:
+ID Name Description
+---------------------------
+1: BLINT Battery low (FIQ)
+3: MCINT Media changed (FIQ)
+4: CSINT CODEC sound
+5: EINT1 External 1
+6: EINT2 External 2
+7: EINT3 External 3
+8: TC1OI TC1 under flow
+9: TC2OI TC2 under flow
+10: RTCMI RTC compare match
+11: TINT 64Hz tick
+12: UTXINT1 UART1 transmit FIFO half empty
+13: URXINT1 UART1 receive FIFO half full
+14: UMSINT UART1 modem status changed
+15: SSEOTI SSI1 end of transfer
+16: KBDINT Keyboard
+17: SS2RX SSI2 receive FIFO half or greater full
+18: SS2TX SSI2 transmit FIFO less than half empty
+28: UTXINT2 UART2 transmit FIFO half empty
+29: URXINT2 UART2 receive FIFO half full
+32: DAIINT DAI interface (FIQ)
+
+Example:
+ intc: interrupt-controller {
+ compatible = "cirrus,clps711x-intc";
+ reg = <0x80000000 0x4000>;
+ interrupt-controller;
+ #interrupt-cells = <1>;
+ };
diff --git a/Documentation/devicetree/bindings/interrupt-controller/interrupts.txt b/Documentation/devicetree/bindings/interrupt-controller/interrupts.txt
index 72a06c0ab1d..1486497a24c 100644
--- a/Documentation/devicetree/bindings/interrupt-controller/interrupts.txt
+++ b/Documentation/devicetree/bindings/interrupt-controller/interrupts.txt
@@ -4,16 +4,33 @@ Specifying interrupt information for devices
1) Interrupt client nodes
-------------------------
-Nodes that describe devices which generate interrupts must contain an
-"interrupts" property. This property must contain a list of interrupt
-specifiers, one per output interrupt. The format of the interrupt specifier is
-determined by the interrupt controller to which the interrupts are routed; see
-section 2 below for details.
+Nodes that describe devices which generate interrupts must contain an either an
+"interrupts" property or an "interrupts-extended" property. These properties
+contain a list of interrupt specifiers, one per output interrupt. The format of
+the interrupt specifier is determined by the interrupt controller to which the
+interrupts are routed; see section 2 below for details.
+
+ Example:
+ interrupt-parent = <&intc1>;
+ interrupts = <5 0>, <6 0>;
The "interrupt-parent" property is used to specify the controller to which
interrupts are routed and contains a single phandle referring to the interrupt
controller node. This property is inherited, so it may be specified in an
-interrupt client node or in any of its parent nodes.
+interrupt client node or in any of its parent nodes. Interrupts listed in the
+"interrupts" property are always in reference to the node's interrupt parent.
+
+The "interrupts-extended" property is a special form for use when a node needs
+to reference multiple interrupt parents. Each entry in this property contains
+both the parent phandle and the interrupt specifier. "interrupts-extended"
+should only be used when a device has multiple interrupt parents.
+
+ Example:
+ interrupts-extended = <&intc1 5 1>, <&intc2 1 0>;
+
+A device node may contain either "interrupts" or "interrupts-extended", but not
+both. If both properties are present, then the operating system should log an
+error and use only the data in "interrupts".
2) Interrupt controller nodes
-----------------------------
diff --git a/Documentation/devicetree/bindings/interrupt-controller/lsi,zevio-intc.txt b/Documentation/devicetree/bindings/interrupt-controller/lsi,zevio-intc.txt
new file mode 100644
index 00000000000..aee38e7c13e
--- /dev/null
+++ b/Documentation/devicetree/bindings/interrupt-controller/lsi,zevio-intc.txt
@@ -0,0 +1,18 @@
+TI-NSPIRE interrupt controller
+
+Required properties:
+- compatible: Compatible property value should be "lsi,zevio-intc".
+
+- reg: Physical base address of the controller and length of memory mapped
+ region.
+
+- interrupt-controller : Identifies the node as an interrupt controller
+
+Example:
+
+interrupt-controller {
+ compatible = "lsi,zevio-intc";
+ interrupt-controller;
+ reg = <0xDC000000 0x1000>;
+ #interrupt-cells = <1>;
+};
diff --git a/Documentation/devicetree/bindings/arm/armada-370-xp-mpic.txt b/Documentation/devicetree/bindings/interrupt-controller/marvell,armada-370-xp-mpic.txt
index 61df564c0d2..5fc03134a99 100644
--- a/Documentation/devicetree/bindings/arm/armada-370-xp-mpic.txt
+++ b/Documentation/devicetree/bindings/interrupt-controller/marvell,armada-370-xp-mpic.txt
@@ -1,9 +1,11 @@
-Marvell Armada 370 and Armada XP Interrupt Controller
+Marvell Armada 370, 375, 38x, XP Interrupt Controller
-----------------------------------------------------
Required properties:
- compatible: Should be "marvell,mpic"
- interrupt-controller: Identifies the node as an interrupt controller.
+- msi-controller: Identifies the node as an PCI Message Signaled
+ Interrupt controller.
- #interrupt-cells: The number of cells to define the interrupts. Should be 1.
The cell is the IRQ number
@@ -14,7 +16,13 @@ Required properties:
automatically map to the interrupt controller registers of the
current CPU)
+Optional properties:
+- interrupts: If defined, then it indicates that this MPIC is
+ connected as a slave to another interrupt controller. This is
+ typically the case on Armada 375 and Armada 38x, where the MPIC is
+ connected as a slave to the Cortex-A9 GIC. The provided interrupt
+ indicate to which GIC interrupt the MPIC output is connected.
Example:
@@ -24,6 +32,7 @@ Example:
#address-cells = <1>;
#size-cells = <1>;
interrupt-controller;
+ msi-controller;
reg = <0xd0020a00 0x1d0>,
<0xd0021070 0x58>;
};
diff --git a/Documentation/devicetree/bindings/interrupt-controller/snps,dw-apb-ictl.txt b/Documentation/devicetree/bindings/interrupt-controller/snps,dw-apb-ictl.txt
new file mode 100644
index 00000000000..492911744ca
--- /dev/null
+++ b/Documentation/devicetree/bindings/interrupt-controller/snps,dw-apb-ictl.txt
@@ -0,0 +1,32 @@
+Synopsys DesignWare APB interrupt controller (dw_apb_ictl)
+
+Synopsys DesignWare provides interrupt controller IP for APB known as
+dw_apb_ictl. The IP is used as secondary interrupt controller in some SoCs with
+APB bus, e.g. Marvell Armada 1500.
+
+Required properties:
+- compatible: shall be "snps,dw-apb-ictl"
+- reg: physical base address of the controller and length of memory mapped
+ region starting with ENABLE_LOW register
+- interrupt-controller: identifies the node as an interrupt controller
+- #interrupt-cells: number of cells to encode an interrupt-specifier, shall be 1
+- interrupts: interrupt reference to primary interrupt controller
+- interrupt-parent: (optional) reference specific primary interrupt controller
+
+The interrupt sources map to the corresponding bits in the interrupt
+registers, i.e.
+- 0 maps to bit 0 of low interrupts,
+- 1 maps to bit 1 of low interrupts,
+- 32 maps to bit 0 of high interrupts,
+- 33 maps to bit 1 of high interrupts,
+- (optional) fast interrupts start at 64.
+
+Example:
+ aic: interrupt-controller@3000 {
+ compatible = "snps,dw-apb-ictl";
+ reg = <0x3000 0xc00>;
+ interrupt-controller;
+ #interrupt-cells = <1>;
+ interrupt-parent = <&gic>;
+ interrupts = <GIC_SPI 3 IRQ_TYPE_LEVEL_HIGH>;
+ };
diff --git a/Documentation/devicetree/bindings/interrupt-controller/sunxi/sun4i-a10.txt b/Documentation/devicetree/bindings/interrupt-controller/sunxi/sun4i-a10.txt
deleted file mode 100644
index 76b98c83449..00000000000
--- a/Documentation/devicetree/bindings/interrupt-controller/sunxi/sun4i-a10.txt
+++ /dev/null
@@ -1,89 +0,0 @@
-Allwinner A10 (sun4i) interrupt sources
----------------------------------------
-
-The interrupt sources available for the Allwinner A10 SoC are the
-following one:
-
-0: ENMI
-1: UART0
-2: UART1
-3: UART2
-4: UART3
-5: IR0
-6: IR1
-7: I2C0
-8: I2C1
-9: I2C2
-10: SPI0
-11: SPI1
-12: SPI2
-13: SPDIF
-14: AC97
-15: TS
-16: I2S
-17: UART4
-18: UART5
-19: UART6
-20: UART7
-21: KEYPAD
-22: TIMER0
-23: TIMER1
-24: TIMER2
-25: TIMER3
-26: CAN
-27: DMA
-28: PIO
-29: TOUCH_PANEL
-30: AUDIO_CODEC
-31: LRADC
-32: MMC0
-33: MMC1
-34: MMC2
-35: MMC3
-36: MEMSTICK
-37: NAND
-38: USB0
-39: USB1
-40: USB2
-41: SCR
-42: CSI0
-43: CSI1
-44: LCDCTRL0
-45: LCDCTRL1
-46: MP
-47: DEFEBE0
-48: DEFEBE1
-49: PMU
-50: SPI3
-51: TZASC
-52: PATA
-53: VE
-54: SS
-55: EMAC
-56: SATA
-57: GPS
-58: HDMI
-59: TVE
-60: ACE
-61: TVD
-62: PS2_0
-63: PS2_1
-64: USB3
-65: USB4
-66: PLE_PFM
-67: TIMER4
-68: TIMER5
-69: GPU_GP
-70: GPU_GPMMU
-71: GPU_PP0
-72: GPU_PPMMU0
-73: GPU_PMU
-74: GPU_RSV0
-75: GPU_RSV1
-76: GPU_RSV2
-77: GPU_RSV3
-78: GPU_RSV4
-79: GPU_RSV5
-80: GPU_RSV6
-82: SYNC_TIMER0
-83: SYNC_TIMER1
diff --git a/Documentation/devicetree/bindings/interrupt-controller/sunxi/sun5i-a13.txt b/Documentation/devicetree/bindings/interrupt-controller/sunxi/sun5i-a13.txt
deleted file mode 100644
index 2ec3b5ce1a0..00000000000
--- a/Documentation/devicetree/bindings/interrupt-controller/sunxi/sun5i-a13.txt
+++ /dev/null
@@ -1,55 +0,0 @@
-Allwinner A13 (sun5i) interrupt sources
----------------------------------------
-
-The interrupt sources available for the Allwinner A13 SoC are the
-following one:
-
-0: ENMI
-2: UART1
-4: UART3
-5: IR
-7: I2C0
-8: I2C1
-9: I2C2
-10: SPI0
-11: SPI1
-12: SPI2
-22: TIMER0
-23: TIMER1
-24: TIMER2
-25: TIMER3
-27: DMA
-28: PIO
-29: TOUCH_PANEL
-30: AUDIO_CODEC
-31: LRADC
-32: MMC0
-33: MMC1
-34: MMC2
-37: NAND
-38: USB OTG
-39: USB EHCI
-40: USB OHCI
-42: CSI
-44: LCDCTRL
-47: DEFEBE
-49: PMU
-53: VE
-54: SS
-66: PLE_PFM
-67: TIMER4
-68: TIMER5
-69: GPU_GP
-70: GPU_GPMMU
-71: GPU_PP0
-72: GPU_PPMMU0
-73: GPU_PMU
-74: GPU_RSV0
-75: GPU_RSV1
-76: GPU_RSV2
-77: GPU_RSV3
-78: GPU_RSV4
-79: GPU_RSV5
-80: GPU_RSV6
-82: SYNC_TIMER0
-83: SYNC_TIMER1
diff --git a/Documentation/devicetree/bindings/iommu/arm,smmu.txt b/Documentation/devicetree/bindings/iommu/arm,smmu.txt
index e34c6cdd8ba..f284b99402b 100644
--- a/Documentation/devicetree/bindings/iommu/arm,smmu.txt
+++ b/Documentation/devicetree/bindings/iommu/arm,smmu.txt
@@ -48,6 +48,12 @@ conditions.
from the mmu-masters towards memory) node for this
SMMU.
+- calxeda,smmu-secure-config-access : Enable proper handling of buggy
+ implementations that always use secure access to
+ SMMU configuration registers. In this case non-secure
+ aliases of secure registers have to be used during
+ SMMU configuration.
+
Example:
smmu {
diff --git a/Documentation/devicetree/bindings/iommu/samsung,sysmmu.txt b/Documentation/devicetree/bindings/iommu/samsung,sysmmu.txt
new file mode 100644
index 00000000000..6fa4c737af2
--- /dev/null
+++ b/Documentation/devicetree/bindings/iommu/samsung,sysmmu.txt
@@ -0,0 +1,70 @@
+Samsung Exynos IOMMU H/W, System MMU (System Memory Management Unit)
+
+Samsung's Exynos architecture contains System MMUs that enables scattered
+physical memory chunks visible as a contiguous region to DMA-capable peripheral
+devices like MFC, FIMC, FIMD, GScaler, FIMC-IS and so forth.
+
+System MMU is an IOMMU and supports identical translation table format to
+ARMv7 translation tables with minimum set of page properties including access
+permissions, shareability and security protection. In addition, System MMU has
+another capabilities like L2 TLB or block-fetch buffers to minimize translation
+latency.
+
+System MMUs are in many to one relation with peripheral devices, i.e. single
+peripheral device might have multiple System MMUs (usually one for each bus
+master), but one System MMU can handle transactions from only one peripheral
+device. The relation between a System MMU and the peripheral device needs to be
+defined in device node of the peripheral device.
+
+MFC in all Exynos SoCs and FIMD, M2M Scalers and G2D in Exynos5420 has 2 System
+MMUs.
+* MFC has one System MMU on its left and right bus.
+* FIMD in Exynos5420 has one System MMU for window 0 and 4, the other system MMU
+ for window 1, 2 and 3.
+* M2M Scalers and G2D in Exynos5420 has one System MMU on the read channel and
+ the other System MMU on the write channel.
+The drivers must consider how to handle those System MMUs. One of the idea is
+to implement child devices or sub-devices which are the client devices of the
+System MMU.
+
+Note:
+The current DT binding for the Exynos System MMU is incomplete.
+The following properties can be removed or changed, if found incompatible with
+the "Generic IOMMU Binding" support for attaching devices to the IOMMU.
+
+Required properties:
+- compatible: Should be "samsung,exynos-sysmmu"
+- reg: A tuple of base address and size of System MMU registers.
+- interrupt-parent: The phandle of the interrupt controller of System MMU
+- interrupts: An interrupt specifier for interrupt signal of System MMU,
+ according to the format defined by a particular interrupt
+ controller.
+- clock-names: Should be "sysmmu" if the System MMU is needed to gate its clock.
+ Optional "master" if the clock to the System MMU is gated by
+ another gate clock other than "sysmmu".
+ Exynos4 SoCs, there needs no "master" clock.
+ Exynos5 SoCs, some System MMUs must have "master" clocks.
+- clocks: Required if the System MMU is needed to gate its clock.
+- samsung,power-domain: Required if the System MMU is needed to gate its power.
+ Please refer to the following document:
+ Documentation/devicetree/bindings/arm/exynos/power_domain.txt
+
+Examples:
+ gsc_0: gsc@13e00000 {
+ compatible = "samsung,exynos5-gsc";
+ reg = <0x13e00000 0x1000>;
+ interrupts = <0 85 0>;
+ samsung,power-domain = <&pd_gsc>;
+ clocks = <&clock CLK_GSCL0>;
+ clock-names = "gscl";
+ };
+
+ sysmmu_gsc0: sysmmu@13E80000 {
+ compatible = "samsung,exynos-sysmmu";
+ reg = <0x13E80000 0x1000>;
+ interrupt-parent = <&combiner>;
+ interrupts = <2 0>;
+ clock-names = "sysmmu", "master";
+ clocks = <&clock CLK_SMMU_GSCL0>, <&clock CLK_GSCL0>;
+ samsung,power-domain = <&pd_gsc>;
+ };
diff --git a/Documentation/devicetree/bindings/iommu/ti,omap-iommu.txt b/Documentation/devicetree/bindings/iommu/ti,omap-iommu.txt
new file mode 100644
index 00000000000..42531dc387a
--- /dev/null
+++ b/Documentation/devicetree/bindings/iommu/ti,omap-iommu.txt
@@ -0,0 +1,26 @@
+OMAP2+ IOMMU
+
+Required properties:
+- compatible : Should be one of,
+ "ti,omap2-iommu" for OMAP2/OMAP3 IOMMU instances
+ "ti,omap4-iommu" for OMAP4/OMAP5 IOMMU instances
+ "ti,dra7-iommu" for DRA7xx IOMMU instances
+- ti,hwmods : Name of the hwmod associated with the IOMMU instance
+- reg : Address space for the configuration registers
+- interrupts : Interrupt specifier for the IOMMU instance
+
+Optional properties:
+- ti,#tlb-entries : Number of entries in the translation look-aside buffer.
+ Should be either 8 or 32 (default: 32)
+- ti,iommu-bus-err-back : Indicates the IOMMU instance supports throwing
+ back a bus error response on MMU faults.
+
+Example:
+ /* OMAP3 ISP MMU */
+ mmu_isp: mmu@480bd400 {
+ compatible = "ti,omap2-iommu";
+ reg = <0x480bd400 0x80>;
+ interrupts = <24>;
+ ti,hwmods = "mmu_isp";
+ ti,#tlb-entries = <8>;
+ };
diff --git a/Documentation/devicetree/bindings/leds/leds-gpio.txt b/Documentation/devicetree/bindings/leds/leds-gpio.txt
index df1b3080f6b..f77148f372e 100644
--- a/Documentation/devicetree/bindings/leds/leds-gpio.txt
+++ b/Documentation/devicetree/bindings/leds/leds-gpio.txt
@@ -21,6 +21,8 @@ LED sub-node properties:
on). The "keep" setting will keep the LED at whatever its current
state is, without producing a glitch. The default is off if this
property is not present.
+- retain-state-suspended: (optional) The suspend state can be retained.Such
+ as charge-led gpio.
Examples:
@@ -50,3 +52,13 @@ run-control {
default-state = "on";
};
};
+
+leds {
+ compatible = "gpio-leds";
+
+ charger-led {
+ gpios = <&gpio1 2 0>;
+ linux,default-trigger = "max8903-charger-charging";
+ retain-state-suspended;
+ };
+};
diff --git a/Documentation/devicetree/bindings/leds/leds-lp55xx.txt b/Documentation/devicetree/bindings/leds/leds-lp55xx.txt
index a61727f9a6d..1b66a413fb9 100644
--- a/Documentation/devicetree/bindings/leds/leds-lp55xx.txt
+++ b/Documentation/devicetree/bindings/leds/leds-lp55xx.txt
@@ -1,7 +1,13 @@
Binding for TI/National Semiconductor LP55xx Led Drivers
Required properties:
-- compatible: "national,lp5521" or "national,lp5523" or "ti,lp5562" or "ti,lp8501"
+- compatible: one of
+ national,lp5521
+ national,lp5523
+ ti,lp55231
+ ti,lp5562
+ ti,lp8501
+
- reg: I2C slave address
- clock-mode: Input clock mode, (0: automode, 1: internal, 2: external)
@@ -10,6 +16,7 @@ Each child has own specific current settings
- max-cur: Maximun current at each led channel.
Optional properties:
+- enable-gpio: GPIO attached to the chip's enable pin
- label: Used for naming LEDs
- pwr-sel: LP8501 specific property. Power selection for output channels.
0: D1~9 are connected to VDD
@@ -17,12 +24,15 @@ Optional properties:
2: D1~6 with VOUT, D7~9 with VDD
3: D1~9 are connected to VOUT
-Alternatively, each child can have specific channel name
-- chan-name: Name of each channel name
+Alternatively, each child can have a specific channel name and trigger:
+- chan-name (optional): name of channel
+- linux,default-trigger (optional): see
+ Documentation/devicetree/bindings/leds/common.txt
example 1) LP5521
3 LED channels, external clock used. Channel names are 'lp5521_pri:channel0',
-'lp5521_pri:channel1' and 'lp5521_pri:channel2'
+'lp5521_pri:channel1' and 'lp5521_pri:channel2', with a heartbeat trigger
+on channel 0.
lp5521@32 {
compatible = "national,lp5521";
@@ -33,6 +43,7 @@ lp5521@32 {
chan0 {
led-cur = /bits/ 8 <0x2f>;
max-cur = /bits/ 8 <0x5f>;
+ linux,default-trigger = "heartbeat";
};
chan1 {
diff --git a/Documentation/devicetree/bindings/leds/leds-pwm.txt b/Documentation/devicetree/bindings/leds/leds-pwm.txt
index 7297107cf83..6c6583c35f2 100644
--- a/Documentation/devicetree/bindings/leds/leds-pwm.txt
+++ b/Documentation/devicetree/bindings/leds/leds-pwm.txt
@@ -13,6 +13,8 @@ LED sub-node properties:
For the pwms and pwm-names property please refer to:
Documentation/devicetree/bindings/pwm/pwm.txt
- max-brightness : Maximum brightness possible for the LED
+- active-low : (optional) For PWMs where the LED is wired to supply
+ rather than ground.
- label : (optional)
see Documentation/devicetree/bindings/leds/common.txt
- linux,default-trigger : (optional)
diff --git a/Documentation/devicetree/bindings/leds/tca6507.txt b/Documentation/devicetree/bindings/leds/tca6507.txt
index 80ff3dfb1f3..d7221b84987 100644
--- a/Documentation/devicetree/bindings/leds/tca6507.txt
+++ b/Documentation/devicetree/bindings/leds/tca6507.txt
@@ -2,6 +2,13 @@ LEDs connected to tca6507
Required properties:
- compatible : should be : "ti,tca6507".
+- #address-cells: must be 1
+- #size-cells: must be 0
+- reg: typically 0x45.
+
+Optional properties:
+- gpio-controller: allows lines to be used as output-only GPIOs.
+- #gpio-cells: if present, must be 0.
Each led is represented as a sub-node of the ti,tca6507 device.
@@ -10,6 +17,7 @@ LED sub-node properties:
- reg : number of LED line (could be from 0 to 6)
- linux,default-trigger : (optional)
see Documentation/devicetree/bindings/leds/common.txt
+- compatible: either "led" (the default) or "gpio".
Examples:
@@ -19,6 +27,9 @@ tca6507@45 {
#size-cells = <0>;
reg = <0x45>;
+ gpio-controller;
+ #gpio-cells = <2>;
+
led0: red-aux@0 {
label = "red:aux";
reg = <0x0>;
@@ -29,5 +40,10 @@ tca6507@45 {
reg = <0x5>;
linux,default-trigger = "default-on";
};
+
+ wifi-reset@6 {
+ reg = <0x6>;
+ compatible = "gpio";
+ };
};
diff --git a/Documentation/devicetree/bindings/marvell.txt b/Documentation/devicetree/bindings/marvell.txt
index f7a0da6b402..ea2b16ced49 100644
--- a/Documentation/devicetree/bindings/marvell.txt
+++ b/Documentation/devicetree/bindings/marvell.txt
@@ -79,7 +79,6 @@ prefixed with the string "marvell,", for Marvell Technology Group Ltd.
Required properties:
- #address-cells : Should be <1>
- #size-cells : Should be <0>
- - device_type : Should be "mdio"
- compatible : Should be "marvell,mv64360-mdio"
Example:
@@ -87,7 +86,6 @@ prefixed with the string "marvell,", for Marvell Technology Group Ltd.
mdio {
#address-cells = <1>;
#size-cells = <0>;
- device_type = "mdio";
compatible = "marvell,mv64360-mdio";
ethernet-phy@0 {
@@ -132,7 +130,6 @@ prefixed with the string "marvell,", for Marvell Technology Group Ltd.
Ethernet port node
Required properties:
- - device_type : Should be "network".
- compatible : Should be "marvell,mv64360-eth".
- reg : Should be <0>, <1>, or <2>, according to which registers
within the silicon block the device uses.
@@ -145,7 +142,6 @@ prefixed with the string "marvell,", for Marvell Technology Group Ltd.
Example Discovery Ethernet port node:
ethernet@0 {
- device_type = "network";
compatible = "marvell,mv64360-eth";
reg = <0>;
interrupts = <32>;
@@ -159,7 +155,6 @@ prefixed with the string "marvell,", for Marvell Technology Group Ltd.
c) Marvell Discovery PHY nodes
Required properties:
- - device_type : Should be "ethernet-phy"
- interrupts : <a> where a is the interrupt number for this phy.
- interrupt-parent : the phandle for the interrupt controller that
services interrupts for this device.
@@ -167,7 +162,6 @@ prefixed with the string "marvell,", for Marvell Technology Group Ltd.
Example Discovery PHY node:
ethernet-phy@1 {
- device_type = "ethernet-phy";
compatible = "broadcom,bcm5421";
interrupts = <76>; /* GPP 12 */
interrupt-parent = <&PIC>;
@@ -271,7 +265,6 @@ prefixed with the string "marvell,", for Marvell Technology Group Ltd.
serial port.
Required properties:
- - device_type : "serial"
- compatible : "marvell,mv64360-mpsc"
- reg : Offset and length of the register set for this device
- sdma : the phandle for the SDMA node used by this port
@@ -288,7 +281,6 @@ prefixed with the string "marvell,", for Marvell Technology Group Ltd.
Example Discovery MPSCINTR node:
mpsc@8000 {
- device_type = "serial";
compatible = "marvell,mv64360-mpsc";
reg = <0x8000 0x38>;
virtual-reg = <0xf1008000>;
diff --git a/Documentation/devicetree/bindings/media/exynos-jpeg-codec.txt b/Documentation/devicetree/bindings/media/exynos-jpeg-codec.txt
new file mode 100644
index 00000000000..937b755baf8
--- /dev/null
+++ b/Documentation/devicetree/bindings/media/exynos-jpeg-codec.txt
@@ -0,0 +1,11 @@
+Samsung S5P/EXYNOS SoC series JPEG codec
+
+Required properties:
+
+- compatible : should be one of:
+ "samsung,s5pv210-jpeg", "samsung,exynos4210-jpeg";
+- reg : address and length of the JPEG codec IP register set;
+- interrupts : specifies the JPEG codec IP interrupt;
+- clocks : should contain the JPEG codec IP gate clock specifier, from the
+ common clock bindings;
+- clock-names : should contain "jpeg" entry.
diff --git a/Documentation/devicetree/bindings/media/i2c/adv7604.txt b/Documentation/devicetree/bindings/media/i2c/adv7604.txt
new file mode 100644
index 00000000000..c27cede3bd6
--- /dev/null
+++ b/Documentation/devicetree/bindings/media/i2c/adv7604.txt
@@ -0,0 +1,70 @@
+* Analog Devices ADV7604/11 video decoder with HDMI receiver
+
+The ADV7604 and ADV7611 are multiformat video decoders with an integrated HDMI
+receiver. The ADV7604 has four multiplexed HDMI inputs and one analog input,
+and the ADV7611 has one HDMI input and no analog input.
+
+These device tree bindings support the ADV7611 only at the moment.
+
+Required Properties:
+
+ - compatible: Must contain one of the following
+ - "adi,adv7611" for the ADV7611
+
+ - reg: I2C slave address
+
+ - hpd-gpios: References to the GPIOs that control the HDMI hot-plug
+ detection pins, one per HDMI input. The active flag indicates the GPIO
+ level that enables hot-plug detection.
+
+The device node must contain one 'port' child node per device input and output
+port, in accordance with the video interface bindings defined in
+Documentation/devicetree/bindings/media/video-interfaces.txt. The port nodes
+are numbered as follows.
+
+ Port ADV7611
+------------------------------------------------------------
+ HDMI 0
+ Digital output 1
+
+The digital output port node must contain at least one endpoint.
+
+Optional Properties:
+
+ - reset-gpios: Reference to the GPIO connected to the device's reset pin.
+
+Optional Endpoint Properties:
+
+ The following three properties are defined in video-interfaces.txt and are
+ valid for source endpoints only.
+
+ - hsync-active: Horizontal synchronization polarity. Defaults to active low.
+ - vsync-active: Vertical synchronization polarity. Defaults to active low.
+ - pclk-sample: Pixel clock polarity. Defaults to output on the falling edge.
+
+ If none of hsync-active, vsync-active and pclk-sample is specified the
+ endpoint will use embedded BT.656 synchronization.
+
+
+Example:
+
+ hdmi_receiver@4c {
+ compatible = "adi,adv7611";
+ reg = <0x4c>;
+
+ reset-gpios = <&ioexp 0 GPIO_ACTIVE_LOW>;
+ hpd-gpios = <&ioexp 2 GPIO_ACTIVE_HIGH>;
+
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ port@0 {
+ reg = <0>;
+ };
+ port@1 {
+ reg = <1>;
+ hdmi_in: endpoint {
+ remote-endpoint = <&ccdc_in>;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/media/img-ir-rev1.txt b/Documentation/devicetree/bindings/media/img-ir-rev1.txt
new file mode 100644
index 00000000000..5434ce61b92
--- /dev/null
+++ b/Documentation/devicetree/bindings/media/img-ir-rev1.txt
@@ -0,0 +1,34 @@
+* ImgTec Infrared (IR) decoder version 1
+
+This binding is for Imagination Technologies' Infrared decoder block,
+specifically major revision 1.
+
+Required properties:
+- compatible: Should be "img,ir-rev1"
+- reg: Physical base address of the controller and length of
+ memory mapped region.
+- interrupts: The interrupt specifier to the cpu.
+
+Optional properties:
+- clocks: List of clock specifiers as described in standard
+ clock bindings.
+ Up to 3 clocks may be specified in the following order:
+ 1st: Core clock (defaults to 32.768KHz if omitted).
+ 2nd: System side (fast) clock.
+ 3rd: Power modulation clock.
+- clock-names: List of clock names corresponding to the clocks
+ specified in the clocks property.
+ Accepted clock names are:
+ "core": Core clock.
+ "sys": System clock.
+ "mod": Power modulation clock.
+
+Example:
+
+ ir@02006200 {
+ compatible = "img,ir-rev1";
+ reg = <0x02006200 0x100>;
+ interrupts = <29 4>;
+ clocks = <&clk_32khz>;
+ clock-names = "core";
+ };
diff --git a/Documentation/devicetree/bindings/media/renesas,vsp1.txt b/Documentation/devicetree/bindings/media/renesas,vsp1.txt
new file mode 100644
index 00000000000..87fe08abf36
--- /dev/null
+++ b/Documentation/devicetree/bindings/media/renesas,vsp1.txt
@@ -0,0 +1,43 @@
+* Renesas VSP1 Video Processing Engine
+
+The VSP1 is a video processing engine that supports up-/down-scaling, alpha
+blending, color space conversion and various other image processing features.
+It can be found in the Renesas R-Car second generation SoCs.
+
+Required properties:
+
+ - compatible: Must contain "renesas,vsp1"
+
+ - reg: Base address and length of the registers block for the VSP1.
+ - interrupts: VSP1 interrupt specifier.
+ - clocks: A phandle + clock-specifier pair for the VSP1 functional clock.
+
+ - renesas,#rpf: Number of Read Pixel Formatter (RPF) modules in the VSP1.
+ - renesas,#uds: Number of Up Down Scaler (UDS) modules in the VSP1.
+ - renesas,#wpf: Number of Write Pixel Formatter (WPF) modules in the VSP1.
+
+
+Optional properties:
+
+ - renesas,has-lif: Boolean, indicates that the LCD Interface (LIF) module is
+ available.
+ - renesas,has-lut: Boolean, indicates that the Look Up Table (LUT) module is
+ available.
+ - renesas,has-sru: Boolean, indicates that the Super Resolution Unit (SRU)
+ module is available.
+
+
+Example: R8A7790 (R-Car H2) VSP1-S node
+
+ vsp1@fe928000 {
+ compatible = "renesas,vsp1";
+ reg = <0 0xfe928000 0 0x8000>;
+ interrupts = <0 267 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&mstp1_clks R8A7790_CLK_VSP1_S>;
+
+ renesas,has-lut;
+ renesas,has-sru;
+ renesas,#rpf = <5>;
+ renesas,#uds = <3>;
+ renesas,#wpf = <4>;
+ };
diff --git a/Documentation/devicetree/bindings/media/s5p-mfc.txt b/Documentation/devicetree/bindings/media/s5p-mfc.txt
index f4181680831..3e3c5f34957 100644
--- a/Documentation/devicetree/bindings/media/s5p-mfc.txt
+++ b/Documentation/devicetree/bindings/media/s5p-mfc.txt
@@ -10,7 +10,8 @@ Required properties:
- compatible : value should be either one among the following
(a) "samsung,mfc-v5" for MFC v5 present in Exynos4 SoCs
(b) "samsung,mfc-v6" for MFC v6 present in Exynos5 SoCs
- (b) "samsung,mfc-v7" for MFC v7 present in Exynos5420 SoC
+ (c) "samsung,mfc-v7" for MFC v7 present in Exynos5420 SoC
+ (d) "samsung,mfc-v8" for MFC v8 present in Exynos5800 SoC
- reg : Physical base address of the IP registers and length of memory
mapped region.
diff --git a/Documentation/devicetree/bindings/media/samsung-fimc.txt b/Documentation/devicetree/bindings/media/samsung-fimc.txt
index 96312f6c4c2..922d6f8e74b 100644
--- a/Documentation/devicetree/bindings/media/samsung-fimc.txt
+++ b/Documentation/devicetree/bindings/media/samsung-fimc.txt
@@ -15,11 +15,21 @@ Common 'camera' node
Required properties:
-- compatible : must be "samsung,fimc", "simple-bus"
-- clocks : list of clock specifiers, corresponding to entries in
- the clock-names property;
-- clock-names : must contain "sclk_cam0", "sclk_cam1", "pxl_async0",
- "pxl_async1" entries, matching entries in the clocks property.
+- compatible: must be "samsung,fimc", "simple-bus"
+- clocks: list of clock specifiers, corresponding to entries in
+ the clock-names property;
+- clock-names : must contain "sclk_cam0", "sclk_cam1", "pxl_async0",
+ "pxl_async1" entries, matching entries in the clocks property.
+
+- #clock-cells: from the common clock bindings (../clock/clock-bindings.txt),
+ must be 1. A clock provider is associated with the 'camera' node and it should
+ be referenced by external sensors that use clocks provided by the SoC on
+ CAM_*_CLKOUT pins. The clock specifier cell stores an index of a clock.
+ The indices are 0, 1 for CAM_A_CLKOUT, CAM_B_CLKOUT clocks respectively.
+
+- clock-output-names: from the common clock bindings, should contain names of
+ clocks registered by the camera subsystem corresponding to CAM_A_CLKOUT,
+ CAM_B_CLKOUT output clocks respectively.
The pinctrl bindings defined in ../pinctrl/pinctrl-bindings.txt must be used
to define a required pinctrl state named "default" and optional pinctrl states:
@@ -32,6 +42,7 @@ way around.
The 'camera' node must include at least one 'fimc' child node.
+
'fimc' device nodes
-------------------
@@ -88,8 +99,8 @@ port nodes specifies data input - 0, 1 indicates input A, B respectively.
Optional properties
-- samsung,camclk-out : specifies clock output for remote sensor,
- 0 - CAM_A_CLKOUT, 1 - CAM_B_CLKOUT;
+- samsung,camclk-out (deprecated) : specifies clock output for remote sensor,
+ 0 - CAM_A_CLKOUT, 1 - CAM_B_CLKOUT;
Image sensor nodes
------------------
@@ -97,8 +108,6 @@ Image sensor nodes
The sensor device nodes should be added to their control bus controller (e.g.
I2C0) nodes and linked to a port node in the csis or the parallel-ports node,
using the common video interfaces bindings, defined in video-interfaces.txt.
-The implementation of this bindings requires clock-frequency property to be
-present in the sensor device nodes.
Example:
@@ -114,7 +123,7 @@ Example:
vddio-supply = <...>;
clock-frequency = <24000000>;
- clocks = <...>;
+ clocks = <&camera 1>;
clock-names = "mclk";
port {
@@ -135,7 +144,7 @@ Example:
vddio-supply = <...>;
clock-frequency = <24000000>;
- clocks = <...>;
+ clocks = <&camera 0>;
clock-names = "mclk";
port {
@@ -149,12 +158,17 @@ Example:
camera {
compatible = "samsung,fimc", "simple-bus";
- #address-cells = <1>;
- #size-cells = <1>;
- status = "okay";
-
+ clocks = <&clock 132>, <&clock 133>, <&clock 351>,
+ <&clock 352>;
+ clock-names = "sclk_cam0", "sclk_cam1", "pxl_async0",
+ "pxl_async1";
+ #clock-cells = <1>;
+ clock-output-names = "cam_a_clkout", "cam_b_clkout";
pinctrl-names = "default";
pinctrl-0 = <&cam_port_a_clk_active>;
+ status = "okay";
+ #address-cells = <1>;
+ #size-cells = <1>;
/* parallel camera ports */
parallel-ports {
diff --git a/Documentation/devicetree/bindings/media/samsung-s5c73m3.txt b/Documentation/devicetree/bindings/media/samsung-s5c73m3.txt
new file mode 100644
index 00000000000..2c85c4538a6
--- /dev/null
+++ b/Documentation/devicetree/bindings/media/samsung-s5c73m3.txt
@@ -0,0 +1,97 @@
+Samsung S5C73M3 8Mp camera ISP
+------------------------------
+
+The S5C73M3 camera ISP supports MIPI CSI-2 and parallel (ITU-R BT.656) video
+data busses. The I2C bus is the main control bus and additionally the SPI bus
+is used, mostly for transferring the firmware to and from the device. Two
+slave device nodes corresponding to these control bus interfaces are required
+and should be placed under respective bus controller nodes.
+
+I2C slave device node
+---------------------
+
+Required properties:
+
+- compatible : "samsung,s5c73m3";
+- reg : I2C slave address of the sensor;
+- vdd-int-supply : digital power supply (1.2V);
+- vdda-supply : analog power supply (1.2V);
+- vdd-reg-supply : regulator input power supply (2.8V);
+- vddio-host-supply : host I/O power supply (1.8V to 2.8V);
+- vddio-cis-supply : CIS I/O power supply (1.2V to 1.8V);
+- vdd-af-supply : lens power supply (2.8V);
+- xshutdown-gpios : specifier of GPIO connected to the XSHUTDOWN pin;
+- standby-gpios : specifier of GPIO connected to the STANDBY pin;
+- clocks : should contain list of phandle and clock specifier pairs
+ according to common clock bindings for the clocks described
+ in the clock-names property;
+- clock-names : should contain "cis_extclk" entry for the CIS_EXTCLK clock;
+
+Optional properties:
+
+- clock-frequency : the frequency at which the "cis_extclk" clock should be
+ configured to operate, in Hz; if this property is not
+ specified default 24 MHz value will be used.
+
+The common video interfaces bindings (see video-interfaces.txt) should be used
+to specify link from the S5C73M3 to an external image data receiver. The S5C73M3
+device node should contain one 'port' child node with an 'endpoint' subnode for
+this purpose. The data link from a raw image sensor to the S5C73M3 can be
+similarly specified, but it is optional since the S5C73M3 ISP and a raw image
+sensor are usually inseparable and form a hybrid module.
+
+Following properties are valid for the endpoint node(s):
+
+endpoint subnode
+----------------
+
+- data-lanes : (optional) specifies MIPI CSI-2 data lanes as covered in
+ video-interfaces.txt. This sensor doesn't support data lane remapping
+ and physical lane indexes in subsequent elements of the array should
+ be only consecutive ascending values.
+
+SPI device node
+---------------
+
+Required properties:
+
+- compatible : "samsung,s5c73m3";
+
+For more details see description of the SPI busses bindings
+(../spi/spi-bus.txt) and bindings of a specific bus controller.
+
+Example:
+
+i2c@138A000000 {
+ ...
+ s5c73m3@3c {
+ compatible = "samsung,s5c73m3";
+ reg = <0x3c>;
+ vdd-int-supply = <&buck9_reg>;
+ vdda-supply = <&ldo17_reg>;
+ vdd-reg-supply = <&cam_io_reg>;
+ vddio-host-supply = <&ldo18_reg>;
+ vddio-cis-supply = <&ldo9_reg>;
+ vdd-af-supply = <&cam_af_reg>;
+ clock-frequency = <24000000>;
+ clocks = <&clk 0>;
+ clock-names = "cis_extclk";
+ reset-gpios = <&gpf1 3 1>;
+ standby-gpios = <&gpm0 1 1>;
+ port {
+ s5c73m3_ep: endpoint {
+ remote-endpoint = <&csis0_ep>;
+ data-lanes = <1 2 3 4>;
+ };
+ };
+ };
+};
+
+spi@1392000 {
+ ...
+ s5c73m3_spi: s5c73m3@0 {
+ compatible = "samsung,s5c73m3";
+ reg = <0>;
+ ...
+ };
+};
diff --git a/Documentation/devicetree/bindings/media/samsung-s5k5baf.txt b/Documentation/devicetree/bindings/media/samsung-s5k5baf.txt
new file mode 100644
index 00000000000..1f51e0439c9
--- /dev/null
+++ b/Documentation/devicetree/bindings/media/samsung-s5k5baf.txt
@@ -0,0 +1,58 @@
+Samsung S5K5BAF UXGA 1/5" 2M CMOS Image Sensor with embedded SoC ISP
+--------------------------------------------------------------------
+
+Required properties:
+
+- compatible : "samsung,s5k5baf";
+- reg : I2C slave address of the sensor;
+- vdda-supply : analog power supply 2.8V (2.6V to 3.0V);
+- vddreg-supply : regulator input power supply 1.8V (1.7V to 1.9V)
+ or 2.8V (2.6V to 3.0);
+- vddio-supply : I/O power supply 1.8V (1.65V to 1.95V)
+ or 2.8V (2.5V to 3.1V);
+- stbyn-gpios : GPIO connected to STDBYN pin;
+- rstn-gpios : GPIO connected to RSTN pin;
+- clocks : list of phandle and clock specifier pairs
+ according to common clock bindings for the
+ clocks described in clock-names;
+- clock-names : should include "mclk" for the sensor's master clock;
+
+Optional properties:
+
+- clock-frequency : the frequency at which the "mclk" clock should be
+ configured to operate, in Hz; if this property is not
+ specified default 24 MHz value will be used.
+
+The device node should contain one 'port' child node with one child 'endpoint'
+node, according to the bindings defined in Documentation/devicetree/bindings/
+media/video-interfaces.txt. The following are properties specific to those
+nodes.
+
+endpoint node
+-------------
+
+- data-lanes : (optional) specifies MIPI CSI-2 data lanes as covered in
+ video-interfaces.txt. If present it should be <1> - the device
+ supports only one data lane without re-mapping.
+
+Example:
+
+s5k5bafx@2d {
+ compatible = "samsung,s5k5baf";
+ reg = <0x2d>;
+ vdda-supply = <&cam_io_en_reg>;
+ vddreg-supply = <&vt_core_15v_reg>;
+ vddio-supply = <&vtcam_reg>;
+ stbyn-gpios = <&gpl2 0 1>;
+ rstn-gpios = <&gpl2 1 1>;
+ clock-names = "mclk";
+ clocks = <&clock_cam 0>;
+ clock-frequency = <24000000>;
+
+ port {
+ s5k5bafx_ep: endpoint {
+ remote-endpoint = <&csis1_ep>;
+ data-lanes = <1>;
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/media/samsung-s5k6a3.txt b/Documentation/devicetree/bindings/media/samsung-s5k6a3.txt
new file mode 100644
index 00000000000..cce01e82f3e
--- /dev/null
+++ b/Documentation/devicetree/bindings/media/samsung-s5k6a3.txt
@@ -0,0 +1,33 @@
+Samsung S5K6A3(YX) raw image sensor
+---------------------------------
+
+S5K6A3(YX) is a raw image sensor with MIPI CSI-2 and CCP2 image data interfaces
+and CCI (I2C compatible) control bus.
+
+Required properties:
+
+- compatible : "samsung,s5k6a3";
+- reg : I2C slave address of the sensor;
+- svdda-supply : core voltage supply;
+- svddio-supply : I/O voltage supply;
+- afvdd-supply : AF (actuator) voltage supply;
+- gpios : specifier of a GPIO connected to the RESET pin;
+- clocks : should contain list of phandle and clock specifier pairs
+ according to common clock bindings for the clocks described
+ in the clock-names property;
+- clock-names : should contain "extclk" entry for the sensor's EXTCLK clock;
+
+Optional properties:
+
+- clock-frequency : the frequency at which the "extclk" clock should be
+ configured to operate, in Hz; if this property is not
+ specified default 24 MHz value will be used.
+
+The common video interfaces bindings (see video-interfaces.txt) should be
+used to specify link to the image data receiver. The S5K6A3(YX) device
+node should contain one 'port' child node with an 'endpoint' subnode.
+
+Following properties are valid for the endpoint node:
+
+- data-lanes : (optional) specifies MIPI CSI-2 data lanes as covered in
+ video-interfaces.txt. The sensor supports only one data lane.
diff --git a/Documentation/devicetree/bindings/media/st-rc.txt b/Documentation/devicetree/bindings/media/st-rc.txt
new file mode 100644
index 00000000000..05c432d08bc
--- /dev/null
+++ b/Documentation/devicetree/bindings/media/st-rc.txt
@@ -0,0 +1,29 @@
+Device-Tree bindings for ST IRB IP
+
+Required properties:
+ - compatible: Should contain "st,comms-irb".
+ - reg: Base physical address of the controller and length of memory
+ mapped region.
+ - interrupts: interrupt-specifier for the sole interrupt generated by
+ the device. The interrupt specifier format depends on the interrupt
+ controller parent.
+ - rx-mode: can be "infrared" or "uhf". This property specifies the L1
+ protocol used for receiving remote control signals. rx-mode should
+ be present iff the rx pins are wired up.
+ - tx-mode: should be "infrared". This property specifies the L1
+ protocol used for transmitting remote control signals. tx-mode should
+ be present iff the tx pins are wired up.
+
+Optional properties:
+ - pinctrl-names, pinctrl-0: the pincontrol settings to configure muxing
+ properly for IRB pins.
+ - clocks : phandle with clock-specifier pair for IRB.
+
+Example node:
+
+ rc: rc@fe518000 {
+ compatible = "st,comms-irb";
+ reg = <0xfe518000 0x234>;
+ interrupts = <0 203 0>;
+ rx-mode = "infrared";
+ };
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/ifc.txt b/Documentation/devicetree/bindings/memory-controllers/fsl/ifc.txt
index d5e370450ac..d5e370450ac 100644
--- a/Documentation/devicetree/bindings/powerpc/fsl/ifc.txt
+++ b/Documentation/devicetree/bindings/memory-controllers/fsl/ifc.txt
diff --git a/Documentation/devicetree/bindings/memory-controllers/mvebu-devbus.txt b/Documentation/devicetree/bindings/memory-controllers/mvebu-devbus.txt
index 653c90c34a7..1ee3bc09f31 100644
--- a/Documentation/devicetree/bindings/memory-controllers/mvebu-devbus.txt
+++ b/Documentation/devicetree/bindings/memory-controllers/mvebu-devbus.txt
@@ -6,10 +6,11 @@ The actual devices are instantiated from the child nodes of a Device Bus node.
Required properties:
- - compatible: Currently only Armada 370/XP SoC are supported,
- with this compatible string:
+ - compatible: Armada 370/XP SoC are supported using the
+ "marvell,mvebu-devbus" compatible string.
- marvell,mvebu-devbus
+ Orion5x SoC are supported using the
+ "marvell,orion-devbus" compatible string.
- reg: A resource specifier for the register space.
This is the base address of a chip select within
@@ -22,7 +23,14 @@ Required properties:
integer values for each chip-select line in use:
0 <physical address of mapping> <size>
-Mandatory timing properties for child nodes:
+Optional properties:
+
+ - devbus,keep-config This property can optionally be used to keep
+ using the timing parameters set by the
+ bootloader. It makes all the timing properties
+ described below unused.
+
+Timing properties for child nodes:
Read parameters:
@@ -30,21 +38,26 @@ Read parameters:
drive the AD bus after the completion of a device read.
This prevents contentions on the Device Bus after a read
cycle from a slow device.
+ Mandatory, except if devbus,keep-config is used.
- - devbus,bus-width: Defines the bus width (e.g. <16>)
+ - devbus,bus-width: Defines the bus width, in bits (e.g. <16>).
+ Mandatory, except if devbus,keep-config is used.
- devbus,badr-skew-ps: Defines the time delay from from A[2:0] toggle,
to read data sample. This parameter is useful for
synchronous pipelined devices, where the address
precedes the read data by one or two cycles.
+ Mandatory, except if devbus,keep-config is used.
- devbus,acc-first-ps: Defines the time delay from the negation of
ALE[0] to the cycle that the first read data is sampled
by the controller.
+ Mandatory, except if devbus,keep-config is used.
- devbus,acc-next-ps: Defines the time delay between the cycle that
samples data N and the cycle that samples data N+1
(in burst accesses).
+ Mandatory, except if devbus,keep-config is used.
- devbus,rd-setup-ps: Defines the time delay between DEV_CSn assertion to
DEV_OEn assertion. If set to 0 (default),
@@ -52,6 +65,8 @@ Read parameters:
This parameter has no affect on <acc-first-ps> parameter
(no affect on first data sample). Set <rd-setup-ps>
to a value smaller than <acc-first-ps>.
+ Mandatory for "marvell,mvebu-devbus" compatible string,
+ except if devbus,keep-config is used.
- devbus,rd-hold-ps: Defines the time between the last data sample to the
de-assertion of DEV_CSn. If set to 0 (default),
@@ -62,16 +77,20 @@ Read parameters:
last data sampled. Also this parameter has no
affect on <turn-off-ps> parameter.
Set <rd-hold-ps> to a value smaller than <turn-off-ps>.
+ Mandatory for "marvell,mvebu-devbus" compatible string,
+ except if devbus,keep-config is used.
Write parameters:
- devbus,ale-wr-ps: Defines the time delay from the ALE[0] negation cycle
to the DEV_WEn assertion.
+ Mandatory.
- devbus,wr-low-ps: Defines the time during which DEV_WEn is active.
A[2:0] and Data are kept valid as long as DEV_WEn
is active. This parameter defines the setup time of
address and data to DEV_WEn rise.
+ Mandatory.
- devbus,wr-high-ps: Defines the time during which DEV_WEn is kept
inactive (high) between data beats of a burst write.
@@ -79,10 +98,13 @@ Write parameters:
<wr-high-ps> - <tick> ps.
This parameter defines the hold time of address and
data after DEV_WEn rise.
+ Mandatory.
- devbus,sync-enable: Synchronous device enable.
1: True
0: False
+ Mandatory for "marvell,mvebu-devbus" compatible string,
+ except if devbus,keep-config is used.
An example for an Armada XP GP board, with a 16 MiB NOR device as child
is showed below. Note that the Device Bus driver is in charge of allocating
diff --git a/Documentation/devicetree/bindings/memory-controllers/ti-aemif.txt b/Documentation/devicetree/bindings/memory-controllers/ti-aemif.txt
new file mode 100644
index 00000000000..9592717f483
--- /dev/null
+++ b/Documentation/devicetree/bindings/memory-controllers/ti-aemif.txt
@@ -0,0 +1,210 @@
+* Device tree bindings for Texas instruments AEMIF controller
+
+The Async External Memory Interface (EMIF16/AEMIF) controller is intended to
+provide a glue-less interface to a variety of asynchronous memory devices like
+ASRA M, NOR and NAND memory. A total of 256M bytes of any of these memories
+can be accessed at any given time via four chip selects with 64M byte access
+per chip select. Synchronous memories such as DDR1 SD RAM, SDR SDRAM
+and Mobile SDR are not supported.
+
+Documentation:
+Davinci DM646x - http://www.ti.com/lit/ug/sprueq7c/sprueq7c.pdf
+OMAP-L138 (DA850) - http://www.ti.com/lit/ug/spruh77a/spruh77a.pdf
+Kestone - http://www.ti.com/lit/ug/sprugz3a/sprugz3a.pdf
+
+Required properties:
+
+- compatible: "ti,davinci-aemif"
+ "ti,keystone-aemif"
+ "ti,da850-aemif"
+
+- reg: contains offset/length value for AEMIF control registers
+ space.
+
+- #address-cells: Must be 2. The partition number has to be encoded in the
+ first address cell and it may accept values 0..N-1
+ (N - total number of partitions). It's recommended to
+ assign N-1 number for the control partition. The second
+ cell is the offset into the partition.
+
+- #size-cells: Must be set to 1.
+
+- ranges: Contains memory regions. There are two types of
+ ranges/partitions:
+ - CS-specific partition/range. If continuous, must be
+ set up to reflect the memory layout for 4 chipselects,
+ if not then additional range/partition can be added and
+ child device can select the proper one.
+ - control partition which is common for all CS
+ interfaces.
+
+- clocks: the clock feeding the controller clock. Required only
+ if clock tree data present in device tree.
+ See clock-bindings.txt
+
+- clock-names: clock name. It has to be "aemif". Required only if clock
+ tree data present in device tree, in another case don't
+ use it.
+ See clock-bindings.txt
+
+- clock-ranges: Empty property indicating that child nodes can inherit
+ named clocks. Required only if clock tree data present
+ in device tree.
+ See clock-bindings.txt
+
+
+Child chip-select (cs) nodes contain the memory devices nodes connected to
+such as NOR (e.g. cfi-flash) and NAND (ti,davinci-nand, see davinci-nand.txt).
+There might be board specific devices like FPGAs.
+
+Required child cs node properties:
+
+- #address-cells: Must be 2.
+
+- #size-cells: Must be 1.
+
+- ranges: Empty property indicating that child nodes can inherit
+ memory layout.
+
+- clock-ranges: Empty property indicating that child nodes can inherit
+ named clocks. Required only if clock tree data present
+ in device tree.
+
+- ti,cs-chipselect: number of chipselect. Indicates on the aemif driver
+ which chipselect is used for accessing the memory. For
+ compatibles "ti,davinci-aemif" and "ti,keystone-aemif"
+ it can be in range [0-3]. For compatible
+ "ti,da850-aemif" range is [2-5].
+
+Optional child cs node properties:
+
+- ti,cs-bus-width: width of the asynchronous device's data bus
+ 8 or 16 if not preset 8
+
+- ti,cs-select-strobe-mode: enable/disable select strobe mode
+ In select strobe mode chip select behaves as
+ the strobe and is active only during the strobe
+ period. If present then enable.
+
+- ti,cs-extended-wait-mode: enable/disable extended wait mode
+ if set, the controller monitors the EMIFWAIT pin
+ mapped to that chip select to determine if the
+ device wants to extend the strobe period. If
+ present then enable.
+
+- ti,cs-min-turnaround-ns: minimum turn around time, ns
+ Time between the end of one asynchronous memory
+ access and the start of another asynchronous
+ memory access. This delay is not incurred
+ between a read followed by read or a write
+ followed by a write to same chip select.
+
+- ti,cs-read-setup-ns: read setup width, ns
+ Time between the beginning of a memory cycle
+ and the activation of read strobe.
+ Minimum value is 1 (0 treated as 1).
+
+- ti,cs-read-strobe-ns: read strobe width, ns
+ Time between the activation and deactivation of
+ the read strobe.
+ Minimum value is 1 (0 treated as 1).
+
+- ti,cs-read-hold-ns: read hold width, ns
+ Time between the deactivation of the read
+ strobe and the end of the cycle (which may be
+ either an address change or the deactivation of
+ the chip select signal.
+ Minimum value is 1 (0 treated as 1).
+
+- ti,cs-write-setup-ns: write setup width, ns
+ Time between the beginning of a memory cycle
+ and the activation of write strobe.
+ Minimum value is 1 (0 treated as 1).
+
+- ti,cs-write-strobe-ns: write strobe width, ns
+ Time between the activation and deactivation of
+ the write strobe.
+ Minimum value is 1 (0 treated as 1).
+
+- ti,cs-write-hold-ns: write hold width, ns
+ Time between the deactivation of the write
+ strobe and the end of the cycle (which may be
+ either an address change or the deactivation of
+ the chip select signal.
+ Minimum value is 1 (0 treated as 1).
+
+If any of the above parameters are absent, current parameter value will be taken
+from the corresponding HW reg.
+
+Example for aemif, davinci nand and nor flash chip select shown below.
+
+memory-controller@21000A00 {
+ compatible = "ti,davinci-aemif";
+ #address-cells = <2>;
+ #size-cells = <1>;
+ clocks = <&clkaemif 0>;
+ clock-names = "aemif";
+ clock-ranges;
+ reg = <0x21000A00 0x00000100>;
+ ranges = <0 0 0x70000000 0x10000000
+ 1 0 0x21000A00 0x00000100>;
+ /*
+ * Partition0: CS-specific memory range which is
+ * implemented as continuous physical memory region
+ * Partition1: control memory range
+ */
+
+ nand:cs2 {
+ #address-cells = <2>;
+ #size-cells = <1>;
+ clock-ranges;
+ ranges;
+
+ ti,cs-chipselect = <2>;
+ /* all timings in nanoseconds */
+ ti,cs-min-turnaround-ns = <0>;
+ ti,cs-read-hold-ns = <7>;
+ ti,cs-read-strobe-ns = <42>;
+ ti,cs-read-setup-ns = <14>;
+ ti,cs-write-hold-ns = <7>;
+ ti,cs-write-strobe-ns = <42>;
+ ti,cs-write-setup-ns = <14>;
+
+ nand@0,0x8000000 {
+ compatible = "ti,davinci-nand";
+ reg = <0 0x8000000 0x4000000
+ 1 0x0000000 0x0000100>;
+ /*
+ * Partition0, offset 0x8000000, size 0x4000000
+ * Partition1, offset 0x0000000, size 0x0000100
+ */
+
+ .. see davinci-nand.txt
+ };
+ };
+
+ nor:cs0 {
+ #address-cells = <2>;
+ #size-cells = <1>;
+ clock-ranges;
+ ranges;
+
+ ti,cs-chipselect = <0>;
+ /* all timings in nanoseconds */
+ ti,cs-min-turnaround-ns = <0>;
+ ti,cs-read-hold-ns = <8>;
+ ti,cs-read-strobe-ns = <40>;
+ ti,cs-read-setup-ns = <14>;
+ ti,cs-write-hold-ns = <7>;
+ ti,cs-write-strobe-ns = <40>;
+ ti,cs-write-setup-ns = <14>;
+ ti,cs-bus-width = <16>;
+
+ flash@0,0x0000000 {
+ compatible = "cfi-flash";
+ reg = <0 0x0000000 0x4000000>;
+
+ ...
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/memory.txt b/Documentation/devicetree/bindings/memory.txt
deleted file mode 100644
index eb246936559..00000000000
--- a/Documentation/devicetree/bindings/memory.txt
+++ /dev/null
@@ -1,168 +0,0 @@
-*** Memory binding ***
-
-The /memory node provides basic information about the address and size
-of the physical memory. This node is usually filled or updated by the
-bootloader, depending on the actual memory configuration of the given
-hardware.
-
-The memory layout is described by the following node:
-
-/ {
- #address-cells = <(n)>;
- #size-cells = <(m)>;
- memory {
- device_type = "memory";
- reg = <(baseaddr1) (size1)
- (baseaddr2) (size2)
- ...
- (baseaddrN) (sizeN)>;
- };
- ...
-};
-
-A memory node follows the typical device tree rules for "reg" property:
-n: number of cells used to store base address value
-m: number of cells used to store size value
-baseaddrX: defines a base address of the defined memory bank
-sizeX: the size of the defined memory bank
-
-
-More than one memory bank can be defined.
-
-
-*** Reserved memory regions ***
-
-In /memory/reserved-memory node one can create child nodes describing
-particular reserved (excluded from normal use) memory regions. Such
-memory regions are usually designed for the special usage by various
-device drivers. A good example are contiguous memory allocations or
-memory sharing with other operating system on the same hardware board.
-Those special memory regions might depend on the board configuration and
-devices used on the target system.
-
-Parameters for each memory region can be encoded into the device tree
-with the following convention:
-
-[(label):] (name) {
- compatible = "linux,contiguous-memory-region", "reserved-memory-region";
- reg = <(address) (size)>;
- (linux,default-contiguous-region);
-};
-
-compatible: one or more of:
- - "linux,contiguous-memory-region" - enables binding of this
- region to Contiguous Memory Allocator (special region for
- contiguous memory allocations, shared with movable system
- memory, Linux kernel-specific).
- - "reserved-memory-region" - compatibility is defined, given
- region is assigned for exclusive usage for by the respective
- devices.
-
-reg: standard property defining the base address and size of
- the memory region
-
-linux,default-contiguous-region: property indicating that the region
- is the default region for all contiguous memory
- allocations, Linux specific (optional)
-
-It is optional to specify the base address, so if one wants to use
-autoconfiguration of the base address, '0' can be specified as a base
-address in the 'reg' property.
-
-The /memory/reserved-memory node must contain the same #address-cells
-and #size-cells value as the root node.
-
-
-*** Device node's properties ***
-
-Once regions in the /memory/reserved-memory node have been defined, they
-may be referenced by other device nodes. Bindings that wish to reference
-memory regions should explicitly document their use of the following
-property:
-
-memory-region = <&phandle_to_defined_region>;
-
-This property indicates that the device driver should use the memory
-region pointed by the given phandle.
-
-
-*** Example ***
-
-This example defines a memory consisting of 4 memory banks. 3 contiguous
-regions are defined for Linux kernel, one default of all device drivers
-(named contig_mem, placed at 0x72000000, 64MiB), one dedicated to the
-framebuffer device (labelled display_mem, placed at 0x78000000, 8MiB)
-and one for multimedia processing (labelled multimedia_mem, placed at
-0x77000000, 64MiB). 'display_mem' region is then assigned to fb@12300000
-device for DMA memory allocations (Linux kernel drivers will use CMA is
-available or dma-exclusive usage otherwise). 'multimedia_mem' is
-assigned to scaler@12500000 and codec@12600000 devices for contiguous
-memory allocations when CMA driver is enabled.
-
-The reason for creating a separate region for framebuffer device is to
-match the framebuffer base address to the one configured by bootloader,
-so once Linux kernel drivers starts no glitches on the displayed boot
-logo appears. Scaller and codec drivers should share the memory
-allocations.
-
-/ {
- #address-cells = <1>;
- #size-cells = <1>;
-
- /* ... */
-
- memory {
- reg = <0x40000000 0x10000000
- 0x50000000 0x10000000
- 0x60000000 0x10000000
- 0x70000000 0x10000000>;
-
- reserved-memory {
- #address-cells = <1>;
- #size-cells = <1>;
-
- /*
- * global autoconfigured region for contiguous allocations
- * (used only with Contiguous Memory Allocator)
- */
- contig_region@0 {
- compatible = "linux,contiguous-memory-region";
- reg = <0x0 0x4000000>;
- linux,default-contiguous-region;
- };
-
- /*
- * special region for framebuffer
- */
- display_region: region@78000000 {
- compatible = "linux,contiguous-memory-region", "reserved-memory-region";
- reg = <0x78000000 0x800000>;
- };
-
- /*
- * special region for multimedia processing devices
- */
- multimedia_region: region@77000000 {
- compatible = "linux,contiguous-memory-region";
- reg = <0x77000000 0x4000000>;
- };
- };
- };
-
- /* ... */
-
- fb0: fb@12300000 {
- status = "okay";
- memory-region = <&display_region>;
- };
-
- scaler: scaler@12500000 {
- status = "okay";
- memory-region = <&multimedia_region>;
- };
-
- codec: codec@12600000 {
- status = "okay";
- memory-region = <&multimedia_region>;
- };
-};
diff --git a/Documentation/devicetree/bindings/mfd/arizona.txt b/Documentation/devicetree/bindings/mfd/arizona.txt
index 0e295c9d893..36a0c3d8c72 100644
--- a/Documentation/devicetree/bindings/mfd/arizona.txt
+++ b/Documentation/devicetree/bindings/mfd/arizona.txt
@@ -5,9 +5,10 @@ of analogue I/O.
Required properties:
- - compatible : one of the following chip-specific strings:
- "wlf,wm5102"
- "wlf,wm5110"
+ - compatible : One of the following chip-specific strings:
+ "wlf,wm5102"
+ "wlf,wm5110"
+ "wlf,wm8997"
- reg : I2C slave address when connected using I2C, chip select number when
using SPI.
@@ -25,8 +26,9 @@ Required properties:
- #gpio-cells : Must be 2. The first cell is the pin number and the
second cell is used to specify optional parameters (currently unused).
- - AVDD1-supply, DBVDD1-supply, DBVDD2-supply, DBVDD3-supply, CPVDD-supply,
- SPKVDDL-supply, SPKVDDR-supply : power supplies for the device, as covered
+ - AVDD-supply, DBVDD1-supply, DBVDD2-supply, DBVDD3-supply (wm5102, wm5110),
+ CPVDD-supply, SPKVDDL-supply (wm5102, wm5110), SPKVDDR-supply (wm5102,
+ wm5110), SPKVDD-supply (wm8997) : Power supplies for the device, as covered
in Documentation/devicetree/bindings/regulator/regulator.txt
Optional properties:
@@ -46,6 +48,7 @@ codec: wm5102@1a {
compatible = "wlf,wm5102";
reg = <0x1a>;
interrupts = <347>;
+ interrupt-controller;
#interrupt-cells = <2>;
interrupt-parent = <&gic>;
@@ -53,10 +56,10 @@ codec: wm5102@1a {
#gpio-cells = <2>;
wlf,gpio-defaults = <
- 0x00000000, /* AIF1TXLRCLK */
- 0xffffffff,
- 0xffffffff,
- 0xffffffff,
- 0xffffffff,
+ 0x00000000 /* AIF1TXLRCLK */
+ 0xffffffff
+ 0xffffffff
+ 0xffffffff
+ 0xffffffff
>;
};
diff --git a/Documentation/devicetree/bindings/mfd/as3722.txt b/Documentation/devicetree/bindings/mfd/as3722.txt
new file mode 100644
index 00000000000..8edcb9bd873
--- /dev/null
+++ b/Documentation/devicetree/bindings/mfd/as3722.txt
@@ -0,0 +1,205 @@
+* ams AS3722 Power management IC.
+
+Required properties:
+-------------------
+- compatible: Must be "ams,as3722".
+- reg: I2C device address.
+- interrupt-controller: AS3722 has internal interrupt controller which takes the
+ interrupt request from internal sub-blocks like RTC, regulators, GPIOs as well
+ as external input.
+- #interrupt-cells: Should be set to 2 for IRQ number and flags.
+ The first cell is the IRQ number. IRQ numbers for different interrupt source
+ of AS3722 are defined at dt-bindings/mfd/as3722.h
+ The second cell is the flags, encoded as the trigger masks from binding document
+ interrupts.txt, using dt-bindings/irq.
+
+Optional submodule and their properties:
+=======================================
+
+Pinmux and GPIO:
+===============
+Device has 8 GPIO pins which can be configured as GPIO as well as the special IO
+functions.
+
+Please refer to pinctrl-bindings.txt in this directory for details of the
+common pinctrl bindings used by client devices, including the meaning of the
+phrase "pin configuration node".
+
+Following are properties which is needed if GPIO and pinmux functionality
+is required:
+ Required properties:
+ -------------------
+ - gpio-controller: Marks the device node as a GPIO controller.
+ - #gpio-cells: Number of GPIO cells. Refer to binding document
+ gpio/gpio.txt
+
+ Optional properties:
+ --------------------
+ Following properties are require if pin control setting is required
+ at boot.
+ - pinctrl-names: A pinctrl state named "default" be defined, using the
+ bindings in pinctrl/pinctrl-binding.txt.
+ - pinctrl[0...n]: Properties to contain the phandle that refer to
+ different nodes of pin control settings. These nodes represents
+ the pin control setting of state 0 to state n. Each of these
+ nodes contains different subnodes to represents some desired
+ configuration for a list of pins. This configuration can
+ include the mux function to select on those pin(s), and
+ various pin configuration parameters, such as pull-up,
+ open drain.
+
+ Each subnode have following properties:
+ Required properties:
+ - pins: List of pins. Valid values of pins properties are:
+ gpio0, gpio1, gpio2, gpio3, gpio4, gpio5,
+ gpio6, gpio7
+
+ Optional properties:
+ function, bias-disable, bias-pull-up, bias-pull-down,
+ bias-high-impedance, drive-open-drain.
+
+ Valid values for function properties are:
+ gpio, interrupt-out, gpio-in-interrupt,
+ vsup-vbat-low-undebounce-out,
+ vsup-vbat-low-debounce-out,
+ voltage-in-standby, oc-pg-sd0, oc-pg-sd6,
+ powergood-out, pwm-in, pwm-out, clk32k-out,
+ watchdog-in, soft-reset-in
+
+Regulators:
+===========
+Device has multiple DCDC and LDOs. The node "regulators" is require if regulator
+functionality is needed.
+
+Following are properties of regulator subnode.
+
+ Optional properties:
+ -------------------
+ The input supply of regulators are the optional properties on the
+ regulator node. The input supply of these regulators are provided
+ through following properties:
+ vsup-sd2-supply: Input supply for SD2.
+ vsup-sd3-supply: Input supply for SD3.
+ vsup-sd4-supply: Input supply for SD4.
+ vsup-sd5-supply: Input supply for SD5.
+ vin-ldo0-supply: Input supply for LDO0.
+ vin-ldo1-6-supply: Input supply for LDO1 and LDO6.
+ vin-ldo2-5-7-supply: Input supply for LDO2, LDO5 and LDO7.
+ vin-ldo3-4-supply: Input supply for LDO3 and LDO4.
+ vin-ldo9-10-supply: Input supply for LDO9 and LDO10.
+ vin-ldo11-supply: Input supply for LDO11.
+
+ Optional sub nodes for regulators:
+ ---------------------------------
+ The subnodes name is the name of regulator and it must be one of:
+ sd[0-6], ldo[0-7], ldo[9-11]
+
+ Each sub-node should contain the constraints and initialization
+ information for that regulator. See regulator.txt for a description
+ of standard properties for these sub-nodes.
+ Additional optional custom properties are listed below.
+ ams,ext-control: External control of the rail. The option of
+ this properties will tell which external input is
+ controlling this rail. Valid values are 0, 1, 2 ad 3.
+ 0: There is no external control of this rail.
+ 1: Rail is controlled by ENABLE1 input pin.
+ 2: Rail is controlled by ENABLE2 input pin.
+ 3: Rail is controlled by ENABLE3 input pin.
+ Missing this property on DT will be assume as no
+ external control. The external control pin macros
+ are defined @dt-bindings/mfd/as3722.h
+
+ ams,enable-tracking: Enable tracking with SD1, only supported
+ by LDO3.
+
+Power-off:
+=========
+AS3722 supports the system power off by turning off all its rail. This
+is provided through pm_power_off.
+The device node should have the following properties to enable this
+functionality
+ams,system-power-controller: Boolean, to enable the power off functionality
+ through this device.
+
+Example:
+--------
+#include <dt-bindings/mfd/as3722.h>
+...
+ams3722 {
+ compatible = "ams,as3722";
+ reg = <0x48>;
+
+ ams,system-power-controller;
+
+ interrupt-parent = <&intc>;
+ interrupt-controller;
+ #interrupt-cells = <2>;
+
+ gpio-controller;
+ #gpio-cells = <2>;
+
+ pinctrl-names = "default";
+ pinctrl-0 = <&as3722_default>;
+
+ as3722_default: pinmux {
+ gpio0 {
+ pins = "gpio0";
+ function = "gpio";
+ bias-pull-down;
+ };
+
+ gpio1_2_4_7 {
+ pins = "gpio1", "gpio2", "gpio4", "gpio7";
+ function = "gpio";
+ bias-pull-up;
+ };
+
+ gpio5 {
+ pins = "gpio5";
+ function = "clk32k_out";
+ };
+ }
+
+ regulators {
+ vsup-sd2-supply = <...>;
+ ...
+
+ sd0 {
+ regulator-name = "vdd_cpu";
+ regulator-min-microvolt = <700000>;
+ regulator-max-microvolt = <1400000>;
+ regulator-always-on;
+ ams,ext-control = <2>;
+ };
+
+ sd1 {
+ regulator-name = "vdd_core";
+ regulator-min-microvolt = <700000>;
+ regulator-max-microvolt = <1400000>;
+ regulator-always-on;
+ ams,ext-control = <1>;
+ };
+
+ sd2 {
+ regulator-name = "vddio_ddr";
+ regulator-min-microvolt = <1350000>;
+ regulator-max-microvolt = <1350000>;
+ regulator-always-on;
+ };
+
+ sd4 {
+ regulator-name = "avdd-hdmi-pex";
+ regulator-min-microvolt = <1050000>;
+ regulator-max-microvolt = <1050000>;
+ regulator-always-on;
+ };
+
+ sd5 {
+ regulator-name = "vdd-1v8";
+ regulator-min-microvolt = <1800000>;
+ regulator-max-microvolt = <1800000>;
+ regulator-always-on;
+ };
+ ....
+ };
+};
diff --git a/Documentation/devicetree/bindings/mfd/bcm590xx.txt b/Documentation/devicetree/bindings/mfd/bcm590xx.txt
new file mode 100644
index 00000000000..be51a15e05f
--- /dev/null
+++ b/Documentation/devicetree/bindings/mfd/bcm590xx.txt
@@ -0,0 +1,39 @@
+-------------------------------
+BCM590xx Power Management Units
+-------------------------------
+
+Required properties:
+- compatible: "brcm,bcm59056"
+- reg: I2C slave address
+- interrupts: interrupt for the PMU. Generic interrupt client node bindings
+ are described in interrupt-controller/interrupts.txt
+
+------------------
+Voltage Regulators
+------------------
+
+Optional child nodes:
+- regulators: container node for regulators following the generic
+ regulator binding in regulator/regulator.txt
+
+ The valid regulator node names for BCM59056 are:
+ rfldo, camldo1, camldo2, simldo1, simldo2, sdldo, sdxldo,
+ mmcldo1, mmcldo2, audldo, micldo, usbldo, vibldo,
+ csr, iosr1, iosr2, msr, sdsr1, sdsr2, vsr,
+ gpldo1, gpldo2, gpldo3, gpldo4, gpldo5, gpldo6,
+ vbus
+
+Example:
+ pmu: bcm59056@8 {
+ compatible = "brcm,bcm59056";
+ reg = <0x08>;
+ interrupts = <GIC_SPI 215 IRQ_TYPE_LEVEL_HIGH>;
+ regulators {
+ rfldo_reg: rfldo {
+ regulator-min-microvolt = <1200000>;
+ regulator-max-microvolt = <3300000>;
+ };
+
+ ...
+ };
+ };
diff --git a/Documentation/devicetree/bindings/mfd/bfticu.txt b/Documentation/devicetree/bindings/mfd/bfticu.txt
new file mode 100644
index 00000000000..65c90776c62
--- /dev/null
+++ b/Documentation/devicetree/bindings/mfd/bfticu.txt
@@ -0,0 +1,25 @@
+KEYMILE bfticu Chassis Management FPGA
+
+The bfticu is a multifunction device that manages the whole chassis.
+Its main functionality is to collect IRQs from the whole chassis and signals
+them to a single controller.
+
+Required properties:
+- compatible: "keymile,bfticu"
+- interrupt-controller: the bfticu FPGA is an interrupt controller
+- interrupts: the main IRQ line to signal the collected IRQs
+- #interrupt-cells : is 2 and their usage is compliant to the 2 cells variant
+ of Documentation/devicetree/bindings/interrupt-controller/interrupts.txt
+- interrupt-parent: the parent IRQ ctrl the main IRQ is connected to
+- reg: access on the parent local bus (chip select, offset in chip select, size)
+
+Example:
+
+ chassis-mgmt@3,0 {
+ compatible = "keymile,bfticu";
+ interrupt-controller;
+ #interrupt-cells = <2>;
+ reg = <3 0 0x100>;
+ interrupt-parent = <&mpic>;
+ interrupts = <6 1 0 0>;
+ };
diff --git a/Documentation/devicetree/bindings/mfd/cros-ec.txt b/Documentation/devicetree/bindings/mfd/cros-ec.txt
index 5f229c5f6da..8009c3d87f3 100644
--- a/Documentation/devicetree/bindings/mfd/cros-ec.txt
+++ b/Documentation/devicetree/bindings/mfd/cros-ec.txt
@@ -17,6 +17,15 @@ Required properties (SPI):
- compatible: "google,cros-ec-spi"
- reg: SPI chip select
+Optional properties (SPI):
+- google,cros-ec-spi-msg-delay: Some implementations of the EC require some
+ additional processing time in order to accept new transactions. If the delay
+ between transactions is not long enough the EC may not be able to respond
+ properly to subsequent transactions and cause them to hang. This property
+ specifies the delay, in usecs, introduced between transactions to account
+ for the time required by the EC to get back into a state in which new data
+ can be accepted.
+
Required properties (LPC):
- compatible: "google,cros-ec-lpc"
- reg: List of (IO address, size) pairs defining the interface uses
diff --git a/Documentation/devicetree/bindings/mfd/da9055.txt b/Documentation/devicetree/bindings/mfd/da9055.txt
new file mode 100644
index 00000000000..6dab34d34fc
--- /dev/null
+++ b/Documentation/devicetree/bindings/mfd/da9055.txt
@@ -0,0 +1,72 @@
+* Dialog DA9055 Power Management Integrated Circuit (PMIC)
+
+DA9055 consists of a large and varied group of sub-devices (I2C Only):
+
+Device Supply Names Description
+------ ------------ -----------
+da9055-gpio : : GPIOs
+da9055-regulator : : Regulators
+da9055-onkey : : On key
+da9055-rtc : : RTC
+da9055-hwmon : : ADC
+da9055-watchdog : : Watchdog
+
+The CODEC device in DA9055 has a separate, configurable I2C address and so
+is instantiated separately from the PMIC.
+
+For details on accompanying CODEC I2C device, see the following:
+Documentation/devicetree/bindings/sound/da9055.txt
+
+======
+
+Required properties:
+- compatible : Should be "dlg,da9055-pmic"
+- reg: Specifies the I2C slave address (defaults to 0x5a but can be modified)
+- interrupt-parent: Specifies the phandle of the interrupt controller to which
+ the IRQs from da9055 are delivered to.
+- interrupts: IRQ line info for da9055 chip.
+- interrupt-controller: da9055 has internal IRQs (has own IRQ domain).
+- #interrupt-cells: Should be 1, is the local IRQ number for da9055.
+
+Sub-nodes:
+- regulators : Contain the regulator nodes. The DA9055 regulators are
+ bound using their names as listed below:
+
+ buck1 : regulator BUCK1
+ buck2 : regulator BUCK2
+ ldo1 : regulator LDO1
+ ldo2 : regulator LDO2
+ ldo3 : regulator LDO3
+ ldo4 : regulator LDO4
+ ldo5 : regulator LDO5
+ ldo6 : regulator LDO6
+
+ The bindings details of individual regulator device can be found in:
+ Documentation/devicetree/bindings/regulator/regulator.txt
+
+
+Example:
+
+ pmic: da9055-pmic@5a {
+ compatible = "dlg,da9055-pmic";
+ reg = <0x5a>;
+ interrupt-parent = <&intc>;
+ interrupts = <5 IRQ_TYPE_LEVEL_LOW>;
+ interrupt-controller;
+ #interrupt-cells = <1>;
+
+ regulators {
+ buck1: BUCK1 {
+ regulator-min-microvolt = <725000>;
+ regulator-max-microvolt = <2075000>;
+ };
+ buck2: BUCK2 {
+ regulator-min-microvolt = <925000>;
+ regulator-max-microvolt = <2500000>;
+ };
+ ldo1: LDO1 {
+ regulator-min-microvolt = <900000>;
+ regulator-max-microvolt = <3300000>;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/mfd/lp3943.txt b/Documentation/devicetree/bindings/mfd/lp3943.txt
new file mode 100644
index 00000000000..e8591d6b11b
--- /dev/null
+++ b/Documentation/devicetree/bindings/mfd/lp3943.txt
@@ -0,0 +1,33 @@
+TI/National Semiconductor LP3943 MFD driver
+
+Required properties:
+ - compatible: "ti,lp3943"
+ - reg: I2C slave address. From 0x60 to 0x67.
+
+LP3943 consists of two sub-devices, lp3943-gpio and lp3943-pwm.
+
+For the LP3943 GPIO properties please refer to:
+Documentation/devicetree/bindings/gpio/gpio-lp3943.txt
+
+For the LP3943 PWM properties please refer to:
+Documentation/devicetree/bindings/pwm/pwm-lp3943.txt
+
+Example:
+
+lp3943@60 {
+ compatible = "ti,lp3943";
+ reg = <0x60>;
+
+ gpioex: gpio {
+ compatible = "ti,lp3943-gpio";
+ gpio-controller;
+ #gpio-cells = <2>;
+ };
+
+ pwm3943: pwm {
+ compatible = "ti,lp3943-pwm";
+ #pwm-cells = <2>;
+ ti,pwm0 = <8 9 10>;
+ ti,pwm1 = <15>;
+ };
+};
diff --git a/Documentation/devicetree/bindings/mfd/max77686.txt b/Documentation/devicetree/bindings/mfd/max77686.txt
index c6a3469d343..678f3cf0b8f 100644
--- a/Documentation/devicetree/bindings/mfd/max77686.txt
+++ b/Documentation/devicetree/bindings/mfd/max77686.txt
@@ -7,6 +7,9 @@ different i2c slave address,presently for which we are statically creating i2c
client while probing.This document describes the binding for mfd device and
PMIC submodule.
+Binding for the built-in 32k clock generator block is defined separately
+in bindings/clk/maxim,max77686.txt file.
+
Required properties:
- compatible : Must be "maxim,max77686";
- reg : Specifies the i2c slave address of PMIC block.
diff --git a/Documentation/devicetree/bindings/mfd/mc13xxx.txt b/Documentation/devicetree/bindings/mfd/mc13xxx.txt
index abd9e3cb2db..8aba48821a8 100644
--- a/Documentation/devicetree/bindings/mfd/mc13xxx.txt
+++ b/Documentation/devicetree/bindings/mfd/mc13xxx.txt
@@ -10,9 +10,47 @@ Optional properties:
- fsl,mc13xxx-uses-touch : Indicate the touchscreen controller is being used
Sub-nodes:
+- codec: Contain the Audio Codec node.
+ - adc-port: Contain PMIC SSI port number used for ADC.
+ - dac-port: Contain PMIC SSI port number used for DAC.
+- leds : Contain the led nodes and initial register values in property
+ "led-control". Number of register depends of used IC, for MC13783 is 6,
+ for MC13892 is 4, for MC34708 is 1. See datasheet for bits definitions of
+ these registers.
+ - #address-cells: Must be 1.
+ - #size-cells: Must be 0.
+ Each led node should contain "reg", which used as LED ID (described below).
+ Optional properties "label" and "linux,default-trigger" is described in
+ Documentation/devicetree/bindings/leds/common.txt.
- regulators : Contain the regulator nodes. The regulators are bound using
their names as listed below with their registers and bits for enabling.
+MC13783 LED IDs:
+ 0 : Main display
+ 1 : AUX display
+ 2 : Keypad
+ 3 : Red 1
+ 4 : Green 1
+ 5 : Blue 1
+ 6 : Red 2
+ 7 : Green 2
+ 8 : Blue 2
+ 9 : Red 3
+ 10 : Green 3
+ 11 : Blue 3
+
+MC13892 LED IDs:
+ 0 : Main display
+ 1 : AUX display
+ 2 : Keypad
+ 3 : Red
+ 4 : Green
+ 5 : Blue
+
+MC34708 LED IDs:
+ 0 : Charger Red
+ 1 : Charger Green
+
MC13783 regulators:
sw1a : regulator SW1A (register 24, bit 0)
sw1b : regulator SW1B (register 25, bit 0)
@@ -89,6 +127,18 @@ ecspi@70010000 { /* ECSPI1 */
interrupt-parent = <&gpio0>;
interrupts = <8>;
+ leds {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ led-control = <0x000 0x000 0x0e0 0x000>;
+
+ sysled {
+ reg = <3>;
+ label = "system:red:live";
+ linux,default-trigger = "heartbeat";
+ };
+ };
+
regulators {
sw1_reg: mc13892__sw1 {
regulator-min-microvolt = <600000>;
diff --git a/Documentation/devicetree/bindings/mfd/omap-usb-host.txt b/Documentation/devicetree/bindings/mfd/omap-usb-host.txt
index b381fa696bf..4721b2d521e 100644
--- a/Documentation/devicetree/bindings/mfd/omap-usb-host.txt
+++ b/Documentation/devicetree/bindings/mfd/omap-usb-host.txt
@@ -32,6 +32,29 @@ Optional properties:
- single-ulpi-bypass: Must be present if the controller contains a single
ULPI bypass control bit. e.g. OMAP3 silicon <= ES2.1
+- clocks: a list of phandles and clock-specifier pairs, one for each entry in
+ clock-names.
+
+- clock-names: should include:
+ For OMAP3
+ * "usbhost_120m_fck" - 120MHz Functional clock.
+
+ For OMAP4+
+ * "refclk_60m_int" - 60MHz internal reference clock for UTMI clock mux
+ * "refclk_60m_ext_p1" - 60MHz external ref. clock for Port 1's UTMI clock mux.
+ * "refclk_60m_ext_p2" - 60MHz external ref. clock for Port 2's UTMI clock mux
+ * "utmi_p1_gfclk" - Port 1 UTMI clock mux.
+ * "utmi_p2_gfclk" - Port 2 UTMI clock mux.
+ * "usb_host_hs_utmi_p1_clk" - Port 1 UTMI clock gate.
+ * "usb_host_hs_utmi_p2_clk" - Port 2 UTMI clock gate.
+ * "usb_host_hs_utmi_p3_clk" - Port 3 UTMI clock gate.
+ * "usb_host_hs_hsic480m_p1_clk" - Port 1 480MHz HSIC clock gate.
+ * "usb_host_hs_hsic480m_p2_clk" - Port 2 480MHz HSIC clock gate.
+ * "usb_host_hs_hsic480m_p3_clk" - Port 3 480MHz HSIC clock gate.
+ * "usb_host_hs_hsic60m_p1_clk" - Port 1 60MHz HSIC clock gate.
+ * "usb_host_hs_hsic60m_p2_clk" - Port 2 60MHz HSIC clock gate.
+ * "usb_host_hs_hsic60m_p3_clk" - Port 3 60MHz HSIC clock gate.
+
Required properties if child node exists:
- #address-cells: Must be 1
diff --git a/Documentation/devicetree/bindings/mfd/omap-usb-tll.txt b/Documentation/devicetree/bindings/mfd/omap-usb-tll.txt
index 62fe69724e3..c58d70437fc 100644
--- a/Documentation/devicetree/bindings/mfd/omap-usb-tll.txt
+++ b/Documentation/devicetree/bindings/mfd/omap-usb-tll.txt
@@ -7,6 +7,16 @@ Required properties:
- interrupts : should contain the TLL module's interrupt
- ti,hwmod : must contain "usb_tll_hs"
+Optional properties:
+
+- clocks: a list of phandles and clock-specifier pairs, one for each entry in
+ clock-names.
+
+- clock-names: should include:
+ * "usb_tll_hs_usb_ch0_clk" - USB TLL channel 0 clock
+ * "usb_tll_hs_usb_ch1_clk" - USB TLL channel 1 clock
+ * "usb_tll_hs_usb_ch2_clk" - USB TLL channel 2 clock
+
Example:
usbhstll: usbhstll@4a062000 {
diff --git a/Documentation/devicetree/bindings/mfd/qcom,pm8xxx.txt b/Documentation/devicetree/bindings/mfd/qcom,pm8xxx.txt
new file mode 100644
index 00000000000..03518dc8b6b
--- /dev/null
+++ b/Documentation/devicetree/bindings/mfd/qcom,pm8xxx.txt
@@ -0,0 +1,96 @@
+Qualcomm PM8xxx PMIC multi-function devices
+
+The PM8xxx family of Power Management ICs are used to provide regulated
+voltages and other various functionality to Qualcomm SoCs.
+
+= PROPERTIES
+
+- compatible:
+ Usage: required
+ Value type: <string>
+ Definition: must be one of:
+ "qcom,pm8058"
+ "qcom,pm8921"
+
+- #address-cells:
+ Usage: required
+ Value type: <u32>
+ Definition: must be 1
+
+- #size-cells:
+ Usage: required
+ Value type: <u32>
+ Definition: must be 0
+
+- interrupts:
+ Usage: required
+ Value type: <prop-encoded-array>
+ Definition: specifies the interrupt that indicates a subdevice
+ has generated an interrupt (summary interrupt). The
+ format of the specifier is defined by the binding document
+ describing the node's interrupt parent.
+
+- #interrupt-cells:
+ Usage: required
+ Value type : <u32>
+ Definition: must be 2. Specifies the number of cells needed to encode
+ an interrupt source. The 1st cell contains the interrupt
+ number. The 2nd cell is the trigger type and level flags
+ encoded as follows:
+
+ 1 = low-to-high edge triggered
+ 2 = high-to-low edge triggered
+ 4 = active high level-sensitive
+ 8 = active low level-sensitive
+
+- interrupt-controller:
+ Usage: required
+ Value type: <empty>
+ Definition: identifies this node as an interrupt controller
+
+= SUBCOMPONENTS
+
+The PMIC contains multiple independent functions, each described in a subnode.
+The below bindings specify the set of valid subnodes.
+
+== Real-Time Clock
+
+- compatible:
+ Usage: required
+ Value type: <string>
+ Definition: must be one of:
+ "qcom,pm8058-rtc"
+ "qcom,pm8921-rtc"
+
+- reg:
+ Usage: required
+ Value type: <prop-encoded-array>
+ Definition: single entry specifying the base address of the RTC registers
+
+- interrupts:
+ Usage: required
+ Value type: <prop-encoded-array>
+ Definition: single entry specifying the RTC's alarm interrupt
+
+- allow-set-time:
+ Usage: optional
+ Value type: <empty>
+ Definition: indicates that the setting of RTC time is allowed by
+ the host CPU
+
+= EXAMPLE
+
+ pmicintc: pmic@0 {
+ compatible = "qcom,pm8921";
+ interrupts = <104 8>;
+ #interrupt-cells = <2>;
+ interrupt-controller;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ rtc@11d {
+ compatible = "qcom,pm8921-rtc";
+ reg = <0x11d>;
+ interrupts = <0x27 0>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/mfd/qriox.txt b/Documentation/devicetree/bindings/mfd/qriox.txt
new file mode 100644
index 00000000000..f301e2d4ce7
--- /dev/null
+++ b/Documentation/devicetree/bindings/mfd/qriox.txt
@@ -0,0 +1,17 @@
+KEYMILE qrio Board Control CPLD
+
+The qrio is a multifunction device that controls the KEYMILE boards based on
+the kmp204x design.
+It is consists of a reset controller, watchdog timer, LEDs, and 2 IRQ capable
+GPIO blocks.
+
+Required properties:
+- compatible: "keymile,qriox"
+- reg: access on the parent local bus (chip select, offset in chip select, size)
+
+Example:
+
+ board-control@1,0 {
+ compatible = "keymile,qriox";
+ reg = <1 0 0x80>;
+ };
diff --git a/Documentation/devicetree/bindings/mfd/s2mpa01.txt b/Documentation/devicetree/bindings/mfd/s2mpa01.txt
new file mode 100644
index 00000000000..c13d3d8c394
--- /dev/null
+++ b/Documentation/devicetree/bindings/mfd/s2mpa01.txt
@@ -0,0 +1,90 @@
+
+* Samsung S2MPA01 Voltage and Current Regulator
+
+The Samsung S2MPA01 is a multi-function device which includes high
+efficiency buck converters including Dual-Phase buck converter, various LDOs,
+and an RTC. It is interfaced to the host controller using an I2C interface.
+Each sub-block is addressed by the host system using different I2C slave
+addresses.
+
+Required properties:
+- compatible: Should be "samsung,s2mpa01-pmic".
+- reg: Specifies the I2C slave address of the PMIC block. It should be 0x66.
+
+Optional properties:
+- interrupt-parent: Specifies the phandle of the interrupt controller to which
+ the interrupts from s2mpa01 are delivered to.
+- interrupts: An interrupt specifier for the sole interrupt generated by the
+ device.
+
+Optional nodes:
+- regulators: The regulators of s2mpa01 that have to be instantiated should be
+ included in a sub-node named 'regulators'. Regulator nodes and constraints
+ included in this sub-node use the standard regulator bindings which are
+ documented elsewhere.
+
+Properties for BUCK regulator nodes:
+- regulator-ramp-delay: ramp delay in uV/us. May be 6250, 12500
+ (default), 25000, or 50000. May be 0 for disabling the ramp delay on
+ BUCK{1,2,3,4}.
+
+ In the absence of the regulator-ramp-delay property, the default ramp
+ delay will be used.
+
+ NOTE: Some BUCKs share the ramp rate setting i.e. same ramp value will be set
+ for a particular group of BUCKs. So provide same regulator-ramp-delay=<value>.
+
+ The following BUCKs share ramp settings:
+ * 1 and 6
+ * 2 and 4
+ * 8, 9, and 10
+
+The following are the names of the regulators that the s2mpa01 PMIC block
+supports. Note: The 'n' in LDOn and BUCKn represents the LDO or BUCK number
+as per the datasheet of s2mpa01.
+
+ - LDOn
+ - valid values for n are 1 to 26
+ - Example: LDO1, LD02, LDO26
+ - BUCKn
+ - valid values for n are 1 to 10.
+ - Example: BUCK1, BUCK2, BUCK9
+
+Example:
+
+ s2mpa01_pmic@66 {
+ compatible = "samsung,s2mpa01-pmic";
+ reg = <0x66>;
+
+ regulators {
+ ldo1_reg: LDO1 {
+ regulator-name = "VDD_ALIVE";
+ regulator-min-microvolt = <1000000>;
+ regulator-max-microvolt = <1000000>;
+ };
+
+ ldo2_reg: LDO2 {
+ regulator-name = "VDDQ_MMC2";
+ regulator-min-microvolt = <2800000>;
+ regulator-max-microvolt = <2800000>;
+ regulator-always-on;
+ };
+
+ buck1_reg: BUCK1 {
+ regulator-name = "vdd_mif";
+ regulator-min-microvolt = <950000>;
+ regulator-max-microvolt = <1350000>;
+ regulator-always-on;
+ regulator-boot-on;
+ };
+
+ buck2_reg: BUCK2 {
+ regulator-name = "vdd_arm";
+ regulator-min-microvolt = <950000>;
+ regulator-max-microvolt = <1350000>;
+ regulator-always-on;
+ regulator-boot-on;
+ regulator-ramp-delay = <50000>;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/mfd/s2mps11.txt b/Documentation/devicetree/bindings/mfd/s2mps11.txt
index c9332c62602..d81ba30c0d8 100644
--- a/Documentation/devicetree/bindings/mfd/s2mps11.txt
+++ b/Documentation/devicetree/bindings/mfd/s2mps11.txt
@@ -1,13 +1,13 @@
-* Samsung S2MPS11 Voltage and Current Regulator
+* Samsung S2MPS11 and S2MPS14 Voltage and Current Regulator
-The Samsung S2MP211 is a multi-function device which includes voltage and
+The Samsung S2MPS11 is a multi-function device which includes voltage and
current regulators, RTC, charger controller and other sub-blocks. It is
-interfaced to the host controller using a I2C interface. Each sub-block is
-addressed by the host system using different I2C slave address.
+interfaced to the host controller using an I2C interface. Each sub-block is
+addressed by the host system using different I2C slave addresses.
Required properties:
-- compatible: Should be "samsung,s2mps11-pmic".
+- compatible: Should be "samsung,s2mps11-pmic" or "samsung,s2mps14-pmic".
- reg: Specifies the I2C slave address of the pmic block. It should be 0x66.
Optional properties:
@@ -16,20 +16,25 @@ Optional properties:
- interrupts: Interrupt specifiers for interrupt sources.
Optional nodes:
-- clocks: s2mps11 provides three(AP/CP/BT) buffered 32.768 KHz outputs, so to
- register these as clocks with common clock framework instantiate a sub-node
- named "clocks". It uses the common clock binding documented in :
+- clocks: s2mps11 and s5m8767 provide three(AP/CP/BT) buffered 32.768 KHz
+ outputs, so to register these as clocks with common clock framework
+ instantiate a sub-node named "clocks". It uses the common clock binding
+ documented in :
[Documentation/devicetree/bindings/clock/clock-bindings.txt]
+ The s2mps14 provides two (AP/BT) buffered 32.768 KHz outputs.
- #clock-cells: should be 1.
- The following is the list of clocks generated by the controller. Each clock
is assigned an identifier and client nodes use this identifier to specify
the clock which they consume.
- Clock ID
- ----------------------
- 32KhzAP 0
- 32KhzCP 1
- 32KhzBT 2
+ Clock ID Devices
+ ----------------------------------------------------------
+ 32KhzAP 0 S2MPS11, S2MPS14, S5M8767
+ 32KhzCP 1 S2MPS11, S5M8767
+ 32KhzBT 2 S2MPS11, S2MPS14, S5M8767
+
+ - compatible: Should be one of: "samsung,s2mps11-clk", "samsung,s2mps14-clk",
+ "samsung,s5m8767-clk"
- regulators: The regulators of s2mps11 that have to be instantiated should be
included in a sub-node named 'regulators'. Regulator nodes included in this
@@ -43,13 +48,28 @@ sub-node should be of the format as listed below.
BUCK[2/3/4/6] supports disabling ramp delay on hardware, so explictly
regulator-ramp-delay = <0> can be used for them to disable ramp delay.
- In absence of regulator-ramp-delay property, default ramp delay will be used.
+ In the absence of the regulator-ramp-delay property, the default ramp
+ delay will be used.
NOTE: Some BUCKs share the ramp rate setting i.e. same ramp value will be set
for a particular group of BUCKs. So provide same regulator-ramp-delay<value>.
Grouping of BUCKs sharing ramp rate setting is as follow : BUCK[1, 6],
BUCK[3, 4], and BUCK[7, 8, 10]
+On S2MPS14 the LDO10, LDO11 and LDO12 can be configured to external control
+over GPIO. To turn this feature on this property must be added to the regulator
+sub-node:
+ - samsung,ext-control-gpios: GPIO specifier for one GPIO
+ controlling this regulator (enable/disable);
+Example:
+ LDO12 {
+ regulator-name = "V_EMMC_2.8V";
+ regulator-min-microvolt = <2800000>;
+ regulator-max-microvolt = <2800000>;
+ samsung,ext-control-gpios = <&gpk0 2 0>;
+ };
+
+
The regulator constraints inside the regulator nodes use the standard regulator
bindings which are documented elsewhere.
@@ -58,10 +78,14 @@ supports. Note: The 'n' in LDOn and BUCKn represents the LDO or BUCK number
as per the datasheet of s2mps11.
- LDOn
- - valid values for n are 1 to 28
- - Example: LDO0, LD01, LDO28
+ - valid values for n are:
+ - S2MPS11: 1 to 38
+ - S2MPS14: 1 to 25
+ - Example: LDO1, LD02, LDO28
- BUCKn
- - valid values for n are 1 to 9.
+ - valid values for n are:
+ - S2MPS11: 1 to 10
+ - S2MPS14: 1 to 5
- Example: BUCK1, BUCK2, BUCK9
Example:
@@ -70,7 +94,8 @@ Example:
compatible = "samsung,s2mps11-pmic";
reg = <0x66>;
- s2m_osc: clocks{
+ s2m_osc: clocks {
+ compatible = "samsung,s2mps11-clk";
#clock-cells = 1;
clock-output-names = "xx", "yy", "zz";
};
diff --git a/Documentation/devicetree/bindings/mfd/sun6i-prcm.txt b/Documentation/devicetree/bindings/mfd/sun6i-prcm.txt
new file mode 100644
index 00000000000..1f5a31fef90
--- /dev/null
+++ b/Documentation/devicetree/bindings/mfd/sun6i-prcm.txt
@@ -0,0 +1,59 @@
+* Allwinner PRCM (Power/Reset/Clock Management) Multi-Functional Device
+
+PRCM is an MFD device exposing several Power Management related devices
+(like clks and reset controllers).
+
+Required properties:
+ - compatible: "allwinner,sun6i-a31-prcm"
+ - reg: The PRCM registers range
+
+The prcm node may contain several subdevices definitions:
+ - see Documentation/devicetree/clk/sunxi.txt for clock devices
+ - see Documentation/devicetree/reset/allwinner,sunxi-clock-reset.txt for reset
+ controller devices
+
+
+Example:
+
+ prcm: prcm@01f01400 {
+ compatible = "allwinner,sun6i-a31-prcm";
+ reg = <0x01f01400 0x200>;
+
+ /* Put subdevices here */
+ ar100: ar100_clk {
+ compatible = "allwinner,sun6i-a31-ar100-clk";
+ #clock-cells = <0>;
+ clocks = <&osc32k>, <&osc24M>, <&pll6>, <&pll6>;
+ };
+
+ ahb0: ahb0_clk {
+ compatible = "fixed-factor-clock";
+ #clock-cells = <0>;
+ clock-div = <1>;
+ clock-mult = <1>;
+ clocks = <&ar100_div>;
+ clock-output-names = "ahb0";
+ };
+
+ apb0: apb0_clk {
+ compatible = "allwinner,sun6i-a31-apb0-clk";
+ #clock-cells = <0>;
+ clocks = <&ahb0>;
+ clock-output-names = "apb0";
+ };
+
+ apb0_gates: apb0_gates_clk {
+ compatible = "allwinner,sun6i-a31-apb0-gates-clk";
+ #clock-cells = <1>;
+ clocks = <&apb0>;
+ clock-output-names = "apb0_pio", "apb0_ir",
+ "apb0_timer01", "apb0_p2wi",
+ "apb0_uart", "apb0_1wire",
+ "apb0_i2c";
+ };
+
+ apb0_rst: apb0_rst {
+ compatible = "allwinner,sun6i-a31-clock-reset";
+ #reset-cells = <1>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/mfd/ti-keystone-devctrl.txt b/Documentation/devicetree/bindings/mfd/ti-keystone-devctrl.txt
new file mode 100644
index 00000000000..20963c76b4b
--- /dev/null
+++ b/Documentation/devicetree/bindings/mfd/ti-keystone-devctrl.txt
@@ -0,0 +1,19 @@
+* Device tree bindings for Texas Instruments keystone device state control
+
+The Keystone II devices have a set of registers that are used to control
+the status of its peripherals. This node is intended to allow access to
+this functionality.
+
+Required properties:
+
+- compatible: "ti,keystone-devctrl", "syscon"
+
+- reg: contains offset/length value for device state control
+ registers space.
+
+Example:
+
+devctrl: device-state-control@0x02620000 {
+ compatible = "ti,keystone-devctrl", "syscon";
+ reg = <0x02620000 0x1000>;
+};
diff --git a/Documentation/devicetree/bindings/mfd/tps65910.txt b/Documentation/devicetree/bindings/mfd/tps65910.txt
index 2e3304888ff..38833e63a59 100644
--- a/Documentation/devicetree/bindings/mfd/tps65910.txt
+++ b/Documentation/devicetree/bindings/mfd/tps65910.txt
@@ -11,7 +11,7 @@ Required properties:
- #interrupt-cells: the number of cells to describe an IRQ, this should be 2.
The first cell is the IRQ number.
The second cell is the flags, encoded as the trigger masks from
- Documentation/devicetree/bindings/interrupts.txt
+ Documentation/devicetree/bindings/interrupt-controller/interrupts.txt
- regulators: This is the list of child nodes that specify the regulator
initialization data for defined regulators. Not all regulators for the given
device need to be present. The definition for each of these nodes is defined
@@ -21,7 +21,7 @@ Required properties:
The valid regulator-compatible values are:
tps65910: vrtc, vio, vdd1, vdd2, vdd3, vdig1, vdig2, vpll, vdac, vaux1,
- vaux2, vaux33, vmmc
+ vaux2, vaux33, vmmc, vbb
tps65911: vrtc, vio, vdd1, vdd3, vddctrl, ldo1, ldo2, ldo3, ldo4, ldo5,
ldo6, ldo7, ldo8
@@ -38,7 +38,7 @@ Required properties:
vcc4-supply: VAUX1 and VAUX2 input.
vcc5-supply: VPLL and VDAC input.
vcc6-supply: VDIG1 and VDIG2 input.
- vcc7-supply: VRTC input.
+ vcc7-supply: VRTC and VBB input.
vccio-supply: VIO input.
tps65911:
vcc1-supply: VDD1 input.
diff --git a/Documentation/devicetree/bindings/mfd/twl4030-power.txt b/Documentation/devicetree/bindings/mfd/twl4030-power.txt
index 8e15ec35ac9..b9ee7b98d3e 100644
--- a/Documentation/devicetree/bindings/mfd/twl4030-power.txt
+++ b/Documentation/devicetree/bindings/mfd/twl4030-power.txt
@@ -5,7 +5,22 @@ to control the power resources, including power scripts. For now, the
binding only supports the complete shutdown of the system after poweroff.
Required properties:
-- compatible : must be "ti,twl4030-power"
+- compatible : must be one of the following
+ "ti,twl4030-power"
+ "ti,twl4030-power-reset"
+ "ti,twl4030-power-idle"
+ "ti,twl4030-power-idle-osc-off"
+
+The use of ti,twl4030-power-reset is recommended at least on
+3530 that needs a special configuration for warm reset to work.
+
+When using ti,twl4030-power-idle, the TI recommended configuration
+for idle modes is loaded to the tlw4030 PMIC.
+
+When using ti,twl4030-power-idle-osc-off, the TI recommended
+configuration is used with the external oscillator being shut
+down during off-idle. Note that this does not work on all boards
+depending on how the external oscillator is wired.
Optional properties:
- ti,use_poweroff: With this flag, the chip will initiates an ACTIVE-to-OFF or
diff --git a/Documentation/devicetree/bindings/mfd/twl6040.txt b/Documentation/devicetree/bindings/mfd/twl6040.txt
index 0f5dd709d75..a41157b5d93 100644
--- a/Documentation/devicetree/bindings/mfd/twl6040.txt
+++ b/Documentation/devicetree/bindings/mfd/twl6040.txt
@@ -19,6 +19,8 @@ Required properties:
Optional properties, nodes:
- enable-active-high: To power on the twl6040 during boot.
+- clocks: phandle to the clk32k clock provider
+- clock-names: Must be "clk32k"
Vibra functionality
Required properties:
diff --git a/Documentation/devicetree/bindings/mipi/dsi/mipi-dsi-bus.txt b/Documentation/devicetree/bindings/mipi/dsi/mipi-dsi-bus.txt
new file mode 100644
index 00000000000..973c2727377
--- /dev/null
+++ b/Documentation/devicetree/bindings/mipi/dsi/mipi-dsi-bus.txt
@@ -0,0 +1,98 @@
+MIPI DSI (Display Serial Interface) busses
+==========================================
+
+The MIPI Display Serial Interface specifies a serial bus and a protocol for
+communication between a host and up to four peripherals. This document will
+define the syntax used to represent a DSI bus in a device tree.
+
+This document describes DSI bus-specific properties only or defines existing
+standard properties in the context of the DSI bus.
+
+Each DSI host provides a DSI bus. The DSI host controller's node contains a
+set of properties that characterize the bus. Child nodes describe individual
+peripherals on that bus.
+
+The following assumes that only a single peripheral is connected to a DSI
+host. Experience shows that this is true for the large majority of setups.
+
+DSI host
+--------
+
+In addition to the standard properties and those defined by the parent bus of
+a DSI host, the following properties apply to a node representing a DSI host.
+
+Required properties:
+- #address-cells: The number of cells required to represent an address on the
+ bus. DSI peripherals are addressed using a 2-bit virtual channel number, so
+ a maximum of 4 devices can be addressed on a single bus. Hence the value of
+ this property should be 1.
+- #size-cells: Should be 0. There are cases where it makes sense to use a
+ different value here. See below.
+
+DSI peripheral
+--------------
+
+Peripherals are represented as child nodes of the DSI host's node. Properties
+described here apply to all DSI peripherals, but individual bindings may want
+to define additional, device-specific properties.
+
+Required properties:
+- reg: The virtual channel number of a DSI peripheral. Must be in the range
+ from 0 to 3.
+
+Some DSI peripherals respond to more than a single virtual channel. In that
+case two alternative representations can be chosen:
+- The reg property can take multiple entries, one for each virtual channel
+ that the peripheral responds to.
+- If the virtual channels that a peripheral responds to are consecutive, the
+ #size-cells can be set to 1. The first cell of each entry in the reg
+ property is the number of the first virtual channel and the second cell is
+ the number of consecutive virtual channels.
+
+Example
+-------
+
+ dsi-host {
+ ...
+
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ /* peripheral responds to virtual channel 0 */
+ peripheral@0 {
+ compatible = "...";
+ reg = <0>;
+ };
+
+ ...
+ };
+
+ dsi-host {
+ ...
+
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ /* peripheral responds to virtual channels 0 and 2 */
+ peripheral@0 {
+ compatible = "...";
+ reg = <0, 2>;
+ };
+
+ ...
+ };
+
+ dsi-host {
+ ...
+
+ #address-cells = <1>;
+ #size-cells = <1>;
+
+ /* peripheral responds to virtual channels 1, 2 and 3 */
+ peripheral@1 {
+ compatible = "...";
+ reg = <1 3>;
+ };
+
+ ...
+ };
diff --git a/Documentation/devicetree/bindings/mipi/nvidia,tegra114-mipi.txt b/Documentation/devicetree/bindings/mipi/nvidia,tegra114-mipi.txt
new file mode 100644
index 00000000000..e4a25cedc5c
--- /dev/null
+++ b/Documentation/devicetree/bindings/mipi/nvidia,tegra114-mipi.txt
@@ -0,0 +1,41 @@
+NVIDIA Tegra MIPI pad calibration controller
+
+Required properties:
+- compatible: "nvidia,tegra<chip>-mipi"
+- reg: Physical base address and length of the controller's registers.
+- clocks: Must contain an entry for each entry in clock-names.
+ See ../clocks/clock-bindings.txt for details.
+- clock-names: Must include the following entries:
+ - mipi-cal
+- #nvidia,mipi-calibrate-cells: Should be 1. The cell is a bitmask of the pads
+ that need to be calibrated for a given device.
+
+User nodes need to contain an nvidia,mipi-calibrate property that has a
+phandle to refer to the calibration controller node and a bitmask of the pads
+that need to be calibrated.
+
+Example:
+
+ mipi: mipi@700e3000 {
+ compatible = "nvidia,tegra114-mipi";
+ reg = <0x700e3000 0x100>;
+ clocks = <&tegra_car TEGRA114_CLK_MIPI_CAL>;
+ clock-names = "mipi-cal";
+ #nvidia,mipi-calibrate-cells = <1>;
+ };
+
+ ...
+
+ host1x@50000000 {
+ ...
+
+ dsi@54300000 {
+ ...
+
+ nvidia,mipi-calibrate = <&mipi 0x060>;
+
+ ...
+ };
+
+ ...
+ };
diff --git a/Documentation/devicetree/bindings/misc/allwinner,sunxi-sid.txt b/Documentation/devicetree/bindings/misc/allwinner,sunxi-sid.txt
new file mode 100644
index 00000000000..fabdf64a573
--- /dev/null
+++ b/Documentation/devicetree/bindings/misc/allwinner,sunxi-sid.txt
@@ -0,0 +1,17 @@
+Allwinner sunxi-sid
+
+Required properties:
+- compatible: "allwinner,sun4i-a10-sid" or "allwinner,sun7i-a20-sid"
+- reg: Should contain registers location and length
+
+Example for sun4i:
+ sid@01c23800 {
+ compatible = "allwinner,sun4i-a10-sid";
+ reg = <0x01c23800 0x10>
+ };
+
+Example for sun7i:
+ sid@01c23800 {
+ compatible = "allwinner,sun7i-a20-sid";
+ reg = <0x01c23800 0x200>
+ };
diff --git a/Documentation/devicetree/bindings/misc/arm-charlcd.txt b/Documentation/devicetree/bindings/misc/arm-charlcd.txt
new file mode 100644
index 00000000000..e28e2aac47f
--- /dev/null
+++ b/Documentation/devicetree/bindings/misc/arm-charlcd.txt
@@ -0,0 +1,18 @@
+ARM Versatile Character LCD
+-----------------------------------------------------
+This binding defines the character LCD interface found on ARM Versatile AB
+and PB reference platforms.
+
+Required properties:
+- compatible : "arm,versatile-clcd"
+- reg : Location and size of character LCD registers
+
+Optional properties:
+- interrupts - single interrupt for character LCD. The character LCD can
+ operate in polled mode without an interrupt.
+
+Example:
+ lcd@10008000 {
+ compatible = "arm,versatile-lcd";
+ reg = <0x10008000 0x1000>;
+ };
diff --git a/Documentation/devicetree/bindings/misc/atmel-ssc.txt b/Documentation/devicetree/bindings/misc/atmel-ssc.txt
index a45ae08c8ed..efc98ea1f23 100644
--- a/Documentation/devicetree/bindings/misc/atmel-ssc.txt
+++ b/Documentation/devicetree/bindings/misc/atmel-ssc.txt
@@ -6,6 +6,9 @@ Required properties:
- atmel,at91sam9g45-ssc: support dma transfer
- reg: Should contain SSC registers location and length
- interrupts: Should contain SSC interrupt
+- clock-names: tuple listing input clock names.
+ Required elements: "pclk"
+- clocks: phandles to input clocks.
Required properties for devices compatible with "atmel,at91sam9g45-ssc":
@@ -14,12 +17,22 @@ Required properties for devices compatible with "atmel,at91sam9g45-ssc":
See Documentation/devicetree/bindings/dma/atmel-dma.txt for details.
- dma-names: Must be "tx", "rx".
+Optional properties:
+ - atmel,clk-from-rk-pin: bool property.
+ - When SSC works in slave mode, according to the hardware design, the
+ clock can get from TK pin, and also can get from RK pin. So, add
+ this parameter to choose where the clock from.
+ - By default the clock is from TK pin, if the clock from RK pin, this
+ property is needed.
+
Examples:
- PDC transfer:
ssc0: ssc@fffbc000 {
compatible = "atmel,at91rm9200-ssc";
reg = <0xfffbc000 0x4000>;
interrupts = <14 4 5>;
+ clocks = <&ssc0_clk>;
+ clock-names = "pclk";
};
- DMA transfer:
diff --git a/Documentation/devicetree/bindings/misc/bmp085.txt b/Documentation/devicetree/bindings/misc/bmp085.txt
index 91dfda2e4e1..d7a6deb6b21 100644
--- a/Documentation/devicetree/bindings/misc/bmp085.txt
+++ b/Documentation/devicetree/bindings/misc/bmp085.txt
@@ -8,6 +8,8 @@ Optional properties:
- temp-measurement-period: temperature measurement period (milliseconds)
- default-oversampling: default oversampling value to be used at startup,
value range is 0-3 with rising sensitivity.
+- interrupt-parent: should be the phandle for the interrupt controller
+- interrupts: interrupt mapping for IRQ
Example:
@@ -17,4 +19,6 @@ pressure@77 {
chip-id = <10>;
temp-measurement-period = <100>;
default-oversampling = <2>;
+ interrupt-parent = <&gpio0>;
+ interrupts = <25 IRQ_TYPE_EDGE_RISING>;
};
diff --git a/Documentation/devicetree/bindings/misc/sram.txt b/Documentation/devicetree/bindings/misc/sram.txt
index 4d0a00e453a..36cbe5aea99 100644
--- a/Documentation/devicetree/bindings/misc/sram.txt
+++ b/Documentation/devicetree/bindings/misc/sram.txt
@@ -8,9 +8,44 @@ Required properties:
- reg : SRAM iomem address range
+Reserving sram areas:
+---------------------
+
+Each child of the sram node specifies a region of reserved memory. Each
+child node should use a 'reg' property to specify a specific range of
+reserved memory.
+
+Following the generic-names recommended practice, node names should
+reflect the purpose of the node. Unit address (@<address>) should be
+appended to the name.
+
+Required properties in the sram node:
+
+- #address-cells, #size-cells : should use the same values as the root node
+- ranges : standard definition, should translate from local addresses
+ within the sram to bus addresses
+
+Required properties in the area nodes:
+
+- reg : iomem address range, relative to the SRAM range
+
+Optional properties in the area nodes:
+
+- compatible : standard definition, should contain a vendor specific string
+ in the form <vendor>,[<device>-]<usage>
+
Example:
sram: sram@5c000000 {
compatible = "mmio-sram";
reg = <0x5c000000 0x40000>; /* 256 KiB SRAM at address 0x5c000000 */
+
+ #adress-cells = <1>;
+ #size-cells = <1>;
+ ranges = <0 0x5c000000 0x40000>;
+
+ smp-sram@100 {
+ compatible = "socvendor,smp-sram";
+ reg = <0x100 0x50>;
+ };
};
diff --git a/Documentation/devicetree/bindings/misc/ti,dac7512.txt b/Documentation/devicetree/bindings/misc/ti,dac7512.txt
new file mode 100644
index 00000000000..1db45939dac
--- /dev/null
+++ b/Documentation/devicetree/bindings/misc/ti,dac7512.txt
@@ -0,0 +1,20 @@
+TI DAC7512 DEVICETREE BINDINGS
+
+Required properties:
+
+ - "compatible" Must be set to "ti,dac7512"
+
+Property rules described in Documentation/devicetree/bindings/spi/spi-bus.txt
+apply. In particular, "reg" and "spi-max-frequency" properties must be given.
+
+
+Example:
+
+ spi_master {
+ dac7512: dac7512@0 {
+ compatible = "ti,dac7512";
+ reg = <0>; /* CS0 */
+ spi-max-frequency = <1000000>;
+ };
+ };
+
diff --git a/Documentation/devicetree/bindings/mmc/arasan,sdhci.txt b/Documentation/devicetree/bindings/mmc/arasan,sdhci.txt
new file mode 100644
index 00000000000..98ee2abbe13
--- /dev/null
+++ b/Documentation/devicetree/bindings/mmc/arasan,sdhci.txt
@@ -0,0 +1,27 @@
+Device Tree Bindings for the Arasan SDHCI Controller
+
+ The bindings follow the mmc[1], clock[2] and interrupt[3] bindings. Only
+ deviations are documented here.
+
+ [1] Documentation/devicetree/bindings/mmc/mmc.txt
+ [2] Documentation/devicetree/bindings/clock/clock-bindings.txt
+ [3] Documentation/devicetree/bindings/interrupt-controller/interrupts.txt
+
+Required Properties:
+ - compatible: Compatibility string. Must be 'arasan,sdhci-8.9a'
+ - reg: From mmc bindings: Register location and length.
+ - clocks: From clock bindings: Handles to clock inputs.
+ - clock-names: From clock bindings: Tuple including "clk_xin" and "clk_ahb"
+ - interrupts: Interrupt specifier
+ - interrupt-parent: Phandle for the interrupt controller that services
+ interrupts for this device.
+
+Example:
+ sdhci@e0100000 {
+ compatible = "arasan,sdhci-8.9a";
+ reg = <0xe0100000 0x1000>;
+ clock-names = "clk_xin", "clk_ahb";
+ clocks = <&clkc 21>, <&clkc 32>;
+ interrupt-parent = <&gic>;
+ interrupts = <0 24 4>;
+ } ;
diff --git a/Documentation/devicetree/bindings/mmc/atmel-hsmci.txt b/Documentation/devicetree/bindings/mmc/atmel-hsmci.txt
index 0a85c70cd30..07ad02075a9 100644
--- a/Documentation/devicetree/bindings/mmc/atmel-hsmci.txt
+++ b/Documentation/devicetree/bindings/mmc/atmel-hsmci.txt
@@ -13,6 +13,9 @@ Required properties:
- #address-cells: should be one. The cell is the slot id.
- #size-cells: should be zero.
- at least one slot node
+- clock-names: tuple listing input clock names.
+ Required elements: "mci_clk"
+- clocks: phandles to input clocks.
The node contains child nodes for each slot that the platform uses
@@ -24,6 +27,8 @@ mmc0: mmc@f0008000 {
interrupts = <12 4>;
#address-cells = <1>;
#size-cells = <0>;
+ clock-names = "mci_clk";
+ clocks = <&mci0_clk>;
[ child node definitions...]
};
diff --git a/Documentation/devicetree/bindings/mmc/exynos-dw-mshc.txt b/Documentation/devicetree/bindings/mmc/exynos-dw-mshc.txt
index 6d1c0988cfc..532b1d440ab 100644
--- a/Documentation/devicetree/bindings/mmc/exynos-dw-mshc.txt
+++ b/Documentation/devicetree/bindings/mmc/exynos-dw-mshc.txt
@@ -1,11 +1,11 @@
-* Samsung Exynos specific extensions to the Synopsis Designware Mobile
+* Samsung Exynos specific extensions to the Synopsys Designware Mobile
Storage Host Controller
-The Synopsis designware mobile storage host controller is used to interface
+The Synopsys designware mobile storage host controller is used to interface
a SoC with storage medium such as eMMC or SD/MMC cards. This file documents
-differences between the core Synopsis dw mshc controller properties described
-by synopsis-dw-mshc.txt and the properties used by the Samsung Exynos specific
-extensions to the Synopsis Designware Mobile Storage Host Controller.
+differences between the core Synopsys dw mshc controller properties described
+by synopsys-dw-mshc.txt and the properties used by the Samsung Exynos specific
+extensions to the Synopsys Designware Mobile Storage Host Controller.
Required Properties:
@@ -16,6 +16,8 @@ Required Properties:
specific extensions.
- "samsung,exynos5250-dw-mshc": for controllers with Samsung Exynos5250
specific extensions.
+ - "samsung,exynos5420-dw-mshc": for controllers with Samsung Exynos5420
+ specific extensions.
* samsung,dw-mshc-ciu-div: Specifies the divider value for the card interface
unit (ciu) clock. This property is applicable only for Exynos5 SoC's and
diff --git a/Documentation/devicetree/bindings/mmc/fsl-imx-esdhc.txt b/Documentation/devicetree/bindings/mmc/fsl-imx-esdhc.txt
index 1dd622546d0..9046ba06c47 100644
--- a/Documentation/devicetree/bindings/mmc/fsl-imx-esdhc.txt
+++ b/Documentation/devicetree/bindings/mmc/fsl-imx-esdhc.txt
@@ -12,6 +12,11 @@ Required properties:
Optional properties:
- fsl,cd-controller : Indicate to use controller internal card detection
- fsl,wp-controller : Indicate to use controller internal write protection
+- fsl,delay-line : Specify the number of delay cells for override mode.
+ This is used to set the clock delay for DLL(Delay Line) on override mode
+ to select a proper data sampling window in case the clock quality is not good
+ due to signal path is too long on the board. Please refer to eSDHC/uSDHC
+ chapter, DLL (Delay Line) section in RM for details.
Examples:
diff --git a/Documentation/devicetree/bindings/mmc/k3-dw-mshc.txt b/Documentation/devicetree/bindings/mmc/k3-dw-mshc.txt
new file mode 100644
index 00000000000..e5bc49f764d
--- /dev/null
+++ b/Documentation/devicetree/bindings/mmc/k3-dw-mshc.txt
@@ -0,0 +1,46 @@
+* Hisilicon specific extensions to the Synopsys Designware Mobile
+ Storage Host Controller
+
+Read synopsys-dw-mshc.txt for more details
+
+The Synopsys designware mobile storage host controller is used to interface
+a SoC with storage medium such as eMMC or SD/MMC cards. This file documents
+differences between the core Synopsys dw mshc controller properties described
+by synopsys-dw-mshc.txt and the properties used by the Hisilicon specific
+extensions to the Synopsys Designware Mobile Storage Host Controller.
+
+Required Properties:
+
+* compatible: should be one of the following.
+ - "hisilicon,hi4511-dw-mshc": for controllers with hi4511 specific extensions.
+
+Example:
+
+ /* for Hi3620 */
+
+ /* SoC portion */
+ dwmmc_0: dwmmc0@fcd03000 {
+ compatible = "hisilicon,hi4511-dw-mshc";
+ reg = <0xfcd03000 0x1000>;
+ interrupts = <0 16 4>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ clocks = <&mmc_clock HI3620_SD_CIUCLK>, <&clock HI3620_DDRC_PER_CLK>;
+ clock-names = "ciu", "biu";
+ };
+
+ /* Board portion */
+ dwmmc0@fcd03000 {
+ num-slots = <1>;
+ vmmc-supply = <&ldo12>;
+ fifo-depth = <0x100>;
+ supports-highspeed;
+ pinctrl-names = "default";
+ pinctrl-0 = <&sd_pmx_pins &sd_cfg_func1 &sd_cfg_func2>;
+ slot@0 {
+ reg = <0>;
+ bus-width = <4>;
+ disable-wp;
+ cd-gpios = <&gpio10 3 0>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/mmc/kona-sdhci.txt b/Documentation/devicetree/bindings/mmc/kona-sdhci.txt
index 789fb07a426..aaba2483b4f 100644
--- a/Documentation/devicetree/bindings/mmc/kona-sdhci.txt
+++ b/Documentation/devicetree/bindings/mmc/kona-sdhci.txt
@@ -6,12 +6,16 @@ and the properties present in the bcm281xx SDHCI
Required properties:
- compatible : Should be "brcm,kona-sdhci"
- DEPRECATED: compatible : Should be "bcm,kona-sdhci"
+- clocks: phandle + clock specifier pair of the external clock
+
+Refer to clocks/clock-bindings.txt for generic clock consumer properties.
Example:
sdio2: sdio@0x3f1a0000 {
compatible = "brcm,kona-sdhci";
reg = <0x3f1a0000 0x10000>;
+ clocks = <&sdio3_clk>;
interrupts = <0x0 74 0x4>;
};
diff --git a/Documentation/devicetree/bindings/mmc/mmc.txt b/Documentation/devicetree/bindings/mmc/mmc.txt
index 458b57f199a..3c18001dfd5 100644
--- a/Documentation/devicetree/bindings/mmc/mmc.txt
+++ b/Documentation/devicetree/bindings/mmc/mmc.txt
@@ -26,9 +26,20 @@ Optional properties:
this system, even if the controller claims it is.
- cap-sd-highspeed: SD high-speed timing is supported
- cap-mmc-highspeed: MMC high-speed timing is supported
+- sd-uhs-sdr12: SD UHS SDR12 speed is supported
+- sd-uhs-sdr25: SD UHS SDR25 speed is supported
+- sd-uhs-sdr50: SD UHS SDR50 speed is supported
+- sd-uhs-sdr104: SD UHS SDR104 speed is supported
+- sd-uhs-ddr50: SD UHS DDR50 speed is supported
- cap-power-off-card: powering off the card is safe
- cap-sdio-irq: enable SDIO IRQ signalling on this interface
- full-pwr-cycle: full power cycle of the card is supported
+- mmc-highspeed-ddr-1_8v: eMMC high-speed DDR mode(1.8V I/O) is supported
+- mmc-highspeed-ddr-1_2v: eMMC high-speed DDR mode(1.2V I/O) is supported
+- mmc-hs200-1_8v: eMMC HS200 mode(1.8V I/O) is supported
+- mmc-hs200-1_2v: eMMC HS200 mode(1.2V I/O) is supported
+- mmc-hs400-1_8v: eMMC HS400 mode(1.8V I/O) is supported
+- mmc-hs400-1_2v: eMMC HS400 mode(1.2V I/O) is supported
*NOTE* on CD and WP polarity. To use common for all SD/MMC host controllers line
polarity properties, we have to fix the meaning of the "normal" and "inverted"
diff --git a/Documentation/devicetree/bindings/mmc/mmci.txt b/Documentation/devicetree/bindings/mmc/mmci.txt
index 2b584cae352..03796cf2d3e 100644
--- a/Documentation/devicetree/bindings/mmc/mmci.txt
+++ b/Documentation/devicetree/bindings/mmc/mmci.txt
@@ -4,12 +4,58 @@ The ARM PrimeCell MMCI PL180 and PL181 provides an interface for
reading and writing to MultiMedia and SD cards alike.
This file documents differences between the core properties described
-by mmc.txt and the properties used by the mmci driver.
+by mmc.txt and the properties used by the mmci driver. Using "st" as
+the prefix for a property, indicates support by the ST Micro variant.
Required properties:
- compatible : contains "arm,pl18x", "arm,primecell".
-- arm,primecell-periphid : contains the PrimeCell Peripheral ID.
+- vmmc-supply : phandle to the regulator device tree node, mentioned
+ as the VCC/VDD supply in the eMMC/SD specs.
Optional properties:
-- mmc-cap-mmc-highspeed : indicates whether MMC is high speed capable
-- mmc-cap-sd-highspeed : indicates whether SD is high speed capable
+- arm,primecell-periphid : contains the PrimeCell Peripheral ID, it overrides
+ the ID provided by the HW
+- vqmmc-supply : phandle to the regulator device tree node, mentioned
+ as the VCCQ/VDD_IO supply in the eMMC/SD specs.
+- st,sig-dir-dat0 : bus signal direction pin used for DAT[0].
+- st,sig-dir-dat2 : bus signal direction pin used for DAT[2].
+- st,sig-dir-dat31 : bus signal direction pin used for DAT[3] and DAT[1].
+- st,sig-dir-dat74 : bus signal direction pin used for DAT[4] to DAT[7].
+- st,sig-dir-cmd : cmd signal direction pin used for CMD.
+- st,sig-pin-fbclk : feedback clock signal pin used.
+
+Deprecated properties:
+- mmc-cap-mmc-highspeed : indicates whether MMC is high speed capable.
+- mmc-cap-sd-highspeed : indicates whether SD is high speed capable.
+
+Example:
+
+sdi0_per1@80126000 {
+ compatible = "arm,pl18x", "arm,primecell";
+ reg = <0x80126000 0x1000>;
+ interrupts = <0 60 IRQ_TYPE_LEVEL_HIGH>;
+
+ dmas = <&dma 29 0 0x2>, /* Logical - DevToMem */
+ <&dma 29 0 0x0>; /* Logical - MemToDev */
+ dma-names = "rx", "tx";
+
+ clocks = <&prcc_kclk 1 5>, <&prcc_pclk 1 5>;
+ clock-names = "sdi", "apb_pclk";
+
+ max-frequency = <100000000>;
+ bus-width = <4>;
+ cap-sd-highspeed;
+ cap-mmc-highspeed;
+ cd-gpios = <&gpio2 31 0x4>; // 95
+ st,sig-dir-dat0;
+ st,sig-dir-dat2;
+ st,sig-dir-cmd;
+ st,sig-pin-fbclk;
+
+ vmmc-supply = <&ab8500_ldo_aux3_reg>;
+ vqmmc-supply = <&vmmci>;
+
+ pinctrl-names = "default", "sleep";
+ pinctrl-0 = <&sdi0_default_mode>;
+ pinctrl-1 = <&sdi0_sleep_mode>;
+};
diff --git a/Documentation/devicetree/bindings/mmc/moxa,moxart-mmc.txt b/Documentation/devicetree/bindings/mmc/moxa,moxart-mmc.txt
new file mode 100644
index 00000000000..b63819149f2
--- /dev/null
+++ b/Documentation/devicetree/bindings/mmc/moxa,moxart-mmc.txt
@@ -0,0 +1,30 @@
+MOXA ART MMC Host Controller Interface
+
+ Inherits from mmc binding[1].
+
+ [1] Documentation/devicetree/bindings/mmc/mmc.txt
+
+Required properties:
+
+- compatible : Must be "moxa,moxart-mmc" or "faraday,ftsdc010"
+- reg : Should contain registers location and length
+- interrupts : Should contain the interrupt number
+- clocks : Should contain phandle for the clock feeding the MMC controller
+
+Optional properties:
+
+- dmas : Should contain two DMA channels, line request number must be 5 for
+ both channels
+- dma-names : Must be "tx", "rx"
+
+Example:
+
+ mmc: mmc@98e00000 {
+ compatible = "moxa,moxart-mmc";
+ reg = <0x98e00000 0x5C>;
+ interrupts = <5 0>;
+ clocks = <&clk_apb>;
+ dmas = <&dma 5>,
+ <&dma 5>;
+ dma-names = "tx", "rx";
+ };
diff --git a/Documentation/devicetree/bindings/mmc/nvidia,tegra20-sdhci.txt b/Documentation/devicetree/bindings/mmc/nvidia,tegra20-sdhci.txt
index c6d7b11db9e..f357c16ea81 100644
--- a/Documentation/devicetree/bindings/mmc/nvidia,tegra20-sdhci.txt
+++ b/Documentation/devicetree/bindings/mmc/nvidia,tegra20-sdhci.txt
@@ -8,6 +8,12 @@ by mmc.txt and the properties used by the sdhci-tegra driver.
Required properties:
- compatible : Should be "nvidia,<chip>-sdhci"
+- clocks : Must contain one entry, for the module clock.
+ See ../clocks/clock-bindings.txt for details.
+- resets : Must contain an entry for each entry in reset-names.
+ See ../reset/reset.txt for details.
+- reset-names : Must include the following entries:
+ - sdhci
Optional properties:
- power-gpios : Specify GPIOs for power control
@@ -18,6 +24,9 @@ sdhci@c8000200 {
compatible = "nvidia,tegra20-sdhci";
reg = <0xc8000200 0x200>;
interrupts = <47>;
+ clocks = <&tegra_car 14>;
+ resets = <&tegra_car 14>;
+ reset-names = "sdhci";
cd-gpios = <&gpio 69 0>; /* gpio PI5 */
wp-gpios = <&gpio 57 0>; /* gpio PH1 */
power-gpios = <&gpio 155 0>; /* gpio PT3 */
diff --git a/Documentation/devicetree/bindings/mmc/rockchip-dw-mshc.txt b/Documentation/devicetree/bindings/mmc/rockchip-dw-mshc.txt
index 8a3d91d47b6..c559f3f3630 100644
--- a/Documentation/devicetree/bindings/mmc/rockchip-dw-mshc.txt
+++ b/Documentation/devicetree/bindings/mmc/rockchip-dw-mshc.txt
@@ -1,11 +1,11 @@
-* Rockchip specific extensions to the Synopsis Designware Mobile
+* Rockchip specific extensions to the Synopsys Designware Mobile
Storage Host Controller
-The Synopsis designware mobile storage host controller is used to interface
+The Synopsys designware mobile storage host controller is used to interface
a SoC with storage medium such as eMMC or SD/MMC cards. This file documents
-differences between the core Synopsis dw mshc controller properties described
-by synopsis-dw-mshc.txt and the properties used by the Rockchip specific
-extensions to the Synopsis Designware Mobile Storage Host Controller.
+differences between the core Synopsys dw mshc controller properties described
+by synopsys-dw-mshc.txt and the properties used by the Rockchip specific
+extensions to the Synopsys Designware Mobile Storage Host Controller.
Required Properties:
diff --git a/Documentation/devicetree/bindings/mmc/samsung-sdhci.txt b/Documentation/devicetree/bindings/mmc/samsung-sdhci.txt
index 328e990d254..42e0a9afa10 100644
--- a/Documentation/devicetree/bindings/mmc/samsung-sdhci.txt
+++ b/Documentation/devicetree/bindings/mmc/samsung-sdhci.txt
@@ -3,7 +3,7 @@
Samsung's SDHCI controller is used as a connectivity interface with external
MMC, SD and eMMC storage mediums. This file documents differences between the
core mmc properties described by mmc.txt and the properties used by the
-Samsung implmentation of the SDHCI controller.
+Samsung implementation of the SDHCI controller.
Required SoC Specific Properties:
- compatible: should be one of the following
diff --git a/Documentation/devicetree/bindings/mmc/sdhci-msm.txt b/Documentation/devicetree/bindings/mmc/sdhci-msm.txt
new file mode 100644
index 00000000000..81b33b5b20f
--- /dev/null
+++ b/Documentation/devicetree/bindings/mmc/sdhci-msm.txt
@@ -0,0 +1,55 @@
+* Qualcomm SDHCI controller (sdhci-msm)
+
+This file documents differences between the core properties in mmc.txt
+and the properties used by the sdhci-msm driver.
+
+Required properties:
+- compatible: Should contain "qcom,sdhci-msm-v4".
+- reg: Base address and length of the register in the following order:
+ - Host controller register map (required)
+ - SD Core register map (required)
+- interrupts: Should contain an interrupt-specifiers for the interrupts:
+ - Host controller interrupt (required)
+- pinctrl-names: Should contain only one value - "default".
+- pinctrl-0: Should specify pin control groups used for this controller.
+- clocks: A list of phandle + clock-specifier pairs for the clocks listed in clock-names.
+- clock-names: Should contain the following:
+ "iface" - Main peripheral bus clock (PCLK/HCLK - AHB Bus clock) (required)
+ "core" - SDC MMC clock (MCLK) (required)
+ "bus" - SDCC bus voter clock (optional)
+
+Example:
+
+ sdhc_1: sdhci@f9824900 {
+ compatible = "qcom,sdhci-msm-v4";
+ reg = <0xf9824900 0x11c>, <0xf9824000 0x800>;
+ interrupts = <0 123 0>;
+ bus-width = <8>;
+ non-removable;
+
+ vmmc = <&pm8941_l20>;
+ vqmmc = <&pm8941_s3>;
+
+ pinctrl-names = "default";
+ pinctrl-0 = <&sdc1_clk &sdc1_cmd &sdc1_data>;
+
+ clocks = <&gcc GCC_SDCC1_APPS_CLK>, <&gcc GCC_SDCC1_AHB_CLK>;
+ clock-names = "core", "iface";
+ };
+
+ sdhc_2: sdhci@f98a4900 {
+ compatible = "qcom,sdhci-msm-v4";
+ reg = <0xf98a4900 0x11c>, <0xf98a4000 0x800>;
+ interrupts = <0 125 0>;
+ bus-width = <4>;
+ cd-gpios = <&msmgpio 62 0x1>;
+
+ vmmc = <&pm8941_l21>;
+ vqmmc = <&pm8941_l13>;
+
+ pinctrl-names = "default";
+ pinctrl-0 = <&sdc2_clk &sdc2_cmd &sdc2_data>;
+
+ clocks = <&gcc GCC_SDCC2_APPS_CLK>, <&gcc GCC_SDCC2_AHB_CLK>;
+ clock-names = "core", "iface";
+ };
diff --git a/Documentation/devicetree/bindings/mmc/sdhci-pxa.txt b/Documentation/devicetree/bindings/mmc/sdhci-pxa.txt
index dbe98a3c183..86223c3eda9 100644
--- a/Documentation/devicetree/bindings/mmc/sdhci-pxa.txt
+++ b/Documentation/devicetree/bindings/mmc/sdhci-pxa.txt
@@ -4,7 +4,14 @@ This file documents differences between the core properties in mmc.txt
and the properties used by the sdhci-pxav2 and sdhci-pxav3 drivers.
Required properties:
-- compatible: Should be "mrvl,pxav2-mmc" or "mrvl,pxav3-mmc".
+- compatible: Should be "mrvl,pxav2-mmc", "mrvl,pxav3-mmc" or
+ "marvell,armada-380-sdhci".
+- reg:
+ * for "mrvl,pxav2-mmc" and "mrvl,pxav3-mmc", one register area for
+ the SDHCI registers.
+ * for "marvell,armada-380-sdhci", two register areas. The first one
+ for the SDHCI registers themselves, and the second one for the
+ AXI/Mbus bridge registers of the SDHCI unit.
Optional properties:
- mrvl,clk-delay-cycles: Specify a number of cycles to delay for tuning.
@@ -19,3 +26,11 @@ sdhci@d4280800 {
non-removable;
mrvl,clk-delay-cycles = <31>;
};
+
+sdhci@d8000 {
+ compatible = "marvell,armada-380-sdhci";
+ reg = <0xd8000 0x1000>, <0xdc000 0x100>;
+ interrupts = <0 25 0x4>;
+ clocks = <&gateclk 17>;
+ mrvl,clk-delay-cycles = <0x1F>;
+};
diff --git a/Documentation/devicetree/bindings/mmc/socfpga-dw-mshc.txt b/Documentation/devicetree/bindings/mmc/socfpga-dw-mshc.txt
new file mode 100644
index 00000000000..4897bea7e3f
--- /dev/null
+++ b/Documentation/devicetree/bindings/mmc/socfpga-dw-mshc.txt
@@ -0,0 +1,23 @@
+* Altera SOCFPGA specific extensions to the Synopsys Designware Mobile
+ Storage Host Controller
+
+The Synopsys designware mobile storage host controller is used to interface
+a SoC with storage medium such as eMMC or SD/MMC cards. This file documents
+differences between the core Synopsys dw mshc controller properties described
+by synopsys-dw-mshc.txt and the properties used by the Altera SOCFPGA specific
+extensions to the Synopsys Designware Mobile Storage Host Controller.
+
+Required Properties:
+
+* compatible: should be
+ - "altr,socfpga-dw-mshc": for Altera's SOCFPGA platform
+
+Example:
+
+ mmc: dwmmc0@ff704000 {
+ compatible = "altr,socfpga-dw-mshc";
+ reg = <0xff704000 0x1000>;
+ interrupts = <0 129 4>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ };
diff --git a/Documentation/devicetree/bindings/mmc/sunxi-mmc.txt b/Documentation/devicetree/bindings/mmc/sunxi-mmc.txt
new file mode 100644
index 00000000000..91b3a346715
--- /dev/null
+++ b/Documentation/devicetree/bindings/mmc/sunxi-mmc.txt
@@ -0,0 +1,43 @@
+* Allwinner sunxi MMC controller
+
+The highspeed MMC host controller on Allwinner SoCs provides an interface
+for MMC, SD and SDIO types of memory cards.
+
+Supported maximum speeds are the ones of the eMMC standard 4.5 as well
+as the speed of SD standard 3.0.
+Absolute maximum transfer rate is 200MB/s
+
+Required properties:
+ - compatible : "allwinner,sun4i-a10-mmc" or "allwinner,sun5i-a13-mmc"
+ - reg : mmc controller base registers
+ - clocks : a list with 2 phandle + clock specifier pairs
+ - clock-names : must contain "ahb" and "mmc"
+ - interrupts : mmc controller interrupt
+
+Optional properties:
+ - resets : phandle + reset specifier pair
+ - reset-names : must contain "ahb"
+ - for cd, bus-width and additional generic mmc parameters
+ please refer to mmc.txt within this directory
+
+Examples:
+ - Within .dtsi:
+ mmc0: mmc@01c0f000 {
+ compatible = "allwinner,sun5i-a13-mmc";
+ reg = <0x01c0f000 0x1000>;
+ clocks = <&ahb_gates 8>, <&mmc0_clk>;
+ clock-names = "ahb", "mod";
+ interrupts = <0 32 4>;
+ status = "disabled";
+ };
+
+ - Within dts:
+ mmc0: mmc@01c0f000 {
+ pinctrl-names = "default", "default";
+ pinctrl-0 = <&mmc0_pins_a>;
+ pinctrl-1 = <&mmc0_cd_pin_reference_design>;
+ bus-width = <4>;
+ cd-gpios = <&pio 7 1 0>; /* PH1 */
+ cd-inverted;
+ status = "okay";
+ };
diff --git a/Documentation/devicetree/bindings/mmc/synopsis-dw-mshc.txt b/Documentation/devicetree/bindings/mmc/synopsys-dw-mshc.txt
index cdcebea9c6f..2d4a7258a10 100644
--- a/Documentation/devicetree/bindings/mmc/synopsis-dw-mshc.txt
+++ b/Documentation/devicetree/bindings/mmc/synopsys-dw-mshc.txt
@@ -1,14 +1,14 @@
-* Synopsis Designware Mobile Storage Host Controller
+* Synopsys Designware Mobile Storage Host Controller
-The Synopsis designware mobile storage host controller is used to interface
+The Synopsys designware mobile storage host controller is used to interface
a SoC with storage medium such as eMMC or SD/MMC cards. This file documents
differences between the core mmc properties described by mmc.txt and the
-properties used by the Synopsis Designware Mobile Storage Host Controller.
+properties used by the Synopsys Designware Mobile Storage Host Controller.
Required Properties:
* compatible: should be
- - snps,dw-mshc: for controllers compliant with synopsis dw-mshc.
+ - snps,dw-mshc: for controllers compliant with synopsys dw-mshc.
* #address-cells: should be 1.
* #size-cells: should be 0.
@@ -52,6 +52,9 @@ Optional properties:
is specified and the ciu clock is specified then we'll try to set the ciu
clock to this at probe time.
+* clock-freq-min-max: Minimum and Maximum clock frequency for card output
+ clock(cclk_out). If it's not specified, max is 200MHZ and min is 400KHz by default.
+
* num-slots: specifies the number of slots supported by the controller.
The number of physical slots actually used could be equal or less than the
value specified by num-slots. If this property is not specified, the value
@@ -93,6 +96,7 @@ board specific portions as listed below.
dwmmc0@12200000 {
clock-frequency = <400000000>;
+ clock-freq-min-max = <400000 200000000>;
num-slots = <1>;
supports-highspeed;
broken-cd;
diff --git a/Documentation/devicetree/bindings/mmc/ti-omap-hsmmc.txt b/Documentation/devicetree/bindings/mmc/ti-omap-hsmmc.txt
index ed271fc255b..ce8056116fb 100644
--- a/Documentation/devicetree/bindings/mmc/ti-omap-hsmmc.txt
+++ b/Documentation/devicetree/bindings/mmc/ti-omap-hsmmc.txt
@@ -10,6 +10,7 @@ Required properties:
- compatible:
Should be "ti,omap2-hsmmc", for OMAP2 controllers
Should be "ti,omap3-hsmmc", for OMAP3 controllers
+ Should be "ti,omap3-pre-es3-hsmmc" for OMAP3 controllers pre ES3.0
Should be "ti,omap4-hsmmc", for OMAP4 controllers
- ti,hwmods: Must be "mmc<n>", n is controller instance starting 1
@@ -20,8 +21,29 @@ ti,dual-volt: boolean, supports dual voltage cards
ti,non-removable: non-removable slot (like eMMC)
ti,needs-special-reset: Requires a special softreset sequence
ti,needs-special-hs-handling: HSMMC IP needs special setting for handling High Speed
+dmas: List of DMA specifiers with the controller specific format
+as described in the generic DMA client binding. A tx and rx
+specifier is required.
+dma-names: List of DMA request names. These strings correspond
+1:1 with the DMA specifiers listed in dmas. The string naming is
+to be "rx" and "tx" for RX and TX DMA requests, respectively.
+
+Examples:
+
+[hwmod populated DMA resources]
+
+ mmc1: mmc@0x4809c000 {
+ compatible = "ti,omap4-hsmmc";
+ reg = <0x4809c000 0x400>;
+ ti,hwmods = "mmc1";
+ ti,dual-volt;
+ bus-width = <4>;
+ vmmc-supply = <&vmmc>; /* phandle to regulator node */
+ ti,non-removable;
+ };
+
+[generic DMA request binding]
-Example:
mmc1: mmc@0x4809c000 {
compatible = "ti,omap4-hsmmc";
reg = <0x4809c000 0x400>;
@@ -30,4 +52,7 @@ Example:
bus-width = <4>;
vmmc-supply = <&vmmc>; /* phandle to regulator node */
ti,non-removable;
+ dmas = <&edma 24
+ &edma 25>;
+ dma-names = "tx", "rx";
};
diff --git a/Documentation/devicetree/bindings/mmc/ti-omap.txt b/Documentation/devicetree/bindings/mmc/ti-omap.txt
new file mode 100644
index 00000000000..8de57996976
--- /dev/null
+++ b/Documentation/devicetree/bindings/mmc/ti-omap.txt
@@ -0,0 +1,54 @@
+* TI MMC host controller for OMAP1 and 2420
+
+The MMC Host Controller on TI OMAP1 and 2420 family provides
+an interface for MMC, SD, and SDIO types of memory cards.
+
+This file documents differences between the core properties described
+by mmc.txt and the properties used by the omap mmc driver.
+
+Note that this driver will not work with omap2430 or later omaps,
+please see the omap hsmmc driver for the current omaps.
+
+Required properties:
+- compatible: Must be "ti,omap2420-mmc", for OMAP2420 controllers
+- ti,hwmods: For 2420, must be "msdi<n>", where n is controller
+ instance starting 1
+
+Examples:
+
+ msdi1: mmc@4809c000 {
+ compatible = "ti,omap2420-mmc";
+ ti,hwmods = "msdi1";
+ reg = <0x4809c000 0x80>;
+ interrupts = <83>;
+ dmas = <&sdma 61 &sdma 62>;
+ dma-names = "tx", "rx";
+ };
+
+* TI MMC host controller for OMAP1 and 2420
+
+The MMC Host Controller on TI OMAP1 and 2420 family provides
+an interface for MMC, SD, and SDIO types of memory cards.
+
+This file documents differences between the core properties described
+by mmc.txt and the properties used by the omap mmc driver.
+
+Note that this driver will not work with omap2430 or later omaps,
+please see the omap hsmmc driver for the current omaps.
+
+Required properties:
+- compatible: Must be "ti,omap2420-mmc", for OMAP2420 controllers
+- ti,hwmods: For 2420, must be "msdi<n>", where n is controller
+ instance starting 1
+
+Examples:
+
+ msdi1: mmc@4809c000 {
+ compatible = "ti,omap2420-mmc";
+ ti,hwmods = "msdi1";
+ reg = <0x4809c000 0x80>;
+ interrupts = <83>;
+ dmas = <&sdma 61 &sdma 62>;
+ dma-names = "tx", "rx";
+ };
+
diff --git a/Documentation/devicetree/bindings/mmc/tmio_mmc.txt b/Documentation/devicetree/bindings/mmc/tmio_mmc.txt
index df204e18e03..6a2a1160a70 100644
--- a/Documentation/devicetree/bindings/mmc/tmio_mmc.txt
+++ b/Documentation/devicetree/bindings/mmc/tmio_mmc.txt
@@ -9,12 +9,15 @@ compulsory and any optional properties, common to all SD/MMC drivers, as
described in mmc.txt, can be used. Additionally the following tmio_mmc-specific
optional bindings can be used.
+Required properties:
+- compatible: "renesas,sdhi-shmobile" - a generic sh-mobile SDHI unit
+ "renesas,sdhi-sh7372" - SDHI IP on SH7372 SoC
+ "renesas,sdhi-sh73a0" - SDHI IP on SH73A0 SoC
+ "renesas,sdhi-r8a73a4" - SDHI IP on R8A73A4 SoC
+ "renesas,sdhi-r8a7740" - SDHI IP on R8A7740 SoC
+ "renesas,sdhi-r8a7778" - SDHI IP on R8A7778 SoC
+ "renesas,sdhi-r8a7779" - SDHI IP on R8A7779 SoC
+ "renesas,sdhi-r8a7790" - SDHI IP on R8A7790 SoC
+
Optional properties:
- toshiba,mmc-wrprotect-disable: write-protect detection is unavailable
-
-When used with Renesas SDHI hardware, the following compatibility strings
-configure various model-specific properties:
-
-"renesas,sh7372-sdhi": (default) compatible with SH7372
-"renesas,r8a7740-sdhi": compatible with R8A7740: certain MMC/SD commands have to
- wait for the interface to become idle.
diff --git a/Documentation/devicetree/bindings/mmc/usdhi6rol0.txt b/Documentation/devicetree/bindings/mmc/usdhi6rol0.txt
new file mode 100644
index 00000000000..8babdaa8623
--- /dev/null
+++ b/Documentation/devicetree/bindings/mmc/usdhi6rol0.txt
@@ -0,0 +1,33 @@
+* Renesas usdhi6rol0 SD/SDIO host controller
+
+Required properties:
+
+- compatible: must be
+ "renesas,usdhi6rol0"
+- interrupts: 3 interrupts, named "card detect", "data" and "SDIO" must be
+ specified
+- clocks: a clock binding for the IMCLK input
+
+Optional properties:
+
+- vmmc-supply: a phandle of a regulator, supplying Vcc to the card
+- vqmmc-supply: a phandle of a regulator, supplying VccQ to the card
+
+Additionally any standard mmc bindings from mmc.txt can be used.
+
+Example:
+
+sd0: sd@ab000000 {
+ compatible = "renesas,usdhi6rol0";
+ reg = <0xab000000 0x200>;
+ interrupts = <0 23 0x4
+ 0 24 0x4
+ 0 25 0x4>;
+ interrupt-names = "card detect", "data", "SDIO";
+ bus-width = <4>;
+ max-frequency = <50000000>;
+ cap-power-off-card;
+ clocks = <&imclk>;
+ vmmc-supply = <&vcc_sd0>;
+ vqmmc-supply = <&vccq_sd0>;
+};
diff --git a/Documentation/devicetree/bindings/mtd/davinci-nand.txt b/Documentation/devicetree/bindings/mtd/davinci-nand.txt
new file mode 100644
index 00000000000..cfb18abe600
--- /dev/null
+++ b/Documentation/devicetree/bindings/mtd/davinci-nand.txt
@@ -0,0 +1,94 @@
+Device tree bindings for Texas instruments Davinci/Keystone NAND controller
+
+This file provides information, what the device node for the davinci/keystone
+NAND interface contains.
+
+Documentation:
+Davinci DM646x - http://www.ti.com/lit/ug/sprueq7c/sprueq7c.pdf
+Kestone - http://www.ti.com/lit/ug/sprugz3a/sprugz3a.pdf
+
+Required properties:
+
+- compatible: "ti,davinci-nand"
+ "ti,keystone-nand"
+
+- reg: Contains 2 offset/length values:
+ - offset and length for the access window.
+ - offset and length for accessing the AEMIF
+ control registers.
+
+- ti,davinci-chipselect: number of chipselect. Indicates on the
+ davinci_nand driver which chipselect is used
+ for accessing the nand.
+ Can be in the range [0-3].
+
+Recommended properties :
+
+- ti,davinci-mask-ale: mask for ALE. Needed for executing address
+ phase. These offset will be added to the base
+ address for the chip select space the NAND Flash
+ device is connected to.
+ If not set equal to 0x08.
+
+- ti,davinci-mask-cle: mask for CLE. Needed for executing command
+ phase. These offset will be added to the base
+ address for the chip select space the NAND Flash
+ device is connected to.
+ If not set equal to 0x10.
+
+- ti,davinci-mask-chipsel: mask for chipselect address. Needed to mask
+ addresses for given chipselect.
+
+- nand-ecc-mode: operation mode of the NAND ecc mode. ECC mode
+ valid values for davinci driver:
+ - "none"
+ - "soft"
+ - "hw"
+
+- ti,davinci-ecc-bits: used ECC bits, currently supported 1 or 4.
+
+- nand-bus-width: buswidth 8 or 16. If not present 8.
+
+- nand-on-flash-bbt: use flash based bad block table support. OOB
+ identifier is saved in OOB area. If not present
+ false.
+
+Deprecated properties:
+
+- ti,davinci-ecc-mode: operation mode of the NAND ecc mode. ECC mode
+ valid values for davinci driver:
+ - "none"
+ - "soft"
+ - "hw"
+
+- ti,davinci-nand-buswidth: buswidth 8 or 16. If not present 8.
+
+- ti,davinci-nand-use-bbt: use flash based bad block table support. OOB
+ identifier is saved in OOB area. If not present
+ false.
+
+Nand device bindings may contain additional sub-nodes describing partitions of
+the address space. See partition.txt for more detail. The NAND Flash timing
+values must be programmed in the chip select’s node of AEMIF
+memory-controller (see Documentation/devicetree/bindings/memory-controllers/
+davinci-aemif.txt).
+
+Example(da850 EVM ):
+
+nand_cs3@62000000 {
+ compatible = "ti,davinci-nand";
+ reg = <0x62000000 0x807ff
+ 0x68000000 0x8000>;
+ ti,davinci-chipselect = <1>;
+ ti,davinci-mask-ale = <0>;
+ ti,davinci-mask-cle = <0>;
+ ti,davinci-mask-chipsel = <0>;
+ nand-ecc-mode = "hw";
+ ti,davinci-ecc-bits = <4>;
+ nand-on-flash-bbt;
+
+ partition@180000 {
+ label = "ubifs";
+ reg = <0x180000 0x7e80000>;
+ };
+};
diff --git a/Documentation/devicetree/bindings/mtd/fsl-quadspi.txt b/Documentation/devicetree/bindings/mtd/fsl-quadspi.txt
new file mode 100644
index 00000000000..823d1341219
--- /dev/null
+++ b/Documentation/devicetree/bindings/mtd/fsl-quadspi.txt
@@ -0,0 +1,35 @@
+* Freescale Quad Serial Peripheral Interface(QuadSPI)
+
+Required properties:
+ - compatible : Should be "fsl,vf610-qspi"
+ - reg : the first contains the register location and length,
+ the second contains the memory mapping address and length
+ - reg-names: Should contain the reg names "QuadSPI" and "QuadSPI-memory"
+ - interrupts : Should contain the interrupt for the device
+ - clocks : The clocks needed by the QuadSPI controller
+ - clock-names : the name of the clocks
+
+Optional properties:
+ - fsl,qspi-has-second-chip: The controller has two buses, bus A and bus B.
+ Each bus can be connected with two NOR flashes.
+ Most of the time, each bus only has one NOR flash
+ connected, this is the default case.
+ But if there are two NOR flashes connected to the
+ bus, you should enable this property.
+ (Please check the board's schematic.)
+
+Example:
+
+qspi0: quadspi@40044000 {
+ compatible = "fsl,vf610-qspi";
+ reg = <0x40044000 0x1000>, <0x20000000 0x10000000>;
+ reg-names = "QuadSPI", "QuadSPI-memory";
+ interrupts = <0 24 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&clks VF610_CLK_QSPI0_EN>,
+ <&clks VF610_CLK_QSPI0>;
+ clock-names = "qspi_en", "qspi";
+
+ flash0: s25fl128s@0 {
+ ....
+ };
+};
diff --git a/Documentation/devicetree/bindings/mtd/gpmc-nand.txt b/Documentation/devicetree/bindings/mtd/gpmc-nand.txt
index df338cb5059..65f4f7c4313 100644
--- a/Documentation/devicetree/bindings/mtd/gpmc-nand.txt
+++ b/Documentation/devicetree/bindings/mtd/gpmc-nand.txt
@@ -22,12 +22,14 @@ Optional properties:
width of 8 is assumed.
- ti,nand-ecc-opt: A string setting the ECC layout to use. One of:
-
- "sw" Software method (default)
- "hw" Hardware method
- "hw-romcode" gpmc hamming mode method & romcode layout
+ "sw" <deprecated> use "ham1" instead
+ "hw" <deprecated> use "ham1" instead
+ "hw-romcode" <deprecated> use "ham1" instead
+ "ham1" 1-bit Hamming ecc code
"bch4" 4-bit BCH ecc code
"bch8" 8-bit BCH ecc code
+ "bch16" 16-bit BCH ECC code
+ Refer below "How to select correct ECC scheme for your device ?"
- ti,nand-xfer-type: A string setting the data transfer type. One of:
@@ -36,10 +38,14 @@ Optional properties:
"prefetch-dma" Prefetch enabled sDMA mode
"prefetch-irq" Prefetch enabled irq mode
- - elm_id: Specifies elm device node. This is required to support BCH
- error correction using ELM module.
+ - elm_id: <deprecated> use "ti,elm-id" instead
+ - ti,elm-id: Specifies phandle of the ELM devicetree node.
+ ELM is an on-chip hardware engine on TI SoC which is used for
+ locating ECC errors for BCHx algorithms. SoC devices which have
+ ELM hardware engines should specify this device node in .dtsi
+ Using ELM for ECC error correction frees some CPU cycles.
-For inline partiton table parsing (optional):
+For inline partition table parsing (optional):
- #address-cells: should be set to 1
- #size-cells: should be set to 1
@@ -86,3 +92,46 @@ Example for an AM33xx board:
};
};
+How to select correct ECC scheme for your device ?
+--------------------------------------------------
+Higher ECC scheme usually means better protection against bit-flips and
+increased system lifetime. However, selection of ECC scheme is dependent
+on various other factors also like;
+
+(1) support of built in hardware engines.
+ Some legacy OMAP SoC do not have ELM harware engine, so those SoC cannot
+ support ecc-schemes with hardware error-correction (BCHx_HW). However
+ such SoC can use ecc-schemes with software library for error-correction
+ (BCHx_HW_DETECTION_SW). The error correction capability with software
+ library remains equivalent to their hardware counter-part, but there is
+ slight CPU penalty when too many bit-flips are detected during reads.
+
+(2) Device parameters like OOBSIZE.
+ Other factor which governs the selection of ecc-scheme is oob-size.
+ Higher ECC schemes require more OOB/Spare area to store ECC syndrome,
+ so the device should have enough free bytes available its OOB/Spare
+ area to accomodate ECC for entire page. In general following expression
+ helps in determining if given device can accomodate ECC syndrome:
+ "2 + (PAGESIZE / 512) * ECC_BYTES" >= OOBSIZE"
+ where
+ OOBSIZE number of bytes in OOB/spare area
+ PAGESIZE number of bytes in main-area of device page
+ ECC_BYTES number of ECC bytes generated to protect
+ 512 bytes of data, which is:
+ '3' for HAM1_xx ecc schemes
+ '7' for BCH4_xx ecc schemes
+ '14' for BCH8_xx ecc schemes
+ '26' for BCH16_xx ecc schemes
+
+ Example(a): For a device with PAGESIZE = 2048 and OOBSIZE = 64 and
+ trying to use BCH16 (ECC_BYTES=26) ecc-scheme.
+ Number of ECC bytes per page = (2 + (2048 / 512) * 26) = 106 B
+ which is greater than capacity of NAND device (OOBSIZE=64)
+ Hence, BCH16 cannot be supported on given device. But it can
+ probably use lower ecc-schemes like BCH8.
+
+ Example(b): For a device with PAGESIZE = 2048 and OOBSIZE = 128 and
+ trying to use BCH16 (ECC_BYTES=26) ecc-scheme.
+ Number of ECC bytes per page = (2 + (2048 / 512) * 26) = 106 B
+ which can be accomodate in the OOB/Spare area of this device
+ (OOBSIZE=128). So this device can use BCH16 ecc-scheme.
diff --git a/Documentation/devicetree/bindings/mtd/gpmc-nor.txt b/Documentation/devicetree/bindings/mtd/gpmc-nor.txt
index 420b3ab1889..4828c17bb78 100644
--- a/Documentation/devicetree/bindings/mtd/gpmc-nor.txt
+++ b/Documentation/devicetree/bindings/mtd/gpmc-nor.txt
@@ -30,7 +30,7 @@ Optional properties:
- gpmc,XXX Additional GPMC timings and settings parameters. See
Documentation/devicetree/bindings/bus/ti-gpmc.txt
-Optional properties for partiton table parsing:
+Optional properties for partition table parsing:
- #address-cells: should be set to 1
- #size-cells: should be set to 1
diff --git a/Documentation/devicetree/bindings/mtd/gpmc-onenand.txt b/Documentation/devicetree/bindings/mtd/gpmc-onenand.txt
index b7529424ac8..5d8fa527c49 100644
--- a/Documentation/devicetree/bindings/mtd/gpmc-onenand.txt
+++ b/Documentation/devicetree/bindings/mtd/gpmc-onenand.txt
@@ -17,7 +17,7 @@ Optional properties:
- dma-channel: DMA Channel index
-For inline partiton table parsing (optional):
+For inline partition table parsing (optional):
- #address-cells: should be set to 1
- #size-cells: should be set to 1
diff --git a/Documentation/devicetree/bindings/mtd/gpmi-nand.txt b/Documentation/devicetree/bindings/mtd/gpmi-nand.txt
index 551b2a179d0..458d5963468 100644
--- a/Documentation/devicetree/bindings/mtd/gpmi-nand.txt
+++ b/Documentation/devicetree/bindings/mtd/gpmi-nand.txt
@@ -17,6 +17,14 @@ Required properties:
Optional properties:
- nand-on-flash-bbt: boolean to enable on flash bbt option if not
present false
+ - fsl,use-minimum-ecc: Protect this NAND flash with the minimum ECC
+ strength required. The required ECC strength is
+ automatically discoverable for some flash
+ (e.g., according to the ONFI standard).
+ However, note that if this strength is not
+ discoverable or this property is not enabled,
+ the software may chooses an implementation-defined
+ ECC scheme.
The device tree may optionally contain sub-nodes describing partitions of the
address space. See partition.txt for more detail.
diff --git a/Documentation/devicetree/bindings/mtd/m25p80.txt b/Documentation/devicetree/bindings/mtd/m25p80.txt
index 6d3d5760947..4611aa83531 100644
--- a/Documentation/devicetree/bindings/mtd/m25p80.txt
+++ b/Documentation/devicetree/bindings/mtd/m25p80.txt
@@ -5,8 +5,8 @@ Required properties:
representing partitions.
- compatible : Should be the manufacturer and the name of the chip. Bear in mind
the DT binding is not Linux-only, but in case of Linux, see the
- "m25p_ids" table in drivers/mtd/devices/m25p80.c for the list of
- supported chips.
+ "spi_nor_ids" table in drivers/mtd/spi-nor/spi-nor.c for the list
+ of supported chips.
- reg : Chip-Select number
- spi-max-frequency : Maximum frequency of the SPI bus the chip can operate at
diff --git a/Documentation/devicetree/bindings/mtd/nand.txt b/Documentation/devicetree/bindings/mtd/nand.txt
index 03855c8c492..b53f92e252d 100644
--- a/Documentation/devicetree/bindings/mtd/nand.txt
+++ b/Documentation/devicetree/bindings/mtd/nand.txt
@@ -5,3 +5,17 @@
"soft_bch".
- nand-bus-width : 8 or 16 bus width if not present 8
- nand-on-flash-bbt: boolean to enable on flash bbt option if not present false
+
+- nand-ecc-strength: integer representing the number of bits to correct
+ per ECC step.
+
+- nand-ecc-step-size: integer representing the number of data bytes
+ that are covered by a single ECC step.
+
+The ECC strength and ECC step size properties define the correction capability
+of a controller. Together, they say a controller can correct "{strength} bit
+errors per {size} bytes".
+
+The interpretation of these parameters is implementation-defined, so not all
+implementations must support all possible combinations. However, implementations
+are encouraged to further specify the value(s) they support.
diff --git a/Documentation/devicetree/bindings/mtd/pxa3xx-nand.txt b/Documentation/devicetree/bindings/mtd/pxa3xx-nand.txt
index f1421e2bbab..de8b517a552 100644
--- a/Documentation/devicetree/bindings/mtd/pxa3xx-nand.txt
+++ b/Documentation/devicetree/bindings/mtd/pxa3xx-nand.txt
@@ -2,7 +2,9 @@ PXA3xx NAND DT bindings
Required properties:
- - compatible: Should be "marvell,pxa3xx-nand"
+ - compatible: Should be set to one of the following:
+ marvell,pxa3xx-nand
+ marvell,armada370-nand
- reg: The register base for the controller
- interrupts: The interrupt to map
- #address-cells: Set to <1> if the node includes partitions
@@ -13,6 +15,16 @@ Optional properties:
- marvell,nand-keep-config: Set to keep the NAND controller config as set
by the bootloader
- num-cs: Number of chipselect lines to usw
+ - nand-on-flash-bbt: boolean to enable on flash bbt option if
+ not present false
+ - nand-ecc-strength: number of bits to correct per ECC step
+ - nand-ecc-step-size: number of data bytes covered by a single ECC step
+
+The following ECC strength and step size are currently supported:
+
+ - nand-ecc-strength = <1>, nand-ecc-step-size = <512>
+ - nand-ecc-strength = <4>, nand-ecc-step-size = <512>
+ - nand-ecc-strength = <8>, nand-ecc-step-size = <512>
Example:
diff --git a/Documentation/devicetree/bindings/mtd/st-fsm.txt b/Documentation/devicetree/bindings/mtd/st-fsm.txt
new file mode 100644
index 00000000000..c2489391c43
--- /dev/null
+++ b/Documentation/devicetree/bindings/mtd/st-fsm.txt
@@ -0,0 +1,26 @@
+* ST-Microelectronics SPI FSM Serial (NOR) Flash Controller
+
+Required properties:
+ - compatible : Should be "st,spi-fsm"
+ - reg : Contains register's location and length.
+ - reg-names : Should contain the reg names "spi-fsm"
+ - interrupts : The interrupt number
+ - pinctrl-0 : Standard Pinctrl phandle (see: pinctrl/pinctrl-bindings.txt)
+
+Optional properties:
+ - st,syscfg : Phandle to boot-device system configuration registers
+ - st,boot-device-reg : Address of the aforementioned boot-device register(s)
+ - st,boot-device-spi : Expected boot-device value if booted via this device
+
+Example:
+ spifsm: spifsm@fe902000{
+ compatible = "st,spi-fsm";
+ reg = <0xfe902000 0x1000>;
+ reg-names = "spi-fsm";
+ pinctrl-0 = <&pinctrl_fsm>;
+ st,syscfg = <&syscfg_rear>;
+ st,boot-device-reg = <0x958>;
+ st,boot-device-spi = <0x1a>;
+ status = "okay";
+ };
+
diff --git a/Documentation/devicetree/bindings/net/allwinner,sun4i-emac.txt b/Documentation/devicetree/bindings/net/allwinner,sun4i-emac.txt
index b90bfcd138f..10640b17c86 100644
--- a/Documentation/devicetree/bindings/net/allwinner,sun4i-emac.txt
+++ b/Documentation/devicetree/bindings/net/allwinner,sun4i-emac.txt
@@ -1,20 +1,17 @@
* Allwinner EMAC ethernet controller
Required properties:
-- compatible: should be "allwinner,sun4i-emac".
+- compatible: should be "allwinner,sun4i-a10-emac" (Deprecated:
+ "allwinner,sun4i-emac")
- reg: address and length of the register set for the device.
- interrupts: interrupt for the device
-- phy: A phandle to a phy node defining the PHY address (as the reg
- property, a single integer).
+- phy: see ethernet.txt file in the same directory.
- clocks: A phandle to the reference clock for this device
-Optional properties:
-- (local-)mac-address: mac address to be used by this driver
-
Example:
emac: ethernet@01c0b000 {
- compatible = "allwinner,sun4i-emac";
+ compatible = "allwinner,sun4i-a10-emac";
reg = <0x01c0b000 0x1000>;
interrupts = <55>;
clocks = <&ahb_gates 17>;
diff --git a/Documentation/devicetree/bindings/net/allwinner,sun4i-mdio.txt b/Documentation/devicetree/bindings/net/allwinner,sun4i-mdio.txt
index 00b9f9a3ec1..4ec56413779 100644
--- a/Documentation/devicetree/bindings/net/allwinner,sun4i-mdio.txt
+++ b/Documentation/devicetree/bindings/net/allwinner,sun4i-mdio.txt
@@ -1,7 +1,8 @@
* Allwinner A10 MDIO Ethernet Controller interface
Required properties:
-- compatible: should be "allwinner,sun4i-mdio".
+- compatible: should be "allwinner,sun4i-a10-mdio"
+ (Deprecated: "allwinner,sun4i-mdio").
- reg: address and length of the register set for the device.
Optional properties:
@@ -9,7 +10,7 @@ Optional properties:
Example at the SoC level:
mdio@01c0b080 {
- compatible = "allwinner,sun4i-mdio";
+ compatible = "allwinner,sun4i-a10-mdio";
reg = <0x01c0b080 0x14>;
#address-cells = <1>;
#size-cells = <0>;
diff --git a/Documentation/devicetree/bindings/net/allwinner,sun7i-a20-gmac.txt b/Documentation/devicetree/bindings/net/allwinner,sun7i-a20-gmac.txt
new file mode 100644
index 00000000000..ea4d752389a
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/allwinner,sun7i-a20-gmac.txt
@@ -0,0 +1,27 @@
+* Allwinner GMAC ethernet controller
+
+This device is a platform glue layer for stmmac.
+Please see stmmac.txt for the other unchanged properties.
+
+Required properties:
+ - compatible: Should be "allwinner,sun7i-a20-gmac"
+ - clocks: Should contain the GMAC main clock, and tx clock
+ The tx clock type should be "allwinner,sun7i-a20-gmac-clk"
+ - clock-names: Should contain the clock names "stmmaceth",
+ and "allwinner_gmac_tx"
+
+Optional properties:
+- phy-supply: phandle to a regulator if the PHY needs one
+
+Examples:
+
+ gmac: ethernet@01c50000 {
+ compatible = "allwinner,sun7i-a20-gmac";
+ reg = <0x01c50000 0x10000>,
+ <0x01c20164 0x4>;
+ interrupts = <0 85 1>;
+ interrupt-names = "macirq";
+ clocks = <&ahb_gates 49>, <&gmac_tx>;
+ clock-names = "stmmaceth", "allwinner_gmac_tx";
+ phy-mode = "mii";
+ };
diff --git a/Documentation/devicetree/bindings/net/altera_tse.txt b/Documentation/devicetree/bindings/net/altera_tse.txt
new file mode 100644
index 00000000000..a706297998e
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/altera_tse.txt
@@ -0,0 +1,114 @@
+* Altera Triple-Speed Ethernet MAC driver (TSE)
+
+Required properties:
+- compatible: Should be "altr,tse-1.0" for legacy SGDMA based TSE, and should
+ be "altr,tse-msgdma-1.0" for the preferred MSGDMA based TSE.
+ ALTR is supported for legacy device trees, but is deprecated.
+ altr should be used for all new designs.
+- reg: Address and length of the register set for the device. It contains
+ the information of registers in the same order as described by reg-names
+- reg-names: Should contain the reg names
+ "control_port": MAC configuration space region
+ "tx_csr": xDMA Tx dispatcher control and status space region
+ "tx_desc": MSGDMA Tx dispatcher descriptor space region
+ "rx_csr" : xDMA Rx dispatcher control and status space region
+ "rx_desc": MSGDMA Rx dispatcher descriptor space region
+ "rx_resp": MSGDMA Rx dispatcher response space region
+ "s1": SGDMA descriptor memory
+- interrupts: Should contain the TSE interrupts and it's mode.
+- interrupt-names: Should contain the interrupt names
+ "rx_irq": xDMA Rx dispatcher interrupt
+ "tx_irq": xDMA Tx dispatcher interrupt
+- rx-fifo-depth: MAC receive FIFO buffer depth in bytes
+- tx-fifo-depth: MAC transmit FIFO buffer depth in bytes
+- phy-mode: See ethernet.txt in the same directory.
+- phy-handle: See ethernet.txt in the same directory.
+- phy-addr: See ethernet.txt in the same directory. A configuration should
+ include phy-handle or phy-addr.
+- altr,has-supplementary-unicast:
+ If present, TSE supports additional unicast addresses.
+ Otherwise additional unicast addresses are not supported.
+- altr,has-hash-multicast-filter:
+ If present, TSE supports a hash based multicast filter.
+ Otherwise, hash-based multicast filtering is not supported.
+
+- mdio device tree subnode: When the TSE has a phy connected to its local
+ mdio, there must be device tree subnode with the following
+ required properties:
+
+ - compatible: Must be "altr,tse-mdio".
+ - #address-cells: Must be <1>.
+ - #size-cells: Must be <0>.
+
+ For each phy on the mdio bus, there must be a node with the following
+ fields:
+
+ - reg: phy id used to communicate to phy.
+ - device_type: Must be "ethernet-phy".
+
+Optional properties:
+- local-mac-address: See ethernet.txt in the same directory.
+- max-frame-size: See ethernet.txt in the same directory.
+
+Example:
+
+ tse_sub_0_eth_tse_0: ethernet@0x1,00000000 {
+ compatible = "altr,tse-msgdma-1.0";
+ reg = <0x00000001 0x00000000 0x00000400>,
+ <0x00000001 0x00000460 0x00000020>,
+ <0x00000001 0x00000480 0x00000020>,
+ <0x00000001 0x000004A0 0x00000008>,
+ <0x00000001 0x00000400 0x00000020>,
+ <0x00000001 0x00000420 0x00000020>;
+ reg-names = "control_port", "rx_csr", "rx_desc", "rx_resp", "tx_csr", "tx_desc";
+ interrupt-parent = <&hps_0_arm_gic_0>;
+ interrupts = <0 41 4>, <0 40 4>;
+ interrupt-names = "rx_irq", "tx_irq";
+ rx-fifo-depth = <2048>;
+ tx-fifo-depth = <2048>;
+ address-bits = <48>;
+ max-frame-size = <1500>;
+ local-mac-address = [ 00 00 00 00 00 00 ];
+ phy-mode = "gmii";
+ altr,has-supplementary-unicast;
+ altr,has-hash-multicast-filter;
+ phy-handle = <&phy0>;
+ mdio {
+ compatible = "altr,tse-mdio";
+ #address-cells = <1>;
+ #size-cells = <0>;
+ phy0: ethernet-phy@0 {
+ reg = <0x0>;
+ device_type = "ethernet-phy";
+ };
+
+ phy1: ethernet-phy@1 {
+ reg = <0x1>;
+ device_type = "ethernet-phy";
+ };
+
+ };
+ };
+
+ tse_sub_1_eth_tse_0: ethernet@0x1,00001000 {
+ compatible = "altr,tse-msgdma-1.0";
+ reg = <0x00000001 0x00001000 0x00000400>,
+ <0x00000001 0x00001460 0x00000020>,
+ <0x00000001 0x00001480 0x00000020>,
+ <0x00000001 0x000014A0 0x00000008>,
+ <0x00000001 0x00001400 0x00000020>,
+ <0x00000001 0x00001420 0x00000020>;
+ reg-names = "control_port", "rx_csr", "rx_desc", "rx_resp", "tx_csr", "tx_desc";
+ interrupt-parent = <&hps_0_arm_gic_0>;
+ interrupts = <0 43 4>, <0 42 4>;
+ interrupt-names = "rx_irq", "tx_irq";
+ rx-fifo-depth = <2048>;
+ tx-fifo-depth = <2048>;
+ address-bits = <48>;
+ max-frame-size = <1500>;
+ local-mac-address = [ 00 00 00 00 00 00 ];
+ phy-mode = "gmii";
+ altr,has-supplementary-unicast;
+ altr,has-hash-multicast-filter;
+ phy-handle = <&phy1>;
+ };
diff --git a/Documentation/devicetree/bindings/net/amd-xgbe-phy.txt b/Documentation/devicetree/bindings/net/amd-xgbe-phy.txt
new file mode 100644
index 00000000000..d01ed63d3eb
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/amd-xgbe-phy.txt
@@ -0,0 +1,17 @@
+* AMD 10GbE PHY driver (amd-xgbe-phy)
+
+Required properties:
+- compatible: Should be "amd,xgbe-phy-seattle-v1a" and
+ "ethernet-phy-ieee802.3-c45"
+- reg: Address and length of the register sets for the device
+ - SerDes Rx/Tx registers
+ - SerDes integration registers (1/2)
+ - SerDes integration registers (2/2)
+
+Example:
+ xgbe_phy@e1240800 {
+ compatible = "amd,xgbe-phy-seattle-v1a", "ethernet-phy-ieee802.3-c45";
+ reg = <0 0xe1240800 0 0x00400>,
+ <0 0xe1250000 0 0x00060>,
+ <0 0xe1250080 0 0x00004>;
+ };
diff --git a/Documentation/devicetree/bindings/net/amd-xgbe.txt b/Documentation/devicetree/bindings/net/amd-xgbe.txt
new file mode 100644
index 00000000000..ea0c7908a3b
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/amd-xgbe.txt
@@ -0,0 +1,34 @@
+* AMD 10GbE driver (amd-xgbe)
+
+Required properties:
+- compatible: Should be "amd,xgbe-seattle-v1a"
+- reg: Address and length of the register sets for the device
+ - MAC registers
+ - PCS registers
+- interrupt-parent: Should be the phandle for the interrupt controller
+ that services interrupts for this device
+- interrupts: Should contain the amd-xgbe interrupt
+- clocks: Should be the DMA clock for the amd-xgbe device (used for
+ calculating the correct Rx interrupt watchdog timer value on a DMA
+ channel for coalescing)
+- clock-names: Should be the name of the DMA clock, "dma_clk"
+- phy-handle: See ethernet.txt file in the same directory
+- phy-mode: See ethernet.txt file in the same directory
+
+Optional properties:
+- mac-address: mac address to be assigned to the device. Can be overridden
+ by UEFI.
+
+Example:
+ xgbe@e0700000 {
+ compatible = "amd,xgbe-seattle-v1a";
+ reg = <0 0xe0700000 0 0x80000>,
+ <0 0xe0780000 0 0x80000>;
+ interrupt-parent = <&gic>;
+ interrupts = <0 325 4>;
+ clocks = <&xgbe_clk>;
+ clock-names = "dma_clk";
+ phy-handle = <&phy>;
+ phy-mode = "xgmii";
+ mac-address = [ 02 a1 a2 a3 a4 a5 ];
+ };
diff --git a/Documentation/devicetree/bindings/net/arc_emac.txt b/Documentation/devicetree/bindings/net/arc_emac.txt
index bcbc3f00915..a1d71eb43b2 100644
--- a/Documentation/devicetree/bindings/net/arc_emac.txt
+++ b/Documentation/devicetree/bindings/net/arc_emac.txt
@@ -4,21 +4,18 @@ Required properties:
- compatible: Should be "snps,arc-emac"
- reg: Address and length of the register set for the device
- interrupts: Should contain the EMAC interrupts
-- clock-frequency: CPU frequency. It is needed to calculate and set polling
-period of EMAC.
-- max-speed: Maximum supported data-rate in Mbit/s. In some HW configurations
-bandwidth of external memory controller might be a limiting factor. That's why
-it's required to specify which data-rate is supported on current SoC or FPGA.
-For example if only 10 Mbit/s is supported (10BASE-T) set "10". If 100 Mbit/s is
-supported (100BASE-TX) set "100".
-- phy: PHY device attached to the EMAC via MDIO bus
+- max-speed: see ethernet.txt file in the same directory.
+- phy: see ethernet.txt file in the same directory.
+
+Clock handling:
+The clock frequency is needed to calculate and set polling period of EMAC.
+It must be provided by one of:
+- clock-frequency: CPU frequency.
+- clocks: reference to the clock supplying the EMAC.
Child nodes of the driver are the individual PHY devices connected to the
MDIO bus. They must have a "reg" property given the PHY address on the MDIO bus.
-Optional properties:
-- mac-address: 6 bytes, mac address
-
Examples:
ethernet@c0fc2000 {
@@ -26,7 +23,11 @@ Examples:
reg = <0xc0fc2000 0x3c>;
interrupts = <6>;
mac-address = [ 00 11 22 33 44 55 ];
+
clock-frequency = <80000000>;
+ /* or */
+ clocks = <&emac_clock>;
+
max-speed = <100>;
phy = <&phy0>;
diff --git a/Documentation/devicetree/bindings/net/broadcom-bcmgenet.txt b/Documentation/devicetree/bindings/net/broadcom-bcmgenet.txt
new file mode 100644
index 00000000000..451fef26b4d
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/broadcom-bcmgenet.txt
@@ -0,0 +1,121 @@
+* Broadcom BCM7xxx Ethernet Controller (GENET)
+
+Required properties:
+- compatible: should contain one of "brcm,genet-v1", "brcm,genet-v2",
+ "brcm,genet-v3", "brcm,genet-v4".
+- reg: address and length of the register set for the device
+- interrupts: must be two cells, the first cell is the general purpose
+ interrupt line, while the second cell is the interrupt for the ring
+ RX and TX queues operating in ring mode
+- phy-mode: see ethernet.txt file in the same directory
+- #address-cells: should be 1
+- #size-cells: should be 1
+
+Optional properties:
+- clocks: When provided, must be two phandles to the functional clocks nodes
+ of the GENET block. The first phandle is the main GENET clock used during
+ normal operation, while the second phandle is the Wake-on-LAN clock.
+- clock-names: When provided, names of the functional clock phandles, first
+ name should be "enet" and second should be "enet-wol".
+
+- phy-handle: See ethernet.txt file in the same directory; used to describe
+ configurations where a PHY (internal or external) is used.
+
+- fixed-link: When the GENET interface is connected to a MoCA hardware block or
+ when operating in a RGMII to RGMII type of connection, or when the MDIO bus is
+ voluntarily disabled, this property should be used to describe the "fixed link".
+ See Documentation/devicetree/bindings/net/fixed-link.txt for information on
+ the property specifics
+
+Required child nodes:
+
+- mdio bus node: this node should always be present regarless of the PHY
+ configuration of the GENET instance
+
+MDIO bus node required properties:
+
+- compatible: should contain one of "brcm,genet-mdio-v1", "brcm,genet-mdio-v2"
+ "brcm,genet-mdio-v3", "brcm,genet-mdio-v4", the version has to match the
+ parent node compatible property (e.g: brcm,genet-v4 pairs with
+ brcm,genet-mdio-v4)
+- reg: address and length relative to the parent node base register address
+- #address-cells: address cell for MDIO bus addressing, should be 1
+- #size-cells: size of the cells for MDIO bus addressing, should be 0
+
+Ethernet PHY node properties:
+
+See Documentation/devicetree/bindings/net/phy.txt for the list of required and
+optional properties.
+
+Internal Gigabit PHY example:
+
+ethernet@f0b60000 {
+ phy-mode = "internal";
+ phy-handle = <&phy1>;
+ mac-address = [ 00 10 18 36 23 1a ];
+ compatible = "brcm,genet-v4";
+ #address-cells = <0x1>;
+ #size-cells = <0x1>;
+ reg = <0xf0b60000 0xfc4c>;
+ interrupts = <0x0 0x14 0x0>, <0x0 0x15 0x0>;
+
+ mdio@e14 {
+ compatible = "brcm,genet-mdio-v4";
+ #address-cells = <0x1>;
+ #size-cells = <0x0>;
+ reg = <0xe14 0x8>;
+
+ phy1: ethernet-phy@1 {
+ max-speed = <1000>;
+ reg = <0x1>;
+ compatible = "brcm,28nm-gphy", "ethernet-phy-ieee802.3-c22";
+ };
+ };
+};
+
+MoCA interface / MAC to MAC example:
+
+ethernet@f0b80000 {
+ phy-mode = "moca";
+ fixed-link = <1 0 1000 0 0>;
+ mac-address = [ 00 10 18 36 24 1a ];
+ compatible = "brcm,genet-v4";
+ #address-cells = <0x1>;
+ #size-cells = <0x1>;
+ reg = <0xf0b80000 0xfc4c>;
+ interrupts = <0x0 0x16 0x0>, <0x0 0x17 0x0>;
+
+ mdio@e14 {
+ compatible = "brcm,genet-mdio-v4";
+ #address-cells = <0x1>;
+ #size-cells = <0x0>;
+ reg = <0xe14 0x8>;
+ };
+};
+
+
+External MDIO-connected Gigabit PHY/switch:
+
+ethernet@f0ba0000 {
+ phy-mode = "rgmii";
+ phy-handle = <&phy0>;
+ mac-address = [ 00 10 18 36 26 1a ];
+ compatible = "brcm,genet-v4";
+ #address-cells = <0x1>;
+ #size-cells = <0x1>;
+ reg = <0xf0ba0000 0xfc4c>;
+ interrupts = <0x0 0x18 0x0>, <0x0 0x19 0x0>;
+
+ mdio@0e14 {
+ compatible = "brcm,genet-mdio-v4";
+ #address-cells = <0x1>;
+ #size-cells = <0x0>;
+ reg = <0xe14 0x8>;
+
+ phy0: ethernet-phy@0 {
+ max-speed = <1000>;
+ reg = <0x0>;
+ compatible = "brcm,bcm53125", "ethernet-phy-ieee802.3-c22";
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/net/broadcom-systemport.txt b/Documentation/devicetree/bindings/net/broadcom-systemport.txt
new file mode 100644
index 00000000000..c183ea90d9b
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/broadcom-systemport.txt
@@ -0,0 +1,29 @@
+* Broadcom BCM7xxx Ethernet Systemport Controller (SYSTEMPORT)
+
+Required properties:
+- compatible: should be one of "brcm,systemport-v1.00" or "brcm,systemport"
+- reg: address and length of the register set for the device.
+- interrupts: interrupts for the device, first cell must be for the the rx
+ interrupts, and the second cell should be for the transmit queues
+- local-mac-address: Ethernet MAC address (48 bits) of this adapter
+- phy-mode: Should be a string describing the PHY interface to the
+ Ethernet switch/PHY, see Documentation/devicetree/bindings/net/ethernet.txt
+- fixed-link: see Documentation/devicetree/bindings/net/fixed-link.txt for
+ the property specific details
+
+Optional properties:
+- systemport,num-tier2-arb: number of tier 2 arbiters, an integer
+- systemport,num-tier1-arb: number of tier 1 arbiters, an integer
+- systemport,num-txq: number of HW transmit queues, an integer
+- systemport,num-rxq: number of HW receive queues, an integer
+
+Example:
+ethernet@f04a0000 {
+ compatible = "brcm,systemport-v1.00";
+ reg = <0xf04a0000 0x4650>;
+ local-mac-address = [ 00 11 22 33 44 55 ];
+ fixed-link = <0 1 1000 0 0>;
+ phy-mode = "gmii";
+ interrupts = <0x0 0x16 0x0>,
+ <0x0 0x17 0x0>;
+};
diff --git a/Documentation/devicetree/bindings/net/can/microchip,mcp251x.txt b/Documentation/devicetree/bindings/net/can/microchip,mcp251x.txt
new file mode 100644
index 00000000000..ee3723beb70
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/can/microchip,mcp251x.txt
@@ -0,0 +1,25 @@
+* Microchip MCP251X stand-alone CAN controller device tree bindings
+
+Required properties:
+ - compatible: Should be one of the following:
+ - "microchip,mcp2510" for MCP2510.
+ - "microchip,mcp2515" for MCP2515.
+ - reg: SPI chip select.
+ - clocks: The clock feeding the CAN controller.
+ - interrupt-parent: The parent interrupt controller.
+ - interrupts: Should contain IRQ line for the CAN controller.
+
+Optional properties:
+ - vdd-supply: Regulator that powers the CAN controller.
+ - xceiver-supply: Regulator that powers the CAN transceiver.
+
+Example:
+ can0: can@1 {
+ compatible = "microchip,mcp2515";
+ reg = <1>;
+ clocks = <&clk24m>;
+ interrupt-parent = <&gpio4>;
+ interrupts = <13 0x2>;
+ vdd-supply = <&reg5v0>;
+ xceiver-supply = <&reg5v0>;
+ };
diff --git a/Documentation/devicetree/bindings/net/can/sja1000.txt b/Documentation/devicetree/bindings/net/can/sja1000.txt
index f2105a47ec8..b4a6d53fb01 100644
--- a/Documentation/devicetree/bindings/net/can/sja1000.txt
+++ b/Documentation/devicetree/bindings/net/can/sja1000.txt
@@ -12,6 +12,10 @@ Required properties:
Optional properties:
+- reg-io-width : Specify the size (in bytes) of the IO accesses that
+ should be performed on the device. Valid value is 1, 2 or 4.
+ Default to 1 (8 bits).
+
- nxp,external-clock-frequency : Frequency of the external oscillator
clock in Hz. Note that the internal clock frequency used by the
SJA1000 is half of that value. If not specified, a default value
diff --git a/Documentation/devicetree/bindings/net/can/xilinx_can.txt b/Documentation/devicetree/bindings/net/can/xilinx_can.txt
new file mode 100644
index 00000000000..fe38847d8e2
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/can/xilinx_can.txt
@@ -0,0 +1,44 @@
+Xilinx Axi CAN/Zynq CANPS controller Device Tree Bindings
+---------------------------------------------------------
+
+Required properties:
+- compatible : Should be "xlnx,zynq-can-1.0" for Zynq CAN
+ controllers and "xlnx,axi-can-1.00.a" for Axi CAN
+ controllers.
+- reg : Physical base address and size of the Axi CAN/Zynq
+ CANPS registers map.
+- interrupts : Property with a value describing the interrupt
+ number.
+- interrupt-parent : Must be core interrupt controller
+- clock-names : List of input clock names - "can_clk", "pclk"
+ (For CANPS), "can_clk" , "s_axi_aclk"(For AXI CAN)
+ (See clock bindings for details).
+- clocks : Clock phandles (see clock bindings for details).
+- tx-fifo-depth : Can Tx fifo depth.
+- rx-fifo-depth : Can Rx fifo depth.
+
+
+Example:
+
+For Zynq CANPS Dts file:
+ zynq_can_0: can@e0008000 {
+ compatible = "xlnx,zynq-can-1.0";
+ clocks = <&clkc 19>, <&clkc 36>;
+ clock-names = "can_clk", "pclk";
+ reg = <0xe0008000 0x1000>;
+ interrupts = <0 28 4>;
+ interrupt-parent = <&intc>;
+ tx-fifo-depth = <0x40>;
+ rx-fifo-depth = <0x40>;
+ };
+For Axi CAN Dts file:
+ axi_can_0: axi-can@40000000 {
+ compatible = "xlnx,axi-can-1.00.a";
+ clocks = <&clkc 0>, <&clkc 1>;
+ clock-names = "can_clk","s_axi_aclk" ;
+ reg = <0x40000000 0x10000>;
+ interrupt-parent = <&intc>;
+ interrupts = <0 59 1>;
+ tx-fifo-depth = <0x40>;
+ rx-fifo-depth = <0x40>;
+ };
diff --git a/Documentation/devicetree/bindings/net/cavium-mix.txt b/Documentation/devicetree/bindings/net/cavium-mix.txt
index 5da628db68b..8d7c3096390 100644
--- a/Documentation/devicetree/bindings/net/cavium-mix.txt
+++ b/Documentation/devicetree/bindings/net/cavium-mix.txt
@@ -18,12 +18,7 @@ Properties:
- interrupts: Two interrupt specifiers. The first is the MIX
interrupt routing and the second the routing for the AGL interrupts.
-- mac-address: Optional, the MAC address to assign to the device.
-
-- local-mac-address: Optional, the MAC address to assign to the device
- if mac-address is not specified.
-
-- phy-handle: Optional, a phandle for the PHY device connected to this device.
+- phy-handle: Optional, see ethernet.txt file in the same directory.
Example:
ethernet@1070000100800 {
diff --git a/Documentation/devicetree/bindings/net/cavium-pip.txt b/Documentation/devicetree/bindings/net/cavium-pip.txt
index d4c53ba04b3..7dbd158810d 100644
--- a/Documentation/devicetree/bindings/net/cavium-pip.txt
+++ b/Documentation/devicetree/bindings/net/cavium-pip.txt
@@ -35,12 +35,7 @@ Properties for PIP port which is a child the PIP interface:
- reg: The port number within the interface group.
-- mac-address: Optional, the MAC address to assign to the device.
-
-- local-mac-address: Optional, the MAC address to assign to the device
- if mac-address is not specified.
-
-- phy-handle: Optional, a phandle for the PHY device connected to this device.
+- phy-handle: Optional, see ethernet.txt file in the same directory.
Example:
diff --git a/Documentation/devicetree/bindings/net/cdns-emac.txt b/Documentation/devicetree/bindings/net/cdns-emac.txt
index 09055c2495f..abd67c13d34 100644
--- a/Documentation/devicetree/bindings/net/cdns-emac.txt
+++ b/Documentation/devicetree/bindings/net/cdns-emac.txt
@@ -6,11 +6,7 @@ Required properties:
or the generic form: "cdns,emac".
- reg: Address and length of the register set for the device
- interrupts: Should contain macb interrupt
-- phy-mode: String, operation mode of the PHY interface.
- Supported values are: "mii", "rmii".
-
-Optional properties:
-- local-mac-address: 6 bytes, mac address
+- phy-mode: see ethernet.txt file in the same directory.
Examples:
diff --git a/Documentation/devicetree/bindings/net/cpsw-phy-sel.txt b/Documentation/devicetree/bindings/net/cpsw-phy-sel.txt
new file mode 100644
index 00000000000..764c0c79b43
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/cpsw-phy-sel.txt
@@ -0,0 +1,30 @@
+TI CPSW Phy mode Selection Device Tree Bindings
+-----------------------------------------------
+
+Required properties:
+- compatible : Should be "ti,am3352-cpsw-phy-sel" for am335x platform and
+ "ti,dra7xx-cpsw-phy-sel" for dra7xx platform
+ "ti,am43xx-cpsw-phy-sel" for am43xx platform
+- reg : physical base address and size of the cpsw
+ registers map
+- reg-names : names of the register map given in "reg" node
+
+Optional properties:
+-rmii-clock-ext : If present, the driver will configure the RMII
+ interface to external clock usage
+
+Examples:
+
+ phy_sel: cpsw-phy-sel@44e10650 {
+ compatible = "ti,am3352-cpsw-phy-sel";
+ reg= <0x44e10650 0x4>;
+ reg-names = "gmii-sel";
+ };
+
+(or)
+ phy_sel: cpsw-phy-sel@44e10650 {
+ compatible = "ti,am3352-cpsw-phy-sel";
+ reg= <0x44e10650 0x4>;
+ reg-names = "gmii-sel";
+ rmii-clock-ext;
+ };
diff --git a/Documentation/devicetree/bindings/net/cpsw.txt b/Documentation/devicetree/bindings/net/cpsw.txt
index 05d660e4ac6..ae2b8b7f9c3 100644
--- a/Documentation/devicetree/bindings/net/cpsw.txt
+++ b/Documentation/devicetree/bindings/net/cpsw.txt
@@ -28,9 +28,8 @@ Optional properties:
Slave Properties:
Required properties:
- phy_id : Specifies slave phy id
-- phy-mode : The interface between the SoC and the PHY (a string
- that of_get_phy_mode() can understand)
-- mac-address : Specifies slave MAC address
+- phy-mode : See ethernet.txt file in the same directory
+- mac-address : See ethernet.txt file in the same directory
Optional properties:
- dual_emac_res_vlan : Specifies VID to be used to segregate the ports
diff --git a/Documentation/devicetree/bindings/net/davicom-dm9000.txt b/Documentation/devicetree/bindings/net/davicom-dm9000.txt
index 2d39c990e64..28767ed7c1b 100644
--- a/Documentation/devicetree/bindings/net/davicom-dm9000.txt
+++ b/Documentation/devicetree/bindings/net/davicom-dm9000.txt
@@ -9,8 +9,6 @@ Required properties:
- interrupts : interrupt specifier specific to interrupt controller
Optional properties:
-- local-mac-address : A bytestring of 6 bytes specifying Ethernet MAC address
- to use (from firmware or bootloader)
- davicom,no-eeprom : Configuration EEPROM is not available
- davicom,ext-phy : Use external PHY
diff --git a/Documentation/devicetree/bindings/net/davinci_emac.txt b/Documentation/devicetree/bindings/net/davinci_emac.txt
index 48b259e29e8..032808843f9 100644
--- a/Documentation/devicetree/bindings/net/davinci_emac.txt
+++ b/Documentation/devicetree/bindings/net/davinci_emac.txt
@@ -4,16 +4,12 @@ This file provides information, what the device node
for the davinci_emac interface contains.
Required properties:
-- compatible: "ti,davinci-dm6467-emac";
+- compatible: "ti,davinci-dm6467-emac" or "ti,am3517-emac"
- reg: Offset and length of the register set for the device
- ti,davinci-ctrl-reg-offset: offset to control register
- ti,davinci-ctrl-mod-reg-offset: offset to control module register
- ti,davinci-ctrl-ram-offset: offset to control module ram
- ti,davinci-ctrl-ram-size: size of control module ram
-- ti,davinci-rmii-en: use RMII
-- ti,davinci-no-bd-ram: has the emac controller BD RAM
-- phy-handle: Contains a phandle to an Ethernet PHY.
- if not, davinci_emac driver defaults to 100/FULL
- interrupts: interrupt mapping for the davinci emac interrupts sources:
4 sources: <Receive Threshold Interrupt
Receive Interrupt
@@ -21,7 +17,10 @@ Required properties:
Miscellaneous Interrupt>
Optional properties:
-- local-mac-address : 6 bytes, mac address
+- phy-handle: See ethernet.txt file in the same directory.
+ If absent, davinci_emac driver defaults to 100/FULL.
+- ti,davinci-rmii-en: 1 byte, 1 means use RMII
+- ti,davinci-no-bd-ram: boolean, does EMAC have BD RAM?
Example (enbw_cmc board):
eth0: emac@1e20000 {
diff --git a/Documentation/devicetree/bindings/net/ethernet.txt b/Documentation/devicetree/bindings/net/ethernet.txt
new file mode 100644
index 00000000000..3fc360523bc
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/ethernet.txt
@@ -0,0 +1,25 @@
+The following properties are common to the Ethernet controllers:
+
+- local-mac-address: array of 6 bytes, specifies the MAC address that was
+ assigned to the network device;
+- mac-address: array of 6 bytes, specifies the MAC address that was last used by
+ the boot program; should be used in cases where the MAC address assigned to
+ the device by the boot program is different from the "local-mac-address"
+ property;
+- max-speed: number, specifies maximum speed in Mbit/s supported by the device;
+- max-frame-size: number, maximum transfer unit (IEEE defined MTU), rather than
+ the maximum frame size (there's contradiction in ePAPR).
+- phy-mode: string, operation mode of the PHY interface; supported values are
+ "mii", "gmii", "sgmii", "qsgmii", "tbi", "rev-mii", "rmii", "rgmii", "rgmii-id",
+ "rgmii-rxid", "rgmii-txid", "rtbi", "smii", "xgmii"; this is now a de-facto
+ standard property;
+- phy-connection-type: the same as "phy-mode" property but described in ePAPR;
+- phy-handle: phandle, specifies a reference to a node representing a PHY
+ device; this property is described in ePAPR and so preferred;
+- phy: the same as "phy-handle" property, not recommended for new bindings.
+- phy-device: the same as "phy-handle" property, not recommended for new
+ bindings.
+
+Child nodes of the Ethernet controller are typically the individual PHY devices
+connected via the MDIO bus (sometimes the MDIO bus controller is separate).
+They are described in the phy.txt file in this same directory.
diff --git a/Documentation/devicetree/bindings/net/fixed-link.txt b/Documentation/devicetree/bindings/net/fixed-link.txt
new file mode 100644
index 00000000000..82bf7e0f47b
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/fixed-link.txt
@@ -0,0 +1,42 @@
+Fixed link Device Tree binding
+------------------------------
+
+Some Ethernet MACs have a "fixed link", and are not connected to a
+normal MDIO-managed PHY device. For those situations, a Device Tree
+binding allows to describe a "fixed link".
+
+Such a fixed link situation is described by creating a 'fixed-link'
+sub-node of the Ethernet MAC device node, with the following
+properties:
+
+* 'speed' (integer, mandatory), to indicate the link speed. Accepted
+ values are 10, 100 and 1000
+* 'full-duplex' (boolean, optional), to indicate that full duplex is
+ used. When absent, half duplex is assumed.
+* 'pause' (boolean, optional), to indicate that pause should be
+ enabled.
+* 'asym-pause' (boolean, optional), to indicate that asym_pause should
+ be enabled.
+
+Old, deprecated 'fixed-link' binding:
+
+* A 'fixed-link' property in the Ethernet MAC node, with 5 cells, of the
+ form <a b c d e> with the following accepted values:
+ - a: emulated PHY ID, choose any but but unique to the all specified
+ fixed-links, from 0 to 31
+ - b: duplex configuration: 0 for half duplex, 1 for full duplex
+ - c: link speed in Mbits/sec, accepted values are: 10, 100 and 1000
+ - d: pause configuration: 0 for no pause, 1 for pause
+ - e: asymmetric pause configuration: 0 for no asymmetric pause, 1 for
+ asymmetric pause
+
+Example:
+
+ethernet@0 {
+ ...
+ fixed-link {
+ speed = <1000>;
+ full-duplex;
+ };
+ ...
+};
diff --git a/Documentation/devicetree/bindings/net/fsl-fec.txt b/Documentation/devicetree/bindings/net/fsl-fec.txt
index d5363922140..6bc84adb10c 100644
--- a/Documentation/devicetree/bindings/net/fsl-fec.txt
+++ b/Documentation/devicetree/bindings/net/fsl-fec.txt
@@ -4,17 +4,15 @@ Required properties:
- compatible : Should be "fsl,<soc>-fec"
- reg : Address and length of the register set for the device
- interrupts : Should contain fec interrupt
-- phy-mode : String, operation mode of the PHY interface.
- Supported values are: "mii", "gmii", "sgmii", "tbi", "rmii",
- "rgmii", "rgmii-id", "rgmii-rxid", "rgmii-txid", "rtbi", "smii".
+- phy-mode : See ethernet.txt file in the same directory
Optional properties:
-- local-mac-address : 6 bytes, mac address
- phy-reset-gpios : Should specify the gpio for phy reset
- phy-reset-duration : Reset duration in milliseconds. Should present
only if property "phy-reset-gpios" is available. Missing the property
will have the duration be 1 millisecond. Numbers greater than 1000 are
invalid and 1 millisecond will be used instead.
+- phy-supply: regulator that powers the Ethernet PHY.
Example:
@@ -25,4 +23,5 @@ ethernet@83fec000 {
phy-mode = "mii";
phy-reset-gpios = <&gpio2 14 0>; /* GPIO2_14 */
local-mac-address = [00 04 9F 01 1B B9];
+ phy-supply = <&reg_fec_supply>;
};
diff --git a/Documentation/devicetree/bindings/net/fsl-tsec-phy.txt b/Documentation/devicetree/bindings/net/fsl-tsec-phy.txt
index 2c6be0377f5..be6ea8960f2 100644
--- a/Documentation/devicetree/bindings/net/fsl-tsec-phy.txt
+++ b/Documentation/devicetree/bindings/net/fsl-tsec-phy.txt
@@ -38,22 +38,14 @@ Properties:
- model : Model of the device. Can be "TSEC", "eTSEC", or "FEC"
- compatible : Should be "gianfar"
- reg : Offset and length of the register set for the device
- - local-mac-address : List of bytes representing the ethernet address of
- this controller
- interrupts : For FEC devices, the first interrupt is the device's
interrupt. For TSEC and eTSEC devices, the first interrupt is
transmit, the second is receive, and the third is error.
- - phy-handle : The phandle for the PHY connected to this ethernet
- controller.
- - fixed-link : <a b c d e> where a is emulated phy id - choose any,
- but unique to the all specified fixed-links, b is duplex - 0 half,
- 1 full, c is link speed - d#10/d#100/d#1000, d is pause - 0 no
- pause, 1 pause, e is asym_pause - 0 no asym_pause, 1 asym_pause.
- - phy-connection-type : a string naming the controller/PHY interface type,
- i.e., "mii" (default), "rmii", "gmii", "rgmii", "rgmii-id", "sgmii",
- "tbi", or "rtbi". This property is only really needed if the connection
- is of type "rgmii-id", as all other connection types are detected by
- hardware.
+ - phy-handle : See ethernet.txt file in the same directory.
+ - fixed-link : See fixed-link.txt in the same directory.
+ - phy-connection-type : See ethernet.txt file in the same directory.
+ This property is only really needed if the connection is of type
+ "rgmii-id", as all other connection types are detected by hardware.
- fsl,magic-packet : If present, indicates that the hardware supports
waking up via magic packet.
- bd-stash : If present, indicates that the hardware supports stashing
@@ -86,6 +78,7 @@ General Properties:
Clock Properties:
+ - fsl,cksel Timer reference clock source.
- fsl,tclk-period Timer reference clock period in nanoseconds.
- fsl,tmr-prsc Prescaler, divides the output clock.
- fsl,tmr-add Frequency compensation value.
@@ -97,7 +90,7 @@ Clock Properties:
clock. You must choose these carefully for the clock to work right.
Here is how to figure good values:
- TimerOsc = system clock MHz
+ TimerOsc = selected reference clock MHz
tclk_period = desired clock period nanoseconds
NominalFreq = 1000 / tclk_period MHz
FreqDivRatio = TimerOsc / NominalFreq (must be greater that 1.0)
@@ -114,6 +107,20 @@ Clock Properties:
Pulse Per Second (PPS) signal, since this will be offered to the PPS
subsystem to synchronize the Linux clock.
+ Reference clock source is determined by the value, which is holded
+ in CKSEL bits in TMR_CTRL register. "fsl,cksel" property keeps the
+ value, which will be directly written in those bits, that is why,
+ according to reference manual, the next clock sources can be used:
+
+ <0> - external high precision timer reference clock (TSEC_TMR_CLK
+ input is used for this purpose);
+ <1> - eTSEC system clock;
+ <2> - eTSEC1 transmit clock;
+ <3> - RTC clock input.
+
+ When this attribute is not used, eTSEC system clock will serve as
+ IEEE 1588 timer reference clock.
+
Example:
ptp_clock@24E00 {
@@ -121,6 +128,7 @@ Example:
reg = <0x24E00 0xB0>;
interrupts = <12 0x8 13 0x8>;
interrupt-parent = < &ipic >;
+ fsl,cksel = <1>;
fsl,tclk-period = <10>;
fsl,tmr-prsc = <100>;
fsl,tmr-add = <0x999999A4>;
diff --git a/Documentation/devicetree/bindings/net/hisilicon-hix5hd2-gmac.txt b/Documentation/devicetree/bindings/net/hisilicon-hix5hd2-gmac.txt
new file mode 100644
index 00000000000..75d398bb1fb
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/hisilicon-hix5hd2-gmac.txt
@@ -0,0 +1,36 @@
+Hisilicon hix5hd2 gmac controller
+
+Required properties:
+- compatible: should be "hisilicon,hix5hd2-gmac".
+- reg: specifies base physical address(s) and size of the device registers.
+ The first region is the MAC register base and size.
+ The second region is external interface control register.
+- interrupts: should contain the MAC interrupt.
+- #address-cells: must be <1>.
+- #size-cells: must be <0>.
+- phy-mode: see ethernet.txt [1].
+- phy-handle: see ethernet.txt [1].
+- mac-address: see ethernet.txt [1].
+- clocks: clock phandle and specifier pair.
+
+- PHY subnode: inherits from phy binding [2]
+
+[1] Documentation/devicetree/bindings/net/ethernet.txt
+[2] Documentation/devicetree/bindings/net/phy.txt
+
+Example:
+ gmac0: ethernet@f9840000 {
+ compatible = "hisilicon,hix5hd2-gmac";
+ reg = <0xf9840000 0x1000>,<0xf984300c 0x4>;
+ interrupts = <0 71 4>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ phy-mode = "mii";
+ phy-handle = <&phy2>;
+ mac-address = [00 00 00 00 00 00];
+ clocks = <&clock HIX5HD2_MAC0_CLK>;
+
+ phy2: ethernet-phy@2 {
+ reg = <2>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/net/ieee802154/at86rf230.txt b/Documentation/devicetree/bindings/net/ieee802154/at86rf230.txt
new file mode 100644
index 00000000000..d3bbdded4cb
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/ieee802154/at86rf230.txt
@@ -0,0 +1,23 @@
+* AT86RF230 IEEE 802.15.4 *
+
+Required properties:
+ - compatible: should be "atmel,at86rf230", "atmel,at86rf231",
+ "atmel,at86rf233" or "atmel,at86rf212"
+ - spi-max-frequency: maximal bus speed, should be set to 7500000 depends
+ sync or async operation mode
+ - reg: the chipselect index
+ - interrupts: the interrupt generated by the device
+
+Optional properties:
+ - reset-gpio: GPIO spec for the rstn pin
+ - sleep-gpio: GPIO spec for the slp_tr pin
+
+Example:
+
+ at86rf231@0 {
+ compatible = "atmel,at86rf231";
+ spi-max-frequency = <7500000>;
+ reg = <0>;
+ interrupts = <19 1>;
+ interrupt-parent = <&gpio3>;
+ };
diff --git a/Documentation/devicetree/bindings/net/lpc-eth.txt b/Documentation/devicetree/bindings/net/lpc-eth.txt
index 585021acd17..b92e927808b 100644
--- a/Documentation/devicetree/bindings/net/lpc-eth.txt
+++ b/Documentation/devicetree/bindings/net/lpc-eth.txt
@@ -6,10 +6,9 @@ Required properties:
- interrupts: Should contain ethernet controller interrupt
Optional properties:
-- phy-mode: String, operation mode of the PHY interface.
- Supported values are: "mii", "rmii" (default)
+- phy-mode: See ethernet.txt file in the same directory. If the property is
+ absent, "rmii" is assumed.
- use-iram: Use LPC32xx internal SRAM (IRAM) for DMA buffering
-- local-mac-address : 6 bytes, mac address
Example:
diff --git a/Documentation/devicetree/bindings/net/macb.txt b/Documentation/devicetree/bindings/net/macb.txt
index 4ff65047bb9..aaa696414f5 100644
--- a/Documentation/devicetree/bindings/net/macb.txt
+++ b/Documentation/devicetree/bindings/net/macb.txt
@@ -8,11 +8,11 @@ Required properties:
the Cadence GEM, or the generic form: "cdns,gem".
- reg: Address and length of the register set for the device
- interrupts: Should contain macb interrupt
-- phy-mode: String, operation mode of the PHY interface.
- Supported values are: "mii", "rmii", "gmii", "rgmii".
-
-Optional properties:
-- local-mac-address: 6 bytes, mac address
+- phy-mode: See ethernet.txt file in the same directory.
+- clock-names: Tuple listing input clock names.
+ Required elements: 'pclk', 'hclk'
+ Optional elements: 'tx_clk'
+- clocks: Phandles to input clocks.
Examples:
@@ -22,4 +22,6 @@ Examples:
interrupts = <21>;
phy-mode = "rmii";
local-mac-address = [3a 0e 03 04 05 06];
+ clock-names = "pclk", "hclk", "tx_clk";
+ clocks = <&clkc 30>, <&clkc 30>, <&clkc 13>;
};
diff --git a/Documentation/devicetree/bindings/net/marvell-armada-370-neta.txt b/Documentation/devicetree/bindings/net/marvell-armada-370-neta.txt
index 859a6fa7569..750d577e808 100644
--- a/Documentation/devicetree/bindings/net/marvell-armada-370-neta.txt
+++ b/Documentation/devicetree/bindings/net/marvell-armada-370-neta.txt
@@ -4,10 +4,8 @@ Required properties:
- compatible: should be "marvell,armada-370-neta".
- reg: address and length of the register set for the device.
- interrupts: interrupt for the device
-- phy: A phandle to a phy node defining the PHY address (as the reg
- property, a single integer).
-- phy-mode: The interface between the SoC and the PHY (a string that
- of_get_phy_mode() can understand)
+- phy: See ethernet.txt file in the same directory.
+- phy-mode: See ethernet.txt file in the same directory
- clocks: a pointer to the reference clock for this device.
Example:
diff --git a/Documentation/devicetree/bindings/net/marvell-orion-net.txt b/Documentation/devicetree/bindings/net/marvell-orion-net.txt
index a73b79f227e..bce52b2ec55 100644
--- a/Documentation/devicetree/bindings/net/marvell-orion-net.txt
+++ b/Documentation/devicetree/bindings/net/marvell-orion-net.txt
@@ -32,12 +32,11 @@ Optional controller properties:
* Ethernet port node
Required port properties:
- - device_type: shall be "network".
- compatible: shall be one of "marvell,orion-eth-port",
"marvell,kirkwood-eth-port".
- reg: port number relative to ethernet controller, shall be 0, 1, or 2.
- interrupts: port interrupt.
- - local-mac-address: 6 bytes MAC address.
+ - local-mac-address: See ethernet.txt file in the same directory.
Optional port properties:
- marvell,tx-queue-size: size of the transmit ring buffer.
@@ -49,7 +48,7 @@ Optional port properties:
and
- - phy-handle: phandle reference to ethernet PHY.
+ - phy-handle: See ethernet.txt file in the same directory.
or
@@ -61,7 +60,6 @@ or
mdio-bus {
...
ethphy: ethernet-phy@8 {
- device_type = "ethernet-phy";
...
};
};
@@ -75,7 +73,6 @@ eth: ethernet-controller@72000 {
marvell,tx-checksum-limit = <1600>;
ethernet@0 {
- device_type = "network";
compatible = "marvell,orion-eth-port";
reg = <0>;
interrupts = <29>;
diff --git a/Documentation/devicetree/bindings/net/mdio-gpio.txt b/Documentation/devicetree/bindings/net/mdio-gpio.txt
index c79bab02536..8dbcf8295c6 100644
--- a/Documentation/devicetree/bindings/net/mdio-gpio.txt
+++ b/Documentation/devicetree/bindings/net/mdio-gpio.txt
@@ -14,7 +14,7 @@ node.
Example:
aliases {
- mdio-gpio0 = <&mdio0>;
+ mdio-gpio0 = &mdio0;
};
mdio0: mdio {
diff --git a/Documentation/devicetree/bindings/net/micrel-ks8851.txt b/Documentation/devicetree/bindings/net/micrel-ks8851.txt
index 11ace3c3d80..bbdf9a7359a 100644
--- a/Documentation/devicetree/bindings/net/micrel-ks8851.txt
+++ b/Documentation/devicetree/bindings/net/micrel-ks8851.txt
@@ -1,9 +1,18 @@
-Micrel KS8851 Ethernet mac
+Micrel KS8851 Ethernet mac (MLL)
Required properties:
-- compatible = "micrel,ks8851-ml" of parallel interface
+- compatible = "micrel,ks8851-mll" of parallel interface
- reg : 2 physical address and size of registers for data and command
- interrupts : interrupt connection
+Micrel KS8851 Ethernet mac (SPI)
+
+Required properties:
+- compatible = "micrel,ks8851" or the deprecated "ks8851"
+- reg : chip select number
+- interrupts : interrupt connection
+
Optional properties:
-- local-mac-address : Ethernet mac address to use
+- vdd-supply: analog 3.3V supply for Ethernet mac
+- vdd-io-supply: digital 1.8V IO supply for Ethernet mac
+- reset-gpios: reset_n input pin
diff --git a/Documentation/devicetree/bindings/net/micrel-ksz9021.txt b/Documentation/devicetree/bindings/net/micrel-ksz9021.txt
deleted file mode 100644
index 997a63f1aea..00000000000
--- a/Documentation/devicetree/bindings/net/micrel-ksz9021.txt
+++ /dev/null
@@ -1,49 +0,0 @@
-Micrel KSZ9021 Gigabit Ethernet PHY
-
-Some boards require special tuning values, particularly when it comes to
-clock delays. You can specify clock delay values by adding
-micrel-specific properties to an Ethernet OF device node.
-
-All skew control options are specified in picoseconds. The minimum
-value is 0, and the maximum value is 3000.
-
-Optional properties:
- - rxc-skew-ps : Skew control of RXC pad
- - rxdv-skew-ps : Skew control of RX CTL pad
- - txc-skew-ps : Skew control of TXC pad
- - txen-skew-ps : Skew control of TX_CTL pad
- - rxd0-skew-ps : Skew control of RX data 0 pad
- - rxd1-skew-ps : Skew control of RX data 1 pad
- - rxd2-skew-ps : Skew control of RX data 2 pad
- - rxd3-skew-ps : Skew control of RX data 3 pad
- - txd0-skew-ps : Skew control of TX data 0 pad
- - txd1-skew-ps : Skew control of TX data 1 pad
- - txd2-skew-ps : Skew control of TX data 2 pad
- - txd3-skew-ps : Skew control of TX data 3 pad
-
-Examples:
-
- /* Attach to an Ethernet device with autodetected PHY */
- &enet {
- rxc-skew-ps = <3000>;
- rxdv-skew-ps = <0>;
- txc-skew-ps = <3000>;
- txen-skew-ps = <0>;
- status = "okay";
- };
-
- /* Attach to an explicitly-specified PHY */
- mdio {
- phy0: ethernet-phy@0 {
- rxc-skew-ps = <3000>;
- rxdv-skew-ps = <0>;
- txc-skew-ps = <3000>;
- txen-skew-ps = <0>;
- reg = <0>;
- };
- };
- ethernet@70000 {
- status = "okay";
- phy = <&phy0>;
- phy-mode = "rgmii-id";
- };
diff --git a/Documentation/devicetree/bindings/net/micrel-ksz90x1.txt b/Documentation/devicetree/bindings/net/micrel-ksz90x1.txt
new file mode 100644
index 00000000000..692076fda0e
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/micrel-ksz90x1.txt
@@ -0,0 +1,83 @@
+Micrel KSZ9021/KSZ9031 Gigabit Ethernet PHY
+
+Some boards require special tuning values, particularly when it comes to
+clock delays. You can specify clock delay values by adding
+micrel-specific properties to an Ethernet OF device node.
+
+Note that these settings are applied after any phy-specific fixup from
+phy_fixup_list (see phy_init_hw() from drivers/net/phy/phy_device.c),
+and therefore may overwrite them.
+
+KSZ9021:
+
+ All skew control options are specified in picoseconds. The minimum
+ value is 0, the maximum value is 3000, and it is incremented by 200ps
+ steps.
+
+ Optional properties:
+
+ - rxc-skew-ps : Skew control of RXC pad
+ - rxdv-skew-ps : Skew control of RX CTL pad
+ - txc-skew-ps : Skew control of TXC pad
+ - txen-skew-ps : Skew control of TX CTL pad
+ - rxd0-skew-ps : Skew control of RX data 0 pad
+ - rxd1-skew-ps : Skew control of RX data 1 pad
+ - rxd2-skew-ps : Skew control of RX data 2 pad
+ - rxd3-skew-ps : Skew control of RX data 3 pad
+ - txd0-skew-ps : Skew control of TX data 0 pad
+ - txd1-skew-ps : Skew control of TX data 1 pad
+ - txd2-skew-ps : Skew control of TX data 2 pad
+ - txd3-skew-ps : Skew control of TX data 3 pad
+
+KSZ9031:
+
+ All skew control options are specified in picoseconds. The minimum
+ value is 0, and the maximum is property-dependent. The increment
+ step is 60ps.
+
+ Optional properties:
+
+ Maximum value of 1860:
+
+ - rxc-skew-ps : Skew control of RX clock pad
+ - txc-skew-ps : Skew control of TX clock pad
+
+ Maximum value of 900:
+
+ - rxdv-skew-ps : Skew control of RX CTL pad
+ - txen-skew-ps : Skew control of TX CTL pad
+ - rxd0-skew-ps : Skew control of RX data 0 pad
+ - rxd1-skew-ps : Skew control of RX data 1 pad
+ - rxd2-skew-ps : Skew control of RX data 2 pad
+ - rxd3-skew-ps : Skew control of RX data 3 pad
+ - txd0-skew-ps : Skew control of TX data 0 pad
+ - txd1-skew-ps : Skew control of TX data 1 pad
+ - txd2-skew-ps : Skew control of TX data 2 pad
+ - txd3-skew-ps : Skew control of TX data 3 pad
+
+Examples:
+
+ /* Attach to an Ethernet device with autodetected PHY */
+ &enet {
+ rxc-skew-ps = <3000>;
+ rxdv-skew-ps = <0>;
+ txc-skew-ps = <3000>;
+ txen-skew-ps = <0>;
+ status = "okay";
+ };
+
+ /* Attach to an explicitly-specified PHY */
+ mdio {
+ phy0: ethernet-phy@0 {
+ rxc-skew-ps = <3000>;
+ rxdv-skew-ps = <0>;
+ txc-skew-ps = <3000>;
+ txen-skew-ps = <0>;
+ reg = <0>;
+ };
+ };
+ ethernet@70000 {
+ status = "okay";
+ phy = <&phy0>;
+ phy-mode = "rgmii-id";
+ };
diff --git a/Documentation/devicetree/bindings/net/micrel.txt b/Documentation/devicetree/bindings/net/micrel.txt
new file mode 100644
index 00000000000..98a3e61f9ee
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/micrel.txt
@@ -0,0 +1,18 @@
+Micrel PHY properties.
+
+These properties cover the base properties Micrel PHYs.
+
+Optional properties:
+
+ - micrel,led-mode : LED mode value to set for PHYs with configurable LEDs.
+
+ Configure the LED mode with single value. The list of PHYs and
+ the bits that are currently supported:
+
+ KSZ8001: register 0x1e, bits 15..14
+ KSZ8041: register 0x1e, bits 15..14
+ KSZ8021: register 0x1f, bits 5..4
+ KSZ8031: register 0x1f, bits 5..4
+ KSZ8051: register 0x1f, bits 5..4
+
+ See the respective PHY datasheet for the mode values.
diff --git a/Documentation/devicetree/bindings/net/nfc/pn544.txt b/Documentation/devicetree/bindings/net/nfc/pn544.txt
new file mode 100644
index 00000000000..dab69f36167
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/nfc/pn544.txt
@@ -0,0 +1,35 @@
+* NXP Semiconductors PN544 NFC Controller
+
+Required properties:
+- compatible: Should be "nxp,pn544-i2c".
+- clock-frequency: IC work frequency.
+- reg: address on the bus
+- interrupt-parent: phandle for the interrupt gpio controller
+- interrupts: GPIO interrupt to which the chip is connected
+- enable-gpios: Output GPIO pin used for enabling/disabling the PN544
+- firmware-gpios: Output GPIO pin used to enter firmware download mode
+
+Optional SoC Specific Properties:
+- pinctrl-names: Contains only one value - "default".
+- pintctrl-0: Specifies the pin control groups used for this controller.
+
+Example (for ARM-based BeagleBone with PN544 on I2C2):
+
+&i2c2 {
+
+ status = "okay";
+
+ pn544: pn544@28 {
+
+ compatible = "nxp,pn544-i2c";
+
+ reg = <0x28>;
+ clock-frequency = <400000>;
+
+ interrupt-parent = <&gpio1>;
+ interrupts = <17 GPIO_ACTIVE_HIGH>;
+
+ enable-gpios = <&gpio3 21 GPIO_ACTIVE_HIGH>;
+ firmware-gpios = <&gpio3 19 GPIO_ACTIVE_HIGH>;
+ };
+};
diff --git a/Documentation/devicetree/bindings/net/nfc/st21nfca.txt b/Documentation/devicetree/bindings/net/nfc/st21nfca.txt
new file mode 100644
index 00000000000..e4faa2e8dfe
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/nfc/st21nfca.txt
@@ -0,0 +1,33 @@
+* STMicroelectronics SAS. ST21NFCA NFC Controller
+
+Required properties:
+- compatible: Should be "st,st21nfca_i2c".
+- clock-frequency: I²C work frequency.
+- reg: address on the bus
+- interrupt-parent: phandle for the interrupt gpio controller
+- interrupts: GPIO interrupt to which the chip is connected
+- enable-gpios: Output GPIO pin used for enabling/disabling the ST21NFCA
+
+Optional SoC Specific Properties:
+- pinctrl-names: Contains only one value - "default".
+- pintctrl-0: Specifies the pin control groups used for this controller.
+
+Example (for ARM-based BeagleBoard xM with ST21NFCA on I2C2):
+
+&i2c2 {
+
+ status = "okay";
+
+ st21nfca: st21nfca@1 {
+
+ compatible = "st,st21nfca_i2c";
+
+ reg = <0x01>;
+ clock-frequency = <400000>;
+
+ interrupt-parent = <&gpio5>;
+ interrupts = <2 IRQ_TYPE_LEVEL_LOW>;
+
+ enable-gpios = <&gpio5 29 GPIO_ACTIVE_HIGH>;
+ };
+};
diff --git a/Documentation/devicetree/bindings/net/nfc/trf7970a.txt b/Documentation/devicetree/bindings/net/nfc/trf7970a.txt
new file mode 100644
index 00000000000..1e436133685
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/nfc/trf7970a.txt
@@ -0,0 +1,36 @@
+* Texas Instruments TRF7970A RFID/NFC/15693 Transceiver
+
+Required properties:
+- compatible: Should be "ti,trf7970a".
+- spi-max-frequency: Maximum SPI frequency (<= 2000000).
+- interrupt-parent: phandle of parent interrupt handler.
+- interrupts: A single interrupt specifier.
+- ti,enable-gpios: Two GPIO entries used for 'EN' and 'EN2' pins on the
+ TRF7970A.
+- vin-supply: Regulator for supply voltage to VIN pin
+
+Optional SoC Specific Properties:
+- pinctrl-names: Contains only one value - "default".
+- pintctrl-0: Specifies the pin control groups used for this controller.
+- autosuspend-delay: Specify autosuspend delay in milliseconds.
+
+Example (for ARM-based BeagleBone with TRF7970A on SPI1):
+
+&spi1 {
+ status = "okay";
+
+ nfc@0 {
+ compatible = "ti,trf7970a";
+ reg = <0>;
+ pinctrl-names = "default";
+ pinctrl-0 = <&trf7970a_default>;
+ spi-max-frequency = <2000000>;
+ interrupt-parent = <&gpio2>;
+ interrupts = <14 0>;
+ ti,enable-gpios = <&gpio2 2 GPIO_ACTIVE_LOW>,
+ <&gpio2 5 GPIO_ACTIVE_LOW>;
+ vin-supply = <&ldo3_reg>;
+ autosuspend-delay = <30000>;
+ status = "okay";
+ };
+};
diff --git a/Documentation/devicetree/bindings/net/opencores-ethoc.txt b/Documentation/devicetree/bindings/net/opencores-ethoc.txt
new file mode 100644
index 00000000000..2dc127c30d9
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/opencores-ethoc.txt
@@ -0,0 +1,22 @@
+* OpenCores MAC 10/100 Mbps
+
+Required properties:
+- compatible: Should be "opencores,ethoc".
+- reg: two memory regions (address and length),
+ first region is for the device registers and descriptor rings,
+ second is for the device packet memory.
+- interrupts: interrupt for the device.
+
+Optional properties:
+- clocks: phandle to refer to the clk used as per
+ Documentation/devicetree/bindings/clock/clock-bindings.txt
+
+Examples:
+
+ enet0: ethoc@fd030000 {
+ compatible = "opencores,ethoc";
+ reg = <0xfd030000 0x4000 0xfd800000 0x4000>;
+ interrupts = <1>;
+ local-mac-address = [00 50 c2 13 6f 00];
+ clocks = <&osc>;
+ };
diff --git a/Documentation/devicetree/bindings/net/phy.txt b/Documentation/devicetree/bindings/net/phy.txt
index 7cd18fbfcf7..5b8c5890307 100644
--- a/Documentation/devicetree/bindings/net/phy.txt
+++ b/Documentation/devicetree/bindings/net/phy.txt
@@ -2,7 +2,6 @@ PHY nodes
Required properties:
- - device_type : Should be "ethernet-phy"
- interrupts : <a b> where a is the interrupt number and b is a
field that represents an encoding of the sense and level
information for the interrupt. This should be encoded based on
@@ -11,8 +10,6 @@ Required properties:
- interrupt-parent : the phandle for the interrupt controller that
services interrupts for this device.
- reg : The ID number for the phy, usually a small integer
- - linux,phandle : phandle for this node; likely referenced by an
- ethernet controller node.
Optional Properties:
@@ -22,14 +19,21 @@ Optional Properties:
specifications. If neither of these are specified, the default is to
assume clause 22. The compatible list may also contain other
elements.
+- max-speed: Maximum PHY supported speed (10, 100, 1000...)
+
+ If the phy's identifier is known then the list may contain an entry
+ of the form: "ethernet-phy-idAAAA.BBBB" where
+ AAAA - The value of the 16 bit Phy Identifier 1 register as
+ 4 hex digits. This is the chip vendor OUI bits 3:18
+ BBBB - The value of the 16 bit Phy Identifier 2 register as
+ 4 hex digits. This is the chip vendor OUI bits 19:24,
+ followed by 10 bits of a vendor specific ID.
Example:
ethernet-phy@0 {
- compatible = "ethernet-phy-ieee802.3-c22";
- linux,phandle = <2452000>;
+ compatible = "ethernet-phy-id0141.0e90", "ethernet-phy-ieee802.3-c22";
interrupt-parent = <40000>;
interrupts = <35 1>;
reg = <0>;
- device_type = "ethernet-phy";
};
diff --git a/Documentation/devicetree/bindings/net/samsung-sxgbe.txt b/Documentation/devicetree/bindings/net/samsung-sxgbe.txt
new file mode 100644
index 00000000000..989f6c95cfd
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/samsung-sxgbe.txt
@@ -0,0 +1,52 @@
+* Samsung 10G Ethernet driver (SXGBE)
+
+Required properties:
+- compatible: Should be "samsung,sxgbe-v2.0a"
+- reg: Address and length of the register set for the device
+- interrupt-parent: Should be the phandle for the interrupt controller
+ that services interrupts for this device
+- interrupts: Should contain the SXGBE interrupts
+ These interrupts are ordered by fixed and follows variable
+ trasmit DMA interrupts, receive DMA interrupts and lpi interrupt.
+ index 0 - this is fixed common interrupt of SXGBE and it is always
+ available.
+ index 1 to 25 - 8 variable trasmit interrupts, variable 16 receive interrupts
+ and 1 optional lpi interrupt.
+- phy-mode: String, operation mode of the PHY interface.
+ Supported values are: "sgmii", "xgmii".
+- samsung,pbl: Integer, Programmable Burst Length.
+ Supported values are 1, 2, 4, 8, 16, or 32.
+- samsung,burst-map: Integer, Program the possible bursts supported by sxgbe
+ This is an interger and represents allowable DMA bursts when fixed burst.
+ Allowable range is 0x01-0x3F. When this field is set fixed burst is enabled.
+ When fixed length is needed for burst mode, it can be set within allowable
+ range.
+
+Optional properties:
+- mac-address: 6 bytes, mac address
+- max-frame-size: Maximum Transfer Unit (IEEE defined MTU), rather
+ than the maximum frame size.
+
+Example:
+
+ aliases {
+ ethernet0 = <&sxgbe0>;
+ };
+
+ sxgbe0: ethernet@1a040000 {
+ compatible = "samsung,sxgbe-v2.0a";
+ reg = <0 0x1a040000 0 0x10000>;
+ interrupt-parent = <&gic>;
+ interrupts = <0 209 4>, <0 185 4>, <0 186 4>, <0 187 4>,
+ <0 188 4>, <0 189 4>, <0 190 4>, <0 191 4>,
+ <0 192 4>, <0 193 4>, <0 194 4>, <0 195 4>,
+ <0 196 4>, <0 197 4>, <0 198 4>, <0 199 4>,
+ <0 200 4>, <0 201 4>, <0 202 4>, <0 203 4>,
+ <0 204 4>, <0 205 4>, <0 206 4>, <0 207 4>,
+ <0 208 4>, <0 210 4>;
+ samsung,pbl = <0x08>
+ samsung,burst-map = <0x20>
+ mac-address = [ 00 11 22 33 44 55 ]; /* Filled in by U-Boot */
+ max-frame-size = <9000>;
+ phy-mode = "xgmii";
+ };
diff --git a/Documentation/devicetree/bindings/net/sh_eth.txt b/Documentation/devicetree/bindings/net/sh_eth.txt
new file mode 100644
index 00000000000..e7106b50dbd
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/sh_eth.txt
@@ -0,0 +1,55 @@
+* Renesas Electronics SH EtherMAC
+
+This file provides information on what the device node for the SH EtherMAC
+interface contains.
+
+Required properties:
+- compatible: "renesas,gether-r8a7740" if the device is a part of R8A7740 SoC.
+ "renesas,ether-r8a7778" if the device is a part of R8A7778 SoC.
+ "renesas,ether-r8a7779" if the device is a part of R8A7779 SoC.
+ "renesas,ether-r8a7790" if the device is a part of R8A7790 SoC.
+ "renesas,ether-r8a7791" if the device is a part of R8A7791 SoC.
+ "renesas,ether-r7s72100" if the device is a part of R7S72100 SoC.
+- reg: offset and length of (1) the E-DMAC/feLic register block (required),
+ (2) the TSU register block (optional).
+- interrupts: interrupt specifier for the sole interrupt.
+- phy-mode: see ethernet.txt file in the same directory.
+- phy-handle: see ethernet.txt file in the same directory.
+- #address-cells: number of address cells for the MDIO bus, must be equal to 1.
+- #size-cells: number of size cells on the MDIO bus, must be equal to 0.
+- clocks: clock phandle and specifier pair.
+- pinctrl-0: phandle, referring to a default pin configuration node.
+
+Optional properties:
+- interrupt-parent: the phandle for the interrupt controller that services
+ interrupts for this device.
+- pinctrl-names: pin configuration state name ("default").
+- renesas,no-ether-link: boolean, specify when a board does not provide a proper
+ Ether LINK signal.
+- renesas,ether-link-active-low: boolean, specify when the Ether LINK signal is
+ active-low instead of normal active-high.
+
+Example (Lager board):
+
+ ethernet@ee700000 {
+ compatible = "renesas,ether-r8a7790";
+ reg = <0 0xee700000 0 0x400>;
+ interrupt-parent = <&gic>;
+ interrupts = <0 162 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&mstp8_clks R8A7790_CLK_ETHER>;
+ phy-mode = "rmii";
+ phy-handle = <&phy1>;
+ pinctrl-0 = <&ether_pins>;
+ pinctrl-names = "default";
+ renesas,ether-link-active-low;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ phy1: ethernet-phy@1 {
+ reg = <1>;
+ interrupt-parent = <&irqc0>;
+ interrupts = <0 IRQ_TYPE_LEVEL_LOW>;
+ pinctrl-0 = <&phy1_pins>;
+ pinctrl-names = "default";
+ };
+ };
diff --git a/Documentation/devicetree/bindings/net/smsc-lan91c111.txt b/Documentation/devicetree/bindings/net/smsc-lan91c111.txt
index 953049b4248..0f8487b8882 100644
--- a/Documentation/devicetree/bindings/net/smsc-lan91c111.txt
+++ b/Documentation/devicetree/bindings/net/smsc-lan91c111.txt
@@ -6,5 +6,8 @@ Required properties:
- interrupts : interrupt connection
Optional properties:
-- phy-device : phandle to Ethernet phy
-- local-mac-address : Ethernet mac address to use
+- phy-device : see ethernet.txt file in the same directory
+- reg-io-width : Mask of sizes (in bytes) of the IO accesses that
+ are supported on the device. Valid value for SMSC LAN91c111 are
+ 1, 2 or 4. If it's omitted or invalid, the size would be 2 meaning
+ 16-bit access only.
diff --git a/Documentation/devicetree/bindings/net/smsc911x.txt b/Documentation/devicetree/bindings/net/smsc911x.txt
index adb5b5744ec..3fed3c12441 100644
--- a/Documentation/devicetree/bindings/net/smsc911x.txt
+++ b/Documentation/devicetree/bindings/net/smsc911x.txt
@@ -6,9 +6,7 @@ Required properties:
- interrupts : Should contain SMSC LAN interrupt line
- interrupt-parent : Should be the phandle for the interrupt controller
that services interrupts for this device
-- phy-mode : String, operation mode of the PHY interface.
- Supported values are: "mii", "gmii", "sgmii", "tbi", "rmii",
- "rgmii", "rgmii-id", "rgmii-rxid", "rgmii-txid", "rtbi", "smii".
+- phy-mode : See ethernet.txt file in the same directory
Optional properties:
- reg-shift : Specify the quantity to shift the register offsets by
@@ -23,7 +21,6 @@ Optional properties:
external PHY
- smsc,save-mac-address : Indicates that mac address needs to be saved
before resetting the controller
-- local-mac-address : 6 bytes, mac address
Examples:
diff --git a/Documentation/devicetree/bindings/net/socfpga-dwmac.txt b/Documentation/devicetree/bindings/net/socfpga-dwmac.txt
new file mode 100644
index 00000000000..2a60cd3e8d5
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/socfpga-dwmac.txt
@@ -0,0 +1,27 @@
+Altera SOCFPGA SoC DWMAC controller
+
+This is a variant of the dwmac/stmmac driver an inherits all descriptions
+present in Documentation/devicetree/bindings/net/stmmac.txt.
+
+The device node has additional properties:
+
+Required properties:
+ - compatible : Should contain "altr,socfpga-stmmac" along with
+ "snps,dwmac" and any applicable more detailed
+ designware version numbers documented in stmmac.txt
+ - altr,sysmgr-syscon : Should be the phandle to the system manager node that
+ encompasses the glue register, the register offset, and the register shift.
+
+Example:
+
+gmac0: ethernet@ff700000 {
+ compatible = "altr,socfpga-stmmac", "snps,dwmac-3.70a", "snps,dwmac";
+ altr,sysmgr-syscon = <&sysmgr 0x60 0>;
+ status = "disabled";
+ reg = <0xff700000 0x2000>;
+ interrupts = <0 115 4>;
+ interrupt-names = "macirq";
+ mac-address = [00 00 00 00 00 00];/* Filled in by U-Boot */
+ clocks = <&emac_0_clk>;
+ clock-names = "stmmaceth";
+};
diff --git a/Documentation/devicetree/bindings/net/sti-dwmac.txt b/Documentation/devicetree/bindings/net/sti-dwmac.txt
new file mode 100644
index 00000000000..3dd3d0bf112
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/sti-dwmac.txt
@@ -0,0 +1,58 @@
+STMicroelectronics SoC DWMAC glue layer controller
+
+The device node has following properties.
+
+Required properties:
+ - compatible : Can be "st,stih415-dwmac", "st,stih416-dwmac" or
+ "st,stid127-dwmac".
+ - reg : Offset of the glue configuration register map in system
+ configuration regmap pointed by st,syscon property and size.
+
+ - reg-names : Should be "sti-ethconf".
+
+ - st,syscon : Should be phandle to system configuration node which
+ encompases this glue registers.
+
+ - st,tx-retime-src: On STi Parts for Giga bit speeds, 125Mhz clocks can be
+ wired up in from different sources. One via TXCLK pin and other via CLK_125
+ pin. This wiring is totally board dependent. However the retiming glue
+ logic should be configured accordingly. Possible values for this property
+
+ "txclk" - if 125Mhz clock is wired up via txclk line.
+ "clk_125" - if 125Mhz clock is wired up via clk_125 line.
+
+ This property is only valid for Giga bit setup( GMII, RGMII), and it is
+ un-used for non-giga bit (MII and RMII) setups. Also note that internal
+ clockgen can not generate stable 125Mhz clock.
+
+ - st,ext-phyclk: This boolean property indicates who is generating the clock
+ for tx and rx. This property is only valid for RMII case where the clock can
+ be generated from the MAC or PHY.
+
+ - clock-names: should be "sti-ethclk".
+ - clocks: Should point to ethernet clockgen which can generate phyclk.
+
+
+Example:
+
+ethernet0: dwmac@fe810000 {
+ device_type = "network";
+ compatible = "st,stih416-dwmac", "snps,dwmac", "snps,dwmac-3.710";
+ reg = <0xfe810000 0x8000>, <0x8bc 0x4>;
+ reg-names = "stmmaceth", "sti-ethconf";
+ interrupts = <0 133 0>, <0 134 0>, <0 135 0>;
+ interrupt-names = "macirq", "eth_wake_irq", "eth_lpi";
+ phy-mode = "mii";
+
+ st,syscon = <&syscfg_rear>;
+
+ snps,pbl = <32>;
+ snps,mixed-burst;
+
+ resets = <&softreset STIH416_ETH0_SOFTRESET>;
+ reset-names = "stmmaceth";
+ pinctrl-0 = <&pinctrl_mii0>;
+ pinctrl-names = "default";
+ clocks = <&CLK_S_GMAC0_PHY>;
+ clock-names = "stmmaceth";
+};
diff --git a/Documentation/devicetree/bindings/net/stmmac.txt b/Documentation/devicetree/bindings/net/stmmac.txt
index eba0e5e59eb..a2acd2b26ba 100644
--- a/Documentation/devicetree/bindings/net/stmmac.txt
+++ b/Documentation/devicetree/bindings/net/stmmac.txt
@@ -10,9 +10,7 @@ Required properties:
- interrupt-names: Should contain the interrupt names "macirq"
"eth_wake_irq" if this interrupt is supported in the "interrupts"
property
-- phy-mode: String, operation mode of the PHY interface.
- Supported values are: "mii", "rmii", "gmii", "rgmii".
-- snps,phy-addr phy address to connect to.
+- phy-mode: See ethernet.txt file in the same directory.
- snps,reset-gpio gpio number for phy reset.
- snps,reset-active-low boolean flag to indicate if phy reset is active low.
- snps,reset-delays-us is triplet of delays
@@ -29,7 +27,14 @@ Required properties:
ignored if force_thresh_dma_mode is set.
Optional properties:
-- mac-address: 6 bytes, mac address
+- resets: Should contain a phandle to the STMMAC reset signal, if any
+- reset-names: Should contain the reset signal name "stmmaceth", if a
+ reset phandle is given
+- max-frame-size: See ethernet.txt file in the same directory
+- clocks: If present, the first clock should be the GMAC main clock,
+ further clocks may be specified in derived bindings.
+- clock-names: One name for each entry in the clocks property, the
+ first one should be "stmmaceth".
Examples:
@@ -40,5 +45,8 @@ Examples:
interrupts = <24 23>;
interrupt-names = "macirq", "eth_wake_irq";
mac-address = [000000000000]; /* Filled in by U-Boot */
+ max-frame-size = <3800>;
phy-mode = "gmii";
+ clocks = <&clock>;
+ clock-names = "stmmaceth">;
};
diff --git a/Documentation/devicetree/bindings/net/via-rhine.txt b/Documentation/devicetree/bindings/net/via-rhine.txt
new file mode 100644
index 00000000000..334eca2bf93
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/via-rhine.txt
@@ -0,0 +1,17 @@
+* VIA Rhine 10/100 Network Controller
+
+Required properties:
+- compatible : Should be "via,vt8500-rhine" for integrated
+ Rhine controllers found in VIA VT8500, WonderMedia WM8950
+ and similar. These are listed as 1106:3106 rev. 0x84 on the
+ virtual PCI bus under vendor-provided kernels
+- reg : Address and length of the io space
+- interrupts : Should contain the controller interrupt line
+
+Examples:
+
+ethernet@d8004000 {
+ compatible = "via,vt8500-rhine";
+ reg = <0xd8004000 0x100>;
+ interrupts = <10>;
+};
diff --git a/Documentation/devicetree/bindings/net/wireless/ti,wl1251.txt b/Documentation/devicetree/bindings/net/wireless/ti,wl1251.txt
new file mode 100644
index 00000000000..189ae5cad8f
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/wireless/ti,wl1251.txt
@@ -0,0 +1,39 @@
+* Texas Instruments wl1251 wireless lan controller
+
+The wl1251 chip can be connected via SPI or via SDIO. This
+document describes the binding for the SPI connected chip.
+
+Required properties:
+- compatible : Should be "ti,wl1251"
+- reg : Chip select address of device
+- spi-max-frequency : Maximum SPI clocking speed of device in Hz
+- interrupts : Should contain interrupt line
+- interrupt-parent : Should be the phandle for the interrupt controller
+ that services interrupts for this device
+- vio-supply : phandle to regulator providing VIO
+- ti,power-gpio : GPIO connected to chip's PMEN pin
+
+Optional properties:
+- ti,wl1251-has-eeprom : boolean, the wl1251 has an eeprom connected, which
+ provides configuration data (calibration, MAC, ...)
+- Please consult Documentation/devicetree/bindings/spi/spi-bus.txt
+ for optional SPI connection related properties,
+
+Examples:
+
+&spi1 {
+ wl1251@0 {
+ compatible = "ti,wl1251";
+
+ reg = <0>;
+ spi-max-frequency = <48000000>;
+ spi-cpol;
+ spi-cpha;
+
+ interrupt-parent = <&gpio2>;
+ interrupts = <10 IRQ_TYPE_NONE>; /* gpio line 42 */
+
+ vio-supply = <&vio>;
+ ti,power-gpio = <&gpio3 23 GPIO_ACTIVE_HIGH>; /* 87 */
+ };
+};
diff --git a/Documentation/devicetree/bindings/nvec/nvidia,nvec.txt b/Documentation/devicetree/bindings/nvec/nvidia,nvec.txt
index 5aeee53ff9f..5ae601e7f51 100644
--- a/Documentation/devicetree/bindings/nvec/nvidia,nvec.txt
+++ b/Documentation/devicetree/bindings/nvec/nvidia,nvec.txt
@@ -7,3 +7,15 @@ Required properties:
- clock-frequency : the frequency of the i2c bus
- gpios : the gpio used for ec request
- slave-addr: the i2c address of the slave controller
+- clocks : Must contain an entry for each entry in clock-names.
+ See ../clocks/clock-bindings.txt for details.
+- clock-names : Must include the following entries:
+ Tegra20/Tegra30:
+ - div-clk
+ - fast-clk
+ Tegra114:
+ - div-clk
+- resets : Must contain an entry for each entry in reset-names.
+ See ../reset/reset.txt for details.
+- reset-names : Must include the following entries:
+ - i2c
diff --git a/Documentation/devicetree/bindings/panel/auo,b101aw03.txt b/Documentation/devicetree/bindings/panel/auo,b101aw03.txt
new file mode 100644
index 00000000000..72e088a4fb3
--- /dev/null
+++ b/Documentation/devicetree/bindings/panel/auo,b101aw03.txt
@@ -0,0 +1,7 @@
+AU Optronics Corporation 10.1" WSVGA TFT LCD panel
+
+Required properties:
+- compatible: should be "auo,b101aw03"
+
+This binding is compatible with the simple-panel binding, which is specified
+in simple-panel.txt in this directory.
diff --git a/Documentation/devicetree/bindings/panel/auo,b133xtn01.txt b/Documentation/devicetree/bindings/panel/auo,b133xtn01.txt
new file mode 100644
index 00000000000..7443b7c7676
--- /dev/null
+++ b/Documentation/devicetree/bindings/panel/auo,b133xtn01.txt
@@ -0,0 +1,7 @@
+AU Optronics Corporation 13.3" WXGA (1366x768) TFT LCD panel
+
+Required properties:
+- compatible: should be "auo,b133xtn01"
+
+This binding is compatible with the simple-panel binding, which is specified
+in simple-panel.txt in this directory.
diff --git a/Documentation/devicetree/bindings/panel/chunghwa,claa101wa01a.txt b/Documentation/devicetree/bindings/panel/chunghwa,claa101wa01a.txt
new file mode 100644
index 00000000000..f24614e4d5e
--- /dev/null
+++ b/Documentation/devicetree/bindings/panel/chunghwa,claa101wa01a.txt
@@ -0,0 +1,7 @@
+Chunghwa Picture Tubes Ltd. 10.1" WXGA TFT LCD panel
+
+Required properties:
+- compatible: should be "chunghwa,claa101wa01a"
+
+This binding is compatible with the simple-panel binding, which is specified
+in simple-panel.txt in this directory.
diff --git a/Documentation/devicetree/bindings/panel/chunghwa,claa101wb03.txt b/Documentation/devicetree/bindings/panel/chunghwa,claa101wb03.txt
new file mode 100644
index 00000000000..0ab2c05a4c2
--- /dev/null
+++ b/Documentation/devicetree/bindings/panel/chunghwa,claa101wb03.txt
@@ -0,0 +1,7 @@
+Chunghwa Picture Tubes Ltd. 10.1" WXGA TFT LCD panel
+
+Required properties:
+- compatible: should be "chunghwa,claa101wb03"
+
+This binding is compatible with the simple-panel binding, which is specified
+in simple-panel.txt in this directory.
diff --git a/Documentation/devicetree/bindings/panel/edt,et057090dhu.txt b/Documentation/devicetree/bindings/panel/edt,et057090dhu.txt
new file mode 100644
index 00000000000..4903d7b1d94
--- /dev/null
+++ b/Documentation/devicetree/bindings/panel/edt,et057090dhu.txt
@@ -0,0 +1,7 @@
+Emerging Display Technology Corp. 5.7" VGA TFT LCD panel
+
+Required properties:
+- compatible: should be "edt,et057090dhu"
+
+This binding is compatible with the simple-panel binding, which is specified
+in simple-panel.txt in this directory.
diff --git a/Documentation/devicetree/bindings/panel/edt,et070080dh6.txt b/Documentation/devicetree/bindings/panel/edt,et070080dh6.txt
new file mode 100644
index 00000000000..20cb38e836e
--- /dev/null
+++ b/Documentation/devicetree/bindings/panel/edt,et070080dh6.txt
@@ -0,0 +1,10 @@
+Emerging Display Technology Corp. ET070080DH6 7.0" WVGA TFT LCD panel
+
+Required properties:
+- compatible: should be "edt,et070080dh6"
+
+This panel is the same as ETM0700G0DH6 except for the touchscreen.
+ET070080DH6 is the model with resistive touch.
+
+This binding is compatible with the simple-panel binding, which is specified
+in simple-panel.txt in this directory.
diff --git a/Documentation/devicetree/bindings/panel/edt,etm0700g0dh6.txt b/Documentation/devicetree/bindings/panel/edt,etm0700g0dh6.txt
new file mode 100644
index 00000000000..ee4b18053e4
--- /dev/null
+++ b/Documentation/devicetree/bindings/panel/edt,etm0700g0dh6.txt
@@ -0,0 +1,10 @@
+Emerging Display Technology Corp. ETM0700G0DH6 7.0" WVGA TFT LCD panel
+
+Required properties:
+- compatible: should be "edt,etm0700g0dh6"
+
+This panel is the same as ET070080DH6 except for the touchscreen.
+ETM0700G0DH6 is the model with capacitive multitouch.
+
+This binding is compatible with the simple-panel binding, which is specified
+in simple-panel.txt in this directory.
diff --git a/Documentation/devicetree/bindings/panel/lg,ld070wx3-sl01.txt b/Documentation/devicetree/bindings/panel/lg,ld070wx3-sl01.txt
new file mode 100644
index 00000000000..5e649cb9aa1
--- /dev/null
+++ b/Documentation/devicetree/bindings/panel/lg,ld070wx3-sl01.txt
@@ -0,0 +1,7 @@
+LG Corporation 7" WXGA TFT LCD panel
+
+Required properties:
+- compatible: should be "lg,ld070wx3-sl01"
+
+This binding is compatible with the simple-panel binding, which is specified
+in simple-panel.txt in this directory.
diff --git a/Documentation/devicetree/bindings/panel/lg,lh500wx1-sd03.txt b/Documentation/devicetree/bindings/panel/lg,lh500wx1-sd03.txt
new file mode 100644
index 00000000000..a04fd2b2e73
--- /dev/null
+++ b/Documentation/devicetree/bindings/panel/lg,lh500wx1-sd03.txt
@@ -0,0 +1,7 @@
+LG Corporation 5" HD TFT LCD panel
+
+Required properties:
+- compatible: should be "lg,lh500wx1-sd03"
+
+This binding is compatible with the simple-panel binding, which is specified
+in simple-panel.txt in this directory.
diff --git a/Documentation/devicetree/bindings/panel/lg,lp129qe.txt b/Documentation/devicetree/bindings/panel/lg,lp129qe.txt
new file mode 100644
index 00000000000..9f262e0c5a2
--- /dev/null
+++ b/Documentation/devicetree/bindings/panel/lg,lp129qe.txt
@@ -0,0 +1,7 @@
+LG 12.9" (2560x1700 pixels) TFT LCD panel
+
+Required properties:
+- compatible: should be "lg,lp129qe"
+
+This binding is compatible with the simple-panel binding, which is specified
+in simple-panel.txt in this directory.
diff --git a/Documentation/devicetree/bindings/panel/panasonic,vvx10f004b00.txt b/Documentation/devicetree/bindings/panel/panasonic,vvx10f004b00.txt
new file mode 100644
index 00000000000..d328b0341bf
--- /dev/null
+++ b/Documentation/devicetree/bindings/panel/panasonic,vvx10f004b00.txt
@@ -0,0 +1,7 @@
+Panasonic Corporation 10.1" WUXGA TFT LCD panel
+
+Required properties:
+- compatible: should be "panasonic,vvx10f004b00"
+
+This binding is compatible with the simple-panel binding, which is specified
+in simple-panel.txt in this directory.
diff --git a/Documentation/devicetree/bindings/panel/samsung,ld9040.txt b/Documentation/devicetree/bindings/panel/samsung,ld9040.txt
new file mode 100644
index 00000000000..07c36c3f7b5
--- /dev/null
+++ b/Documentation/devicetree/bindings/panel/samsung,ld9040.txt
@@ -0,0 +1,66 @@
+Samsung LD9040 AMOLED LCD parallel RGB panel with SPI control bus
+
+Required properties:
+ - compatible: "samsung,ld9040"
+ - reg: address of the panel on SPI bus
+ - vdd3-supply: core voltage supply
+ - vci-supply: voltage supply for analog circuits
+ - reset-gpios: a GPIO spec for the reset pin
+ - display-timings: timings for the connected panel according to [1]
+
+The panel must obey rules for SPI slave device specified in document [2].
+
+Optional properties:
+ - power-on-delay: delay after turning regulators on [ms]
+ - reset-delay: delay after reset sequence [ms]
+ - panel-width-mm: physical panel width [mm]
+ - panel-height-mm: physical panel height [mm]
+
+The device node can contain one 'port' child node with one child
+'endpoint' node, according to the bindings defined in [3]. This
+node should describe panel's video bus.
+
+[1]: Documentation/devicetree/bindings/video/display-timing.txt
+[2]: Documentation/devicetree/bindings/spi/spi-bus.txt
+[3]: Documentation/devicetree/bindings/media/video-interfaces.txt
+
+Example:
+
+ lcd@0 {
+ compatible = "samsung,ld9040";
+ reg = <0>;
+ vdd3-supply = <&ldo7_reg>;
+ vci-supply = <&ldo17_reg>;
+ reset-gpios = <&gpy4 5 0>;
+ spi-max-frequency = <1200000>;
+ spi-cpol;
+ spi-cpha;
+ power-on-delay = <10>;
+ reset-delay = <10>;
+ panel-width-mm = <90>;
+ panel-height-mm = <154>;
+
+ display-timings {
+ timing {
+ clock-frequency = <23492370>;
+ hactive = <480>;
+ vactive = <800>;
+ hback-porch = <16>;
+ hfront-porch = <16>;
+ vback-porch = <2>;
+ vfront-porch = <28>;
+ hsync-len = <2>;
+ vsync-len = <1>;
+ hsync-active = <0>;
+ vsync-active = <0>;
+ de-active = <0>;
+ pixelclk-active = <0>;
+ };
+ };
+
+ port {
+ lcd_ep: endpoint {
+ remote-endpoint = <&fimd_dpi_ep>;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/panel/samsung,ltn101nt05.txt b/Documentation/devicetree/bindings/panel/samsung,ltn101nt05.txt
new file mode 100644
index 00000000000..ef522c6bb85
--- /dev/null
+++ b/Documentation/devicetree/bindings/panel/samsung,ltn101nt05.txt
@@ -0,0 +1,7 @@
+Samsung Electronics 10.1" WSVGA TFT LCD panel
+
+Required properties:
+- compatible: should be "samsung,ltn101nt05"
+
+This binding is compatible with the simple-panel binding, which is specified
+in simple-panel.txt in this directory.
diff --git a/Documentation/devicetree/bindings/panel/samsung,s6e8aa0.txt b/Documentation/devicetree/bindings/panel/samsung,s6e8aa0.txt
new file mode 100644
index 00000000000..e7ee988e315
--- /dev/null
+++ b/Documentation/devicetree/bindings/panel/samsung,s6e8aa0.txt
@@ -0,0 +1,56 @@
+Samsung S6E8AA0 AMOLED LCD 5.3 inch panel
+
+Required properties:
+ - compatible: "samsung,s6e8aa0"
+ - reg: the virtual channel number of a DSI peripheral
+ - vdd3-supply: core voltage supply
+ - vci-supply: voltage supply for analog circuits
+ - reset-gpios: a GPIO spec for the reset pin
+ - display-timings: timings for the connected panel as described by [1]
+
+Optional properties:
+ - power-on-delay: delay after turning regulators on [ms]
+ - reset-delay: delay after reset sequence [ms]
+ - init-delay: delay after initialization sequence [ms]
+ - panel-width-mm: physical panel width [mm]
+ - panel-height-mm: physical panel height [mm]
+ - flip-horizontal: boolean to flip image horizontally
+ - flip-vertical: boolean to flip image vertically
+
+The device node can contain one 'port' child node with one child
+'endpoint' node, according to the bindings defined in [2]. This
+node should describe panel's video bus.
+
+[1]: Documentation/devicetree/bindings/video/display-timing.txt
+[2]: Documentation/devicetree/bindings/media/video-interfaces.txt
+
+Example:
+
+ panel {
+ compatible = "samsung,s6e8aa0";
+ reg = <0>;
+ vdd3-supply = <&vcclcd_reg>;
+ vci-supply = <&vlcd_reg>;
+ reset-gpios = <&gpy4 5 0>;
+ power-on-delay= <50>;
+ reset-delay = <100>;
+ init-delay = <100>;
+ panel-width-mm = <58>;
+ panel-height-mm = <103>;
+ flip-horizontal;
+ flip-vertical;
+
+ display-timings {
+ timing0: timing-0 {
+ clock-frequency = <57153600>;
+ hactive = <720>;
+ vactive = <1280>;
+ hfront-porch = <5>;
+ hback-porch = <5>;
+ hsync-len = <5>;
+ vfront-porch = <13>;
+ vback-porch = <1>;
+ vsync-len = <2>;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/panel/simple-panel.txt b/Documentation/devicetree/bindings/panel/simple-panel.txt
new file mode 100644
index 00000000000..1341bbf4aa3
--- /dev/null
+++ b/Documentation/devicetree/bindings/panel/simple-panel.txt
@@ -0,0 +1,21 @@
+Simple display panel
+
+Required properties:
+- power-supply: regulator to provide the supply voltage
+
+Optional properties:
+- ddc-i2c-bus: phandle of an I2C controller used for DDC EDID probing
+- enable-gpios: GPIO pin to enable or disable the panel
+- backlight: phandle of the backlight device attached to the panel
+
+Example:
+
+ panel: panel {
+ compatible = "cptt,claa101wb01";
+ ddc-i2c-bus = <&panelddc>;
+
+ power-supply = <&vdd_pnl_reg>;
+ enable-gpios = <&gpio 90 0>;
+
+ backlight = <&backlight>;
+ };
diff --git a/Documentation/devicetree/bindings/pci/designware-pcie.txt b/Documentation/devicetree/bindings/pci/designware-pcie.txt
index eabcb4b5db6..d0d15ee4283 100644
--- a/Documentation/devicetree/bindings/pci/designware-pcie.txt
+++ b/Documentation/devicetree/bindings/pci/designware-pcie.txt
@@ -1,15 +1,7 @@
-* Synopsis Designware PCIe interface
+* Synopsys Designware PCIe interface
Required properties:
-- compatible: should contain "snps,dw-pcie" to identify the
- core, plus an identifier for the specific instance, such
- as "samsung,exynos5440-pcie".
-- reg: base addresses and lengths of the pcie controller,
- the phy controller, additional register for the phy controller.
-- interrupts: interrupt values for level interrupt,
- pulse interrupt, special interrupt.
-- clocks: from common clock binding: handle to pci clock.
-- clock-names: from common clock binding: should be "pcie" and "pcie_bus".
+- compatible: should contain "snps,dw-pcie" to identify the core.
- #address-cells: set to <3>
- #size-cells: set to <2>
- device_type: set to "pci"
@@ -19,58 +11,11 @@ Required properties:
to define the mapping of the PCIe interface to interrupt
numbers.
- num-lanes: number of lanes to use
-- reset-gpio: gpio pin number of power good signal
-
-Example:
-
-SoC specific DT Entry:
-
- pcie@290000 {
- compatible = "samsung,exynos5440-pcie", "snps,dw-pcie";
- reg = <0x290000 0x1000
- 0x270000 0x1000
- 0x271000 0x40>;
- interrupts = <0 20 0>, <0 21 0>, <0 22 0>;
- clocks = <&clock 28>, <&clock 27>;
- clock-names = "pcie", "pcie_bus";
- #address-cells = <3>;
- #size-cells = <2>;
- device_type = "pci";
- ranges = <0x00000800 0 0x40000000 0x40000000 0 0x00001000 /* configuration space */
- 0x81000000 0 0 0x40001000 0 0x00010000 /* downstream I/O */
- 0x82000000 0 0x40011000 0x40011000 0 0x1ffef000>; /* non-prefetchable memory */
- #interrupt-cells = <1>;
- interrupt-map-mask = <0 0 0 0>;
- interrupt-map = <0x0 0 &gic 53>;
- num-lanes = <4>;
- };
+- clocks: Must contain an entry for each entry in clock-names.
+ See ../clocks/clock-bindings.txt for details.
+- clock-names: Must include the following entries:
+ - "pcie"
+ - "pcie_bus"
- pcie@2a0000 {
- compatible = "samsung,exynos5440-pcie", "snps,dw-pcie";
- reg = <0x2a0000 0x1000
- 0x272000 0x1000
- 0x271040 0x40>;
- interrupts = <0 23 0>, <0 24 0>, <0 25 0>;
- clocks = <&clock 29>, <&clock 27>;
- clock-names = "pcie", "pcie_bus";
- #address-cells = <3>;
- #size-cells = <2>;
- device_type = "pci";
- ranges = <0x00000800 0 0x60000000 0x60000000 0 0x00001000 /* configuration space */
- 0x81000000 0 0 0x60001000 0 0x00010000 /* downstream I/O */
- 0x82000000 0 0x60011000 0x60011000 0 0x1ffef000>; /* non-prefetchable memory */
- #interrupt-cells = <1>;
- interrupt-map-mask = <0 0 0 0>;
- interrupt-map = <0x0 0 &gic 56>;
- num-lanes = <4>;
- };
-
-Board specific DT Entry:
-
- pcie@290000 {
- reset-gpio = <&pin_ctrl 5 0>;
- };
-
- pcie@2a0000 {
- reset-gpio = <&pin_ctrl 22 0>;
- };
+Optional properties:
+- reset-gpio: gpio pin number of power good signal
diff --git a/Documentation/devicetree/bindings/pci/fsl,imx6q-pcie.txt b/Documentation/devicetree/bindings/pci/fsl,imx6q-pcie.txt
new file mode 100644
index 00000000000..9455fd0ec83
--- /dev/null
+++ b/Documentation/devicetree/bindings/pci/fsl,imx6q-pcie.txt
@@ -0,0 +1,38 @@
+* Freescale i.MX6 PCIe interface
+
+This PCIe host controller is based on the Synopsis Designware PCIe IP
+and thus inherits all the common properties defined in designware-pcie.txt.
+
+Required properties:
+- compatible: "fsl,imx6q-pcie"
+- reg: base addresse and length of the pcie controller
+- interrupts: A list of interrupt outputs of the controller. Must contain an
+ entry for each entry in the interrupt-names property.
+- interrupt-names: Must include the following entries:
+ - "msi": The interrupt that is asserted when an MSI is received
+- clock-names: Must include the following additional entries:
+ - "pcie_phy"
+
+Example:
+
+ pcie@0x01000000 {
+ compatible = "fsl,imx6q-pcie", "snps,dw-pcie";
+ reg = <0x01ffc000 0x4000>;
+ #address-cells = <3>;
+ #size-cells = <2>;
+ device_type = "pci";
+ ranges = <0x00000800 0 0x01f00000 0x01f00000 0 0x00080000
+ 0x81000000 0 0 0x01f80000 0 0x00010000
+ 0x82000000 0 0x01000000 0x01000000 0 0x00f00000>;
+ num-lanes = <1>;
+ interrupts = <GIC_SPI 120 IRQ_TYPE_LEVEL_HIGH>;
+ interrupt-names = "msi";
+ #interrupt-cells = <1>;
+ interrupt-map-mask = <0 0 0 0x7>;
+ interrupt-map = <0 0 0 1 &intc GIC_SPI 123 IRQ_TYPE_LEVEL_HIGH>,
+ <0 0 0 2 &intc GIC_SPI 122 IRQ_TYPE_LEVEL_HIGH>,
+ <0 0 0 3 &intc GIC_SPI 121 IRQ_TYPE_LEVEL_HIGH>,
+ <0 0 0 4 &intc GIC_SPI 120 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&clks 144>, <&clks 206>, <&clks 189>;
+ clock-names = "pcie", "pcie_bus", "pcie_phy";
+ };
diff --git a/Documentation/devicetree/bindings/pci/host-generic-pci.txt b/Documentation/devicetree/bindings/pci/host-generic-pci.txt
new file mode 100644
index 00000000000..f0b0436807b
--- /dev/null
+++ b/Documentation/devicetree/bindings/pci/host-generic-pci.txt
@@ -0,0 +1,100 @@
+* Generic PCI host controller
+
+Firmware-initialised PCI host controllers and PCI emulations, such as the
+virtio-pci implementations found in kvmtool and other para-virtualised
+systems, do not require driver support for complexities such as regulator
+and clock management. In fact, the controller may not even require the
+configuration of a control interface by the operating system, instead
+presenting a set of fixed windows describing a subset of IO, Memory and
+Configuration Spaces.
+
+Such a controller can be described purely in terms of the standardized device
+tree bindings communicated in pci.txt:
+
+
+Properties of the host controller node:
+
+- compatible : Must be "pci-host-cam-generic" or "pci-host-ecam-generic"
+ depending on the layout of configuration space (CAM vs
+ ECAM respectively).
+
+- device_type : Must be "pci".
+
+- ranges : As described in IEEE Std 1275-1994, but must provide
+ at least a definition of non-prefetchable memory. One
+ or both of prefetchable Memory and IO Space may also
+ be provided.
+
+- bus-range : Optional property (also described in IEEE Std 1275-1994)
+ to indicate the range of bus numbers for this controller.
+ If absent, defaults to <0 255> (i.e. all buses).
+
+- #address-cells : Must be 3.
+
+- #size-cells : Must be 2.
+
+- reg : The Configuration Space base address and size, as accessed
+ from the parent bus.
+
+
+Properties of the /chosen node:
+
+- linux,pci-probe-only
+ : Optional property which takes a single-cell argument.
+ If '0', then Linux will assign devices in its usual manner,
+ otherwise it will not try to assign devices and instead use
+ them as they are configured already.
+
+Configuration Space is assumed to be memory-mapped (as opposed to being
+accessed via an ioport) and laid out with a direct correspondence to the
+geography of a PCI bus address by concatenating the various components to
+form an offset.
+
+For CAM, this 24-bit offset is:
+
+ cfg_offset(bus, device, function, register) =
+ bus << 16 | device << 11 | function << 8 | register
+
+Whilst ECAM extends this by 4 bits to accomodate 4k of function space:
+
+ cfg_offset(bus, device, function, register) =
+ bus << 20 | device << 15 | function << 12 | register
+
+Interrupt mapping is exactly as described in `Open Firmware Recommended
+Practice: Interrupt Mapping' and requires the following properties:
+
+- #interrupt-cells : Must be 1
+
+- interrupt-map : <see aforementioned specification>
+
+- interrupt-map-mask : <see aforementioned specification>
+
+
+Example:
+
+pci {
+ compatible = "pci-host-cam-generic"
+ device_type = "pci";
+ #address-cells = <3>;
+ #size-cells = <2>;
+ bus-range = <0x0 0x1>;
+
+ // CPU_PHYSICAL(2) SIZE(2)
+ reg = <0x0 0x40000000 0x0 0x1000000>;
+
+ // BUS_ADDRESS(3) CPU_PHYSICAL(2) SIZE(2)
+ ranges = <0x01000000 0x0 0x01000000 0x0 0x01000000 0x0 0x00010000>,
+ <0x02000000 0x0 0x41000000 0x0 0x41000000 0x0 0x3f000000>;
+
+
+ #interrupt-cells = <0x1>;
+
+ // PCI_DEVICE(3) INT#(1) CONTROLLER(PHANDLE) CONTROLLER_DATA(3)
+ interrupt-map = < 0x0 0x0 0x0 0x1 &gic 0x0 0x4 0x1
+ 0x800 0x0 0x0 0x1 &gic 0x0 0x5 0x1
+ 0x1000 0x0 0x0 0x1 &gic 0x0 0x6 0x1
+ 0x1800 0x0 0x0 0x1 &gic 0x0 0x7 0x1>;
+
+ // PCI_DEVICE(3) INT#(1)
+ interrupt-map-mask = <0xf800 0x0 0x0 0x7>;
+}
diff --git a/Documentation/devicetree/bindings/pci/mvebu-pci.txt b/Documentation/devicetree/bindings/pci/mvebu-pci.txt
index 9556e2fedf6..08c716b2c6b 100644
--- a/Documentation/devicetree/bindings/pci/mvebu-pci.txt
+++ b/Documentation/devicetree/bindings/pci/mvebu-pci.txt
@@ -5,6 +5,7 @@ Mandatory properties:
- compatible: one of the following values:
marvell,armada-370-pcie
marvell,armada-xp-pcie
+ marvell,dove-pcie
marvell,kirkwood-pcie
- #address-cells, set to <3>
- #size-cells, set to <2>
@@ -14,6 +15,8 @@ Mandatory properties:
- ranges: ranges describing the MMIO registers to control the PCIe
interfaces, and ranges describing the MBus windows needed to access
the memory and I/O regions of each PCIe interface.
+- msi-parent: Link to the hardware entity that serves as the Message
+ Signaled Interrupt controller for this PCI controller.
The ranges describing the MMIO registers have the following layout:
@@ -74,6 +77,8 @@ and the following optional properties:
- marvell,pcie-lane: the physical PCIe lane number, for ports having
multiple lanes. If this property is not found, we assume that the
value is 0.
+- reset-gpios: optional gpio to PERST#
+- reset-delay-us: delay in us to wait after reset de-assertion
Example:
@@ -86,6 +91,7 @@ pcie-controller {
#size-cells = <2>;
bus-range = <0x00 0xff>;
+ msi-parent = <&mpic>;
ranges =
<0x82000000 0 0x40000 MBUS_ID(0xf0, 0x01) 0x40000 0 0x00002000 /* Port 0.0 registers */
@@ -135,6 +141,10 @@ pcie-controller {
interrupt-map = <0 0 0 0 &mpic 58>;
marvell,pcie-port = <0>;
marvell,pcie-lane = <0>;
+ /* low-active PERST# reset on GPIO 25 */
+ reset-gpios = <&gpio0 25 1>;
+ /* wait 20ms for device settle after reset deassertion */
+ reset-delay-us = <20000>;
clocks = <&gateclk 5>;
status = "disabled";
};
diff --git a/Documentation/devicetree/bindings/pci/nvidia,tegra20-pcie.txt b/Documentation/devicetree/bindings/pci/nvidia,tegra20-pcie.txt
index 6b7510775c5..c300391e8d3 100644
--- a/Documentation/devicetree/bindings/pci/nvidia,tegra20-pcie.txt
+++ b/Documentation/devicetree/bindings/pci/nvidia,tegra20-pcie.txt
@@ -42,14 +42,23 @@ Required properties:
- 0xc2000000: prefetchable memory region
Please refer to the standard PCI bus binding document for a more detailed
explanation.
-- clocks: List of clock inputs of the controller. Must contain an entry for
- each entry in the clock-names property.
+- #interrupt-cells: Size representation for interrupts (must be 1)
+- interrupt-map-mask and interrupt-map: Standard PCI IRQ mapping properties
+ Please refer to the standard PCI bus binding document for a more detailed
+ explanation.
+- clocks: Must contain an entry for each entry in clock-names.
+ See ../clocks/clock-bindings.txt for details.
- clock-names: Must include the following entries:
- "pex": The Tegra clock of that name
- "afi": The Tegra clock of that name
- "pcie_xclk": The Tegra clock of that name
- "pll_e": The Tegra clock of that name
- "cml": The Tegra clock of that name (not required for Tegra20)
+ - pex
+ - afi
+ - pll_e
+ - cml (not required for Tegra20)
+- resets: Must contain an entry for each entry in reset-names.
+ See ../reset/reset.txt for details.
+- reset-names: Must include the following entries:
+ - pex
+ - afi
+ - pcie_x
Root ports are defined as subnodes of the PCIe controller node.
@@ -81,6 +90,10 @@ SoC DTSI:
0 99 0x04>; /* MSI interrupt */
interrupt-names = "intr", "msi";
+ #interrupt-cells = <1>;
+ interrupt-map-mask = <0 0 0 0>;
+ interrupt-map = <0 0 0 0 &intc GIC_SPI 98 IRQ_TYPE_LEVEL_HIGH>;
+
bus-range = <0x00 0xff>;
#address-cells = <3>;
#size-cells = <2>;
@@ -91,9 +104,10 @@ SoC DTSI:
0x82000000 0 0xa0000000 0xa0000000 0 0x10000000 /* non-prefetchable memory */
0xc2000000 0 0xb0000000 0xb0000000 0 0x10000000>; /* prefetchable memory */
- clocks = <&tegra_car 70>, <&tegra_car 72>, <&tegra_car 74>,
- <&tegra_car 118>;
- clock-names = "pex", "afi", "pcie_xclk", "pll_e";
+ clocks = <&tegra_car 70>, <&tegra_car 72>, <&tegra_car 118>;
+ clock-names = "pex", "afi", "pll_e";
+ resets = <&tegra_car 70>, <&tegra_car 72>, <&tegra_car 74>;
+ reset-names = "pex", "afi", "pcie_x";
status = "disabled";
pci@1,0 {
diff --git a/Documentation/devicetree/bindings/pci/pci-rcar-gen2.txt b/Documentation/devicetree/bindings/pci/pci-rcar-gen2.txt
new file mode 100644
index 00000000000..d8ef5bf50f1
--- /dev/null
+++ b/Documentation/devicetree/bindings/pci/pci-rcar-gen2.txt
@@ -0,0 +1,66 @@
+Renesas AHB to PCI bridge
+-------------------------
+
+This is the bridge used internally to connect the USB controllers to the
+AHB. There is one bridge instance per USB port connected to the internal
+OHCI and EHCI controllers.
+
+Required properties:
+- compatible: "renesas,pci-r8a7790" for the R8A7790 SoC;
+ "renesas,pci-r8a7791" for the R8A7791 SoC.
+- reg: A list of physical regions to access the device: the first is
+ the operational registers for the OHCI/EHCI controllers and the
+ second is for the bridge configuration and control registers.
+- interrupts: interrupt for the device.
+- clocks: The reference to the device clock.
+- bus-range: The PCI bus number range; as this is a single bus, the range
+ should be specified as the same value twice.
+- #address-cells: must be 3.
+- #size-cells: must be 2.
+- #interrupt-cells: must be 1.
+- interrupt-map: standard property used to define the mapping of the PCI
+ interrupts to the GIC interrupts.
+- interrupt-map-mask: standard property that helps to define the interrupt
+ mapping.
+
+Example SoC configuration:
+
+ pci0: pci@ee090000 {
+ compatible = "renesas,pci-r8a7790";
+ clocks = <&mstp7_clks R8A7790_CLK_EHCI>;
+ reg = <0x0 0xee090000 0x0 0xc00>,
+ <0x0 0xee080000 0x0 0x1100>;
+ interrupts = <0 108 IRQ_TYPE_LEVEL_HIGH>;
+ status = "disabled";
+
+ bus-range = <0 0>;
+ #address-cells = <3>;
+ #size-cells = <2>;
+ #interrupt-cells = <1>;
+ interrupt-map-mask = <0xff00 0 0 0x7>;
+ interrupt-map = <0x0000 0 0 1 &gic 0 108 IRQ_TYPE_LEVEL_HIGH
+ 0x0800 0 0 1 &gic 0 108 IRQ_TYPE_LEVEL_HIGH
+ 0x1000 0 0 2 &gic 0 108 IRQ_TYPE_LEVEL_HIGH>;
+
+ pci@0,1 {
+ reg = <0x800 0 0 0 0>;
+ device_type = "pci";
+ phys = <&usbphy 0 0>;
+ phy-names = "usb";
+ };
+
+ pci@0,2 {
+ reg = <0x1000 0 0 0 0>;
+ device_type = "pci";
+ phys = <&usbphy 0 0>;
+ phy-names = "usb";
+ };
+ };
+
+Example board setup:
+
+&pci0 {
+ status = "okay";
+ pinctrl-0 = <&usb0_pins>;
+ pinctrl-names = "default";
+};
diff --git a/Documentation/devicetree/bindings/pci/rcar-pci.txt b/Documentation/devicetree/bindings/pci/rcar-pci.txt
new file mode 100644
index 00000000000..29d3b989d3b
--- /dev/null
+++ b/Documentation/devicetree/bindings/pci/rcar-pci.txt
@@ -0,0 +1,47 @@
+* Renesas RCar PCIe interface
+
+Required properties:
+- compatible: should contain one of the following
+ "renesas,pcie-r8a7779", "renesas,pcie-r8a7790", "renesas,pcie-r8a7791"
+- reg: base address and length of the pcie controller registers.
+- #address-cells: set to <3>
+- #size-cells: set to <2>
+- bus-range: PCI bus numbers covered
+- device_type: set to "pci"
+- ranges: ranges for the PCI memory and I/O regions.
+- dma-ranges: ranges for the inbound memory regions.
+- interrupts: two interrupt sources for MSI interrupts, followed by interrupt
+ source for hardware related interrupts (e.g. link speed change).
+- #interrupt-cells: set to <1>
+- interrupt-map-mask and interrupt-map: standard PCI properties
+ to define the mapping of the PCIe interface to interrupt
+ numbers.
+- clocks: from common clock binding: clock specifiers for the PCIe controller
+ and PCIe bus clocks.
+- clock-names: from common clock binding: should be "pcie" and "pcie_bus".
+
+Example:
+
+SoC specific DT Entry:
+
+ pcie: pcie@fe000000 {
+ compatible = "renesas,pcie-r8a7791";
+ reg = <0 0xfe000000 0 0x80000>;
+ #address-cells = <3>;
+ #size-cells = <2>;
+ bus-range = <0x00 0xff>;
+ device_type = "pci";
+ ranges = <0x01000000 0 0x00000000 0 0xfe100000 0 0x00100000
+ 0x02000000 0 0xfe200000 0 0xfe200000 0 0x00200000
+ 0x02000000 0 0x30000000 0 0x30000000 0 0x08000000
+ 0x42000000 0 0x38000000 0 0x38000000 0 0x08000000>;
+ dma-ranges = <0x42000000 0 0x40000000 0 0x40000000 0 0x40000000
+ 0x42000000 2 0x00000000 2 0x00000000 0 0x40000000>;
+ interrupts = <0 116 4>, <0 117 4>, <0 118 4>;
+ #interrupt-cells = <1>;
+ interrupt-map-mask = <0 0 0 0>;
+ interrupt-map = <0 0 0 0 &gic 0 116 4>;
+ clocks = <&mstp3_clks R8A7791_CLK_PCIE>, <&pcie_bus_clk>;
+ clock-names = "pcie", "pcie_bus";
+ status = "disabled";
+ };
diff --git a/Documentation/devicetree/bindings/pci/samsung,exynos5440-pcie.txt b/Documentation/devicetree/bindings/pci/samsung,exynos5440-pcie.txt
new file mode 100644
index 00000000000..4f9d23d2ed6
--- /dev/null
+++ b/Documentation/devicetree/bindings/pci/samsung,exynos5440-pcie.txt
@@ -0,0 +1,65 @@
+* Samsung Exynos 5440 PCIe interface
+
+This PCIe host controller is based on the Synopsis Designware PCIe IP
+and thus inherits all the common properties defined in designware-pcie.txt.
+
+Required properties:
+- compatible: "samsung,exynos5440-pcie"
+- reg: base addresses and lengths of the pcie controller,
+ the phy controller, additional register for the phy controller.
+- interrupts: A list of interrupt outputs for level interrupt,
+ pulse interrupt, special interrupt.
+
+Example:
+
+SoC specific DT Entry:
+
+ pcie@290000 {
+ compatible = "samsung,exynos5440-pcie", "snps,dw-pcie";
+ reg = <0x290000 0x1000
+ 0x270000 0x1000
+ 0x271000 0x40>;
+ interrupts = <0 20 0>, <0 21 0>, <0 22 0>;
+ clocks = <&clock 28>, <&clock 27>;
+ clock-names = "pcie", "pcie_bus";
+ #address-cells = <3>;
+ #size-cells = <2>;
+ device_type = "pci";
+ ranges = <0x00000800 0 0x40000000 0x40000000 0 0x00001000 /* configuration space */
+ 0x81000000 0 0 0x40001000 0 0x00010000 /* downstream I/O */
+ 0x82000000 0 0x40011000 0x40011000 0 0x1ffef000>; /* non-prefetchable memory */
+ #interrupt-cells = <1>;
+ interrupt-map-mask = <0 0 0 0>;
+ interrupt-map = <0 0 0 0 &gic GIC_SPI 21 IRQ_TYPE_LEVEL_HIGH>;
+ num-lanes = <4>;
+ };
+
+ pcie@2a0000 {
+ compatible = "samsung,exynos5440-pcie", "snps,dw-pcie";
+ reg = <0x2a0000 0x1000
+ 0x272000 0x1000
+ 0x271040 0x40>;
+ interrupts = <0 23 0>, <0 24 0>, <0 25 0>;
+ clocks = <&clock 29>, <&clock 27>;
+ clock-names = "pcie", "pcie_bus";
+ #address-cells = <3>;
+ #size-cells = <2>;
+ device_type = "pci";
+ ranges = <0x00000800 0 0x60000000 0x60000000 0 0x00001000 /* configuration space */
+ 0x81000000 0 0 0x60001000 0 0x00010000 /* downstream I/O */
+ 0x82000000 0 0x60011000 0x60011000 0 0x1ffef000>; /* non-prefetchable memory */
+ #interrupt-cells = <1>;
+ interrupt-map-mask = <0 0 0 0>;
+ interrupt-map = <0 0 0 0 &gic GIC_SPI 24 IRQ_TYPE_LEVEL_HIGH>;
+ num-lanes = <4>;
+ };
+
+Board specific DT Entry:
+
+ pcie@290000 {
+ reset-gpio = <&pin_ctrl 5 0>;
+ };
+
+ pcie@2a0000 {
+ reset-gpio = <&pin_ctrl 22 0>;
+ };
diff --git a/Documentation/devicetree/bindings/phy/apm-xgene-phy.txt b/Documentation/devicetree/bindings/phy/apm-xgene-phy.txt
new file mode 100644
index 00000000000..5f3a65a9dd8
--- /dev/null
+++ b/Documentation/devicetree/bindings/phy/apm-xgene-phy.txt
@@ -0,0 +1,79 @@
+* APM X-Gene 15Gbps Multi-purpose PHY nodes
+
+PHY nodes are defined to describe on-chip 15Gbps Multi-purpose PHY. Each
+PHY (pair of lanes) has its own node.
+
+Required properties:
+- compatible : Shall be "apm,xgene-phy".
+- reg : PHY memory resource is the SDS PHY access resource.
+- #phy-cells : Shall be 1 as it expects one argument for setting
+ the mode of the PHY. Possible values are 0 (SATA),
+ 1 (SGMII), 2 (PCIe), 3 (USB), and 4 (XFI).
+
+Optional properties:
+- status : Shall be "ok" if enabled or "disabled" if disabled.
+ Default is "ok".
+- clocks : Reference to the clock entry.
+- apm,tx-eye-tuning : Manual control to fine tune the capture of the serial
+ bit lines from the automatic calibrated position.
+ Two set of 3-tuple setting for each (up to 3)
+ supported link speed on the host. Range from 0 to
+ 127 in unit of one bit period. Default is 10.
+- apm,tx-eye-direction : Eye tuning manual control direction. 0 means sample
+ data earlier than the nominal sampling point. 1 means
+ sample data later than the nominal sampling point.
+ Two set of 3-tuple setting for each (up to 3)
+ supported link speed on the host. Default is 0.
+- apm,tx-boost-gain : Frequency boost AC (LSB 3-bit) and DC (2-bit)
+ gain control. Two set of 3-tuple setting for each
+ (up to 3) supported link speed on the host. Range is
+ between 0 to 31 in unit of dB. Default is 3.
+- apm,tx-amplitude : Amplitude control. Two set of 3-tuple setting for
+ each (up to 3) supported link speed on the host.
+ Range is between 0 to 199500 in unit of uV.
+ Default is 199500 uV.
+- apm,tx-pre-cursor1 : 1st pre-cursor emphasis taps control. Two set of
+ 3-tuple setting for each (up to 3) supported link
+ speed on the host. Range is 0 to 273000 in unit of
+ uV. Default is 0.
+- apm,tx-pre-cursor2 : 2st pre-cursor emphasis taps control. Two set of
+ 3-tuple setting for each (up to 3) supported link
+ speed on the host. Range is 0 to 127400 in unit uV.
+ Default is 0x0.
+- apm,tx-post-cursor : Post-cursor emphasis taps control. Two set of
+ 3-tuple setting for Gen1, Gen2, and Gen3. Range is
+ between 0 to 0x1f in unit of 18.2mV. Default is 0xf.
+- apm,tx-speed : Tx operating speed. One set of 3-tuple for each
+ supported link speed on the host.
+ 0 = 1-2Gbps
+ 1 = 2-4Gbps (1st tuple default)
+ 2 = 4-8Gbps
+ 3 = 8-15Gbps (2nd tuple default)
+ 4 = 2.5-4Gbps
+ 5 = 4-5Gbps
+ 6 = 5-6Gbps
+ 7 = 6-16Gbps (3rd tuple default)
+
+NOTE: PHY override parameters are board specific setting.
+
+Example:
+ phy1: phy@1f21a000 {
+ compatible = "apm,xgene-phy";
+ reg = <0x0 0x1f21a000 0x0 0x100>;
+ #phy-cells = <1>;
+ status = "disabled";
+ };
+
+ phy2: phy@1f22a000 {
+ compatible = "apm,xgene-phy";
+ reg = <0x0 0x1f22a000 0x0 0x100>;
+ #phy-cells = <1>;
+ status = "ok";
+ };
+
+ phy3: phy@1f23a000 {
+ compatible = "apm,xgene-phy";
+ reg = <0x0 0x1f23a000 0x0 0x100>;
+ #phy-cells = <1>;
+ status = "ok";
+ };
diff --git a/Documentation/devicetree/bindings/phy/bcm-phy.txt b/Documentation/devicetree/bindings/phy/bcm-phy.txt
new file mode 100644
index 00000000000..3dc8b3d2ffb
--- /dev/null
+++ b/Documentation/devicetree/bindings/phy/bcm-phy.txt
@@ -0,0 +1,15 @@
+BROADCOM KONA USB2 PHY
+
+Required properties:
+ - compatible: brcm,kona-usb2-phy
+ - reg: offset and length of the PHY registers
+ - #phy-cells: must be 0
+Refer to phy/phy-bindings.txt for the generic PHY binding properties
+
+Example:
+
+ usbphy: usb-phy@3f130000 {
+ compatible = "brcm,kona-usb2-phy";
+ reg = <0x3f130000 0x28>;
+ #phy-cells = <0>;
+ };
diff --git a/Documentation/devicetree/bindings/phy/phy-bindings.txt b/Documentation/devicetree/bindings/phy/phy-bindings.txt
new file mode 100644
index 00000000000..8ae844fc0c6
--- /dev/null
+++ b/Documentation/devicetree/bindings/phy/phy-bindings.txt
@@ -0,0 +1,66 @@
+This document explains only the device tree data binding. For general
+information about PHY subsystem refer to Documentation/phy.txt
+
+PHY device node
+===============
+
+Required Properties:
+#phy-cells: Number of cells in a PHY specifier; The meaning of all those
+ cells is defined by the binding for the phy node. The PHY
+ provider can use the values in cells to find the appropriate
+ PHY.
+
+For example:
+
+phys: phy {
+ compatible = "xxx";
+ reg = <...>;
+ .
+ .
+ #phy-cells = <1>;
+ .
+ .
+};
+
+That node describes an IP block (PHY provider) that implements 2 different PHYs.
+In order to differentiate between these 2 PHYs, an additonal specifier should be
+given while trying to get a reference to it.
+
+PHY user node
+=============
+
+Required Properties:
+phys : the phandle for the PHY device (used by the PHY subsystem)
+phy-names : the names of the PHY corresponding to the PHYs present in the
+ *phys* phandle
+
+Example 1:
+usb1: usb_otg_ss@xxx {
+ compatible = "xxx";
+ reg = <xxx>;
+ .
+ .
+ phys = <&usb2_phy>, <&usb3_phy>;
+ phy-names = "usb2phy", "usb3phy";
+ .
+ .
+};
+
+This node represents a controller that uses two PHYs, one for usb2 and one for
+usb3.
+
+Example 2:
+usb2: usb_otg_ss@xxx {
+ compatible = "xxx";
+ reg = <xxx>;
+ .
+ .
+ phys = <&phys 1>;
+ phy-names = "usbphy";
+ .
+ .
+};
+
+This node represents a controller that uses one of the PHYs of the PHY provider
+device defined previously. Note that the phy handle has an additional specifier
+"1" to differentiate between the two PHYs.
diff --git a/Documentation/devicetree/bindings/phy/samsung-phy.txt b/Documentation/devicetree/bindings/phy/samsung-phy.txt
new file mode 100644
index 00000000000..2049261d8c3
--- /dev/null
+++ b/Documentation/devicetree/bindings/phy/samsung-phy.txt
@@ -0,0 +1,163 @@
+Samsung S5P/EXYNOS SoC series MIPI CSIS/DSIM DPHY
+-------------------------------------------------
+
+Required properties:
+- compatible : should be "samsung,s5pv210-mipi-video-phy";
+- reg : offset and length of the MIPI DPHY register set;
+- #phy-cells : from the generic phy bindings, must be 1;
+
+For "samsung,s5pv210-mipi-video-phy" compatible PHYs the second cell in
+the PHY specifier identifies the PHY and its meaning is as follows:
+ 0 - MIPI CSIS 0,
+ 1 - MIPI DSIM 0,
+ 2 - MIPI CSIS 1,
+ 3 - MIPI DSIM 1.
+
+Samsung EXYNOS SoC series Display Port PHY
+-------------------------------------------------
+
+Required properties:
+- compatible : should be "samsung,exynos5250-dp-video-phy";
+- reg : offset and length of the Display Port PHY register set;
+- #phy-cells : from the generic PHY bindings, must be 0;
+
+Samsung S5P/EXYNOS SoC series USB PHY
+-------------------------------------------------
+
+Required properties:
+- compatible : should be one of the listed compatibles:
+ - "samsung,exynos4210-usb2-phy"
+ - "samsung,exynos4x12-usb2-phy"
+ - "samsung,exynos5250-usb2-phy"
+- reg : a list of registers used by phy driver
+ - first and obligatory is the location of phy modules registers
+- samsung,sysreg-phandle - handle to syscon used to control the system registers
+- samsung,pmureg-phandle - handle to syscon used to control PMU registers
+- #phy-cells : from the generic phy bindings, must be 1;
+- clocks and clock-names:
+ - the "phy" clock is required by the phy module, used as a gate
+ - the "ref" clock is used to get the rate of the clock provided to the
+ PHY module
+
+The first phandle argument in the PHY specifier identifies the PHY, its
+meaning is compatible dependent. For the currently supported SoCs (Exynos 4210
+and Exynos 4212) it is as follows:
+ 0 - USB device ("device"),
+ 1 - USB host ("host"),
+ 2 - HSIC0 ("hsic0"),
+ 3 - HSIC1 ("hsic1"),
+
+Exynos 4210 and Exynos 4212 use mode switching and require that mode switch
+register is supplied.
+
+Example:
+
+For Exynos 4412 (compatible with Exynos 4212):
+
+usbphy: phy@125b0000 {
+ compatible = "samsung,exynos4x12-usb2-phy";
+ reg = <0x125b0000 0x100>;
+ clocks = <&clock 305>, <&clock 2>;
+ clock-names = "phy", "ref";
+ status = "okay";
+ #phy-cells = <1>;
+ samsung,sysreg-phandle = <&sys_reg>;
+ samsung,pmureg-phandle = <&pmu_reg>;
+};
+
+Then the PHY can be used in other nodes such as:
+
+phy-consumer@12340000 {
+ phys = <&usbphy 2>;
+ phy-names = "phy";
+};
+
+Refer to DT bindings documentation of particular PHY consumer devices for more
+information about required PHYs and the way of specification.
+
+Samsung SATA PHY Controller
+---------------------------
+
+SATA PHY nodes are defined to describe on-chip SATA Physical layer controllers.
+Each SATA PHY controller should have its own node.
+
+Required properties:
+- compatible : compatible list, contains "samsung,exynos5250-sata-phy"
+- reg : offset and length of the SATA PHY register set;
+- #phy-cells : must be zero
+- clocks : must be exactly one entry
+- clock-names : must be "sata_phyctrl"
+- samsung,exynos-sataphy-i2c-phandle : a phandle to the I2C device, no arguments
+- samsung,syscon-phandle : a phandle to the PMU system controller, no arguments
+
+Example:
+ sata_phy: sata-phy@12170000 {
+ compatible = "samsung,exynos5250-sata-phy";
+ reg = <0x12170000 0x1ff>;
+ clocks = <&clock 287>;
+ clock-names = "sata_phyctrl";
+ #phy-cells = <0>;
+ samsung,exynos-sataphy-i2c-phandle = <&sata_phy_i2c>;
+ samsung,syscon-phandle = <&pmu_syscon>;
+ };
+
+Device-Tree bindings for sataphy i2c client driver
+--------------------------------------------------
+
+Required properties:
+compatible: Should be "samsung,exynos-sataphy-i2c"
+- reg: I2C address of the sataphy i2c device.
+
+Example:
+
+ sata_phy_i2c:sata-phy@38 {
+ compatible = "samsung,exynos-sataphy-i2c";
+ reg = <0x38>;
+ };
+
+Samsung Exynos5 SoC series USB DRD PHY controller
+--------------------------------------------------
+
+Required properties:
+- compatible : Should be set to one of the following supported values:
+ - "samsung,exynos5250-usbdrd-phy" - for exynos5250 SoC,
+ - "samsung,exynos5420-usbdrd-phy" - for exynos5420 SoC.
+- reg : Register offset and length of USB DRD PHY register set;
+- clocks: Clock IDs array as required by the controller
+- clock-names: names of clocks correseponding to IDs in the clock property;
+ Required clocks:
+ - phy: main PHY clock (same as USB DRD controller i.e. DWC3 IP clock),
+ used for register access.
+ - ref: PHY's reference clock (usually crystal clock), used for
+ PHY operations, associated by phy name. It is used to
+ determine bit values for clock settings register.
+ For Exynos5420 this is given as 'sclk_usbphy30' in CMU.
+- samsung,pmu-syscon: phandle for PMU system controller interface, used to
+ control pmu registers for power isolation.
+- #phy-cells : from the generic PHY bindings, must be 1;
+
+For "samsung,exynos5250-usbdrd-phy" and "samsung,exynos5420-usbdrd-phy"
+compatible PHYs, the second cell in the PHY specifier identifies the
+PHY id, which is interpreted as follows:
+ 0 - UTMI+ type phy,
+ 1 - PIPE3 type phy,
+
+Example:
+ usbdrd_phy: usbphy@12100000 {
+ compatible = "samsung,exynos5250-usbdrd-phy";
+ reg = <0x12100000 0x100>;
+ clocks = <&clock 286>, <&clock 1>;
+ clock-names = "phy", "ref";
+ samsung,pmu-syscon = <&pmu_system_controller>;
+ #phy-cells = <1>;
+ };
+
+- aliases: For SoCs like Exynos5420 having multiple USB 3.0 DRD PHY controllers,
+ 'usbdrd_phy' nodes should have numbered alias in the aliases node,
+ in the form of usbdrdphyN, N = 0, 1... (depending on number of
+ controllers).
+Example:
+ aliases {
+ usbdrdphy0 = &usb3_phy0;
+ usbdrdphy1 = &usb3_phy1;
+ };
diff --git a/Documentation/devicetree/bindings/phy/sun4i-usb-phy.txt b/Documentation/devicetree/bindings/phy/sun4i-usb-phy.txt
new file mode 100644
index 00000000000..16528b9eb56
--- /dev/null
+++ b/Documentation/devicetree/bindings/phy/sun4i-usb-phy.txt
@@ -0,0 +1,37 @@
+Allwinner sun4i USB PHY
+-----------------------
+
+Required properties:
+- compatible : should be one of
+ * allwinner,sun4i-a10-usb-phy
+ * allwinner,sun5i-a13-usb-phy
+ * allwinner,sun6i-a31-usb-phy
+ * allwinner,sun7i-a20-usb-phy
+- reg : a list of offset + length pairs
+- reg-names :
+ * "phy_ctrl"
+ * "pmu1"
+ * "pmu2" for sun4i, sun6i or sun7i
+- #phy-cells : from the generic phy bindings, must be 1
+- clocks : phandle + clock specifier for the phy clocks
+- clock-names :
+ * "usb_phy" for sun4i, sun5i or sun7i
+ * "usb0_phy", "usb1_phy" and "usb2_phy" for sun6i
+- resets : a list of phandle + reset specifier pairs
+- reset-names :
+ * "usb0_reset"
+ * "usb1_reset"
+ * "usb2_reset" for sun4i, sun6i or sun7i
+
+Example:
+ usbphy: phy@0x01c13400 {
+ #phy-cells = <1>;
+ compatible = "allwinner,sun4i-a10-usb-phy";
+ /* phy base regs, phy1 pmu reg, phy2 pmu reg */
+ reg = <0x01c13400 0x10 0x01c14800 0x4 0x01c1c800 0x4>;
+ reg-names = "phy_ctrl", "pmu1", "pmu2";
+ clocks = <&usb_clk 8>;
+ clock-names = "usb_phy";
+ resets = <&usb_clk 1>, <&usb_clk 2>;
+ reset-names = "usb1_reset", "usb2_reset";
+ };
diff --git a/Documentation/devicetree/bindings/phy/ti-phy.txt b/Documentation/devicetree/bindings/phy/ti-phy.txt
new file mode 100644
index 00000000000..9ce458f3294
--- /dev/null
+++ b/Documentation/devicetree/bindings/phy/ti-phy.txt
@@ -0,0 +1,93 @@
+TI PHY: DT DOCUMENTATION FOR PHYs in TI PLATFORMs
+
+OMAP CONTROL PHY
+
+Required properties:
+ - compatible: Should be one of
+ "ti,control-phy-otghs" - if it has otghs_control mailbox register as on OMAP4.
+ "ti,control-phy-usb2" - if it has Power down bit in control_dev_conf register
+ e.g. USB2_PHY on OMAP5.
+ "ti,control-phy-pipe3" - if it has DPLL and individual Rx & Tx power control
+ e.g. USB3 PHY and SATA PHY on OMAP5.
+ "ti,control-phy-usb2-dra7" - if it has power down register like USB2 PHY on
+ DRA7 platform.
+ "ti,control-phy-usb2-am437" - if it has power down register like USB2 PHY on
+ AM437 platform.
+ - reg : Address and length of the register set for the device. It contains
+ the address of "otghs_control" for control-phy-otghs or "power" register
+ for other types.
+ - reg-names: should be "otghs_control" control-phy-otghs and "power" for
+ other types.
+
+omap_control_usb: omap-control-usb@4a002300 {
+ compatible = "ti,control-phy-otghs";
+ reg = <0x4a00233c 0x4>;
+ reg-names = "otghs_control";
+};
+
+OMAP USB2 PHY
+
+Required properties:
+ - compatible: Should be "ti,omap-usb2"
+ - reg : Address and length of the register set for the device.
+ - #phy-cells: determine the number of cells that should be given in the
+ phandle while referencing this phy.
+ - clocks: a list of phandles and clock-specifier pairs, one for each entry in
+ clock-names.
+ - clock-names: should include:
+ * "wkupclk" - wakeup clock.
+ * "refclk" - reference clock (optional).
+
+Optional properties:
+ - ctrl-module : phandle of the control module used by PHY driver to power on
+ the PHY.
+
+This is usually a subnode of ocp2scp to which it is connected.
+
+usb2phy@4a0ad080 {
+ compatible = "ti,omap-usb2";
+ reg = <0x4a0ad080 0x58>;
+ ctrl-module = <&omap_control_usb>;
+ #phy-cells = <0>;
+ clocks = <&usb_phy_cm_clk32k>, <&usb_otg_ss_refclk960m>;
+ clock-names = "wkupclk", "refclk";
+};
+
+TI PIPE3 PHY
+
+Required properties:
+ - compatible: Should be "ti,phy-usb3" or "ti,phy-pipe3-sata".
+ "ti,omap-usb3" is deprecated.
+ - reg : Address and length of the register set for the device.
+ - reg-names: The names of the register addresses corresponding to the registers
+ filled in "reg".
+ - #phy-cells: determine the number of cells that should be given in the
+ phandle while referencing this phy.
+ - clocks: a list of phandles and clock-specifier pairs, one for each entry in
+ clock-names.
+ - clock-names: should include:
+ * "wkupclk" - wakeup clock.
+ * "sysclk" - system clock.
+ * "refclk" - reference clock.
+
+Optional properties:
+ - ctrl-module : phandle of the control module used by PHY driver to power on
+ the PHY.
+
+This is usually a subnode of ocp2scp to which it is connected.
+
+usb3phy@4a084400 {
+ compatible = "ti,phy-usb3";
+ reg = <0x4a084400 0x80>,
+ <0x4a084800 0x64>,
+ <0x4a084c00 0x40>;
+ reg-names = "phy_rx", "phy_tx", "pll_ctrl";
+ ctrl-module = <&omap_control_usb>;
+ #phy-cells = <0>;
+ clocks = <&usb_phy_cm_clk32k>,
+ <&sys_clkin>,
+ <&usb_otg_ss_refclk960m>;
+ clock-names = "wkupclk",
+ "sysclk",
+ "refclk";
+};
diff --git a/Documentation/devicetree/bindings/pinctrl/abilis,tb10x-iomux.txt b/Documentation/devicetree/bindings/pinctrl/abilis,tb10x-iomux.txt
new file mode 100644
index 00000000000..2c11866221c
--- /dev/null
+++ b/Documentation/devicetree/bindings/pinctrl/abilis,tb10x-iomux.txt
@@ -0,0 +1,80 @@
+Abilis Systems TB10x pin controller
+===================================
+
+Required properties
+-------------------
+
+- compatible: should be "abilis,tb10x-iomux";
+- reg: should contain the physical address and size of the pin controller's
+ register range.
+
+
+Function definitions
+--------------------
+
+Functions are defined (and referenced) by sub-nodes of the pin controller.
+Every sub-node defines exactly one function (implying a set of pins).
+Every function is associated to one named pin group inside the pin controller
+driver and these names are used to associate pin group predefinitions to pin
+controller sub-nodes.
+
+Required function definition subnode properties:
+ - abilis,function: should be set to the name of the function's pin group.
+
+The following pin groups are available:
+ - GPIO ports: gpioa, gpiob, gpioc, gpiod, gpioe, gpiof, gpiog,
+ gpioh, gpioi, gpioj, gpiok, gpiol, gpiom, gpion
+ - Serial TS input ports: mis0, mis1, mis2, mis3, mis4, mis5, mis6, mis7
+ - Parallel TS input ports: mip1, mip3, mip5, mip7
+ - Serial TS output ports: mos0, mos1, mos2, mos3
+ - Parallel TS output port: mop
+ - CI+ port: ciplus
+ - CableCard (Mcard) port: mcard
+ - Smart card ports: stc0, stc1
+ - UART ports: uart0, uart1
+ - SPI ports: spi1, spi3
+ - JTAG: jtag
+
+All other ports of the chip are not multiplexed and thus not managed by this
+driver.
+
+
+GPIO ranges definition
+----------------------
+
+The named pin groups of GPIO ports can be used to define GPIO ranges as
+explained in Documentation/devicetree/bindings/gpio/gpio.txt.
+
+
+Example
+-------
+
+iomux: iomux@FF10601c {
+ compatible = "abilis,tb10x-iomux";
+ reg = <0xFF10601c 0x4>;
+ pctl_gpio_a: pctl-gpio-a {
+ abilis,function = "gpioa";
+ };
+ pctl_uart0: pctl-uart0 {
+ abilis,function = "uart0";
+ };
+};
+uart@FF100000 {
+ compatible = "snps,dw-apb-uart";
+ reg = <0xFF100000 0x100>;
+ clock-frequency = <166666666>;
+ interrupts = <25 1>;
+ reg-shift = <2>;
+ reg-io-width = <4>;
+ pinctrl-names = "default";
+ pinctrl-0 = <&pctl_uart0>;
+};
+gpioa: gpio@FF140000 {
+ compatible = "abilis,tb10x-gpio";
+ reg = <0xFF140000 0x1000>;
+ gpio-controller;
+ #gpio-cells = <2>;
+ ngpio = <3>;
+ gpio-ranges = <&iomux 0 0>;
+ gpio-ranges-group-names = "gpioa";
+};
diff --git a/Documentation/devicetree/bindings/pinctrl/allwinner,sunxi-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/allwinner,sunxi-pinctrl.txt
index dff0e5f995e..d8d065608ec 100644
--- a/Documentation/devicetree/bindings/pinctrl/allwinner,sunxi-pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/allwinner,sunxi-pinctrl.txt
@@ -6,8 +6,13 @@ the first two functions being GPIO in and out. The configuration on
the pins includes drive strength and pull-up.
Required properties:
-- compatible: "allwinner,<soc>-pinctrl". Supported SoCs for now are:
- sun5i-a13.
+- compatible: Should be one of the followings (depending on you SoC):
+ "allwinner,sun4i-a10-pinctrl"
+ "allwinner,sun5i-a10s-pinctrl"
+ "allwinner,sun5i-a13-pinctrl"
+ "allwinner,sun6i-a31-pinctrl"
+ "allwinner,sun6i-a31-r-pinctrl"
+ "allwinner,sun7i-a20-pinctrl"
- reg: Should contain the register physical address and length for the
pin controller.
diff --git a/Documentation/devicetree/bindings/pinctrl/atmel,at91-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/atmel,at91-pinctrl.txt
index 7ccae490ff6..02ab5ab198a 100644
--- a/Documentation/devicetree/bindings/pinctrl/atmel,at91-pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/atmel,at91-pinctrl.txt
@@ -18,7 +18,7 @@ mode) this pin can work on and the 'config' configures various pad settings
such as pull-up, multi drive, etc.
Required properties for iomux controller:
-- compatible: "atmel,at91rm9200-pinctrl"
+- compatible: "atmel,at91rm9200-pinctrl" or "atmel,at91sam9x5-pinctrl"
- atmel,mux-mask: array of mask (periph per bank) to describe if a pin can be
configured in this periph mode. All the periph and bank need to be describe.
diff --git a/Documentation/devicetree/bindings/pinctrl/brcm,bcm11351-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/brcm,bcm11351-pinctrl.txt
new file mode 100644
index 00000000000..4eaae32821a
--- /dev/null
+++ b/Documentation/devicetree/bindings/pinctrl/brcm,bcm11351-pinctrl.txt
@@ -0,0 +1,461 @@
+Broadcom BCM281xx Pin Controller
+
+This is a pin controller for the Broadcom BCM281xx SoC family, which includes
+BCM11130, BCM11140, BCM11351, BCM28145, and BCM28155 SoCs.
+
+=== Pin Controller Node ===
+
+Required Properties:
+
+- compatible: Must be "brcm,bcm11351-pinctrl"
+- reg: Base address of the PAD Controller register block and the size
+ of the block.
+
+For example, the following is the bare minimum node:
+
+ pinctrl@35004800 {
+ compatible = "brcm,bcm11351-pinctrl";
+ reg = <0x35004800 0x430>;
+ };
+
+As a pin controller device, in addition to the required properties, this node
+should also contain the pin configuration nodes that client devices reference,
+if any.
+
+=== Pin Configuration Node ===
+
+Each pin configuration node is a sub-node of the pin controller node and is a
+container of an arbitrary number of subnodes, called pin group nodes in this
+document.
+
+Please refer to the pinctrl-bindings.txt in this directory for details of the
+common pinctrl bindings used by client devices, including the definition of a
+"pin configuration node".
+
+=== Pin Group Node ===
+
+A pin group node specifies the desired pin mux and/or pin configuration for an
+arbitrary number of pins. The name of the pin group node is optional and not
+used.
+
+A pin group node only affects the properties specified in the node, and has no
+effect on any properties that are omitted.
+
+The pin group node accepts a subset of the generic pin config properties. For
+details generic pin config properties, please refer to pinctrl-bindings.txt
+and <include/linux/pinctrl/pinconfig-generic.h>.
+
+Each pin controlled by this pin controller belong to one of three types:
+Standard, I2C, and HDMI. Each type accepts a different set of pin config
+properties. A list of pins and their types is provided below.
+
+Required Properties (applicable to all pins):
+
+- pins: Multiple strings. Specifies the name(s) of one or more pins to
+ be configured by this node.
+
+Optional Properties (for standard pins):
+
+- function: String. Specifies the pin mux selection. Values
+ must be one of: "alt1", "alt2", "alt3", "alt4"
+- input-schmitt-enable: No arguments. Enable schmitt-trigger mode.
+- input-schmitt-disable: No arguments. Disable schmitt-trigger mode.
+- bias-pull-up: No arguments. Pull up on pin.
+- bias-pull-down: No arguments. Pull down on pin.
+- bias-disable: No arguments. Disable pin bias.
+- slew-rate: Integer. Meaning depends on configured pin mux:
+ *_SCL or *_SDA:
+ 0: Standard(100kbps)& Fast(400kbps) mode
+ 1: Highspeed (3.4Mbps) mode
+ IC_DM or IC_DP:
+ 0: normal slew rate
+ 1: fast slew rate
+ Otherwise:
+ 0: fast slew rate
+ 1: normal slew rate
+- input-enable: No arguments. Enable input (does not affect
+ output.)
+- input-disable: No arguments. Disable input (does not affect
+ output.)
+- drive-strength: Integer. Drive strength in mA. Valid values are
+ 2, 4, 6, 8, 10, 12, 14, 16 mA.
+
+Optional Properties (for I2C pins):
+
+- function: String. Specifies the pin mux selection. Values
+ must be one of: "alt1", "alt2", "alt3", "alt4"
+- bias-pull-up: Integer. Pull up strength in Ohm. There are 3
+ pull-up resisitors (1.2k, 1.8k, 2.7k) available
+ in parallel for I2C pins, so the valid values
+ are: 568, 720, 831, 1080, 1200, 1800, 2700 Ohm.
+- bias-disable: No arguments. Disable pin bias.
+- slew-rate: Integer. Meaning depends on configured pin mux:
+ *_SCL or *_SDA:
+ 0: Standard(100kbps)& Fast(400kbps) mode
+ 1: Highspeed (3.4Mbps) mode
+ IC_DM or IC_DP:
+ 0: normal slew rate
+ 1: fast slew rate
+ Otherwise:
+ 0: fast slew rate
+ 1: normal slew rate
+- input-enable: No arguments. Enable input (does not affect
+ output.)
+- input-disable: No arguments. Disable input (does not affect
+ output.)
+
+Optional Properties (for HDMI pins):
+
+- function: String. Specifies the pin mux selection. Values
+ must be one of: "alt1", "alt2", "alt3", "alt4"
+- slew-rate: Integer. Controls slew rate.
+ 0: Standard(100kbps)& Fast(400kbps) mode
+ 1: Highspeed (3.4Mbps) mode
+- input-enable: No arguments. Enable input (does not affect
+ output.)
+- input-disable: No arguments. Disable input (does not affect
+ output.)
+
+Example:
+// pin controller node
+pinctrl@35004800 {
+ compatible = "brcm,bcm11351-pinctrl";
+ reg = <0x35004800 0x430>;
+
+ // pin configuration node
+ dev_a_default: dev_a_active {
+ //group node defining 1 standard pin
+ grp_1 {
+ pins = "std_pin1";
+ function = "alt1";
+ input-schmitt-enable;
+ bias-disable;
+ slew-rate = <1>;
+ drive-strength = <4>;
+ };
+
+ // group node defining 2 I2C pins
+ grp_2 {
+ pins = "i2c_pin1", "i2c_pin2";
+ function = "alt2";
+ bias-pull-up = <720>;
+ input-enable;
+ };
+
+ // group node defining 2 HDMI pins
+ grp_3 {
+ pins = "hdmi_pin1", "hdmi_pin2";
+ function = "alt3";
+ slew-rate = <1>;
+ };
+
+ // other pin group nodes
+ ...
+ };
+
+ // other pin configuration nodes
+ ...
+};
+
+In the example above, "dev_a_active" is a pin configuration node with a number
+of sub-nodes. In the pin group node "grp_1", one pin, "std_pin1", is defined in
+the "pins" property. Thus, the remaining properties in the "grp_1" node applies
+only to this pin, including the following settings:
+ - setting pinmux to "alt1"
+ - enabling schmitt-trigger (hystersis) mode
+ - disabling pin bias
+ - setting the slew-rate to 1
+ - setting the drive strength to 4 mA
+Note that neither "input-enable" nor "input-disable" was specified - the pinctrl
+subsystem will therefore leave this property unchanged from whatever state it
+was in before applying these changes.
+
+The "pins" property in the pin group node "grp_2" specifies two pins -
+"i2c_pin1" and "i2c_pin2"; the remaining properties in this pin group node,
+therefore, applies to both of these pins. The properties include:
+ - setting pinmux to "alt2"
+ - setting pull-up resistance to 720 Ohm (ie. enabling 1.2k and 1.8k resistors
+ in parallel)
+ - enabling both pins' input
+"slew-rate" is not specified in this pin group node, so the slew-rate for these
+pins are left as-is.
+
+Finally, "grp_3" defines two HDMI pins. The following properties are applied to
+both pins:
+ - setting pinmux to "alt3"
+ - setting slew-rate to 1; for HDMI pins, this corresponds to the 3.4 Mbps
+ Highspeed mode
+The input is neither enabled or disabled, and is left untouched.
+
+=== Pin Names and Type ===
+
+The following are valid pin names and their pin types:
+
+ "adcsync", Standard
+ "bat_rm", Standard
+ "bsc1_scl", I2C
+ "bsc1_sda", I2C
+ "bsc2_scl", I2C
+ "bsc2_sda", I2C
+ "classgpwr", Standard
+ "clk_cx8", Standard
+ "clkout_0", Standard
+ "clkout_1", Standard
+ "clkout_2", Standard
+ "clkout_3", Standard
+ "clkreq_in_0", Standard
+ "clkreq_in_1", Standard
+ "cws_sys_req1", Standard
+ "cws_sys_req2", Standard
+ "cws_sys_req3", Standard
+ "digmic1_clk", Standard
+ "digmic1_dq", Standard
+ "digmic2_clk", Standard
+ "digmic2_dq", Standard
+ "gpen13", Standard
+ "gpen14", Standard
+ "gpen15", Standard
+ "gpio00", Standard
+ "gpio01", Standard
+ "gpio02", Standard
+ "gpio03", Standard
+ "gpio04", Standard
+ "gpio05", Standard
+ "gpio06", Standard
+ "gpio07", Standard
+ "gpio08", Standard
+ "gpio09", Standard
+ "gpio10", Standard
+ "gpio11", Standard
+ "gpio12", Standard
+ "gpio13", Standard
+ "gpio14", Standard
+ "gps_pablank", Standard
+ "gps_tmark", Standard
+ "hdmi_scl", HDMI
+ "hdmi_sda", HDMI
+ "ic_dm", Standard
+ "ic_dp", Standard
+ "kp_col_ip_0", Standard
+ "kp_col_ip_1", Standard
+ "kp_col_ip_2", Standard
+ "kp_col_ip_3", Standard
+ "kp_row_op_0", Standard
+ "kp_row_op_1", Standard
+ "kp_row_op_2", Standard
+ "kp_row_op_3", Standard
+ "lcd_b_0", Standard
+ "lcd_b_1", Standard
+ "lcd_b_2", Standard
+ "lcd_b_3", Standard
+ "lcd_b_4", Standard
+ "lcd_b_5", Standard
+ "lcd_b_6", Standard
+ "lcd_b_7", Standard
+ "lcd_g_0", Standard
+ "lcd_g_1", Standard
+ "lcd_g_2", Standard
+ "lcd_g_3", Standard
+ "lcd_g_4", Standard
+ "lcd_g_5", Standard
+ "lcd_g_6", Standard
+ "lcd_g_7", Standard
+ "lcd_hsync", Standard
+ "lcd_oe", Standard
+ "lcd_pclk", Standard
+ "lcd_r_0", Standard
+ "lcd_r_1", Standard
+ "lcd_r_2", Standard
+ "lcd_r_3", Standard
+ "lcd_r_4", Standard
+ "lcd_r_5", Standard
+ "lcd_r_6", Standard
+ "lcd_r_7", Standard
+ "lcd_vsync", Standard
+ "mdmgpio0", Standard
+ "mdmgpio1", Standard
+ "mdmgpio2", Standard
+ "mdmgpio3", Standard
+ "mdmgpio4", Standard
+ "mdmgpio5", Standard
+ "mdmgpio6", Standard
+ "mdmgpio7", Standard
+ "mdmgpio8", Standard
+ "mphi_data_0", Standard
+ "mphi_data_1", Standard
+ "mphi_data_2", Standard
+ "mphi_data_3", Standard
+ "mphi_data_4", Standard
+ "mphi_data_5", Standard
+ "mphi_data_6", Standard
+ "mphi_data_7", Standard
+ "mphi_data_8", Standard
+ "mphi_data_9", Standard
+ "mphi_data_10", Standard
+ "mphi_data_11", Standard
+ "mphi_data_12", Standard
+ "mphi_data_13", Standard
+ "mphi_data_14", Standard
+ "mphi_data_15", Standard
+ "mphi_ha0", Standard
+ "mphi_hat0", Standard
+ "mphi_hat1", Standard
+ "mphi_hce0_n", Standard
+ "mphi_hce1_n", Standard
+ "mphi_hrd_n", Standard
+ "mphi_hwr_n", Standard
+ "mphi_run0", Standard
+ "mphi_run1", Standard
+ "mtx_scan_clk", Standard
+ "mtx_scan_data", Standard
+ "nand_ad_0", Standard
+ "nand_ad_1", Standard
+ "nand_ad_2", Standard
+ "nand_ad_3", Standard
+ "nand_ad_4", Standard
+ "nand_ad_5", Standard
+ "nand_ad_6", Standard
+ "nand_ad_7", Standard
+ "nand_ale", Standard
+ "nand_cen_0", Standard
+ "nand_cen_1", Standard
+ "nand_cle", Standard
+ "nand_oen", Standard
+ "nand_rdy_0", Standard
+ "nand_rdy_1", Standard
+ "nand_wen", Standard
+ "nand_wp", Standard
+ "pc1", Standard
+ "pc2", Standard
+ "pmu_int", Standard
+ "pmu_scl", I2C
+ "pmu_sda", I2C
+ "rfst2g_mtsloten3g", Standard
+ "rgmii_0_rx_ctl", Standard
+ "rgmii_0_rxc", Standard
+ "rgmii_0_rxd_0", Standard
+ "rgmii_0_rxd_1", Standard
+ "rgmii_0_rxd_2", Standard
+ "rgmii_0_rxd_3", Standard
+ "rgmii_0_tx_ctl", Standard
+ "rgmii_0_txc", Standard
+ "rgmii_0_txd_0", Standard
+ "rgmii_0_txd_1", Standard
+ "rgmii_0_txd_2", Standard
+ "rgmii_0_txd_3", Standard
+ "rgmii_1_rx_ctl", Standard
+ "rgmii_1_rxc", Standard
+ "rgmii_1_rxd_0", Standard
+ "rgmii_1_rxd_1", Standard
+ "rgmii_1_rxd_2", Standard
+ "rgmii_1_rxd_3", Standard
+ "rgmii_1_tx_ctl", Standard
+ "rgmii_1_txc", Standard
+ "rgmii_1_txd_0", Standard
+ "rgmii_1_txd_1", Standard
+ "rgmii_1_txd_2", Standard
+ "rgmii_1_txd_3", Standard
+ "rgmii_gpio_0", Standard
+ "rgmii_gpio_1", Standard
+ "rgmii_gpio_2", Standard
+ "rgmii_gpio_3", Standard
+ "rtxdata2g_txdata3g1", Standard
+ "rtxen2g_txdata3g2", Standard
+ "rxdata3g0", Standard
+ "rxdata3g1", Standard
+ "rxdata3g2", Standard
+ "sdio1_clk", Standard
+ "sdio1_cmd", Standard
+ "sdio1_data_0", Standard
+ "sdio1_data_1", Standard
+ "sdio1_data_2", Standard
+ "sdio1_data_3", Standard
+ "sdio4_clk", Standard
+ "sdio4_cmd", Standard
+ "sdio4_data_0", Standard
+ "sdio4_data_1", Standard
+ "sdio4_data_2", Standard
+ "sdio4_data_3", Standard
+ "sim_clk", Standard
+ "sim_data", Standard
+ "sim_det", Standard
+ "sim_resetn", Standard
+ "sim2_clk", Standard
+ "sim2_data", Standard
+ "sim2_det", Standard
+ "sim2_resetn", Standard
+ "sri_c", Standard
+ "sri_d", Standard
+ "sri_e", Standard
+ "ssp_extclk", Standard
+ "ssp0_clk", Standard
+ "ssp0_fs", Standard
+ "ssp0_rxd", Standard
+ "ssp0_txd", Standard
+ "ssp2_clk", Standard
+ "ssp2_fs_0", Standard
+ "ssp2_fs_1", Standard
+ "ssp2_fs_2", Standard
+ "ssp2_fs_3", Standard
+ "ssp2_rxd_0", Standard
+ "ssp2_rxd_1", Standard
+ "ssp2_txd_0", Standard
+ "ssp2_txd_1", Standard
+ "ssp3_clk", Standard
+ "ssp3_fs", Standard
+ "ssp3_rxd", Standard
+ "ssp3_txd", Standard
+ "ssp4_clk", Standard
+ "ssp4_fs", Standard
+ "ssp4_rxd", Standard
+ "ssp4_txd", Standard
+ "ssp5_clk", Standard
+ "ssp5_fs", Standard
+ "ssp5_rxd", Standard
+ "ssp5_txd", Standard
+ "ssp6_clk", Standard
+ "ssp6_fs", Standard
+ "ssp6_rxd", Standard
+ "ssp6_txd", Standard
+ "stat_1", Standard
+ "stat_2", Standard
+ "sysclken", Standard
+ "traceclk", Standard
+ "tracedt00", Standard
+ "tracedt01", Standard
+ "tracedt02", Standard
+ "tracedt03", Standard
+ "tracedt04", Standard
+ "tracedt05", Standard
+ "tracedt06", Standard
+ "tracedt07", Standard
+ "tracedt08", Standard
+ "tracedt09", Standard
+ "tracedt10", Standard
+ "tracedt11", Standard
+ "tracedt12", Standard
+ "tracedt13", Standard
+ "tracedt14", Standard
+ "tracedt15", Standard
+ "txdata3g0", Standard
+ "txpwrind", Standard
+ "uartb1_ucts", Standard
+ "uartb1_urts", Standard
+ "uartb1_urxd", Standard
+ "uartb1_utxd", Standard
+ "uartb2_urxd", Standard
+ "uartb2_utxd", Standard
+ "uartb3_ucts", Standard
+ "uartb3_urts", Standard
+ "uartb3_urxd", Standard
+ "uartb3_utxd", Standard
+ "uartb4_ucts", Standard
+ "uartb4_urts", Standard
+ "uartb4_urxd", Standard
+ "uartb4_utxd", Standard
+ "vc_cam1_scl", I2C
+ "vc_cam1_sda", I2C
+ "vc_cam2_scl", I2C
+ "vc_cam2_sda", I2C
+ "vc_cam3_scl", I2C
+ "vc_cam3_sda", I2C
diff --git a/Documentation/devicetree/bindings/pinctrl/fsl,imx-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/fsl,imx-pinctrl.txt
index 3a7caf7a744..9fde25f1401 100644
--- a/Documentation/devicetree/bindings/pinctrl/fsl,imx-pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/fsl,imx-pinctrl.txt
@@ -22,11 +22,12 @@ Required properties for iomux controller:
Please refer to each fsl,<soc>-pinctrl.txt binding doc for supported SoCs.
Required properties for pin configuration node:
-- fsl,pins: two integers array, represents a group of pins mux and config
- setting. The format is fsl,pins = <PIN_FUNC_ID CONFIG>, PIN_FUNC_ID is a
- pin working on a specific function, which consists of a tuple of
- <mux_reg conf_reg input_reg mux_val input_val>. CONFIG is the pad setting
- value like pull-up on this pin.
+- fsl,pins: each entry consists of 6 integers and represents the mux and config
+ setting for one pin. The first 5 integers <mux_reg conf_reg input_reg mux_val
+ input_val> are specified using a PIN_FUNC_ID macro, which can be found in
+ imx*-pinfunc.h under device tree source folder. The last integer CONFIG is
+ the pad setting value like pull-up on this pin. And that's why fsl,pins entry
+ looks like <PIN_FUNC_ID CONFIG> in the example below.
Bits used for CONFIG:
NO_PAD_CTL(1 << 31): indicate this pin does not need config.
@@ -72,17 +73,18 @@ iomuxc@020e0000 {
/* shared pinctrl settings */
usdhc4 {
pinctrl_usdhc4_1: usdhc4grp-1 {
- fsl,pins = <1386 0x17059 /* MX6Q_PAD_SD4_CMD__USDHC4_CMD */
- 1392 0x10059 /* MX6Q_PAD_SD4_CLK__USDHC4_CLK */
- 1462 0x17059 /* MX6Q_PAD_SD4_DAT0__USDHC4_DAT0 */
- 1470 0x17059 /* MX6Q_PAD_SD4_DAT1__USDHC4_DAT1 */
- 1478 0x17059 /* MX6Q_PAD_SD4_DAT2__USDHC4_DAT2 */
- 1486 0x17059 /* MX6Q_PAD_SD4_DAT3__USDHC4_DAT3 */
- 1493 0x17059 /* MX6Q_PAD_SD4_DAT4__USDHC4_DAT4 */
- 1501 0x17059 /* MX6Q_PAD_SD4_DAT5__USDHC4_DAT5 */
- 1509 0x17059 /* MX6Q_PAD_SD4_DAT6__USDHC4_DAT6 */
- 1517 0x17059>; /* MX6Q_PAD_SD4_DAT7__USDHC4_DAT7 */
- };
+ fsl,pins = <
+ MX6QDL_PAD_SD4_CMD__SD4_CMD 0x17059
+ MX6QDL_PAD_SD4_CLK__SD4_CLK 0x10059
+ MX6QDL_PAD_SD4_DAT0__SD4_DATA0 0x17059
+ MX6QDL_PAD_SD4_DAT1__SD4_DATA1 0x17059
+ MX6QDL_PAD_SD4_DAT2__SD4_DATA2 0x17059
+ MX6QDL_PAD_SD4_DAT3__SD4_DATA3 0x17059
+ MX6QDL_PAD_SD4_DAT4__SD4_DATA4 0x17059
+ MX6QDL_PAD_SD4_DAT5__SD4_DATA5 0x17059
+ MX6QDL_PAD_SD4_DAT6__SD4_DATA6 0x17059
+ MX6QDL_PAD_SD4_DAT7__SD4_DATA7 0x17059
+ >;
};
....
};
@@ -90,6 +92,3 @@ Refer to the IOMUXC controller chapter in imx6q datasheet,
0x17059 means enable hysteresis, 47KOhm Pull Up, 50Mhz speed,
80Ohm driver strength and Fast Slew Rate.
User should refer to each SoC spec to set the correct value.
-
-TODO: when dtc macro support is available, we can change above raw data
-to dt macro which can get better readability in dts file.
diff --git a/Documentation/devicetree/bindings/pinctrl/fsl,imx25-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/fsl,imx25-pinctrl.txt
new file mode 100644
index 00000000000..fd653bde18d
--- /dev/null
+++ b/Documentation/devicetree/bindings/pinctrl/fsl,imx25-pinctrl.txt
@@ -0,0 +1,23 @@
+* Freescale IMX25 IOMUX Controller
+
+Please refer to fsl,imx-pinctrl.txt in this directory for common binding part
+and usage.
+
+CONFIG bits definition:
+PAD_CTL_HYS (1 << 8)
+PAD_CTL_PKE (1 << 7)
+PAD_CTL_PUE (1 << 6)
+PAD_CTL_PUS_100K_DOWN (0 << 4)
+PAD_CTL_PUS_47K_UP (1 << 4)
+PAD_CTL_PUS_100K_UP (2 << 4)
+PAD_CTL_PUS_22K_UP (3 << 4)
+PAD_CTL_ODE_CMOS (0 << 3)
+PAD_CTL_ODE_OPENDRAIN (1 << 3)
+PAD_CTL_DSE_NOMINAL (0 << 1)
+PAD_CTL_DSE_HIGH (1 << 1)
+PAD_CTL_DSE_MAX (2 << 1)
+PAD_CTL_SRE_FAST (1 << 0)
+PAD_CTL_SRE_SLOW (0 << 0)
+
+Refer to imx25-pinfunc.h in device tree source folder for all available
+imx25 PIN_FUNC_ID.
diff --git a/Documentation/devicetree/bindings/pinctrl/fsl,imx27-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/fsl,imx27-pinctrl.txt
new file mode 100644
index 00000000000..d1706ea8257
--- /dev/null
+++ b/Documentation/devicetree/bindings/pinctrl/fsl,imx27-pinctrl.txt
@@ -0,0 +1,121 @@
+* Freescale IMX27 IOMUX Controller
+
+Required properties:
+- compatible: "fsl,imx27-iomuxc"
+
+The iomuxc driver node should define subnodes containing of pinctrl configuration subnodes.
+
+Required properties for pin configuration node:
+- fsl,pins: three integers array, represents a group of pins mux and config
+ setting. The format is fsl,pins = <PIN MUX_ID CONFIG>.
+
+ PIN is an integer between 0 and 0xbf. imx27 has 6 ports with 32 configurable
+ configurable pins each. PIN is PORT * 32 + PORT_PIN, PORT_PIN is the pin
+ number on the specific port (between 0 and 31).
+
+ MUX_ID is
+ function + (direction << 2) + (gpio_oconf << 4) + (gpio_iconfa << 8) + (gpio_iconfb << 10)
+
+ function value is used to select the pin function.
+ Possible values:
+ 0 - Primary function
+ 1 - Alternate function
+ 2 - GPIO
+ Registers: GIUS (GPIO In Use), GPR (General Purpose Register)
+
+ direction defines the data direction of the pin.
+ Possible values:
+ 0 - Input
+ 1 - Output
+ Register: DDIR
+
+ gpio_oconf configures the gpio submodule output signal. This does not
+ have any effect unless GPIO function is selected. A/B/C_IN are output
+ signals of function blocks A,B and C. Specific function blocks are
+ described in the reference manual.
+ Possible values:
+ 0 - A_IN
+ 1 - B_IN
+ 2 - C_IN
+ 3 - Data Register
+ Registers: OCR1, OCR2
+
+ gpio_iconfa/b configures the gpio submodule input to functionblocks A and
+ B. GPIO function should be selected if this is configured.
+ Possible values:
+ 0 - GPIO_IN
+ 1 - Interrupt Status Register
+ 2 - Pulldown
+ 3 - Pullup
+ Registers ICONFA1, ICONFA2, ICONFB1 and ICONFB2
+
+ CONFIG can be 0 or 1, meaning Pullup disable/enable.
+
+
+The iomux controller has gpio child nodes which are embedded in the iomux
+control registers. They have to be defined as child nodes of the iomux device
+node. If gpio subnodes are defined "#address-cells", "#size-cells" and "ranges"
+properties for the iomux device node are required.
+
+Example:
+
+iomuxc: iomuxc@10015000 {
+ compatible = "fsl,imx27-iomuxc";
+ reg = <0x10015000 0x600>;
+ #address-cells = <1>;
+ #size-cells = <1>;
+ ranges;
+
+ gpio1: gpio@10015000 {
+ ...
+ };
+
+ ...
+
+ uart {
+ pinctrl_uart1: uart-1 {
+ fsl,pins = <
+ 0x8c 0x004 0x0 /* UART1_TXD__UART1_TXD */
+ 0x8d 0x000 0x0 /* UART1_RXD__UART1_RXD */
+ 0x8e 0x004 0x0 /* UART1_CTS__UART1_CTS */
+ 0x8f 0x000 0x0 /* UART1_RTS__UART1_RTS */
+ >;
+ };
+
+ ...
+ };
+};
+
+
+For convenience there are macros defined in imx27-pinfunc.h which provide PIN
+and MUX_ID. They are structured as MX27_PAD_<Pad name>__<Signal name>. The names
+are defined in the i.MX27 reference manual.
+
+The above example using macros:
+
+iomuxc: iomuxc@10015000 {
+ compatible = "fsl,imx27-iomuxc";
+ reg = <0x10015000 0x600>;
+ #address-cells = <1>;
+ #size-cells = <1>;
+ ranges;
+
+ gpio1: gpio@10015000 {
+ ...
+ };
+
+ ...
+
+ uart {
+ pinctrl_uart1: uart-1 {
+ fsl,pins = <
+ MX27_PAD_UART1_TXD__UART1_TXD 0x0
+ MX27_PAD_UART1_RXD__UART1_RXD 0x0
+ MX27_PAD_UART1_CTS__UART1_CTS 0x0
+ MX27_PAD_UART1_RTS__UART1_RTS 0x0
+ >;
+ };
+
+ ...
+ };
+};
diff --git a/Documentation/devicetree/bindings/pinctrl/fsl,imx6sx-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/fsl,imx6sx-pinctrl.txt
new file mode 100644
index 00000000000..b1b595220f1
--- /dev/null
+++ b/Documentation/devicetree/bindings/pinctrl/fsl,imx6sx-pinctrl.txt
@@ -0,0 +1,36 @@
+* Freescale i.MX6 SoloX IOMUX Controller
+
+Please refer to fsl,imx-pinctrl.txt in this directory for common binding part
+and usage.
+
+Required properties:
+- compatible: "fsl,imx6sx-iomuxc"
+- fsl,pins: each entry consists of 6 integers and represents the mux and config
+ setting for one pin. The first 5 integers <mux_reg conf_reg input_reg mux_val
+ input_val> are specified using a PIN_FUNC_ID macro, which can be found in
+ imx6sx-pinfunc.h under device tree source folder. The last integer CONFIG is
+ the pad setting value like pull-up on this pin. Please refer to i.MX6 SoloX
+ Reference Manual for detailed CONFIG settings.
+
+CONFIG bits definition:
+PAD_CTL_HYS (1 << 16)
+PAD_CTL_PUS_100K_DOWN (0 << 14)
+PAD_CTL_PUS_47K_UP (1 << 14)
+PAD_CTL_PUS_100K_UP (2 << 14)
+PAD_CTL_PUS_22K_UP (3 << 14)
+PAD_CTL_PUE (1 << 13)
+PAD_CTL_PKE (1 << 12)
+PAD_CTL_ODE (1 << 11)
+PAD_CTL_SPEED_LOW (0 << 6)
+PAD_CTL_SPEED_MED (1 << 6)
+PAD_CTL_SPEED_HIGH (3 << 6)
+PAD_CTL_DSE_DISABLE (0 << 3)
+PAD_CTL_DSE_260ohm (1 << 3)
+PAD_CTL_DSE_130ohm (2 << 3)
+PAD_CTL_DSE_87ohm (3 << 3)
+PAD_CTL_DSE_65ohm (4 << 3)
+PAD_CTL_DSE_52ohm (5 << 3)
+PAD_CTL_DSE_43ohm (6 << 3)
+PAD_CTL_DSE_37ohm (7 << 3)
+PAD_CTL_SRE_FAST (1 << 0)
+PAD_CTL_SRE_SLOW (0 << 0)
diff --git a/Documentation/devicetree/bindings/pinctrl/fsl,mxs-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/fsl,mxs-pinctrl.txt
index 3077370c89a..1e70a8aff26 100644
--- a/Documentation/devicetree/bindings/pinctrl/fsl,mxs-pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/fsl,mxs-pinctrl.txt
@@ -59,16 +59,16 @@ Required subnode-properties:
Optional subnode-properties:
- fsl,drive-strength: Integer.
- 0: 4 mA
- 1: 8 mA
- 2: 12 mA
- 3: 16 mA
+ 0: MXS_DRIVE_4mA
+ 1: MXS_DRIVE_8mA
+ 2: MXS_DRIVE_12mA
+ 3: MXS_DRIVE_16mA
- fsl,voltage: Integer.
- 0: 1.8 V
- 1: 3.3 V
+ 0: MXS_VOLTAGE_LOW - 1.8 V
+ 1: MXS_VOLTAGE_HIGH - 3.3 V
- fsl,pull-up: Integer.
- 0: Disable the internal pull-up
- 1: Enable the internal pull-up
+ 0: MXS_PULL_DISABLE - Disable the internal pull-up
+ 1: MXS_PULL_ENABLE - Enable the internal pull-up
Note that when enabling the pull-up, the internal pad keeper gets disabled.
Also, some pins doesn't have a pull up, in that case, setting the fsl,pull-up
@@ -85,23 +85,32 @@ pinctrl@80018000 {
mmc0_8bit_pins_a: mmc0-8bit@0 {
reg = <0>;
fsl,pinmux-ids = <
- 0x2000 0x2010 0x2020 0x2030
- 0x2040 0x2050 0x2060 0x2070
- 0x2080 0x2090 0x20a0>;
- fsl,drive-strength = <1>;
- fsl,voltage = <1>;
- fsl,pull-up = <1>;
+ MX28_PAD_SSP0_DATA0__SSP0_D0
+ MX28_PAD_SSP0_DATA1__SSP0_D1
+ MX28_PAD_SSP0_DATA2__SSP0_D2
+ MX28_PAD_SSP0_DATA3__SSP0_D3
+ MX28_PAD_SSP0_DATA4__SSP0_D4
+ MX28_PAD_SSP0_DATA5__SSP0_D5
+ MX28_PAD_SSP0_DATA6__SSP0_D6
+ MX28_PAD_SSP0_DATA7__SSP0_D7
+ MX28_PAD_SSP0_CMD__SSP0_CMD
+ MX28_PAD_SSP0_DETECT__SSP0_CARD_DETECT
+ MX28_PAD_SSP0_SCK__SSP0_SCK
+ >;
+ fsl,drive-strength = <MXS_DRIVE_4mA>;
+ fsl,voltage = <MXS_VOLTAGE_HIGH>;
+ fsl,pull-up = <MXS_PULL_ENABLE>;
};
mmc_cd_cfg: mmc-cd-cfg {
- fsl,pinmux-ids = <0x2090>;
- fsl,pull-up = <0>;
+ fsl,pinmux-ids = <MX28_PAD_SSP0_DETECT__SSP0_CARD_DETECT>;
+ fsl,pull-up = <MXS_PULL_DISABLE>;
};
mmc_sck_cfg: mmc-sck-cfg {
- fsl,pinmux-ids = <0x20a0>;
- fsl,drive-strength = <2>;
- fsl,pull-up = <0>;
+ fsl,pinmux-ids = <MX28_PAD_SSP0_SCK__SSP0_SCK>;
+ fsl,drive-strength = <MXS_DRIVE_12mA>;
+ fsl,pull-up = <MXS_PULL_DISABLE>;
};
};
@@ -112,811 +121,7 @@ adjusting the configuration for pins card-detection and clock from what group
node mmc0-8bit defines. Only the configuration properties to be adjusted need
to be listed in the config nodes.
-Valid values for i.MX28 pinmux-id:
-
-pinmux id
------- --
-MX28_PAD_GPMI_D00__GPMI_D0 0x0000
-MX28_PAD_GPMI_D01__GPMI_D1 0x0010
-MX28_PAD_GPMI_D02__GPMI_D2 0x0020
-MX28_PAD_GPMI_D03__GPMI_D3 0x0030
-MX28_PAD_GPMI_D04__GPMI_D4 0x0040
-MX28_PAD_GPMI_D05__GPMI_D5 0x0050
-MX28_PAD_GPMI_D06__GPMI_D6 0x0060
-MX28_PAD_GPMI_D07__GPMI_D7 0x0070
-MX28_PAD_GPMI_CE0N__GPMI_CE0N 0x0100
-MX28_PAD_GPMI_CE1N__GPMI_CE1N 0x0110
-MX28_PAD_GPMI_CE2N__GPMI_CE2N 0x0120
-MX28_PAD_GPMI_CE3N__GPMI_CE3N 0x0130
-MX28_PAD_GPMI_RDY0__GPMI_READY0 0x0140
-MX28_PAD_GPMI_RDY1__GPMI_READY1 0x0150
-MX28_PAD_GPMI_RDY2__GPMI_READY2 0x0160
-MX28_PAD_GPMI_RDY3__GPMI_READY3 0x0170
-MX28_PAD_GPMI_RDN__GPMI_RDN 0x0180
-MX28_PAD_GPMI_WRN__GPMI_WRN 0x0190
-MX28_PAD_GPMI_ALE__GPMI_ALE 0x01a0
-MX28_PAD_GPMI_CLE__GPMI_CLE 0x01b0
-MX28_PAD_GPMI_RESETN__GPMI_RESETN 0x01c0
-MX28_PAD_LCD_D00__LCD_D0 0x1000
-MX28_PAD_LCD_D01__LCD_D1 0x1010
-MX28_PAD_LCD_D02__LCD_D2 0x1020
-MX28_PAD_LCD_D03__LCD_D3 0x1030
-MX28_PAD_LCD_D04__LCD_D4 0x1040
-MX28_PAD_LCD_D05__LCD_D5 0x1050
-MX28_PAD_LCD_D06__LCD_D6 0x1060
-MX28_PAD_LCD_D07__LCD_D7 0x1070
-MX28_PAD_LCD_D08__LCD_D8 0x1080
-MX28_PAD_LCD_D09__LCD_D9 0x1090
-MX28_PAD_LCD_D10__LCD_D10 0x10a0
-MX28_PAD_LCD_D11__LCD_D11 0x10b0
-MX28_PAD_LCD_D12__LCD_D12 0x10c0
-MX28_PAD_LCD_D13__LCD_D13 0x10d0
-MX28_PAD_LCD_D14__LCD_D14 0x10e0
-MX28_PAD_LCD_D15__LCD_D15 0x10f0
-MX28_PAD_LCD_D16__LCD_D16 0x1100
-MX28_PAD_LCD_D17__LCD_D17 0x1110
-MX28_PAD_LCD_D18__LCD_D18 0x1120
-MX28_PAD_LCD_D19__LCD_D19 0x1130
-MX28_PAD_LCD_D20__LCD_D20 0x1140
-MX28_PAD_LCD_D21__LCD_D21 0x1150
-MX28_PAD_LCD_D22__LCD_D22 0x1160
-MX28_PAD_LCD_D23__LCD_D23 0x1170
-MX28_PAD_LCD_RD_E__LCD_RD_E 0x1180
-MX28_PAD_LCD_WR_RWN__LCD_WR_RWN 0x1190
-MX28_PAD_LCD_RS__LCD_RS 0x11a0
-MX28_PAD_LCD_CS__LCD_CS 0x11b0
-MX28_PAD_LCD_VSYNC__LCD_VSYNC 0x11c0
-MX28_PAD_LCD_HSYNC__LCD_HSYNC 0x11d0
-MX28_PAD_LCD_DOTCLK__LCD_DOTCLK 0x11e0
-MX28_PAD_LCD_ENABLE__LCD_ENABLE 0x11f0
-MX28_PAD_SSP0_DATA0__SSP0_D0 0x2000
-MX28_PAD_SSP0_DATA1__SSP0_D1 0x2010
-MX28_PAD_SSP0_DATA2__SSP0_D2 0x2020
-MX28_PAD_SSP0_DATA3__SSP0_D3 0x2030
-MX28_PAD_SSP0_DATA4__SSP0_D4 0x2040
-MX28_PAD_SSP0_DATA5__SSP0_D5 0x2050
-MX28_PAD_SSP0_DATA6__SSP0_D6 0x2060
-MX28_PAD_SSP0_DATA7__SSP0_D7 0x2070
-MX28_PAD_SSP0_CMD__SSP0_CMD 0x2080
-MX28_PAD_SSP0_DETECT__SSP0_CARD_DETECT 0x2090
-MX28_PAD_SSP0_SCK__SSP0_SCK 0x20a0
-MX28_PAD_SSP1_SCK__SSP1_SCK 0x20c0
-MX28_PAD_SSP1_CMD__SSP1_CMD 0x20d0
-MX28_PAD_SSP1_DATA0__SSP1_D0 0x20e0
-MX28_PAD_SSP1_DATA3__SSP1_D3 0x20f0
-MX28_PAD_SSP2_SCK__SSP2_SCK 0x2100
-MX28_PAD_SSP2_MOSI__SSP2_CMD 0x2110
-MX28_PAD_SSP2_MISO__SSP2_D0 0x2120
-MX28_PAD_SSP2_SS0__SSP2_D3 0x2130
-MX28_PAD_SSP2_SS1__SSP2_D4 0x2140
-MX28_PAD_SSP2_SS2__SSP2_D5 0x2150
-MX28_PAD_SSP3_SCK__SSP3_SCK 0x2180
-MX28_PAD_SSP3_MOSI__SSP3_CMD 0x2190
-MX28_PAD_SSP3_MISO__SSP3_D0 0x21a0
-MX28_PAD_SSP3_SS0__SSP3_D3 0x21b0
-MX28_PAD_AUART0_RX__AUART0_RX 0x3000
-MX28_PAD_AUART0_TX__AUART0_TX 0x3010
-MX28_PAD_AUART0_CTS__AUART0_CTS 0x3020
-MX28_PAD_AUART0_RTS__AUART0_RTS 0x3030
-MX28_PAD_AUART1_RX__AUART1_RX 0x3040
-MX28_PAD_AUART1_TX__AUART1_TX 0x3050
-MX28_PAD_AUART1_CTS__AUART1_CTS 0x3060
-MX28_PAD_AUART1_RTS__AUART1_RTS 0x3070
-MX28_PAD_AUART2_RX__AUART2_RX 0x3080
-MX28_PAD_AUART2_TX__AUART2_TX 0x3090
-MX28_PAD_AUART2_CTS__AUART2_CTS 0x30a0
-MX28_PAD_AUART2_RTS__AUART2_RTS 0x30b0
-MX28_PAD_AUART3_RX__AUART3_RX 0x30c0
-MX28_PAD_AUART3_TX__AUART3_TX 0x30d0
-MX28_PAD_AUART3_CTS__AUART3_CTS 0x30e0
-MX28_PAD_AUART3_RTS__AUART3_RTS 0x30f0
-MX28_PAD_PWM0__PWM_0 0x3100
-MX28_PAD_PWM1__PWM_1 0x3110
-MX28_PAD_PWM2__PWM_2 0x3120
-MX28_PAD_SAIF0_MCLK__SAIF0_MCLK 0x3140
-MX28_PAD_SAIF0_LRCLK__SAIF0_LRCLK 0x3150
-MX28_PAD_SAIF0_BITCLK__SAIF0_BITCLK 0x3160
-MX28_PAD_SAIF0_SDATA0__SAIF0_SDATA0 0x3170
-MX28_PAD_I2C0_SCL__I2C0_SCL 0x3180
-MX28_PAD_I2C0_SDA__I2C0_SDA 0x3190
-MX28_PAD_SAIF1_SDATA0__SAIF1_SDATA0 0x31a0
-MX28_PAD_SPDIF__SPDIF_TX 0x31b0
-MX28_PAD_PWM3__PWM_3 0x31c0
-MX28_PAD_PWM4__PWM_4 0x31d0
-MX28_PAD_LCD_RESET__LCD_RESET 0x31e0
-MX28_PAD_ENET0_MDC__ENET0_MDC 0x4000
-MX28_PAD_ENET0_MDIO__ENET0_MDIO 0x4010
-MX28_PAD_ENET0_RX_EN__ENET0_RX_EN 0x4020
-MX28_PAD_ENET0_RXD0__ENET0_RXD0 0x4030
-MX28_PAD_ENET0_RXD1__ENET0_RXD1 0x4040
-MX28_PAD_ENET0_TX_CLK__ENET0_TX_CLK 0x4050
-MX28_PAD_ENET0_TX_EN__ENET0_TX_EN 0x4060
-MX28_PAD_ENET0_TXD0__ENET0_TXD0 0x4070
-MX28_PAD_ENET0_TXD1__ENET0_TXD1 0x4080
-MX28_PAD_ENET0_RXD2__ENET0_RXD2 0x4090
-MX28_PAD_ENET0_RXD3__ENET0_RXD3 0x40a0
-MX28_PAD_ENET0_TXD2__ENET0_TXD2 0x40b0
-MX28_PAD_ENET0_TXD3__ENET0_TXD3 0x40c0
-MX28_PAD_ENET0_RX_CLK__ENET0_RX_CLK 0x40d0
-MX28_PAD_ENET0_COL__ENET0_COL 0x40e0
-MX28_PAD_ENET0_CRS__ENET0_CRS 0x40f0
-MX28_PAD_ENET_CLK__CLKCTRL_ENET 0x4100
-MX28_PAD_JTAG_RTCK__JTAG_RTCK 0x4140
-MX28_PAD_EMI_D00__EMI_DATA0 0x5000
-MX28_PAD_EMI_D01__EMI_DATA1 0x5010
-MX28_PAD_EMI_D02__EMI_DATA2 0x5020
-MX28_PAD_EMI_D03__EMI_DATA3 0x5030
-MX28_PAD_EMI_D04__EMI_DATA4 0x5040
-MX28_PAD_EMI_D05__EMI_DATA5 0x5050
-MX28_PAD_EMI_D06__EMI_DATA6 0x5060
-MX28_PAD_EMI_D07__EMI_DATA7 0x5070
-MX28_PAD_EMI_D08__EMI_DATA8 0x5080
-MX28_PAD_EMI_D09__EMI_DATA9 0x5090
-MX28_PAD_EMI_D10__EMI_DATA10 0x50a0
-MX28_PAD_EMI_D11__EMI_DATA11 0x50b0
-MX28_PAD_EMI_D12__EMI_DATA12 0x50c0
-MX28_PAD_EMI_D13__EMI_DATA13 0x50d0
-MX28_PAD_EMI_D14__EMI_DATA14 0x50e0
-MX28_PAD_EMI_D15__EMI_DATA15 0x50f0
-MX28_PAD_EMI_ODT0__EMI_ODT0 0x5100
-MX28_PAD_EMI_DQM0__EMI_DQM0 0x5110
-MX28_PAD_EMI_ODT1__EMI_ODT1 0x5120
-MX28_PAD_EMI_DQM1__EMI_DQM1 0x5130
-MX28_PAD_EMI_DDR_OPEN_FB__EMI_DDR_OPEN_FEEDBACK 0x5140
-MX28_PAD_EMI_CLK__EMI_CLK 0x5150
-MX28_PAD_EMI_DQS0__EMI_DQS0 0x5160
-MX28_PAD_EMI_DQS1__EMI_DQS1 0x5170
-MX28_PAD_EMI_DDR_OPEN__EMI_DDR_OPEN 0x51a0
-MX28_PAD_EMI_A00__EMI_ADDR0 0x6000
-MX28_PAD_EMI_A01__EMI_ADDR1 0x6010
-MX28_PAD_EMI_A02__EMI_ADDR2 0x6020
-MX28_PAD_EMI_A03__EMI_ADDR3 0x6030
-MX28_PAD_EMI_A04__EMI_ADDR4 0x6040
-MX28_PAD_EMI_A05__EMI_ADDR5 0x6050
-MX28_PAD_EMI_A06__EMI_ADDR6 0x6060
-MX28_PAD_EMI_A07__EMI_ADDR7 0x6070
-MX28_PAD_EMI_A08__EMI_ADDR8 0x6080
-MX28_PAD_EMI_A09__EMI_ADDR9 0x6090
-MX28_PAD_EMI_A10__EMI_ADDR10 0x60a0
-MX28_PAD_EMI_A11__EMI_ADDR11 0x60b0
-MX28_PAD_EMI_A12__EMI_ADDR12 0x60c0
-MX28_PAD_EMI_A13__EMI_ADDR13 0x60d0
-MX28_PAD_EMI_A14__EMI_ADDR14 0x60e0
-MX28_PAD_EMI_BA0__EMI_BA0 0x6100
-MX28_PAD_EMI_BA1__EMI_BA1 0x6110
-MX28_PAD_EMI_BA2__EMI_BA2 0x6120
-MX28_PAD_EMI_CASN__EMI_CASN 0x6130
-MX28_PAD_EMI_RASN__EMI_RASN 0x6140
-MX28_PAD_EMI_WEN__EMI_WEN 0x6150
-MX28_PAD_EMI_CE0N__EMI_CE0N 0x6160
-MX28_PAD_EMI_CE1N__EMI_CE1N 0x6170
-MX28_PAD_EMI_CKE__EMI_CKE 0x6180
-MX28_PAD_GPMI_D00__SSP1_D0 0x0001
-MX28_PAD_GPMI_D01__SSP1_D1 0x0011
-MX28_PAD_GPMI_D02__SSP1_D2 0x0021
-MX28_PAD_GPMI_D03__SSP1_D3 0x0031
-MX28_PAD_GPMI_D04__SSP1_D4 0x0041
-MX28_PAD_GPMI_D05__SSP1_D5 0x0051
-MX28_PAD_GPMI_D06__SSP1_D6 0x0061
-MX28_PAD_GPMI_D07__SSP1_D7 0x0071
-MX28_PAD_GPMI_CE0N__SSP3_D0 0x0101
-MX28_PAD_GPMI_CE1N__SSP3_D3 0x0111
-MX28_PAD_GPMI_CE2N__CAN1_TX 0x0121
-MX28_PAD_GPMI_CE3N__CAN1_RX 0x0131
-MX28_PAD_GPMI_RDY0__SSP1_CARD_DETECT 0x0141
-MX28_PAD_GPMI_RDY1__SSP1_CMD 0x0151
-MX28_PAD_GPMI_RDY2__CAN0_TX 0x0161
-MX28_PAD_GPMI_RDY3__CAN0_RX 0x0171
-MX28_PAD_GPMI_RDN__SSP3_SCK 0x0181
-MX28_PAD_GPMI_WRN__SSP1_SCK 0x0191
-MX28_PAD_GPMI_ALE__SSP3_D1 0x01a1
-MX28_PAD_GPMI_CLE__SSP3_D2 0x01b1
-MX28_PAD_GPMI_RESETN__SSP3_CMD 0x01c1
-MX28_PAD_LCD_D03__ETM_DA8 0x1031
-MX28_PAD_LCD_D04__ETM_DA9 0x1041
-MX28_PAD_LCD_D08__ETM_DA3 0x1081
-MX28_PAD_LCD_D09__ETM_DA4 0x1091
-MX28_PAD_LCD_D20__ENET1_1588_EVENT2_OUT 0x1141
-MX28_PAD_LCD_D21__ENET1_1588_EVENT2_IN 0x1151
-MX28_PAD_LCD_D22__ENET1_1588_EVENT3_OUT 0x1161
-MX28_PAD_LCD_D23__ENET1_1588_EVENT3_IN 0x1171
-MX28_PAD_LCD_RD_E__LCD_VSYNC 0x1181
-MX28_PAD_LCD_WR_RWN__LCD_HSYNC 0x1191
-MX28_PAD_LCD_RS__LCD_DOTCLK 0x11a1
-MX28_PAD_LCD_CS__LCD_ENABLE 0x11b1
-MX28_PAD_LCD_VSYNC__SAIF1_SDATA0 0x11c1
-MX28_PAD_LCD_HSYNC__SAIF1_SDATA1 0x11d1
-MX28_PAD_LCD_DOTCLK__SAIF1_MCLK 0x11e1
-MX28_PAD_SSP0_DATA4__SSP2_D0 0x2041
-MX28_PAD_SSP0_DATA5__SSP2_D3 0x2051
-MX28_PAD_SSP0_DATA6__SSP2_CMD 0x2061
-MX28_PAD_SSP0_DATA7__SSP2_SCK 0x2071
-MX28_PAD_SSP1_SCK__SSP2_D1 0x20c1
-MX28_PAD_SSP1_CMD__SSP2_D2 0x20d1
-MX28_PAD_SSP1_DATA0__SSP2_D6 0x20e1
-MX28_PAD_SSP1_DATA3__SSP2_D7 0x20f1
-MX28_PAD_SSP2_SCK__AUART2_RX 0x2101
-MX28_PAD_SSP2_MOSI__AUART2_TX 0x2111
-MX28_PAD_SSP2_MISO__AUART3_RX 0x2121
-MX28_PAD_SSP2_SS0__AUART3_TX 0x2131
-MX28_PAD_SSP2_SS1__SSP2_D1 0x2141
-MX28_PAD_SSP2_SS2__SSP2_D2 0x2151
-MX28_PAD_SSP3_SCK__AUART4_TX 0x2181
-MX28_PAD_SSP3_MOSI__AUART4_RX 0x2191
-MX28_PAD_SSP3_MISO__AUART4_RTS 0x21a1
-MX28_PAD_SSP3_SS0__AUART4_CTS 0x21b1
-MX28_PAD_AUART0_RX__I2C0_SCL 0x3001
-MX28_PAD_AUART0_TX__I2C0_SDA 0x3011
-MX28_PAD_AUART0_CTS__AUART4_RX 0x3021
-MX28_PAD_AUART0_RTS__AUART4_TX 0x3031
-MX28_PAD_AUART1_RX__SSP2_CARD_DETECT 0x3041
-MX28_PAD_AUART1_TX__SSP3_CARD_DETECT 0x3051
-MX28_PAD_AUART1_CTS__USB0_OVERCURRENT 0x3061
-MX28_PAD_AUART1_RTS__USB0_ID 0x3071
-MX28_PAD_AUART2_RX__SSP3_D1 0x3081
-MX28_PAD_AUART2_TX__SSP3_D2 0x3091
-MX28_PAD_AUART2_CTS__I2C1_SCL 0x30a1
-MX28_PAD_AUART2_RTS__I2C1_SDA 0x30b1
-MX28_PAD_AUART3_RX__CAN0_TX 0x30c1
-MX28_PAD_AUART3_TX__CAN0_RX 0x30d1
-MX28_PAD_AUART3_CTS__CAN1_TX 0x30e1
-MX28_PAD_AUART3_RTS__CAN1_RX 0x30f1
-MX28_PAD_PWM0__I2C1_SCL 0x3101
-MX28_PAD_PWM1__I2C1_SDA 0x3111
-MX28_PAD_PWM2__USB0_ID 0x3121
-MX28_PAD_SAIF0_MCLK__PWM_3 0x3141
-MX28_PAD_SAIF0_LRCLK__PWM_4 0x3151
-MX28_PAD_SAIF0_BITCLK__PWM_5 0x3161
-MX28_PAD_SAIF0_SDATA0__PWM_6 0x3171
-MX28_PAD_I2C0_SCL__TIMROT_ROTARYA 0x3181
-MX28_PAD_I2C0_SDA__TIMROT_ROTARYB 0x3191
-MX28_PAD_SAIF1_SDATA0__PWM_7 0x31a1
-MX28_PAD_LCD_RESET__LCD_VSYNC 0x31e1
-MX28_PAD_ENET0_MDC__GPMI_CE4N 0x4001
-MX28_PAD_ENET0_MDIO__GPMI_CE5N 0x4011
-MX28_PAD_ENET0_RX_EN__GPMI_CE6N 0x4021
-MX28_PAD_ENET0_RXD0__GPMI_CE7N 0x4031
-MX28_PAD_ENET0_RXD1__GPMI_READY4 0x4041
-MX28_PAD_ENET0_TX_CLK__HSADC_TRIGGER 0x4051
-MX28_PAD_ENET0_TX_EN__GPMI_READY5 0x4061
-MX28_PAD_ENET0_TXD0__GPMI_READY6 0x4071
-MX28_PAD_ENET0_TXD1__GPMI_READY7 0x4081
-MX28_PAD_ENET0_RXD2__ENET1_RXD0 0x4091
-MX28_PAD_ENET0_RXD3__ENET1_RXD1 0x40a1
-MX28_PAD_ENET0_TXD2__ENET1_TXD0 0x40b1
-MX28_PAD_ENET0_TXD3__ENET1_TXD1 0x40c1
-MX28_PAD_ENET0_RX_CLK__ENET0_RX_ER 0x40d1
-MX28_PAD_ENET0_COL__ENET1_TX_EN 0x40e1
-MX28_PAD_ENET0_CRS__ENET1_RX_EN 0x40f1
-MX28_PAD_GPMI_CE2N__ENET0_RX_ER 0x0122
-MX28_PAD_GPMI_CE3N__SAIF1_MCLK 0x0132
-MX28_PAD_GPMI_RDY0__USB0_ID 0x0142
-MX28_PAD_GPMI_RDY2__ENET0_TX_ER 0x0162
-MX28_PAD_GPMI_RDY3__HSADC_TRIGGER 0x0172
-MX28_PAD_GPMI_ALE__SSP3_D4 0x01a2
-MX28_PAD_GPMI_CLE__SSP3_D5 0x01b2
-MX28_PAD_LCD_D00__ETM_DA0 0x1002
-MX28_PAD_LCD_D01__ETM_DA1 0x1012
-MX28_PAD_LCD_D02__ETM_DA2 0x1022
-MX28_PAD_LCD_D03__ETM_DA3 0x1032
-MX28_PAD_LCD_D04__ETM_DA4 0x1042
-MX28_PAD_LCD_D05__ETM_DA5 0x1052
-MX28_PAD_LCD_D06__ETM_DA6 0x1062
-MX28_PAD_LCD_D07__ETM_DA7 0x1072
-MX28_PAD_LCD_D08__ETM_DA8 0x1082
-MX28_PAD_LCD_D09__ETM_DA9 0x1092
-MX28_PAD_LCD_D10__ETM_DA10 0x10a2
-MX28_PAD_LCD_D11__ETM_DA11 0x10b2
-MX28_PAD_LCD_D12__ETM_DA12 0x10c2
-MX28_PAD_LCD_D13__ETM_DA13 0x10d2
-MX28_PAD_LCD_D14__ETM_DA14 0x10e2
-MX28_PAD_LCD_D15__ETM_DA15 0x10f2
-MX28_PAD_LCD_D16__ETM_DA7 0x1102
-MX28_PAD_LCD_D17__ETM_DA6 0x1112
-MX28_PAD_LCD_D18__ETM_DA5 0x1122
-MX28_PAD_LCD_D19__ETM_DA4 0x1132
-MX28_PAD_LCD_D20__ETM_DA3 0x1142
-MX28_PAD_LCD_D21__ETM_DA2 0x1152
-MX28_PAD_LCD_D22__ETM_DA1 0x1162
-MX28_PAD_LCD_D23__ETM_DA0 0x1172
-MX28_PAD_LCD_RD_E__ETM_TCTL 0x1182
-MX28_PAD_LCD_WR_RWN__ETM_TCLK 0x1192
-MX28_PAD_LCD_HSYNC__ETM_TCTL 0x11d2
-MX28_PAD_LCD_DOTCLK__ETM_TCLK 0x11e2
-MX28_PAD_SSP1_SCK__ENET0_1588_EVENT2_OUT 0x20c2
-MX28_PAD_SSP1_CMD__ENET0_1588_EVENT2_IN 0x20d2
-MX28_PAD_SSP1_DATA0__ENET0_1588_EVENT3_OUT 0x20e2
-MX28_PAD_SSP1_DATA3__ENET0_1588_EVENT3_IN 0x20f2
-MX28_PAD_SSP2_SCK__SAIF0_SDATA1 0x2102
-MX28_PAD_SSP2_MOSI__SAIF0_SDATA2 0x2112
-MX28_PAD_SSP2_MISO__SAIF1_SDATA1 0x2122
-MX28_PAD_SSP2_SS0__SAIF1_SDATA2 0x2132
-MX28_PAD_SSP2_SS1__USB1_OVERCURRENT 0x2142
-MX28_PAD_SSP2_SS2__USB0_OVERCURRENT 0x2152
-MX28_PAD_SSP3_SCK__ENET1_1588_EVENT0_OUT 0x2182
-MX28_PAD_SSP3_MOSI__ENET1_1588_EVENT0_IN 0x2192
-MX28_PAD_SSP3_MISO__ENET1_1588_EVENT1_OUT 0x21a2
-MX28_PAD_SSP3_SS0__ENET1_1588_EVENT1_IN 0x21b2
-MX28_PAD_AUART0_RX__DUART_CTS 0x3002
-MX28_PAD_AUART0_TX__DUART_RTS 0x3012
-MX28_PAD_AUART0_CTS__DUART_RX 0x3022
-MX28_PAD_AUART0_RTS__DUART_TX 0x3032
-MX28_PAD_AUART1_RX__PWM_0 0x3042
-MX28_PAD_AUART1_TX__PWM_1 0x3052
-MX28_PAD_AUART1_CTS__TIMROT_ROTARYA 0x3062
-MX28_PAD_AUART1_RTS__TIMROT_ROTARYB 0x3072
-MX28_PAD_AUART2_RX__SSP3_D4 0x3082
-MX28_PAD_AUART2_TX__SSP3_D5 0x3092
-MX28_PAD_AUART2_CTS__SAIF1_BITCLK 0x30a2
-MX28_PAD_AUART2_RTS__SAIF1_LRCLK 0x30b2
-MX28_PAD_AUART3_RX__ENET0_1588_EVENT0_OUT 0x30c2
-MX28_PAD_AUART3_TX__ENET0_1588_EVENT0_IN 0x30d2
-MX28_PAD_AUART3_CTS__ENET0_1588_EVENT1_OUT 0x30e2
-MX28_PAD_AUART3_RTS__ENET0_1588_EVENT1_IN 0x30f2
-MX28_PAD_PWM0__DUART_RX 0x3102
-MX28_PAD_PWM1__DUART_TX 0x3112
-MX28_PAD_PWM2__USB1_OVERCURRENT 0x3122
-MX28_PAD_SAIF0_MCLK__AUART4_CTS 0x3142
-MX28_PAD_SAIF0_LRCLK__AUART4_RTS 0x3152
-MX28_PAD_SAIF0_BITCLK__AUART4_RX 0x3162
-MX28_PAD_SAIF0_SDATA0__AUART4_TX 0x3172
-MX28_PAD_I2C0_SCL__DUART_RX 0x3182
-MX28_PAD_I2C0_SDA__DUART_TX 0x3192
-MX28_PAD_SAIF1_SDATA0__SAIF0_SDATA1 0x31a2
-MX28_PAD_SPDIF__ENET1_RX_ER 0x31b2
-MX28_PAD_ENET0_MDC__SAIF0_SDATA1 0x4002
-MX28_PAD_ENET0_MDIO__SAIF0_SDATA2 0x4012
-MX28_PAD_ENET0_RX_EN__SAIF1_SDATA1 0x4022
-MX28_PAD_ENET0_RXD0__SAIF1_SDATA2 0x4032
-MX28_PAD_ENET0_TX_CLK__ENET0_1588_EVENT2_OUT 0x4052
-MX28_PAD_ENET0_RXD2__ENET0_1588_EVENT0_OUT 0x4092
-MX28_PAD_ENET0_RXD3__ENET0_1588_EVENT0_IN 0x40a2
-MX28_PAD_ENET0_TXD2__ENET0_1588_EVENT1_OUT 0x40b2
-MX28_PAD_ENET0_TXD3__ENET0_1588_EVENT1_IN 0x40c2
-MX28_PAD_ENET0_RX_CLK__ENET0_1588_EVENT2_IN 0x40d2
-MX28_PAD_ENET0_COL__ENET0_1588_EVENT3_OUT 0x40e2
-MX28_PAD_ENET0_CRS__ENET0_1588_EVENT3_IN 0x40f2
-MX28_PAD_GPMI_D00__GPIO_0_0 0x0003
-MX28_PAD_GPMI_D01__GPIO_0_1 0x0013
-MX28_PAD_GPMI_D02__GPIO_0_2 0x0023
-MX28_PAD_GPMI_D03__GPIO_0_3 0x0033
-MX28_PAD_GPMI_D04__GPIO_0_4 0x0043
-MX28_PAD_GPMI_D05__GPIO_0_5 0x0053
-MX28_PAD_GPMI_D06__GPIO_0_6 0x0063
-MX28_PAD_GPMI_D07__GPIO_0_7 0x0073
-MX28_PAD_GPMI_CE0N__GPIO_0_16 0x0103
-MX28_PAD_GPMI_CE1N__GPIO_0_17 0x0113
-MX28_PAD_GPMI_CE2N__GPIO_0_18 0x0123
-MX28_PAD_GPMI_CE3N__GPIO_0_19 0x0133
-MX28_PAD_GPMI_RDY0__GPIO_0_20 0x0143
-MX28_PAD_GPMI_RDY1__GPIO_0_21 0x0153
-MX28_PAD_GPMI_RDY2__GPIO_0_22 0x0163
-MX28_PAD_GPMI_RDY3__GPIO_0_23 0x0173
-MX28_PAD_GPMI_RDN__GPIO_0_24 0x0183
-MX28_PAD_GPMI_WRN__GPIO_0_25 0x0193
-MX28_PAD_GPMI_ALE__GPIO_0_26 0x01a3
-MX28_PAD_GPMI_CLE__GPIO_0_27 0x01b3
-MX28_PAD_GPMI_RESETN__GPIO_0_28 0x01c3
-MX28_PAD_LCD_D00__GPIO_1_0 0x1003
-MX28_PAD_LCD_D01__GPIO_1_1 0x1013
-MX28_PAD_LCD_D02__GPIO_1_2 0x1023
-MX28_PAD_LCD_D03__GPIO_1_3 0x1033
-MX28_PAD_LCD_D04__GPIO_1_4 0x1043
-MX28_PAD_LCD_D05__GPIO_1_5 0x1053
-MX28_PAD_LCD_D06__GPIO_1_6 0x1063
-MX28_PAD_LCD_D07__GPIO_1_7 0x1073
-MX28_PAD_LCD_D08__GPIO_1_8 0x1083
-MX28_PAD_LCD_D09__GPIO_1_9 0x1093
-MX28_PAD_LCD_D10__GPIO_1_10 0x10a3
-MX28_PAD_LCD_D11__GPIO_1_11 0x10b3
-MX28_PAD_LCD_D12__GPIO_1_12 0x10c3
-MX28_PAD_LCD_D13__GPIO_1_13 0x10d3
-MX28_PAD_LCD_D14__GPIO_1_14 0x10e3
-MX28_PAD_LCD_D15__GPIO_1_15 0x10f3
-MX28_PAD_LCD_D16__GPIO_1_16 0x1103
-MX28_PAD_LCD_D17__GPIO_1_17 0x1113
-MX28_PAD_LCD_D18__GPIO_1_18 0x1123
-MX28_PAD_LCD_D19__GPIO_1_19 0x1133
-MX28_PAD_LCD_D20__GPIO_1_20 0x1143
-MX28_PAD_LCD_D21__GPIO_1_21 0x1153
-MX28_PAD_LCD_D22__GPIO_1_22 0x1163
-MX28_PAD_LCD_D23__GPIO_1_23 0x1173
-MX28_PAD_LCD_RD_E__GPIO_1_24 0x1183
-MX28_PAD_LCD_WR_RWN__GPIO_1_25 0x1193
-MX28_PAD_LCD_RS__GPIO_1_26 0x11a3
-MX28_PAD_LCD_CS__GPIO_1_27 0x11b3
-MX28_PAD_LCD_VSYNC__GPIO_1_28 0x11c3
-MX28_PAD_LCD_HSYNC__GPIO_1_29 0x11d3
-MX28_PAD_LCD_DOTCLK__GPIO_1_30 0x11e3
-MX28_PAD_LCD_ENABLE__GPIO_1_31 0x11f3
-MX28_PAD_SSP0_DATA0__GPIO_2_0 0x2003
-MX28_PAD_SSP0_DATA1__GPIO_2_1 0x2013
-MX28_PAD_SSP0_DATA2__GPIO_2_2 0x2023
-MX28_PAD_SSP0_DATA3__GPIO_2_3 0x2033
-MX28_PAD_SSP0_DATA4__GPIO_2_4 0x2043
-MX28_PAD_SSP0_DATA5__GPIO_2_5 0x2053
-MX28_PAD_SSP0_DATA6__GPIO_2_6 0x2063
-MX28_PAD_SSP0_DATA7__GPIO_2_7 0x2073
-MX28_PAD_SSP0_CMD__GPIO_2_8 0x2083
-MX28_PAD_SSP0_DETECT__GPIO_2_9 0x2093
-MX28_PAD_SSP0_SCK__GPIO_2_10 0x20a3
-MX28_PAD_SSP1_SCK__GPIO_2_12 0x20c3
-MX28_PAD_SSP1_CMD__GPIO_2_13 0x20d3
-MX28_PAD_SSP1_DATA0__GPIO_2_14 0x20e3
-MX28_PAD_SSP1_DATA3__GPIO_2_15 0x20f3
-MX28_PAD_SSP2_SCK__GPIO_2_16 0x2103
-MX28_PAD_SSP2_MOSI__GPIO_2_17 0x2113
-MX28_PAD_SSP2_MISO__GPIO_2_18 0x2123
-MX28_PAD_SSP2_SS0__GPIO_2_19 0x2133
-MX28_PAD_SSP2_SS1__GPIO_2_20 0x2143
-MX28_PAD_SSP2_SS2__GPIO_2_21 0x2153
-MX28_PAD_SSP3_SCK__GPIO_2_24 0x2183
-MX28_PAD_SSP3_MOSI__GPIO_2_25 0x2193
-MX28_PAD_SSP3_MISO__GPIO_2_26 0x21a3
-MX28_PAD_SSP3_SS0__GPIO_2_27 0x21b3
-MX28_PAD_AUART0_RX__GPIO_3_0 0x3003
-MX28_PAD_AUART0_TX__GPIO_3_1 0x3013
-MX28_PAD_AUART0_CTS__GPIO_3_2 0x3023
-MX28_PAD_AUART0_RTS__GPIO_3_3 0x3033
-MX28_PAD_AUART1_RX__GPIO_3_4 0x3043
-MX28_PAD_AUART1_TX__GPIO_3_5 0x3053
-MX28_PAD_AUART1_CTS__GPIO_3_6 0x3063
-MX28_PAD_AUART1_RTS__GPIO_3_7 0x3073
-MX28_PAD_AUART2_RX__GPIO_3_8 0x3083
-MX28_PAD_AUART2_TX__GPIO_3_9 0x3093
-MX28_PAD_AUART2_CTS__GPIO_3_10 0x30a3
-MX28_PAD_AUART2_RTS__GPIO_3_11 0x30b3
-MX28_PAD_AUART3_RX__GPIO_3_12 0x30c3
-MX28_PAD_AUART3_TX__GPIO_3_13 0x30d3
-MX28_PAD_AUART3_CTS__GPIO_3_14 0x30e3
-MX28_PAD_AUART3_RTS__GPIO_3_15 0x30f3
-MX28_PAD_PWM0__GPIO_3_16 0x3103
-MX28_PAD_PWM1__GPIO_3_17 0x3113
-MX28_PAD_PWM2__GPIO_3_18 0x3123
-MX28_PAD_SAIF0_MCLK__GPIO_3_20 0x3143
-MX28_PAD_SAIF0_LRCLK__GPIO_3_21 0x3153
-MX28_PAD_SAIF0_BITCLK__GPIO_3_22 0x3163
-MX28_PAD_SAIF0_SDATA0__GPIO_3_23 0x3173
-MX28_PAD_I2C0_SCL__GPIO_3_24 0x3183
-MX28_PAD_I2C0_SDA__GPIO_3_25 0x3193
-MX28_PAD_SAIF1_SDATA0__GPIO_3_26 0x31a3
-MX28_PAD_SPDIF__GPIO_3_27 0x31b3
-MX28_PAD_PWM3__GPIO_3_28 0x31c3
-MX28_PAD_PWM4__GPIO_3_29 0x31d3
-MX28_PAD_LCD_RESET__GPIO_3_30 0x31e3
-MX28_PAD_ENET0_MDC__GPIO_4_0 0x4003
-MX28_PAD_ENET0_MDIO__GPIO_4_1 0x4013
-MX28_PAD_ENET0_RX_EN__GPIO_4_2 0x4023
-MX28_PAD_ENET0_RXD0__GPIO_4_3 0x4033
-MX28_PAD_ENET0_RXD1__GPIO_4_4 0x4043
-MX28_PAD_ENET0_TX_CLK__GPIO_4_5 0x4053
-MX28_PAD_ENET0_TX_EN__GPIO_4_6 0x4063
-MX28_PAD_ENET0_TXD0__GPIO_4_7 0x4073
-MX28_PAD_ENET0_TXD1__GPIO_4_8 0x4083
-MX28_PAD_ENET0_RXD2__GPIO_4_9 0x4093
-MX28_PAD_ENET0_RXD3__GPIO_4_10 0x40a3
-MX28_PAD_ENET0_TXD2__GPIO_4_11 0x40b3
-MX28_PAD_ENET0_TXD3__GPIO_4_12 0x40c3
-MX28_PAD_ENET0_RX_CLK__GPIO_4_13 0x40d3
-MX28_PAD_ENET0_COL__GPIO_4_14 0x40e3
-MX28_PAD_ENET0_CRS__GPIO_4_15 0x40f3
-MX28_PAD_ENET_CLK__GPIO_4_16 0x4103
-MX28_PAD_JTAG_RTCK__GPIO_4_20 0x4143
-
-Valid values for i.MX23 pinmux-id:
-
-pinmux id
------- --
-MX23_PAD_GPMI_D00__GPMI_D00 0x0000
-MX23_PAD_GPMI_D01__GPMI_D01 0x0010
-MX23_PAD_GPMI_D02__GPMI_D02 0x0020
-MX23_PAD_GPMI_D03__GPMI_D03 0x0030
-MX23_PAD_GPMI_D04__GPMI_D04 0x0040
-MX23_PAD_GPMI_D05__GPMI_D05 0x0050
-MX23_PAD_GPMI_D06__GPMI_D06 0x0060
-MX23_PAD_GPMI_D07__GPMI_D07 0x0070
-MX23_PAD_GPMI_D08__GPMI_D08 0x0080
-MX23_PAD_GPMI_D09__GPMI_D09 0x0090
-MX23_PAD_GPMI_D10__GPMI_D10 0x00a0
-MX23_PAD_GPMI_D11__GPMI_D11 0x00b0
-MX23_PAD_GPMI_D12__GPMI_D12 0x00c0
-MX23_PAD_GPMI_D13__GPMI_D13 0x00d0
-MX23_PAD_GPMI_D14__GPMI_D14 0x00e0
-MX23_PAD_GPMI_D15__GPMI_D15 0x00f0
-MX23_PAD_GPMI_CLE__GPMI_CLE 0x0100
-MX23_PAD_GPMI_ALE__GPMI_ALE 0x0110
-MX23_PAD_GPMI_CE2N__GPMI_CE2N 0x0120
-MX23_PAD_GPMI_RDY0__GPMI_RDY0 0x0130
-MX23_PAD_GPMI_RDY1__GPMI_RDY1 0x0140
-MX23_PAD_GPMI_RDY2__GPMI_RDY2 0x0150
-MX23_PAD_GPMI_RDY3__GPMI_RDY3 0x0160
-MX23_PAD_GPMI_WPN__GPMI_WPN 0x0170
-MX23_PAD_GPMI_WRN__GPMI_WRN 0x0180
-MX23_PAD_GPMI_RDN__GPMI_RDN 0x0190
-MX23_PAD_AUART1_CTS__AUART1_CTS 0x01a0
-MX23_PAD_AUART1_RTS__AUART1_RTS 0x01b0
-MX23_PAD_AUART1_RX__AUART1_RX 0x01c0
-MX23_PAD_AUART1_TX__AUART1_TX 0x01d0
-MX23_PAD_I2C_SCL__I2C_SCL 0x01e0
-MX23_PAD_I2C_SDA__I2C_SDA 0x01f0
-MX23_PAD_LCD_D00__LCD_D00 0x1000
-MX23_PAD_LCD_D01__LCD_D01 0x1010
-MX23_PAD_LCD_D02__LCD_D02 0x1020
-MX23_PAD_LCD_D03__LCD_D03 0x1030
-MX23_PAD_LCD_D04__LCD_D04 0x1040
-MX23_PAD_LCD_D05__LCD_D05 0x1050
-MX23_PAD_LCD_D06__LCD_D06 0x1060
-MX23_PAD_LCD_D07__LCD_D07 0x1070
-MX23_PAD_LCD_D08__LCD_D08 0x1080
-MX23_PAD_LCD_D09__LCD_D09 0x1090
-MX23_PAD_LCD_D10__LCD_D10 0x10a0
-MX23_PAD_LCD_D11__LCD_D11 0x10b0
-MX23_PAD_LCD_D12__LCD_D12 0x10c0
-MX23_PAD_LCD_D13__LCD_D13 0x10d0
-MX23_PAD_LCD_D14__LCD_D14 0x10e0
-MX23_PAD_LCD_D15__LCD_D15 0x10f0
-MX23_PAD_LCD_D16__LCD_D16 0x1100
-MX23_PAD_LCD_D17__LCD_D17 0x1110
-MX23_PAD_LCD_RESET__LCD_RESET 0x1120
-MX23_PAD_LCD_RS__LCD_RS 0x1130
-MX23_PAD_LCD_WR__LCD_WR 0x1140
-MX23_PAD_LCD_CS__LCD_CS 0x1150
-MX23_PAD_LCD_DOTCK__LCD_DOTCK 0x1160
-MX23_PAD_LCD_ENABLE__LCD_ENABLE 0x1170
-MX23_PAD_LCD_HSYNC__LCD_HSYNC 0x1180
-MX23_PAD_LCD_VSYNC__LCD_VSYNC 0x1190
-MX23_PAD_PWM0__PWM0 0x11a0
-MX23_PAD_PWM1__PWM1 0x11b0
-MX23_PAD_PWM2__PWM2 0x11c0
-MX23_PAD_PWM3__PWM3 0x11d0
-MX23_PAD_PWM4__PWM4 0x11e0
-MX23_PAD_SSP1_CMD__SSP1_CMD 0x2000
-MX23_PAD_SSP1_DETECT__SSP1_DETECT 0x2010
-MX23_PAD_SSP1_DATA0__SSP1_DATA0 0x2020
-MX23_PAD_SSP1_DATA1__SSP1_DATA1 0x2030
-MX23_PAD_SSP1_DATA2__SSP1_DATA2 0x2040
-MX23_PAD_SSP1_DATA3__SSP1_DATA3 0x2050
-MX23_PAD_SSP1_SCK__SSP1_SCK 0x2060
-MX23_PAD_ROTARYA__ROTARYA 0x2070
-MX23_PAD_ROTARYB__ROTARYB 0x2080
-MX23_PAD_EMI_A00__EMI_A00 0x2090
-MX23_PAD_EMI_A01__EMI_A01 0x20a0
-MX23_PAD_EMI_A02__EMI_A02 0x20b0
-MX23_PAD_EMI_A03__EMI_A03 0x20c0
-MX23_PAD_EMI_A04__EMI_A04 0x20d0
-MX23_PAD_EMI_A05__EMI_A05 0x20e0
-MX23_PAD_EMI_A06__EMI_A06 0x20f0
-MX23_PAD_EMI_A07__EMI_A07 0x2100
-MX23_PAD_EMI_A08__EMI_A08 0x2110
-MX23_PAD_EMI_A09__EMI_A09 0x2120
-MX23_PAD_EMI_A10__EMI_A10 0x2130
-MX23_PAD_EMI_A11__EMI_A11 0x2140
-MX23_PAD_EMI_A12__EMI_A12 0x2150
-MX23_PAD_EMI_BA0__EMI_BA0 0x2160
-MX23_PAD_EMI_BA1__EMI_BA1 0x2170
-MX23_PAD_EMI_CASN__EMI_CASN 0x2180
-MX23_PAD_EMI_CE0N__EMI_CE0N 0x2190
-MX23_PAD_EMI_CE1N__EMI_CE1N 0x21a0
-MX23_PAD_GPMI_CE1N__GPMI_CE1N 0x21b0
-MX23_PAD_GPMI_CE0N__GPMI_CE0N 0x21c0
-MX23_PAD_EMI_CKE__EMI_CKE 0x21d0
-MX23_PAD_EMI_RASN__EMI_RASN 0x21e0
-MX23_PAD_EMI_WEN__EMI_WEN 0x21f0
-MX23_PAD_EMI_D00__EMI_D00 0x3000
-MX23_PAD_EMI_D01__EMI_D01 0x3010
-MX23_PAD_EMI_D02__EMI_D02 0x3020
-MX23_PAD_EMI_D03__EMI_D03 0x3030
-MX23_PAD_EMI_D04__EMI_D04 0x3040
-MX23_PAD_EMI_D05__EMI_D05 0x3050
-MX23_PAD_EMI_D06__EMI_D06 0x3060
-MX23_PAD_EMI_D07__EMI_D07 0x3070
-MX23_PAD_EMI_D08__EMI_D08 0x3080
-MX23_PAD_EMI_D09__EMI_D09 0x3090
-MX23_PAD_EMI_D10__EMI_D10 0x30a0
-MX23_PAD_EMI_D11__EMI_D11 0x30b0
-MX23_PAD_EMI_D12__EMI_D12 0x30c0
-MX23_PAD_EMI_D13__EMI_D13 0x30d0
-MX23_PAD_EMI_D14__EMI_D14 0x30e0
-MX23_PAD_EMI_D15__EMI_D15 0x30f0
-MX23_PAD_EMI_DQM0__EMI_DQM0 0x3100
-MX23_PAD_EMI_DQM1__EMI_DQM1 0x3110
-MX23_PAD_EMI_DQS0__EMI_DQS0 0x3120
-MX23_PAD_EMI_DQS1__EMI_DQS1 0x3130
-MX23_PAD_EMI_CLK__EMI_CLK 0x3140
-MX23_PAD_EMI_CLKN__EMI_CLKN 0x3150
-MX23_PAD_GPMI_D00__LCD_D8 0x0001
-MX23_PAD_GPMI_D01__LCD_D9 0x0011
-MX23_PAD_GPMI_D02__LCD_D10 0x0021
-MX23_PAD_GPMI_D03__LCD_D11 0x0031
-MX23_PAD_GPMI_D04__LCD_D12 0x0041
-MX23_PAD_GPMI_D05__LCD_D13 0x0051
-MX23_PAD_GPMI_D06__LCD_D14 0x0061
-MX23_PAD_GPMI_D07__LCD_D15 0x0071
-MX23_PAD_GPMI_D08__LCD_D18 0x0081
-MX23_PAD_GPMI_D09__LCD_D19 0x0091
-MX23_PAD_GPMI_D10__LCD_D20 0x00a1
-MX23_PAD_GPMI_D11__LCD_D21 0x00b1
-MX23_PAD_GPMI_D12__LCD_D22 0x00c1
-MX23_PAD_GPMI_D13__LCD_D23 0x00d1
-MX23_PAD_GPMI_D14__AUART2_RX 0x00e1
-MX23_PAD_GPMI_D15__AUART2_TX 0x00f1
-MX23_PAD_GPMI_CLE__LCD_D16 0x0101
-MX23_PAD_GPMI_ALE__LCD_D17 0x0111
-MX23_PAD_GPMI_CE2N__ATA_A2 0x0121
-MX23_PAD_AUART1_RTS__IR_CLK 0x01b1
-MX23_PAD_AUART1_RX__IR_RX 0x01c1
-MX23_PAD_AUART1_TX__IR_TX 0x01d1
-MX23_PAD_I2C_SCL__GPMI_RDY2 0x01e1
-MX23_PAD_I2C_SDA__GPMI_CE2N 0x01f1
-MX23_PAD_LCD_D00__ETM_DA8 0x1001
-MX23_PAD_LCD_D01__ETM_DA9 0x1011
-MX23_PAD_LCD_D02__ETM_DA10 0x1021
-MX23_PAD_LCD_D03__ETM_DA11 0x1031
-MX23_PAD_LCD_D04__ETM_DA12 0x1041
-MX23_PAD_LCD_D05__ETM_DA13 0x1051
-MX23_PAD_LCD_D06__ETM_DA14 0x1061
-MX23_PAD_LCD_D07__ETM_DA15 0x1071
-MX23_PAD_LCD_D08__ETM_DA0 0x1081
-MX23_PAD_LCD_D09__ETM_DA1 0x1091
-MX23_PAD_LCD_D10__ETM_DA2 0x10a1
-MX23_PAD_LCD_D11__ETM_DA3 0x10b1
-MX23_PAD_LCD_D12__ETM_DA4 0x10c1
-MX23_PAD_LCD_D13__ETM_DA5 0x10d1
-MX23_PAD_LCD_D14__ETM_DA6 0x10e1
-MX23_PAD_LCD_D15__ETM_DA7 0x10f1
-MX23_PAD_LCD_RESET__ETM_TCTL 0x1121
-MX23_PAD_LCD_RS__ETM_TCLK 0x1131
-MX23_PAD_LCD_DOTCK__GPMI_RDY3 0x1161
-MX23_PAD_LCD_ENABLE__I2C_SCL 0x1171
-MX23_PAD_LCD_HSYNC__I2C_SDA 0x1181
-MX23_PAD_LCD_VSYNC__LCD_BUSY 0x1191
-MX23_PAD_PWM0__ROTARYA 0x11a1
-MX23_PAD_PWM1__ROTARYB 0x11b1
-MX23_PAD_PWM2__GPMI_RDY3 0x11c1
-MX23_PAD_PWM3__ETM_TCTL 0x11d1
-MX23_PAD_PWM4__ETM_TCLK 0x11e1
-MX23_PAD_SSP1_DETECT__GPMI_CE3N 0x2011
-MX23_PAD_SSP1_DATA1__I2C_SCL 0x2031
-MX23_PAD_SSP1_DATA2__I2C_SDA 0x2041
-MX23_PAD_ROTARYA__AUART2_RTS 0x2071
-MX23_PAD_ROTARYB__AUART2_CTS 0x2081
-MX23_PAD_GPMI_D00__SSP2_DATA0 0x0002
-MX23_PAD_GPMI_D01__SSP2_DATA1 0x0012
-MX23_PAD_GPMI_D02__SSP2_DATA2 0x0022
-MX23_PAD_GPMI_D03__SSP2_DATA3 0x0032
-MX23_PAD_GPMI_D04__SSP2_DATA4 0x0042
-MX23_PAD_GPMI_D05__SSP2_DATA5 0x0052
-MX23_PAD_GPMI_D06__SSP2_DATA6 0x0062
-MX23_PAD_GPMI_D07__SSP2_DATA7 0x0072
-MX23_PAD_GPMI_D08__SSP1_DATA4 0x0082
-MX23_PAD_GPMI_D09__SSP1_DATA5 0x0092
-MX23_PAD_GPMI_D10__SSP1_DATA6 0x00a2
-MX23_PAD_GPMI_D11__SSP1_DATA7 0x00b2
-MX23_PAD_GPMI_D15__GPMI_CE3N 0x00f2
-MX23_PAD_GPMI_RDY0__SSP2_DETECT 0x0132
-MX23_PAD_GPMI_RDY1__SSP2_CMD 0x0142
-MX23_PAD_GPMI_WRN__SSP2_SCK 0x0182
-MX23_PAD_AUART1_CTS__SSP1_DATA4 0x01a2
-MX23_PAD_AUART1_RTS__SSP1_DATA5 0x01b2
-MX23_PAD_AUART1_RX__SSP1_DATA6 0x01c2
-MX23_PAD_AUART1_TX__SSP1_DATA7 0x01d2
-MX23_PAD_I2C_SCL__AUART1_TX 0x01e2
-MX23_PAD_I2C_SDA__AUART1_RX 0x01f2
-MX23_PAD_LCD_D08__SAIF2_SDATA0 0x1082
-MX23_PAD_LCD_D09__SAIF1_SDATA0 0x1092
-MX23_PAD_LCD_D10__SAIF_MCLK_BITCLK 0x10a2
-MX23_PAD_LCD_D11__SAIF_LRCLK 0x10b2
-MX23_PAD_LCD_D12__SAIF2_SDATA1 0x10c2
-MX23_PAD_LCD_D13__SAIF2_SDATA2 0x10d2
-MX23_PAD_LCD_D14__SAIF1_SDATA2 0x10e2
-MX23_PAD_LCD_D15__SAIF1_SDATA1 0x10f2
-MX23_PAD_LCD_D16__SAIF_ALT_BITCLK 0x1102
-MX23_PAD_LCD_RESET__GPMI_CE3N 0x1122
-MX23_PAD_PWM0__DUART_RX 0x11a2
-MX23_PAD_PWM1__DUART_TX 0x11b2
-MX23_PAD_PWM3__AUART1_CTS 0x11d2
-MX23_PAD_PWM4__AUART1_RTS 0x11e2
-MX23_PAD_SSP1_CMD__JTAG_TDO 0x2002
-MX23_PAD_SSP1_DETECT__USB_OTG_ID 0x2012
-MX23_PAD_SSP1_DATA0__JTAG_TDI 0x2022
-MX23_PAD_SSP1_DATA1__JTAG_TCLK 0x2032
-MX23_PAD_SSP1_DATA2__JTAG_RTCK 0x2042
-MX23_PAD_SSP1_DATA3__JTAG_TMS 0x2052
-MX23_PAD_SSP1_SCK__JTAG_TRST 0x2062
-MX23_PAD_ROTARYA__SPDIF 0x2072
-MX23_PAD_ROTARYB__GPMI_CE3N 0x2082
-MX23_PAD_GPMI_D00__GPIO_0_0 0x0003
-MX23_PAD_GPMI_D01__GPIO_0_1 0x0013
-MX23_PAD_GPMI_D02__GPIO_0_2 0x0023
-MX23_PAD_GPMI_D03__GPIO_0_3 0x0033
-MX23_PAD_GPMI_D04__GPIO_0_4 0x0043
-MX23_PAD_GPMI_D05__GPIO_0_5 0x0053
-MX23_PAD_GPMI_D06__GPIO_0_6 0x0063
-MX23_PAD_GPMI_D07__GPIO_0_7 0x0073
-MX23_PAD_GPMI_D08__GPIO_0_8 0x0083
-MX23_PAD_GPMI_D09__GPIO_0_9 0x0093
-MX23_PAD_GPMI_D10__GPIO_0_10 0x00a3
-MX23_PAD_GPMI_D11__GPIO_0_11 0x00b3
-MX23_PAD_GPMI_D12__GPIO_0_12 0x00c3
-MX23_PAD_GPMI_D13__GPIO_0_13 0x00d3
-MX23_PAD_GPMI_D14__GPIO_0_14 0x00e3
-MX23_PAD_GPMI_D15__GPIO_0_15 0x00f3
-MX23_PAD_GPMI_CLE__GPIO_0_16 0x0103
-MX23_PAD_GPMI_ALE__GPIO_0_17 0x0113
-MX23_PAD_GPMI_CE2N__GPIO_0_18 0x0123
-MX23_PAD_GPMI_RDY0__GPIO_0_19 0x0133
-MX23_PAD_GPMI_RDY1__GPIO_0_20 0x0143
-MX23_PAD_GPMI_RDY2__GPIO_0_21 0x0153
-MX23_PAD_GPMI_RDY3__GPIO_0_22 0x0163
-MX23_PAD_GPMI_WPN__GPIO_0_23 0x0173
-MX23_PAD_GPMI_WRN__GPIO_0_24 0x0183
-MX23_PAD_GPMI_RDN__GPIO_0_25 0x0193
-MX23_PAD_AUART1_CTS__GPIO_0_26 0x01a3
-MX23_PAD_AUART1_RTS__GPIO_0_27 0x01b3
-MX23_PAD_AUART1_RX__GPIO_0_28 0x01c3
-MX23_PAD_AUART1_TX__GPIO_0_29 0x01d3
-MX23_PAD_I2C_SCL__GPIO_0_30 0x01e3
-MX23_PAD_I2C_SDA__GPIO_0_31 0x01f3
-MX23_PAD_LCD_D00__GPIO_1_0 0x1003
-MX23_PAD_LCD_D01__GPIO_1_1 0x1013
-MX23_PAD_LCD_D02__GPIO_1_2 0x1023
-MX23_PAD_LCD_D03__GPIO_1_3 0x1033
-MX23_PAD_LCD_D04__GPIO_1_4 0x1043
-MX23_PAD_LCD_D05__GPIO_1_5 0x1053
-MX23_PAD_LCD_D06__GPIO_1_6 0x1063
-MX23_PAD_LCD_D07__GPIO_1_7 0x1073
-MX23_PAD_LCD_D08__GPIO_1_8 0x1083
-MX23_PAD_LCD_D09__GPIO_1_9 0x1093
-MX23_PAD_LCD_D10__GPIO_1_10 0x10a3
-MX23_PAD_LCD_D11__GPIO_1_11 0x10b3
-MX23_PAD_LCD_D12__GPIO_1_12 0x10c3
-MX23_PAD_LCD_D13__GPIO_1_13 0x10d3
-MX23_PAD_LCD_D14__GPIO_1_14 0x10e3
-MX23_PAD_LCD_D15__GPIO_1_15 0x10f3
-MX23_PAD_LCD_D16__GPIO_1_16 0x1103
-MX23_PAD_LCD_D17__GPIO_1_17 0x1113
-MX23_PAD_LCD_RESET__GPIO_1_18 0x1123
-MX23_PAD_LCD_RS__GPIO_1_19 0x1133
-MX23_PAD_LCD_WR__GPIO_1_20 0x1143
-MX23_PAD_LCD_CS__GPIO_1_21 0x1153
-MX23_PAD_LCD_DOTCK__GPIO_1_22 0x1163
-MX23_PAD_LCD_ENABLE__GPIO_1_23 0x1173
-MX23_PAD_LCD_HSYNC__GPIO_1_24 0x1183
-MX23_PAD_LCD_VSYNC__GPIO_1_25 0x1193
-MX23_PAD_PWM0__GPIO_1_26 0x11a3
-MX23_PAD_PWM1__GPIO_1_27 0x11b3
-MX23_PAD_PWM2__GPIO_1_28 0x11c3
-MX23_PAD_PWM3__GPIO_1_29 0x11d3
-MX23_PAD_PWM4__GPIO_1_30 0x11e3
-MX23_PAD_SSP1_CMD__GPIO_2_0 0x2003
-MX23_PAD_SSP1_DETECT__GPIO_2_1 0x2013
-MX23_PAD_SSP1_DATA0__GPIO_2_2 0x2023
-MX23_PAD_SSP1_DATA1__GPIO_2_3 0x2033
-MX23_PAD_SSP1_DATA2__GPIO_2_4 0x2043
-MX23_PAD_SSP1_DATA3__GPIO_2_5 0x2053
-MX23_PAD_SSP1_SCK__GPIO_2_6 0x2063
-MX23_PAD_ROTARYA__GPIO_2_7 0x2073
-MX23_PAD_ROTARYB__GPIO_2_8 0x2083
-MX23_PAD_EMI_A00__GPIO_2_9 0x2093
-MX23_PAD_EMI_A01__GPIO_2_10 0x20a3
-MX23_PAD_EMI_A02__GPIO_2_11 0x20b3
-MX23_PAD_EMI_A03__GPIO_2_12 0x20c3
-MX23_PAD_EMI_A04__GPIO_2_13 0x20d3
-MX23_PAD_EMI_A05__GPIO_2_14 0x20e3
-MX23_PAD_EMI_A06__GPIO_2_15 0x20f3
-MX23_PAD_EMI_A07__GPIO_2_16 0x2103
-MX23_PAD_EMI_A08__GPIO_2_17 0x2113
-MX23_PAD_EMI_A09__GPIO_2_18 0x2123
-MX23_PAD_EMI_A10__GPIO_2_19 0x2133
-MX23_PAD_EMI_A11__GPIO_2_20 0x2143
-MX23_PAD_EMI_A12__GPIO_2_21 0x2153
-MX23_PAD_EMI_BA0__GPIO_2_22 0x2163
-MX23_PAD_EMI_BA1__GPIO_2_23 0x2173
-MX23_PAD_EMI_CASN__GPIO_2_24 0x2183
-MX23_PAD_EMI_CE0N__GPIO_2_25 0x2193
-MX23_PAD_EMI_CE1N__GPIO_2_26 0x21a3
-MX23_PAD_GPMI_CE1N__GPIO_2_27 0x21b3
-MX23_PAD_GPMI_CE0N__GPIO_2_28 0x21c3
-MX23_PAD_EMI_CKE__GPIO_2_29 0x21d3
-MX23_PAD_EMI_RASN__GPIO_2_30 0x21e3
-MX23_PAD_EMI_WEN__GPIO_2_31 0x21f3
+Valid values for i.MX28/i.MX23 pinmux-id are defined in
+arch/arm/boot/dts/imx28-pinfunc.h and arch/arm/boot/dts/imx23-pinfunc.h.
+The definitions for the padconfig properties can be found in
+arch/arm/boot/dts/mxs-pinfunc.h.
diff --git a/Documentation/devicetree/bindings/pinctrl/marvell,armada-370-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/marvell,armada-370-pinctrl.txt
index 01ef408e205..adda2a8d1d5 100644
--- a/Documentation/devicetree/bindings/pinctrl/marvell,armada-370-pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/marvell,armada-370-pinctrl.txt
@@ -5,6 +5,7 @@ part and usage.
Required properties:
- compatible: "marvell,88f6710-pinctrl"
+- reg: register specifier of MPP registers
Available mpp pins/groups and functions:
Note: brackets (x) are not part of the mpp name for marvell,function and given
diff --git a/Documentation/devicetree/bindings/pinctrl/marvell,armada-375-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/marvell,armada-375-pinctrl.txt
new file mode 100644
index 00000000000..7de0cda4a37
--- /dev/null
+++ b/Documentation/devicetree/bindings/pinctrl/marvell,armada-375-pinctrl.txt
@@ -0,0 +1,82 @@
+* Marvell Armada 375 SoC pinctrl driver for mpp
+
+Please refer to marvell,mvebu-pinctrl.txt in this directory for common binding
+part and usage.
+
+Required properties:
+- compatible: "marvell,88f6720-pinctrl"
+- reg: register specifier of MPP registers
+
+Available mpp pins/groups and functions:
+Note: brackets (x) are not part of the mpp name for marvell,function and given
+only for more detailed description in this document.
+
+name pins functions
+================================================================================
+mpp0 0 gpio, dev(ad2), spi0(cs1), spi1(cs1)
+mpp1 1 gpio, dev(ad3), spi0(mosi), spi1(mosi)
+mpp2 2 gpio, dev(ad4), ptp(eventreq), led(c0), audio(sdi)
+mpp3 3 gpio, dev(ad5), ptp(triggen), led(p3), audio(mclk)
+mpp4 4 gpio, dev(ad6), spi0(miso), spi1(miso)
+mpp5 5 gpio, dev(ad7), spi0(cs2), spi1(cs2)
+mpp6 6 gpio, dev(ad0), led(p1), audio(rclk)
+mpp7 7 gpio, dev(ad1), ptp(clk), led(p2), audio(extclk)
+mpp8 8 gpio, dev (bootcs), spi0(cs0), spi1(cs0)
+mpp9 9 gpio, nf(wen), spi0(sck), spi1(sck)
+mpp10 10 gpio, nf(ren), dram(vttctrl), led(c1)
+mpp11 11 gpio, dev(a0), led(c2), audio(sdo)
+mpp12 12 gpio, dev(a1), audio(bclk)
+mpp13 13 gpio, dev(readyn), pcie0(rstoutn), pcie1(rstoutn)
+mpp14 14 gpio, i2c0(sda), uart1(txd)
+mpp15 15 gpio, i2c0(sck), uart1(rxd)
+mpp16 16 gpio, uart0(txd)
+mpp17 17 gpio, uart0(rxd)
+mpp18 18 gpio, tdm(intn)
+mpp19 19 gpio, tdm(rstn)
+mpp20 20 gpio, tdm(pclk)
+mpp21 21 gpio, tdm(fsync)
+mpp22 22 gpio, tdm(drx)
+mpp23 23 gpio, tdm(dtx)
+mpp24 24 gpio, led(p0), ge1(rxd0), sd(cmd), uart0(rts)
+mpp25 25 gpio, led(p2), ge1(rxd1), sd(d0), uart0(cts)
+mpp26 26 gpio, pcie0(clkreq), ge1(rxd2), sd(d2), uart1(rts)
+mpp27 27 gpio, pcie1(clkreq), ge1(rxd3), sd(d1), uart1(cts)
+mpp28 28 gpio, led(p3), ge1(txctl), sd(clk)
+mpp29 29 gpio, pcie1(clkreq), ge1(rxclk), sd(d3)
+mpp30 30 gpio, ge1(txd0), spi1(cs0)
+mpp31 31 gpio, ge1(txd1), spi1(mosi)
+mpp32 32 gpio, ge1(txd2), spi1(sck), ptp(triggen)
+mpp33 33 gpio, ge1(txd3), spi1(miso)
+mpp34 34 gpio, ge1(txclkout), spi1(sck)
+mpp35 35 gpio, ge1(rxctl), spi1(cs1), spi0(cs2)
+mpp36 36 gpio, pcie0(clkreq)
+mpp37 37 gpio, pcie0(clkreq), tdm(intn), ge(mdc)
+mpp38 38 gpio, pcie1(clkreq), ge(mdio)
+mpp39 39 gpio, ref(clkout)
+mpp40 40 gpio, uart1(txd)
+mpp41 41 gpio, uart1(rxd)
+mpp42 42 gpio, spi1(cs2), led(c0)
+mpp43 43 gpio, sata0(prsnt), dram(vttctrl)
+mpp44 44 gpio, sata0(prsnt)
+mpp45 45 gpio, spi0(cs2), pcie0(rstoutn)
+mpp46 46 gpio, led(p0), ge0(txd0), ge1(txd0)
+mpp47 47 gpio, led(p1), ge0(txd1), ge1(txd1)
+mpp48 48 gpio, led(p2), ge0(txd2), ge1(txd2)
+mpp49 49 gpio, led(p3), ge0(txd3), ge1(txd3)
+mpp50 50 gpio, led(c0), ge0(rxd0), ge1(rxd0)
+mpp51 51 gpio, led(c1), ge0(rxd1), ge1(rxd1)
+mpp52 52 gpio, led(c2), ge0(rxd2), ge1(rxd2)
+mpp53 53 gpio, pcie1(rstoutn), ge0(rxd3), ge1(rxd3)
+mpp54 54 gpio, pcie0(rstoutn), ge0(rxctl), ge1(rxctl)
+mpp55 55 gpio, ge0(rxclk), ge1(rxclk)
+mpp56 56 gpio, ge0(txclkout), ge1(txclkout)
+mpp57 57 gpio, ge0(txctl), ge1(txctl)
+mpp58 58 gpio, led(c0)
+mpp59 59 gpio, led(c1)
+mpp60 60 gpio, uart1(txd), led(c2)
+mpp61 61 gpio, i2c1(sda), uart1(rxd), spi1(cs2), led(p0)
+mpp62 62 gpio, i2c1(sck), led(p1)
+mpp63 63 gpio, ptp(triggen), led(p2)
+mpp64 64 gpio, dram(vttctrl), led(p3)
+mpp65 65 gpio, sata1(prsnt)
+mpp66 66 gpio, ptp(eventreq), spi1(cs3)
diff --git a/Documentation/devicetree/bindings/pinctrl/marvell,armada-38x-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/marvell,armada-38x-pinctrl.txt
new file mode 100644
index 00000000000..b17c96849fc
--- /dev/null
+++ b/Documentation/devicetree/bindings/pinctrl/marvell,armada-38x-pinctrl.txt
@@ -0,0 +1,80 @@
+* Marvell Armada 380/385 SoC pinctrl driver for mpp
+
+Please refer to marvell,mvebu-pinctrl.txt in this directory for common binding
+part and usage.
+
+Required properties:
+- compatible: "marvell,88f6810-pinctrl", "marvell,88f6820-pinctrl" or
+ "marvell,88f6828-pinctrl" depending on the specific variant of the
+ SoC being used.
+- reg: register specifier of MPP registers
+
+Available mpp pins/groups and functions:
+Note: brackets (x) are not part of the mpp name for marvell,function and given
+only for more detailed description in this document.
+
+name pins functions
+================================================================================
+mpp0 0 gpio, ua0(rxd)
+mpp1 1 gpio, ua0(txd)
+mpp2 2 gpio, i2c0(sck)
+mpp3 3 gpio, i2c0(sda)
+mpp4 4 gpio, ge(mdc), ua1(txd), ua0(rts)
+mpp5 5 gpio, ge(mdio), ua1(rxd), ua0(cts)
+mpp6 6 gpio, ge0(txclkout), ge0(crs), dev(cs3)
+mpp7 7 gpio, ge0(txd0), dev(ad9)
+mpp8 8 gpio, ge0(txd1), dev(ad10)
+mpp9 9 gpio, ge0(txd2), dev(ad11)
+mpp10 10 gpio, ge0(txd3), dev(ad12)
+mpp11 11 gpio, ge0(txctl), dev(ad13)
+mpp12 12 gpio, ge0(rxd0), pcie0(rstout), pcie1(rstout) [1], spi0(cs1), dev(ad14)
+mpp13 13 gpio, ge0(rxd1), pcie0(clkreq), pcie1(clkreq) [1], spi0(cs2), dev(ad15)
+mpp14 14 gpio, ge0(rxd2), ptp(clk), m(vtt_ctrl), spi0(cs3), dev(wen1)
+mpp15 15 gpio, ge0(rxd3), ge(mdc slave), pcie0(rstout), spi0(mosi), pcie1(rstout) [1]
+mpp16 16 gpio, ge0(rxctl), ge(mdio slave), m(decc_err), spi0(miso), pcie0(clkreq)
+mpp17 17 gpio, ge0(rxclk), ptp(clk), ua1(rxd), spi0(sck), sata1(prsnt)
+mpp18 18 gpio, ge0(rxerr), ptp(trig_gen), ua1(txd), spi0(cs0), pcie1(rstout) [1]
+mpp19 19 gpio, ge0(col), ptp(event_req), pcie0(clkreq), sata1(prsnt), ua0(cts)
+mpp20 20 gpio, ge0(txclk), ptp(clk), pcie1(rstout) [1], sata0(prsnt), ua0(rts)
+mpp21 21 gpio, spi0(cs1), ge1(rxd0), sata0(prsnt), sd0(cmd), dev(bootcs)
+mpp22 22 gpio, spi0(mosi), dev(ad0)
+mpp23 23 gpio, spi0(sck), dev(ad2)
+mpp24 24 gpio, spi0(miso), ua0(cts), ua1(rxd), sd0(d4), dev(ready)
+mpp25 25 gpio, spi0(cs0), ua0(rts), ua1(txd), sd0(d5), dev(cs0)
+mpp26 26 gpio, spi0(cs2), i2c1(sck), sd0(d6), dev(cs1)
+mpp27 27 gpio, spi0(cs3), ge1(txclkout), i2c1(sda), sd0(d7), dev(cs2)
+mpp28 28 gpio, ge1(txd0), sd0(clk), dev(ad5)
+mpp29 29 gpio, ge1(txd1), dev(ale0)
+mpp30 30 gpio, ge1(txd2), dev(oen)
+mpp31 31 gpio, ge1(txd3), dev(ale1)
+mpp32 32 gpio, ge1(txctl), dev(wen0)
+mpp33 33 gpio, m(decc_err), dev(ad3)
+mpp34 34 gpio, dev(ad1)
+mpp35 35 gpio, ref(clk_out1), dev(a1)
+mpp36 36 gpio, ptp(trig_gen), dev(a0)
+mpp37 37 gpio, ptp(clk), ge1(rxclk), sd0(d3), dev(ad8)
+mpp38 38 gpio, ptp(event_req), ge1(rxd1), ref(clk_out0), sd0(d0), dev(ad4)
+mpp39 39 gpio, i2c1(sck), ge1(rxd2), ua0(cts), sd0(d1), dev(a2)
+mpp40 40 gpio, i2c1(sda), ge1(rxd3), ua0(rts), sd0(d2), dev(ad6)
+mpp41 41 gpio, ua1(rxd), ge1(rxctl), ua0(cts), spi1(cs3), dev(burst/last)
+mpp42 42 gpio, ua1(txd), ua0(rts), dev(ad7)
+mpp43 43 gpio, pcie0(clkreq), m(vtt_ctrl), m(decc_err), pcie0(rstout), dev(clkout)
+mpp44 44 gpio, sata0(prsnt), sata1(prsnt), sata2(prsnt) [2], sata3(prsnt) [3], pcie0(rstout)
+mpp45 45 gpio, ref(clk_out0), pcie0(rstout), pcie1(rstout) [1], pcie2(rstout), pcie3(rstout)
+mpp46 46 gpio, ref(clk_out1), pcie0(rstout), pcie1(rstout) [1], pcie2(rstout), pcie3(rstout)
+mpp47 47 gpio, sata0(prsnt), sata1(prsnt), sata2(prsnt) [2], spi1(cs2), sata3(prsnt) [2]
+mpp48 48 gpio, sata0(prsnt), m(vtt_ctrl), tdm2c(pclk), audio(mclk), sd0(d4)
+mpp49 49 gpio, sata2(prsnt) [2], sata3(prsnt) [2], tdm2c(fsync), audio(lrclk), sd0(d5)
+mpp50 50 gpio, pcie0(rstout), pcie1(rstout) [1], tdm2c(drx), audio(extclk), sd0(cmd)
+mpp51 51 gpio, tdm2c(dtx), audio(sdo), m(decc_err)
+mpp52 52 gpio, pcie0(rstout), pcie1(rstout) [1], tdm2c(intn), audio(sdi), sd0(d6)
+mpp53 53 gpio, sata1(prsnt), sata0(prsnt), tdm2c(rstn), audio(bclk), sd0(d7)
+mpp54 54 gpio, sata0(prsnt), sata1(prsnt), pcie0(rstout), pcie1(rstout) [1], sd0(d3)
+mpp55 55 gpio, ua1(cts), ge(mdio), pcie1(clkreq) [1], spi1(cs1), sd0(d0)
+mpp56 56 gpio, ua1(rts), ge(mdc), m(decc_err), spi1(mosi)
+mpp57 57 gpio, spi1(sck), sd0(clk)
+mpp58 58 gpio, pcie1(clkreq) [1], i2c1(sck), pcie2(clkreq), spi1(miso), sd0(d1)
+mpp59 59 gpio, pcie0(rstout), i2c1(sda), pcie1(rstout) [1], spi1(cs0), sd0(d2)
+
+[1]: only available on 88F6820 and 88F6828
+[2]: only available on 88F6828
diff --git a/Documentation/devicetree/bindings/pinctrl/marvell,armada-xp-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/marvell,armada-xp-pinctrl.txt
index bfa0a2e5e0c..373dbccd7ab 100644
--- a/Documentation/devicetree/bindings/pinctrl/marvell,armada-xp-pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/marvell,armada-xp-pinctrl.txt
@@ -6,6 +6,7 @@ part and usage.
Required properties:
- compatible: "marvell,mv78230-pinctrl", "marvell,mv78260-pinctrl",
"marvell,mv78460-pinctrl"
+- reg: register specifier of MPP registers
This driver supports all Armada XP variants, i.e. mv78230, mv78260, and mv78460.
diff --git a/Documentation/devicetree/bindings/pinctrl/marvell,dove-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/marvell,dove-pinctrl.txt
index 50ec3512a29..cf52477cc7e 100644
--- a/Documentation/devicetree/bindings/pinctrl/marvell,dove-pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/marvell,dove-pinctrl.txt
@@ -6,6 +6,7 @@ part and usage.
Required properties:
- compatible: "marvell,dove-pinctrl"
- clocks: (optional) phandle of pdma clock
+- reg: register specifiers of MPP, MPP4, and PMU MPP registers
Available mpp pins/groups and functions:
Note: brackets (x) are not part of the mpp name for marvell,function and given
diff --git a/Documentation/devicetree/bindings/pinctrl/marvell,kirkwood-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/marvell,kirkwood-pinctrl.txt
index 95daf6335c3..730444a9a4d 100644
--- a/Documentation/devicetree/bindings/pinctrl/marvell,kirkwood-pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/marvell,kirkwood-pinctrl.txt
@@ -8,6 +8,7 @@ Required properties:
"marvell,88f6190-pinctrl", "marvell,88f6192-pinctrl",
"marvell,88f6281-pinctrl", "marvell,88f6282-pinctrl"
"marvell,98dx4122-pinctrl"
+- reg: register specifier of MPP registers
This driver supports all kirkwood variants, i.e. 88f6180, 88f619x, and 88f628x.
It also support the 88f6281-based variant in the 98dx412x Bobcat SoCs.
diff --git a/Documentation/devicetree/bindings/pinctrl/marvell,mvebu-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/marvell,mvebu-pinctrl.txt
index 0a26c3aa4e6..0c09f4eb2af 100644
--- a/Documentation/devicetree/bindings/pinctrl/marvell,mvebu-pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/marvell,mvebu-pinctrl.txt
@@ -37,7 +37,7 @@ uart1: serial@12100 {
pinctrl: pinctrl@d0200 {
compatible = "marvell,dove-pinctrl";
- reg = <0xd0200 0x20>;
+ reg = <0xd0200 0x14>, <0xd0440 0x04>, <0xd802c 0x08>;
pmx_uart1_sw: pmx-uart1-sw {
marvell,pins = "mpp_uart1";
diff --git a/Documentation/devicetree/bindings/pinctrl/marvell,orion-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/marvell,orion-pinctrl.txt
new file mode 100644
index 00000000000..27570a3a174
--- /dev/null
+++ b/Documentation/devicetree/bindings/pinctrl/marvell,orion-pinctrl.txt
@@ -0,0 +1,91 @@
+* Marvell Orion SoC pinctrl driver for mpp
+
+Please refer to marvell,mvebu-pinctrl.txt in this directory for common binding
+part and usage.
+
+Required properties:
+- compatible: "marvell,88f5181l-pinctrl", "marvell,88f5182-pinctrl",
+ "marvell,88f5281-pinctrl"
+
+- reg: two register areas, the first one describing the first two
+ contiguous MPP registers, and the second one describing the single
+ final MPP register, separated from the previous one.
+
+Available mpp pins/groups and functions:
+Note: brackets (x) are not part of the mpp name for marvell,function and given
+only for more detailed description in this document.
+
+* Marvell Orion 88f5181l
+
+name pins functions
+================================================================================
+mpp0 0 pcie(rstout), pci(req2), gpio
+mpp1 1 gpio, pci(gnt2)
+mpp2 2 gpio, pci(req3), pci-1(pme)
+mpp3 3 gpio, pci(gnt3)
+mpp4 4 gpio, pci(req4)
+mpp5 5 gpio, pci(gnt4)
+mpp6 6 gpio, pci(req5), pci-1(clk)
+mpp7 7 gpio, pci(gnt5), pci-1(clk)
+mpp8 8 gpio, ge(col)
+mpp9 9 gpio, ge(rxerr)
+mpp10 10 gpio, ge(crs)
+mpp11 11 gpio, ge(txerr)
+mpp12 12 gpio, ge(txd4)
+mpp13 13 gpio, ge(txd5)
+mpp14 14 gpio, ge(txd6)
+mpp15 15 gpio, ge(txd7)
+mpp16 16 ge(rxd4)
+mpp17 17 ge(rxd5)
+mpp18 18 ge(rxd6)
+mpp19 19 ge(rxd7)
+
+* Marvell Orion 88f5182
+
+name pins functions
+================================================================================
+mpp0 0 pcie(rstout), pci(req2), gpio
+mpp1 1 gpio, pci(gnt2)
+mpp2 2 gpio, pci(req3), pci-1(pme)
+mpp3 3 gpio, pci(gnt3)
+mpp4 4 gpio, pci(req4), bootnand(re), sata0(prsnt)
+mpp5 5 gpio, pci(gnt4), bootnand(we), sata1(prsnt)
+mpp6 6 gpio, pci(req5), nand(re0), sata0(act)
+mpp7 7 gpio, pci(gnt5), nand(we0), sata1(act)
+mpp8 8 gpio, ge(col)
+mpp9 9 gpio, ge(rxerr)
+mpp10 10 gpio, ge(crs)
+mpp11 11 gpio, ge(txerr)
+mpp12 12 gpio, ge(txd4), nand(re1), sata0(ledprsnt)
+mpp13 13 gpio, ge(txd5), nand(we1), sata1(ledprsnt)
+mpp14 14 gpio, ge(txd6), nand(re2), sata0(ledact)
+mpp15 15 gpio, ge(txd7), nand(we2), sata1(ledact)
+mpp16 16 uart1(rxd), ge(rxd4), gpio
+mpp17 17 uart1(txd), ge(rxd5), gpio
+mpp18 18 uart1(cts), ge(rxd6), gpio
+mpp19 19 uart1(rts), ge(rxd7), gpio
+
+* Marvell Orion 88f5281
+
+name pins functions
+================================================================================
+mpp0 0 pcie(rstout), pci(req2), gpio
+mpp1 1 gpio, pci(gnt2)
+mpp2 2 gpio, pci(req3), pci(pme)
+mpp3 3 gpio, pci(gnt3)
+mpp4 4 gpio, pci(req4), bootnand(re)
+mpp5 5 gpio, pci(gnt4), bootnand(we)
+mpp6 6 gpio, pci(req5), nand(re0)
+mpp7 7 gpio, pci(gnt5), nand(we0)
+mpp8 8 gpio, ge(col)
+mpp9 9 gpio, ge(rxerr)
+mpp10 10 gpio, ge(crs)
+mpp11 11 gpio, ge(txerr)
+mpp12 12 gpio, ge(txd4), nand(re1)
+mpp13 13 gpio, ge(txd5), nand(we1)
+mpp14 14 gpio, ge(txd6), nand(re2)
+mpp15 15 gpio, ge(txd7), nand(we2)
+mpp16 16 uart1(rxd), ge(rxd4)
+mpp17 17 uart1(txd), ge(rxd5)
+mpp18 18 uart1(cts), ge(rxd6)
+mpp19 19 uart1(rts), ge(rxd7)
diff --git a/Documentation/devicetree/bindings/pinctrl/nvidia,tegra124-pinmux.txt b/Documentation/devicetree/bindings/pinctrl/nvidia,tegra124-pinmux.txt
new file mode 100644
index 00000000000..6464bf76946
--- /dev/null
+++ b/Documentation/devicetree/bindings/pinctrl/nvidia,tegra124-pinmux.txt
@@ -0,0 +1,144 @@
+NVIDIA Tegra124 pinmux controller
+
+The Tegra124 pinctrl binding is very similar to the Tegra20 and Tegra30
+pinctrl binding, as described in nvidia,tegra20-pinmux.txt and
+nvidia,tegra30-pinmux.txt. In fact, this document assumes that binding as
+a baseline, and only documents the differences between the two bindings.
+
+Required properties:
+- compatible: "nvidia,tegra124-pinmux"
+- reg: Should contain a list of base address and size pairs for:
+ -- first entry - the drive strength and pad control registers.
+ -- second entry - the pinmux registers
+
+Tegra124 adds the following optional properties for pin configuration subnodes.
+The macros for options are defined in the
+ include/dt-binding/pinctrl/pinctrl-tegra.h.
+- nvidia,enable-input: Integer. Enable the pin's input path.
+ enable :TEGRA_PIN_ENABLE0 and
+ disable or output only: TEGRA_PIN_DISABLE.
+- nvidia,open-drain: Integer.
+ enable: TEGRA_PIN_ENABLE.
+ disable: TEGRA_PIN_DISABLE.
+- nvidia,lock: Integer. Lock the pin configuration against further changes
+ until reset.
+ enable: TEGRA_PIN_ENABLE.
+ disable: TEGRA_PIN_DISABLE.
+- nvidia,io-reset: Integer. Reset the IO path.
+ enable: TEGRA_PIN_ENABLE.
+ disable: TEGRA_PIN_DISABLE.
+- nvidia,rcv-sel: Integer. Select VIL/VIH receivers.
+ normal: TEGRA_PIN_DISABLE
+ high: TEGRA_PIN_ENABLE
+
+Please refer the Tegra TRM for complete details regarding which groups
+support which functionality.
+
+Valid values for pin and group names are:
+
+ per-pin mux groups:
+
+ These all support nvidia,function, nvidia,tristate, nvidia,pull,
+ nvidia,enable-input. Some support nvidia,lock nvidia,open-drain,
+ nvidia,io-reset and nvidia,rcv-sel.
+
+ ulpi_data0_po1, ulpi_data1_po2, ulpi_data2_po3, ulpi_data3_po4,
+ ulpi_data4_po5, ulpi_data5_po6, ulpi_data6_po7, ulpi_data7_po0,
+ ulpi_clk_py0, ulpi_dir_py1, ulpi_nxt_py2, ulpi_stp_py3, dap3_fs_pp0,
+ dap3_din_pp1, dap3_dout_pp2, dap3_sclk_pp3, pv0, pv1, sdmmc1_clk_pz0,
+ sdmmc1_cmd_pz1, sdmmc1_dat3_py4, sdmmc1_dat2_py5, sdmmc1_dat1_py6,
+ sdmmc1_dat0_py7, clk2_out_pw5, clk2_req_pcc5, hdmi_int_pn7, ddc_scl_pv4,
+ ddc_sda_pv5, uart2_rxd_pc3, uart2_txd_pc2, uart2_rts_n_pj6,
+ uart2_cts_n_pj5, uart3_txd_pw6, uart3_rxd_pw7, uart3_cts_n_pa1,
+ uart3_rts_n_pc0, pu0, pu1, pu2, pu3, pu4, pu5, pu6, gen1_i2c_scl_pc4,
+ gen1_i2c_sda_pc5, dap4_fs_pp4, dap4_din_pp5, dap4_dout_pp6,
+ dap4_sclk_pp7, clk3_out_pee0, clk3_req_pee1, pc7, pi5, pi7, pk0, pk1,
+ pj0, pj2, pk3, pk4, pk2, pi3, pi6, pg0, pg1, pg2, pg3, pg4, pg5, pg6,
+ pg7, ph0, ph1, ph2, ph3, ph4, ph5, ph6, ph7, pj7, pb0, pb1, pk7, pi0,
+ pi1, pi2, pi4, gen2_i2c_scl_pt5, gen2_i2c_sda_pt6, sdmmc4_clk_pcc4,
+ sdmmc4_cmd_pt7, sdmmc4_dat0_paa0, sdmmc4_dat1_paa1, sdmmc4_dat2_paa2,
+ sdmmc4_dat3_paa3, sdmmc4_dat4_paa4, sdmmc4_dat5_paa5, sdmmc4_dat6_paa6,
+ sdmmc4_dat7_paa7, cam_mclk_pcc0, pcc1, pbb0, cam_i2c_scl_pbb1,
+ cam_i2c_sda_pbb2, pbb3, pbb4, pbb5, pbb6, pbb7, pcc2, jtag_rtck,
+ pwr_i2c_scl_pz6, pwr_i2c_sda_pz7, kb_row0_pr0, kb_row1_pr1, kb_row2_pr2,
+ kb_row3_pr3, kb_row4_pr4, kb_row5_pr5, kb_row6_pr6, kb_row7_pr7,
+ kb_row8_ps0, kb_row9_ps1, kb_row10_ps2, kb_row11_ps3, kb_row12_ps4,
+ kb_row13_ps5, kb_row14_ps6, kb_row15_ps7, kb_col0_pq0, kb_col1_pq1,
+ kb_col2_pq2, kb_col3_pq3, kb_col4_pq4, kb_col5_pq5, kb_col6_pq6,
+ kb_col7_pq7, clk_32k_out_pa0, core_pwr_req, cpu_pwr_req, pwr_int_n,
+ clk_32k_in, owr, dap1_fs_pn0, dap1_din_pn1, dap1_dout_pn2,
+ dap1_sclk_pn3, dap_mclk1_req_pee2, dap_mclk1_pw4, spdif_in_pk6,
+ spdif_out_pk5, dap2_fs_pa2, dap2_din_pa4, dap2_dout_pa5, dap2_sclk_pa3,
+ dvfs_pwm_px0, gpio_x1_aud_px1, gpio_x3_aud_px3, dvfs_clk_px2,
+ gpio_x4_aud_px4, gpio_x5_aud_px5, gpio_x6_aud_px6, gpio_x7_aud_px7,
+ sdmmc3_clk_pa6, sdmmc3_cmd_pa7, sdmmc3_dat0_pb7, sdmmc3_dat1_pb6,
+ sdmmc3_dat2_pb5, sdmmc3_dat3_pb4, pex_l0_rst_n_pdd1,
+ pex_l0_clkreq_n_pdd2, pex_wake_n_pdd3, pex_l1_rst_n_pdd5,
+ pex_l1_clkreq_n_pdd6, hdmi_cec_pee3, sdmmc1_wp_n_pv3,
+ sdmmc3_cd_n_pv2, gpio_w2_aud_pw2, gpio_w3_aud_pw3, usb_vbus_en0_pn4,
+ usb_vbus_en1_pn5, sdmmc3_clk_lb_out_pee4, sdmmc3_clk_lb_in_pee5,
+ gmi_clk_lb, reset_out_n, kb_row16_pt0, kb_row17_pt1, usb_vbus_en2_pff1,
+ pff2, dp_hpd_pff0,
+
+ drive groups:
+
+ These all support nvidia,pull-down-strength, nvidia,pull-up-strength,
+ nvidia,slew-rate-rising, nvidia,slew-rate-falling. Most but not all
+ support nvidia,high-speed-mode, nvidia,schmitt, nvidia,low-power-mode
+ and nvidia,drive-type.
+
+ ao1, ao2, at1, at2, at3, at4, at5, cdev1, cdev2, dap1, dap2, dap3, dap4,
+ dbg, sdio3, spi, uaa, uab, uart2, uart3, sdio1, ddc, gma, gme, gmf, gmg,
+ gmh, owr, uda, gpv, dev3, cec, usb_vbus_en, ao3, ao0, hv0, sdio4, ao4.
+
+Valid values for nvidia,functions are:
+
+ blink, cec, cldvfs, clk12, cpu, dap, dap1, dap2, dev3, displaya,
+ displaya_alt, displayb, dtv, extperiph1, extperiph2, extperiph3,
+ gmi, gmi_alt, hda, hsi, i2c1, i2c2, i2c3, i2c4, i2cpwr, i2s0,
+ i2s1, i2s2, i2s3, i2s4, irda, kbc, owr, pmi, pwm0, pwm1, pwm2, pwm3,
+ pwron, reset_out_n, rsvd1, rsvd2, rsvd3, rsvd4, sdmmc1, sdmmc2, sdmmc3,
+ sdmmc4, soc, spdif, spi1, spi2, spi3, spi4, spi5, spi6, trace, uarta,
+ uartb, uartc, uartd, ulpi, usb, vgp1, vgp2, vgp3, vgp4, vgp5, vgp6,
+ vi, vi_alt1, vi_alt3, vimclk2, vimclk2_alt, sata, ccla, pe0, pe, pe1,
+ dp, rtck, sys, clk tmds.
+
+Example:
+
+ pinmux: pinmux {
+ compatible = "nvidia,tegra124-pinmux";
+ reg = <0x70000868 0x164 /* Pad control registers */
+ 0x70003000 0x434>; /* PinMux registers */
+ };
+
+Example pinmux entries:
+
+ pinctrl {
+ sdmmc4_default: pinmux {
+ sdmmc4_clk_pcc4 {
+ nvidia,pins = "sdmmc4_clk_pcc4",
+ nvidia,function = "sdmmc4";
+ nvidia,pull = <TEGRA_PIN_PULL_NONE>;
+ nvidia,tristate = <TEGRA_PIN_DISABLE>;
+ };
+
+ sdmmc4_dat0_paa0 {
+ nvidia,pins = "sdmmc4_dat0_paa0",
+ "sdmmc4_dat1_paa1",
+ "sdmmc4_dat2_paa2",
+ "sdmmc4_dat3_paa3",
+ "sdmmc4_dat4_paa4",
+ "sdmmc4_dat5_paa5",
+ "sdmmc4_dat6_paa6",
+ "sdmmc4_dat7_paa7";
+ nvidia,function = "sdmmc4";
+ nvidia,pull = <TEGRA_PIN_PULL_UP>;
+ nvidia,tristate = <TEGRA_PIN_DISABLE>;
+ };
+ };
+ };
+
+ sdhci@78000400 {
+ pinctrl-names = "default";
+ pinctrl-0 = <&sdmmc4_default>;
+ };
diff --git a/Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt b/Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt
index 1958ca9f9e5..fa40a177164 100644
--- a/Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt
+++ b/Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt
@@ -151,13 +151,17 @@ drive-push-pull - drive actively high and low
drive-open-drain - drive with open drain
drive-open-source - drive with open source
drive-strength - sink or source at most X mA
+input-enable - enable input on pin (no effect on output)
+input-disable - disable input on pin (no effect on output)
input-schmitt-enable - enable schmitt-trigger mode
input-schmitt-disable - disable schmitt-trigger mode
input-debounce - debounce mode with debound time X
+power-source - select between different power supplies
low-power-enable - enable low power mode
low-power-disable - disable low power mode
output-low - set the pin to output mode with low level
output-high - set the pin to output mode with high level
+slew-rate - set the slew rate
Some of the generic properties take arguments. For those that do, the
arguments are described below.
diff --git a/Documentation/devicetree/bindings/pinctrl/pinctrl-palmas.txt b/Documentation/devicetree/bindings/pinctrl/pinctrl-palmas.txt
index 734d9b04d53..caf297bee1f 100644
--- a/Documentation/devicetree/bindings/pinctrl/pinctrl-palmas.txt
+++ b/Documentation/devicetree/bindings/pinctrl/pinctrl-palmas.txt
@@ -41,7 +41,7 @@ pinctrl-bindings.txt:
Required: pins
Options: function, bias-disable, bias-pull-up, bias-pull-down,
- bias-pin-default, drive-open-drain.
+ drive-open-drain.
Note that many of these properties are only valid for certain specific pins.
See the Palmas device datasheet for complete details regarding which pins
diff --git a/Documentation/devicetree/bindings/pinctrl/pinctrl-single.txt b/Documentation/devicetree/bindings/pinctrl/pinctrl-single.txt
index 5a02e30dd26..66dcaa9efd7 100644
--- a/Documentation/devicetree/bindings/pinctrl/pinctrl-single.txt
+++ b/Documentation/devicetree/bindings/pinctrl/pinctrl-single.txt
@@ -63,6 +63,13 @@ Optional properties:
/* input, enable bits, disable bits, mask */
pinctrl-single,input-schmitt-enable = <0x30 0x40 0 0x70>;
+- pinctrl-single,low-power-mode : array of value that are used to configure
+ low power mode of this pin. For some silicons, the low power mode will
+ control the output of the pin when the pad including the pin enter low
+ power mode.
+ /* low power mode value, mask */
+ pinctrl-single,low-power-mode = <0x288 0x388>;
+
- pinctrl-single,gpio-range : list of value that are used to configure a GPIO
range. They're value of subnode phandle, pin base in pinctrl device, pin
number in this range, GPIO function value of this GPIO range.
@@ -72,6 +79,13 @@ Optional properties:
/* pin base, nr pins & gpio function */
pinctrl-single,gpio-range = <&range 0 3 0 &range 3 9 1>;
+- interrupt-controller : standard interrupt controller binding if using
+ interrupts for wake-up events for example. In this case pinctrl-single
+ is set up as a chained interrupt controller and the wake-up interrupts
+ can be requested by the drivers using request_irq().
+
+- #interrupt-cells : standard interrupt binding if using interrupts
+
This driver assumes that there is only one register for each pin (unless the
pinctrl-single,bit-per-mux is set), and uses the common pinctrl bindings as
specified in the pinctrl-bindings.txt document in this directory.
@@ -91,7 +105,7 @@ below for more information.
In case when one register changes more than one pin's mux the
pinctrl-single,bits need to be used which takes three parameters:
- pinctrl-single,bits = <0xdc 0x18, 0xff>;
+ pinctrl-single,bits = <0xdc 0x18 0xff>;
Where 0xdc is the offset from the pinctrl register base address for the
device pinctrl register, 0x18 is the desired value, and 0xff is the sub mask to
@@ -121,6 +135,8 @@ pmx_core: pinmux@4a100040 {
reg = <0x4a100040 0x0196>;
#address-cells = <1>;
#size-cells = <0>;
+ #interrupt-cells = <1>;
+ interrupt-controller;
pinctrl-single,register-width = <16>;
pinctrl-single,function-mask = <0xffff>;
};
@@ -131,6 +147,8 @@ pmx_wkup: pinmux@4a31e040 {
reg = <0x4a31e040 0x0038>;
#address-cells = <1>;
#size-cells = <0>;
+ #interrupt-cells = <1>;
+ interrupt-controller;
pinctrl-single,register-width = <16>;
pinctrl-single,function-mask = <0xffff>;
};
diff --git a/Documentation/devicetree/bindings/pinctrl/pinctrl-st.txt b/Documentation/devicetree/bindings/pinctrl/pinctrl-st.txt
index 05bf82a07df..26bcb18f4e6 100644
--- a/Documentation/devicetree/bindings/pinctrl/pinctrl-st.txt
+++ b/Documentation/devicetree/bindings/pinctrl/pinctrl-st.txt
@@ -11,18 +11,68 @@ Pull Up (PU) are driven by the related PIO block.
ST pinctrl driver controls PIO multiplexing block and also interacts with
gpio driver to configure a pin.
-Required properties: (PIO multiplexing block)
+GPIO bank can have one of the two possible types of interrupt-wirings.
+
+First type is via irqmux, single interrupt is used by multiple gpio banks. This
+reduces number of overall interrupts numbers required. All these banks belong to
+a single pincontroller.
+ _________
+ | |----> [gpio-bank (n) ]
+ | |----> [gpio-bank (n + 1)]
+ [irqN]-- | irq-mux |----> [gpio-bank (n + 2)]
+ | |----> [gpio-bank (... )]
+ |_________|----> [gpio-bank (n + 7)]
+
+Second type has a dedicated interrupt per gpio bank.
+
+ [irqN]----> [gpio-bank (n)]
+
+
+Pin controller node:
+Required properties:
- compatible : should be "st,<SOC>-<pio-block>-pinctrl"
like st,stih415-sbc-pinctrl, st,stih415-front-pinctrl and so on.
-- gpio-controller : Indicates this device is a GPIO controller
-- #gpio-cells : Should be one. The first cell is the pin number.
+- st,syscfg : Should be a phandle of the syscfg node.
- st,retime-pin-mask : Should be mask to specify which pins can be retimed.
If the property is not present, it is assumed that all the pins in the
bank are capable of retiming. Retiming is mainly used to improve the
IO timing margins of external synchronous interfaces.
-- st,bank-name : Should be a name string for this bank as
- specified in datasheet.
-- st,syscfg : Should be a phandle of the syscfg node.
+- ranges : defines mapping between pin controller node (parent) to gpio-bank
+ node (children).
+
+Optional properties:
+- interrupts : Interrupt number of the irqmux. If the interrupt is shared
+ with other gpio banks via irqmux.
+ a irqline and gpio banks.
+- reg : irqmux memory resource. If irqmux is present.
+- reg-names : irqmux resource should be named as "irqmux".
+
+GPIO controller/bank node.
+Required properties:
+- gpio-controller : Indicates this device is a GPIO controller
+- #gpio-cells : Should be one. The first cell is the pin number.
+- st,bank-name : Should be a name string for this bank as specified in
+ datasheet.
+
+Optional properties:
+- interrupts : Interrupt number for this gpio bank. If there is a dedicated
+ interrupt wired up for this gpio bank.
+
+- interrupt-controller : Indicates this device is a interrupt controller. GPIO
+ bank can be an interrupt controller iff one of the interrupt type either via
+irqmux or a dedicated interrupt per bank is specified.
+
+- #interrupt-cells: the value of this property should be 2.
+ - First Cell: represents the external gpio interrupt number local to the
+ gpio interrupt space of the controller.
+ - Second Cell: flags to identify the type of the interrupt
+ - 1 = rising edge triggered
+ - 2 = falling edge triggered
+ - 3 = rising and falling edge triggered
+ - 4 = high level triggered
+ - 8 = low level triggered
+for related macros look in:
+include/dt-bindings/interrupt-controller/irq.h
Example:
pin-controller-sbc {
@@ -30,10 +80,17 @@ Example:
#size-cells = <1>;
compatible = "st,stih415-sbc-pinctrl";
st,syscfg = <&syscfg_sbc>;
+ reg = <0xfe61f080 0x4>;
+ reg-names = "irqmux";
+ interrupts = <GIC_SPI 180 IRQ_TYPE_LEVEL_HIGH>;
+ interrupt-names = "irqmux";
ranges = <0 0xfe610000 0x5000>;
+
PIO0: gpio@fe610000 {
gpio-controller;
#gpio-cells = <1>;
+ interrupt-controller;
+ #interrupt-cells = <2>;
reg = <0 0x100>;
st,bank-name = "PIO0";
};
@@ -105,6 +162,10 @@ pin-controller {
sdhci0:sdhci@fe810000{
...
+ interrupt-parent = <&PIO3>;
+ #interrupt-cells = <2>;
+ interrupts = <3 IRQ_TYPE_LEVEL_HIGH>; /* Interrupt line via PIO3-3 */
+ interrupt-names = "card-detect";
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_mmc>;
};
diff --git a/Documentation/devicetree/bindings/pinctrl/qcom,apq8064-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/qcom,apq8064-pinctrl.txt
new file mode 100644
index 00000000000..7181f925aca
--- /dev/null
+++ b/Documentation/devicetree/bindings/pinctrl/qcom,apq8064-pinctrl.txt
@@ -0,0 +1,88 @@
+Qualcomm APQ8064 TLMM block
+
+Required properties:
+- compatible: "qcom,apq8064-pinctrl"
+- reg: Should be the base address and length of the TLMM block.
+- interrupts: Should be the parent IRQ of the TLMM block.
+- interrupt-controller: Marks the device node as an interrupt controller.
+- #interrupt-cells: Should be two.
+- gpio-controller: Marks the device node as a GPIO controller.
+- #gpio-cells : Should be two.
+ The first cell is the gpio pin number and the
+ second cell is used for optional parameters.
+
+Please refer to ../gpio/gpio.txt and ../interrupt-controller/interrupts.txt for
+a general description of GPIO and interrupt bindings.
+
+Please refer to pinctrl-bindings.txt in this directory for details of the
+common pinctrl bindings used by client devices, including the meaning of the
+phrase "pin configuration node".
+
+Qualcomm's pin configuration nodes act as a container for an abitrary number of
+subnodes. Each of these subnodes represents some desired configuration for a
+pin, a group, or a list of pins or groups. This configuration can include the
+mux function to select on those pin(s)/group(s), and various pin configuration
+parameters, such as pull-up, drive strength, etc.
+
+The name of each subnode is not important; all subnodes should be enumerated
+and processed purely based on their content.
+
+Each subnode only affects those parameters that are explicitly listed. In
+other words, a subnode that lists a mux function but no pin configuration
+parameters implies no information about any pin configuration parameters.
+Similarly, a pin subnode that describes a pullup parameter implies no
+information about e.g. the mux function.
+
+
+The following generic properties as defined in pinctrl-bindings.txt are valid
+to specify in a pin configuration subnode:
+
+ pins, function, bias-disable, bias-pull-down, bias-pull,up, drive-strength,
+ output-low, output-high.
+
+Non-empty subnodes must specify the 'pins' property.
+
+Valid values for pins are:
+ gpio0-gpio89
+
+Valid values for function are:
+ cam_mclk, codec_mic_i2s, codec_spkr_i2s, gsbi1, gsbi2, gsbi3, gsbi4,
+ gsbi4_cam_i2c, gsbi5, gsbi5_spi_cs1, gsbi5_spi_cs2, gsbi5_spi_cs3, gsbi6,
+ gsbi6_spi_cs1, gsbi6_spi_cs2, gsbi6_spi_cs3, gsbi7, gsbi7_spi_cs1,
+ gsbi7_spi_cs2, gsbi7_spi_cs3, gsbi_cam_i2c, hdmi, mi2s, riva_bt, riva_fm,
+ riva_wlan, sdc2, sdc4, slimbus, spkr_i2s, tsif1, tsif2, usb2_hsic,
+
+Example:
+
+ msmgpio: pinctrl@800000 {
+ compatible = "qcom,apq8064-pinctrl";
+ reg = <0x800000 0x4000>;
+
+ gpio-controller;
+ #gpio-cells = <2>;
+ interrupt-controller;
+ #interrupt-cells = <2>;
+ interrupts = <0 32 0x4>;
+
+ pinctrl-names = "default";
+ pinctrl-0 = <&gsbi5_uart_default>;
+
+ gsbi5_uart_default: gsbi5_uart_default {
+ mux {
+ pins = "gpio51", "gpio52";
+ function = "gsbi5";
+ };
+
+ tx {
+ pins = "gpio51";
+ drive-strength = <4>;
+ bias-disable;
+ };
+
+ rx {
+ pins = "gpio52";
+ drive-strength = <2>;
+ bias-pull-up;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/pinctrl/qcom,ipq8064-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/qcom,ipq8064-pinctrl.txt
new file mode 100644
index 00000000000..e0d35a40981
--- /dev/null
+++ b/Documentation/devicetree/bindings/pinctrl/qcom,ipq8064-pinctrl.txt
@@ -0,0 +1,95 @@
+Qualcomm IPQ8064 TLMM block
+
+Required properties:
+- compatible: "qcom,ipq8064-pinctrl"
+- reg: Should be the base address and length of the TLMM block.
+- interrupts: Should be the parent IRQ of the TLMM block.
+- interrupt-controller: Marks the device node as an interrupt controller.
+- #interrupt-cells: Should be two.
+- gpio-controller: Marks the device node as a GPIO controller.
+- #gpio-cells : Should be two.
+ The first cell is the gpio pin number and the
+ second cell is used for optional parameters.
+
+Please refer to ../gpio/gpio.txt and ../interrupt-controller/interrupts.txt for
+a general description of GPIO and interrupt bindings.
+
+Please refer to pinctrl-bindings.txt in this directory for details of the
+common pinctrl bindings used by client devices, including the meaning of the
+phrase "pin configuration node".
+
+Qualcomm's pin configuration nodes act as a container for an abitrary number of
+subnodes. Each of these subnodes represents some desired configuration for a
+pin, a group, or a list of pins or groups. This configuration can include the
+mux function to select on those pin(s)/group(s), and various pin configuration
+parameters, such as pull-up, drive strength, etc.
+
+The name of each subnode is not important; all subnodes should be enumerated
+and processed purely based on their content.
+
+Each subnode only affects those parameters that are explicitly listed. In
+other words, a subnode that lists a mux function but no pin configuration
+parameters implies no information about any pin configuration parameters.
+Similarly, a pin subnode that describes a pullup parameter implies no
+information about e.g. the mux function.
+
+
+The following generic properties as defined in pinctrl-bindings.txt are valid
+to specify in a pin configuration subnode:
+
+ pins, function, bias-disable, bias-pull-down, bias-pull,up, drive-strength,
+ output-low, output-high.
+
+Non-empty subnodes must specify the 'pins' property.
+
+Valid values for qcom,pins are:
+ gpio0-gpio68
+ Supports mux, bias, and drive-strength
+
+ sdc3_clk, sdc3_cmd, sdc3_data
+ Supports bias and drive-strength
+
+
+Valid values for function are:
+ mdio, mi2s, pdm, ssbi, spmi, audio_pcm, gsbi1, gsbi2, gsbi4, gsbi5,
+ gsbi5_spi_cs1, gsbi5_spi_cs2, gsbi5_spi_cs3, gsbi6, gsbi7, nss_spi, sdc1,
+ spdif, nand, tsif1, tsif2, usb_fs_n, usb_fs, usb2_hsic, rgmii2, sata,
+ pcie1_rst, pcie1_prsnt, pcie1_pwren_n, pcie1_pwren, pcie1_pwrflt,
+ pcie1_clk_req, pcie2_rst, pcie2_prsnt, pcie2_pwren_n, pcie2_pwren,
+ pcie2_pwrflt, pcie2_clk_req, pcie3_rst, pcie3_prsnt, pcie3_pwren_n,
+ pcie3_pwren, pcie3_pwrflt, pcie3_clk_req, ps_hold
+
+Example:
+
+ pinmux: pinctrl@800000 {
+ compatible = "qcom,ipq8064-pinctrl";
+ reg = <0x800000 0x4000>;
+
+ gpio-controller;
+ #gpio-cells = <2>;
+ interrupt-controller;
+ #interrupt-cells = <2>;
+ interrupts = <0 32 0x4>;
+
+ pinctrl-names = "default";
+ pinctrl-0 = <&gsbi5_uart_default>;
+
+ gsbi5_uart_default: gsbi5_uart_default {
+ mux {
+ pins = "gpio18", "gpio19";
+ function = "gsbi5";
+ };
+
+ tx {
+ pins = "gpio18";
+ drive-strength = <4>;
+ bias-disable;
+ };
+
+ rx {
+ pins = "gpio19";
+ drive-strength = <2>;
+ bias-pull-up;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/pinctrl/qcom,msm8974-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/qcom,msm8974-pinctrl.txt
new file mode 100644
index 00000000000..73262b575df
--- /dev/null
+++ b/Documentation/devicetree/bindings/pinctrl/qcom,msm8974-pinctrl.txt
@@ -0,0 +1,112 @@
+Qualcomm MSM8974 TLMM block
+
+Required properties:
+- compatible: "qcom,msm8974-pinctrl"
+- reg: Should be the base address and length of the TLMM block.
+- interrupts: Should be the parent IRQ of the TLMM block.
+- interrupt-controller: Marks the device node as an interrupt controller.
+- #interrupt-cells: Should be two.
+- gpio-controller: Marks the device node as a GPIO controller.
+- #gpio-cells : Should be two.
+ The first cell is the gpio pin number and the
+ second cell is used for optional parameters.
+
+Please refer to ../gpio/gpio.txt and ../interrupt-controller/interrupts.txt for
+a general description of GPIO and interrupt bindings.
+
+Please refer to pinctrl-bindings.txt in this directory for details of the
+common pinctrl bindings used by client devices, including the meaning of the
+phrase "pin configuration node".
+
+Qualcomm's pin configuration nodes act as a container for an abitrary number of
+subnodes. Each of these subnodes represents some desired configuration for a
+pin, a group, or a list of pins or groups. This configuration can include the
+mux function to select on those pin(s)/group(s), and various pin configuration
+parameters, such as pull-up, drive strength, etc.
+
+The name of each subnode is not important; all subnodes should be enumerated
+and processed purely based on their content.
+
+Each subnode only affects those parameters that are explicitly listed. In
+other words, a subnode that lists a mux function but no pin configuration
+parameters implies no information about any pin configuration parameters.
+Similarly, a pin subnode that describes a pullup parameter implies no
+information about e.g. the mux function.
+
+
+The following generic properties as defined in pinctrl-bindings.txt are valid
+to specify in a pin configuration subnode:
+ pins, function, bias-disable, bias-pull-down, bias-pull,up, drive-strength.
+
+Non-empty subnodes must specify the 'pins' property.
+Note that not all properties are valid for all pins.
+
+
+Valid values for pins are:
+ gpio0-gpio145
+ Supports mux, bias and drive-strength
+
+ sdc1_clk, sdc1_cmd, sdc1_data, sdc2_clk, sdc2_cmd, sdc2_data
+ Supports bias and drive-strength
+
+Valid values for function are:
+ cci_i2c0, cci_i2c1, uim1, uim2, uim_batt_alarm,
+ blsp_uim1, blsp_uart1, blsp_i2c1, blsp_spi1,
+ blsp_uim2, blsp_uart2, blsp_i2c2, blsp_spi2,
+ blsp_uim3, blsp_uart3, blsp_i2c3, blsp_spi3,
+ blsp_uim4, blsp_uart4, blsp_i2c4, blsp_spi4,
+ blsp_uim5, blsp_uart5, blsp_i2c5, blsp_spi5,
+ blsp_uim6, blsp_uart6, blsp_i2c6, blsp_spi6,
+ blsp_uim7, blsp_uart7, blsp_i2c7, blsp_spi7,
+ blsp_uim8, blsp_uart8, blsp_i2c8, blsp_spi8,
+ blsp_uim9, blsp_uart9, blsp_i2c9, blsp_spi9,
+ blsp_uim10, blsp_uart10, blsp_i2c10, blsp_spi10,
+ blsp_uim11, blsp_uart11, blsp_i2c11, blsp_spi11,
+ blsp_uim12, blsp_uart12, blsp_i2c12, blsp_spi12,
+ blsp_spi1_cs1, blsp_spi2_cs2, blsp_spi_cs3, blsp_spi2_cs1, blsp_spi2_cs2
+ blsp_spi2_cs3, blsp_spi10_cs1, blsp_spi10_cs2, blsp_spi10_cs3,
+ sdc3, sdc4, gcc_gp_clk1, gcc_gp_clk2, gcc_gp_clk3, cci_timer0, cci_timer1,
+ cci_timer2, cci_timer3, cci_async_in0, cci_async_in1, cci_async_in2,
+ cam_mckl0, cam_mclk1, cam_mclk2, cam_mclk3, mdp_vsync, hdmi_cec, hdmi_ddc,
+ hdmi_hpd, edp_hpd, gp_pdm0, gp_pdm1, gp_pdm2, gp_pdm3, gp0_clk, gp1_clk,
+ gp_mn, tsif1, tsif2, hsic, grfc, audio_ref_clk, qua_mi2s, pri_mi2s, spkr_mi2s,
+ ter_mi2s, sec_mi2s, bt, fm, wlan, slimbus
+
+ (Note that this is not yet the complete list of functions)
+
+
+
+Example:
+
+ msmgpio: pinctrl@fd510000 {
+ compatible = "qcom,msm8974-pinctrl";
+ reg = <0xfd510000 0x4000>;
+
+ gpio-controller;
+ #gpio-cells = <2>;
+ interrupt-controller;
+ #interrupt-cells = <2>;
+ interrupts = <0 208 0>;
+
+ pinctrl-names = "default";
+ pinctrl-0 = <&uart2_default>;
+
+ uart2_default: uart2_default {
+ mux {
+ pins = "gpio4", "gpio5";
+ function = "blsp_uart2";
+ };
+
+ tx {
+ pins = "gpio4";
+ drive-strength = <4>;
+ bias-disable;
+ };
+
+ rx {
+ pins = "gpio5";
+ drive-strength = <2>;
+ bias-pull-up;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/pinctrl/renesas,pfc-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/renesas,pfc-pinctrl.txt
index d5dac7b843a..35d2e1f186f 100644
--- a/Documentation/devicetree/bindings/pinctrl/renesas,pfc-pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/renesas,pfc-pinctrl.txt
@@ -26,6 +26,11 @@ Optional properties:
- #gpio-range-cells: Mandatory when the PFC doesn't handle GPIO, forbidden
otherwise. Should be 3.
+ - interrupts-extended: Specify the interrupts associated with external
+ IRQ pins. This property is mandatory when the PFC handles GPIOs and
+ forbidden otherwise. When specified, it must contain one interrupt per
+ external IRQ, sorted by external IRQ number.
+
The PFC node also acts as a container for pin configuration nodes. Please refer
to pinctrl-bindings.txt in this directory for the definition of the term "pin
configuration node" and for the common pinctrl bindings used by client devices.
@@ -103,6 +108,15 @@ Example 1: SH73A0 (SH-Mobile AG5) pin controller node
<0xe605801c 0x1c>;
gpio-controller;
#gpio-cells = <2>;
+ interrupts-extended =
+ <&irqpin0 0 0>, <&irqpin0 1 0>, <&irqpin0 2 0>, <&irqpin0 3 0>,
+ <&irqpin0 4 0>, <&irqpin0 5 0>, <&irqpin0 6 0>, <&irqpin0 7 0>,
+ <&irqpin1 0 0>, <&irqpin1 1 0>, <&irqpin1 2 0>, <&irqpin1 3 0>,
+ <&irqpin1 4 0>, <&irqpin1 5 0>, <&irqpin1 6 0>, <&irqpin1 7 0>,
+ <&irqpin2 0 0>, <&irqpin2 1 0>, <&irqpin2 2 0>, <&irqpin2 3 0>,
+ <&irqpin2 4 0>, <&irqpin2 5 0>, <&irqpin2 6 0>, <&irqpin2 7 0>,
+ <&irqpin3 0 0>, <&irqpin3 1 0>, <&irqpin3 2 0>, <&irqpin3 3 0>,
+ <&irqpin3 4 0>, <&irqpin3 5 0>, <&irqpin3 6 0>, <&irqpin3 7 0>;
};
Example 2: A GPIO LED node that references a GPIO
diff --git a/Documentation/devicetree/bindings/pinctrl/rockchip,pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/rockchip,pinctrl.txt
index b0fb1018d7a..cefef741a40 100644
--- a/Documentation/devicetree/bindings/pinctrl/rockchip,pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/rockchip,pinctrl.txt
@@ -21,9 +21,22 @@ defined as gpio sub-nodes of the pinmux controller.
Required properties for iomux controller:
- compatible: one of "rockchip,rk2928-pinctrl", "rockchip,rk3066a-pinctrl"
"rockchip,rk3066b-pinctrl", "rockchip,rk3188-pinctrl"
+ - rockchip,grf: phandle referencing a syscon providing the
+ "general register files"
+
+Optional properties for iomux controller:
+ - rockchip,pmu: phandle referencing a syscon providing the pmu registers
+ as some SoCs carry parts of the iomux controller registers there.
+ Required for at least rk3188 and rk3288.
+
+Deprecated properties for iomux controller:
+ - reg: first element is the general register space of the iomux controller
+ It should be large enough to contain also separate pull registers.
+ second element is the separate pull register space of the rk3188.
+ Use rockchip,grf and rockchip,pmu described above instead.
Required properties for gpio sub nodes:
- - compatible: "rockchip,gpio-bank"
+ - compatible: "rockchip,gpio-bank", "rockchip,rk3188-gpio-bank0"
- reg: register of the gpio bank (different than the iomux registerset)
- interrupts: base interrupt of the gpio bank in the interrupt controller
- clocks: clock that drives this bank
@@ -36,6 +49,10 @@ Required properties for gpio sub nodes:
cells should use the standard two-cell scheme described in
bindings/interrupt-controller/interrupts.txt
+Deprecated properties for gpio sub nodes:
+ - reg: second element: separate pull register for rk3188 bank0, use
+ rockchip,pmu described above instead
+
Required properties for pin configuration node:
- rockchip,pins: 3 integers array, represents a group of pins mux and config
setting. The format is rockchip,pins = <PIN_BANK PIN_BANK_IDX MUX &phandle>.
@@ -51,7 +68,8 @@ Examples:
pinctrl@20008000 {
compatible = "rockchip,rk3066a-pinctrl";
- reg = <0x20008000 0x150>;
+ rockchip,grf = <&grf>;
+
#address-cells = <1>;
#size-cells = <1>;
ranges;
@@ -95,3 +113,43 @@ uart2: serial@20064000 {
pinctrl-names = "default";
pinctrl-0 = <&uart2_xfer>;
};
+
+Example for rk3188:
+
+ pinctrl@20008000 {
+ compatible = "rockchip,rk3188-pinctrl";
+ rockchip,grf = <&grf>;
+ rockchip,pmu = <&pmu>;
+ #address-cells = <1>;
+ #size-cells = <1>;
+ ranges;
+
+ gpio0: gpio0@0x2000a000 {
+ compatible = "rockchip,rk3188-gpio-bank0";
+ reg = <0x2000a000 0x100>;
+ interrupts = <GIC_SPI 54 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&clk_gates8 9>;
+
+ gpio-controller;
+ #gpio-cells = <2>;
+
+ interrupt-controller;
+ #interrupt-cells = <2>;
+ };
+
+ gpio1: gpio1@0x2003c000 {
+ compatible = "rockchip,gpio-bank";
+ reg = <0x2003c000 0x100>;
+ interrupts = <GIC_SPI 55 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&clk_gates8 10>;
+
+ gpio-controller;
+ #gpio-cells = <2>;
+
+ interrupt-controller;
+ #interrupt-cells = <2>;
+ };
+
+ ...
+
+ };
diff --git a/Documentation/devicetree/bindings/pinctrl/samsung-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/samsung-pinctrl.txt
index 257677de3e6..2b32783ba82 100644
--- a/Documentation/devicetree/bindings/pinctrl/samsung-pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/samsung-pinctrl.txt
@@ -16,6 +16,7 @@ Required Properties:
- "samsung,exynos4210-pinctrl": for Exynos4210 compatible pin-controller.
- "samsung,exynos4x12-pinctrl": for Exynos4x12 compatible pin-controller.
- "samsung,exynos5250-pinctrl": for Exynos5250 compatible pin-controller.
+ - "samsung,exynos5260-pinctrl": for Exynos5260 compatible pin-controller.
- "samsung,exynos5420-pinctrl": for Exynos5420 compatible pin-controller.
- reg: Base address of the pin controller hardware module and length of
diff --git a/Documentation/devicetree/bindings/power/bq2415x.txt b/Documentation/devicetree/bindings/power/bq2415x.txt
new file mode 100644
index 00000000000..d0327f0b59a
--- /dev/null
+++ b/Documentation/devicetree/bindings/power/bq2415x.txt
@@ -0,0 +1,47 @@
+Binding for TI bq2415x Li-Ion Charger
+
+Required properties:
+- compatible: Should contain one of the following:
+ * "ti,bq24150"
+ * "ti,bq24150"
+ * "ti,bq24150a"
+ * "ti,bq24151"
+ * "ti,bq24151a"
+ * "ti,bq24152"
+ * "ti,bq24153"
+ * "ti,bq24153a"
+ * "ti,bq24155"
+ * "ti,bq24156"
+ * "ti,bq24156a"
+ * "ti,bq24158"
+- reg: integer, i2c address of the device.
+- ti,current-limit: integer, initial maximum current charger can pull
+ from power supply in mA.
+- ti,weak-battery-voltage: integer, weak battery voltage threshold in mV.
+ The chip will use slow precharge if battery voltage
+ is below this value.
+- ti,battery-regulation-voltage: integer, maximum charging voltage in mV.
+- ti,charge-current: integer, maximum charging current in mA.
+- ti,termination-current: integer, charge will be terminated when current in
+ constant-voltage phase drops below this value (in mA).
+- ti,resistor-sense: integer, value of sensing resistor in milliohm.
+
+Optional properties:
+- ti,usb-charger-detection: phandle to usb charger detection device.
+ (required for auto mode)
+
+Example from Nokia N900:
+
+bq24150a {
+ compatible = "ti,bq24150a";
+ reg = <0x6b>;
+
+ ti,current-limit = <100>;
+ ti,weak-battery-voltage = <3400>;
+ ti,battery-regulation-voltage = <4200>;
+ ti,charge-current = <650>;
+ ti,termination-current = <100>;
+ ti,resistor-sense = <68>;
+
+ ti,usb-charger-detection = <&isp1704>;
+};
diff --git a/Documentation/devicetree/bindings/power/isp1704.txt b/Documentation/devicetree/bindings/power/isp1704.txt
new file mode 100644
index 00000000000..fa359690796
--- /dev/null
+++ b/Documentation/devicetree/bindings/power/isp1704.txt
@@ -0,0 +1,17 @@
+Binding for NXP ISP1704 USB Charger Detection
+
+Required properties:
+- compatible: Should contain one of the following:
+ * "nxp,isp1704"
+- nxp,enable-gpio: Should contain a phandle + gpio-specifier
+ to the GPIO pin connected to the chip's enable pin.
+- usb-phy: Should contain a phandle to the USB PHY
+ the ISP1704 is connected to.
+
+Example:
+
+isp1704 {
+ compatible = "nxp,isp1704";
+ nxp,enable-gpio = <&gpio3 3 GPIO_ACTIVE_LOW>;
+ usb-phy = <&usb2_phy>;
+};
diff --git a/Documentation/devicetree/bindings/power/reset/keystone-reset.txt b/Documentation/devicetree/bindings/power/reset/keystone-reset.txt
new file mode 100644
index 00000000000..c82f12e2d85
--- /dev/null
+++ b/Documentation/devicetree/bindings/power/reset/keystone-reset.txt
@@ -0,0 +1,67 @@
+* Device tree bindings for Texas Instruments keystone reset
+
+This node is intended to allow SoC reset in case of software reset
+of selected watchdogs.
+
+The Keystone SoCs can contain up to 4 watchdog timers to reset
+SoC. Each watchdog timer event input is connected to the Reset Mux
+block. The Reset Mux block can be configured to cause reset or not.
+
+Additionally soft or hard reset can be configured.
+
+Required properties:
+
+- compatible: ti,keystone-reset
+
+- ti,syscon-pll: phandle/offset pair. The phandle to syscon used to
+ access pll controller registers and the offset to use
+ reset control registers.
+
+- ti,syscon-dev: phandle/offset pair. The phandle to syscon used to
+ access device state control registers and the offset
+ in order to use mux block registers for all watchdogs.
+
+Optional properties:
+
+- ti,soft-reset: Boolean option indicating soft reset.
+ By default hard reset is used.
+
+- ti,wdt-list: WDT list that can cause SoC reset. It's not related
+ to WDT driver, it's just needed to enable a SoC related
+ reset that's triggered by one of WDTs. The list is
+ in format: <0>, <2>; It can be in random order and
+ begins from 0 to 3, as keystone can contain up to 4 SoC
+ reset watchdogs and can be in random order.
+
+Example 1:
+Setup keystone reset so that in case software reset or
+WDT0 is triggered it issues hard reset for SoC.
+
+pllctrl: pll-controller@02310000 {
+ compatible = "ti,keystone-pllctrl", "syscon";
+ reg = <0x02310000 0x200>;
+};
+
+devctrl: device-state-control@02620000 {
+ compatible = "ti,keystone-devctrl", "syscon";
+ reg = <0x02620000 0x1000>;
+};
+
+rstctrl: reset-controller {
+ compatible = "ti,keystone-reset";
+ ti,syscon-pll = <&pllctrl 0xe4>;
+ ti,syscon-dev = <&devctrl 0x328>;
+ ti,wdt-list = <0>;
+};
+
+Example 2:
+Setup keystone reset so that in case of software reset or
+WDT0 or WDT2 is triggered it issues soft reset for SoC.
+
+rstctrl: reset-controller {
+ compatible = "ti,keystone-reset";
+ ti,syscon-pll = <&pllctrl 0xe4>;
+ ti,syscon-dev = <&devctrl 0x328>;
+ ti,wdt-list = <0>, <2>;
+ ti,soft-reset;
+};
diff --git a/Documentation/devicetree/bindings/power/twl-charger.txt b/Documentation/devicetree/bindings/power/twl-charger.txt
new file mode 100644
index 00000000000..d5c706216df
--- /dev/null
+++ b/Documentation/devicetree/bindings/power/twl-charger.txt
@@ -0,0 +1,20 @@
+TWL BCI (Battery Charger Interface)
+
+Required properties:
+- compatible:
+ - "ti,twl4030-bci"
+- interrupts: two interrupt lines from the TWL SIH (secondary
+ interrupt handler) - interrupts 9 and 2.
+
+Optional properties:
+- ti,bb-uvolt: microvolts for charging the backup battery.
+- ti,bb-uamp: microamps for charging the backup battery.
+
+Examples:
+
+bci {
+ compatible = "ti,twl4030-bci";
+ interrupts = <9>, <2>;
+ ti,bb-uvolt = <3200000>;
+ ti,bb-uamp = <150>;
+};
diff --git a/Documentation/devicetree/bindings/power_supply/axxia-reset.txt b/Documentation/devicetree/bindings/power_supply/axxia-reset.txt
new file mode 100644
index 00000000000..47e720d249d
--- /dev/null
+++ b/Documentation/devicetree/bindings/power_supply/axxia-reset.txt
@@ -0,0 +1,20 @@
+Axxia Restart Driver
+
+This driver can do reset of the Axxia SoC. It uses the registers in the syscon
+block to initiate a chip reset.
+
+Required Properties:
+ -compatible: "lsi,axm55xx-reset"
+ -syscon: phandle to the syscon node.
+
+Example:
+
+ syscon: syscon@2010030000 {
+ compatible = "lsi,axxia-syscon", "syscon";
+ reg = <0x20 0x10030000 0 0x2000>;
+ };
+
+ reset: reset@2010031000 {
+ compatible = "lsi,axm55xx-reset";
+ syscon = <&syscon>;
+ };
diff --git a/Documentation/devicetree/bindings/power_supply/charger-manager.txt b/Documentation/devicetree/bindings/power_supply/charger-manager.txt
new file mode 100644
index 00000000000..2b33750e3db
--- /dev/null
+++ b/Documentation/devicetree/bindings/power_supply/charger-manager.txt
@@ -0,0 +1,81 @@
+charger-manager bindings
+~~~~~~~~~~~~~~~~~~~~~~~~
+
+Required properties :
+ - compatible : "charger-manager"
+ - <>-supply : for regulator consumer
+ - cm-num-chargers : number of chargers
+ - cm-chargers : name of chargers
+ - cm-fuel-gauge : name of battery fuel gauge
+ - subnode <regulator> :
+ - cm-regulator-name : name of charger regulator
+ - subnode <cable> :
+ - cm-cable-name : name of charger cable
+ - cm-cable-extcon : name of extcon dev
+(optional) - cm-cable-min : minimum current of cable
+(optional) - cm-cable-max : maximum current of cable
+
+Optional properties :
+ - cm-name : charger manager's name (default : "battery")
+ - cm-poll-mode : polling mode (enum polling_modes)
+ - cm-poll-interval : polling interval
+ - cm-battery-stat : battery status (enum data_source)
+ - cm-fullbatt-* : data for full battery checking
+ - cm-thermal-zone : name of external thermometer's thermal zone
+ - cm-battery-* : threshold battery temperature for charging
+ -cold : critical cold temperature of battery for charging
+ -cold-in-minus : flag that cold temerature is in minus degree
+ -hot : critical hot temperature of battery for charging
+ -temp-diff : temperature difference to allow recharging
+ - cm-dis/charging-max = limits of charging duration
+
+Example :
+ charger-manager@0 {
+ compatible = "charger-manager";
+ chg-reg-supply = <&charger_regulator>;
+
+ cm-name = "battery";
+ /* Always polling ON : 30s */
+ cm-poll-mode = <1>;
+ cm-poll-interval = <30000>;
+
+ cm-fullbatt-vchkdrop-ms = <30000>;
+ cm-fullbatt-vchkdrop-volt = <150000>;
+ cm-fullbatt-soc = <100>;
+
+ cm-battery-stat = <3>;
+
+ cm-num-chargers = <3>;
+ cm-chargers = "charger0", "charger1", "charger2";
+
+ cm-fuel-gauge = "fuelgauge0";
+
+ cm-thermal-zone = "thermal_zone.1"
+ /* in deci centigrade */
+ cm-battery-cold = <50>;
+ cm-battery-cold-in-minus;
+ cm-battery-hot = <800>;
+ cm-battery-temp-diff = <100>;
+
+ /* Allow charging for 5hr */
+ cm-charging-max = <18000000>;
+ /* Allow discharging for 2hr */
+ cm-discharging-max = <7200000>;
+
+ regulator@0 {
+ cm-regulator-name = "chg-reg";
+ cable@0 {
+ cm-cable-name = "USB";
+ cm-cable-extcon = "extcon-dev.0";
+ cm-cable-min = <475000>;
+ cm-cable-max = <500000>;
+ };
+ cable@1 {
+ cm-cable-name = "TA";
+ cm-cable-extcon = "extcon-dev.0";
+ cm-cable-min = <650000>;
+ cm-cable-max = <675000>;
+ };
+ };
+
+ };
diff --git a/Documentation/devicetree/bindings/power_supply/qnap-poweroff.txt b/Documentation/devicetree/bindings/power_supply/qnap-poweroff.txt
index 0347d8350d9..af25e77c0e0 100644
--- a/Documentation/devicetree/bindings/power_supply/qnap-poweroff.txt
+++ b/Documentation/devicetree/bindings/power_supply/qnap-poweroff.txt
@@ -6,8 +6,11 @@ Orion5x SoCs. Sending the character 'A', at 19200 baud, tells the
microcontroller to turn the power off. This driver adds a handler to
pm_power_off which is called to turn the power off.
+Synology NAS devices use a similar scheme, but a different baud rate,
+9600, and a different character, '1'.
+
Required Properties:
-- compatible: Should be "qnap,power-off"
+- compatible: Should be "qnap,power-off" or "synology,power-off"
- reg: Address and length of the register set for UART1
- clocks: tclk clock
diff --git a/Documentation/devicetree/bindings/power_supply/ti,bq24735.txt b/Documentation/devicetree/bindings/power_supply/ti,bq24735.txt
new file mode 100644
index 00000000000..4f6a550184d
--- /dev/null
+++ b/Documentation/devicetree/bindings/power_supply/ti,bq24735.txt
@@ -0,0 +1,32 @@
+TI BQ24735 Charge Controller
+~~~~~~~~~~
+
+Required properties :
+ - compatible : "ti,bq24735"
+
+Optional properties :
+ - interrupts : Specify the interrupt to be used to trigger when the AC
+ adapter is either plugged in or removed.
+ - ti,ac-detect-gpios : This GPIO is optionally used to read the AC adapter
+ presence. This is a Host GPIO that is configured as an input and
+ connected to the bq24735.
+ - ti,charge-current : Used to control and set the charging current. This value
+ must be between 128mA and 8.128A with a 64mA step resolution. The POR value
+ is 0x0000h. This number is in mA (e.g. 8192), see spec for more information
+ about the ChargeCurrent (0x14h) register.
+ - ti,charge-voltage : Used to control and set the charging voltage. This value
+ must be between 1.024V and 19.2V with a 16mV step resolution. The POR value
+ is 0x0000h. This number is in mV (e.g. 19200), see spec for more information
+ about the ChargeVoltage (0x15h) register.
+ - ti,input-current : Used to control and set the charger input current. This
+ value must be between 128mA and 8.064A with a 128mA step resolution. The
+ POR value is 0x1000h. This number is in mA (e.g. 8064), see the spec for
+ more information about the InputCurrent (0x3fh) register.
+
+Example:
+
+ bq24735@9 {
+ compatible = "ti,bq24735";
+ reg = <0x9>;
+ ti,ac-detect-gpios = <&gpio 72 0x1>;
+ }
diff --git a/Documentation/devicetree/bindings/powerpc/4xx/akebono.txt b/Documentation/devicetree/bindings/powerpc/4xx/akebono.txt
new file mode 100644
index 00000000000..db939210e29
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/4xx/akebono.txt
@@ -0,0 +1,54 @@
+
+IBM Akebono board device tree
+=============================
+
+The IBM Akebono board is a development board for the PPC476GTR SoC.
+
+0) The root node
+
+ Required properties:
+
+ - model : "ibm,akebono".
+ - compatible : "ibm,akebono" , "ibm,476gtr".
+
+1.a) The Secure Digital Host Controller Interface (SDHCI) node
+
+ Represent the Secure Digital Host Controller Interfaces.
+
+ Required properties:
+
+ - compatible : should be "ibm,476gtr-sdhci","generic-sdhci".
+ - reg : should contain the SDHCI registers location and length.
+ - interrupt-parent : a phandle for the interrupt controller.
+ - interrupts : should contain the SDHCI interrupt.
+
+1.b) The Advanced Host Controller Interface (AHCI) SATA node
+
+ Represents the advanced host controller SATA interface.
+
+ Required properties:
+
+ - compatible : should be "ibm,476gtr-ahci".
+ - reg : should contain the AHCI registers location and length.
+ - interrupt-parent : a phandle for the interrupt controller.
+ - interrupts : should contain the AHCI interrupt.
+
+1.c) The FPGA node
+
+ The Akebono board stores some board information such as the revision
+ number in an FPGA which is represented by this node.
+
+ Required properties:
+
+ - compatible : should be "ibm,akebono-fpga".
+ - reg : should contain the FPGA registers location and length.
+
+1.d) The AVR node
+
+ The Akebono board has an Atmel AVR microprocessor attached to the I2C
+ bus as a power controller for the board.
+
+ Required properties:
+
+ - compatible : should be "ibm,akebono-avr".
+ - reg : should contain the I2C bus address for the AVR.
diff --git a/Documentation/devicetree/bindings/powerpc/4xx/hsta.txt b/Documentation/devicetree/bindings/powerpc/4xx/hsta.txt
new file mode 100644
index 00000000000..c737c833870
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/4xx/hsta.txt
@@ -0,0 +1,19 @@
+
+ppc476gtr High Speed Serial Assist (HSTA) node
+==============================================
+
+The 476gtr SoC contains a high speed serial assist module attached
+between the plb4 and plb6 system buses to provide high speed data
+transfer between memory and system peripherals as well as support for
+PCI message signalled interrupts.
+
+Currently only the MSI support is used by Linux using the following
+device tree entries:
+
+Require properties:
+- compatible : "ibm,476gtr-hsta-msi", "ibm,hsta-msi"
+- reg : register mapping for the HSTA MSI space
+- interrupt-parent : parent controller for mapping interrupts
+- interrupts : ordered interrupt mapping for each MSI in the register
+ space. The first interrupt should be associated with a
+ register offset of 0x00, the second to 0x10, etc.
diff --git a/Documentation/devicetree/bindings/powerpc/4xx/reboot.txt b/Documentation/devicetree/bindings/powerpc/4xx/reboot.txt
index d7217260589..5bc63551319 100644
--- a/Documentation/devicetree/bindings/powerpc/4xx/reboot.txt
+++ b/Documentation/devicetree/bindings/powerpc/4xx/reboot.txt
@@ -1,7 +1,7 @@
Reboot property to control system reboot on PPC4xx systems:
By setting "reset_type" to one of the following values, the default
-software reset mechanism may be overidden. Here the possible values of
+software reset mechanism may be overridden. Here the possible values of
"reset_type":
1 - PPC4xx core reset
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/board.txt b/Documentation/devicetree/bindings/powerpc/fsl/board.txt
index 380914e965e..700dec4774f 100644
--- a/Documentation/devicetree/bindings/powerpc/fsl/board.txt
+++ b/Documentation/devicetree/bindings/powerpc/fsl/board.txt
@@ -67,3 +67,20 @@ Example:
gpio-controller;
};
};
+
+* Freescale on-board FPGA connected on I2C bus
+
+Some Freescale boards like BSC9132QDS have on board FPGA connected on
+the i2c bus.
+
+Required properties:
+- compatible: Should be a board-specific string followed by a string
+ indicating the type of FPGA. Example:
+ "fsl,<board>-fpga", "fsl,fpga-qixis-i2c"
+- reg: Should contain the address of the FPGA
+
+Example:
+ fpga: fpga@66 {
+ compatible = "fsl,bsc9132qds-fpga", "fsl,fpga-qixis-i2c";
+ reg = <0x66>;
+ };
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/ccf.txt b/Documentation/devicetree/bindings/powerpc/fsl/ccf.txt
new file mode 100644
index 00000000000..454da7e08ac
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/ccf.txt
@@ -0,0 +1,46 @@
+Freescale CoreNet Coherency Fabric(CCF) Device Tree Binding
+
+DESCRIPTION
+
+The CoreNet coherency fabric is a fabric-oriented, connectivity infrastructure
+that enables the implementation of coherent, multicore systems.
+
+Required properties:
+
+- compatible: <string list>
+ fsl,corenet1-cf - CoreNet coherency fabric version 1.
+ Example chips: T4240, B4860
+
+ fsl,corenet2-cf - CoreNet coherency fabric version 2.
+ Example chips: P5040, P5020, P4080, P3041, P2041
+
+ fsl,corenet-cf - Used to represent the common registers
+ between CCF version 1 and CCF version 2. This compatible
+ is retained for compatibility reasons, as it was already
+ used for both CCF version 1 chips and CCF version 2
+ chips. It should be specified after either
+ "fsl,corenet1-cf" or "fsl,corenet2-cf".
+
+- reg: <prop-encoded-array>
+ A standard property. Represents the CCF registers.
+
+- interrupts: <prop-encoded-array>
+ Interrupt mapping for CCF error interrupt.
+
+- fsl,ccf-num-csdids: <u32>
+ Specifies the number of Coherency Subdomain ID Port Mapping
+ Registers that are supported by the CCF.
+
+- fsl,ccf-num-snoopids: <u32>
+ Specifies the number of Snoop ID Port Mapping Registers that
+ are supported by CCF.
+
+Example:
+
+ corenet-cf@18000 {
+ compatible = "fsl,corenet2-cf", "fsl,corenet-cf";
+ reg = <0x18000 0x1000>;
+ interrupts = <16 2 1 31>;
+ fsl,ccf-num-csdids = <32>;
+ fsl,ccf-num-snoopids = <32>;
+ };
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/network.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/network.txt
index 0e426944658..29b28b8f9a8 100644
--- a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/network.txt
+++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/network.txt
@@ -10,7 +10,6 @@ Currently defined compatibles:
Example:
ethernet@11300 {
- device_type = "network";
compatible = "fsl,mpc8272-fcc-enet",
"fsl,cpm2-fcc-enet";
reg = <11300 20 8400 100 11390 1>;
@@ -33,7 +32,6 @@ fsl,mdc-pin : pin of port C controlling mdio clock
Example:
mdio@10d40 {
- device_type = "mdio";
compatible = "fsl,mpc8272ads-mdio-bitbang",
"fsl,mpc8272-mdio-bitbang",
"fsl,cpm2-mdio-bitbang";
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/pincfg.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/pincfg.txt
index c5b43061db3..ec6ee2e864a 100644
--- a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/pincfg.txt
+++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/pincfg.txt
@@ -1,8 +1,6 @@
* Pin configuration nodes
Required properties:
-- linux,phandle : phandle of this node; likely referenced by a QE
- device.
- pio-map : array of pin configurations. Each pin is defined by 6
integers. The six numbers are respectively: port, pin, dir,
open_drain, assignment, has_irq.
@@ -29,7 +27,6 @@ Required properties:
Example:
ucc_pin@01 {
- linux,phandle = <140001>;
pio-map = <
/* port pin dir open_drain assignment has_irq */
0 3 1 0 1 0 /* TxD0 */
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpus.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpus.txt
index 922c30ad90d..f8cd2397aa0 100644
--- a/Documentation/devicetree/bindings/powerpc/fsl/cpus.txt
+++ b/Documentation/devicetree/bindings/powerpc/fsl/cpus.txt
@@ -20,3 +20,14 @@ PROPERTIES
a property named fsl,eref-[CAT], where [CAT] is the abbreviated category
name with all uppercase letters converted to lowercase, indicates that
the category is supported by the implementation.
+
+ - fsl,portid-mapping
+ Usage: optional
+ Value type: <u32>
+ Definition: The Coherency Subdomain ID Port Mapping Registers and
+ Snoop ID Port Mapping registers, which are part of the CoreNet
+ Coherency fabric (CCF), provide a CoreNet Coherency Subdomain
+ ID/CoreNet Snoop ID to cpu mapping functions. Certain bits from
+ these registers should be set if the coresponding CPU should be
+ snooped. This property defines a bitmask which selects the bit
+ that should be set if this cpu should be snooped.
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/dcsr.txt b/Documentation/devicetree/bindings/powerpc/fsl/dcsr.txt
index 9d54eb5a295..18a88100af9 100644
--- a/Documentation/devicetree/bindings/powerpc/fsl/dcsr.txt
+++ b/Documentation/devicetree/bindings/powerpc/fsl/dcsr.txt
@@ -82,7 +82,7 @@ PROPERTIES
Which event source asserted the interrupt is captured in an EPU
Interrupt Status Register (EPISR0,EPISR1).
- Interrupt numbers are lised in order (perfmon, event0, event1).
+ Interrupt numbers are listed in order (perfmon, event0, event1).
- interrupt-parent
Usage: required
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/dma.txt b/Documentation/devicetree/bindings/powerpc/fsl/dma.txt
index 2a4b4bce611..7fc1b010fa7 100644
--- a/Documentation/devicetree/bindings/powerpc/fsl/dma.txt
+++ b/Documentation/devicetree/bindings/powerpc/fsl/dma.txt
@@ -1,33 +1,30 @@
-* Freescale 83xx DMA Controller
+* Freescale DMA Controllers
-Freescale PowerPC 83xx have on chip general purpose DMA controllers.
+** Freescale Elo DMA Controller
+ This is a little-endian 4-channel DMA controller, used in Freescale mpc83xx
+ series chips such as mpc8315, mpc8349, mpc8379 etc.
Required properties:
-- compatible : compatible list, contains 2 entries, first is
- "fsl,CHIP-dma", where CHIP is the processor
- (mpc8349, mpc8360, etc.) and the second is
- "fsl,elo-dma"
-- reg : <registers mapping for DMA general status reg>
-- ranges : Should be defined as specified in 1) to describe the
- DMA controller channels.
+- compatible : must include "fsl,elo-dma"
+- reg : DMA General Status Register, i.e. DGSR which contains
+ status for all the 4 DMA channels
+- ranges : describes the mapping between the address space of the
+ DMA channels and the address space of the DMA controller
- cell-index : controller index. 0 for controller @ 0x8100
-- interrupts : <interrupt mapping for DMA IRQ>
+- interrupts : interrupt specifier for DMA IRQ
- interrupt-parent : optional, if needed for interrupt mapping
-
- DMA channel nodes:
- - compatible : compatible list, contains 2 entries, first is
- "fsl,CHIP-dma-channel", where CHIP is the processor
- (mpc8349, mpc8350, etc.) and the second is
- "fsl,elo-dma-channel". However, see note below.
- - reg : <registers mapping for channel>
- - cell-index : dma channel index starts at 0.
+ - compatible : must include "fsl,elo-dma-channel"
+ However, see note below.
+ - reg : DMA channel specific registers
+ - cell-index : DMA channel index starts at 0.
Optional properties:
- - interrupts : <interrupt mapping for DMA channel IRQ>
- (on 83xx this is expected to be identical to
- the interrupts property of the parent node)
+ - interrupts : interrupt specifier for DMA channel IRQ
+ (on 83xx this is expected to be identical to
+ the interrupts property of the parent node)
- interrupt-parent : optional, if needed for interrupt mapping
Example:
@@ -70,30 +67,27 @@ Example:
};
};
-* Freescale 85xx/86xx DMA Controller
-
-Freescale PowerPC 85xx/86xx have on chip general purpose DMA controllers.
+** Freescale EloPlus DMA Controller
+ This is a 4-channel DMA controller with extended addresses and chaining,
+ mainly used in Freescale mpc85xx/86xx, Pxxx and BSC series chips, such as
+ mpc8540, mpc8641 p4080, bsc9131 etc.
Required properties:
-- compatible : compatible list, contains 2 entries, first is
- "fsl,CHIP-dma", where CHIP is the processor
- (mpc8540, mpc8540, etc.) and the second is
- "fsl,eloplus-dma"
-- reg : <registers mapping for DMA general status reg>
+- compatible : must include "fsl,eloplus-dma"
+- reg : DMA General Status Register, i.e. DGSR which contains
+ status for all the 4 DMA channels
- cell-index : controller index. 0 for controller @ 0x21000,
1 for controller @ 0xc000
-- ranges : Should be defined as specified in 1) to describe the
- DMA controller channels.
+- ranges : describes the mapping between the address space of the
+ DMA channels and the address space of the DMA controller
- DMA channel nodes:
- - compatible : compatible list, contains 2 entries, first is
- "fsl,CHIP-dma-channel", where CHIP is the processor
- (mpc8540, mpc8560, etc.) and the second is
- "fsl,eloplus-dma-channel". However, see note below.
- - cell-index : dma channel index starts at 0.
- - reg : <registers mapping for channel>
- - interrupts : <interrupt mapping for DMA channel IRQ>
+ - compatible : must include "fsl,eloplus-dma-channel"
+ However, see note below.
+ - cell-index : DMA channel index starts at 0.
+ - reg : DMA channel specific registers
+ - interrupts : interrupt specifier for DMA channel IRQ
- interrupt-parent : optional, if needed for interrupt mapping
Example:
@@ -134,6 +128,76 @@ Example:
};
};
+** Freescale Elo3 DMA Controller
+ DMA controller which has same function as EloPlus except that Elo3 has 8
+ channels while EloPlus has only 4, it is used in Freescale Txxx and Bxxx
+ series chips, such as t1040, t4240, b4860.
+
+Required properties:
+
+- compatible : must include "fsl,elo3-dma"
+- reg : contains two entries for DMA General Status Registers,
+ i.e. DGSR0 which includes status for channel 1~4, and
+ DGSR1 for channel 5~8
+- ranges : describes the mapping between the address space of the
+ DMA channels and the address space of the DMA controller
+
+- DMA channel nodes:
+ - compatible : must include "fsl,eloplus-dma-channel"
+ - reg : DMA channel specific registers
+ - interrupts : interrupt specifier for DMA channel IRQ
+ - interrupt-parent : optional, if needed for interrupt mapping
+
+Example:
+dma@100300 {
+ #address-cells = <1>;
+ #size-cells = <1>;
+ compatible = "fsl,elo3-dma";
+ reg = <0x100300 0x4>,
+ <0x100600 0x4>;
+ ranges = <0x0 0x100100 0x500>;
+ dma-channel@0 {
+ compatible = "fsl,eloplus-dma-channel";
+ reg = <0x0 0x80>;
+ interrupts = <28 2 0 0>;
+ };
+ dma-channel@80 {
+ compatible = "fsl,eloplus-dma-channel";
+ reg = <0x80 0x80>;
+ interrupts = <29 2 0 0>;
+ };
+ dma-channel@100 {
+ compatible = "fsl,eloplus-dma-channel";
+ reg = <0x100 0x80>;
+ interrupts = <30 2 0 0>;
+ };
+ dma-channel@180 {
+ compatible = "fsl,eloplus-dma-channel";
+ reg = <0x180 0x80>;
+ interrupts = <31 2 0 0>;
+ };
+ dma-channel@300 {
+ compatible = "fsl,eloplus-dma-channel";
+ reg = <0x300 0x80>;
+ interrupts = <76 2 0 0>;
+ };
+ dma-channel@380 {
+ compatible = "fsl,eloplus-dma-channel";
+ reg = <0x380 0x80>;
+ interrupts = <77 2 0 0>;
+ };
+ dma-channel@400 {
+ compatible = "fsl,eloplus-dma-channel";
+ reg = <0x400 0x80>;
+ interrupts = <78 2 0 0>;
+ };
+ dma-channel@480 {
+ compatible = "fsl,eloplus-dma-channel";
+ reg = <0x480 0x80>;
+ interrupts = <79 2 0 0>;
+ };
+};
+
Note on DMA channel compatible properties: The compatible property must say
"fsl,elo-dma-channel" or "fsl,eloplus-dma-channel" to be used by the Elo DMA
driver (fsldma). Any DMA channel used by fsldma cannot be used by another
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/l2cache.txt b/Documentation/devicetree/bindings/powerpc/fsl/l2cache.txt
new file mode 100644
index 00000000000..c41b2187eaa
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/l2cache.txt
@@ -0,0 +1,23 @@
+Freescale L2 Cache Controller
+
+L2 cache is present in Freescale's QorIQ and QorIQ Qonverge platforms.
+The cache bindings explained below are ePAPR compliant
+
+Required Properties:
+
+- compatible : Should include "fsl,chip-l2-cache-controller" and "cache"
+ where chip is the processor (bsc9132, npc8572 etc.)
+- reg : Address and size of L2 cache controller registers
+- cache-size : Size of the entire L2 cache
+- interrupts : Error interrupt of L2 controller
+- cache-line-size : Size of L2 cache lines
+
+Example:
+
+ L2: l2-cache-controller@20000 {
+ compatible = "fsl,bsc9132-l2-cache-controller", "cache";
+ reg = <0x20000 0x1000>;
+ cache-line-size = <32>; // 32 bytes
+ cache-size = <0x40000>; // L2,256K
+ interrupts = <16 2 1 0>;
+ };
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/mem-ctrlr.txt b/Documentation/devicetree/bindings/powerpc/fsl/mem-ctrlr.txt
new file mode 100644
index 00000000000..f87856faf1a
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/mem-ctrlr.txt
@@ -0,0 +1,27 @@
+Freescale DDR memory controller
+
+Properties:
+
+- compatible : Should include "fsl,chip-memory-controller" where
+ chip is the processor (bsc9132, mpc8572 etc.), or
+ "fsl,qoriq-memory-controller".
+- reg : Address and size of DDR controller registers
+- interrupts : Error interrupt of DDR controller
+
+Example 1:
+
+ memory-controller@2000 {
+ compatible = "fsl,bsc9132-memory-controller";
+ reg = <0x2000 0x1000>;
+ interrupts = <16 2 1 8>;
+ };
+
+
+Example 2:
+
+ ddr1: memory-controller@8000 {
+ compatible = "fsl,qoriq-memory-controller-v4.7",
+ "fsl,qoriq-memory-controller";
+ reg = <0x8000 0x1000>;
+ interrupts = <16 2 1 23>;
+ };
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/pamu.txt b/Documentation/devicetree/bindings/powerpc/fsl/pamu.txt
index 1f5e329f756..c2b2899885f 100644
--- a/Documentation/devicetree/bindings/powerpc/fsl/pamu.txt
+++ b/Documentation/devicetree/bindings/powerpc/fsl/pamu.txt
@@ -34,6 +34,15 @@ Optional properties:
for legacy drivers.
- interrupt-parent : <phandle>
Phandle to interrupt controller
+- fsl,portid-mapping : <u32>
+ The Coherency Subdomain ID Port Mapping Registers and
+ Snoop ID Port Mapping registers, which are part of the
+ CoreNet Coherency fabric (CCF), provide a CoreNet
+ Coherency Subdomain ID/CoreNet Snoop ID to pamu mapping
+ functions. Certain bits from these registers should be
+ set if PAMUs should be snooped. This property defines
+ a bitmask which selects the bits that should be set if
+ PAMUs should be snooped.
Child nodes:
@@ -88,6 +97,7 @@ Example:
compatible = "fsl,pamu-v1.0", "fsl,pamu";
reg = <0x20000 0x5000>;
ranges = <0 0x20000 0x5000>;
+ fsl,portid-mapping = <0xf80000>;
#address-cells = <1>;
#size-cells = <1>;
interrupts = <
diff --git a/Documentation/devicetree/bindings/pwm/atmel-pwm.txt b/Documentation/devicetree/bindings/pwm/atmel-pwm.txt
new file mode 100644
index 00000000000..02331b904d4
--- /dev/null
+++ b/Documentation/devicetree/bindings/pwm/atmel-pwm.txt
@@ -0,0 +1,33 @@
+Atmel PWM controller
+
+Required properties:
+ - compatible: should be one of:
+ - "atmel,at91sam9rl-pwm"
+ - "atmel,sama5d3-pwm"
+ - reg: physical base address and length of the controller's registers
+ - #pwm-cells: Should be 3. See pwm.txt in this directory for a
+ description of the cells format.
+
+Example:
+
+ pwm0: pwm@f8034000 {
+ compatible = "atmel,at91sam9rl-pwm";
+ reg = <0xf8034000 0x400>;
+ #pwm-cells = <3>;
+ };
+
+ pwmleds {
+ compatible = "pwm-leds";
+
+ d1 {
+ label = "d1";
+ pwms = <&pwm0 3 5000 0>
+ max-brightness = <255>;
+ };
+
+ d2 {
+ label = "d2";
+ pwms = <&pwm0 1 5000 1>
+ max-brightness = <255>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/pwm/bcm-kona-pwm.txt b/Documentation/devicetree/bindings/pwm/bcm-kona-pwm.txt
new file mode 100644
index 00000000000..8eae9fe7841
--- /dev/null
+++ b/Documentation/devicetree/bindings/pwm/bcm-kona-pwm.txt
@@ -0,0 +1,21 @@
+Broadcom Kona PWM controller device tree bindings
+
+This controller has 6 channels.
+
+Required Properties :
+- compatible: should contain "brcm,kona-pwm"
+- reg: physical base address and length of the controller's registers
+- clocks: phandle + clock specifier pair for the external clock
+- #pwm-cells: Should be 3. See pwm.txt in this directory for a
+ description of the cells format.
+
+Refer to clocks/clock-bindings.txt for generic clock consumer properties.
+
+Example:
+
+pwm: pwm@3e01a000 {
+ compatible = "brcm,bcm11351-pwm", "brcm,kona-pwm";
+ reg = <0x3e01a000 0xc4>;
+ clocks = <&pwm_clk>;
+ #pwm-cells = <3>;
+};
diff --git a/Documentation/devicetree/bindings/pwm/cirrus,clps711x-pwm.txt b/Documentation/devicetree/bindings/pwm/cirrus,clps711x-pwm.txt
new file mode 100644
index 00000000000..a183db48f91
--- /dev/null
+++ b/Documentation/devicetree/bindings/pwm/cirrus,clps711x-pwm.txt
@@ -0,0 +1,16 @@
+* Cirris Logic CLPS711X PWM controller
+
+Required properties:
+- compatible: Shall contain "cirrus,clps711x-pwm".
+- reg: Physical base address and length of the controller's registers.
+- clocks: phandle + clock specifier pair of the PWM reference clock.
+- #pwm-cells: Should be 1. The cell specifies the index of the channel.
+
+Example:
+ pwm: pwm@80000400 {
+ compatible = "cirrus,ep7312-pwm",
+ "cirrus,clps711x-pwm";
+ reg = <0x80000400 0x4>;
+ clocks = <&clks 8>;
+ #pwm-cells = <1>;
+ };
diff --git a/Documentation/devicetree/bindings/pwm/nvidia,tegra20-pwm.txt b/Documentation/devicetree/bindings/pwm/nvidia,tegra20-pwm.txt
index c3fc57af877..c7ea9d4a988 100644
--- a/Documentation/devicetree/bindings/pwm/nvidia,tegra20-pwm.txt
+++ b/Documentation/devicetree/bindings/pwm/nvidia,tegra20-pwm.txt
@@ -7,6 +7,12 @@ Required properties:
- reg: physical base address and length of the controller's registers
- #pwm-cells: should be 2. See pwm.txt in this directory for a description of
the cells format.
+- clocks: Must contain one entry, for the module clock.
+ See ../clocks/clock-bindings.txt for details.
+- resets: Must contain an entry for each entry in reset-names.
+ See ../reset/reset.txt for details.
+- reset-names: Must include the following entries:
+ - pwm
Example:
@@ -14,4 +20,7 @@ Example:
compatible = "nvidia,tegra20-pwm";
reg = <0x7000a000 0x100>;
#pwm-cells = <2>;
+ clocks = <&tegra_car 17>;
+ resets = <&tegra_car 17>;
+ reset-names = "pwm";
};
diff --git a/Documentation/devicetree/bindings/pwm/pwm-fsl-ftm.txt b/Documentation/devicetree/bindings/pwm/pwm-fsl-ftm.txt
new file mode 100644
index 00000000000..0bda229a617
--- /dev/null
+++ b/Documentation/devicetree/bindings/pwm/pwm-fsl-ftm.txt
@@ -0,0 +1,35 @@
+Freescale FlexTimer Module (FTM) PWM controller
+
+Required properties:
+- compatible: Should be "fsl,vf610-ftm-pwm".
+- reg: Physical base address and length of the controller's registers
+- #pwm-cells: Should be 3. See pwm.txt in this directory for a description of
+ the cells format.
+- clock-names: Should include the following module clock source entries:
+ "ftm_sys" (module clock, also can be used as counter clock),
+ "ftm_ext" (external counter clock),
+ "ftm_fix" (fixed counter clock),
+ "ftm_cnt_clk_en" (external and fixed counter clock enable/disable).
+- clocks: Must contain a phandle and clock specifier for each entry in
+ clock-names, please see clock/clock-bindings.txt for details of the property
+ values.
+- pinctrl-names: Must contain a "default" entry.
+- pinctrl-NNN: One property must exist for each entry in pinctrl-names.
+ See pinctrl/pinctrl-bindings.txt for details of the property values.
+
+
+Example:
+
+pwm0: pwm@40038000 {
+ compatible = "fsl,vf610-ftm-pwm";
+ reg = <0x40038000 0x1000>;
+ #pwm-cells = <3>;
+ clock-names = "ftm_sys", "ftm_ext",
+ "ftm_fix", "ftm_cnt_clk_en";
+ clocks = <&clks VF610_CLK_FTM0>,
+ <&clks VF610_CLK_FTM0_EXT_SEL>,
+ <&clks VF610_CLK_FTM0_FIX_SEL>,
+ <&clks VF610_CLK_FTM0_EXT_FIX_EN>;
+ pinctrl-names = "default";
+ pinctrl-0 = <&pinctrl_pwm0_1>;
+};
diff --git a/Documentation/devicetree/bindings/pwm/pwm-lp3943.txt b/Documentation/devicetree/bindings/pwm/pwm-lp3943.txt
new file mode 100644
index 00000000000..7bd9d3b12ce
--- /dev/null
+++ b/Documentation/devicetree/bindings/pwm/pwm-lp3943.txt
@@ -0,0 +1,58 @@
+TI/National Semiconductor LP3943 PWM controller
+
+Required properties:
+ - compatible: "ti,lp3943-pwm"
+ - #pwm-cells: Should be 2. See pwm.txt in this directory for a
+ description of the cells format.
+ Note that this hardware limits the period length to the
+ range 6250~1600000.
+ - ti,pwm0 or ti,pwm1: Output pin number(s) for PWM channel 0 or 1.
+ 0 = output 0
+ 1 = output 1
+ .
+ .
+ 15 = output 15
+
+Example:
+PWM 0 is for RGB LED brightness control
+PWM 1 is for brightness control of LP8557 backlight device
+
+&i2c3 {
+ lp3943@60 {
+ compatible = "ti,lp3943";
+ reg = <0x60>;
+
+ /*
+ * PWM 0 : output 8, 9 and 10
+ * PWM 1 : output 15
+ */
+ pwm3943: pwm {
+ compatible = "ti,lp3943-pwm";
+ #pwm-cells = <2>;
+ ti,pwm0 = <8 9 10>;
+ ti,pwm1 = <15>;
+ };
+ };
+
+};
+
+/* LEDs control with PWM 0 of LP3943 */
+pwmleds {
+ compatible = "pwm-leds";
+ rgb {
+ label = "indi::rgb";
+ pwms = <&pwm3943 0 10000>;
+ max-brightness = <255>;
+ };
+};
+
+&i2c4 {
+ /* Backlight control with PWM 1 of LP3943 */
+ backlight@2c {
+ compatible = "ti,lp8557";
+ reg = <0x2c>;
+
+ pwms = <&pwm3943 1 10000>;
+ pwm-names = "lp8557";
+ };
+};
diff --git a/Documentation/devicetree/bindings/pwm/pwm-samsung.txt b/Documentation/devicetree/bindings/pwm/pwm-samsung.txt
index d61fccd40ba..5538de9c200 100644
--- a/Documentation/devicetree/bindings/pwm/pwm-samsung.txt
+++ b/Documentation/devicetree/bindings/pwm/pwm-samsung.txt
@@ -15,7 +15,7 @@ Required properties:
samsung,s5pc100-pwm - for 32-bit timers present on S5PC100, S5PV210,
Exynos4210 rev0 SoCs
samsung,exynos4210-pwm - for 32-bit timers present on Exynos4210,
- Exynos4x12 and Exynos5250 SoCs
+ Exynos4x12, Exynos5250 and Exynos5420 SoCs
- reg: base address and size of register area
- interrupts: list of timer interrupts (one interrupt per timer, starting at
timer 0)
diff --git a/Documentation/devicetree/bindings/pwm/pxa-pwm.txt b/Documentation/devicetree/bindings/pwm/pxa-pwm.txt
new file mode 100644
index 00000000000..5ae9f1e3c33
--- /dev/null
+++ b/Documentation/devicetree/bindings/pwm/pxa-pwm.txt
@@ -0,0 +1,30 @@
+Marvell PWM controller
+
+Required properties:
+- compatible: should be one or more of:
+ - "marvell,pxa250-pwm"
+ - "marvell,pxa270-pwm"
+ - "marvell,pxa168-pwm"
+ - "marvell,pxa910-pwm"
+- reg: Physical base address and length of the registers used by the PWM channel
+ Note that one device instance must be created for each PWM that is used, so the
+ length covers only the register window for one PWM output, not that of the
+ entire PWM controller. Currently length is 0x10 for all supported devices.
+- #pwm-cells: Should be 1. This cell is used to specify the period in
+ nanoseconds.
+
+Example PWM device node:
+
+pwm0: pwm@40b00000 {
+ compatible = "marvell,pxa250-pwm";
+ reg = <0x40b00000 0x10>;
+ #pwm-cells = <1>;
+};
+
+Example PWM client node:
+
+backlight {
+ compatible = "pwm-backlight";
+ pwms = <&pwm0 5000000>;
+ ...
+}
diff --git a/Documentation/devicetree/bindings/regulator/act8865-regulator.txt b/Documentation/devicetree/bindings/regulator/act8865-regulator.txt
new file mode 100644
index 00000000000..bef1fbb647c
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/act8865-regulator.txt
@@ -0,0 +1,60 @@
+ACT8865 regulator
+-------------------
+
+Required properties:
+- compatible: "active-semi,act8865"
+- reg: I2C slave address
+
+Any standard regulator properties can be used to configure the single regulator.
+
+The valid names for regulators are:
+ DCDC_REG1, DCDC_REG2, DCDC_REG3, LDO_REG1, LDO_REG2, LDO_REG3, LDO_REG4.
+
+Example:
+--------
+
+ i2c1: i2c@f0018000 {
+ pmic: act8865@5b {
+ compatible = "active-semi,act8865";
+ reg = <0x5b>;
+ status = "disabled";
+
+ regulators {
+ vcc_1v8_reg: DCDC_REG1 {
+ regulator-name = "VCC_1V8";
+ regulator-min-microvolt = <1800000>;
+ regulator-max-microvolt = <1800000>;
+ regulator-always-on;
+ };
+
+ vcc_1v2_reg: DCDC_REG2 {
+ regulator-name = "VCC_1V2";
+ regulator-min-microvolt = <1100000>;
+ regulator-max-microvolt = <1300000>;
+ regulator-suspend-mem-microvolt = <1150000>;
+ regulator-suspend-standby-microvolt = <1150000>;
+ regulator-always-on;
+ };
+
+ vcc_3v3_reg: DCDC_REG3 {
+ regulator-name = "VCC_3V3";
+ regulator-min-microvolt = <3300000>;
+ regulator-max-microvolt = <3300000>;
+ regulator-always-on;
+ };
+
+ vddana_reg: LDO_REG1 {
+ regulator-name = "VDDANA";
+ regulator-min-microvolt = <3300000>;
+ regulator-max-microvolt = <3300000>;
+ regulator-always-on;
+ };
+
+ vddfuse_reg: LDO_REG2 {
+ regulator-name = "FUSE_2V5";
+ regulator-min-microvolt = <2500000>;
+ regulator-max-microvolt = <2500000>;
+ };
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/regulator/as3722-regulator.txt b/Documentation/devicetree/bindings/regulator/as3722-regulator.txt
new file mode 100644
index 00000000000..caad0c8a258
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/as3722-regulator.txt
@@ -0,0 +1,91 @@
+Regulator of AMS AS3722 PMIC.
+Name of the regulator subnode must be "regulators".
+
+Optional properties:
+--------------------
+The input supply of regulators are the optional properties on the
+regulator node. The AS3722 is having 7 DCDC step-down regulators as
+sd[0-6], 10 LDOs as ldo[0-7], ldo[9-11]. The input supply of these
+regulators are provided through following properties:
+vsup-sd2-supply: Input supply for SD2.
+vsup-sd3-supply: Input supply for SD3.
+vsup-sd4-supply: Input supply for SD4.
+vsup-sd5-supply: Input supply for SD5.
+vin-ldo0-supply: Input supply for LDO0.
+vin-ldo1-6-supply: Input supply for LDO1 and LDO6.
+vin-ldo2-5-7-supply: Input supply for LDO2, LDO5 and LDO7.
+vin-ldo3-4-supply: Input supply for LDO3 and LDO4.
+vin-ldo9-10-supply: Input supply for LDO9 and LDO10.
+vin-ldo11-supply: Input supply for LDO11.
+
+Optional nodes:
+--------------
+- regulators : Must contain a sub-node per regulator from the list below.
+ Each sub-node should contain the constraints and initialization
+ information for that regulator. See regulator.txt for a
+ description of standard properties for these sub-nodes.
+ Additional custom properties are listed below.
+ sd[0-6], ldo[0-7], ldo[9-11].
+
+ Optional sub-node properties:
+ ----------------------------
+ ams,ext-control: External control of the rail. The option of
+ this properties will tell which external input is
+ controlling this rail. Valid values are 0, 1, 2 ad 3.
+ 0: There is no external control of this rail.
+ 1: Rail is controlled by ENABLE1 input pin.
+ 2: Rail is controlled by ENABLE2 input pin.
+ 3: Rail is controlled by ENABLE3 input pin.
+ ams,enable-tracking: Enable tracking with SD1, only supported
+ by LDO3.
+
+Example:
+-------
+ ams3722: ams3722 {
+ compatible = "ams,as3722";
+ reg = <0x40>;
+ ...
+
+ regulators {
+ vsup-sd2-supply = <...>;
+ ...
+
+ sd0 {
+ regulator-name = "vdd_cpu";
+ regulator-min-microvolt = <700000>;
+ regulator-max-microvolt = <1400000>;
+ regulator-always-on;
+ ams,ext-control = <2>;
+ };
+
+ sd1 {
+ regulator-name = "vdd_core";
+ regulator-min-microvolt = <700000>;
+ regulator-max-microvolt = <1400000>;
+ regulator-always-on;
+ ams,ext-control = <1>;
+ };
+
+ sd2 {
+ regulator-name = "vddio_ddr";
+ regulator-min-microvolt = <1350000>;
+ regulator-max-microvolt = <1350000>;
+ regulator-always-on;
+ };
+
+ sd4 {
+ regulator-name = "avdd-hdmi-pex";
+ regulator-min-microvolt = <1050000>;
+ regulator-max-microvolt = <1050000>;
+ regulator-always-on;
+ };
+
+ sd5 {
+ regulator-name = "vdd-1v8";
+ regulator-min-microvolt = <1800000>;
+ regulator-max-microvolt = <1800000>;
+ regulator-always-on;
+ };
+ ....
+ };
+ };
diff --git a/Documentation/devicetree/bindings/regulator/da9210.txt b/Documentation/devicetree/bindings/regulator/da9210.txt
new file mode 100644
index 00000000000..f120f229d67
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/da9210.txt
@@ -0,0 +1,21 @@
+* Dialog Semiconductor DA9210 Voltage Regulator
+
+Required properties:
+
+- compatible: must be "diasemi,da9210"
+- reg: the i2c slave address of the regulator. It should be 0x68.
+
+Any standard regulator properties can be used to configure the single da9210
+DCDC.
+
+Example:
+
+ da9210@68 {
+ compatible = "diasemi,da9210";
+ reg = <0x68>;
+
+ regulator-min-microvolt = <900000>;
+ regulator-max-microvolt = <1000000>;
+ regulator-boot-on;
+ regulator-always-on;
+ };
diff --git a/Documentation/devicetree/bindings/regulator/gpio-regulator.txt b/Documentation/devicetree/bindings/regulator/gpio-regulator.txt
index 63c659800c0..e5cac1e0ca8 100644
--- a/Documentation/devicetree/bindings/regulator/gpio-regulator.txt
+++ b/Documentation/devicetree/bindings/regulator/gpio-regulator.txt
@@ -8,8 +8,12 @@ Required properties:
Optional properties:
- enable-gpio : GPIO to use to enable/disable the regulator.
- gpios : GPIO group used to control voltage.
+- gpios-states : gpios pin's initial states array. 0: LOW, 1: HIGH.
+ defualt is LOW if nothing is specified.
- startup-delay-us : Startup time in microseconds.
- enable-active-high : Polarity of GPIO is active high (default is low).
+- regulator-type : Specifies what is being regulated, must be either
+ "voltage" or "current", defaults to current.
Any property defined as part of the core regulator binding defined in
regulator.txt can also be used.
diff --git a/Documentation/devicetree/bindings/regulator/ltc3589.txt b/Documentation/devicetree/bindings/regulator/ltc3589.txt
new file mode 100644
index 00000000000..80105303614
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/ltc3589.txt
@@ -0,0 +1,99 @@
+Linear Technology LTC3589, LTC3589-1, and LTC3589-2 8-output regulators
+
+Required properties:
+- compatible: "lltc,ltc3589", "lltc,ltc3589-1" or "lltc,ltc3589-2"
+- reg: I2C slave address
+
+Required child node:
+- regulators: Contains eight regulator child nodes sw1, sw2, sw3, bb-out,
+ ldo1, ldo2, ldo3, and ldo4, specifying the initialization data as
+ documented in Documentation/devicetree/bindings/regulator/regulator.txt.
+
+Each regulator is defined using the standard binding for regulators. The
+nodes for sw1, sw2, sw3, bb-out, ldo1, and ldo2 additionally need to specify
+the resistor values of their external feedback voltage dividers:
+
+Required properties (not on ldo3, ldo4):
+- lltc,fb-voltage-divider: An array of two integers containing the resistor
+ values R1 and R2 of the feedback voltage divider in ohms.
+
+Regulators sw1, sw2, sw3, and ldo2 can regulate the feedback reference from
+0.3625 V to 0.75 V in 12.5 mV steps. The output voltage thus ranges between
+0.3625 * (1 + R1/R2) V and 0.75 * (1 + R1/R2) V. Regulators bb-out and ldo1
+have a fixed 0.8 V reference and thus output 0.8 * (1 + R1/R2) V. The ldo3
+regulator is fixed to 1.8 V on LTC3589 and to 2.8 V on LTC3589-1,2. The ldo4
+regulator can output between 1.8 V and 3.3 V on LTC3589 and between 1.2 V
+and 3.2 V on LTC3589-1,2 in four steps. The ldo1 standby regulator can not
+be disabled and thus should have the regulator-always-on property set.
+
+Example:
+
+ ltc3589: pmic@34 {
+ compatible = "lltc,ltc3589-1";
+ reg = <0x34>;
+
+ regulators {
+ sw1_reg: sw1 {
+ regulator-min-microvolt = <591930>;
+ regulator-max-microvolt = <1224671>;
+ lltc,fb-voltage-divider = <100000 158000>;
+ regulator-ramp-delay = <7000>;
+ regulator-boot-on;
+ regulator-always-on;
+ };
+
+ sw2_reg: sw2 {
+ regulator-min-microvolt = <704123>;
+ regulator-max-microvolt = <1456803>;
+ lltc,fb-voltage-divider = <180000 191000>;
+ regulator-ramp-delay = <7000>;
+ regulator-boot-on;
+ regulator-always-on;
+ };
+
+ sw3_reg: sw3 {
+ regulator-min-microvolt = <1341250>;
+ regulator-max-microvolt = <2775000>;
+ lltc,fb-voltage-divider = <270000 100000>;
+ regulator-ramp-delay = <7000>;
+ regulator-boot-on;
+ regulator-always-on;
+ };
+
+ bb_out_reg: bb-out {
+ regulator-min-microvolt = <3387341>;
+ regulator-max-microvolt = <3387341>;
+ lltc,fb-voltage-divider = <511000 158000>;
+ regulator-boot-on;
+ regulator-always-on;
+ };
+
+ ldo1_reg: ldo1 {
+ regulator-min-microvolt = <1306329>;
+ regulator-max-microvolt = <1306329>;
+ lltc,fb-voltage-divider = <100000 158000>;
+ regulator-boot-on;
+ regulator-always-on;
+ };
+
+ ldo2_reg: ldo2 {
+ regulator-min-microvolt = <704123>;
+ regulator-max-microvolt = <1456806>;
+ lltc,fb-voltage-divider = <180000 191000>;
+ regulator-ramp-delay = <7000>;
+ regulator-boot-on;
+ regulator-always-on;
+ };
+
+ ldo3_reg: ldo3 {
+ regulator-min-microvolt = <2800000>;
+ regulator-max-microvolt = <2800000>;
+ regulator-boot-on;
+ };
+
+ ldo4_reg: ldo4 {
+ regulator-min-microvolt = <1200000>;
+ regulator-max-microvolt = <3200000>;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/regulator/palmas-pmic.txt b/Documentation/devicetree/bindings/regulator/palmas-pmic.txt
index 875639ae060..42e6b6bc48f 100644
--- a/Documentation/devicetree/bindings/regulator/palmas-pmic.txt
+++ b/Documentation/devicetree/bindings/regulator/palmas-pmic.txt
@@ -26,11 +26,17 @@ Optional nodes:
For ti,palmas-pmic - smps12, smps123, smps3 depending on OTP,
smps45, smps457, smps7 depending on variant, smps6, smps[8-9],
- smps10_out2, smps10_out1, do[1-9], ldoln, ldousb.
+ smps10_out2, smps10_out1, ldo[1-9], ldoln, ldousb.
Optional sub-node properties:
ti,warm-reset - maintain voltage during warm reset(boolean)
- ti,roof-floor - control voltage selection by pin(boolean)
+ ti,roof-floor - This takes as optional argument on platform supporting
+ the rail from desired external control. If there is no argument then
+ it will be assume that it is controlled by NSLEEP pin.
+ The valid value for external pins are:
+ ENABLE1 then 1,
+ ENABLE2 then 2 or
+ NSLEEP then 3.
ti,mode-sleep - mode to adopt in pmic sleep 0 - off, 1 - auto,
2 - eco, 3 - forced pwm
ti,smps-range - OTP has the wrong range set for the hardware so override
@@ -61,7 +67,7 @@ pmic {
regulator-always-on;
regulator-boot-on;
ti,warm-reset;
- ti,roof-floor;
+ ti,roof-floor = <1>; /* ENABLE1 control */
ti,mode-sleep = <0>;
ti,smps-range = <1>;
};
diff --git a/Documentation/devicetree/bindings/regulator/pbias-regulator.txt b/Documentation/devicetree/bindings/regulator/pbias-regulator.txt
new file mode 100644
index 00000000000..32aa26f1e43
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/pbias-regulator.txt
@@ -0,0 +1,27 @@
+PBIAS internal regulator for SD card dual voltage i/o pads on OMAP SoCs.
+
+Required properties:
+- compatible:
+ - "ti,pbias-omap" for OMAP2, OMAP3, OMAP4, OMAP5, DRA7.
+- reg: pbias register offset from syscon base and size of pbias register.
+- syscon : phandle of the system control module
+- regulator-name : should be
+ pbias_mmc_omap2430 for OMAP2430, OMAP3 SoCs
+ pbias_sim_omap3 for OMAP3 SoCs
+ pbias_mmc_omap4 for OMAP4 SoCs
+ pbias_mmc_omap5 for OMAP5 and DRA7 SoC
+
+Optional properties:
+- Any optional property defined in bindings/regulator/regulator.txt
+
+Example:
+
+ pbias_regulator: pbias_regulator {
+ compatible = "ti,pbias-omap";
+ reg = <0 0x4>;
+ syscon = <&omap5_padconf_global>;
+ pbias_mmc_reg: pbias_mmc_omap5 {
+ regulator-name = "pbias_mmc_omap5";
+ regulator-min-microvolt = <1800000>;
+ regulator-max-microvolt = <3000000>;
+ };
diff --git a/Documentation/devicetree/bindings/regulator/pfuze100.txt b/Documentation/devicetree/bindings/regulator/pfuze100.txt
index fc989b2e805..34ef5d16d0f 100644
--- a/Documentation/devicetree/bindings/regulator/pfuze100.txt
+++ b/Documentation/devicetree/bindings/regulator/pfuze100.txt
@@ -1,7 +1,7 @@
PFUZE100 family of regulators
Required properties:
-- compatible: "fsl,pfuze100"
+- compatible: "fsl,pfuze100" or "fsl,pfuze200"
- reg: I2C slave address
Required child node:
@@ -10,11 +10,14 @@ Required child node:
Documentation/devicetree/bindings/regulator/regulator.txt.
The valid names for regulators are:
+ --PFUZE100
sw1ab,sw1c,sw2,sw3a,sw3b,sw4,swbst,vsnvs,vrefddr,vgen1~vgen6
+ --PFUZE200
+ sw1ab,sw2,sw3a,sw3b,swbst,vsnvs,vrefddr,vgen1~vgen6
Each regulator is defined using the standard binding for regulators.
-Example:
+Example 1: PFUZE100
pmic: pfuze100@08 {
compatible = "fsl,pfuze100";
@@ -113,3 +116,92 @@ Example:
};
};
};
+
+
+Example 2: PFUZE200
+
+ pmic: pfuze200@08 {
+ compatible = "fsl,pfuze200";
+ reg = <0x08>;
+
+ regulators {
+ sw1a_reg: sw1ab {
+ regulator-min-microvolt = <300000>;
+ regulator-max-microvolt = <1875000>;
+ regulator-boot-on;
+ regulator-always-on;
+ regulator-ramp-delay = <6250>;
+ };
+
+ sw2_reg: sw2 {
+ regulator-min-microvolt = <800000>;
+ regulator-max-microvolt = <3300000>;
+ regulator-boot-on;
+ regulator-always-on;
+ };
+
+ sw3a_reg: sw3a {
+ regulator-min-microvolt = <400000>;
+ regulator-max-microvolt = <1975000>;
+ regulator-boot-on;
+ regulator-always-on;
+ };
+
+ sw3b_reg: sw3b {
+ regulator-min-microvolt = <400000>;
+ regulator-max-microvolt = <1975000>;
+ regulator-boot-on;
+ regulator-always-on;
+ };
+
+ swbst_reg: swbst {
+ regulator-min-microvolt = <5000000>;
+ regulator-max-microvolt = <5150000>;
+ };
+
+ snvs_reg: vsnvs {
+ regulator-min-microvolt = <1000000>;
+ regulator-max-microvolt = <3000000>;
+ regulator-boot-on;
+ regulator-always-on;
+ };
+
+ vref_reg: vrefddr {
+ regulator-boot-on;
+ regulator-always-on;
+ };
+
+ vgen1_reg: vgen1 {
+ regulator-min-microvolt = <800000>;
+ regulator-max-microvolt = <1550000>;
+ };
+
+ vgen2_reg: vgen2 {
+ regulator-min-microvolt = <800000>;
+ regulator-max-microvolt = <1550000>;
+ };
+
+ vgen3_reg: vgen3 {
+ regulator-min-microvolt = <1800000>;
+ regulator-max-microvolt = <3300000>;
+ };
+
+ vgen4_reg: vgen4 {
+ regulator-min-microvolt = <1800000>;
+ regulator-max-microvolt = <3300000>;
+ regulator-always-on;
+ };
+
+ vgen5_reg: vgen5 {
+ regulator-min-microvolt = <1800000>;
+ regulator-max-microvolt = <3300000>;
+ regulator-always-on;
+ };
+
+ vgen6_reg: vgen6 {
+ regulator-min-microvolt = <1800000>;
+ regulator-max-microvolt = <3300000>;
+ regulator-always-on;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/regulator/regulator.txt b/Documentation/devicetree/bindings/regulator/regulator.txt
index 2bd8f097876..86074334e34 100644
--- a/Documentation/devicetree/bindings/regulator/regulator.txt
+++ b/Documentation/devicetree/bindings/regulator/regulator.txt
@@ -12,8 +12,13 @@ Optional properties:
- regulator-allow-bypass: allow the regulator to go into bypass mode
- <name>-supply: phandle to the parent supply/regulator node
- regulator-ramp-delay: ramp delay for regulator(in uV/uS)
- For hardwares which support disabling ramp rate, it should be explicitly
+ For hardware which supports disabling ramp rate, it should be explicitly
intialised to zero (regulator-ramp-delay = <0>) for disabling ramp delay.
+- regulator-enable-ramp-delay: The time taken, in microseconds, for the supply
+ rail to reach the target voltage, plus/minus whatever tolerance the board
+ design requires. This property describes the total system ramp time
+ required due to the combination of internal ramping of the regulator itself,
+ and board design issues such as trace capacitance and load on the supply.
Deprecated properties:
- regulator-compatible: If a regulator chip contains multiple
diff --git a/Documentation/devicetree/bindings/regulator/s5m8767-regulator.txt b/Documentation/devicetree/bindings/regulator/s5m8767-regulator.txt
index d1660a90fc0..d290988ed97 100644
--- a/Documentation/devicetree/bindings/regulator/s5m8767-regulator.txt
+++ b/Documentation/devicetree/bindings/regulator/s5m8767-regulator.txt
@@ -69,13 +69,16 @@ sub-node should be of the format as listed below.
};
};
The above regulator entries are defined in regulator bindings documentation
-except op_mode description.
+except these properties:
- op_mode: describes the different operating modes of the LDO's with
power mode change in SOC. The different possible values are,
0 - always off mode
1 - on in normal mode
2 - low power mode
3 - suspend mode
+ - s5m8767,pmic-ext-control-gpios: (optional) GPIO specifier for one
+ GPIO controlling this regulator (enable/disable); This is
+ valid only for buck9.
The following are the names of the regulators that the s5m8767 pmic block
supports. Note: The 'n' in LDOn and BUCKn represents the LDO or BUCK number
@@ -83,7 +86,7 @@ as per the datasheet of s5m8767.
- LDOn
- valid values for n are 1 to 28
- - Example: LDO0, LD01, LDO28
+ - Example: LDO1, LD02, LDO28
- BUCKn
- valid values for n are 1 to 9.
- Example: BUCK1, BUCK2, BUCK9
@@ -148,5 +151,13 @@ Example:
regulator-always-on;
regulator-boot-on;
};
+
+ vemmc_reg: BUCK9 {
+ regulator-name = "VMEM_VDD_2.8V";
+ regulator-min-microvolt = <2800000>;
+ regulator-max-microvolt = <2800000>;
+ op_mode = <3>; /* Standby Mode */
+ s5m8767,pmic-ext-control-gpios = <&gpk0 2 0>;
+ };
};
};
diff --git a/Documentation/devicetree/bindings/regulator/ti-abb-regulator.txt b/Documentation/devicetree/bindings/regulator/ti-abb-regulator.txt
index 2e57a33e902..c58db75f959 100644
--- a/Documentation/devicetree/bindings/regulator/ti-abb-regulator.txt
+++ b/Documentation/devicetree/bindings/regulator/ti-abb-regulator.txt
@@ -4,10 +4,14 @@ Required Properties:
- compatible: Should be one of:
- "ti,abb-v1" for older SoCs like OMAP3
- "ti,abb-v2" for newer SoCs like OMAP4, OMAP5
+ - "ti,abb-v3" for a generic definition where setup and control registers are
+ provided (example: DRA7)
- reg: Address and length of the register set for the device. It contains
the information of registers in the same order as described by reg-names
- reg-names: Should contain the reg names
- - "base-address" - contains base address of ABB module
+ - "base-address" - contains base address of ABB module (ti,abb-v1,ti,abb-v2)
+ - "control-address" - contains control register address of ABB module (ti,abb-v3)
+ - "setup-address" - contains setup register address of ABB module (ti,abb-v3)
- "int-address" - contains address of interrupt register for ABB module
(also see Optional properties)
- #address-cell: should be 0
diff --git a/Documentation/devicetree/bindings/regulator/tps65090.txt b/Documentation/devicetree/bindings/regulator/tps65090.txt
index 313a60ba61d..340980239ea 100644
--- a/Documentation/devicetree/bindings/regulator/tps65090.txt
+++ b/Documentation/devicetree/bindings/regulator/tps65090.txt
@@ -21,6 +21,10 @@ Optional properties:
number should be provided. If it is externally controlled and no GPIO
entry then driver will just configure this rails as external control
and will not provide any enable/disable APIs.
+- ti,overcurrent-wait: This is applicable to FET registers, which have a
+ poorly defined "overcurrent wait" field. If this property is present it
+ should be between 0 - 3. If this property isn't present we won't touch the
+ "overcurrent wait" field and we'll leave it to the BIOS/EC to deal with.
Each regulator is defined using the standard binding for regulators.
diff --git a/Documentation/devicetree/bindings/reserved-memory/reserved-memory.txt b/Documentation/devicetree/bindings/reserved-memory/reserved-memory.txt
new file mode 100644
index 00000000000..3da0ebdba8d
--- /dev/null
+++ b/Documentation/devicetree/bindings/reserved-memory/reserved-memory.txt
@@ -0,0 +1,133 @@
+*** Reserved memory regions ***
+
+Reserved memory is specified as a node under the /reserved-memory node.
+The operating system shall exclude reserved memory from normal usage
+one can create child nodes describing particular reserved (excluded from
+normal use) memory regions. Such memory regions are usually designed for
+the special usage by various device drivers.
+
+Parameters for each memory region can be encoded into the device tree
+with the following nodes:
+
+/reserved-memory node
+---------------------
+#address-cells, #size-cells (required) - standard definition
+ - Should use the same values as the root node
+ranges (required) - standard definition
+ - Should be empty
+
+/reserved-memory/ child nodes
+-----------------------------
+Each child of the reserved-memory node specifies one or more regions of
+reserved memory. Each child node may either use a 'reg' property to
+specify a specific range of reserved memory, or a 'size' property with
+optional constraints to request a dynamically allocated block of memory.
+
+Following the generic-names recommended practice, node names should
+reflect the purpose of the node (ie. "framebuffer" or "dma-pool"). Unit
+address (@<address>) should be appended to the name if the node is a
+static allocation.
+
+Properties:
+Requires either a) or b) below.
+a) static allocation
+ reg (required) - standard definition
+b) dynamic allocation
+ size (required) - length based on parent's #size-cells
+ - Size in bytes of memory to reserve.
+ alignment (optional) - length based on parent's #size-cells
+ - Address boundary for alignment of allocation.
+ alloc-ranges (optional) - prop-encoded-array (address, length pairs).
+ - Specifies regions of memory that are
+ acceptable to allocate from.
+
+If both reg and size are present, then the reg property takes precedence
+and size is ignored.
+
+Additional properties:
+compatible (optional) - standard definition
+ - may contain the following strings:
+ - shared-dma-pool: This indicates a region of memory meant to be
+ used as a shared pool of DMA buffers for a set of devices. It can
+ be used by an operating system to instanciate the necessary pool
+ management subsystem if necessary.
+ - vendor specific string in the form <vendor>,[<device>-]<usage>
+no-map (optional) - empty property
+ - Indicates the operating system must not create a virtual mapping
+ of the region as part of its standard mapping of system memory,
+ nor permit speculative access to it under any circumstances other
+ than under the control of the device driver using the region.
+reusable (optional) - empty property
+ - The operating system can use the memory in this region with the
+ limitation that the device driver(s) owning the region need to be
+ able to reclaim it back. Typically that means that the operating
+ system can use that region to store volatile or cached data that
+ can be otherwise regenerated or migrated elsewhere.
+
+Linux implementation note:
+- If a "linux,cma-default" property is present, then Linux will use the
+ region for the default pool of the contiguous memory allocator.
+
+Device node references to reserved memory
+-----------------------------------------
+Regions in the /reserved-memory node may be referenced by other device
+nodes by adding a memory-region property to the device node.
+
+memory-region (optional) - phandle, specifier pairs to children of /reserved-memory
+
+Example
+-------
+This example defines 3 contiguous regions are defined for Linux kernel:
+one default of all device drivers (named linux,cma@72000000 and 64MiB in size),
+one dedicated to the framebuffer device (named framebuffer@78000000, 8MiB), and
+one for multimedia processing (named multimedia-memory@77000000, 64MiB).
+
+/ {
+ #address-cells = <1>;
+ #size-cells = <1>;
+
+ memory {
+ reg = <0x40000000 0x40000000>;
+ };
+
+ reserved-memory {
+ #address-cells = <1>;
+ #size-cells = <1>;
+ ranges;
+
+ /* global autoconfigured region for contiguous allocations */
+ linux,cma {
+ compatible = "shared-dma-pool";
+ reusable;
+ size = <0x4000000>;
+ alignment = <0x2000>;
+ linux,cma-default;
+ };
+
+ display_reserved: framebuffer@78000000 {
+ reg = <0x78000000 0x800000>;
+ };
+
+ multimedia_reserved: multimedia@77000000 {
+ compatible = "acme,multimedia-memory";
+ reg = <0x77000000 0x4000000>;
+ };
+ };
+
+ /* ... */
+
+ fb0: video@12300000 {
+ memory-region = <&display_reserved>;
+ /* ... */
+ };
+
+ scaler: scaler@12500000 {
+ memory-region = <&multimedia_reserved>;
+ /* ... */
+ };
+
+ codec: codec@12600000 {
+ memory-region = <&multimedia_reserved>;
+ /* ... */
+ };
+};
diff --git a/Documentation/devicetree/bindings/reset/allwinner,sunxi-clock-reset.txt b/Documentation/devicetree/bindings/reset/allwinner,sunxi-clock-reset.txt
new file mode 100644
index 00000000000..c8f77571488
--- /dev/null
+++ b/Documentation/devicetree/bindings/reset/allwinner,sunxi-clock-reset.txt
@@ -0,0 +1,21 @@
+Allwinner sunxi Peripheral Reset Controller
+===========================================
+
+Please also refer to reset.txt in this directory for common reset
+controller binding usage.
+
+Required properties:
+- compatible: Should be one of the following:
+ "allwinner,sun6i-a31-ahb1-reset"
+ "allwinner,sun6i-a31-clock-reset"
+- reg: should be register base and length as documented in the
+ datasheet
+- #reset-cells: 1, see below
+
+example:
+
+ahb1_rst: reset@01c202c0 {
+ #reset-cells = <1>;
+ compatible = "allwinner,sun6i-a31-ahb1-reset";
+ reg = <0x01c202c0 0xc>;
+};
diff --git a/Documentation/devicetree/bindings/reset/sirf,rstc.txt b/Documentation/devicetree/bindings/reset/sirf,rstc.txt
new file mode 100644
index 00000000000..0505de742d3
--- /dev/null
+++ b/Documentation/devicetree/bindings/reset/sirf,rstc.txt
@@ -0,0 +1,42 @@
+CSR SiRFSoC Reset Controller
+======================================
+
+Please also refer to reset.txt in this directory for common reset
+controller binding usage.
+
+Required properties:
+- compatible: Should be "sirf,prima2-rstc" or "sirf,marco-rstc"
+- reg: should be register base and length as documented in the
+ datasheet
+- #reset-cells: 1, see below
+
+example:
+
+rstc: reset-controller@88010000 {
+ compatible = "sirf,prima2-rstc";
+ reg = <0x88010000 0x1000>;
+ #reset-cells = <1>;
+};
+
+Specifying reset lines connected to IP modules
+==============================================
+
+The reset controller(rstc) manages various reset sources. This module provides
+reset signals for most blocks in system. Those device nodes should specify the
+reset line on the rstc in their resets property, containing a phandle to the
+rstc device node and a RESET_INDEX specifying which module to reset, as described
+in reset.txt.
+
+For SiRFSoC, RESET_INDEX is just reset_bit defined in SW_RST0 and SW_RST1 registers.
+For modules whose rest_bit is in SW_RST0, its RESET_INDEX is 0~31. For modules whose
+rest_bit is in SW_RST1, its RESET_INDEX is 32~63.
+
+example:
+
+vpp@90020000 {
+ compatible = "sirf,prima2-vpp";
+ reg = <0x90020000 0x10000>;
+ interrupts = <31>;
+ clocks = <&clks 35>;
+ resets = <&rstc 6>;
+};
diff --git a/Documentation/devicetree/bindings/arm/altera/socfpga-reset.txt b/Documentation/devicetree/bindings/reset/socfpga-reset.txt
index ecdb57d69db..32c1c8bfd5d 100644
--- a/Documentation/devicetree/bindings/arm/altera/socfpga-reset.txt
+++ b/Documentation/devicetree/bindings/reset/socfpga-reset.txt
@@ -3,9 +3,11 @@ Altera SOCFPGA Reset Manager
Required properties:
- compatible : "altr,rst-mgr"
- reg : Should contain 1 register ranges(address and length)
+- #reset-cells: 1
Example:
rstmgr@ffd05000 {
+ #reset-cells = <1>;
compatible = "altr,rst-mgr";
reg = <0xffd05000 0x1000>;
};
diff --git a/Documentation/devicetree/bindings/reset/st,sti-powerdown.txt b/Documentation/devicetree/bindings/reset/st,sti-powerdown.txt
new file mode 100644
index 00000000000..5ab26b7e9d3
--- /dev/null
+++ b/Documentation/devicetree/bindings/reset/st,sti-powerdown.txt
@@ -0,0 +1,47 @@
+STMicroelectronics STi family Sysconfig Peripheral Powerdown Reset Controller
+=============================================================================
+
+This binding describes a reset controller device that is used to enable and
+disable on-chip peripheral controllers such as USB and SATA, using
+"powerdown" control bits found in the STi family SoC system configuration
+registers. These have been grouped together into a single reset controller
+device for convenience.
+
+The actual action taken when powerdown is asserted is hardware dependent.
+However, when asserted it may not be possible to access the hardware's
+registers and after an assert/deassert sequence the hardware's previous state
+may no longer be valid.
+
+Please refer to reset.txt in this directory for common reset
+controller binding usage.
+
+Required properties:
+- compatible: Should be "st,<chip>-powerdown"
+ ex: "st,stih415-powerdown", "st,stih416-powerdown"
+- #reset-cells: 1, see below
+
+example:
+
+ powerdown: powerdown-controller {
+ #reset-cells = <1>;
+ compatible = "st,stih415-powerdown";
+ };
+
+
+Specifying powerdown control of devices
+=======================================
+
+Device nodes should specify the reset channel required in their "resets"
+property, containing a phandle to the powerdown device node and an
+index specifying which channel to use, as described in reset.txt
+
+example:
+
+ usb1: usb@fe200000 {
+ resets = <&powerdown STIH41X_USB1_POWERDOWN>;
+ };
+
+Macro definitions for the supported reset channels can be found in:
+
+include/dt-bindings/reset-controller/stih415-resets.h
+include/dt-bindings/reset-controller/stih416-resets.h
diff --git a/Documentation/devicetree/bindings/reset/st,sti-softreset.txt b/Documentation/devicetree/bindings/reset/st,sti-softreset.txt
new file mode 100644
index 00000000000..a8d3d3c25ca
--- /dev/null
+++ b/Documentation/devicetree/bindings/reset/st,sti-softreset.txt
@@ -0,0 +1,46 @@
+STMicroelectronics STi family Sysconfig Peripheral SoftReset Controller
+=============================================================================
+
+This binding describes a reset controller device that is used to enable and
+disable on-chip peripheral controllers such as USB and SATA, using
+"softreset" control bits found in the STi family SoC system configuration
+registers.
+
+The actual action taken when softreset is asserted is hardware dependent.
+However, when asserted it may not be possible to access the hardware's
+registers and after an assert/deassert sequence the hardware's previous state
+may no longer be valid.
+
+Please refer to reset.txt in this directory for common reset
+controller binding usage.
+
+Required properties:
+- compatible: Should be "st,<chip>-softreset" example:
+ "st,stih415-softreset" or "st,stih416-softreset";
+- #reset-cells: 1, see below
+
+example:
+
+ softreset: softreset-controller {
+ #reset-cells = <1>;
+ compatible = "st,stih415-softreset";
+ };
+
+
+Specifying softreset control of devices
+=======================================
+
+Device nodes should specify the reset channel required in their "resets"
+property, containing a phandle to the softreset device node and an
+index specifying which channel to use, as described in reset.txt
+
+example:
+
+ ethernet0{
+ resets = <&softreset STIH415_ETH0_SOFTRESET>;
+ };
+
+Macro definitions for the supported reset channels can be found in:
+
+include/dt-bindings/reset-controller/stih415-resets.h
+include/dt-bindings/reset-controller/stih416-resets.h
diff --git a/Documentation/devicetree/bindings/rng/qcom,prng.txt b/Documentation/devicetree/bindings/rng/qcom,prng.txt
new file mode 100644
index 00000000000..8e5853c2879
--- /dev/null
+++ b/Documentation/devicetree/bindings/rng/qcom,prng.txt
@@ -0,0 +1,17 @@
+Qualcomm MSM pseudo random number generator.
+
+Required properties:
+
+- compatible : should be "qcom,prng"
+- reg : specifies base physical address and size of the registers map
+- clocks : phandle to clock-controller plus clock-specifier pair
+- clock-names : "core" clocks all registers, FIFO and circuits in PRNG IP block
+
+Example:
+
+ rng@f9bff000 {
+ compatible = "qcom,prng";
+ reg = <0xf9bff000 0x200>;
+ clocks = <&clock GCC_PRNG_AHB_CLK>;
+ clock-names = "core";
+ };
diff --git a/Documentation/devicetree/bindings/rtc/haoyu,hym8563.txt b/Documentation/devicetree/bindings/rtc/haoyu,hym8563.txt
new file mode 100644
index 00000000000..5c199ee044c
--- /dev/null
+++ b/Documentation/devicetree/bindings/rtc/haoyu,hym8563.txt
@@ -0,0 +1,30 @@
+Haoyu Microelectronics HYM8563 Real Time Clock
+
+The HYM8563 provides basic rtc and alarm functionality
+as well as a clock output of up to 32kHz.
+
+Required properties:
+- compatible: should be: "haoyu,hym8563"
+- reg: i2c address
+- interrupts: rtc alarm/event interrupt
+- #clock-cells: the value should be 0
+
+Optional properties:
+- clock-output-names: From common clock binding
+
+Example:
+
+hym8563: hym8563@51 {
+ compatible = "haoyu,hym8563";
+ reg = <0x51>;
+
+ interrupts = <13 IRQ_TYPE_EDGE_FALLING>;
+
+ #clock-cells = <0>;
+};
+
+device {
+...
+ clocks = <&hym8563>;
+...
+};
diff --git a/Documentation/devicetree/bindings/rtc/maxim,ds1742.txt b/Documentation/devicetree/bindings/rtc/maxim,ds1742.txt
new file mode 100644
index 00000000000..d0f937c355b
--- /dev/null
+++ b/Documentation/devicetree/bindings/rtc/maxim,ds1742.txt
@@ -0,0 +1,12 @@
+* Maxim (Dallas) DS1742/DS1743 Real Time Clock
+
+Required properties:
+- compatible: Should contain "maxim,ds1742".
+- reg: Physical base address of the RTC and length of memory
+ mapped region.
+
+Example:
+ rtc: rtc@10000000 {
+ compatible = "maxim,ds1742";
+ reg = <0x10000000 0x800>;
+ };
diff --git a/Documentation/devicetree/bindings/rtc/nvidia,tegra20-rtc.txt b/Documentation/devicetree/bindings/rtc/nvidia,tegra20-rtc.txt
index 93f45e9dce7..652d1ff2e8b 100644
--- a/Documentation/devicetree/bindings/rtc/nvidia,tegra20-rtc.txt
+++ b/Documentation/devicetree/bindings/rtc/nvidia,tegra20-rtc.txt
@@ -9,6 +9,8 @@ Required properties:
- compatible : should be "nvidia,tegra20-rtc".
- reg : Specifies base physical address and size of the registers.
- interrupts : A single interrupt specifier.
+- clocks : Must contain one entry, for the module clock.
+ See ../clocks/clock-bindings.txt for details.
Example:
@@ -16,4 +18,5 @@ timer {
compatible = "nvidia,tegra20-rtc";
reg = <0x7000e000 0x100>;
interrupts = <0 2 0x04>;
+ clocks = <&tegra_car 4>;
};
diff --git a/Documentation/devicetree/bindings/rtc/sunxi-rtc.txt b/Documentation/devicetree/bindings/rtc/sunxi-rtc.txt
new file mode 100644
index 00000000000..6983aad376c
--- /dev/null
+++ b/Documentation/devicetree/bindings/rtc/sunxi-rtc.txt
@@ -0,0 +1,17 @@
+* sun4i/sun7i Real Time Clock
+
+RTC controller for the Allwinner A10/A20
+
+Required properties:
+- compatible : Should be "allwinner,sun4i-a10-rtc" or "allwinner,sun7i-a20-rtc"
+- reg: physical base address of the controller and length of memory mapped
+ region.
+- interrupts: IRQ line for the RTC.
+
+Example:
+
+rtc: rtc@01c20d00 {
+ compatible = "allwinner,sun4i-a10-rtc";
+ reg = <0x01c20d00 0x20>;
+ interrupts = <24>;
+};
diff --git a/Documentation/devicetree/bindings/rtc/xgene-rtc.txt b/Documentation/devicetree/bindings/rtc/xgene-rtc.txt
new file mode 100644
index 00000000000..fd195c35844
--- /dev/null
+++ b/Documentation/devicetree/bindings/rtc/xgene-rtc.txt
@@ -0,0 +1,28 @@
+* APM X-Gene Real Time Clock
+
+RTC controller for the APM X-Gene Real Time Clock
+
+Required properties:
+- compatible : Should be "apm,xgene-rtc"
+- reg: physical base address of the controller and length of memory mapped
+ region.
+- interrupts: IRQ line for the RTC.
+- #clock-cells: Should be 1.
+- clocks: Reference to the clock entry.
+
+Example:
+
+rtcclk: rtcclk {
+ compatible = "fixed-clock";
+ #clock-cells = <1>;
+ clock-frequency = <100000000>;
+ clock-output-names = "rtcclk";
+};
+
+rtc: rtc@10510000 {
+ compatible = "apm,xgene-rtc";
+ reg = <0x0 0x10510000 0x0 0x400>;
+ interrupts = <0x0 0x46 0x4>;
+ #clock-cells = <1>;
+ clocks = <&rtcclk 0>;
+};
diff --git a/Documentation/devicetree/bindings/serial/atmel-usart.txt b/Documentation/devicetree/bindings/serial/atmel-usart.txt
index 2191dcb9f1d..a6391e70a8f 100644
--- a/Documentation/devicetree/bindings/serial/atmel-usart.txt
+++ b/Documentation/devicetree/bindings/serial/atmel-usart.txt
@@ -6,10 +6,16 @@ Required properties:
additional mode or an USART new feature.
- reg: Should contain registers location and length
- interrupts: Should contain interrupt
+- clock-names: tuple listing input clock names.
+ Required elements: "usart"
+- clocks: phandles to input clocks.
Optional properties:
- atmel,use-dma-rx: use of PDC or DMA for receiving data
- atmel,use-dma-tx: use of PDC or DMA for transmitting data
+- {rts,cts,dtr,dsr,rng,dcd}-gpios: specify a GPIO for RTS/CTS/DTR/DSR/RI/DCD line respectively.
+ It will use specified PIO instead of the peripheral function pin for the USART feature.
+ If unsure, don't specify this property.
- add dma bindings for dma transfer:
- dmas: DMA specifier, consisting of a phandle to DMA controller node,
memory peripheral interface and USART DMA channel ID, FIFO configuration.
@@ -26,8 +32,16 @@ Example:
compatible = "atmel,at91sam9260-usart";
reg = <0xfff8c000 0x4000>;
interrupts = <7>;
+ clocks = <&usart0_clk>;
+ clock-names = "usart";
atmel,use-dma-rx;
atmel,use-dma-tx;
+ rts-gpios = <&pioD 15 GPIO_ACTIVE_LOW>;
+ cts-gpios = <&pioD 16 GPIO_ACTIVE_LOW>;
+ dtr-gpios = <&pioD 17 GPIO_ACTIVE_LOW>;
+ dsr-gpios = <&pioD 18 GPIO_ACTIVE_LOW>;
+ dcd-gpios = <&pioD 20 GPIO_ACTIVE_LOW>;
+ rng-gpios = <&pioD 19 GPIO_ACTIVE_LOW>;
};
- use DMA:
@@ -35,6 +49,8 @@ Example:
compatible = "atmel,at91sam9260-usart";
reg = <0xf001c000 0x100>;
interrupts = <12 4 5>;
+ clocks = <&usart0_clk>;
+ clock-names = "usart";
atmel,use-dma-rx;
atmel,use-dma-tx;
dmas = <&dma0 2 0x3>,
diff --git a/Documentation/devicetree/bindings/serial/cirrus,clps711x-uart.txt b/Documentation/devicetree/bindings/serial/cirrus,clps711x-uart.txt
new file mode 100644
index 00000000000..12f3cf834de
--- /dev/null
+++ b/Documentation/devicetree/bindings/serial/cirrus,clps711x-uart.txt
@@ -0,0 +1,28 @@
+* Cirrus Logic CLPS711X Universal Asynchronous Receiver/Transmitter (UART)
+
+Required properties:
+- compatible: Should be "cirrus,clps711x-uart".
+- reg: Address and length of the register set for the device.
+- interrupts: Should contain UART TX and RX interrupt.
+- clocks: Should contain UART core clock number.
+- syscon: Phandle to SYSCON node, which contain UART control bits.
+
+Optional properties:
+- uart-use-ms: Indicate the UART has modem signal (DCD, DSR, CTS).
+
+Note: Each UART port should have an alias correctly numbered
+in "aliases" node.
+
+Example:
+ aliases {
+ serial0 = &uart1;
+ };
+
+ uart1: uart@80000480 {
+ compatible = "cirrus,clps711x-uart";
+ reg = <0x80000480 0x80>;
+ interrupts = <12 13>;
+ clocks = <&clks 11>;
+ syscon = <&syscon1>;
+ uart-use-ms;
+ };
diff --git a/Documentation/devicetree/bindings/serial/efm32-uart.txt b/Documentation/devicetree/bindings/serial/efm32-uart.txt
index 8e080b893b4..3ca01336b83 100644
--- a/Documentation/devicetree/bindings/serial/efm32-uart.txt
+++ b/Documentation/devicetree/bindings/serial/efm32-uart.txt
@@ -1,20 +1,20 @@
* Energymicro efm32 UART
Required properties:
-- compatible : Should be "efm32,uart"
+- compatible : Should be "energymicro,efm32-uart"
- reg : Address and length of the register set
- interrupts : Should contain uart interrupt
Optional properties:
-- location : Decides the location of the USART I/O pins.
+- efm32,location : Decides the location of the USART I/O pins.
Allowed range : [0 .. 5]
Default: 0
Example:
uart@0x4000c400 {
- compatible = "efm32,uart";
+ compatible = "energymicro,efm32-uart";
reg = <0x4000c400 0x400>;
interrupts = <15>;
- location = <0>;
+ efm32,location = <0>;
};
diff --git a/Documentation/devicetree/bindings/serial/fsl-lpuart.txt b/Documentation/devicetree/bindings/serial/fsl-lpuart.txt
index 6fd1dd1638d..a1d1205d818 100644
--- a/Documentation/devicetree/bindings/serial/fsl-lpuart.txt
+++ b/Documentation/devicetree/bindings/serial/fsl-lpuart.txt
@@ -4,11 +4,24 @@ Required properties:
- compatible : Should be "fsl,<soc>-lpuart"
- reg : Address and length of the register set for the device
- interrupts : Should contain uart interrupt
+- clocks : phandle + clock specifier pairs, one for each entry in clock-names
+- clock-names : should contain: "ipg" - the uart clock
+
+Optional properties:
+- dmas: A list of two dma specifiers, one for each entry in dma-names.
+- dma-names: should contain "tx" and "rx".
+
+Note: Optional properties for DMA support. Write them both or both not.
Example:
uart0: serial@40027000 {
- compatible = "fsl,vf610-lpuart";
- reg = <0x40027000 0x1000>;
- interrupts = <0 61 0x00>;
- };
+ compatible = "fsl,vf610-lpuart";
+ reg = <0x40027000 0x1000>;
+ interrupts = <0 61 0x00>;
+ clocks = <&clks VF610_CLK_UART0>;
+ clock-names = "ipg";
+ dmas = <&edma0 0 2>,
+ <&edma0 0 3>;
+ dma-names = "rx","tx";
+ };
diff --git a/Documentation/devicetree/bindings/serial/maxim,max310x.txt b/Documentation/devicetree/bindings/serial/maxim,max310x.txt
new file mode 100644
index 00000000000..83a919c241b
--- /dev/null
+++ b/Documentation/devicetree/bindings/serial/maxim,max310x.txt
@@ -0,0 +1,36 @@
+* Maxim MAX310X advanced Universal Asynchronous Receiver-Transmitter (UART)
+
+Required properties:
+- compatible: Should be one of the following:
+ - "maxim,max3107" for Maxim MAX3107,
+ - "maxim,max3108" for Maxim MAX3108,
+ - "maxim,max3109" for Maxim MAX3109,
+ - "maxim,max14830" for Maxim MAX14830.
+- reg: SPI chip select number.
+- interrupt-parent: The phandle for the interrupt controller that
+ services interrupts for this IC.
+- interrupts: Specifies the interrupt source of the parent interrupt
+ controller. The format of the interrupt specifier depends on the
+ parent interrupt controller.
+- clocks: phandle to the IC source clock.
+- clock-names: Should be "xtal" if clock is an external crystal or
+ "osc" if an external clock source is used.
+
+Optional properties:
+- gpio-controller: Marks the device node as a GPIO controller.
+- #gpio-cells: Should be two. The first cell is the GPIO number and
+ the second cell is used to specify the GPIO polarity:
+ 0 = active high,
+ 1 = active low.
+
+Example:
+ max14830: max14830@0 {
+ compatible = "maxim,max14830";
+ reg = <0>;
+ clocks = <&clk20m>;
+ clock-names = "osc";
+ interrupt-parent = <&gpio3>;
+ interrupts = <7 IRQ_TYPE_EDGE_FALLING>;
+ gpio-controller;
+ #gpio-cells = <2>;
+ };
diff --git a/Documentation/devicetree/bindings/serial/nvidia,tegra20-hsuart.txt b/Documentation/devicetree/bindings/serial/nvidia,tegra20-hsuart.txt
index 392a4493eeb..845850caf08 100644
--- a/Documentation/devicetree/bindings/serial/nvidia,tegra20-hsuart.txt
+++ b/Documentation/devicetree/bindings/serial/nvidia,tegra20-hsuart.txt
@@ -4,8 +4,17 @@ Required properties:
- compatible : should be "nvidia,tegra30-hsuart", "nvidia,tegra20-hsuart".
- reg: Should contain UART controller registers location and length.
- interrupts: Should contain UART controller interrupts.
-- nvidia,dma-request-selector : The Tegra DMA controller's phandle and
- request selector for this UART controller.
+- clocks: Must contain one entry, for the module clock.
+ See ../clocks/clock-bindings.txt for details.
+- resets : Must contain an entry for each entry in reset-names.
+ See ../reset/reset.txt for details.
+- reset-names : Must include the following entries:
+ - serial
+- dmas : Must contain an entry for each entry in clock-names.
+ See ../dma/dma.txt for details.
+- dma-names : Must include the following entries:
+ - rx
+ - tx
Optional properties:
- nvidia,enable-modem-interrupt: Enable modem interrupts. Should be enable
@@ -18,7 +27,11 @@ serial@70006000 {
reg = <0x70006000 0x40>;
reg-shift = <2>;
interrupts = <0 36 0x04>;
- nvidia,dma-request-selector = <&apbdma 8>;
nvidia,enable-modem-interrupt;
+ clocks = <&tegra_car 6>;
+ resets = <&tegra_car 6>;
+ reset-names = "serial";
+ dmas = <&apbdma 8>, <&apbdma 8>;
+ dma-names = "rx", "tx";
status = "disabled";
};
diff --git a/Documentation/devicetree/bindings/serial/nxp,sc16is7xx.txt b/Documentation/devicetree/bindings/serial/nxp,sc16is7xx.txt
new file mode 100644
index 00000000000..246c795668d
--- /dev/null
+++ b/Documentation/devicetree/bindings/serial/nxp,sc16is7xx.txt
@@ -0,0 +1,33 @@
+* NXP SC16IS7xx advanced Universal Asynchronous Receiver-Transmitter (UART)
+
+Required properties:
+- compatible: Should be one of the following:
+ - "nxp,sc16is740" for NXP SC16IS740,
+ - "nxp,sc16is741" for NXP SC16IS741,
+ - "nxp,sc16is750" for NXP SC16IS750,
+ - "nxp,sc16is752" for NXP SC16IS752,
+ - "nxp,sc16is760" for NXP SC16IS760,
+ - "nxp,sc16is762" for NXP SC16IS762.
+- reg: I2C address of the SC16IS7xx device.
+- interrupt-parent: The phandle for the interrupt controller that
+ services interrupts for this IC.
+- interrupts: Should contain the UART interrupt
+- clocks: Reference to the IC source clock.
+
+Optional properties:
+- gpio-controller: Marks the device node as a GPIO controller.
+- #gpio-cells: Should be two. The first cell is the GPIO number and
+ the second cell is used to specify the GPIO polarity:
+ 0 = active high,
+ 1 = active low.
+
+Example:
+ sc16is750: sc16is750@51 {
+ compatible = "nxp,sc16is750";
+ reg = <0x51>;
+ clocks = <&clk20m>;
+ interrupt-parent = <&gpio3>;
+ interrupts = <7 IRQ_TYPE_EDGE_FALLING>;
+ gpio-controller;
+ #gpio-cells = <2>;
+ };
diff --git a/Documentation/devicetree/bindings/serial/of-serial.txt b/Documentation/devicetree/bindings/serial/of-serial.txt
index 1928a3e83cd..77054772a8f 100644
--- a/Documentation/devicetree/bindings/serial/of-serial.txt
+++ b/Documentation/devicetree/bindings/serial/of-serial.txt
@@ -37,6 +37,7 @@ Optional properties:
- auto-flow-control: one way to enable automatic flow control support. The
driver is allowed to detect support for the capability even without this
property.
+- has-hw-flow-control: the hardware has flow control capability.
Example:
diff --git a/Documentation/devicetree/bindings/tty/serial/qca,ar9330-uart.txt b/Documentation/devicetree/bindings/serial/qca,ar9330-uart.txt
index c5e032c85bf..c5e032c85bf 100644
--- a/Documentation/devicetree/bindings/tty/serial/qca,ar9330-uart.txt
+++ b/Documentation/devicetree/bindings/serial/qca,ar9330-uart.txt
diff --git a/Documentation/devicetree/bindings/serial/renesas,sci-serial.txt b/Documentation/devicetree/bindings/serial/renesas,sci-serial.txt
new file mode 100644
index 00000000000..b3556609a06
--- /dev/null
+++ b/Documentation/devicetree/bindings/serial/renesas,sci-serial.txt
@@ -0,0 +1,54 @@
+* Renesas SH-Mobile Serial Communication Interface
+
+Required properties:
+
+ - compatible: Must contain one of the following:
+
+ - "renesas,scifa-sh73a0" for SH73A0 (SH-Mobile AG5) SCIFA compatible UART.
+ - "renesas,scifb-sh73a0" for SH73A0 (SH-Mobile AG5) SCIFB compatible UART.
+ - "renesas,scifa-r8a73a4" for R8A73A4 (R-Mobile APE6) SCIFA compatible UART.
+ - "renesas,scifb-r8a73a4" for R8A73A4 (R-Mobile APE6) SCIFB compatible UART.
+ - "renesas,scifa-r8a7740" for R8A7740 (R-Mobile A1) SCIFA compatible UART.
+ - "renesas,scifb-r8a7740" for R8A7740 (R-Mobile A1) SCIFB compatible UART.
+ - "renesas,scif-r8a7778" for R8A7778 (R-Car M1) SCIF compatible UART.
+ - "renesas,scif-r8a7779" for R8A7779 (R-Car H1) SCIF compatible UART.
+ - "renesas,scif-r8a7790" for R8A7790 (R-Car H2) SCIF compatible UART.
+ - "renesas,scifa-r8a7790" for R8A7790 (R-Car H2) SCIFA compatible UART.
+ - "renesas,scifb-r8a7790" for R8A7790 (R-Car H2) SCIFB compatible UART.
+ - "renesas,hscif-r8a7790" for R8A7790 (R-Car H2) HSCIF compatible UART.
+ - "renesas,scif-r8a7791" for R8A7791 (R-Car M2) SCIF compatible UART.
+ - "renesas,scifa-r8a7791" for R8A7791 (R-Car M2) SCIFA compatible UART.
+ - "renesas,scifb-r8a7791" for R8A7791 (R-Car M2) SCIFB compatible UART.
+ - "renesas,hscif-r8a7791" for R8A7791 (R-Car M2) HSCIF compatible UART.
+ - "renesas,scif" for generic SCIF compatible UART.
+ - "renesas,scifa" for generic SCIFA compatible UART.
+ - "renesas,scifb" for generic SCIFB compatible UART.
+ - "renesas,hscif" for generic HSCIF compatible UART.
+
+ When compatible with the generic version, nodes must list the
+ SoC-specific version corresponding to the platform first followed by the
+ generic version.
+
+ - reg: Base address and length of the I/O registers used by the UART.
+ - interrupts: Must contain an interrupt-specifier for the SCIx interrupt.
+
+ - clocks: Must contain a phandle and clock-specifier pair for each entry
+ in clock-names.
+ - clock-names: Must contain "sci_ick" for the SCIx UART interface clock.
+
+Note: Each enabled SCIx UART should have an alias correctly numbered in the
+"aliases" node.
+
+Example:
+ aliases {
+ serial0 = &scifa0;
+ };
+
+ scifa0: serial@e6c40000 {
+ compatible = "renesas,scifa-r8a7790", "renesas,scifa";
+ reg = <0 0xe6c40000 0 64>;
+ interrupt-parent = <&gic>;
+ interrupts = <0 144 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&mstp2_clks R8A7790_CLK_SCIFA0>;
+ clock-names = "sci_ick";
+ };
diff --git a/Documentation/devicetree/bindings/serial/vt8500-uart.txt b/Documentation/devicetree/bindings/serial/vt8500-uart.txt
new file mode 100644
index 00000000000..795c393d09c
--- /dev/null
+++ b/Documentation/devicetree/bindings/serial/vt8500-uart.txt
@@ -0,0 +1,26 @@
+* VIA VT8500 and WonderMedia WM8xxx UART Controller
+
+Required properties:
+- compatible: should be "via,vt8500-uart"
+
+- reg: base physical address of the controller and length of memory mapped
+ region.
+
+- interrupts: hardware interrupt number
+
+- clocks: shall be the input parent clock phandle for the clock. This should
+ be the 24Mhz reference clock.
+
+Aliases may be defined to ensure the correct ordering of the uarts.
+
+Example:
+ aliases {
+ serial0 = &uart0;
+ };
+
+ uart0: serial@d8200000 {
+ compatible = "via,vt8500-uart";
+ reg = <0xd8200000 0x1040>;
+ interrupts = <32>;
+ clocks = <&clkuart0>;
+ };
diff --git a/Documentation/devicetree/bindings/soc/qcom/qcom,gsbi.txt b/Documentation/devicetree/bindings/soc/qcom/qcom,gsbi.txt
new file mode 100644
index 00000000000..4ce24d425bf
--- /dev/null
+++ b/Documentation/devicetree/bindings/soc/qcom/qcom,gsbi.txt
@@ -0,0 +1,78 @@
+QCOM GSBI (General Serial Bus Interface) Driver
+
+The GSBI controller is modeled as a node with zero or more child nodes, each
+representing a serial sub-node device that is mux'd as part of the GSBI
+configuration settings. The mode setting will govern the input/output mode of
+the 4 GSBI IOs.
+
+Required properties:
+- compatible: must contain "qcom,gsbi-v1.0.0" for APQ8064/IPQ8064
+- reg: Address range for GSBI registers
+- clocks: required clock
+- clock-names: must contain "iface" entry
+- qcom,mode : indicates MUX value for configuration of the serial interface.
+ Please reference dt-bindings/soc/qcom,gsbi.h for valid mux values.
+
+Optional properties:
+- qcom,crci : indicates CRCI MUX value for QUP CRCI ports. Please reference
+ dt-bindings/soc/qcom,gsbi.h for valid CRCI mux values.
+
+Required properties if child node exists:
+- #address-cells: Must be 1
+- #size-cells: Must be 1
+- ranges: Must be present
+
+Properties for children:
+
+A GSBI controller node can contain 0 or more child nodes representing serial
+devices. These serial devices can be a QCOM UART, I2C controller, spi
+controller, or some combination of aforementioned devices.
+
+See the following for child node definitions:
+Documentation/devicetree/bindings/i2c/qcom,i2c-qup.txt
+Documentation/devicetree/bindings/spi/qcom,spi-qup.txt
+Documentation/devicetree/bindings/serial/qcom,msm-uartdm.txt
+
+Example for APQ8064:
+
+#include <dt-bindings/soc/qcom,gsbi.h>
+
+ gsbi4@16300000 {
+ compatible = "qcom,gsbi-v1.0.0";
+ reg = <0x16300000 0x100>;
+ clocks = <&gcc GSBI4_H_CLK>;
+ clock-names = "iface";
+ #address-cells = <1>;
+ #size-cells = <1>;
+ ranges;
+ qcom,mode = <GSBI_PROT_I2C_UART>;
+ qcom,crci = <GSBI_CRCI_QUP>;
+
+ /* child nodes go under here */
+
+ i2c_qup4: i2c@16380000 {
+ compatible = "qcom,i2c-qup-v1.1.1";
+ reg = <0x16380000 0x1000>;
+ interrupts = <0 153 0>;
+
+ clocks = <&gcc GSBI4_QUP_CLK>, <&gcc GSBI4_H_CLK>;
+ clock-names = "core", "iface";
+
+ clock-frequency = <200000>;
+
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ };
+
+ uart4: serial@16340000 {
+ compatible = "qcom,msm-uartdm-v1.3", "qcom,msm-uartdm";
+ reg = <0x16340000 0x1000>,
+ <0x16300000 0x1000>;
+ interrupts = <0 152 0x0>;
+ clocks = <&gcc GSBI4_UART_CLK>, <&gcc GSBI4_H_CLK>;
+ clock-names = "core", "iface";
+ status = "ok";
+ };
+ };
+
diff --git a/Documentation/devicetree/bindings/sound/adi,axi-i2s.txt b/Documentation/devicetree/bindings/sound/adi,axi-i2s.txt
new file mode 100644
index 00000000000..5875ca459ed
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/adi,axi-i2s.txt
@@ -0,0 +1,31 @@
+ADI AXI-I2S controller
+
+Required properties:
+ - compatible : Must be "adi,axi-i2s-1.00.a"
+ - reg : Must contain I2S core's registers location and length
+ - clocks : Pairs of phandle and specifier referencing the controller's clocks.
+ The controller expects two clocks, the clock used for the AXI interface and
+ the clock used as the sampling rate reference clock sample.
+ - clock-names : "axi" for the clock to the AXI interface, "ref" for the sample
+ rate reference clock.
+ - dmas: Pairs of phandle and specifier for the DMA channels that are used by
+ the core. The core expects two dma channels, one for transmit and one for
+ receive.
+ - dma-names : "tx" for the transmit channel, "rx" for the receive channel.
+
+For more details on the 'dma', 'dma-names', 'clock' and 'clock-names' properties
+please check:
+ * resource-names.txt
+ * clock/clock-bindings.txt
+ * dma/dma.txt
+
+Example:
+
+ i2s: i2s@0x77600000 {
+ compatible = "adi,axi-i2s-1.00.a";
+ reg = <0x77600000 0x1000>;
+ clocks = <&clk 15>, <&audio_clock>;
+ clock-names = "axi", "ref";
+ dmas = <&ps7_dma 0>, <&ps7_dma 1>;
+ dma-names = "tx", "rx";
+ };
diff --git a/Documentation/devicetree/bindings/sound/adi,axi-spdif-tx.txt b/Documentation/devicetree/bindings/sound/adi,axi-spdif-tx.txt
new file mode 100644
index 00000000000..46f34496531
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/adi,axi-spdif-tx.txt
@@ -0,0 +1,30 @@
+ADI AXI-SPDIF controller
+
+Required properties:
+ - compatible : Must be "adi,axi-spdif-1.00.a"
+ - reg : Must contain SPDIF core's registers location and length
+ - clocks : Pairs of phandle and specifier referencing the controller's clocks.
+ The controller expects two clocks, the clock used for the AXI interface and
+ the clock used as the sampling rate reference clock sample.
+ - clock-names: "axi" for the clock to the AXI interface, "ref" for the sample
+ rate reference clock.
+ - dmas: Pairs of phandle and specifier for the DMA channel that is used by
+ the core. The core expects one dma channel for transmit.
+ - dma-names : Must be "tx"
+
+For more details on the 'dma', 'dma-names', 'clock' and 'clock-names' properties
+please check:
+ * resource-names.txt
+ * clock/clock-bindings.txt
+ * dma/dma.txt
+
+Example:
+
+ spdif: spdif@0x77400000 {
+ compatible = "adi,axi-spdif-tx-1.00.a";
+ reg = <0x77600000 0x1000>;
+ clocks = <&clk 15>, <&audio_clock>;
+ clock-names = "axi", "ref";
+ dmas = <&ps7_dma 0>;
+ dma-names = "tx";
+ };
diff --git a/Documentation/devicetree/bindings/sound/ak4104.txt b/Documentation/devicetree/bindings/sound/ak4104.txt
index b902ee39cf8..deca5e18f30 100644
--- a/Documentation/devicetree/bindings/sound/ak4104.txt
+++ b/Documentation/devicetree/bindings/sound/ak4104.txt
@@ -8,6 +8,8 @@ Required properties:
- reg : The chip select number on the SPI bus
+ - vdd-supply : A regulator node, providing 2.7V - 3.6V
+
Optional properties:
- reset-gpio : a GPIO spec for the reset pin. If specified, it will be
@@ -19,4 +21,5 @@ spdif: ak4104@0 {
compatible = "asahi-kasei,ak4104";
reg = <0>;
spi-max-frequency = <5000000>;
+ vdd-supply = <&vdd_3v3_reg>;
};
diff --git a/Documentation/devicetree/bindings/sound/alc5623.txt b/Documentation/devicetree/bindings/sound/alc5623.txt
new file mode 100644
index 00000000000..26c86c98d67
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/alc5623.txt
@@ -0,0 +1,25 @@
+ALC5621/ALC5622/ALC5623 audio Codec
+
+Required properties:
+
+ - compatible: "realtek,alc5623"
+ - reg: the I2C address of the device.
+
+Optional properties:
+
+ - add-ctrl: Default register value for Reg-40h, Additional Control
+ Register. If absent or has the value of 0, the
+ register is untouched.
+
+ - jack-det-ctrl: Default register value for Reg-5Ah, Jack Detect
+ Control Register. If absent or has value 0, the
+ register is untouched.
+
+Example:
+
+ alc5621: alc5621@1a {
+ compatible = "alc5621";
+ reg = <0x1a>;
+ add-ctrl = <0x3700>;
+ jack-det-ctrl = <0x4810>;
+ };
diff --git a/Documentation/devicetree/bindings/sound/armada-370db-audio.txt b/Documentation/devicetree/bindings/sound/armada-370db-audio.txt
new file mode 100644
index 00000000000..bf984d23862
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/armada-370db-audio.txt
@@ -0,0 +1,27 @@
+Device Tree bindings for the Armada 370 DB audio
+================================================
+
+These Device Tree bindings are used to describe the audio complex
+found on the Armada 370 DB platform.
+
+Mandatory properties:
+
+ * compatible: must be "marvell,a370db-audio"
+
+ * marvell,audio-controller: a phandle that points to the audio
+ controller of the Armada 370 SoC.
+
+ * marvell,audio-codec: a set of three phandles that points to:
+
+ 1/ the analog audio codec connected to the Armada 370 SoC
+ 2/ the S/PDIF transceiver
+ 3/ the S/PDIF receiver
+
+Example:
+
+ sound {
+ compatible = "marvell,a370db-audio";
+ marvell,audio-controller = <&audio_controller>;
+ marvell,audio-codec = <&audio_codec &spdif_out &spdif_in>;
+ status = "okay";
+ };
diff --git a/Documentation/devicetree/bindings/sound/bcm2835-i2s.txt b/Documentation/devicetree/bindings/sound/bcm2835-i2s.txt
new file mode 100644
index 00000000000..65783de0aed
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/bcm2835-i2s.txt
@@ -0,0 +1,25 @@
+* Broadcom BCM2835 SoC I2S/PCM module
+
+Required properties:
+- compatible: "brcm,bcm2835-i2s"
+- reg: A list of base address and size entries:
+ * The first entry should cover the PCM registers
+ * The second entry should cover the PCM clock registers
+- dmas: List of DMA controller phandle and DMA request line ordered pairs.
+- dma-names: Identifier string for each DMA request line in the dmas property.
+ These strings correspond 1:1 with the ordered pairs in dmas.
+
+ One of the DMA channels will be responsible for transmission (should be
+ named "tx") and one for reception (should be named "rx").
+
+Example:
+
+bcm2835_i2s: i2s@7e203000 {
+ compatible = "brcm,bcm2835-i2s";
+ reg = <0x7e203000 0x20>,
+ <0x7e101098 0x02>;
+
+ dmas = <&dma 2>,
+ <&dma 3>;
+ dma-names = "tx", "rx";
+};
diff --git a/Documentation/devicetree/bindings/sound/cs42l52.txt b/Documentation/devicetree/bindings/sound/cs42l52.txt
new file mode 100644
index 00000000000..bc03c9312a1
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/cs42l52.txt
@@ -0,0 +1,46 @@
+CS42L52 audio CODEC
+
+Required properties:
+
+ - compatible : "cirrus,cs42l52"
+
+ - reg : the I2C address of the device for I2C
+
+Optional properties:
+
+ - cirrus,reset-gpio : GPIO controller's phandle and the number
+ of the GPIO used to reset the codec.
+
+ - cirrus,chgfreq-divisor : Values used to set the Charge Pump Frequency.
+ Allowable values of 0x00 through 0x0F. These are raw values written to the
+ register, not the actual frequency. The frequency is determined by the following.
+ Frequency = (64xFs)/(N+2)
+ N = chgfreq_val
+ Fs = Sample Rate (variable)
+
+ - cirrus,mica-differential-cfg : boolean, If present, then the MICA input is configured
+ as a differential input. If not present then the MICA input is configured as
+ Single-ended input. Single-ended mode allows for MIC1 or MIC2 muxing for input.
+
+ - cirrus,micb-differential-cfg : boolean, If present, then the MICB input is configured
+ as a differential input. If not present then the MICB input is configured as
+ Single-ended input. Single-ended mode allows for MIC1 or MIC2 muxing for input.
+
+ - cirrus,micbias-lvl: Set the output voltage level on the MICBIAS Pin
+ 0 = 0.5 x VA
+ 1 = 0.6 x VA
+ 2 = 0.7 x VA
+ 3 = 0.8 x VA
+ 4 = 0.83 x VA
+ 5 = 0.91 x VA
+
+Example:
+
+codec: codec@4a {
+ compatible = "cirrus,cs42l52";
+ reg = <0x4a>;
+ reset-gpio = <&gpio 10 0>;
+ cirrus,chgfreq-divisor = <0x05>;
+ cirrus.mica-differential-cfg;
+ cirrus,micbias-lvl = <5>;
+};
diff --git a/Documentation/devicetree/bindings/sound/cs42l56.txt b/Documentation/devicetree/bindings/sound/cs42l56.txt
new file mode 100644
index 00000000000..4feb0eb27ea
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/cs42l56.txt
@@ -0,0 +1,63 @@
+CS42L52 audio CODEC
+
+Required properties:
+
+ - compatible : "cirrus,cs42l56"
+
+ - reg : the I2C address of the device for I2C
+
+ - VA-supply, VCP-supply, VLDO-supply : power supplies for the device,
+ as covered in Documentation/devicetree/bindings/regulator/regulator.txt.
+
+Optional properties:
+
+ - cirrus,gpio-nreset : GPIO controller's phandle and the number
+ of the GPIO used to reset the codec.
+
+ - cirrus,chgfreq-divisor : Values used to set the Charge Pump Frequency.
+ Allowable values of 0x00 through 0x0F. These are raw values written to the
+ register, not the actual frequency. The frequency is determined by the following.
+ Frequency = MCLK / 4 * (N+2)
+ N = chgfreq_val
+ MCLK = Where MCLK is the frequency of the mclk signal after the MCLKDIV2 circuit.
+
+ - cirrus,ain1a-ref-cfg, ain1b-ref-cfg : boolean, If present, AIN1A or AIN1B are configured
+ as a pseudo-differential input referenced to AIN1REF/AIN3A.
+
+ - cirrus,ain2a-ref-cfg, ain2b-ref-cfg : boolean, If present, AIN2A or AIN2B are configured
+ as a pseudo-differential input referenced to AIN2REF/AIN3B.
+
+ - cirrus,micbias-lvl: Set the output voltage level on the MICBIAS Pin.
+ 0 = 0.5 x VA
+ 1 = 0.6 x VA
+ 2 = 0.7 x VA
+ 3 = 0.8 x VA
+ 4 = 0.83 x VA
+ 5 = 0.91 x VA
+
+ - cirrus,adaptive-pwr-cfg : Configures how the power to the Headphone and Lineout
+ Amplifiers adapt to the output signal levels.
+ 0 = Adapt to Volume Mode. Voltage level determined by the sum of the relevant volume settings.
+ 1 = Fixed - Headphone and Line Amp supply = + or - VCP/2.
+ 2 = Fixed - Headphone and Line Amp supply = + or - VCP.
+ 3 = Adapted to Signal; Voltage level is dynamically determined by the output signal.
+
+ - cirrus,hpf-left-freq, hpf-right-freq : Sets the corner frequency (-3dB point) for the internal High-Pass
+ Filter.
+ 0 = 1.8Hz
+ 1 = 119Hz
+ 2 = 236Hz
+ 3 = 464Hz
+
+
+Example:
+
+codec: codec@4b {
+ compatible = "cirrus,cs42l56";
+ reg = <0x4b>;
+ gpio-reset = <&gpio 10 0>;
+ cirrus,chgfreq-divisor = <0x05>;
+ cirrus.ain1_ref_cfg;
+ cirrus,micbias-lvl = <5>;
+ VA-supply = <&reg_audio>;
+};
diff --git a/Documentation/devicetree/bindings/sound/cs42l73.txt b/Documentation/devicetree/bindings/sound/cs42l73.txt
new file mode 100644
index 00000000000..80ae910dbf6
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/cs42l73.txt
@@ -0,0 +1,22 @@
+CS42L73 audio CODEC
+
+Required properties:
+
+ - compatible : "cirrus,cs42l73"
+
+ - reg : the I2C address of the device for I2C
+
+Optional properties:
+
+ - reset_gpio : a GPIO spec for the reset pin.
+ - chgfreq : Charge Pump Frequency values 0x00-0x0F
+
+
+Example:
+
+codec: cs42l73@4a {
+ compatible = "cirrus,cs42l73";
+ reg = <0x4a>;
+ reset_gpio = <&gpio 10 0>;
+ chgfreq = <0x05>;
+}; \ No newline at end of file
diff --git a/Documentation/devicetree/bindings/sound/cs42xx8.txt b/Documentation/devicetree/bindings/sound/cs42xx8.txt
new file mode 100644
index 00000000000..f631fbca628
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/cs42xx8.txt
@@ -0,0 +1,28 @@
+CS42448/CS42888 audio CODEC
+
+Required properties:
+
+ - compatible : must contain one of "cirrus,cs42448" and "cirrus,cs42888"
+
+ - reg : the I2C address of the device for I2C
+
+ - clocks : a list of phandles + clock-specifiers, one for each entry in
+ clock-names
+
+ - clock-names : must contain "mclk"
+
+ - VA-supply, VD-supply, VLS-supply, VLC-supply: power supplies for the device,
+ as covered in Documentation/devicetree/bindings/regulator/regulator.txt
+
+Example:
+
+codec: cs42888@48 {
+ compatible = "cirrus,cs42888";
+ reg = <0x48>;
+ clocks = <&codec_mclk 0>;
+ clock-names = "mclk";
+ VA-supply = <&reg_audio>;
+ VD-supply = <&reg_audio>;
+ VLS-supply = <&reg_audio>;
+ VLC-supply = <&reg_audio>;
+};
diff --git a/Documentation/devicetree/bindings/sound/da9055.txt b/Documentation/devicetree/bindings/sound/da9055.txt
new file mode 100644
index 00000000000..ed1b7cc6f24
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/da9055.txt
@@ -0,0 +1,22 @@
+* Dialog DA9055 Audio CODEC
+
+DA9055 provides Audio CODEC support (I2C only).
+
+The Audio CODEC device in DA9055 has it's own I2C address which is configurable,
+so the device is instantiated separately from the PMIC (MFD) device.
+
+For details on accompanying PMIC I2C device, see the following:
+Documentation/devicetree/bindings/mfd/da9055.txt
+
+Required properties:
+
+ - compatible: "dlg,da9055-codec"
+ - reg: Specifies the I2C slave address
+
+
+Example:
+
+ codec: da9055-codec@1a {
+ compatible = "dlg,da9055-codec";
+ reg = <0x1a>;
+ };
diff --git a/Documentation/devicetree/bindings/sound/davinci-evm-audio.txt b/Documentation/devicetree/bindings/sound/davinci-evm-audio.txt
new file mode 100644
index 00000000000..963e100514c
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/davinci-evm-audio.txt
@@ -0,0 +1,49 @@
+* Texas Instruments SoC audio setups with TLV320AIC3X Codec
+
+Required properties:
+- compatible : "ti,da830-evm-audio" : forDM365/DA8xx/OMAPL1x/AM33xx
+- ti,model : The user-visible name of this sound complex.
+- ti,audio-codec : The phandle of the TLV320AIC3x audio codec
+- ti,mcasp-controller : The phandle of the McASP controller
+- ti,audio-routing : A list of the connections between audio components.
+ Each entry is a pair of strings, the first being the connection's sink,
+ the second being the connection's source. Valid names for sources and
+ sinks are the codec's pins, and the jacks on the board:
+
+Optional properties:
+- ti,codec-clock-rate : The Codec Clock rate (in Hz) applied to the Codec.
+- clocks : Reference to the master clock
+- clock-names : The clock should be named "mclk"
+- Either codec-clock-rate or the codec-clock reference has to be defined. If
+ the both are defined the driver attempts to set referenced clock to the
+ defined rate and takes the rate from the clock reference.
+
+ Board connectors:
+
+ * Headphone Jack
+ * Line Out
+ * Mic Jack
+ * Line In
+
+
+Example:
+
+sound {
+ compatible = "ti,da830-evm-audio";
+ ti,model = "DA830 EVM";
+ ti,audio-codec = <&tlv320aic3x>;
+ ti,mcasp-controller = <&mcasp1>;
+ ti,codec-clock-rate = <12000000>;
+ ti,audio-routing =
+ "Headphone Jack", "HPLOUT",
+ "Headphone Jack", "HPROUT",
+ "Line Out", "LLOUT",
+ "Line Out", "RLOUT",
+ "MIC3L", "Mic Bias 2V",
+ "MIC3R", "Mic Bias 2V",
+ "Mic Bias 2V", "Mic Jack",
+ "LINE1L", "Line In",
+ "LINE2L", "Line In",
+ "LINE1R", "Line In",
+ "LINE2R", "Line In";
+};
diff --git a/Documentation/devicetree/bindings/sound/davinci-mcasp-audio.txt b/Documentation/devicetree/bindings/sound/davinci-mcasp-audio.txt
index 374e145c2ef..60ca0799645 100644
--- a/Documentation/devicetree/bindings/sound/davinci-mcasp-audio.txt
+++ b/Documentation/devicetree/bindings/sound/davinci-mcasp-audio.txt
@@ -4,17 +4,26 @@ Required properties:
- compatible :
"ti,dm646x-mcasp-audio" : for DM646x platforms
"ti,da830-mcasp-audio" : for both DA830 & DA850 platforms
- "ti,omap2-mcasp-audio" : for OMAP2 platforms (TI81xx, AM33xx)
-
-- reg : Should contain McASP registers offset and length
-- interrupts : Interrupt number for McASP
-- op-mode : I2S/DIT ops mode.
-- tdm-slots : Slots for TDM operation.
-- num-serializer : Serializers used by McASP.
-- serial-dir : A list of serializer pin mode. The list number should be equal
- to "num-serializer" parameter. Each entry is a number indication
- serializer pin direction. (0 - INACTIVE, 1 - TX, 2 - RX)
+ "ti,am33xx-mcasp-audio" : for AM33xx platforms (AM33xx, AM43xx, TI81xx)
+ "ti,dra7-mcasp-audio" : for DRA7xx platforms
+- reg : Should contain reg specifiers for the entries in the reg-names property.
+- reg-names : Should contain:
+ * "mpu" for the main registers (required). For compatibility with
+ existing software, it is recommended this is the first entry.
+ * "dat" for separate data port register access (optional).
+- op-mode : I2S/DIT ops mode. 0 for I2S mode. 1 for DIT mode used for S/PDIF,
+ IEC60958-1, and AES-3 formats.
+- tdm-slots : Slots for TDM operation. Indicates number of channels transmitted
+ or received over one serializer.
+- serial-dir : A list of serializer configuration. Each entry is a number
+ indication for serializer pin direction.
+ (0 - INACTIVE, 1 - TX, 2 - RX)
+- dmas: two element list of DMA controller phandles and DMA request line
+ ordered pairs.
+- dma-names: identifier string for each DMA request line in the dmas property.
+ These strings correspond 1:1 with the ordered pairs in dmas. The dma
+ identifiers must be "rx" and "tx".
Optional properties:
@@ -23,18 +32,24 @@ Optional properties:
- rx-num-evt : FIFO levels.
- sram-size-playback : size of sram to be allocated during playback
- sram-size-capture : size of sram to be allocated during capture
+- interrupts : Interrupt numbers for McASP, currently not used by the driver
+- interrupt-names : Known interrupt names are "tx" and "rx"
+- pinctrl-0: Should specify pin control group used for this controller.
+- pinctrl-names: Should contain only one value - "default", for more details
+ please refer to pinctrl-bindings.txt
+- fck_parent : Should contain a valid clock name which will be used as parent
+ for the McASP fck
Example:
mcasp0: mcasp0@1d00000 {
compatible = "ti,da830-mcasp-audio";
- #address-cells = <1>;
- #size-cells = <0>;
reg = <0x100000 0x3000>;
- interrupts = <82 83>;
+ reg-names "mpu";
+ interrupts = <82>, <83>;
+ interrupt-names = "tx", "rx";
op-mode = <0>; /* MCASP_IIS_MODE */
tdm-slots = <2>;
- num-serializer = <16>;
serial-dir = <
0 0 0 0 /* 0: INACTIVE, 1: TX, 2: RX */
0 0 0 0
diff --git a/Documentation/devicetree/bindings/sound/eukrea-tlv320.txt b/Documentation/devicetree/bindings/sound/eukrea-tlv320.txt
new file mode 100644
index 00000000000..0d7985c864a
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/eukrea-tlv320.txt
@@ -0,0 +1,21 @@
+Audio complex for Eukrea boards with tlv320aic23 codec.
+
+Required properties:
+- compatible : "eukrea,asoc-tlv320"
+- eukrea,model : The user-visible name of this sound complex.
+- ssi-controller : The phandle of the SSI controller.
+- fsl,mux-int-port : The internal port of the i.MX audio muxer (AUDMUX).
+- fsl,mux-ext-port : The external port of the i.MX audio muxer.
+
+Note: The AUDMUX port numbering should start at 1, which is consistent with
+hardware manual.
+
+Example:
+
+ sound {
+ compatible = "eukrea,asoc-tlv320";
+ eukrea,model = "imx51-eukrea-tlv320aic23";
+ ssi-controller = <&ssi2>;
+ fsl,mux-int-port = <2>;
+ fsl,mux-ext-port = <3>;
+ };
diff --git a/Documentation/devicetree/bindings/sound/fsl,esai.txt b/Documentation/devicetree/bindings/sound/fsl,esai.txt
new file mode 100644
index 00000000000..aeb8c4a0b88
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/fsl,esai.txt
@@ -0,0 +1,55 @@
+Freescale Enhanced Serial Audio Interface (ESAI) Controller
+
+The Enhanced Serial Audio Interface (ESAI) provides a full-duplex serial port
+for serial communication with a variety of serial devices, including industry
+standard codecs, Sony/Phillips Digital Interface (S/PDIF) transceivers, and
+other DSPs. It has up to six transmitters and four receivers.
+
+Required properties:
+
+ - compatible : Compatible list, must contain "fsl,imx35-esai".
+
+ - reg : Offset and length of the register set for the device.
+
+ - interrupts : Contains the spdif interrupt.
+
+ - dmas : Generic dma devicetree binding as described in
+ Documentation/devicetree/bindings/dma/dma.txt.
+
+ - dma-names : Two dmas have to be defined, "tx" and "rx".
+
+ - clocks: Contains an entry for each entry in clock-names.
+
+ - clock-names : Includes the following entries:
+ "core" The core clock used to access registers
+ "extal" The esai baud clock for esai controller used to derive
+ HCK, SCK and FS.
+ "fsys" The system clock derived from ahb clock used to derive
+ HCK, SCK and FS.
+
+ - fsl,fifo-depth: The number of elements in the transmit and receive FIFOs.
+ This number is the maximum allowed value for TFCR[TFWM] or RFCR[RFWM].
+
+ - fsl,esai-synchronous: This is a boolean property. If present, indicating
+ that ESAI would work in the synchronous mode, which means all the settings
+ for Receiving would be duplicated from Transmition related registers.
+
+ - big-endian : If this property is absent, the native endian mode will
+ be in use as default, or the big endian mode will be in use for all the
+ device registers.
+
+Example:
+
+esai: esai@02024000 {
+ compatible = "fsl,imx35-esai";
+ reg = <0x02024000 0x4000>;
+ interrupts = <0 51 0x04>;
+ clocks = <&clks 208>, <&clks 118>, <&clks 208>;
+ clock-names = "core", "extal", "fsys";
+ dmas = <&sdma 23 21 0>, <&sdma 24 21 0>;
+ dma-names = "rx", "tx";
+ fsl,fifo-depth = <128>;
+ fsl,esai-synchronous;
+ big-endian;
+ status = "disabled";
+};
diff --git a/Documentation/devicetree/bindings/sound/fsl,spdif.txt b/Documentation/devicetree/bindings/sound/fsl,spdif.txt
index f2ae335670f..3e9e82c8eab 100644
--- a/Documentation/devicetree/bindings/sound/fsl,spdif.txt
+++ b/Documentation/devicetree/bindings/sound/fsl,spdif.txt
@@ -29,6 +29,10 @@ Required properties:
can also be referred to TxClk_Source
bit of register SPDIF_STC.
+ - big-endian : If this property is absent, the native endian mode will
+ be in use as default, or the big endian mode will be in use for all the
+ device registers.
+
Example:
spdif: spdif@02004000 {
@@ -50,5 +54,6 @@ spdif: spdif@02004000 {
"rxtx5", "rxtx6",
"rxtx7";
+ big-endian;
status = "okay";
};
diff --git a/Documentation/devicetree/bindings/sound/fsl,ssi.txt b/Documentation/devicetree/bindings/sound/fsl,ssi.txt
index 4303b6ab620..3aa4a8f528f 100644
--- a/Documentation/devicetree/bindings/sound/fsl,ssi.txt
+++ b/Documentation/devicetree/bindings/sound/fsl,ssi.txt
@@ -4,7 +4,12 @@ The SSI is a serial device that communicates with audio codecs. It can
be programmed in AC97, I2S, left-justified, or right-justified modes.
Required properties:
-- compatible: Compatible list, contains "fsl,ssi".
+- compatible: Compatible list, should contain one of the following
+ compatibles:
+ fsl,mpc8610-ssi
+ fsl,imx51-ssi
+ fsl,imx35-ssi
+ fsl,imx21-ssi
- cell-index: The SSI, <0> = SSI1, <1> = SSI2, and so on.
- reg: Offset and length of the register set for the device.
- interrupts: <a b> where a is the interrupt number and b is a
@@ -15,15 +20,6 @@ Required properties:
have.
- interrupt-parent: The phandle for the interrupt controller that
services interrupts for this device.
-- fsl,mode: The operating mode for the SSI interface.
- "i2s-slave" - I2S mode, SSI is clock slave
- "i2s-master" - I2S mode, SSI is clock master
- "lj-slave" - left-justified mode, SSI is clock slave
- "lj-master" - l.j. mode, SSI is clock master
- "rj-slave" - right-justified mode, SSI is clock slave
- "rj-master" - r.j., SSI is clock master
- "ac97-slave" - AC97 mode, SSI is clock slave
- "ac97-master" - AC97 mode, SSI is clock master
- fsl,playback-dma: Phandle to a node for the DMA channel to use for
playback of audio. This is typically dictated by SOC
design. See the notes below.
@@ -42,6 +38,9 @@ Required properties:
be connected together, and SRFS and STFS be connected
together. This would still allow different sample sizes,
but not different sample rates.
+ - clocks: "ipg" - Required clock for the SSI unit
+ "baud" - Required clock for SSI master mode. Otherwise this
+ clock is not used
Required are also ac97 link bindings if ac97 is used. See
Documentation/devicetree/bindings/sound/soc-ac97link.txt for the necessary
@@ -59,6 +58,15 @@ Optional properties:
Documentation/devicetree/bindings/dma/dma.txt.
- dma-names: Two dmas have to be defined, "tx" and "rx", if fsl,imx-fiq
is not defined.
+- fsl,mode: The operating mode for the SSI interface.
+ "i2s-slave" - I2S mode, SSI is clock slave
+ "i2s-master" - I2S mode, SSI is clock master
+ "lj-slave" - left-justified mode, SSI is clock slave
+ "lj-master" - l.j. mode, SSI is clock master
+ "rj-slave" - right-justified mode, SSI is clock slave
+ "rj-master" - r.j., SSI is clock master
+ "ac97-slave" - AC97 mode, SSI is clock slave
+ "ac97-master" - AC97 mode, SSI is clock master
Child 'codec' node required properties:
- compatible: Compatible list, contains the name of the codec
diff --git a/Documentation/devicetree/bindings/sound/fsl-sai.txt b/Documentation/devicetree/bindings/sound/fsl-sai.txt
new file mode 100644
index 00000000000..0f4e2382819
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/fsl-sai.txt
@@ -0,0 +1,43 @@
+Freescale Synchronous Audio Interface (SAI).
+
+The SAI is based on I2S module that used communicating with audio codecs,
+which provides a synchronous audio interface that supports fullduplex
+serial interfaces with frame synchronization such as I2S, AC97, TDM, and
+codec/DSP interfaces.
+
+
+Required properties:
+- compatible: Compatible list, contains "fsl,vf610-sai" or "fsl,imx6sx-sai".
+- reg: Offset and length of the register set for the device.
+- clocks: Must contain an entry for each entry in clock-names.
+- clock-names : Must include the "bus" for register access and "mclk1" "mclk2"
+ "mclk3" for bit clock and frame clock providing.
+- dmas : Generic dma devicetree binding as described in
+ Documentation/devicetree/bindings/dma/dma.txt.
+- dma-names : Two dmas have to be defined, "tx" and "rx".
+- pinctrl-names: Must contain a "default" entry.
+- pinctrl-NNN: One property must exist for each entry in pinctrl-names.
+ See ../pinctrl/pinctrl-bindings.txt for details of the property values.
+- big-endian-regs: If this property is absent, the little endian mode will
+ be in use as default, or the big endian mode will be in use for all the
+ device registers.
+- big-endian-data: If this property is absent, the little endian mode will
+ be in use as default, or the big endian mode will be in use for all the
+ fifo data.
+
+Example:
+sai2: sai@40031000 {
+ compatible = "fsl,vf610-sai";
+ reg = <0x40031000 0x1000>;
+ pinctrl-names = "default";
+ pinctrl-0 = <&pinctrl_sai2_1>;
+ clocks = <&clks VF610_CLK_PLATFORM_BUS>,
+ <&clks VF610_CLK_SAI2>,
+ <&clks 0>, <&clks 0>;
+ clock-names = "bus", "mclk1", "mclk2", "mclk3";
+ dma-names = "tx", "rx";
+ dmas = <&edma0 0 VF610_EDMA_MUXID0_SAI2_TX>,
+ <&edma0 0 VF610_EDMA_MUXID0_SAI2_RX>;
+ big-endian-regs;
+ big-endian-data;
+};
diff --git a/Documentation/devicetree/bindings/sound/hdmi.txt b/Documentation/devicetree/bindings/sound/hdmi.txt
new file mode 100644
index 00000000000..31af7bca309
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/hdmi.txt
@@ -0,0 +1,17 @@
+Device-Tree bindings for dummy HDMI codec
+
+Required properties:
+ - compatible: should be "linux,hdmi-audio".
+
+CODEC output pins:
+ * TX
+
+CODEC input pins:
+ * RX
+
+Example node:
+
+ hdmi_audio: hdmi_audio@0 {
+ compatible = "linux,hdmi-audio";
+ status = "okay";
+ };
diff --git a/Documentation/devicetree/bindings/sound/max98090.txt b/Documentation/devicetree/bindings/sound/max98090.txt
new file mode 100644
index 00000000000..a5e63fa47dc
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/max98090.txt
@@ -0,0 +1,49 @@
+MAX98090 audio CODEC
+
+This device supports I2C only.
+
+Required properties:
+
+- compatible : "maxim,max98090".
+
+- reg : The I2C address of the device.
+
+- interrupts : The CODEC's interrupt output.
+
+Optional properties:
+
+- clocks: The phandle of the master clock to the CODEC
+
+- clock-names: Should be "mclk"
+
+Pins on the device (for linking into audio routes):
+
+ * MIC1
+ * MIC2
+ * DMICL
+ * DMICR
+ * IN1
+ * IN2
+ * IN3
+ * IN4
+ * IN5
+ * IN6
+ * IN12
+ * IN34
+ * IN56
+ * HPL
+ * HPR
+ * SPKL
+ * SPKR
+ * RCVL
+ * RCVR
+ * MICBIAS
+
+Example:
+
+audio-codec@10 {
+ compatible = "maxim,max98090";
+ reg = <0x10>;
+ interrupt-parent = <&gpio>;
+ interrupts = <TEGRA_GPIO(H, 4) GPIO_ACTIVE_HIGH>;
+};
diff --git a/Documentation/devicetree/bindings/sound/max98095.txt b/Documentation/devicetree/bindings/sound/max98095.txt
new file mode 100644
index 00000000000..318a4c82f17
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/max98095.txt
@@ -0,0 +1,22 @@
+MAX98095 audio CODEC
+
+This device supports I2C only.
+
+Required properties:
+
+- compatible : "maxim,max98095".
+
+- reg : The I2C address of the device.
+
+Optional properties:
+
+- clocks: The phandle of the master clock to the CODEC
+
+- clock-names: Should be "mclk"
+
+Example:
+
+max98095: codec@11 {
+ compatible = "maxim,max98095";
+ reg = <0x11>;
+};
diff --git a/Documentation/devicetree/bindings/sound/mvebu-audio.txt b/Documentation/devicetree/bindings/sound/mvebu-audio.txt
index f0062c5871b..cb8c07c81ce 100644
--- a/Documentation/devicetree/bindings/sound/mvebu-audio.txt
+++ b/Documentation/devicetree/bindings/sound/mvebu-audio.txt
@@ -5,6 +5,7 @@ Required properties:
- compatible:
"marvell,kirkwood-audio" for Kirkwood platforms
"marvell,dove-audio" for Dove platforms
+ "marvell,armada370-audio" for Armada 370 platforms
- reg: physical base address of the controller and length of memory mapped
region.
diff --git a/Documentation/devicetree/bindings/sound/nokia,rx51.txt b/Documentation/devicetree/bindings/sound/nokia,rx51.txt
new file mode 100644
index 00000000000..72f93d99627
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/nokia,rx51.txt
@@ -0,0 +1,27 @@
+* Nokia N900 audio setup
+
+Required properties:
+- compatible: Should contain "nokia,n900-audio"
+- nokia,cpu-dai: phandle for the McBSP node
+- nokia,audio-codec: phandles for the main TLV320AIC3X node and the
+ auxiliary TLV320AIC3X node (in this order)
+- nokia,headphone-amplifier: phandle for the TPA6130A2 node
+- tvout-selection-gpios: GPIO for tvout selection
+- jack-detection-gpios: GPIO for jack detection
+- eci-switch-gpios: GPIO for ECI (Enhancement Control Interface) switch
+- speaker-amplifier-gpios: GPIO for speaker amplifier
+
+Example:
+
+sound {
+ compatible = "nokia,n900-audio";
+
+ nokia,cpu-dai = <&mcbsp2>;
+ nokia,audio-codec = <&tlv320aic3x>, <&tlv320aic3x_aux>;
+ nokia,headphone-amplifier = <&tpa6130a2>;
+
+ tvout-selection-gpios = <&gpio2 8 GPIO_ACTIVE_HIGH>; /* 40 */
+ jack-detection-gpios = <&gpio6 17 GPIO_ACTIVE_HIGH>; /* 177 */
+ eci-switch-gpios = <&gpio6 22 GPIO_ACTIVE_HIGH>; /* 182 */
+ speaker-amplifier-gpios = <&twl_gpio 7 GPIO_ACTIVE_HIGH>;
+};
diff --git a/Documentation/devicetree/bindings/sound/nvidia,tegra-audio-alc5632.txt b/Documentation/devicetree/bindings/sound/nvidia,tegra-audio-alc5632.txt
index 8b8903ef080..57f40f93453 100644
--- a/Documentation/devicetree/bindings/sound/nvidia,tegra-audio-alc5632.txt
+++ b/Documentation/devicetree/bindings/sound/nvidia,tegra-audio-alc5632.txt
@@ -3,10 +3,11 @@ NVIDIA Tegra audio complex
Required properties:
- compatible : "nvidia,tegra-audio-alc5632"
- clocks : Must contain an entry for each entry in clock-names.
+ See ../clocks/clock-bindings.txt for details.
- clock-names : Must include the following entries:
- "pll_a" (The Tegra clock of that name),
- "pll_a_out0" (The Tegra clock of that name),
- "mclk" (The Tegra cdev1/extern1 clock, which feeds the CODEC's mclk)
+ - pll_a
+ - pll_a_out0
+ - mclk (The Tegra cdev1/extern1 clock, which feeds the CODEC's mclk)
- nvidia,model : The user-visible name of this sound complex.
- nvidia,audio-routing : A list of the connections between audio components.
Each entry is a pair of strings, the first being the connection's sink,
diff --git a/Documentation/devicetree/bindings/sound/nvidia,tegra-audio-max98090.txt b/Documentation/devicetree/bindings/sound/nvidia,tegra-audio-max98090.txt
new file mode 100644
index 00000000000..9c7c55c7137
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/nvidia,tegra-audio-max98090.txt
@@ -0,0 +1,51 @@
+NVIDIA Tegra audio complex, with MAX98090 CODEC
+
+Required properties:
+- compatible : "nvidia,tegra-audio-max98090"
+- clocks : Must contain an entry for each entry in clock-names.
+ See ../clocks/clock-bindings.txt for details.
+- clock-names : Must include the following entries:
+ - pll_a
+ - pll_a_out0
+ - mclk (The Tegra cdev1/extern1 clock, which feeds the CODEC's mclk)
+- nvidia,model : The user-visible name of this sound complex.
+- nvidia,audio-routing : A list of the connections between audio components.
+ Each entry is a pair of strings, the first being the connection's sink,
+ the second being the connection's source. Valid names for sources and
+ sinks are the MAX98090's pins (as documented in its binding), and the jacks
+ on the board:
+
+ * Headphones
+ * Speakers
+ * Mic Jack
+
+- nvidia,i2s-controller : The phandle of the Tegra I2S controller that's
+ connected to the CODEC.
+- nvidia,audio-codec : The phandle of the MAX98090 audio codec.
+
+Optional properties:
+- nvidia,hp-det-gpios : The GPIO that detect headphones are plugged in
+
+Example:
+
+sound {
+ compatible = "nvidia,tegra-audio-max98090-venice2",
+ "nvidia,tegra-audio-max98090";
+ nvidia,model = "NVIDIA Tegra Venice2";
+
+ nvidia,audio-routing =
+ "Headphones", "HPR",
+ "Headphones", "HPL",
+ "Speakers", "SPKR",
+ "Speakers", "SPKL",
+ "Mic Jack", "MICBIAS",
+ "IN34", "Mic Jack";
+
+ nvidia,i2s-controller = <&tegra_i2s1>;
+ nvidia,audio-codec = <&acodec>;
+
+ clocks = <&tegra_car TEGRA124_CLK_PLL_A>,
+ <&tegra_car TEGRA124_CLK_PLL_A_OUT0>,
+ <&tegra_car TEGRA124_CLK_EXTERN1>;
+ clock-names = "pll_a", "pll_a_out0", "mclk";
+};
diff --git a/Documentation/devicetree/bindings/sound/nvidia,tegra-audio-rt5640.txt b/Documentation/devicetree/bindings/sound/nvidia,tegra-audio-rt5640.txt
index dc6224994d6..7788808dcd0 100644
--- a/Documentation/devicetree/bindings/sound/nvidia,tegra-audio-rt5640.txt
+++ b/Documentation/devicetree/bindings/sound/nvidia,tegra-audio-rt5640.txt
@@ -3,10 +3,11 @@ NVIDIA Tegra audio complex, with RT5640 CODEC
Required properties:
- compatible : "nvidia,tegra-audio-rt5640"
- clocks : Must contain an entry for each entry in clock-names.
+ See ../clocks/clock-bindings.txt for details.
- clock-names : Must include the following entries:
- "pll_a" (The Tegra clock of that name),
- "pll_a_out0" (The Tegra clock of that name),
- "mclk" (The Tegra cdev1/extern1 clock, which feeds the CODEC's mclk)
+ - pll_a
+ - pll_a_out0
+ - mclk (The Tegra cdev1/extern1 clock, which feeds the CODEC's mclk)
- nvidia,model : The user-visible name of this sound complex.
- nvidia,audio-routing : A list of the connections between audio components.
Each entry is a pair of strings, the first being the connection's sink,
diff --git a/Documentation/devicetree/bindings/sound/nvidia,tegra-audio-wm8753.txt b/Documentation/devicetree/bindings/sound/nvidia,tegra-audio-wm8753.txt
index aab6ce0ad2f..96f6a57dd6b 100644
--- a/Documentation/devicetree/bindings/sound/nvidia,tegra-audio-wm8753.txt
+++ b/Documentation/devicetree/bindings/sound/nvidia,tegra-audio-wm8753.txt
@@ -3,10 +3,11 @@ NVIDIA Tegra audio complex
Required properties:
- compatible : "nvidia,tegra-audio-wm8753"
- clocks : Must contain an entry for each entry in clock-names.
+ See ../clocks/clock-bindings.txt for details.
- clock-names : Must include the following entries:
- "pll_a" (The Tegra clock of that name),
- "pll_a_out0" (The Tegra clock of that name),
- "mclk" (The Tegra cdev1/extern1 clock, which feeds the CODEC's mclk)
+ - pll_a
+ - pll_a_out0
+ - mclk (The Tegra cdev1/extern1 clock, which feeds the CODEC's mclk)
- nvidia,model : The user-visible name of this sound complex.
- nvidia,audio-routing : A list of the connections between audio components.
Each entry is a pair of strings, the first being the connection's sink,
diff --git a/Documentation/devicetree/bindings/sound/nvidia,tegra-audio-wm8903.txt b/Documentation/devicetree/bindings/sound/nvidia,tegra-audio-wm8903.txt
index 4b44dfb6ca0..b795d282818 100644
--- a/Documentation/devicetree/bindings/sound/nvidia,tegra-audio-wm8903.txt
+++ b/Documentation/devicetree/bindings/sound/nvidia,tegra-audio-wm8903.txt
@@ -3,10 +3,11 @@ NVIDIA Tegra audio complex
Required properties:
- compatible : "nvidia,tegra-audio-wm8903"
- clocks : Must contain an entry for each entry in clock-names.
+ See ../clocks/clock-bindings.txt for details.
- clock-names : Must include the following entries:
- "pll_a" (The Tegra clock of that name),
- "pll_a_out0" (The Tegra clock of that name),
- "mclk" (The Tegra cdev1/extern1 clock, which feeds the CODEC's mclk)
+ - pll_a
+ - pll_a_out0
+ - mclk (The Tegra cdev1/extern1 clock, which feeds the CODEC's mclk)
- nvidia,model : The user-visible name of this sound complex.
- nvidia,audio-routing : A list of the connections between audio components.
Each entry is a pair of strings, the first being the connection's sink,
diff --git a/Documentation/devicetree/bindings/sound/nvidia,tegra-audio-wm9712.txt b/Documentation/devicetree/bindings/sound/nvidia,tegra-audio-wm9712.txt
index ad589b16363..436f6cd9d07 100644
--- a/Documentation/devicetree/bindings/sound/nvidia,tegra-audio-wm9712.txt
+++ b/Documentation/devicetree/bindings/sound/nvidia,tegra-audio-wm9712.txt
@@ -3,10 +3,11 @@ NVIDIA Tegra audio complex
Required properties:
- compatible : "nvidia,tegra-audio-wm9712"
- clocks : Must contain an entry for each entry in clock-names.
+ See ../clocks/clock-bindings.txt for details.
- clock-names : Must include the following entries:
- "pll_a" (The Tegra clock of that name),
- "pll_a_out0" (The Tegra clock of that name),
- "mclk" (The Tegra cdev1/extern1 clock, which feeds the CODEC's mclk)
+ - pll_a
+ - pll_a_out0
+ - mclk (The Tegra cdev1/extern1 clock, which feeds the CODEC's mclk)
- nvidia,model : The user-visible name of this sound complex.
- nvidia,audio-routing : A list of the connections between audio components.
Each entry is a pair of strings, the first being the connection's sink,
diff --git a/Documentation/devicetree/bindings/sound/nvidia,tegra20-ac97.txt b/Documentation/devicetree/bindings/sound/nvidia,tegra20-ac97.txt
index c1454979c1e..eaf00102d92 100644
--- a/Documentation/devicetree/bindings/sound/nvidia,tegra20-ac97.txt
+++ b/Documentation/devicetree/bindings/sound/nvidia,tegra20-ac97.txt
@@ -4,19 +4,33 @@ Required properties:
- compatible : "nvidia,tegra20-ac97"
- reg : Should contain AC97 controller registers location and length
- interrupts : Should contain AC97 interrupt
-- nvidia,dma-request-selector : The Tegra DMA controller's phandle and
- request selector for the AC97 controller
+- resets : Must contain an entry for each entry in reset-names.
+ See ../reset/reset.txt for details.
+- reset-names : Must include the following entries:
+ - ac97
+- dmas : Must contain an entry for each entry in clock-names.
+ See ../dma/dma.txt for details.
+- dma-names : Must include the following entries:
+ - rx
+ - tx
+- clocks : Must contain one entry, for the module clock.
+ See ../clocks/clock-bindings.txt for details.
- nvidia,codec-reset-gpio : The Tegra GPIO controller's phandle and the number
of the GPIO used to reset the external AC97 codec
- nvidia,codec-sync-gpio : The Tegra GPIO controller's phandle and the number
of the GPIO corresponding with the AC97 DAP _FS line
+
Example:
ac97@70002000 {
compatible = "nvidia,tegra20-ac97";
reg = <0x70002000 0x200>;
interrupts = <0 81 0x04>;
- nvidia,dma-request-selector = <&apbdma 12>;
nvidia,codec-reset-gpio = <&gpio 170 0>;
nvidia,codec-sync-gpio = <&gpio 120 0>;
+ clocks = <&tegra_car 3>;
+ resets = <&tegra_car 3>;
+ reset-names = "ac97";
+ dmas = <&apbdma 12>, <&apbdma 12>;
+ dma-names = "rx", "tx";
};
diff --git a/Documentation/devicetree/bindings/sound/nvidia,tegra20-i2s.txt b/Documentation/devicetree/bindings/sound/nvidia,tegra20-i2s.txt
index 0df2b5c816e..dc30c6bfbe9 100644
--- a/Documentation/devicetree/bindings/sound/nvidia,tegra20-i2s.txt
+++ b/Documentation/devicetree/bindings/sound/nvidia,tegra20-i2s.txt
@@ -4,8 +4,17 @@ Required properties:
- compatible : "nvidia,tegra20-i2s"
- reg : Should contain I2S registers location and length
- interrupts : Should contain I2S interrupt
-- nvidia,dma-request-selector : The Tegra DMA controller's phandle and
- request selector for this I2S controller
+- resets : Must contain an entry for each entry in reset-names.
+ See ../reset/reset.txt for details.
+- reset-names : Must include the following entries:
+ - i2s
+- dmas : Must contain an entry for each entry in clock-names.
+ See ../dma/dma.txt for details.
+- dma-names : Must include the following entries:
+ - rx
+ - tx
+- clocks : Must contain one entry, for the module clock.
+ See ../clocks/clock-bindings.txt for details.
Example:
@@ -13,5 +22,9 @@ i2s@70002800 {
compatible = "nvidia,tegra20-i2s";
reg = <0x70002800 0x200>;
interrupts = < 45 >;
- nvidia,dma-request-selector = < &apbdma 2 >;
+ clocks = <&tegra_car 11>;
+ resets = <&tegra_car 11>;
+ reset-names = "i2s";
+ dmas = <&apbdma 21>, <&apbdma 21>;
+ dma-names = "rx", "tx";
};
diff --git a/Documentation/devicetree/bindings/sound/nvidia,tegra30-ahub.txt b/Documentation/devicetree/bindings/sound/nvidia,tegra30-ahub.txt
index 0e5c12c6652..946e2ac4609 100644
--- a/Documentation/devicetree/bindings/sound/nvidia,tegra30-ahub.txt
+++ b/Documentation/devicetree/bindings/sound/nvidia,tegra30-ahub.txt
@@ -7,18 +7,48 @@ Required properties:
- Tegra30 requires 2 entries, for the APBIF and AHUB/AUDIO register blocks.
- Tegra114 requires an additional entry, for the APBIF2 register block.
- interrupts : Should contain AHUB interrupt
-- nvidia,dma-request-selector : A list of the DMA channel specifiers. Each
- entry contains the Tegra DMA controller's phandle and request selector.
- If a single entry is present, the request selectors for the channels are
- assumed to be contiguous, and increment from this value.
- If multiple values are given, one value must be given per channel.
-- clocks : Must contain an entry for each required entry in clock-names.
+- clocks : Must contain an entry for each entry in clock-names.
+ See ../clocks/clock-bindings.txt for details.
- clock-names : Must include the following entries:
- - Tegra30: Requires d_audio, apbif, i2s0, i2s1, i2s2, i2s3, i2s4, dam0,
- dam1, dam2, spdif_in.
- - Tegra114: Additionally requires amx, adx.
+ - d_audio
+ - apbif
+- resets : Must contain an entry for each entry in reset-names.
+ See ../reset/reset.txt for details.
+- reset-names : Must include the following entries:
+ Tegra30 and later:
+ - d_audio
+ - apbif
+ - i2s0
+ - i2s1
+ - i2s2
+ - i2s3
+ - i2s4
+ - dam0
+ - dam1
+ - dam2
+ - spdif
+ Tegra114 and later additionally require:
+ - amx
+ - adx
+ Tegra124 and later additionally require:
+ - amx1
+ - adx1
+ - afc0
+ - afc1
+ - afc2
+ - afc3
+ - afc4
+ - afc5
- ranges : The bus address mapping for the configlink register bus.
Can be empty since the mapping is 1:1.
+- dmas : Must contain an entry for each entry in clock-names.
+ See ../dma/dma.txt for details.
+- dma-names : Must include the following entries:
+ - rx0 .. rx<n>
+ - tx0 .. tx<n>
+ ... where n is:
+ Tegra30: 3
+ Tegra114, Tegra124: 9
- #address-cells : For the configlink bus. Should be <1>;
- #size-cells : For the configlink bus. Should be <1>.
@@ -35,13 +65,20 @@ ahub@70080000 {
reg = <0x70080000 0x200 0x70080200 0x100>;
interrupts = < 0 103 0x04 >;
nvidia,dma-request-selector = <&apbdma 1>;
- clocks = <&tegra_car 106>, <&tegra_car 107>, <&tegra_car 30>,
+ clocks = <&tegra_car 106>, <&tegra_car 107>;
+ clock-names = "d_audio", "apbif";
+ resets = <&tegra_car 106>, <&tegra_car 107>, <&tegra_car 30>,
<&tegra_car 11>, <&tegra_car 18>, <&tegra_car 101>,
<&tegra_car 102>, <&tegra_car 108>, <&tegra_car 109>,
- <&tegra_car 110>, <&tegra_car 162>;
- clock-names = "d_audio", "apbif", "i2s0", "i2s1", "i2s2",
+ <&tegra_car 110>, <&tegra_car 10>;
+ reset-names = "d_audio", "apbif", "i2s0", "i2s1", "i2s2",
"i2s3", "i2s4", "dam0", "dam1", "dam2",
- "spdif_in";
+ "spdif";
+ dmas = <&apbdma 1>, <&apbdma 1>;
+ <&apbdma 2>, <&apbdma 2>;
+ <&apbdma 3>, <&apbdma 3>;
+ <&apbdma 4>, <&apbdma 4>;
+ dma-names = "rx0", "tx0", "rx1", "tx1", "rx2", "tx2", "rx3", "tx3";
ranges;
#address-cells = <1>;
#size-cells = <1>;
diff --git a/Documentation/devicetree/bindings/sound/nvidia,tegra30-hda.txt b/Documentation/devicetree/bindings/sound/nvidia,tegra30-hda.txt
new file mode 100644
index 00000000000..b4730c2822b
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/nvidia,tegra30-hda.txt
@@ -0,0 +1,28 @@
+NVIDIA Tegra30 HDA controller
+
+Required properties:
+- compatible : "nvidia,tegra30-hda"
+- reg : Should contain the HDA registers location and length.
+- interrupts : The interrupt from the HDA controller.
+- clocks : Must contain an entry for each required entry in clock-names.
+ See ../clocks/clock-bindings.txt for details.
+- clock-names : Must include the following entries: hda, hdacodec_2x, hda2hdmi
+- resets : Must contain an entry for each entry in reset-names.
+ See ../reset/reset.txt for details.
+- reset-names : Must include the following entries: hda, hdacodec_2x, hda2hdmi
+
+Example:
+
+hda@0,70030000 {
+ compatible = "nvidia,tegra124-hda", "nvidia,tegra30-hda";
+ reg = <0x0 0x70030000 0x0 0x10000>;
+ interrupts = <GIC_SPI 81 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&tegra_car TEGRA124_CLK_HDA>,
+ <&tegra_car TEGRA124_CLK_HDA2HDMI>,
+ <&tegra_car TEGRA124_CLK_HDA2CODEC_2X>;
+ clock-names = "hda", "hda2hdmi", "hda2codec_2x";
+ resets = <&tegra_car 125>, /* hda */
+ <&tegra_car 128>; /* hda2hdmi */
+ <&tegra_car 111>, /* hda2codec_2x */
+ reset-names = "hda", "hda2hdmi", "hda2codec_2x";
+};
diff --git a/Documentation/devicetree/bindings/sound/nvidia,tegra30-i2s.txt b/Documentation/devicetree/bindings/sound/nvidia,tegra30-i2s.txt
index dfa6c037124..0c113ffe381 100644
--- a/Documentation/devicetree/bindings/sound/nvidia,tegra30-i2s.txt
+++ b/Documentation/devicetree/bindings/sound/nvidia,tegra30-i2s.txt
@@ -3,13 +3,22 @@ NVIDIA Tegra30 I2S controller
Required properties:
- compatible : "nvidia,tegra30-i2s"
- reg : Should contain I2S registers location and length
+- clocks : Must contain one entry, for the module clock.
+ See ../clocks/clock-bindings.txt for details.
+- resets : Must contain an entry for each entry in reset-names.
+ See ../reset/reset.txt for details.
+- reset-names : Must include the following entries:
+ - i2s
- nvidia,ahub-cif-ids : The list of AHUB CIF IDs for this port, rx (playback)
first, tx (capture) second. See nvidia,tegra30-ahub.txt for values.
Example:
-i2s@70002800 {
+i2s@70080300 {
compatible = "nvidia,tegra30-i2s";
reg = <0x70080300 0x100>;
nvidia,ahub-cif-ids = <4 4>;
+ clocks = <&tegra_car 11>;
+ resets = <&tegra_car 11>;
+ reset-names = "i2s";
};
diff --git a/Documentation/devicetree/bindings/sound/pcm512x.txt b/Documentation/devicetree/bindings/sound/pcm512x.txt
new file mode 100644
index 00000000000..faff75e6457
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/pcm512x.txt
@@ -0,0 +1,30 @@
+PCM512x audio CODECs
+
+These devices support both I2C and SPI (configured with pin strapping
+on the board).
+
+Required properties:
+
+ - compatible : One of "ti,pcm5121" or "ti,pcm5122"
+
+ - reg : the I2C address of the device for I2C, the chip select
+ number for SPI.
+
+ - AVDD-supply, DVDD-supply, and CPVDD-supply : power supplies for the
+ device, as covered in bindings/regulator/regulator.txt
+
+Optional properties:
+
+ - clocks : A clock specifier for the clock connected as SCLK. If this
+ is absent the device will be configured to clock from BCLK.
+
+Example:
+
+ pcm5122: pcm5122@4c {
+ compatible = "ti,pcm5122";
+ reg = <0x4c>;
+
+ AVDD-supply = <&reg_3v3_analog>;
+ DVDD-supply = <&reg_1v8>;
+ CPVDD-supply = <&reg_3v3>;
+ };
diff --git a/Documentation/devicetree/bindings/sound/renesas,rsnd.txt b/Documentation/devicetree/bindings/sound/renesas,rsnd.txt
new file mode 100644
index 00000000000..8346cab046c
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/renesas,rsnd.txt
@@ -0,0 +1,106 @@
+Renesas R-Car sound
+
+Required properties:
+- compatible : "renesas,rcar_sound-gen1" if generation1
+ "renesas,rcar_sound-gen2" if generation2
+- reg : Should contain the register physical address.
+ required register is
+ SRU/ADG/SSI if generation1
+ SRU/ADG/SSIU/SSI if generation2
+- rcar_sound,ssi : Should contain SSI feature.
+ The number of SSI subnode should be same as HW.
+ see below for detail.
+- rcar_sound,src : Should contain SRC feature.
+ The number of SRC subnode should be same as HW.
+ see below for detail.
+- rcar_sound,dai : DAI contents.
+ The number of DAI subnode should be same as HW.
+ see below for detail.
+
+SSI subnode properties:
+- interrupts : Should contain SSI interrupt for PIO transfer
+- shared-pin : if shared clock pin
+- pio-transfer : use PIO transfer mode
+
+SRC subnode properties:
+no properties at this point
+
+DAI subnode properties:
+- playback : list of playback modules
+- capture : list of capture modules
+
+Example:
+
+rcar_sound: rcar_sound@0xffd90000 {
+ #sound-dai-cells = <1>;
+ compatible = "renesas,rcar_sound-gen2";
+ reg = <0 0xec500000 0 0x1000>, /* SCU */
+ <0 0xec5a0000 0 0x100>, /* ADG */
+ <0 0xec540000 0 0x1000>, /* SSIU */
+ <0 0xec541000 0 0x1280>; /* SSI */
+
+ rcar_sound,src {
+ src0: src@0 { };
+ src1: src@1 { };
+ src2: src@2 { };
+ src3: src@3 { };
+ src4: src@4 { };
+ src5: src@5 { };
+ src6: src@6 { };
+ src7: src@7 { };
+ src8: src@8 { };
+ src9: src@9 { };
+ };
+
+ rcar_sound,ssi {
+ ssi0: ssi@0 {
+ interrupts = <0 370 IRQ_TYPE_LEVEL_HIGH>;
+ };
+ ssi1: ssi@1 {
+ interrupts = <0 371 IRQ_TYPE_LEVEL_HIGH>;
+ };
+ ssi2: ssi@2 {
+ interrupts = <0 372 IRQ_TYPE_LEVEL_HIGH>;
+ };
+ ssi3: ssi@3 {
+ interrupts = <0 373 IRQ_TYPE_LEVEL_HIGH>;
+ };
+ ssi4: ssi@4 {
+ interrupts = <0 374 IRQ_TYPE_LEVEL_HIGH>;
+ };
+ ssi5: ssi@5 {
+ interrupts = <0 375 IRQ_TYPE_LEVEL_HIGH>;
+ };
+ ssi6: ssi@6 {
+ interrupts = <0 376 IRQ_TYPE_LEVEL_HIGH>;
+ };
+ ssi7: ssi@7 {
+ interrupts = <0 377 IRQ_TYPE_LEVEL_HIGH>;
+ };
+ ssi8: ssi@8 {
+ interrupts = <0 378 IRQ_TYPE_LEVEL_HIGH>;
+ };
+ ssi9: ssi@9 {
+ interrupts = <0 379 IRQ_TYPE_LEVEL_HIGH>;
+ };
+ };
+
+ rcar_sound,dai {
+ dai0 {
+ playback = <&ssi5 &src5>;
+ capture = <&ssi6>;
+ };
+ dai1 {
+ playback = <&ssi3>;
+ };
+ dai2 {
+ capture = <&ssi4>;
+ };
+ dai3 {
+ playback = <&ssi7>;
+ };
+ dai4 {
+ capture = <&ssi8>;
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/sound/rt5640.txt b/Documentation/devicetree/bindings/sound/rt5640.txt
index 068a1141b06..bac4d9ac1ed 100644
--- a/Documentation/devicetree/bindings/sound/rt5640.txt
+++ b/Documentation/devicetree/bindings/sound/rt5640.txt
@@ -1,10 +1,10 @@
-RT5640 audio CODEC
+RT5640/RT5639 audio CODEC
This device supports I2C only.
Required properties:
-- compatible : "realtek,rt5640".
+- compatible : One of "realtek,rt5640" or "realtek,rt5639".
- reg : The I2C address of the device.
@@ -18,7 +18,7 @@ Optional properties:
- realtek,ldo1-en-gpios : The GPIO that controls the CODEC's LDO1_EN pin.
-Pins on the device (for linking into audio routes):
+Pins on the device (for linking into audio routes) for RT5639/RT5640:
* DMIC1
* DMIC2
@@ -31,13 +31,16 @@ Pins on the device (for linking into audio routes):
* HPOR
* LOUTL
* LOUTR
- * MONOP
- * MONON
* SPOLP
* SPOLN
* SPORP
* SPORN
+Additional pins on the device for RT5640:
+
+ * MONOP
+ * MONON
+
Example:
rt5640 {
diff --git a/Documentation/devicetree/bindings/sound/simple-card.txt b/Documentation/devicetree/bindings/sound/simple-card.txt
new file mode 100644
index 00000000000..c2e9841dfce
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/simple-card.txt
@@ -0,0 +1,151 @@
+Simple-Card:
+
+Simple-Card specifies audio DAI connections of SoC <-> codec.
+
+Required properties:
+
+- compatible : "simple-audio-card"
+
+Optional properties:
+
+- simple-audio-card,name : User specified audio sound card name, one string
+ property.
+- simple-audio-card,widgets : Please refer to widgets.txt.
+- simple-audio-card,routing : A list of the connections between audio components.
+ Each entry is a pair of strings, the first being the
+ connection's sink, the second being the connection's
+ source.
+- simple-audio-card,mclk-fs : Multiplication factor between stream rate and codec
+ mclk.
+
+Optional subnodes:
+
+- simple-audio-card,dai-link : Container for dai-link level
+ properties and the CPU and CODEC
+ sub-nodes. This container may be
+ omitted when the card has only one
+ DAI link. See the examples and the
+ section bellow.
+
+Dai-link subnode properties and subnodes:
+
+If dai-link subnode is omitted and the subnode properties are directly
+under "sound"-node the subnode property and subnode names have to be
+prefixed with "simple-audio-card,"-prefix.
+
+Required dai-link subnodes:
+
+- cpu : CPU sub-node
+- codec : CODEC sub-node
+
+Optional dai-link subnode properties:
+
+- format : CPU/CODEC common audio format.
+ "i2s", "right_j", "left_j" , "dsp_a"
+ "dsp_b", "ac97", "pdm", "msb", "lsb"
+- frame-master : Indicates dai-link frame master.
+ phandle to a cpu or codec subnode.
+- bitclock-master : Indicates dai-link bit clock master.
+ phandle to a cpu or codec subnode.
+- bitclock-inversion : bool property. Add this if the
+ dai-link uses bit clock inversion.
+- frame-inversion : bool property. Add this if the
+ dai-link uses frame clock inversion.
+
+For backward compatibility the frame-master and bitclock-master
+properties can be used as booleans in codec subnode to indicate if the
+codec is the dai-link frame or bit clock master. In this case there
+should be no dai-link node, the same properties should not be present
+at sound-node level, and the bitclock-inversion and frame-inversion
+properties should also be placed in the codec node if needed.
+
+Required CPU/CODEC subnodes properties:
+
+- sound-dai : phandle and port of CPU/CODEC
+
+Optional CPU/CODEC subnodes properties:
+
+- dai-tdm-slot-num : Please refer to tdm-slot.txt.
+- dai-tdm-slot-width : Please refer to tdm-slot.txt.
+- clocks / system-clock-frequency : specify subnode's clock if needed.
+ it can be specified via "clocks" if system has
+ clock node (= common clock), or "system-clock-frequency"
+ (if system doens't support common clock)
+
+Example 1 - single DAI link:
+
+sound {
+ compatible = "simple-audio-card";
+ simple-audio-card,name = "VF610-Tower-Sound-Card";
+ simple-audio-card,format = "left_j";
+ simple-audio-card,bitclock-master = <&dailink0_master>;
+ simple-audio-card,frame-master = <&dailink0_master>;
+ simple-audio-card,widgets =
+ "Microphone", "Microphone Jack",
+ "Headphone", "Headphone Jack",
+ "Speaker", "External Speaker";
+ simple-audio-card,routing =
+ "MIC_IN", "Microphone Jack",
+ "Headphone Jack", "HP_OUT",
+ "External Speaker", "LINE_OUT";
+
+ simple-audio-card,cpu {
+ sound-dai = <&sh_fsi2 0>;
+ };
+
+ dailink0_master: simple-audio-card,codec {
+ sound-dai = <&ak4648>;
+ clocks = <&osc>;
+ };
+};
+
+&i2c0 {
+ ak4648: ak4648@12 {
+ #sound-dai-cells = <0>;
+ compatible = "asahi-kasei,ak4648";
+ reg = <0x12>;
+ };
+};
+
+sh_fsi2: sh_fsi2@ec230000 {
+ #sound-dai-cells = <1>;
+ compatible = "renesas,sh_fsi2";
+ reg = <0xec230000 0x400>;
+ interrupt-parent = <&gic>;
+ interrupts = <0 146 0x4>;
+};
+
+Example 2 - many DAI links:
+
+sound {
+ compatible = "simple-audio-card";
+ simple-audio-card,name = "Cubox Audio";
+
+ simple-audio-card,dai-link@0 { /* I2S - HDMI */
+ format = "i2s";
+ cpu {
+ sound-dai = <&audio1 0>;
+ };
+ codec {
+ sound-dai = <&tda998x 0>;
+ };
+ };
+
+ simple-audio-card,dai-link@1 { /* S/PDIF - HDMI */
+ cpu {
+ sound-dai = <&audio1 1>;
+ };
+ codec {
+ sound-dai = <&tda998x 1>;
+ };
+ };
+
+ simple-audio-card,dai-link@2 { /* S/PDIF - S/PDIF */
+ cpu {
+ sound-dai = <&audio1 1>;
+ };
+ codec {
+ sound-dai = <&spdif_codec>;
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/sound/sirf-audio-codec.txt b/Documentation/devicetree/bindings/sound/sirf-audio-codec.txt
new file mode 100644
index 00000000000..062f5ec36f9
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/sirf-audio-codec.txt
@@ -0,0 +1,17 @@
+SiRF internal audio CODEC
+
+Required properties:
+
+ - compatible : "sirf,atlas6-audio-codec" or "sirf,prima2-audio-codec"
+
+ - reg : the register address of the device.
+
+ - clocks: the clock of SiRF internal audio codec
+
+Example:
+
+audiocodec: audiocodec@b0040000 {
+ compatible = "sirf,atlas6-audio-codec";
+ reg = <0xb0040000 0x10000>;
+ clocks = <&clks 27>;
+};
diff --git a/Documentation/devicetree/bindings/sound/sirf-audio-port.txt b/Documentation/devicetree/bindings/sound/sirf-audio-port.txt
new file mode 100644
index 00000000000..1f66de3c8f0
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/sirf-audio-port.txt
@@ -0,0 +1,20 @@
+* SiRF SoC audio port
+
+Required properties:
+- compatible: "sirf,audio-port"
+- reg: Base address and size entries:
+- dmas: List of DMA controller phandle and DMA request line ordered pairs.
+- dma-names: Identifier string for each DMA request line in the dmas property.
+ These strings correspond 1:1 with the ordered pairs in dmas.
+
+ One of the DMA channels will be responsible for transmission (should be
+ named "tx") and one for reception (should be named "rx").
+
+Example:
+
+audioport: audioport@b0040000 {
+ compatible = "sirf,audio-port";
+ reg = <0xb0040000 0x10000>;
+ dmas = <&dmac1 3>, <&dmac1 8>;
+ dma-names = "rx", "tx";
+};
diff --git a/Documentation/devicetree/bindings/sound/sirf-audio.txt b/Documentation/devicetree/bindings/sound/sirf-audio.txt
new file mode 100644
index 00000000000..c88882ca370
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/sirf-audio.txt
@@ -0,0 +1,41 @@
+* SiRF atlas6 and prima2 internal audio codec and port based audio setups
+
+Required properties:
+- compatible: "sirf,sirf-audio-card"
+- sirf,audio-platform: phandle for the platform node
+- sirf,audio-codec: phandle for the SiRF internal codec node
+
+Optional properties:
+- hp-pa-gpios: Need to be present if the board need control external
+ headphone amplifier.
+- spk-pa-gpios: Need to be present if the board need control external
+ speaker amplifier.
+- hp-switch-gpios: Need to be present if the board capable to detect jack
+ insertion, removal.
+
+Available audio endpoints for the audio-routing table:
+
+Board connectors:
+ * Headset Stereophone
+ * Ext Spk
+ * Line In
+ * Mic
+
+SiRF internal audio codec pins:
+ * HPOUTL
+ * HPOUTR
+ * SPKOUT
+ * Ext Mic
+ * Mic Bias
+
+Example:
+
+sound {
+ compatible = "sirf,sirf-audio-card";
+ sirf,audio-codec = <&audiocodec>;
+ sirf,audio-platform = <&audioport>;
+ hp-pa-gpios = <&gpio 44 0>;
+ spk-pa-gpios = <&gpio 46 0>;
+ hp-switch-gpios = <&gpio 45 0>;
+};
+
diff --git a/Documentation/devicetree/bindings/sound/snow.txt b/Documentation/devicetree/bindings/sound/snow.txt
new file mode 100644
index 00000000000..678b191c37b
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/snow.txt
@@ -0,0 +1,17 @@
+Audio Binding for Snow boards
+
+Required properties:
+- compatible : Can be one of the following,
+ "google,snow-audio-max98090" or
+ "google,snow-audio-max98095"
+- samsung,i2s-controller: The phandle of the Samsung I2S controller
+- samsung,audio-codec: The phandle of the audio codec
+
+Example:
+
+sound {
+ compatible = "google,snow-audio-max98095";
+
+ samsung,i2s-controller = <&i2s0>;
+ samsung,audio-codec = <&max98095>;
+};
diff --git a/Documentation/devicetree/bindings/sound/st,sta350.txt b/Documentation/devicetree/bindings/sound/st,sta350.txt
new file mode 100644
index 00000000000..b7e71bf5caf
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/st,sta350.txt
@@ -0,0 +1,131 @@
+STA350 audio CODEC
+
+The driver for this device only supports I2C.
+
+Required properties:
+
+ - compatible: "st,sta350"
+ - reg: the I2C address of the device for I2C
+ - reset-gpios: a GPIO spec for the reset pin. If specified, it will be
+ deasserted before communication to the codec starts.
+
+ - power-down-gpios: a GPIO spec for the power down pin. If specified,
+ it will be deasserted before communication to the codec
+ starts.
+
+ - vdd-dig-supply: regulator spec, providing 3.3V
+ - vdd-pll-supply: regulator spec, providing 3.3V
+ - vcc-supply: regulator spec, providing 5V - 26V
+
+Optional properties:
+
+ - st,output-conf: number, Selects the output configuration:
+ 0: 2-channel (full-bridge) power, 2-channel data-out
+ 1: 2 (half-bridge). 1 (full-bridge) on-board power
+ 2: 2 Channel (Full-Bridge) Power, 1 Channel FFX
+ 3: 1 Channel Mono-Parallel
+ If parameter is missing, mode 0 will be enabled.
+ This property has to be specified as '/bits/ 8' value.
+
+ - st,ch1-output-mapping: Channel 1 output mapping
+ - st,ch2-output-mapping: Channel 2 output mapping
+ - st,ch3-output-mapping: Channel 3 output mapping
+ 0: Channel 1
+ 1: Channel 2
+ 2: Channel 3
+ If parameter is missing, channel 1 is choosen.
+ This properties have to be specified as '/bits/ 8' values.
+
+ - st,thermal-warning-recover:
+ If present, thermal warning recovery is enabled.
+
+ - st,thermal-warning-adjustment:
+ If present, thermal warning adjustment is enabled.
+
+ - st,fault-detect-recovery:
+ If present, then fault recovery will be enabled.
+
+ - st,ffx-power-output-mode: string
+ The FFX power output mode selects how the FFX output timing is
+ configured. Must be one of these values:
+ - "drop-compensation"
+ - "tapered-compensation"
+ - "full-power-mode"
+ - "variable-drop-compensation" (default)
+
+ - st,drop-compensation-ns: number
+ Only required for "st,ffx-power-output-mode" ==
+ "variable-drop-compensation".
+ Specifies the drop compensation in nanoseconds.
+ The value must be in the range of 0..300, and only
+ multiples of 20 are allowed. Default is 140ns.
+
+ - st,overcurrent-warning-adjustment:
+ If present, overcurrent warning adjustment is enabled.
+
+ - st,max-power-use-mpcc:
+ If present, then MPCC bits are used for MPC coefficients,
+ otherwise standard MPC coefficients are used.
+
+ - st,max-power-corr:
+ If present, power bridge correction for THD reduction near maximum
+ power output is enabled.
+
+ - st,am-reduction-mode:
+ If present, FFX mode runs in AM reduction mode, otherwise normal
+ FFX mode is used.
+
+ - st,odd-pwm-speed-mode:
+ If present, PWM speed mode run on odd speed mode (341.3 kHz) on all
+ channels. If not present, normal PWM spped mode (384 kHz) will be used.
+
+ - st,distortion-compensation:
+ If present, distortion compensation variable uses DCC coefficient.
+ If not present, preset DC coefficient is used.
+
+ - st,invalid-input-detect-mute:
+ If present, automatic invalid input detect mute is enabled.
+
+ - st,activate-mute-output:
+ If present, a mute output will be activated in ase the volume will
+ reach a value lower than -76 dBFS.
+
+ - st,bridge-immediate-off:
+ If present, the bridge will be switched off immediately after the
+ power-down-gpio goes low. Otherwise, the bridge will wait for 13
+ million clock cycles to pass before shutting down.
+
+ - st,noise-shape-dc-cut:
+ If present, the noise-shaping technique on the DC cutoff filter are
+ enabled.
+
+ - st,powerdown-master-volume:
+ If present, the power-down pin and I2C power-down functions will
+ act on the master volume. Otherwise, the functions will act on the
+ mute commands.
+
+ - st,powerdown-delay-divider:
+ If present, the bridge power-down time will be divided by the provided
+ value. If not specified, a divider of 1 will be used. Allowed values
+ are 1, 2, 4, 8, 16, 32, 64 and 128.
+ This property has to be specified as '/bits/ 8' value.
+
+Example:
+
+codec: sta350@38 {
+ compatible = "st,sta350";
+ reg = <0x1c>;
+ reset-gpios = <&gpio1 19 0>;
+ power-down-gpios = <&gpio1 16 0>;
+ st,output-conf = /bits/ 8 <0x3>; // set output to 2-channel
+ // (full-bridge) power,
+ // 2-channel data-out
+ st,ch1-output-mapping = /bits/ 8 <0>; // set channel 1 output ch 1
+ st,ch2-output-mapping = /bits/ 8 <0>; // set channel 2 output ch 1
+ st,ch3-output-mapping = /bits/ 8 <0>; // set channel 3 output ch 1
+ st,max-power-correction; // enables power bridge
+ // correction for THD reduction
+ // near maximum power output
+ st,invalid-input-detect-mute; // mute if no valid digital
+ // audio signal is provided.
+};
diff --git a/Documentation/devicetree/bindings/sound/tdm-slot.txt b/Documentation/devicetree/bindings/sound/tdm-slot.txt
new file mode 100644
index 00000000000..6a2c84247f9
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/tdm-slot.txt
@@ -0,0 +1,20 @@
+TDM slot:
+
+This specifies audio DAI's TDM slot.
+
+TDM slot properties:
+dai-tdm-slot-num : Number of slots in use.
+dai-tdm-slot-width : Width in bits for each slot.
+
+For instance:
+ dai-tdm-slot-num = <2>;
+ dai-tdm-slot-width = <8>;
+
+And for each spcified driver, there could be one .of_xlate_tdm_slot_mask()
+to specify a explicit mapping of the channels and the slots. If it's absent
+the default snd_soc_of_xlate_tdm_slot_mask() will be used to generating the
+tx and rx masks.
+
+For snd_soc_of_xlate_tdm_slot_mask(), the tx and rx masks will use a 1 bit
+for an active slot as default, and the default active bits are at the LSB of
+the masks.
diff --git a/Documentation/devicetree/bindings/sound/tlv320aic31xx.txt b/Documentation/devicetree/bindings/sound/tlv320aic31xx.txt
new file mode 100644
index 00000000000..eff12be5e78
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/tlv320aic31xx.txt
@@ -0,0 +1,61 @@
+Texas Instruments - tlv320aic31xx Codec module
+
+The tlv320aic31xx serial control bus communicates through I2C protocols
+
+Required properties:
+
+- compatible - "string" - One of:
+ "ti,tlv320aic310x" - Generic TLV320AIC31xx with mono speaker amp
+ "ti,tlv320aic311x" - Generic TLV320AIC31xx with stereo speaker amp
+ "ti,tlv320aic3100" - TLV320AIC3100 (mono speaker amp, no MiniDSP)
+ "ti,tlv320aic3110" - TLV320AIC3110 (stereo speaker amp, no MiniDSP)
+ "ti,tlv320aic3120" - TLV320AIC3120 (mono speaker amp, MiniDSP)
+ "ti,tlv320aic3111" - TLV320AIC3111 (stereo speaker amp, MiniDSP)
+
+- reg - <int> - I2C slave address
+- HPVDD-supply, SPRVDD-supply, SPLVDD-supply, AVDD-supply, IOVDD-supply,
+ DVDD-supply : power supplies for the device as covered in
+ Documentation/devicetree/bindings/regulator/regulator.txt
+
+
+Optional properties:
+
+- gpio-reset - gpio pin number used for codec reset
+- ai31xx-micbias-vg - MicBias Voltage setting
+ 1 or MICBIAS_2_0V - MICBIAS output is powered to 2.0V
+ 2 or MICBIAS_2_5V - MICBIAS output is powered to 2.5V
+ 3 or MICBIAS_AVDD - MICBIAS output is connected to AVDD
+ If this node is not mentioned or if the value is unknown, then
+ micbias is set to 2.0V.
+
+CODEC output pins:
+ * HPL
+ * HPR
+ * SPL, devices with stereo speaker amp
+ * SPR, devices with stereo speaker amp
+ * SPK, devices with mono speaker amp
+ * MICBIAS
+
+CODEC input pins:
+ * MIC1LP
+ * MIC1RP
+ * MIC1LM
+
+The pins can be used in referring sound node's audio-routing property.
+
+Example:
+#include <dt-bindings/sound/tlv320aic31xx-micbias.h>
+
+tlv320aic31xx: tlv320aic31xx@18 {
+ compatible = "ti,tlv320aic311x";
+ reg = <0x18>;
+
+ ai31xx-micbias-vg = <MICBIAS_OFF>;
+
+ HPVDD-supply = <&regulator>;
+ SPRVDD-supply = <&regulator>;
+ SPLVDD-supply = <&regulator>;
+ AVDD-supply = <&regulator>;
+ IOVDD-supply = <&regulator>;
+ DVDD-supply = <&regulator>;
+};
diff --git a/Documentation/devicetree/bindings/sound/tlv320aic32x4.txt b/Documentation/devicetree/bindings/sound/tlv320aic32x4.txt
new file mode 100644
index 00000000000..5e2741af27b
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/tlv320aic32x4.txt
@@ -0,0 +1,30 @@
+Texas Instruments - tlv320aic32x4 Codec module
+
+The tlv320aic32x4 serial control bus communicates through I2C protocols
+
+Required properties:
+ - compatible: Should be "ti,tlv320aic32x4"
+ - reg: I2C slave address
+ - supply-*: Required supply regulators are:
+ "iov" - digital IO power supply
+ "ldoin" - LDO power supply
+ "dv" - Digital core power supply
+ "av" - Analog core power supply
+ If you supply ldoin, dv and av are optional. Otherwise they are required
+ See regulator/regulator.txt for more information about the detailed binding
+ format.
+
+Optional properties:
+ - reset-gpios: Reset-GPIO phandle with args as described in gpio/gpio.txt
+ - clocks/clock-names: Clock named 'mclk' for the master clock of the codec.
+ See clock/clock-bindings.txt for information about the detailed format.
+
+
+Example:
+
+codec: tlv320aic32x4@18 {
+ compatible = "ti,tlv320aic32x4";
+ reg = <0x18>;
+ clocks = <&clks 201>;
+ clock-names = "mclk";
+};
diff --git a/Documentation/devicetree/bindings/sound/tlv320aic3x.txt b/Documentation/devicetree/bindings/sound/tlv320aic3x.txt
index 705a6b156c6..5e6040c2c2e 100644
--- a/Documentation/devicetree/bindings/sound/tlv320aic3x.txt
+++ b/Documentation/devicetree/bindings/sound/tlv320aic3x.txt
@@ -24,10 +24,36 @@ Optional properties:
3 - MICBIAS output is connected to AVDD,
If this node is not mentioned or if the value is incorrect, then MicBias
is powered down.
+- AVDD-supply, IOVDD-supply, DRVDD-supply, DVDD-supply : power supplies for the
+ device as covered in Documentation/devicetree/bindings/regulator/regulator.txt
+
+CODEC output pins:
+ * LLOUT
+ * RLOUT
+ * MONO_LOUT
+ * HPLOUT
+ * HPROUT
+ * HPLCOM
+ * HPRCOM
+
+CODEC input pins:
+ * MIC3L
+ * MIC3R
+ * LINE1L
+ * LINE2L
+ * LINE1R
+ * LINE2R
+
+The pins can be used in referring sound node's audio-routing property.
Example:
tlv320aic3x: tlv320aic3x@1b {
compatible = "ti,tlv320aic3x";
reg = <0x1b>;
+
+ AVDD-supply = <&regulator>;
+ IOVDD-supply = <&regulator>;
+ DRVDD-supply = <&regulator>;
+ DVDD-supply = <&regulator>;
};
diff --git a/Documentation/devicetree/bindings/sound/tpa6130a2.txt b/Documentation/devicetree/bindings/sound/tpa6130a2.txt
new file mode 100644
index 00000000000..6dfa740e4b2
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/tpa6130a2.txt
@@ -0,0 +1,27 @@
+Texas Instruments - tpa6130a2 Codec module
+
+The tpa6130a2 serial control bus communicates through I2C protocols
+
+Required properties:
+
+- compatible - "string" - One of:
+ "ti,tpa6130a2" - TPA6130A2
+ "ti,tpa6140a2" - TPA6140A2
+
+
+- reg - <int> - I2C slave address
+
+- Vdd-supply - <phandle> - power supply regulator
+
+Optional properties:
+
+- power-gpio - gpio pin to power the device
+
+Example:
+
+tpa6130a2: tpa6130a2@60 {
+ compatible = "ti,tpa6130a2";
+ reg = <0x60>;
+ Vdd-supply = <&vmmc2>;
+ power-gpio = <&gpio4 2 GPIO_ACTIVE_HIGH>;
+};
diff --git a/Documentation/devicetree/bindings/sound/widgets.txt b/Documentation/devicetree/bindings/sound/widgets.txt
new file mode 100644
index 00000000000..b6de5ba3b2d
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/widgets.txt
@@ -0,0 +1,20 @@
+Widgets:
+
+This mainly specifies audio off-codec DAPM widgets.
+
+Each entry is a pair of strings in DT:
+
+ "template-wname", "user-supplied-wname"
+
+The "template-wname" being the template widget name and currently includes:
+"Microphone", "Line", "Headphone" and "Speaker".
+
+The "user-supplied-wname" being the user specified widget name.
+
+For instance:
+ simple-audio-widgets =
+ "Microphone", "Microphone Jack",
+ "Line", "Line In Jack",
+ "Line", "Line Out Jack",
+ "Headphone", "Headphone Jack",
+ "Speaker", "Speaker External";
diff --git a/Documentation/devicetree/bindings/spi/efm32-spi.txt b/Documentation/devicetree/bindings/spi/efm32-spi.txt
index a590ca51be7..130cd17e368 100644
--- a/Documentation/devicetree/bindings/spi/efm32-spi.txt
+++ b/Documentation/devicetree/bindings/spi/efm32-spi.txt
@@ -3,24 +3,30 @@
Required properties:
- #address-cells: see spi-bus.txt
- #size-cells: see spi-bus.txt
-- compatible: should be "efm32,spi"
+- compatible: should be "energymicro,efm32-spi"
- reg: Offset and length of the register set for the controller
- interrupts: pair specifying rx and tx irq
- clocks: phandle to the spi clock
- cs-gpios: see spi-bus.txt
-- location: Value to write to the ROUTE register's LOCATION bitfield to configure the pinmux for the device, see datasheet for values.
+
+Recommended properties :
+- efm32,location: Value to write to the ROUTE register's LOCATION bitfield to
+ configure the pinmux for the device, see datasheet for values.
+ If "efm32,location" property is not provided, keeping what is
+ already configured in the hardware, so its either the reset
+ default 0 or whatever the bootloader did.
Example:
spi1: spi@0x4000c400 { /* USART1 */
#address-cells = <1>;
#size-cells = <0>;
- compatible = "efm32,spi";
+ compatible = "energymicro,efm32-spi";
reg = <0x4000c400 0x400>;
interrupts = <15 16>;
clocks = <&cmu 20>;
cs-gpios = <&gpio 51 1>; // D3
- location = <1>;
+ efm32,location = <1>;
status = "ok";
ks8851@0 {
diff --git a/Documentation/devicetree/bindings/spi/fsl-spi.txt b/Documentation/devicetree/bindings/spi/fsl-spi.txt
index b032dd76e9d..a2331372068 100644
--- a/Documentation/devicetree/bindings/spi/fsl-spi.txt
+++ b/Documentation/devicetree/bindings/spi/fsl-spi.txt
@@ -42,6 +42,10 @@ Required properties:
- interrupts : should contain eSPI interrupt, the device has one interrupt.
- fsl,espi-num-chipselects : the number of the chipselect signals.
+Optional properties:
+- fsl,csbef: chip select assertion time in bits before frame starts
+- fsl,csaft: chip select negation time in bits after frame ends
+
Example:
spi@110000 {
#address-cells = <1>;
@@ -51,4 +55,6 @@ Example:
interrupts = <53 0x2>;
interrupt-parent = <&mpic>;
fsl,espi-num-chipselects = <4>;
+ fsl,csbef = <1>;
+ fsl,csaft = <1>;
};
diff --git a/Documentation/devicetree/bindings/spi/nvidia,tegra114-spi.txt b/Documentation/devicetree/bindings/spi/nvidia,tegra114-spi.txt
index 91ff771c7e7..7ea701e07dc 100644
--- a/Documentation/devicetree/bindings/spi/nvidia,tegra114-spi.txt
+++ b/Documentation/devicetree/bindings/spi/nvidia,tegra114-spi.txt
@@ -4,10 +4,19 @@ Required properties:
- compatible : should be "nvidia,tegra114-spi".
- reg: Should contain SPI registers location and length.
- interrupts: Should contain SPI interrupts.
-- nvidia,dma-request-selector : The Tegra DMA controller's phandle and
- request selector for this SPI controller.
-- This is also require clock named "spi" as per binding document
- Documentation/devicetree/bindings/clock/clock-bindings.txt
+- clock-names : Must include the following entries:
+ - spi
+- resets : Must contain an entry for each entry in reset-names.
+ See ../reset/reset.txt for details.
+- reset-names : Must include the following entries:
+ - spi
+- dmas : Must contain an entry for each entry in clock-names.
+ See ../dma/dma.txt for details.
+- dma-names : Must include the following entries:
+ - rx
+ - tx
+- clocks : Must contain an entry for each entry in clock-names.
+ See ../clocks/clock-bindings.txt for details.
Recommended properties:
- spi-max-frequency: Definition as per
@@ -18,9 +27,14 @@ spi@7000d600 {
compatible = "nvidia,tegra114-spi";
reg = <0x7000d600 0x200>;
interrupts = <0 82 0x04>;
- nvidia,dma-request-selector = <&apbdma 16>;
spi-max-frequency = <25000000>;
#address-cells = <1>;
#size-cells = <0>;
+ clocks = <&tegra_car 44>;
+ clock-names = "spi";
+ resets = <&tegra_car 44>;
+ reset-names = "spi";
+ dmas = <&apbdma 16>, <&apbdma 16>;
+ dma-names = "rx", "tx";
status = "disabled";
};
diff --git a/Documentation/devicetree/bindings/spi/nvidia,tegra20-sflash.txt b/Documentation/devicetree/bindings/spi/nvidia,tegra20-sflash.txt
index 7b53da5cb75..bdf08e6dec9 100644
--- a/Documentation/devicetree/bindings/spi/nvidia,tegra20-sflash.txt
+++ b/Documentation/devicetree/bindings/spi/nvidia,tegra20-sflash.txt
@@ -4,8 +4,17 @@ Required properties:
- compatible : should be "nvidia,tegra20-sflash".
- reg: Should contain SFLASH registers location and length.
- interrupts: Should contain SFLASH interrupts.
-- nvidia,dma-request-selector : The Tegra DMA controller's phandle and
- request selector for this SFLASH controller.
+- clocks : Must contain one entry, for the module clock.
+ See ../clocks/clock-bindings.txt for details.
+- resets : Must contain an entry for each entry in reset-names.
+ See ../reset/reset.txt for details.
+- reset-names : Must include the following entries:
+ - spi
+- dmas : Must contain an entry for each entry in clock-names.
+ See ../dma/dma.txt for details.
+- dma-names : Must include the following entries:
+ - rx
+ - tx
Recommended properties:
- spi-max-frequency: Definition as per
@@ -17,10 +26,13 @@ spi@7000c380 {
compatible = "nvidia,tegra20-sflash";
reg = <0x7000c380 0x80>;
interrupts = <0 39 0x04>;
- nvidia,dma-request-selector = <&apbdma 16>;
spi-max-frequency = <25000000>;
#address-cells = <1>;
#size-cells = <0>;
+ clocks = <&tegra_car 43>;
+ resets = <&tegra_car 43>;
+ reset-names = "spi";
+ dmas = <&apbdma 11>, <&apbdma 11>;
+ dma-names = "rx", "tx";
status = "disabled";
};
-
diff --git a/Documentation/devicetree/bindings/spi/nvidia,tegra20-slink.txt b/Documentation/devicetree/bindings/spi/nvidia,tegra20-slink.txt
index eefe15e3d95..5db9144a33c 100644
--- a/Documentation/devicetree/bindings/spi/nvidia,tegra20-slink.txt
+++ b/Documentation/devicetree/bindings/spi/nvidia,tegra20-slink.txt
@@ -4,8 +4,17 @@ Required properties:
- compatible : should be "nvidia,tegra20-slink", "nvidia,tegra30-slink".
- reg: Should contain SLINK registers location and length.
- interrupts: Should contain SLINK interrupts.
-- nvidia,dma-request-selector : The Tegra DMA controller's phandle and
- request selector for this SLINK controller.
+- clocks : Must contain one entry, for the module clock.
+ See ../clocks/clock-bindings.txt for details.
+- resets : Must contain an entry for each entry in reset-names.
+ See ../reset/reset.txt for details.
+- reset-names : Must include the following entries:
+ - spi
+- dmas : Must contain an entry for each entry in clock-names.
+ See ../dma/dma.txt for details.
+- dma-names : Must include the following entries:
+ - rx
+ - tx
Recommended properties:
- spi-max-frequency: Definition as per
@@ -17,10 +26,13 @@ spi@7000d600 {
compatible = "nvidia,tegra20-slink";
reg = <0x7000d600 0x200>;
interrupts = <0 82 0x04>;
- nvidia,dma-request-selector = <&apbdma 16>;
spi-max-frequency = <25000000>;
#address-cells = <1>;
#size-cells = <0>;
+ clocks = <&tegra_car 44>;
+ resets = <&tegra_car 44>;
+ reset-names = "spi";
+ dmas = <&apbdma 16>, <&apbdma 16>;
+ dma-names = "rx", "tx";
status = "disabled";
};
-
diff --git a/Documentation/devicetree/bindings/spi/nvidia,tegra20-spi.txt b/Documentation/devicetree/bindings/spi/nvidia,tegra20-spi.txt
deleted file mode 100644
index 6b9e5189669..00000000000
--- a/Documentation/devicetree/bindings/spi/nvidia,tegra20-spi.txt
+++ /dev/null
@@ -1,5 +0,0 @@
-NVIDIA Tegra 2 SPI device
-
-Required properties:
-- compatible : should be "nvidia,tegra20-spi".
-- gpios : should specify GPIOs used for chipselect.
diff --git a/Documentation/devicetree/bindings/spi/omap-spi.txt b/Documentation/devicetree/bindings/spi/omap-spi.txt
index 4c85c4c6958..2ba5f9c023a 100644
--- a/Documentation/devicetree/bindings/spi/omap-spi.txt
+++ b/Documentation/devicetree/bindings/spi/omap-spi.txt
@@ -2,8 +2,8 @@ OMAP2+ McSPI device
Required properties:
- compatible :
- - "ti,omap2-spi" for OMAP2 & OMAP3.
- - "ti,omap4-spi" for OMAP4+.
+ - "ti,omap2-mcspi" for OMAP2 & OMAP3.
+ - "ti,omap4-mcspi" for OMAP4+.
- ti,spi-num-cs : Number of chipselect supported by the instance.
- ti,hwmods: Name of the hwmod associated to the McSPI
- ti,pindir-d0-out-d1-in: Select the D0 pin as output and D1 as
diff --git a/Documentation/devicetree/bindings/spi/qcom,spi-qup.txt b/Documentation/devicetree/bindings/spi/qcom,spi-qup.txt
new file mode 100644
index 00000000000..bee6ff204ba
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/qcom,spi-qup.txt
@@ -0,0 +1,91 @@
+Qualcomm Universal Peripheral (QUP) Serial Peripheral Interface (SPI)
+
+The QUP core is an AHB slave that provides a common data path (an output FIFO
+and an input FIFO) for serial peripheral interface (SPI) mini-core.
+
+SPI in master mode supports up to 50MHz, up to four chip selects, programmable
+data path from 4 bits to 32 bits and numerous protocol variants.
+
+Required properties:
+- compatible: Should contain "qcom,spi-qup-v2.1.1" or "qcom,spi-qup-v2.2.1"
+- reg: Should contain base register location and length
+- interrupts: Interrupt number used by this controller
+
+- clocks: Should contain the core clock and the AHB clock.
+- clock-names: Should be "core" for the core clock and "iface" for the
+ AHB clock.
+
+- #address-cells: Number of cells required to define a chip select
+ address on the SPI bus. Should be set to 1.
+- #size-cells: Should be zero.
+
+Optional properties:
+- spi-max-frequency: Specifies maximum SPI clock frequency,
+ Units - Hz. Definition as per
+ Documentation/devicetree/bindings/spi/spi-bus.txt
+- num-cs: total number of chipselects
+- cs-gpios: should specify GPIOs used for chipselects.
+ The gpios will be referred to as reg = <index> in the SPI child
+ nodes. If unspecified, a single SPI device without a chip
+ select can be used.
+
+
+SPI slave nodes must be children of the SPI master node and can contain
+properties described in Documentation/devicetree/bindings/spi/spi-bus.txt
+
+Example:
+
+ spi_8: spi@f9964000 { /* BLSP2 QUP2 */
+
+ compatible = "qcom,spi-qup-v2";
+ #address-cells = <1>;
+ #size-cells = <0>;
+ reg = <0xf9964000 0x1000>;
+ interrupts = <0 102 0>;
+ spi-max-frequency = <19200000>;
+
+ clocks = <&gcc GCC_BLSP2_QUP2_SPI_APPS_CLK>, <&gcc GCC_BLSP2_AHB_CLK>;
+ clock-names = "core", "iface";
+
+ pinctrl-names = "default";
+ pinctrl-0 = <&spi8_default>;
+
+ device@0 {
+ compatible = "arm,pl022-dummy";
+ #address-cells = <1>;
+ #size-cells = <1>;
+ reg = <0>; /* Chip select 0 */
+ spi-max-frequency = <19200000>;
+ spi-cpol;
+ };
+
+ device@1 {
+ compatible = "arm,pl022-dummy";
+ #address-cells = <1>;
+ #size-cells = <1>;
+ reg = <1>; /* Chip select 1 */
+ spi-max-frequency = <9600000>;
+ spi-cpha;
+ };
+
+ device@2 {
+ compatible = "arm,pl022-dummy";
+ #address-cells = <1>;
+ #size-cells = <1>;
+ reg = <2>; /* Chip select 2 */
+ spi-max-frequency = <19200000>;
+ spi-cpol;
+ spi-cpha;
+ };
+
+ device@3 {
+ compatible = "arm,pl022-dummy";
+ #address-cells = <1>;
+ #size-cells = <1>;
+ reg = <3>; /* Chip select 3 */
+ spi-max-frequency = <19200000>;
+ spi-cpol;
+ spi-cpha;
+ spi-cs-high;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/spi/sh-hspi.txt b/Documentation/devicetree/bindings/spi/sh-hspi.txt
new file mode 100644
index 00000000000..319bad4af87
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/sh-hspi.txt
@@ -0,0 +1,29 @@
+Renesas HSPI.
+
+Required properties:
+- compatible : "renesas,hspi-<soctype>", "renesas,hspi" as fallback.
+ Examples with soctypes are:
+ - "renesas,hspi-r8a7778" (R-Car M1)
+ - "renesas,hspi-r8a7779" (R-Car H1)
+- reg : Offset and length of the register set for the device
+- interrupt-parent : The phandle for the interrupt controller that
+ services interrupts for this device
+- interrupts : Interrupt specifier
+- #address-cells : Must be <1>
+- #size-cells : Must be <0>
+
+Pinctrl properties might be needed, too. See
+Documentation/devicetree/bindings/pinctrl/renesas,*.
+
+Example:
+
+ hspi0: spi@fffc7000 {
+ compatible = "renesas,hspi-r8a7778", "renesas,hspi";
+ reg = <0xfffc7000 0x18>;
+ interrupt-parent = <&gic>;
+ interrupts = <0 63 IRQ_TYPE_LEVEL_HIGH>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ status = "disabled";
+ };
+
diff --git a/Documentation/devicetree/bindings/spi/sh-msiof.txt b/Documentation/devicetree/bindings/spi/sh-msiof.txt
index e6222106ca3..f24baf3b6cc 100644
--- a/Documentation/devicetree/bindings/spi/sh-msiof.txt
+++ b/Documentation/devicetree/bindings/spi/sh-msiof.txt
@@ -1,12 +1,40 @@
Renesas MSIOF spi controller
Required properties:
-- compatible : "renesas,sh-msiof" for SuperH or
- "renesas,sh-mobile-msiof" for SH Mobile series
-- reg : Offset and length of the register set for the device
-- interrupts : interrupt line used by MSIOF
+- compatible : "renesas,msiof-<soctype>" for SoCs,
+ "renesas,sh-msiof" for SuperH, or
+ "renesas,sh-mobile-msiof" for SH Mobile series.
+ Examples with soctypes are:
+ "renesas,msiof-r8a7790" (R-Car H2)
+ "renesas,msiof-r8a7791" (R-Car M2)
+- reg : Offset and length of the register set for the device
+- interrupt-parent : The phandle for the interrupt controller that
+ services interrupts for this device
+- interrupts : Interrupt specifier
+- #address-cells : Must be <1>
+- #size-cells : Must be <0>
Optional properties:
-- num-cs : total number of chip-selects
-- renesas,tx-fifo-size : Overrides the default tx fifo size given in words
-- renesas,rx-fifo-size : Overrides the default rx fifo size given in words
+- clocks : Must contain a reference to the functional clock.
+- num-cs : Total number of chip-selects (default is 1)
+
+Optional properties, deprecated for soctype-specific bindings:
+- renesas,tx-fifo-size : Overrides the default tx fifo size given in words
+ (default is 64)
+- renesas,rx-fifo-size : Overrides the default rx fifo size given in words
+ (default is 64, or 256 on R-Car H2 and M2)
+
+Pinctrl properties might be needed, too. See
+Documentation/devicetree/bindings/pinctrl/renesas,*.
+
+Example:
+
+ msiof0: spi@e6e20000 {
+ compatible = "renesas,msiof-r8a7791";
+ reg = <0 0xe6e20000 0 0x0064>;
+ interrupts = <0 156 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&mstp0_clks R8A7791_CLK_MSIOF0>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ status = "disabled";
+ };
diff --git a/Documentation/devicetree/bindings/spi/spi-bus.txt b/Documentation/devicetree/bindings/spi/spi-bus.txt
index 800dafe5b01..bbaa857dd68 100644
--- a/Documentation/devicetree/bindings/spi/spi-bus.txt
+++ b/Documentation/devicetree/bindings/spi/spi-bus.txt
@@ -55,19 +55,21 @@ contain the following properties.
chip select active high
- spi-3wire - (optional) Empty property indicating device requires
3-wire mode.
+- spi-lsb-first - (optional) Empty property indicating device requires
+ LSB first mode.
- spi-tx-bus-width - (optional) The bus width(number of data wires) that
used for MOSI. Defaults to 1 if not present.
- spi-rx-bus-width - (optional) The bus width(number of data wires) that
used for MISO. Defaults to 1 if not present.
Some SPI controllers and devices support Dual and Quad SPI transfer mode.
-It allows data in SPI system transfered in 2 wires(DUAL) or 4 wires(QUAD).
+It allows data in the SPI system to be transferred in 2 wires(DUAL) or 4 wires(QUAD).
Now the value that spi-tx-bus-width and spi-rx-bus-width can receive is
only 1(SINGLE), 2(DUAL) and 4(QUAD).
Dual/Quad mode is not allowed when 3-wire mode is used.
If a gpio chipselect is used for the SPI slave the gpio number will be passed
-via the cs_gpio
+via the SPI master node cs-gpios property.
SPI example for an MPC5200 SPI bus:
spi@f00 {
diff --git a/Documentation/devicetree/bindings/spi/spi-cadence.txt b/Documentation/devicetree/bindings/spi/spi-cadence.txt
new file mode 100644
index 00000000000..94f09141a4f
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/spi-cadence.txt
@@ -0,0 +1,31 @@
+Cadence SPI controller Device Tree Bindings
+-------------------------------------------
+
+Required properties:
+- compatible : Should be "cdns,spi-r1p6" or "xlnx,zynq-spi-r1p6".
+- reg : Physical base address and size of SPI registers map.
+- interrupts : Property with a value describing the interrupt
+ number.
+- interrupt-parent : Must be core interrupt controller
+- clock-names : List of input clock names - "ref_clk", "pclk"
+ (See clock bindings for details).
+- clocks : Clock phandles (see clock bindings for details).
+
+Optional properties:
+- num-cs : Number of chip selects used.
+ If a decoder is used, this will be the number of
+ chip selects after the decoder.
+- is-decoded-cs : Flag to indicate whether decoder is used or not.
+
+Example:
+
+ spi@e0007000 {
+ compatible = "xlnx,zynq-spi-r1p6";
+ clock-names = "ref_clk", "pclk";
+ clocks = <&clkc 26>, <&clkc 35>;
+ interrupt-parent = <&intc>;
+ interrupts = <0 49 4>;
+ num-cs = <4>;
+ is-decoded-cs = <0>;
+ reg = <0xe0007000 0x1000>;
+ } ;
diff --git a/Documentation/devicetree/bindings/spi/spi-dw.txt b/Documentation/devicetree/bindings/spi/spi-dw.txt
new file mode 100644
index 00000000000..7b63ed60199
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/spi-dw.txt
@@ -0,0 +1,24 @@
+Synopsys DesignWare SPI master
+
+Required properties:
+- compatible: should be "snps,designware-spi"
+- #address-cells: see spi-bus.txt
+- #size-cells: see spi-bus.txt
+- reg: address and length of the spi master registers
+- interrupts: should contain one interrupt
+- clocks: spi clock phandle
+- num-cs: see spi-bus.txt
+
+Optional properties:
+- cs-gpios: see spi-bus.txt
+
+Example:
+
+spi: spi@4020a000 {
+ compatible = "snps,designware-spi";
+ interrupts = <11 1>;
+ reg = <0x4020a000 0x1000>;
+ clocks = <&pclk>;
+ num-cs = <2>;
+ cs-gpios = <&banka 0 0>;
+};
diff --git a/Documentation/devicetree/bindings/spi/spi-fsl-dspi.txt b/Documentation/devicetree/bindings/spi/spi-fsl-dspi.txt
index a1fb3035a42..5376de40f10 100644
--- a/Documentation/devicetree/bindings/spi/spi-fsl-dspi.txt
+++ b/Documentation/devicetree/bindings/spi/spi-fsl-dspi.txt
@@ -10,6 +10,7 @@ Required properties:
- pinctrl-names: must contain a "default" entry.
- spi-num-chipselects : the number of the chipselect signals.
- bus-num : the slave chip chipselect signal number.
+- big-endian : if DSPI modudle is big endian, the bool will be set in node.
Example:
dspi0@4002c000 {
@@ -24,6 +25,7 @@ dspi0@4002c000 {
bus-num = <0>;
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_dspi0_1>;
+ big-endian;
status = "okay";
sflash: at26df081a@0 {
diff --git a/Documentation/devicetree/bindings/spi/spi-rspi.txt b/Documentation/devicetree/bindings/spi/spi-rspi.txt
new file mode 100644
index 00000000000..d57d82a7405
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/spi-rspi.txt
@@ -0,0 +1,61 @@
+Device tree configuration for Renesas RSPI/QSPI driver
+
+Required properties:
+- compatible : For Renesas Serial Peripheral Interface on legacy SH:
+ "renesas,rspi-<soctype>", "renesas,rspi" as fallback.
+ For Renesas Serial Peripheral Interface on RZ/A1H:
+ "renesas,rspi-<soctype>", "renesas,rspi-rz" as fallback.
+ For Quad Serial Peripheral Interface on R-Car Gen2:
+ "renesas,qspi-<soctype>", "renesas,qspi" as fallback.
+ Examples with soctypes are:
+ - "renesas,rspi-sh7757" (SH)
+ - "renesas,rspi-r7s72100" (RZ/A1H)
+ - "renesas,qspi-r8a7790" (R-Car H2)
+ - "renesas,qspi-r8a7791" (R-Car M2)
+- reg : Address start and address range size of the device
+- interrupts : A list of interrupt-specifiers, one for each entry in
+ interrupt-names.
+ If interrupt-names is not present, an interrupt specifier
+ for a single muxed interrupt.
+- interrupt-names : A list of interrupt names. Should contain (if present):
+ - "error" for SPEI,
+ - "rx" for SPRI,
+ - "tx" to SPTI,
+ - "mux" for a single muxed interrupt.
+- interrupt-parent : The phandle for the interrupt controller that
+ services interrupts for this device.
+- num-cs : Number of chip selects. Some RSPI cores have more than 1.
+- #address-cells : Must be <1>
+- #size-cells : Must be <0>
+
+Optional properties:
+- clocks : Must contain a reference to the functional clock.
+
+Pinctrl properties might be needed, too. See
+Documentation/devicetree/bindings/pinctrl/renesas,*.
+
+Examples:
+
+ spi0: spi@e800c800 {
+ compatible = "renesas,rspi-r7s72100", "renesas,rspi-rz";
+ reg = <0xe800c800 0x24>;
+ interrupts = <0 238 IRQ_TYPE_LEVEL_HIGH>,
+ <0 239 IRQ_TYPE_LEVEL_HIGH>,
+ <0 240 IRQ_TYPE_LEVEL_HIGH>;
+ interrupt-names = "error", "rx", "tx";
+ interrupt-parent = <&gic>;
+ num-cs = <1>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ };
+
+ spi: spi@e6b10000 {
+ compatible = "renesas,qspi-r8a7791", "renesas,qspi";
+ reg = <0 0xe6b10000 0 0x2c>;
+ interrupt-parent = <&gic>;
+ interrupts = <0 184 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&mstp9_clks R8A7791_CLK_QSPI_MOD>;
+ num-cs = <1>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ };
diff --git a/Documentation/devicetree/bindings/spi/spi-sun4i.txt b/Documentation/devicetree/bindings/spi/spi-sun4i.txt
new file mode 100644
index 00000000000..de827f5a301
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/spi-sun4i.txt
@@ -0,0 +1,24 @@
+Allwinner A10 SPI controller
+
+Required properties:
+- compatible: Should be "allwinner,sun4-a10-spi".
+- reg: Should contain register location and length.
+- interrupts: Should contain interrupt.
+- clocks: phandle to the clocks feeding the SPI controller. Two are
+ needed:
+ - "ahb": the gated AHB parent clock
+ - "mod": the parent module clock
+- clock-names: Must contain the clock names described just above
+
+Example:
+
+spi1: spi@01c06000 {
+ compatible = "allwinner,sun4i-a10-spi";
+ reg = <0x01c06000 0x1000>;
+ interrupts = <11>;
+ clocks = <&ahb_gates 21>, <&spi1_clk>;
+ clock-names = "ahb", "mod";
+ status = "disabled";
+ #address-cells = <1>;
+ #size-cells = <0>;
+};
diff --git a/Documentation/devicetree/bindings/spi/spi-sun6i.txt b/Documentation/devicetree/bindings/spi/spi-sun6i.txt
new file mode 100644
index 00000000000..21de73db6a0
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/spi-sun6i.txt
@@ -0,0 +1,24 @@
+Allwinner A31 SPI controller
+
+Required properties:
+- compatible: Should be "allwinner,sun6i-a31-spi".
+- reg: Should contain register location and length.
+- interrupts: Should contain interrupt.
+- clocks: phandle to the clocks feeding the SPI controller. Two are
+ needed:
+ - "ahb": the gated AHB parent clock
+ - "mod": the parent module clock
+- clock-names: Must contain the clock names described just above
+- resets: phandle to the reset controller asserting this device in
+ reset
+
+Example:
+
+spi1: spi@01c69000 {
+ compatible = "allwinner,sun6i-a31-spi";
+ reg = <0x01c69000 0x1000>;
+ interrupts = <0 66 4>;
+ clocks = <&ahb1_gates 21>, <&spi1_clk>;
+ clock-names = "ahb", "mod";
+ resets = <&ahb1_rst 21>;
+};
diff --git a/Documentation/devicetree/bindings/spi/spi-xtensa-xtfpga.txt b/Documentation/devicetree/bindings/spi/spi-xtensa-xtfpga.txt
new file mode 100644
index 00000000000..b6ebe2bc704
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/spi-xtensa-xtfpga.txt
@@ -0,0 +1,9 @@
+Cadence Xtensa XTFPGA platform SPI controller.
+
+This simple SPI master controller is built into xtfpga bitstreams and is used
+to control daughterboard audio codec.
+
+Required properties:
+- compatible: should be "cdns,xtfpga-spi".
+- reg: physical base address of the controller and length of memory mapped
+ region.
diff --git a/Documentation/devicetree/bindings/spi/spi_atmel.txt b/Documentation/devicetree/bindings/spi/spi_atmel.txt
index 07e04cdc0c9..4f8184d069c 100644
--- a/Documentation/devicetree/bindings/spi/spi_atmel.txt
+++ b/Documentation/devicetree/bindings/spi/spi_atmel.txt
@@ -5,6 +5,9 @@ Required properties:
- reg: Address and length of the register set for the device
- interrupts: Should contain spi interrupt
- cs-gpios: chipselects
+- clock-names: tuple listing input clock names.
+ Required elements: "spi_clk"
+- clocks: phandles to input clocks.
Example:
@@ -14,6 +17,8 @@ spi1: spi@fffcc000 {
interrupts = <13 4 5>;
#address-cells = <1>;
#size-cells = <0>;
+ clocks = <&spi1_clk>;
+ clock-names = "spi_clk";
cs-gpios = <&pioB 3 0>;
status = "okay";
diff --git a/Documentation/devicetree/bindings/spi/ti_qspi.txt b/Documentation/devicetree/bindings/spi/ti_qspi.txt
index 1f9641ade0b..601a360531a 100644
--- a/Documentation/devicetree/bindings/spi/ti_qspi.txt
+++ b/Documentation/devicetree/bindings/spi/ti_qspi.txt
@@ -3,6 +3,11 @@ TI QSPI controller.
Required properties:
- compatible : should be "ti,dra7xxx-qspi" or "ti,am4372-qspi".
- reg: Should contain QSPI registers location and length.
+- reg-names: Should contain the resource reg names.
+ - qspi_base: Qspi configuration register Address space
+ - qspi_mmap: Memory mapped Address space
+ - (optional) qspi_ctrlmod: Control module Address space
+- interrupts: should contain the qspi interrupt number.
- #address-cells, #size-cells : Must be present if the device has sub-nodes
- ti,hwmods: Name of the hwmod associated to the QSPI
@@ -14,7 +19,8 @@ Example:
qspi: qspi@4b300000 {
compatible = "ti,dra7xxx-qspi";
- reg = <0x4b300000 0x100>;
+ reg = <0x47900000 0x100>, <0x30000000 0x3ffffff>;
+ reg-names = "qspi_base", "qspi_mmap";
#address-cells = <1>;
#size-cells = <0>;
spi-max-frequency = <25000000>;
diff --git a/Documentation/devicetree/bindings/spmi/qcom,spmi-pmic-arb.txt b/Documentation/devicetree/bindings/spmi/qcom,spmi-pmic-arb.txt
new file mode 100644
index 00000000000..715d0998af8
--- /dev/null
+++ b/Documentation/devicetree/bindings/spmi/qcom,spmi-pmic-arb.txt
@@ -0,0 +1,61 @@
+Qualcomm SPMI Controller (PMIC Arbiter)
+
+The SPMI PMIC Arbiter is found on the Snapdragon 800 Series. It is an SPMI
+controller with wrapping arbitration logic to allow for multiple on-chip
+devices to control a single SPMI master.
+
+The PMIC Arbiter can also act as an interrupt controller, providing interrupts
+to slave devices.
+
+See spmi.txt for the generic SPMI controller binding requirements for child
+nodes.
+
+See Documentation/devicetree/bindings/interrupt-controller/interrupts.txt for
+generic interrupt controller binding documentation.
+
+Required properties:
+- compatible : should be "qcom,spmi-pmic-arb".
+- reg-names : must contain:
+ "core" - core registers
+ "intr" - interrupt controller registers
+ "cnfg" - configuration registers
+- reg : address + size pairs describing the PMIC arb register sets; order must
+ correspond with the order of entries in reg-names
+- #address-cells : must be set to 2
+- #size-cells : must be set to 0
+- qcom,ee : indicates the active Execution Environment identifier (0-5)
+- qcom,channel : which of the PMIC Arb provided channels to use for accesses (0-5)
+- interrupts : interrupt list for the PMIC Arb controller, must contain a
+ single interrupt entry for the peripheral interrupt
+- interrupt-names : corresponding interrupt names for the interrupts
+ listed in the 'interrupts' property, must contain:
+ "periph_irq" - summary interrupt for PMIC peripherals
+- interrupt-controller : boolean indicator that the PMIC arbiter is an interrupt controller
+- #interrupt-cells : must be set to 4. Interrupts are specified as a 4-tuple:
+ cell 1: slave ID for the requested interrupt (0-15)
+ cell 2: peripheral ID for requested interrupt (0-255)
+ cell 3: the requested peripheral interrupt (0-7)
+ cell 4: interrupt flags indicating level-sense information, as defined in
+ dt-bindings/interrupt-controller/irq.h
+
+Example:
+
+ spmi {
+ compatible = "qcom,spmi-pmic-arb";
+ reg-names = "core", "intr", "cnfg";
+ reg = <0xfc4cf000 0x1000>,
+ <0xfc4cb000 0x1000>,
+ <0xfc4ca000 0x1000>;
+
+ interrupt-names = "periph_irq";
+ interrupts = <0 190 0>;
+
+ qcom,ee = <0>;
+ qcom,channel = <0>;
+
+ #address-cells = <2>;
+ #size-cells = <0>;
+
+ interrupt-controller;
+ #interrupt-cells = <4>;
+ };
diff --git a/Documentation/devicetree/bindings/spmi/spmi.txt b/Documentation/devicetree/bindings/spmi/spmi.txt
new file mode 100644
index 00000000000..4bb10d161a2
--- /dev/null
+++ b/Documentation/devicetree/bindings/spmi/spmi.txt
@@ -0,0 +1,41 @@
+System Power Management Interface (SPMI) Controller
+
+This document defines a generic set of bindings for use by SPMI controllers. A
+controller is modelled in device tree as a node with zero or more child nodes,
+each representing a unique slave on the bus.
+
+Required properties:
+- #address-cells : must be set to 2
+- #size-cells : must be set to 0
+
+Child nodes:
+
+An SPMI controller node can contain zero or more child nodes representing slave
+devices on the bus. Child 'reg' properties are specified as an address, type
+pair. The address must be in the range 0-15 (4 bits). The type must be one of
+SPMI_USID (0) or SPMI_GSID (1) for Unique Slave ID or Group Slave ID respectively.
+These are the identifiers "statically assigned by the system integrator", as
+per the SPMI spec.
+
+Each child node must have one and only one 'reg' entry of type SPMI_USID.
+
+#include <dt-bindings/spmi/spmi.h>
+
+ spmi@.. {
+ compatible = "...";
+ reg = <...>;
+
+ #address-cells = <2>;
+ #size-cells = <0>;
+
+ child@0 {
+ compatible = "...";
+ reg = <0 SPMI_USID>;
+ };
+
+ child@7 {
+ compatible = "...";
+ reg = <7 SPMI_USID
+ 3 SPMI_GSID>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/staging/dwc2.txt b/Documentation/devicetree/bindings/staging/dwc2.txt
deleted file mode 100644
index 1a1b7cfa484..00000000000
--- a/Documentation/devicetree/bindings/staging/dwc2.txt
+++ /dev/null
@@ -1,15 +0,0 @@
-Platform DesignWare HS OTG USB 2.0 controller
------------------------------------------------------
-
-Required properties:
-- compatible : "snps,dwc2"
-- reg : Should contain 1 register range (address and length)
-- interrupts : Should contain 1 interrupt
-
-Example:
-
- usb@101c0000 {
- compatible = "ralink,rt3050-usb, snps,dwc2";
- reg = <0x101c0000 40000>;
- interrupts = <18>;
- };
diff --git a/Documentation/devicetree/bindings/staging/iio/adc/mxs-lradc.txt b/Documentation/devicetree/bindings/staging/iio/adc/mxs-lradc.txt
index 46882058b59..ee05dc39069 100644
--- a/Documentation/devicetree/bindings/staging/iio/adc/mxs-lradc.txt
+++ b/Documentation/devicetree/bindings/staging/iio/adc/mxs-lradc.txt
@@ -1,7 +1,8 @@
* Freescale i.MX28 LRADC device driver
Required properties:
-- compatible: Should be "fsl,imx28-lradc"
+- compatible: Should be "fsl,imx23-lradc" for i.MX23 SoC and "fsl,imx28-lradc"
+ for i.MX28 SoC
- reg: Address and length of the register set for the device
- interrupts: Should contain the LRADC interrupts
@@ -9,13 +10,38 @@ Optional properties:
- fsl,lradc-touchscreen-wires: Number of wires used to connect the touchscreen
to LRADC. Valid value is either 4 or 5. If this
property is not present, then the touchscreen is
- disabled.
+ disabled. 5 wires is valid for i.MX28 SoC only.
+- fsl,ave-ctrl: number of samples per direction to calculate an average value.
+ Allowed value is 1 ... 31, default is 4
+- fsl,ave-delay: delay between consecutive samples. Allowed value is
+ 1 ... 2047. It is used if 'fsl,ave-ctrl' > 1, counts at
+ 2 kHz and its default is 2 (= 1 ms)
+- fsl,settling: delay between plate switch to next sample. Allowed value is
+ 1 ... 2047. It counts at 2 kHz and its default is
+ 10 (= 5 ms)
-Examples:
+Example for i.MX23 SoC:
+
+ lradc@80050000 {
+ compatible = "fsl,imx23-lradc";
+ reg = <0x80050000 0x2000>;
+ interrupts = <36 37 38 39 40 41 42 43 44>;
+ status = "okay";
+ fsl,lradc-touchscreen-wires = <4>;
+ fsl,ave-ctrl = <4>;
+ fsl,ave-delay = <2>;
+ fsl,settling = <10>;
+ };
+
+Example for i.MX28 SoC:
lradc@80050000 {
compatible = "fsl,imx28-lradc";
reg = <0x80050000 0x2000>;
- interrupts = <10 14 15 16 17 18 19
- 20 21 22 23 24 25>;
+ interrupts = <10 14 15 16 17 18 19 20 21 22 23 24 25>;
+ status = "okay";
+ fsl,lradc-touchscreen-wires = <5>;
+ fsl,ave-ctrl = <4>;
+ fsl,ave-delay = <2>;
+ fsl,settling = <10>;
};
diff --git a/Documentation/devicetree/bindings/staging/imx-drm/fsl-imx-drm.txt b/Documentation/devicetree/bindings/staging/imx-drm/fsl-imx-drm.txt
index b876d4925a5..e75f0e549ff 100644
--- a/Documentation/devicetree/bindings/staging/imx-drm/fsl-imx-drm.txt
+++ b/Documentation/devicetree/bindings/staging/imx-drm/fsl-imx-drm.txt
@@ -1,3 +1,22 @@
+Freescale i.MX DRM master device
+================================
+
+The freescale i.MX DRM master device is a virtual device needed to list all
+IPU or other display interface nodes that comprise the graphics subsystem.
+
+Required properties:
+- compatible: Should be "fsl,imx-display-subsystem"
+- ports: Should contain a list of phandles pointing to display interface ports
+ of IPU devices
+
+example:
+
+display-subsystem {
+ compatible = "fsl,display-subsystem";
+ ports = <&ipu_di0>;
+};
+
+
Freescale i.MX IPUv3
====================
@@ -7,18 +26,31 @@ Required properties:
datasheet
- interrupts: Should contain sync interrupt and error interrupt,
in this order.
-- #crtc-cells: 1, See below
- resets: phandle pointing to the system reset controller and
reset line index, see reset/fsl,imx-src.txt for details
+Optional properties:
+- port@[0-3]: Port nodes with endpoint definitions as defined in
+ Documentation/devicetree/bindings/media/video-interfaces.txt.
+ Ports 0 and 1 should correspond to CSI0 and CSI1,
+ ports 2 and 3 should correspond to DI0 and DI1, respectively.
example:
ipu: ipu@18000000 {
- #crtc-cells = <1>;
+ #address-cells = <1>;
+ #size-cells = <0>;
compatible = "fsl,imx53-ipu";
reg = <0x18000000 0x080000000>;
interrupts = <11 10>;
resets = <&src 2>;
+
+ ipu_di0: port@2 {
+ reg = <2>;
+
+ ipu_di0_disp0: endpoint {
+ remote-endpoint = <&display_in>;
+ };
+ };
};
Parallel display support
@@ -26,19 +58,26 @@ Parallel display support
Required properties:
- compatible: Should be "fsl,imx-parallel-display"
-- crtc: the crtc this display is connected to, see below
Optional properties:
- interface_pix_fmt: How this display is connected to the
- crtc. Currently supported types: "rgb24", "rgb565", "bgr666"
+ display interface. Currently supported types: "rgb24", "rgb565", "bgr666"
+ and "lvds666".
- edid: verbatim EDID data block describing attached display.
- ddc: phandle describing the i2c bus handling the display data
channel
+- port: A port node with endpoint definitions as defined in
+ Documentation/devicetree/bindings/media/video-interfaces.txt.
example:
display@di0 {
compatible = "fsl,imx-parallel-display";
edid = [edid-data];
- crtc = <&ipu 0>;
interface-pix-fmt = "rgb24";
+
+ port {
+ display_in: endpoint {
+ remote-endpoint = <&ipu_di0_disp0>;
+ };
+ };
};
diff --git a/Documentation/devicetree/bindings/staging/imx-drm/hdmi.txt b/Documentation/devicetree/bindings/staging/imx-drm/hdmi.txt
new file mode 100644
index 00000000000..1b756cf9afb
--- /dev/null
+++ b/Documentation/devicetree/bindings/staging/imx-drm/hdmi.txt
@@ -0,0 +1,58 @@
+Device-Tree bindings for HDMI Transmitter
+
+HDMI Transmitter
+================
+
+The HDMI Transmitter is a Synopsys DesignWare HDMI 1.4 TX controller IP
+with accompanying PHY IP.
+
+Required properties:
+ - #address-cells : should be <1>
+ - #size-cells : should be <0>
+ - compatible : should be "fsl,imx6q-hdmi" or "fsl,imx6dl-hdmi".
+ - gpr : should be <&gpr>.
+ The phandle points to the iomuxc-gpr region containing the HDMI
+ multiplexer control register.
+ - clocks, clock-names : phandles to the HDMI iahb and isrf clocks, as described
+ in Documentation/devicetree/bindings/clock/clock-bindings.txt and
+ Documentation/devicetree/bindings/clock/imx6q-clock.txt.
+ - port@[0-4]: Up to four port nodes with endpoint definitions as defined in
+ Documentation/devicetree/bindings/media/video-interfaces.txt,
+ corresponding to the four inputs to the HDMI multiplexer.
+
+Optional properties:
+ - ddc-i2c-bus: phandle of an I2C controller used for DDC EDID probing
+
+example:
+
+ gpr: iomuxc-gpr@020e0000 {
+ /* ... */
+ };
+
+ hdmi: hdmi@0120000 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ compatible = "fsl,imx6q-hdmi";
+ reg = <0x00120000 0x9000>;
+ interrupts = <0 115 0x04>;
+ gpr = <&gpr>;
+ clocks = <&clks 123>, <&clks 124>;
+ clock-names = "iahb", "isfr";
+ ddc-i2c-bus = <&i2c2>;
+
+ port@0 {
+ reg = <0>;
+
+ hdmi_mux_0: endpoint {
+ remote-endpoint = <&ipu1_di0_hdmi>;
+ };
+ };
+
+ port@1 {
+ reg = <1>;
+
+ hdmi_mux_1: endpoint {
+ remote-endpoint = <&ipu1_di1_hdmi>;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/staging/imx-drm/ldb.txt b/Documentation/devicetree/bindings/staging/imx-drm/ldb.txt
index ed9377811ee..578a1fca366 100644
--- a/Documentation/devicetree/bindings/staging/imx-drm/ldb.txt
+++ b/Documentation/devicetree/bindings/staging/imx-drm/ldb.txt
@@ -50,12 +50,14 @@ have a look at Documentation/devicetree/bindings/video/display-timing.txt.
Required properties:
- reg : should be <0> or <1>
- - crtcs : a list of phandles with index pointing to the IPU display interfaces
- that can be used as video source for this channel.
- fsl,data-mapping : should be "spwg" or "jeida"
This describes how the color bits are laid out in the
serialized LVDS signal.
- fsl,data-width : should be <18> or <24>
+ - port: A port node with endpoint definitions as defined in
+ Documentation/devicetree/bindings/media/video-interfaces.txt.
+ On i.MX6, there should be four ports (port@[0-3]) that correspond
+ to the four LVDS multiplexer inputs.
example:
@@ -77,23 +79,33 @@ ldb: ldb@53fa8008 {
lvds-channel@0 {
reg = <0>;
- crtcs = <&ipu 0>;
fsl,data-mapping = "spwg";
fsl,data-width = <24>;
display-timings {
/* ... */
};
+
+ port {
+ lvds0_in: endpoint {
+ remote-endpoint = <&ipu_di0_lvds0>;
+ };
+ };
};
lvds-channel@1 {
reg = <1>;
- crtcs = <&ipu 1>;
fsl,data-mapping = "spwg";
fsl,data-width = <24>;
display-timings {
/* ... */
};
+
+ port {
+ lvds1_in: endpoint {
+ remote-endpoint = <&ipu_di1_lvds1>;
+ };
+ };
};
};
diff --git a/Documentation/devicetree/bindings/staging/xillybus.txt b/Documentation/devicetree/bindings/staging/xillybus.txt
new file mode 100644
index 00000000000..9e316dc2e40
--- /dev/null
+++ b/Documentation/devicetree/bindings/staging/xillybus.txt
@@ -0,0 +1,20 @@
+* Xillybus driver for generic FPGA interface
+
+Required properties:
+- compatible: Should be "xillybus,xillybus-1.00.a"
+- reg: Address and length of the register set for the device
+- interrupts: Contains one interrupt node, typically consisting of three cells.
+- interrupt-parent: the phandle for the interrupt controller that
+ services interrupts for this device.
+
+Optional properties:
+- dma-coherent: Present if DMA operations are coherent
+
+Example:
+
+ xillybus@ff200400 {
+ compatible = "xillybus,xillybus-1.00.a";
+ reg = < 0xff200400 0x00000080 >;
+ interrupts = < 0 40 1 >;
+ interrupt-parent = <&intc>;
+ } ;
diff --git a/Documentation/devicetree/bindings/submitting-patches.txt b/Documentation/devicetree/bindings/submitting-patches.txt
new file mode 100644
index 00000000000..042a0273b8b
--- /dev/null
+++ b/Documentation/devicetree/bindings/submitting-patches.txt
@@ -0,0 +1,38 @@
+
+ Submitting devicetree (DT) binding patches
+
+I. For patch submitters
+
+ 0) Normal patch submission rules from Documentation/SubmittingPatches
+ applies.
+
+ 1) The Documentation/ portion of the patch should be a separate patch.
+
+ 2) Submit the entire series to the devicetree mailinglist at
+
+ devicetree@vger.kernel.org
+
+II. For kernel maintainers
+
+ 1) If you aren't comfortable reviewing a given binding, reply to it and ask
+ the devicetree maintainers for guidance. This will help them prioritize
+ which ones to review and which ones are ok to let go.
+
+ 2) For driver (not subsystem) bindings: If you are comfortable with the
+ binding, and it hasn't received an Acked-by from the devicetree
+ maintainers after a few weeks, go ahead and take it.
+
+ Subsystem bindings (anything affecting more than a single device)
+ then getting a devicetree maintainer to review it is required.
+
+ 3) For a series going though multiple trees, the binding patch should be
+ kept with the driver using the binding.
+
+III. Notes
+
+ 0) Please see ...bindings/ABI.txt for details regarding devicetree ABI.
+
+ 1) This document is intended as a general familiarization with the process as
+ decided at the 2013 Kernel Summit. When in doubt, the current word of the
+ devicetree maintainers overrules this document. In that situation, a patch
+ updating this document would be appreciated.
diff --git a/Documentation/devicetree/bindings/thermal/armada-thermal.txt b/Documentation/devicetree/bindings/thermal/armada-thermal.txt
index fff93d5f92d..4cf024929a3 100644
--- a/Documentation/devicetree/bindings/thermal/armada-thermal.txt
+++ b/Documentation/devicetree/bindings/thermal/armada-thermal.txt
@@ -1,11 +1,21 @@
-* Marvell Armada 370/XP thermal management
+* Marvell Armada 370/375/380/XP thermal management
Required properties:
- compatible: Should be set to one of the following:
marvell,armada370-thermal
+ marvell,armada375-thermal
+ marvell,armada375-z1-thermal
+ marvell,armada380-thermal
marvell,armadaxp-thermal
+ Note: As the name suggests, "marvell,armada375-z1-thermal"
+ applies for the SoC Z1 stepping only. On such stepping
+ some quirks need to be done and the register offset differs
+ from the one in the A0 stepping.
+ The operating system may auto-detect the SoC stepping and
+ update the compatible and register offsets at runtime.
+
- reg: Device's register space.
Two entries are expected, see the examples below.
The first one is required for the sensor register;
diff --git a/Documentation/devicetree/bindings/thermal/exynos-thermal.txt b/Documentation/devicetree/bindings/thermal/exynos-thermal.txt
index 284f5300fd8..c94909215c0 100644
--- a/Documentation/devicetree/bindings/thermal/exynos-thermal.txt
+++ b/Documentation/devicetree/bindings/thermal/exynos-thermal.txt
@@ -6,16 +6,35 @@
"samsung,exynos4412-tmu"
"samsung,exynos4210-tmu"
"samsung,exynos5250-tmu"
+ "samsung,exynos5260-tmu"
+ "samsung,exynos5420-tmu" for TMU channel 0, 1 on Exynos5420
+ "samsung,exynos5420-tmu-ext-triminfo" for TMU channels 2, 3 and 4
+ Exynos5420 (Must pass triminfo base and triminfo clock)
"samsung,exynos5440-tmu"
- interrupt-parent : The phandle for the interrupt controller
- reg : Address range of the thermal registers. For soc's which has multiple
instances of TMU and some registers are shared across all TMU's like
interrupt related then 2 set of register has to supplied. First set
- belongs to each instance of TMU and second set belongs to common TMU
- registers.
+ belongs to register set of TMU instance and second set belongs to
+ registers shared with the TMU instance.
+
+ NOTE: On Exynos5420, the TRIMINFO register is misplaced for TMU
+ channels 2, 3 and 4
+ Use "samsung,exynos5420-tmu-ext-triminfo" in cases, there is a misplaced
+ register, also provide clock to access that base.
+
+ TRIMINFO at 0x1006c000 contains data for TMU channel 3
+ TRIMINFO at 0x100a0000 contains data for TMU channel 4
+ TRIMINFO at 0x10068000 contains data for TMU channel 2
+
- interrupts : Should contain interrupt for thermal system
-- clocks : The main clock for TMU device
+- clocks : The main clocks for TMU device
+ -- 1. operational clock for TMU channel
+ -- 2. optional clock to access the shared registers of TMU channel
- clock-names : Thermal system clock name
+ -- "tmu_apbif" operational clock for current TMU channel
+ -- "tmu_triminfo_apbif" clock to access the shared triminfo register
+ for current TMU channel
- vtmu-supply: This entry is optional and provides the regulator node supplying
voltage to TMU. If needed this entry can be placed inside
board/platform specific dts file.
@@ -43,6 +62,31 @@ Example 2):
clock-names = "tmu_apbif";
};
+Example 3): (In case of Exynos5420 "with misplaced TRIMINFO register")
+ tmu_cpu2: tmu@10068000 {
+ compatible = "samsung,exynos5420-tmu-ext-triminfo";
+ reg = <0x10068000 0x100>, <0x1006c000 0x4>;
+ interrupts = <0 184 0>;
+ clocks = <&clock 318>, <&clock 318>;
+ clock-names = "tmu_apbif", "tmu_triminfo_apbif";
+ };
+
+ tmu_cpu3: tmu@1006c000 {
+ compatible = "samsung,exynos5420-tmu-ext-triminfo";
+ reg = <0x1006c000 0x100>, <0x100a0000 0x4>;
+ interrupts = <0 185 0>;
+ clocks = <&clock 318>, <&clock 319>;
+ clock-names = "tmu_apbif", "tmu_triminfo_apbif";
+ };
+
+ tmu_gpu: tmu@100a0000 {
+ compatible = "samsung,exynos5420-tmu-ext-triminfo";
+ reg = <0x100a0000 0x100>, <0x10068000 0x4>;
+ interrupts = <0 215 0>;
+ clocks = <&clock 319>, <&clock 318>;
+ clock-names = "tmu_apbif", "tmu_triminfo_apbif";
+ };
+
Note: For multi-instance tmu each instance should have an alias correctly
numbered in "aliases" node.
diff --git a/Documentation/devicetree/bindings/thermal/imx-thermal.txt b/Documentation/devicetree/bindings/thermal/imx-thermal.txt
index 541c25e49ab..1f0f67234a9 100644
--- a/Documentation/devicetree/bindings/thermal/imx-thermal.txt
+++ b/Documentation/devicetree/bindings/thermal/imx-thermal.txt
@@ -8,10 +8,14 @@ Required properties:
calibration data, e.g. OCOTP on imx6q. The details about calibration data
can be found in SoC Reference Manual.
+Optional properties:
+- clocks : thermal sensor's clock source.
+
Example:
tempmon {
compatible = "fsl,imx6q-tempmon";
fsl,tempmon = <&anatop>;
fsl,tempmon-data = <&ocotp>;
+ clocks = <&clks 172>;
};
diff --git a/Documentation/devicetree/bindings/thermal/thermal.txt b/Documentation/devicetree/bindings/thermal/thermal.txt
new file mode 100644
index 00000000000..f5db6b72a36
--- /dev/null
+++ b/Documentation/devicetree/bindings/thermal/thermal.txt
@@ -0,0 +1,595 @@
+* Thermal Framework Device Tree descriptor
+
+This file describes a generic binding to provide a way of
+defining hardware thermal structure using device tree.
+A thermal structure includes thermal zones and their components,
+such as trip points, polling intervals, sensors and cooling devices
+binding descriptors.
+
+The target of device tree thermal descriptors is to describe only
+the hardware thermal aspects. The thermal device tree bindings are
+not about how the system must control or which algorithm or policy
+must be taken in place.
+
+There are five types of nodes involved to describe thermal bindings:
+- thermal sensors: devices which may be used to take temperature
+ measurements.
+- cooling devices: devices which may be used to dissipate heat.
+- trip points: describe key temperatures at which cooling is recommended. The
+ set of points should be chosen based on hardware limits.
+- cooling maps: used to describe links between trip points and cooling devices;
+- thermal zones: used to describe thermal data within the hardware;
+
+The following is a description of each of these node types.
+
+* Thermal sensor devices
+
+Thermal sensor devices are nodes providing temperature sensing capabilities on
+thermal zones. Typical devices are I2C ADC converters and bandgaps. These are
+nodes providing temperature data to thermal zones. Thermal sensor devices may
+control one or more internal sensors.
+
+Required property:
+- #thermal-sensor-cells: Used to provide sensor device specific information
+ Type: unsigned while referring to it. Typically 0 on thermal sensor
+ Size: one cell nodes with only one sensor, and at least 1 on nodes
+ with several internal sensors, in order
+ to identify uniquely the sensor instances within
+ the IC. See thermal zone binding for more details
+ on how consumers refer to sensor devices.
+
+* Cooling device nodes
+
+Cooling devices are nodes providing control on power dissipation. There
+are essentially two ways to provide control on power dissipation. First
+is by means of regulating device performance, which is known as passive
+cooling. A typical passive cooling is a CPU that has dynamic voltage and
+frequency scaling (DVFS), and uses lower frequencies as cooling states.
+Second is by means of activating devices in order to remove
+the dissipated heat, which is known as active cooling, e.g. regulating
+fan speeds. In both cases, cooling devices shall have a way to determine
+the state of cooling in which the device is.
+
+Any cooling device has a range of cooling states (i.e. different levels
+of heat dissipation). For example a fan's cooling states correspond to
+the different fan speeds possible. Cooling states are referred to by
+single unsigned integers, where larger numbers mean greater heat
+dissipation. The precise set of cooling states associated with a device
+(as referred to be the cooling-min-state and cooling-max-state
+properties) should be defined in a particular device's binding.
+For more examples of cooling devices, refer to the example sections below.
+
+Required properties:
+- cooling-min-state: An integer indicating the smallest
+ Type: unsigned cooling state accepted. Typically 0.
+ Size: one cell
+
+- cooling-max-state: An integer indicating the largest
+ Type: unsigned cooling state accepted.
+ Size: one cell
+
+- #cooling-cells: Used to provide cooling device specific information
+ Type: unsigned while referring to it. Must be at least 2, in order
+ Size: one cell to specify minimum and maximum cooling state used
+ in the reference. The first cell is the minimum
+ cooling state requested and the second cell is
+ the maximum cooling state requested in the reference.
+ See Cooling device maps section below for more details
+ on how consumers refer to cooling devices.
+
+* Trip points
+
+The trip node is a node to describe a point in the temperature domain
+in which the system takes an action. This node describes just the point,
+not the action.
+
+Required properties:
+- temperature: An integer indicating the trip temperature level,
+ Type: signed in millicelsius.
+ Size: one cell
+
+- hysteresis: A low hysteresis value on temperature property (above).
+ Type: unsigned This is a relative value, in millicelsius.
+ Size: one cell
+
+- type: a string containing the trip type. Expected values are:
+ "active": A trip point to enable active cooling
+ "passive": A trip point to enable passive cooling
+ "hot": A trip point to notify emergency
+ "critical": Hardware not reliable.
+ Type: string
+
+* Cooling device maps
+
+The cooling device maps node is a node to describe how cooling devices
+get assigned to trip points of the zone. The cooling devices are expected
+to be loaded in the target system.
+
+Required properties:
+- cooling-device: A phandle of a cooling device with its specifier,
+ Type: phandle + referring to which cooling device is used in this
+ cooling specifier binding. In the cooling specifier, the first cell
+ is the minimum cooling state and the second cell
+ is the maximum cooling state used in this map.
+- trip: A phandle of a trip point node within the same thermal
+ Type: phandle of zone.
+ trip point node
+
+Optional property:
+- contribution: The cooling contribution to the thermal zone of the
+ Type: unsigned referred cooling device at the referred trip point.
+ Size: one cell The contribution is a ratio of the sum
+ of all cooling contributions within a thermal zone.
+
+Note: Using the THERMAL_NO_LIMIT (-1UL) constant in the cooling-device phandle
+limit specifier means:
+(i) - minimum state allowed for minimum cooling state used in the reference.
+(ii) - maximum state allowed for maximum cooling state used in the reference.
+Refer to include/dt-bindings/thermal/thermal.h for definition of this constant.
+
+* Thermal zone nodes
+
+The thermal zone node is the node containing all the required info
+for describing a thermal zone, including its cooling device bindings. The
+thermal zone node must contain, apart from its own properties, one sub-node
+containing trip nodes and one sub-node containing all the zone cooling maps.
+
+Required properties:
+- polling-delay: The maximum number of milliseconds to wait between polls
+ Type: unsigned when checking this thermal zone.
+ Size: one cell
+
+- polling-delay-passive: The maximum number of milliseconds to wait
+ Type: unsigned between polls when performing passive cooling.
+ Size: one cell
+
+- thermal-sensors: A list of thermal sensor phandles and sensor specifier
+ Type: list of used while monitoring the thermal zone.
+ phandles + sensor
+ specifier
+
+- trips: A sub-node which is a container of only trip point nodes
+ Type: sub-node required to describe the thermal zone.
+
+- cooling-maps: A sub-node which is a container of only cooling device
+ Type: sub-node map nodes, used to describe the relation between trips
+ and cooling devices.
+
+Optional property:
+- coefficients: An array of integers (one signed cell) containing
+ Type: array coefficients to compose a linear relation between
+ Elem size: one cell the sensors listed in the thermal-sensors property.
+ Elem type: signed Coefficients defaults to 1, in case this property
+ is not specified. A simple linear polynomial is used:
+ Z = c0 * x0 + c1 + x1 + ... + c(n-1) * x(n-1) + cn.
+
+ The coefficients are ordered and they match with sensors
+ by means of sensor ID. Additional coefficients are
+ interpreted as constant offset.
+
+Note: The delay properties are bound to the maximum dT/dt (temperature
+derivative over time) in two situations for a thermal zone:
+(i) - when passive cooling is activated (polling-delay-passive); and
+(ii) - when the zone just needs to be monitored (polling-delay) or
+when active cooling is activated.
+
+The maximum dT/dt is highly bound to hardware power consumption and dissipation
+capability. The delays should be chosen to account for said max dT/dt,
+such that a device does not cross several trip boundaries unexpectedly
+between polls. Choosing the right polling delays shall avoid having the
+device in temperature ranges that may damage the silicon structures and
+reduce silicon lifetime.
+
+* The thermal-zones node
+
+The "thermal-zones" node is a container for all thermal zone nodes. It shall
+contain only sub-nodes describing thermal zones as in the section
+"Thermal zone nodes". The "thermal-zones" node appears under "/".
+
+* Examples
+
+Below are several examples on how to use thermal data descriptors
+using device tree bindings:
+
+(a) - CPU thermal zone
+
+The CPU thermal zone example below describes how to setup one thermal zone
+using one single sensor as temperature source and many cooling devices and
+power dissipation control sources.
+
+#include <dt-bindings/thermal/thermal.h>
+
+cpus {
+ /*
+ * Here is an example of describing a cooling device for a DVFS
+ * capable CPU. The CPU node describes its four OPPs.
+ * The cooling states possible are 0..3, and they are
+ * used as OPP indexes. The minimum cooling state is 0, which means
+ * all four OPPs can be available to the system. The maximum
+ * cooling state is 3, which means only the lowest OPPs (198MHz@0.85V)
+ * can be available in the system.
+ */
+ cpu0: cpu@0 {
+ ...
+ operating-points = <
+ /* kHz uV */
+ 970000 1200000
+ 792000 1100000
+ 396000 950000
+ 198000 850000
+ >;
+ cooling-min-state = <0>;
+ cooling-max-state = <3>;
+ #cooling-cells = <2>; /* min followed by max */
+ };
+ ...
+};
+
+&i2c1 {
+ ...
+ /*
+ * A simple fan controller which supports 10 speeds of operation
+ * (represented as 0-9).
+ */
+ fan0: fan@0x48 {
+ ...
+ cooling-min-state = <0>;
+ cooling-max-state = <9>;
+ #cooling-cells = <2>; /* min followed by max */
+ };
+};
+
+ocp {
+ ...
+ /*
+ * A simple IC with a single bandgap temperature sensor.
+ */
+ bandgap0: bandgap@0x0000ED00 {
+ ...
+ #thermal-sensor-cells = <0>;
+ };
+};
+
+thermal-zones {
+ cpu-thermal: cpu-thermal {
+ polling-delay-passive = <250>; /* milliseconds */
+ polling-delay = <1000>; /* milliseconds */
+
+ thermal-sensors = <&bandgap0>;
+
+ trips {
+ cpu-alert0: cpu-alert {
+ temperature = <90000>; /* millicelsius */
+ hysteresis = <2000>; /* millicelsius */
+ type = "active";
+ };
+ cpu-alert1: cpu-alert {
+ temperature = <100000>; /* millicelsius */
+ hysteresis = <2000>; /* millicelsius */
+ type = "passive";
+ };
+ cpu-crit: cpu-crit {
+ temperature = <125000>; /* millicelsius */
+ hysteresis = <2000>; /* millicelsius */
+ type = "critical";
+ };
+ };
+
+ cooling-maps {
+ map0 {
+ trip = <&cpu-alert0>;
+ cooling-device = <&fan0 THERMAL_NO_LIMITS 4>;
+ };
+ map1 {
+ trip = <&cpu-alert1>;
+ cooling-device = <&fan0 5 THERMAL_NO_LIMITS>;
+ };
+ map2 {
+ trip = <&cpu-alert1>;
+ cooling-device =
+ <&cpu0 THERMAL_NO_LIMITS THERMAL_NO_LIMITS>;
+ };
+ };
+ };
+};
+
+In the example above, the ADC sensor (bandgap0) at address 0x0000ED00 is
+used to monitor the zone 'cpu-thermal' using its sole sensor. A fan
+device (fan0) is controlled via I2C bus 1, at address 0x48, and has ten
+different cooling states 0-9. It is used to remove the heat out of
+the thermal zone 'cpu-thermal' using its cooling states
+from its minimum to 4, when it reaches trip point 'cpu-alert0'
+at 90C, as an example of active cooling. The same cooling device is used at
+'cpu-alert1', but from 5 to its maximum state. The cpu@0 device is also
+linked to the same thermal zone, 'cpu-thermal', as a passive cooling device,
+using all its cooling states at trip point 'cpu-alert1',
+which is a trip point at 100C. On the thermal zone 'cpu-thermal', at the
+temperature of 125C, represented by the trip point 'cpu-crit', the silicon
+is not reliable anymore.
+
+(b) - IC with several internal sensors
+
+The example below describes how to deploy several thermal zones based off a
+single sensor IC, assuming it has several internal sensors. This is a common
+case on SoC designs with several internal IPs that may need different thermal
+requirements, and thus may have their own sensor to monitor or detect internal
+hotspots in their silicon.
+
+#include <dt-bindings/thermal/thermal.h>
+
+ocp {
+ ...
+ /*
+ * A simple IC with several bandgap temperature sensors.
+ */
+ bandgap0: bandgap@0x0000ED00 {
+ ...
+ #thermal-sensor-cells = <1>;
+ };
+};
+
+thermal-zones {
+ cpu-thermal: cpu-thermal {
+ polling-delay-passive = <250>; /* milliseconds */
+ polling-delay = <1000>; /* milliseconds */
+
+ /* sensor ID */
+ thermal-sensors = <&bandgap0 0>;
+
+ trips {
+ /* each zone within the SoC may have its own trips */
+ cpu-alert: cpu-alert {
+ temperature = <100000>; /* millicelsius */
+ hysteresis = <2000>; /* millicelsius */
+ type = "passive";
+ };
+ cpu-crit: cpu-crit {
+ temperature = <125000>; /* millicelsius */
+ hysteresis = <2000>; /* millicelsius */
+ type = "critical";
+ };
+ };
+
+ cooling-maps {
+ /* each zone within the SoC may have its own cooling */
+ ...
+ };
+ };
+
+ gpu-thermal: gpu-thermal {
+ polling-delay-passive = <120>; /* milliseconds */
+ polling-delay = <1000>; /* milliseconds */
+
+ /* sensor ID */
+ thermal-sensors = <&bandgap0 1>;
+
+ trips {
+ /* each zone within the SoC may have its own trips */
+ gpu-alert: gpu-alert {
+ temperature = <90000>; /* millicelsius */
+ hysteresis = <2000>; /* millicelsius */
+ type = "passive";
+ };
+ gpu-crit: gpu-crit {
+ temperature = <105000>; /* millicelsius */
+ hysteresis = <2000>; /* millicelsius */
+ type = "critical";
+ };
+ };
+
+ cooling-maps {
+ /* each zone within the SoC may have its own cooling */
+ ...
+ };
+ };
+
+ dsp-thermal: dsp-thermal {
+ polling-delay-passive = <50>; /* milliseconds */
+ polling-delay = <1000>; /* milliseconds */
+
+ /* sensor ID */
+ thermal-sensors = <&bandgap0 2>;
+
+ trips {
+ /* each zone within the SoC may have its own trips */
+ dsp-alert: gpu-alert {
+ temperature = <90000>; /* millicelsius */
+ hysteresis = <2000>; /* millicelsius */
+ type = "passive";
+ };
+ dsp-crit: gpu-crit {
+ temperature = <135000>; /* millicelsius */
+ hysteresis = <2000>; /* millicelsius */
+ type = "critical";
+ };
+ };
+
+ cooling-maps {
+ /* each zone within the SoC may have its own cooling */
+ ...
+ };
+ };
+};
+
+In the example above, there is one bandgap IC which has the capability to
+monitor three sensors. The hardware has been designed so that sensors are
+placed on different places in the DIE to monitor different temperature
+hotspots: one for CPU thermal zone, one for GPU thermal zone and the
+other to monitor a DSP thermal zone.
+
+Thus, there is a need to assign each sensor provided by the bandgap IC
+to different thermal zones. This is achieved by means of using the
+#thermal-sensor-cells property and using the first cell of the sensor
+specifier as sensor ID. In the example, then, <bandgap 0> is used to
+monitor CPU thermal zone, <bandgap 1> is used to monitor GPU thermal
+zone and <bandgap 2> is used to monitor DSP thermal zone. Each zone
+may be uncorrelated, having its own dT/dt requirements, trips
+and cooling maps.
+
+
+(c) - Several sensors within one single thermal zone
+
+The example below illustrates how to use more than one sensor within
+one thermal zone.
+
+#include <dt-bindings/thermal/thermal.h>
+
+&i2c1 {
+ ...
+ /*
+ * A simple IC with a single temperature sensor.
+ */
+ adc: sensor@0x49 {
+ ...
+ #thermal-sensor-cells = <0>;
+ };
+};
+
+ocp {
+ ...
+ /*
+ * A simple IC with a single bandgap temperature sensor.
+ */
+ bandgap0: bandgap@0x0000ED00 {
+ ...
+ #thermal-sensor-cells = <0>;
+ };
+};
+
+thermal-zones {
+ cpu-thermal: cpu-thermal {
+ polling-delay-passive = <250>; /* milliseconds */
+ polling-delay = <1000>; /* milliseconds */
+
+ thermal-sensors = <&bandgap0>, /* cpu */
+ <&adc>; /* pcb north */
+
+ /* hotspot = 100 * bandgap - 120 * adc + 484 */
+ coefficients = <100 -120 484>;
+
+ trips {
+ ...
+ };
+
+ cooling-maps {
+ ...
+ };
+ };
+};
+
+In some cases, there is a need to use more than one sensor to extrapolate
+a thermal hotspot in the silicon. The above example illustrates this situation.
+For instance, it may be the case that a sensor external to CPU IP may be placed
+close to CPU hotspot and together with internal CPU sensor, it is used
+to determine the hotspot. Assuming this is the case for the above example,
+the hypothetical extrapolation rule would be:
+ hotspot = 100 * bandgap - 120 * adc + 484
+
+In other context, the same idea can be used to add fixed offset. For instance,
+consider the hotspot extrapolation rule below:
+ hotspot = 1 * adc + 6000
+
+In the above equation, the hotspot is always 6C higher than what is read
+from the ADC sensor. The binding would be then:
+ thermal-sensors = <&adc>;
+
+ /* hotspot = 1 * adc + 6000 */
+ coefficients = <1 6000>;
+
+(d) - Board thermal
+
+The board thermal example below illustrates how to setup one thermal zone
+with many sensors and many cooling devices.
+
+#include <dt-bindings/thermal/thermal.h>
+
+&i2c1 {
+ ...
+ /*
+ * An IC with several temperature sensor.
+ */
+ adc-dummy: sensor@0x50 {
+ ...
+ #thermal-sensor-cells = <1>; /* sensor internal ID */
+ };
+};
+
+thermal-zones {
+ batt-thermal {
+ polling-delay-passive = <500>; /* milliseconds */
+ polling-delay = <2500>; /* milliseconds */
+
+ /* sensor ID */
+ thermal-sensors = <&adc-dummy 4>;
+
+ trips {
+ ...
+ };
+
+ cooling-maps {
+ ...
+ };
+ };
+
+ board-thermal: board-thermal {
+ polling-delay-passive = <1000>; /* milliseconds */
+ polling-delay = <2500>; /* milliseconds */
+
+ /* sensor ID */
+ thermal-sensors = <&adc-dummy 0>, /* pcb top edge */
+ <&adc-dummy 1>, /* lcd */
+ <&adc-dymmy 2>; /* back cover */
+ /*
+ * An array of coefficients describing the sensor
+ * linear relation. E.g.:
+ * z = c1*x1 + c2*x2 + c3*x3
+ */
+ coefficients = <1200 -345 890>;
+
+ trips {
+ /* Trips are based on resulting linear equation */
+ cpu-trip: cpu-trip {
+ temperature = <60000>; /* millicelsius */
+ hysteresis = <2000>; /* millicelsius */
+ type = "passive";
+ };
+ gpu-trip: gpu-trip {
+ temperature = <55000>; /* millicelsius */
+ hysteresis = <2000>; /* millicelsius */
+ type = "passive";
+ }
+ lcd-trip: lcp-trip {
+ temperature = <53000>; /* millicelsius */
+ hysteresis = <2000>; /* millicelsius */
+ type = "passive";
+ };
+ crit-trip: crit-trip {
+ temperature = <68000>; /* millicelsius */
+ hysteresis = <2000>; /* millicelsius */
+ type = "critical";
+ };
+ };
+
+ cooling-maps {
+ map0 {
+ trip = <&cpu-trip>;
+ cooling-device = <&cpu0 0 2>;
+ contribution = <55>;
+ };
+ map1 {
+ trip = <&gpu-trip>;
+ cooling-device = <&gpu0 0 2>;
+ contribution = <20>;
+ };
+ map2 {
+ trip = <&lcd-trip>;
+ cooling-device = <&lcd0 5 10>;
+ contribution = <15>;
+ };
+ };
+ };
+};
+
+The above example is a mix of previous examples, a sensor IP with several internal
+sensors used to monitor different zones, one of them is composed by several sensors and
+with different cooling devices.
diff --git a/Documentation/devicetree/bindings/timer/allwinner,sun4i-timer.txt b/Documentation/devicetree/bindings/timer/allwinner,sun4i-timer.txt
index 48aeb7884ed..5c2e23574ca 100644
--- a/Documentation/devicetree/bindings/timer/allwinner,sun4i-timer.txt
+++ b/Documentation/devicetree/bindings/timer/allwinner,sun4i-timer.txt
@@ -2,7 +2,7 @@ Allwinner A1X SoCs Timer Controller
Required properties:
-- compatible : should be "allwinner,sun4i-timer"
+- compatible : should be "allwinner,sun4i-a10-timer"
- reg : Specifies base physical address and size of the registers.
- interrupts : The interrupt of the first timer
- clocks: phandle to the source clock (usually a 24 MHz fixed clock)
@@ -10,7 +10,7 @@ Required properties:
Example:
timer {
- compatible = "allwinner,sun4i-timer";
+ compatible = "allwinner,sun4i-a10-timer";
reg = <0x01c20c00 0x400>;
interrupts = <22>;
clocks = <&osc>;
diff --git a/Documentation/devicetree/bindings/timer/allwinner,sun5i-a13-hstimer.txt b/Documentation/devicetree/bindings/timer/allwinner,sun5i-a13-hstimer.txt
new file mode 100644
index 00000000000..27cfc7d7ccd
--- /dev/null
+++ b/Documentation/devicetree/bindings/timer/allwinner,sun5i-a13-hstimer.txt
@@ -0,0 +1,26 @@
+Allwinner SoCs High Speed Timer Controller
+
+Required properties:
+
+- compatible : should be "allwinner,sun5i-a13-hstimer" or
+ "allwinner,sun7i-a20-hstimer"
+- reg : Specifies base physical address and size of the registers.
+- interrupts : The interrupts of these timers (2 for the sun5i IP, 4 for the sun7i
+ one)
+- clocks: phandle to the source clock (usually the AHB clock)
+
+Optionnal properties:
+- resets: phandle to a reset controller asserting the timer
+
+Example:
+
+timer@01c60000 {
+ compatible = "allwinner,sun7i-a20-hstimer";
+ reg = <0x01c60000 0x1000>;
+ interrupts = <0 51 1>,
+ <0 52 1>,
+ <0 53 1>,
+ <0 54 1>;
+ clocks = <&ahb1_gates 19>;
+ resets = <&ahb1rst 19>;
+};
diff --git a/Documentation/devicetree/bindings/timer/energymicro,efm32-timer.txt b/Documentation/devicetree/bindings/timer/energymicro,efm32-timer.txt
new file mode 100644
index 00000000000..e502c11b221
--- /dev/null
+++ b/Documentation/devicetree/bindings/timer/energymicro,efm32-timer.txt
@@ -0,0 +1,23 @@
+* EFM32 timer hardware
+
+The efm32 Giant Gecko SoCs come with four 16 bit timers. Two counters can be
+connected to form a 32 bit counter. Each timer has three Compare/Capture
+channels and can be used as PWM or Quadrature Decoder. Available clock sources
+are the cpu's HFPERCLK (with a 10-bit prescaler) or an external pin.
+
+Required properties:
+- compatible : Should be "energymicro,efm32-timer"
+- reg : Address and length of the register set
+- clocks : Should contain a reference to the HFPERCLK
+
+Optional properties:
+- interrupts : Reference to the timer interrupt
+
+Example:
+
+timer@40010c00 {
+ compatible = "energymicro,efm32-timer";
+ reg = <0x40010c00 0x400>;
+ interrupts = <14>;
+ clocks = <&cmu clk_HFPERCLKTIMER3>;
+};
diff --git a/Documentation/devicetree/bindings/timer/fsl,ftm-timer.txt b/Documentation/devicetree/bindings/timer/fsl,ftm-timer.txt
new file mode 100644
index 00000000000..aa8c40230e5
--- /dev/null
+++ b/Documentation/devicetree/bindings/timer/fsl,ftm-timer.txt
@@ -0,0 +1,31 @@
+Freescale FlexTimer Module (FTM) Timer
+
+Required properties:
+
+- compatible : should be "fsl,ftm-timer"
+- reg : Specifies base physical address and size of the register sets for the
+ clock event device and clock source device.
+- interrupts : Should be the clock event device interrupt.
+- clocks : The clocks provided by the SoC to drive the timer, must contain an
+ entry for each entry in clock-names.
+- clock-names : Must include the following entries:
+ o "ftm-evt"
+ o "ftm-src"
+ o "ftm-evt-counter-en"
+ o "ftm-src-counter-en"
+- big-endian: One boolean property, the big endian mode will be in use if it is
+ present, or the little endian mode will be in use for all the device registers.
+
+Example:
+ftm: ftm@400b8000 {
+ compatible = "fsl,ftm-timer";
+ reg = <0x400b8000 0x1000 0x400b9000 0x1000>;
+ interrupts = <0 44 IRQ_TYPE_LEVEL_HIGH>;
+ clock-names = "ftm-evt", "ftm-src",
+ "ftm-evt-counter-en", "ftm-src-counter-en";
+ clocks = <&clks VF610_CLK_FTM2>,
+ <&clks VF610_CLK_FTM3>,
+ <&clks VF610_CLK_FTM2_EXT_FIX_EN>,
+ <&clks VF610_CLK_FTM3_EXT_FIX_EN>;
+ big-endian;
+};
diff --git a/Documentation/devicetree/bindings/timer/nvidia,tegra20-timer.txt b/Documentation/devicetree/bindings/timer/nvidia,tegra20-timer.txt
index e019fdc3877..4a864bd10d3 100644
--- a/Documentation/devicetree/bindings/timer/nvidia,tegra20-timer.txt
+++ b/Documentation/devicetree/bindings/timer/nvidia,tegra20-timer.txt
@@ -8,6 +8,8 @@ Required properties:
- compatible : should be "nvidia,tegra20-timer".
- reg : Specifies base physical address and size of the registers.
- interrupts : A list of 4 interrupts; one per timer channel.
+- clocks : Must contain one entry, for the module clock.
+ See ../clocks/clock-bindings.txt for details.
Example:
@@ -18,4 +20,5 @@ timer {
0 1 0x04
0 41 0x04
0 42 0x04>;
+ clocks = <&tegra_car 132>;
};
diff --git a/Documentation/devicetree/bindings/timer/nvidia,tegra30-timer.txt b/Documentation/devicetree/bindings/timer/nvidia,tegra30-timer.txt
index 906109d4c59..b5082a1cf46 100644
--- a/Documentation/devicetree/bindings/timer/nvidia,tegra30-timer.txt
+++ b/Documentation/devicetree/bindings/timer/nvidia,tegra30-timer.txt
@@ -10,6 +10,8 @@ Required properties:
- reg : Specifies base physical address and size of the registers.
- interrupts : A list of 6 interrupts; one per each of timer channels 1
through 5, and one for the shared interrupt for the remaining channels.
+- clocks : Must contain one entry, for the module clock.
+ See ../clocks/clock-bindings.txt for details.
timer {
compatible = "nvidia,tegra30-timer", "nvidia,tegra20-timer";
@@ -20,4 +22,5 @@ timer {
0 42 0x04
0 121 0x04
0 122 0x04>;
+ clocks = <&tegra_car 214>;
};
diff --git a/Documentation/devicetree/bindings/timer/samsung,exynos4210-mct.txt b/Documentation/devicetree/bindings/timer/samsung,exynos4210-mct.txt
index b5a86d20ee3..167d5dab9f6 100644
--- a/Documentation/devicetree/bindings/timer/samsung,exynos4210-mct.txt
+++ b/Documentation/devicetree/bindings/timer/samsung,exynos4210-mct.txt
@@ -31,38 +31,58 @@ Required properties:
7: ..
i: Local Timer Interrupt n
-Example 1: In this example, the system uses only the first global timer
- interrupt generated by MCT and the remaining three global timer
- interrupts are unused. Two local timer interrupts have been
- specified.
+ For MCT block that uses a per-processor interrupt for local timers, such
+ as ones compatible with "samsung,exynos4412-mct", only one local timer
+ interrupt might be specified, meaning that all local timers use the same
+ per processor interrupt.
+
+Example 1: In this example, the IP contains two local timers, using separate
+ interrupts, so two local timer interrupts have been specified,
+ in addition to four global timer interrupts.
mct@10050000 {
compatible = "samsung,exynos4210-mct";
reg = <0x10050000 0x800>;
- interrupts = <0 57 0>, <0 0 0>, <0 0 0>, <0 0 0>,
+ interrupts = <0 57 0>, <0 69 0>, <0 70 0>, <0 71 0>,
<0 42 0>, <0 48 0>;
};
-Example 2: In this example, the MCT global and local timer interrupts are
- connected to two separate interrupt controllers. Hence, an
- interrupt-map is created to map the interrupts to the respective
- interrupt controllers.
+Example 2: In this example, the timer interrupts are connected to two separate
+ interrupt controllers. Hence, an interrupt-map is created to map
+ the interrupts to the respective interrupt controllers.
mct@101C0000 {
compatible = "samsung,exynos4210-mct";
reg = <0x101C0000 0x800>;
- interrupt-controller;
- #interrups-cells = <2>;
interrupt-parent = <&mct_map>;
- interrupts = <0 0>, <1 0>, <2 0>, <3 0>,
- <4 0>, <5 0>;
+ interrupts = <0>, <1>, <2>, <3>, <4>, <5>;
mct_map: mct-map {
- #interrupt-cells = <2>;
+ #interrupt-cells = <1>;
#address-cells = <0>;
#size-cells = <0>;
- interrupt-map = <0x0 0 &combiner 23 3>,
- <0x4 0 &gic 0 120 0>,
- <0x5 0 &gic 0 121 0>;
+ interrupt-map = <0 &gic 0 57 0>,
+ <1 &gic 0 69 0>,
+ <2 &combiner 12 6>,
+ <3 &combiner 12 7>,
+ <4 &gic 0 42 0>,
+ <5 &gic 0 48 0>;
};
};
+
+Example 3: In this example, the IP contains four local timers, but using
+ a per-processor interrupt to handle them. Either all the local
+ timer interrupts can be specified, with the same interrupt specifier
+ value or just the first one.
+
+ mct@10050000 {
+ compatible = "samsung,exynos4412-mct";
+ reg = <0x10050000 0x800>;
+
+ /* Both ways are possible in this case. Either: */
+ interrupts = <0 57 0>, <0 69 0>, <0 70 0>, <0 71 0>,
+ <0 42 0>;
+ /* or: */
+ interrupts = <0 57 0>, <0 69 0>, <0 70 0>, <0 71 0>,
+ <0 42 0>, <0 42 0>, <0 42 0>, <0 42 0>;
+ };
diff --git a/Documentation/devicetree/bindings/timer/ti,keystone-timer.txt b/Documentation/devicetree/bindings/timer/ti,keystone-timer.txt
new file mode 100644
index 00000000000..5fbe361252b
--- /dev/null
+++ b/Documentation/devicetree/bindings/timer/ti,keystone-timer.txt
@@ -0,0 +1,29 @@
+* Device tree bindings for Texas instruments Keystone timer
+
+This document provides bindings for the 64-bit timer in the KeyStone
+architecture devices. The timer can be configured as a general-purpose 64-bit
+timer, dual general-purpose 32-bit timers. When configured as dual 32-bit
+timers, each half can operate in conjunction (chain mode) or independently
+(unchained mode) of each other.
+
+It is global timer is a free running up-counter and can generate interrupt
+when the counter reaches preset counter values.
+
+Documentation:
+http://www.ti.com/lit/ug/sprugv5a/sprugv5a.pdf
+
+Required properties:
+
+- compatible : should be "ti,keystone-timer".
+- reg : specifies base physical address and count of the registers.
+- interrupts : interrupt generated by the timer.
+- clocks : the clock feeding the timer clock.
+
+Example:
+
+timer@22f0000 {
+ compatible = "ti,keystone-timer";
+ reg = <0x022f0000 0x80>;
+ interrupts = <GIC_SPI 110 IRQ_TYPE_EDGE_RISING>;
+ clocks = <&clktimer15>;
+};
diff --git a/Documentation/devicetree/bindings/usb/atmel-usb.txt b/Documentation/devicetree/bindings/usb/atmel-usb.txt
index 55f51af08bc..bc2222ca3f2 100644
--- a/Documentation/devicetree/bindings/usb/atmel-usb.txt
+++ b/Documentation/devicetree/bindings/usb/atmel-usb.txt
@@ -57,8 +57,8 @@ Required properties:
- ep childnode: To specify the number of endpoints and their properties.
Optional properties:
- - atmel,vbus-gpio: If present, specifies a gpio that needs to be
- activated for the bus to be powered.
+ - atmel,vbus-gpio: If present, specifies a gpio that allows to detect whether
+ vbus is present (USB is connected).
Required child node properties:
- name: Name of the endpoint.
diff --git a/Documentation/devicetree/bindings/usb/ci13xxx-imx.txt b/Documentation/devicetree/bindings/usb/ci-hdrc-imx.txt
index b4b5b7906c8..a6a32cb7f77 100644
--- a/Documentation/devicetree/bindings/usb/ci13xxx-imx.txt
+++ b/Documentation/devicetree/bindings/usb/ci-hdrc-imx.txt
@@ -18,6 +18,7 @@ Optional properties:
- vbus-supply: regulator for vbus
- disable-over-current: disable over current detect
- external-vbus-divider: enables off-chip resistor divider for Vbus
+- maximum-speed: limit the maximum connection speed to "full-speed".
Examples:
usb@02184000 { /* USB OTG */
@@ -28,4 +29,5 @@ usb@02184000 { /* USB OTG */
fsl,usbmisc = <&usbmisc 0>;
disable-over-current;
external-vbus-divider;
+ maximum-speed = "full-speed";
};
diff --git a/Documentation/devicetree/bindings/usb/ci-hdrc-qcom.txt b/Documentation/devicetree/bindings/usb/ci-hdrc-qcom.txt
new file mode 100644
index 00000000000..f2899b55093
--- /dev/null
+++ b/Documentation/devicetree/bindings/usb/ci-hdrc-qcom.txt
@@ -0,0 +1,17 @@
+Qualcomm CI13xxx (Chipidea) USB controllers
+
+Required properties:
+- compatible: should contain "qcom,ci-hdrc"
+- reg: offset and length of the register set in the memory map
+- interrupts: interrupt-specifier for the controller interrupt.
+- usb-phy: phandle for the PHY device
+- dr_mode: Should be "peripheral"
+
+Examples:
+ gadget@f9a55000 {
+ compatible = "qcom,ci-hdrc";
+ reg = <0xf9a55000 0x400>;
+ dr_mode = "peripheral";
+ interrupts = <0 134 0>;
+ usb-phy = <&usbphy0>;
+ };
diff --git a/Documentation/devicetree/bindings/usb/ci-hdrc-zevio.txt b/Documentation/devicetree/bindings/usb/ci-hdrc-zevio.txt
new file mode 100644
index 00000000000..abbcb2aea38
--- /dev/null
+++ b/Documentation/devicetree/bindings/usb/ci-hdrc-zevio.txt
@@ -0,0 +1,17 @@
+* LSI Zevio USB OTG Controller
+
+Required properties:
+- compatible: Should be "lsi,zevio-usb"
+- reg: Should contain registers location and length
+- interrupts: Should contain controller interrupt
+
+Optional properties:
+- vbus-supply: regulator for vbus
+
+Examples:
+ usb0: usb@b0000000 {
+ reg = <0xb0000000 0x1000>;
+ compatible = "lsi,zevio-usb";
+ interrupts = <8>;
+ vbus-supply = <&vbus_reg>;
+ };
diff --git a/Documentation/devicetree/bindings/usb/dwc2.txt b/Documentation/devicetree/bindings/usb/dwc2.txt
new file mode 100644
index 00000000000..467ddd15d40
--- /dev/null
+++ b/Documentation/devicetree/bindings/usb/dwc2.txt
@@ -0,0 +1,29 @@
+Platform DesignWare HS OTG USB 2.0 controller
+-----------------------------------------------------
+
+Required properties:
+- compatible : One of:
+ - brcm,bcm2835-usb: The DWC2 USB controller instance in the BCM2835 SoC.
+ - snps,dwc2: A generic DWC2 USB controller with default parameters.
+- reg : Should contain 1 register range (address and length)
+- interrupts : Should contain 1 interrupt
+- clocks: clock provider specifier
+- clock-names: shall be "otg"
+Refer to clk/clock-bindings.txt for generic clock consumer properties
+
+Optional properties:
+- phys: phy provider specifier
+- phy-names: shall be "usb2-phy"
+Refer to phy/phy-bindings.txt for generic phy consumer properties
+
+Example:
+
+ usb@101c0000 {
+ compatible = "ralink,rt3050-usb, snps,dwc2";
+ reg = <0x101c0000 40000>;
+ interrupts = <18>;
+ clocks = <&usb_otg_ahb_clk>;
+ clock-names = "otg";
+ phys = <&usbphy>;
+ phy-names = "usb2-phy";
+ };
diff --git a/Documentation/devicetree/bindings/usb/dwc3.txt b/Documentation/devicetree/bindings/usb/dwc3.txt
index e807635f9e1..471366d6a12 100644
--- a/Documentation/devicetree/bindings/usb/dwc3.txt
+++ b/Documentation/devicetree/bindings/usb/dwc3.txt
@@ -6,11 +6,13 @@ Required properties:
- compatible: must be "snps,dwc3"
- reg : Address and length of the register set for the device
- interrupts: Interrupts used by the dwc3 controller.
+
+Optional properties:
- usb-phy : array of phandle for the PHY device. The first element
in the array is expected to be a handle to the USB2/HS PHY and
the second element is expected to be a handle to the USB3/SS PHY
-
-Optional properties:
+ - phys: from the *Generic PHY* bindings
+ - phy-names: from the *Generic PHY* bindings
- tx-fifo-resize: determines if the FIFO *has* to be reallocated.
This is usually a subnode to DWC3 glue to which it is connected.
diff --git a/Documentation/devicetree/bindings/usb/ehci-omap.txt b/Documentation/devicetree/bindings/usb/ehci-omap.txt
index 485a9a1efa7..3dc231c832b 100644
--- a/Documentation/devicetree/bindings/usb/ehci-omap.txt
+++ b/Documentation/devicetree/bindings/usb/ehci-omap.txt
@@ -21,7 +21,7 @@ Documentation/devicetree/bindings/mfd/omap-usb-host.txt
Example for OMAP4:
usbhsehci: ehci@4a064c00 {
- compatible = "ti,ehci-omap", "usb-ehci";
+ compatible = "ti,ehci-omap";
reg = <0x4a064c00 0x400>;
interrupts = <0 77 0x4>;
};
diff --git a/Documentation/devicetree/bindings/usb/ehci-orion.txt b/Documentation/devicetree/bindings/usb/ehci-orion.txt
index 6bc09ec14c4..17c3bc858b8 100644
--- a/Documentation/devicetree/bindings/usb/ehci-orion.txt
+++ b/Documentation/devicetree/bindings/usb/ehci-orion.txt
@@ -6,6 +6,11 @@ Required properties:
region.
- interrupts: The EHCI interrupt
+Optional properties:
+- clocks: reference to the clock
+- phys: reference to the USB PHY
+- phy-names: name of the USB PHY, should be "usb"
+
Example:
ehci@50000 {
diff --git a/Documentation/devicetree/bindings/usb/exynos-usb.txt b/Documentation/devicetree/bindings/usb/exynos-usb.txt
index d967ba16de6..a3b5990d0f2 100644
--- a/Documentation/devicetree/bindings/usb/exynos-usb.txt
+++ b/Documentation/devicetree/bindings/usb/exynos-usb.txt
@@ -12,6 +12,13 @@ Required properties:
- interrupts: interrupt number to the cpu.
- clocks: from common clock binding: handle to usb clock.
- clock-names: from common clock binding: Shall be "usbhost".
+ - port: if in the SoC there are EHCI phys, they should be listed here.
+ One phy per port. Each port should have following entries:
+ - reg: port number on EHCI controller, e.g
+ On Exynos5250, port 0 is USB2.0 otg phy
+ port 1 is HSIC phy0
+ port 2 is HSIC phy1
+ - phys: from the *Generic PHY* bindings; specifying phy used by port.
Optional properties:
- samsung,vbus-gpio: if present, specifies the GPIO that
@@ -27,6 +34,14 @@ Example:
clocks = <&clock 285>;
clock-names = "usbhost";
+
+ #address-cells = <1>;
+ #size-cells = <0>;
+ port@0 {
+ reg = <0>;
+ phys = <&usb2phy 1>;
+ status = "disabled";
+ };
};
OHCI
@@ -38,6 +53,13 @@ Required properties:
- interrupts: interrupt number to the cpu.
- clocks: from common clock binding: handle to usb clock.
- clock-names: from common clock binding: Shall be "usbhost".
+ - port: if in the SoC there are OHCI phys, they should be listed here.
+ One phy per port. Each port should have following entries:
+ - reg: port number on OHCI controller, e.g
+ On Exynos5250, port 0 is USB2.0 otg phy
+ port 1 is HSIC phy0
+ port 2 is HSIC phy1
+ - phys: from the *Generic PHY* bindings, specifying phy used by port.
Example:
usb@12120000 {
@@ -47,6 +69,15 @@ Example:
clocks = <&clock 285>;
clock-names = "usbhost";
+
+ #address-cells = <1>;
+ #size-cells = <0>;
+ port@0 {
+ reg = <0>;
+ phys = <&usb2phy 1>;
+ status = "disabled";
+ };
+
};
DWC3
diff --git a/Documentation/devicetree/bindings/usb/fsl-usb.txt b/Documentation/devicetree/bindings/usb/fsl-usb.txt
index bd5723f0b67..4779c029b67 100644
--- a/Documentation/devicetree/bindings/usb/fsl-usb.txt
+++ b/Documentation/devicetree/bindings/usb/fsl-usb.txt
@@ -8,7 +8,9 @@ and additions :
Required properties :
- compatible : Should be "fsl-usb2-mph" for multi port host USB
controllers, or "fsl-usb2-dr" for dual role USB controllers
- or "fsl,mpc5121-usb2-dr" for dual role USB controllers of MPC5121
+ or "fsl,mpc5121-usb2-dr" for dual role USB controllers of MPC5121.
+ Wherever applicable, the IP version of the USB controller should
+ also be mentioned (for eg. fsl-usb2-dr-v2.2 for bsc9132).
- phy_type : For multi port host USB controllers, should be one of
"ulpi", or "serial". For dual role USB controllers, should be
one of "ulpi", "utmi", "utmi_wide", or "serial".
diff --git a/Documentation/devicetree/bindings/usb/gr-udc.txt b/Documentation/devicetree/bindings/usb/gr-udc.txt
new file mode 100644
index 00000000000..e9445224fab
--- /dev/null
+++ b/Documentation/devicetree/bindings/usb/gr-udc.txt
@@ -0,0 +1,34 @@
+USB Peripheral Controller driver for Aeroflex Gaisler GRUSBDC.
+
+The GRUSBDC USB Device Controller core is available in the GRLIB VHDL
+IP core library.
+
+Note: In the ordinary environment for the core, a Leon SPARC system,
+these properties are built from information in the AMBA plug&play.
+
+Required properties:
+
+- name : Should be "GAISLER_USBDC" or "01_021"
+
+- reg : Address and length of the register set for the device
+
+- interrupts : Interrupt numbers for this device. Either one interrupt number
+ for all interrupts, or one for status related interrupts, one for IN
+ endpoint related interrupts and one for OUT endpoint related interrupts.
+
+Optional properties:
+
+- epobufsizes : Array of buffer sizes for OUT endpoints when they differ
+ from the default size of 1024. The array is indexed by the OUT endpoint
+ number. If the property is present it typically contains one entry for
+ each OUT endpoint of the core. Fewer entries overrides the default sizes
+ only for as many endpoints as the array contains.
+
+- epibufsizes : Array of buffer sizes for IN endpoints when they differ
+ from the default size of 1024. The array is indexed by the IN endpoint
+ number. If the property is present it typically contains one entry for
+ each IN endpoint of the core. Fewer entries overrides the default sizes
+ only for as many endpoints as the array contains.
+
+For further information look in the documentation for the GLIB IP core library:
+http://www.gaisler.com/products/grlib/grip.pdf
diff --git a/Documentation/devicetree/bindings/usb/keystone-phy.txt b/Documentation/devicetree/bindings/usb/keystone-phy.txt
new file mode 100644
index 00000000000..f37b3a86341
--- /dev/null
+++ b/Documentation/devicetree/bindings/usb/keystone-phy.txt
@@ -0,0 +1,20 @@
+TI Keystone USB PHY
+
+Required properties:
+ - compatible: should be "ti,keystone-usbphy".
+ - #address-cells, #size-cells : should be '1' if the device has sub-nodes
+ with 'reg' property.
+ - reg : Address and length of the usb phy control register set.
+
+The main purpose of this PHY driver is to enable the USB PHY reference clock
+gate on the Keystone SOC for both the USB2 and USB3 PHY. Otherwise it is just
+an NOP PHY driver. Hence this node is referenced as both the usb2 and usb3
+phy node in the USB Glue layer driver node.
+
+usb_phy: usb_phy@2620738 {
+ compatible = "ti,keystone-usbphy";
+ #address-cells = <1>;
+ #size-cells = <1>;
+ reg = <0x2620738 32>;
+ status = "disabled";
+};
diff --git a/Documentation/devicetree/bindings/usb/keystone-usb.txt b/Documentation/devicetree/bindings/usb/keystone-usb.txt
new file mode 100644
index 00000000000..60527d335b5
--- /dev/null
+++ b/Documentation/devicetree/bindings/usb/keystone-usb.txt
@@ -0,0 +1,42 @@
+TI Keystone Soc USB Controller
+
+DWC3 GLUE
+
+Required properties:
+ - compatible: should be "ti,keystone-dwc3".
+ - #address-cells, #size-cells : should be '1' if the device has sub-nodes
+ with 'reg' property.
+ - reg : Address and length of the register set for the USB subsystem on
+ the SOC.
+ - interrupts : The irq number of this device that is used to interrupt the
+ MPU.
+ - ranges: allows valid 1:1 translation between child's address space and
+ parent's address space.
+ - clocks: Clock IDs array as required by the controller.
+ - clock-names: names of clocks correseponding to IDs in the clock property.
+
+Sub-nodes:
+The dwc3 core should be added as subnode to Keystone DWC3 glue.
+- dwc3 :
+ The binding details of dwc3 can be found in:
+ Documentation/devicetree/bindings/usb/dwc3.txt
+
+Example:
+ usb: usb@2680000 {
+ compatible = "ti,keystone-dwc3";
+ #address-cells = <1>;
+ #size-cells = <1>;
+ reg = <0x2680000 0x10000>;
+ clocks = <&clkusb>;
+ clock-names = "usb";
+ interrupts = <GIC_SPI 393 IRQ_TYPE_EDGE_RISING>;
+ ranges;
+ status = "disabled";
+
+ dwc3@2690000 {
+ compatible = "synopsys,dwc3";
+ reg = <0x2690000 0x70000>;
+ interrupts = <GIC_SPI 393 IRQ_TYPE_EDGE_RISING>;
+ usb-phy = <&usb_phy>, <&usb_phy>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/usb/msm-hsusb.txt b/Documentation/devicetree/bindings/usb/msm-hsusb.txt
new file mode 100644
index 00000000000..2826f2af503
--- /dev/null
+++ b/Documentation/devicetree/bindings/usb/msm-hsusb.txt
@@ -0,0 +1,95 @@
+MSM SoC HSUSB controllers
+
+EHCI
+
+Required properties:
+- compatible: Should contain "qcom,ehci-host"
+- regs: offset and length of the register set in the memory map
+- usb-phy: phandle for the PHY device
+
+Example EHCI controller device node:
+
+ ehci: ehci@f9a55000 {
+ compatible = "qcom,ehci-host";
+ reg = <0xf9a55000 0x400>;
+ usb-phy = <&usb_otg>;
+ };
+
+USB PHY with optional OTG:
+
+Required properties:
+- compatible: Should contain:
+ "qcom,usb-otg-ci" for chipsets with ChipIdea 45nm PHY
+ "qcom,usb-otg-snps" for chipsets with Synopsys 28nm PHY
+
+- regs: Offset and length of the register set in the memory map
+- interrupts: interrupt-specifier for the OTG interrupt.
+
+- clocks: A list of phandle + clock-specifier pairs for the
+ clocks listed in clock-names
+- clock-names: Should contain the following:
+ "phy" USB PHY reference clock
+ "core" Protocol engine clock
+ "iface" Interface bus clock
+ "alt_core" Protocol engine clock for targets with asynchronous
+ reset methodology. (optional)
+
+- vdccx-supply: phandle to the regulator for the vdd supply for
+ digital circuit operation.
+- v1p8-supply: phandle to the regulator for the 1.8V supply
+- v3p3-supply: phandle to the regulator for the 3.3V supply
+
+- resets: A list of phandle + reset-specifier pairs for the
+ resets listed in reset-names
+- reset-names: Should contain the following:
+ "phy" USB PHY controller reset
+ "link" USB LINK controller reset
+
+- qcom,otg-control: OTG control (VBUS and ID notifications) can be one of
+ 1 - PHY control
+ 2 - PMIC control
+
+Optional properties:
+- dr_mode: One of "host", "peripheral" or "otg". Defaults to "otg"
+
+- qcom,phy-init-sequence: PHY configuration sequence values. This is related to Device
+ Mode Eye Diagram test. Start address at which these values will be
+ written is ULPI_EXT_VENDOR_SPECIFIC. Value of -1 is reserved as
+ "do not overwrite default value at this address".
+ For example: qcom,phy-init-sequence = < -1 0x63 >;
+ Will update only value at address ULPI_EXT_VENDOR_SPECIFIC + 1.
+
+- qcom,phy-num: Select number of pyco-phy to use, can be one of
+ 0 - PHY one, default
+ 1 - Second PHY
+ Some platforms may have configuration to allow USB
+ controller work with any of the two HSPHYs present.
+
+- qcom,vdd-levels: This property must be a list of three integer values
+ (no, min, max) where each value represents either a voltage
+ in microvolts or a value corresponding to voltage corner.
+
+Example HSUSB OTG controller device node:
+
+ usb@f9a55000 {
+ compatible = "qcom,usb-otg-snps";
+ reg = <0xf9a55000 0x400>;
+ interrupts = <0 134 0>;
+ dr_mode = "peripheral";
+
+ clocks = <&gcc GCC_XO_CLK>, <&gcc GCC_USB_HS_SYSTEM_CLK>,
+ <&gcc GCC_USB_HS_AHB_CLK>;
+
+ clock-names = "phy", "core", "iface";
+
+ vddcx-supply = <&pm8841_s2_corner>;
+ v1p8-supply = <&pm8941_l6>;
+ v3p3-supply = <&pm8941_l24>;
+
+ resets = <&gcc GCC_USB2A_PHY_BCR>, <&gcc GCC_USB_HS_BCR>;
+ reset-names = "phy", "link";
+
+ qcom,otg-control = <1>;
+ qcom,phy-init-sequence = < -1 0x63 >;
+ qcom,vdd-levels = <1 5 7>;
+ };
diff --git a/Documentation/devicetree/bindings/usb/mxs-phy.txt b/Documentation/devicetree/bindings/usb/mxs-phy.txt
index 5835b27146e..cef181a9d8b 100644
--- a/Documentation/devicetree/bindings/usb/mxs-phy.txt
+++ b/Documentation/devicetree/bindings/usb/mxs-phy.txt
@@ -1,13 +1,19 @@
* Freescale MXS USB Phy Device
Required properties:
-- compatible: Should be "fsl,imx23-usbphy"
+- compatible: should contain:
+ * "fsl,imx23-usbphy" for imx23 and imx28
+ * "fsl,imx6q-usbphy" for imx6dq and imx6dl
+ * "fsl,imx6sl-usbphy" for imx6sl
+ "fsl,imx23-usbphy" is still a fallback for other strings
- reg: Should contain registers location and length
- interrupts: Should contain phy interrupt
+- fsl,anatop: phandle for anatop register, it is only for imx6 SoC series
Example:
usbphy1: usbphy@020c9000 {
compatible = "fsl,imx6q-usbphy", "fsl,imx23-usbphy";
reg = <0x020c9000 0x1000>;
interrupts = <0 44 0x04>;
+ fsl,anatop = <&anatop>;
};
diff --git a/Documentation/devicetree/bindings/usb/nvidia,tegra20-ehci.txt b/Documentation/devicetree/bindings/usb/nvidia,tegra20-ehci.txt
index df0933043a5..3dc9140e3df 100644
--- a/Documentation/devicetree/bindings/usb/nvidia,tegra20-ehci.txt
+++ b/Documentation/devicetree/bindings/usb/nvidia,tegra20-ehci.txt
@@ -8,7 +8,12 @@ and additions :
Required properties :
- compatible : Should be "nvidia,tegra20-ehci".
- nvidia,phy : phandle of the PHY that the controller is connected to.
- - clocks : Contains a single entry which defines the USB controller's clock.
+ - clocks : Must contain one entry, for the module clock.
+ See ../clocks/clock-bindings.txt for details.
+ - resets : Must contain an entry for each entry in reset-names.
+ See ../reset/reset.txt for details.
+ - reset-names : Must include the following entries:
+ - usb
Optional properties:
- nvidia,needs-double-reset : boolean is to be set for some of the Tegra20
diff --git a/Documentation/devicetree/bindings/usb/ohci-omap3.txt b/Documentation/devicetree/bindings/usb/ohci-omap3.txt
index 14ab42812a8..ce8c47cff6d 100644
--- a/Documentation/devicetree/bindings/usb/ohci-omap3.txt
+++ b/Documentation/devicetree/bindings/usb/ohci-omap3.txt
@@ -9,7 +9,7 @@ Required properties:
Example for OMAP4:
usbhsohci: ohci@4a064800 {
- compatible = "ti,ohci-omap3", "usb-ohci";
+ compatible = "ti,ohci-omap3";
reg = <0x4a064800 0x400>;
interrupts = <0 76 0x4>;
};
diff --git a/Documentation/devicetree/bindings/usb/omap-usb.txt b/Documentation/devicetree/bindings/usb/omap-usb.txt
index 9088ab09e20..38d9bb8507c 100644
--- a/Documentation/devicetree/bindings/usb/omap-usb.txt
+++ b/Documentation/devicetree/bindings/usb/omap-usb.txt
@@ -3,9 +3,6 @@ OMAP GLUE AND OTHER OMAP SPECIFIC COMPONENTS
OMAP MUSB GLUE
- compatible : Should be "ti,omap4-musb" or "ti,omap3-musb"
- ti,hwmods : must be "usb_otg_hs"
- - ti,has-mailbox : to specify that omap uses an external mailbox
- (in control module) to communicate with the musb core during device connect
- and disconnect.
- multipoint : Should be "1" indicating the musb controller supports
multipoint. This is a MUSB configuration-specific setting.
- num-eps : Specifies the number of endpoints. This is also a
@@ -19,6 +16,9 @@ OMAP MUSB GLUE
- power : Should be "50". This signifies the controller can supply up to
100mA when operating in host mode.
- usb-phy : the phandle for the PHY device
+ - phys : the phandle for the PHY device (used by generic PHY framework)
+ - phy-names : the names of the PHY corresponding to the PHYs present in the
+ *phy* phandle.
Optional properties:
- ctrl-module : phandle of the control module this glue uses to write to
@@ -28,11 +28,12 @@ SOC specific device node entry
usb_otg_hs: usb_otg_hs@4a0ab000 {
compatible = "ti,omap4-musb";
ti,hwmods = "usb_otg_hs";
- ti,has-mailbox;
multipoint = <1>;
num-eps = <16>;
ram-bits = <12>;
ctrl-module = <&omap_control_usb>;
+ phys = <&usb2_phy>;
+ phy-names = "usb2-phy";
};
Board specific device node entry
@@ -43,7 +44,9 @@ Board specific device node entry
};
OMAP DWC3 GLUE
- - compatible : Should be "ti,dwc3"
+ - compatible : Should be
+ * "ti,dwc3" for OMAP5 and DRA7
+ * "ti,am437x-dwc3" for AM437x
- ti,hwmods : Should be "usb_otg_ss"
- reg : Address and length of the register set for the device.
- interrupts : The irq number of this device that is used to interrupt the
@@ -75,25 +78,3 @@ omap_dwc3 {
ranges;
};
-OMAP CONTROL USB
-
-Required properties:
- - compatible: Should be "ti,omap-control-usb"
- - reg : Address and length of the register set for the device. It contains
- the address of "control_dev_conf" and "otghs_control" or "phy_power_usb"
- depending upon omap4 or omap5.
- - reg-names: The names of the register addresses corresponding to the registers
- filled in "reg".
- - ti,type: This is used to differentiate whether the control module has
- usb mailbox or usb3 phy power. omap4 has usb mailbox in control module to
- notify events to the musb core and omap5 has usb3 phy power register to
- power on usb3 phy. Should be "1" if it has mailbox and "2" if it has usb3
- phy power.
-
-omap_control_usb: omap-control-usb@4a002300 {
- compatible = "ti,omap-control-usb";
- reg = <0x4a002300 0x4>,
- <0x4a00233c 0x4>;
- reg-names = "control_dev_conf", "otghs_control";
- ti,type = <1>;
-};
diff --git a/Documentation/devicetree/bindings/usb/usb-ehci.txt b/Documentation/devicetree/bindings/usb/usb-ehci.txt
index fa18612f757..43c1a4e0676 100644
--- a/Documentation/devicetree/bindings/usb/usb-ehci.txt
+++ b/Documentation/devicetree/bindings/usb/usb-ehci.txt
@@ -1,19 +1,21 @@
USB EHCI controllers
Required properties:
- - compatible : should be "usb-ehci".
+ - compatible : should be "generic-ehci".
- reg : should contain at least address and length of the standard EHCI
register set for the device. Optional platform-dependent registers
(debug-port or other) can be also specified here, but only after
definition of standard EHCI registers.
- interrupts : one EHCI interrupt should be described here.
-If device registers are implemented in big endian mode, the device
-node should have "big-endian-regs" property.
-If controller implementation operates with big endian descriptors,
-"big-endian-desc" property should be specified.
-If both big endian registers and descriptors are used by the controller
-implementation, "big-endian" property can be specified instead of having
-both "big-endian-regs" and "big-endian-desc".
+
+Optional properties:
+ - big-endian-regs : boolean, set this for hcds with big-endian registers
+ - big-endian-desc : boolean, set this for hcds with big-endian descriptors
+ - big-endian : boolean, for hcds with big-endian-regs + big-endian-desc
+ - clocks : a list of phandle + clock specifier pairs
+ - phys : phandle + phy specifier pair
+ - phy-names : "usb"
+ - resets : phandle + reset specifier pair
Example (Sequoia 440EPx):
ehci@e0000300 {
@@ -23,3 +25,13 @@ Example (Sequoia 440EPx):
reg = <0 e0000300 90 0 e0000390 70>;
big-endian;
};
+
+Example (Allwinner sun4i A10 SoC):
+ ehci0: usb@01c14000 {
+ compatible = "allwinner,sun4i-a10-ehci", "generic-ehci";
+ reg = <0x01c14000 0x100>;
+ interrupts = <39>;
+ clocks = <&ahb_gates 1>;
+ phys = <&usbphy 1>;
+ phy-names = "usb";
+ };
diff --git a/Documentation/devicetree/bindings/usb/usb-nop-xceiv.txt b/Documentation/devicetree/bindings/usb/usb-nop-xceiv.txt
index d7e272671c7..1bd37faba05 100644
--- a/Documentation/devicetree/bindings/usb/usb-nop-xceiv.txt
+++ b/Documentation/devicetree/bindings/usb/usb-nop-xceiv.txt
@@ -15,7 +15,7 @@ Optional properties:
- vcc-supply: phandle to the regulator that provides RESET to the PHY.
-- reset-supply: phandle to the regulator that provides power to the PHY.
+- reset-gpios: Should specify the GPIO for reset.
Example:
@@ -25,10 +25,9 @@ Example:
clocks = <&osc 0>;
clock-names = "main_clk";
vcc-supply = <&hsusb1_vcc_regulator>;
- reset-supply = <&hsusb1_reset_regulator>;
+ reset-gpios = <&gpio1 7 GPIO_ACTIVE_LOW>;
};
hsusb1_phy is a NOP USB PHY device that gets its clock from an oscillator
and expects that clock to be configured to 19.2MHz by the NOP PHY driver.
-hsusb1_vcc_regulator provides power to the PHY and hsusb1_reset_regulator
-controls RESET.
+hsusb1_vcc_regulator provides power to the PHY and GPIO 7 controls RESET.
diff --git a/Documentation/devicetree/bindings/usb/usb-ohci.txt b/Documentation/devicetree/bindings/usb/usb-ohci.txt
new file mode 100644
index 00000000000..b968a1aea99
--- /dev/null
+++ b/Documentation/devicetree/bindings/usb/usb-ohci.txt
@@ -0,0 +1,26 @@
+USB OHCI controllers
+
+Required properties:
+- compatible : "generic-ohci"
+- reg : ohci controller register range (address and length)
+- interrupts : ohci controller interrupt
+
+Optional properties:
+- big-endian-regs : boolean, set this for hcds with big-endian registers
+- big-endian-desc : boolean, set this for hcds with big-endian descriptors
+- big-endian : boolean, for hcds with big-endian-regs + big-endian-desc
+- clocks : a list of phandle + clock specifier pairs
+- phys : phandle + phy specifier pair
+- phy-names : "usb"
+- resets : phandle + reset specifier pair
+
+Example:
+
+ ohci0: usb@01c14400 {
+ compatible = "allwinner,sun4i-a10-ohci", "generic-ohci";
+ reg = <0x01c14400 0x100>;
+ interrupts = <64>;
+ clocks = <&usb_clk 6>, <&ahb_gates 2>;
+ phys = <&usbphy 1>;
+ phy-names = "usb";
+ };
diff --git a/Documentation/devicetree/bindings/usb/usb-phy.txt b/Documentation/devicetree/bindings/usb/usb-phy.txt
deleted file mode 100644
index 61496f5cb09..00000000000
--- a/Documentation/devicetree/bindings/usb/usb-phy.txt
+++ /dev/null
@@ -1,42 +0,0 @@
-USB PHY
-
-OMAP USB2 PHY
-
-Required properties:
- - compatible: Should be "ti,omap-usb2"
- - reg : Address and length of the register set for the device.
-
-Optional properties:
- - ctrl-module : phandle of the control module used by PHY driver to power on
- the PHY.
-
-This is usually a subnode of ocp2scp to which it is connected.
-
-usb2phy@4a0ad080 {
- compatible = "ti,omap-usb2";
- reg = <0x4a0ad080 0x58>;
- ctrl-module = <&omap_control_usb>;
-};
-
-OMAP USB3 PHY
-
-Required properties:
- - compatible: Should be "ti,omap-usb3"
- - reg : Address and length of the register set for the device.
- - reg-names: The names of the register addresses corresponding to the registers
- filled in "reg".
-
-Optional properties:
- - ctrl-module : phandle of the control module used by PHY driver to power on
- the PHY.
-
-This is usually a subnode of ocp2scp to which it is connected.
-
-usb3phy@4a084400 {
- compatible = "ti,omap-usb3";
- reg = <0x4a084400 0x80>,
- <0x4a084800 0x64>,
- <0x4a084c00 0x40>;
- reg-names = "phy_rx", "phy_tx", "pll_ctrl";
- ctrl-module = <&omap_control_usb>;
-};
diff --git a/Documentation/devicetree/bindings/usb/platform-uhci.txt b/Documentation/devicetree/bindings/usb/usb-uhci.txt
index a4fb0719d15..298133416c9 100644
--- a/Documentation/devicetree/bindings/usb/platform-uhci.txt
+++ b/Documentation/devicetree/bindings/usb/usb-uhci.txt
@@ -2,14 +2,14 @@ Generic Platform UHCI Controller
-----------------------------------------------------
Required properties:
-- compatible : "platform-uhci"
+- compatible : "generic-uhci" (deprecated: "platform-uhci")
- reg : Should contain 1 register ranges(address and length)
- interrupts : UHCI controller interrupt
Example:
uhci@d8007b00 {
- compatible = "platform-uhci";
+ compatible = "generic-uhci";
reg = <0xd8007b00 0x200>;
interrupts = <43>;
};
diff --git a/Documentation/devicetree/bindings/usb/usb-xhci.txt b/Documentation/devicetree/bindings/usb/usb-xhci.txt
index 5752df0e17a..5a79377c6a9 100644
--- a/Documentation/devicetree/bindings/usb/usb-xhci.txt
+++ b/Documentation/devicetree/bindings/usb/usb-xhci.txt
@@ -1,14 +1,20 @@
USB xHCI controllers
Required properties:
- - compatible: should be "xhci-platform".
+ - compatible: should be one of "generic-xhci",
+ "marvell,armada-375-xhci", "marvell,armada-380-xhci",
+ "renesas,xhci-r8a7790", "renesas,xhci-r8a7791" (deprecated:
+ "xhci-platform").
- reg: should contain address and length of the standard XHCI
register set for the device.
- interrupts: one XHCI interrupt should be described here.
+Optional property:
+ - clocks: reference to a clock
+
Example:
usb@f0931000 {
- compatible = "xhci-platform";
+ compatible = "generic-xhci";
reg = <0xf0931000 0x8c8>;
interrupts = <0x0 0x4e 0x0>;
};
diff --git a/Documentation/devicetree/bindings/usb/usb3503.txt b/Documentation/devicetree/bindings/usb/usb3503.txt
index a018da4a7ad..221ac0dbc67 100644
--- a/Documentation/devicetree/bindings/usb/usb3503.txt
+++ b/Documentation/devicetree/bindings/usb/usb3503.txt
@@ -15,6 +15,14 @@ Optional properties:
- reset-gpios: Should specify GPIO for reset.
- initial-mode: Should specify initial mode.
(1 for HUB mode, 2 for STANDBY mode)
+- refclk: Clock used for driving REFCLK signal (optional, if not provided
+ the driver assumes that clock signal is always available, its
+ rate is specified by REF_SEL pins and a value from the primary
+ reference clock frequencies table is used)
+- refclk-frequency: Frequency of the REFCLK signal as defined by REF_SEL
+ pins (optional, if not provided, driver will not set rate of the
+ REFCLK signal and assume that a value from the primary reference
+ clock frequencies table is used)
Examples:
usb3503@08 {
diff --git a/Documentation/devicetree/bindings/usb/ux500-usb.txt b/Documentation/devicetree/bindings/usb/ux500-usb.txt
index 330d6ec1540..439a41c79af 100644
--- a/Documentation/devicetree/bindings/usb/ux500-usb.txt
+++ b/Documentation/devicetree/bindings/usb/ux500-usb.txt
@@ -15,7 +15,7 @@ Optional properties:
Example:
usb_per5@a03e0000 {
- compatible = "stericsson,db8500-musb", "mentor,musb";
+ compatible = "stericsson,db8500-musb";
reg = <0xa03e0000 0x10000>;
interrupts = <0 23 0x4>;
interrupt-names = "mc";
diff --git a/Documentation/devicetree/bindings/usb/via,vt8500-ehci.txt b/Documentation/devicetree/bindings/usb/via,vt8500-ehci.txt
deleted file mode 100644
index 17b3ad1d97e..00000000000
--- a/Documentation/devicetree/bindings/usb/via,vt8500-ehci.txt
+++ /dev/null
@@ -1,15 +0,0 @@
-VIA/Wondermedia VT8500 EHCI Controller
------------------------------------------------------
-
-Required properties:
-- compatible : "via,vt8500-ehci"
-- reg : Should contain 1 register ranges(address and length)
-- interrupts : ehci controller interrupt
-
-Example:
-
- ehci@d8007900 {
- compatible = "via,vt8500-ehci";
- reg = <0xd8007900 0x200>;
- interrupts = <43>;
- };
diff --git a/Documentation/devicetree/bindings/usb/vt8500-ehci.txt b/Documentation/devicetree/bindings/usb/vt8500-ehci.txt
deleted file mode 100644
index 5fb8fd6e250..00000000000
--- a/Documentation/devicetree/bindings/usb/vt8500-ehci.txt
+++ /dev/null
@@ -1,12 +0,0 @@
-VIA VT8500 and Wondermedia WM8xxx SoC USB controllers.
-
-Required properties:
- - compatible: Should be "via,vt8500-ehci" or "wm,prizm-ehci".
- - reg: Address range of the ehci registers. size should be 0x200
- - interrupts: Should contain the ehci interrupt.
-
-usb: ehci@D8007100 {
- compatible = "wm,prizm-ehci", "usb-ehci";
- reg = <0xD8007100 0x200>;
- interrupts = <1>;
-};
diff --git a/Documentation/devicetree/bindings/vendor-prefixes.txt b/Documentation/devicetree/bindings/vendor-prefixes.txt
index 2956800f024..46a311e728a 100644
--- a/Documentation/devicetree/bindings/vendor-prefixes.txt
+++ b/Documentation/devicetree/bindings/vendor-prefixes.txt
@@ -3,73 +3,144 @@ Device tree binding vendor prefix registry. Keep list in alphabetical order.
This isn't an exhaustive list, but you should add new prefixes to it before
using them to avoid name-space collisions.
+abilis Abilis Systems
+active-semi Active-Semi International Inc
ad Avionic Design GmbH
adi Analog Devices, Inc.
aeroflexgaisler Aeroflex Gaisler AB
ak Asahi Kasei Corp.
+allwinner Allwinner Technology Co., Ltd.
altr Altera Corp.
amcc Applied Micro Circuits Corporation (APM, formally AMCC)
+amd Advanced Micro Devices (AMD), Inc.
+ams AMS AG
+amstaos AMS-Taos Inc.
apm Applied Micro Circuits Corporation (APM)
arm ARM Ltd.
+armadeus ARMadeus Systems SARL
atmel Atmel Corporation
+auo AU Optronics Corporation
avago Avago Technologies
bosch Bosch Sensortec GmbH
brcm Broadcom Corporation
+buffalo Buffalo, Inc.
+calxeda Calxeda
+capella Capella Microsystems, Inc
cavium Cavium, Inc.
+cdns Cadence Design Systems Inc.
chrp Common Hardware Reference Platform
+chunghwa Chunghwa Picture Tubes Ltd.
cirrus Cirrus Logic, Inc.
cortina Cortina Systems, Inc.
+crystalfontz Crystalfontz America, Inc.
dallas Maxim Integrated Products (formerly Dallas Semiconductor)
davicom DAVICOM Semiconductor, Inc.
denx Denx Software Engineering
+digi Digi International Inc.
+dlink D-Link Corporation
+dmo Data Modul AG
+ebv EBV Elektronik
+edt Emerging Display Technologies
emmicro EM Microelectronic
+epfl Ecole Polytechnique Fédérale de Lausanne
epson Seiko Epson Corp.
est ESTeem Wireless Modems
+eukrea Eukréa Electromatique
+excito Excito
fsl Freescale Semiconductor
GEFanuc GE Fanuc Intelligent Platforms Embedded Systems, Inc.
gef GE Fanuc Intelligent Platforms Embedded Systems, Inc.
+globalscale Globalscale Technologies, Inc.
+gmt Global Mixed-mode Technology, Inc.
+google Google, Inc.
+gumstix Gumstix, Inc.
+haoyu Haoyu Microelectronic Co. Ltd.
hisilicon Hisilicon Limited.
+honeywell Honeywell
hp Hewlett Packard
+i2se I2SE GmbH
ibm International Business Machines (IBM)
idt Integrated Device Technologies, Inc.
+iom Iomega Corporation
img Imagination Technologies Ltd.
+intel Intel Corporation
intercontrol Inter Control Group
+isee ISEE 2007 S.L.
+isl Intersil
+karo Ka-Ro electronics GmbH
+keymile Keymile GmbH
+lacie LaCie
+lantiq Lantiq Semiconductor
+lg LG Corporation
linux Linux-specific binding
lsi LSI Corp. (LSI Logic)
+lltc Linear Technology Corporation
marvell Marvell Technology Group Ltd.
maxim Maxim Integrated Products
+micrel Micrel Inc.
microchip Microchip Technology Inc.
mosaixtech Mosaix Technologies, Inc.
+moxa Moxa
+mpl MPL AG
+mundoreader Mundo Reader S.L.
+murata Murata Manufacturing Co., Ltd.
+mxicy Macronix International Co., Ltd.
national National Semiconductor
+neonode Neonode Inc.
+netgear NETGEAR
+newhaven Newhaven Display International
nintendo Nintendo
+nokia Nokia
nvidia NVIDIA
nxp NXP Semiconductors
onnn ON Semiconductor Corp.
+opencores OpenCores.org
+panasonic Panasonic Corporation
+phytec PHYTEC Messtechnik GmbH
picochip Picochip Ltd
+plathome Plat'Home Co., Ltd.
powervr PowerVR (deprecated, use img)
qca Qualcomm Atheros, Inc.
-qcom Qualcomm, Inc.
+qcom Qualcomm Technologies, Inc
+qnap QNAP Systems, Inc.
+radxa Radxa
+raidsonic RaidSonic Technology GmbH
ralink Mediatek/Ralink Technology Corp.
ramtron Ramtron International
realtek Realtek Semiconductor Corp.
renesas Renesas Electronics Corporation
+ricoh Ricoh Co. Ltd.
+rockchip Fuzhou Rockchip Electronics Co., Ltd
samsung Samsung Semiconductor
sbs Smart Battery System
schindler Schindler
+seagate Seagate Technology PLC
sil Silicon Image
silabs Silicon Laboratories
simtek
+sii Seiko Instruments, Inc.
sirf SiRF Technology, Inc.
+smsc Standard Microsystems Corporation
snps Synopsys, Inc.
+spansion Spansion Inc.
st STMicroelectronics
ste ST-Ericsson
stericsson ST-Ericsson
-toumaz Toumaz
+synology Synology, Inc.
ti Texas Instruments
+tlm Trusted Logic Mobility
+toradex Toradex AG
toshiba Toshiba Corporation
+toumaz Toumaz
+usi Universal Scientifc Industrial Co., Ltd.
v3 V3 Semiconductor
+variscite Variscite Ltd.
via VIA Technologies, Inc.
+voipac Voipac Technologies s.r.o.
+winbond Winbond Electronics corp.
wlf Wolfson Microelectronics
wm Wondermedia Technologies, Inc.
-winbond Winbond Electronics corp.
+xes Extreme Engineering Solutions (X-ES)
xlnx Xilinx
+zyxel ZyXEL Communications Corp.
+zarlink Zarlink Semiconductor
diff --git a/Documentation/devicetree/bindings/video/analog-tv-connector.txt b/Documentation/devicetree/bindings/video/analog-tv-connector.txt
new file mode 100644
index 00000000000..0218fcdc129
--- /dev/null
+++ b/Documentation/devicetree/bindings/video/analog-tv-connector.txt
@@ -0,0 +1,25 @@
+Analog TV Connector
+===================
+
+Required properties:
+- compatible: "composite-connector" or "svideo-connector"
+
+Optional properties:
+- label: a symbolic name for the connector
+
+Required nodes:
+- Video port for TV input
+
+Example
+-------
+
+tv: connector {
+ compatible = "composite-connector";
+ label = "tv";
+
+ port {
+ tv_connector_in: endpoint {
+ remote-endpoint = <&venc_out>;
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/video/atmel,lcdc.txt b/Documentation/devicetree/bindings/video/atmel,lcdc.txt
new file mode 100644
index 00000000000..1ec175eddca
--- /dev/null
+++ b/Documentation/devicetree/bindings/video/atmel,lcdc.txt
@@ -0,0 +1,75 @@
+Atmel LCDC Framebuffer
+-----------------------------------------------------
+
+Required properties:
+- compatible :
+ "atmel,at91sam9261-lcdc" ,
+ "atmel,at91sam9263-lcdc" ,
+ "atmel,at91sam9g10-lcdc" ,
+ "atmel,at91sam9g45-lcdc" ,
+ "atmel,at91sam9g45es-lcdc" ,
+ "atmel,at91sam9rl-lcdc" ,
+ "atmel,at32ap-lcdc"
+- reg : Should contain 1 register ranges(address and length)
+- interrupts : framebuffer controller interrupt
+- display: a phandle pointing to the display node
+
+Required nodes:
+- display: a display node is required to initialize the lcd panel
+ This should be in the board dts.
+- default-mode: a videomode within the display with timing parameters
+ as specified below.
+
+Example:
+
+ fb0: fb@0x00500000 {
+ compatible = "atmel,at91sam9g45-lcdc";
+ reg = <0x00500000 0x1000>;
+ interrupts = <23 3 0>;
+ pinctrl-names = "default";
+ pinctrl-0 = <&pinctrl_fb>;
+ display = <&display0>;
+ status = "okay";
+ #address-cells = <1>;
+ #size-cells = <1>;
+
+ };
+
+Atmel LCDC Display
+-----------------------------------------------------
+Required properties (as per of_videomode_helper):
+
+ - atmel,dmacon: dma controler configuration
+ - atmel,lcdcon2: lcd controler configuration
+ - atmel,guard-time: lcd guard time (Delay in frame periods)
+ - bits-per-pixel: lcd panel bit-depth.
+
+Optional properties (as per of_videomode_helper):
+ - atmel,lcdcon-backlight: enable backlight
+ - atmel,lcd-wiring-mode: lcd wiring mode "RGB" or "BRG"
+ - atmel,power-control-gpio: gpio to power on or off the LCD (as many as needed)
+
+Example:
+ display0: display {
+ bits-per-pixel = <32>;
+ atmel,lcdcon-backlight;
+ atmel,dmacon = <0x1>;
+ atmel,lcdcon2 = <0x80008002>;
+ atmel,guard-time = <9>;
+ atmel,lcd-wiring-mode = <1>;
+
+ display-timings {
+ native-mode = <&timing0>;
+ timing0: timing0 {
+ clock-frequency = <9000000>;
+ hactive = <480>;
+ vactive = <272>;
+ hback-porch = <1>;
+ hfront-porch = <1>;
+ vback-porch = <40>;
+ vfront-porch = <1>;
+ hsync-len = <45>;
+ vsync-len = <1>;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/video/backlight/gpio-backlight.txt b/Documentation/devicetree/bindings/video/backlight/gpio-backlight.txt
new file mode 100644
index 00000000000..321be664053
--- /dev/null
+++ b/Documentation/devicetree/bindings/video/backlight/gpio-backlight.txt
@@ -0,0 +1,16 @@
+gpio-backlight bindings
+
+Required properties:
+ - compatible: "gpio-backlight"
+ - gpios: describes the gpio that is used for enabling/disabling the backlight.
+ refer to bindings/gpio/gpio.txt for more details.
+
+Optional properties:
+ - default-on: enable the backlight at boot.
+
+Example:
+ backlight {
+ compatible = "gpio-backlight";
+ gpios = <&gpio3 4 GPIO_ACTIVE_HIGH>;
+ default-on;
+ };
diff --git a/Documentation/devicetree/bindings/video/backlight/lp855x.txt b/Documentation/devicetree/bindings/video/backlight/lp855x.txt
index 1482103d288..96e83a56048 100644
--- a/Documentation/devicetree/bindings/video/backlight/lp855x.txt
+++ b/Documentation/devicetree/bindings/video/backlight/lp855x.txt
@@ -2,7 +2,7 @@ lp855x bindings
Required properties:
- compatible: "ti,lp8550", "ti,lp8551", "ti,lp8552", "ti,lp8553",
- "ti,lp8556", "ti,lp8557"
+ "ti,lp8555", "ti,lp8556", "ti,lp8557"
- reg: I2C slave address (u8)
- dev-ctrl: Value of DEVICE CONTROL register (u8). It depends on the device.
@@ -15,6 +15,33 @@ Optional properties:
Example:
+ /* LP8555 */
+ backlight@2c {
+ compatible = "ti,lp8555";
+ reg = <0x2c>;
+
+ dev-ctrl = /bits/ 8 <0x00>;
+ pwm-period = <10000>;
+
+ /* 4V OV, 4 output LED0 string enabled */
+ rom_14h {
+ rom-addr = /bits/ 8 <0x14>;
+ rom-val = /bits/ 8 <0xcf>;
+ };
+
+ /* Heavy smoothing, 24ms ramp time step */
+ rom_15h {
+ rom-addr = /bits/ 8 <0x15>;
+ rom-val = /bits/ 8 <0xc7>;
+ };
+
+ /* 4 output LED1 string enabled */
+ rom_19h {
+ rom-addr = /bits/ 8 <0x19>;
+ rom-val = /bits/ 8 <0x0f>;
+ };
+ };
+
/* LP8556 */
backlight@2c {
compatible = "ti,lp8556";
diff --git a/Documentation/devicetree/bindings/video/backlight/pwm-backlight.txt b/Documentation/devicetree/bindings/video/backlight/pwm-backlight.txt
index 1e4fc727f3b..764db86d441 100644
--- a/Documentation/devicetree/bindings/video/backlight/pwm-backlight.txt
+++ b/Documentation/devicetree/bindings/video/backlight/pwm-backlight.txt
@@ -10,12 +10,16 @@ Required properties:
last value in the array represents a 100% duty cycle (brightest).
- default-brightness-level: the default brightness level (index into the
array defined by the "brightness-levels" property)
+ - power-supply: regulator for supply voltage
Optional properties:
- pwm-names: a list of names for the PWM devices specified in the
"pwms" property (see PWM binding[0])
+ - enable-gpios: contains a single GPIO specifier for the GPIO which enables
+ and disables the backlight (see GPIO binding[1])
[0]: Documentation/devicetree/bindings/pwm/pwm.txt
+[1]: Documentation/devicetree/bindings/gpio/gpio.txt
Example:
@@ -25,4 +29,7 @@ Example:
brightness-levels = <0 4 8 16 32 64 128 255>;
default-brightness-level = <6>;
+
+ power-supply = <&vdd_bl_reg>;
+ enable-gpios = <&gpio 58 0>;
};
diff --git a/Documentation/devicetree/bindings/video/dvi-connector.txt b/Documentation/devicetree/bindings/video/dvi-connector.txt
new file mode 100644
index 00000000000..fc53f7c60bc
--- /dev/null
+++ b/Documentation/devicetree/bindings/video/dvi-connector.txt
@@ -0,0 +1,35 @@
+DVI Connector
+==============
+
+Required properties:
+- compatible: "dvi-connector"
+
+Optional properties:
+- label: a symbolic name for the connector
+- ddc-i2c-bus: phandle to the i2c bus that is connected to DVI DDC
+- analog: the connector has DVI analog pins
+- digital: the connector has DVI digital pins
+- dual-link: the connector has pins for DVI dual-link
+
+Required nodes:
+- Video port for DVI input
+
+Note: One (or both) of 'analog' or 'digital' must be set.
+
+Example
+-------
+
+dvi0: connector@0 {
+ compatible = "dvi-connector";
+ label = "dvi";
+
+ digital;
+
+ ddc-i2c-bus = <&i2c3>;
+
+ port {
+ dvi_connector_in: endpoint {
+ remote-endpoint = <&tfp410_out>;
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/video/exynos_dp.txt b/Documentation/devicetree/bindings/video/exynos_dp.txt
index 84f10c16cb3..53dbccfa80c 100644
--- a/Documentation/devicetree/bindings/video/exynos_dp.txt
+++ b/Documentation/devicetree/bindings/video/exynos_dp.txt
@@ -6,10 +6,10 @@ We use two nodes:
-dptx-phy node(defined inside dp-controller node)
For the DP-PHY initialization, we use the dptx-phy node.
-Required properties for dptx-phy:
- -reg:
+Required properties for dptx-phy: deprecated, use phys and phy-names
+ -reg: deprecated
Base address of DP PHY register.
- -samsung,enable-mask:
+ -samsung,enable-mask: deprecated
The bit-mask used to enable/disable DP PHY.
For the Panel initialization, we read data from dp-controller node.
@@ -27,6 +27,10 @@ Required properties for dp-controller:
from common clock binding: Shall be "dp".
-interrupt-parent:
phandle to Interrupt combiner node.
+ -phys:
+ from general PHY binding: the phandle for the PHY device.
+ -phy-names:
+ from general PHY binding: Should be "dp".
-samsung,color-space:
input video data format.
COLOR_RGB = 0, COLOR_YCBCR422 = 1, COLOR_YCBCR444 = 2
@@ -45,6 +49,8 @@ Required properties for dp-controller:
-samsung,lane-count:
number of lanes supported by the panel.
LANE_COUNT1 = 1, LANE_COUNT2 = 2, LANE_COUNT4 = 4
+ - display-timings: timings for the connected panel as described by
+ Documentation/devicetree/bindings/video/display-timing.txt
Optional properties for dp-controller:
-interlaced:
@@ -56,6 +62,10 @@ Optional properties for dp-controller:
-hsync-active-high:
HSYNC polarity configuration.
High if defined, Low if not defined
+ -samsung,hpd-gpio:
+ Hotplug detect GPIO.
+ Indicates which GPIO should be used for hotplug
+ detection
Example:
@@ -68,11 +78,8 @@ SOC specific portion:
clocks = <&clock 342>;
clock-names = "dp";
- dptx-phy {
- reg = <0x10040720>;
- samsung,enable-mask = <1>;
- };
-
+ phys = <&dp_phy>;
+ phy-names = "dp";
};
Board Specific portion:
@@ -83,4 +90,19 @@ Board Specific portion:
samsung,color-depth = <1>;
samsung,link-rate = <0x0a>;
samsung,lane-count = <4>;
+
+ display-timings {
+ native-mode = <&lcd_timing>;
+ lcd_timing: 1366x768 {
+ clock-frequency = <70589280>;
+ hactive = <1366>;
+ vactive = <768>;
+ hfront-porch = <40>;
+ hback-porch = <40>;
+ hsync-len = <32>;
+ vback-porch = <10>;
+ vfront-porch = <12>;
+ vsync-len = <6>;
+ };
+ };
};
diff --git a/Documentation/devicetree/bindings/video/exynos_dsim.txt b/Documentation/devicetree/bindings/video/exynos_dsim.txt
new file mode 100644
index 00000000000..33b5730d07b
--- /dev/null
+++ b/Documentation/devicetree/bindings/video/exynos_dsim.txt
@@ -0,0 +1,80 @@
+Exynos MIPI DSI Master
+
+Required properties:
+ - compatible: "samsung,exynos4210-mipi-dsi"
+ - reg: physical base address and length of the registers set for the device
+ - interrupts: should contain DSI interrupt
+ - clocks: list of clock specifiers, must contain an entry for each required
+ entry in clock-names
+ - clock-names: should include "bus_clk"and "pll_clk" entries
+ - phys: list of phy specifiers, must contain an entry for each required
+ entry in phy-names
+ - phy-names: should include "dsim" entry
+ - vddcore-supply: MIPI DSIM Core voltage supply (e.g. 1.1V)
+ - vddio-supply: MIPI DSIM I/O and PLL voltage supply (e.g. 1.8V)
+ - samsung,pll-clock-frequency: specifies frequency of the "pll_clk" clock
+ - #address-cells, #size-cells: should be set respectively to <1> and <0>
+ according to DSI host bindings (see MIPI DSI bindings [1])
+
+Optional properties:
+ - samsung,power-domain: a phandle to DSIM power domain node
+
+Child nodes:
+ Should contain DSI peripheral nodes (see MIPI DSI bindings [1]).
+
+Video interfaces:
+ Device node can contain video interface port nodes according to [2].
+ The following are properties specific to those nodes:
+
+ port node:
+ - reg: (required) can be 0 for input RGB/I80 port or 1 for DSI port;
+
+ endpoint node of DSI port (reg = 1):
+ - samsung,burst-clock-frequency: specifies DSI frequency in high-speed burst
+ mode
+ - samsung,esc-clock-frequency: specifies DSI frequency in escape mode
+
+[1]: Documentation/devicetree/bindings/mipi/dsi/mipi-dsi-bus.txt
+[2]: Documentation/devicetree/bindings/media/video-interfaces.txt
+
+Example:
+
+ dsi@11C80000 {
+ compatible = "samsung,exynos4210-mipi-dsi";
+ reg = <0x11C80000 0x10000>;
+ interrupts = <0 79 0>;
+ clocks = <&clock 286>, <&clock 143>;
+ clock-names = "bus_clk", "pll_clk";
+ phys = <&mipi_phy 1>;
+ phy-names = "dsim";
+ vddcore-supply = <&vusb_reg>;
+ vddio-supply = <&vmipi_reg>;
+ samsung,power-domain = <&pd_lcd0>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ samsung,pll-clock-frequency = <24000000>;
+
+ panel@1 {
+ reg = <0>;
+ ...
+ port {
+ panel_ep: endpoint {
+ remote-endpoint = <&dsi_ep>;
+ };
+ };
+ };
+
+ ports {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ port@1 {
+ dsi_ep: endpoint {
+ reg = <0>;
+ samsung,burst-clock-frequency = <500000000>;
+ samsung,esc-clock-frequency = <20000000>;
+ remote-endpoint = <&panel_ep>;
+ };
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/video/exynos_hdmi.txt b/Documentation/devicetree/bindings/video/exynos_hdmi.txt
index 323983be3c3..1fd8cf9cbfa 100644
--- a/Documentation/devicetree/bindings/video/exynos_hdmi.txt
+++ b/Documentation/devicetree/bindings/video/exynos_hdmi.txt
@@ -5,6 +5,7 @@ Required properties:
1) "samsung,exynos5-hdmi" <DEPRECATED>
2) "samsung,exynos4210-hdmi"
3) "samsung,exynos4212-hdmi"
+ 4) "samsung,exynos5420-hdmi"
- reg: physical base address of the hdmi and length of memory mapped
region.
- interrupts: interrupt number to the cpu.
@@ -12,6 +13,22 @@ Required properties:
a) phandle of the gpio controller node.
b) pin number within the gpio controller.
c) optional flags and pull up/down.
+- clocks: list of clock IDs from SoC clock driver.
+ a) hdmi: Gate of HDMI IP bus clock.
+ b) sclk_hdmi: Gate of HDMI special clock.
+ c) sclk_pixel: Pixel special clock, one of the two possible inputs of
+ HDMI clock mux.
+ d) sclk_hdmiphy: HDMI PHY clock output, one of two possible inputs of
+ HDMI clock mux.
+ e) mout_hdmi: It is required by the driver to switch between the 2
+ parents i.e. sclk_pixel and sclk_hdmiphy. If hdmiphy is stable
+ after configuration, parent is set to sclk_hdmiphy else
+ sclk_pixel.
+- clock-names: aliases as per driver requirements for above clock IDs:
+ "hdmi", "sclk_hdmi", "sclk_pixel", "sclk_hdmiphy" and "mout_hdmi".
+- ddc: phandle to the hdmi ddc node
+- phy: phandle to the hdmi phy node
+- samsung,syscon-phandle: phandle for system controller node for PMU.
Example:
@@ -20,4 +37,7 @@ Example:
reg = <0x14530000 0x100000>;
interrupts = <0 95 0>;
hpd-gpio = <&gpx3 7 1>;
+ ddc = <&hdmi_ddc_node>;
+ phy = <&hdmi_phy_node>;
+ samsung,syscon-phandle = <&pmu_system_controller>;
};
diff --git a/Documentation/devicetree/bindings/video/exynos_mixer.txt b/Documentation/devicetree/bindings/video/exynos_mixer.txt
index 3334b0a8e34..7bfde9c9d65 100644
--- a/Documentation/devicetree/bindings/video/exynos_mixer.txt
+++ b/Documentation/devicetree/bindings/video/exynos_mixer.txt
@@ -10,6 +10,10 @@ Required properties:
- reg: physical base address of the mixer and length of memory mapped
region.
- interrupts: interrupt number to the cpu.
+- clocks: list of clock IDs from SoC clock driver.
+ a) mixer: Gate of Mixer IP bus clock.
+ b) sclk_hdmi: HDMI Special clock, one of the two possible inputs of
+ mixer mux.
Example:
diff --git a/Documentation/devicetree/bindings/video/fsl,imx-fb.txt b/Documentation/devicetree/bindings/video/fsl,imx-fb.txt
index 46da08db186..0329f60d431 100644
--- a/Documentation/devicetree/bindings/video/fsl,imx-fb.txt
+++ b/Documentation/devicetree/bindings/video/fsl,imx-fb.txt
@@ -15,8 +15,12 @@ Required nodes:
- fsl,pcr: LCDC PCR value
Optional properties:
+- lcd-supply: Regulator for LCD supply voltage.
- fsl,dmacr: DMA Control Register value. This is optional. By default, the
register is not modified as recommended by the datasheet.
+- fsl,lpccr: Contrast Control Register value. This property provides the
+ default value for the contrast control register.
+ If that property is ommited, the register is zeroed.
- fsl,lscr1: LCDC Sharp Configuration Register value.
Example:
diff --git a/Documentation/devicetree/bindings/video/hdmi-connector.txt b/Documentation/devicetree/bindings/video/hdmi-connector.txt
new file mode 100644
index 00000000000..acd5668b1ce
--- /dev/null
+++ b/Documentation/devicetree/bindings/video/hdmi-connector.txt
@@ -0,0 +1,29 @@
+HDMI Connector
+==============
+
+Required properties:
+- compatible: "hdmi-connector"
+- type: the HDMI connector type: "a", "b", "c", "d" or "e"
+
+Optional properties:
+- label: a symbolic name for the connector
+- hpd-gpios: HPD GPIO number
+
+Required nodes:
+- Video port for HDMI input
+
+Example
+-------
+
+hdmi0: connector@1 {
+ compatible = "hdmi-connector";
+ label = "hdmi";
+
+ type = "a";
+
+ port {
+ hdmi_connector_in: endpoint {
+ remote-endpoint = <&tpd12s015_out>;
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/video/lgphilips,lb035q02.txt b/Documentation/devicetree/bindings/video/lgphilips,lb035q02.txt
new file mode 100644
index 00000000000..1a1e653e540
--- /dev/null
+++ b/Documentation/devicetree/bindings/video/lgphilips,lb035q02.txt
@@ -0,0 +1,33 @@
+LG.Philips LB035Q02 Panel
+=========================
+
+Required properties:
+- compatible: "lgphilips,lb035q02"
+- enable-gpios: panel enable gpio
+
+Optional properties:
+- label: a symbolic name for the panel
+
+Required nodes:
+- Video port for DPI input
+
+Example
+-------
+
+lcd-panel: panel@0 {
+ compatible = "lgphilips,lb035q02";
+ reg = <0>;
+ spi-max-frequency = <100000>;
+ spi-cpol;
+ spi-cpha;
+
+ label = "lcd";
+
+ enable-gpios = <&gpio7 7 0>;
+
+ port {
+ lcd_in: endpoint {
+ remote-endpoint = <&dpi_out>;
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/video/panel-dpi.txt b/Documentation/devicetree/bindings/video/panel-dpi.txt
new file mode 100644
index 00000000000..a40180b05ba
--- /dev/null
+++ b/Documentation/devicetree/bindings/video/panel-dpi.txt
@@ -0,0 +1,45 @@
+Generic MIPI DPI Panel
+======================
+
+Required properties:
+- compatible: "panel-dpi"
+
+Optional properties:
+- label: a symbolic name for the panel
+- enable-gpios: panel enable gpio
+
+Required nodes:
+- "panel-timing" containing video timings
+ (Documentation/devicetree/bindings/video/display-timing.txt)
+- Video port for DPI input
+
+Example
+-------
+
+lcd0: display@0 {
+ compatible = "samsung,lte430wq-f0c", "panel-dpi";
+ label = "lcd";
+
+ port {
+ lcd_in: endpoint {
+ remote-endpoint = <&dpi_out>;
+ };
+ };
+
+ panel-timing {
+ clock-frequency = <9200000>;
+ hactive = <480>;
+ vactive = <272>;
+ hfront-porch = <8>;
+ hback-porch = <4>;
+ hsync-len = <41>;
+ vback-porch = <2>;
+ vfront-porch = <4>;
+ vsync-len = <10>;
+
+ hsync-active = <0>;
+ vsync-active = <0>;
+ de-active = <1>;
+ pixelclk-active = <1>;
+ };
+};
diff --git a/Documentation/devicetree/bindings/video/panel-dsi-cm.txt b/Documentation/devicetree/bindings/video/panel-dsi-cm.txt
new file mode 100644
index 00000000000..dce48eb9db5
--- /dev/null
+++ b/Documentation/devicetree/bindings/video/panel-dsi-cm.txt
@@ -0,0 +1,29 @@
+Generic MIPI DSI Command Mode Panel
+===================================
+
+Required properties:
+- compatible: "panel-dsi-cm"
+
+Optional properties:
+- label: a symbolic name for the panel
+- reset-gpios: panel reset gpio
+- te-gpios: panel TE gpio
+
+Required nodes:
+- Video port for DSI input
+
+Example
+-------
+
+lcd0: display {
+ compatible = "tpo,taal", "panel-dsi-cm";
+ label = "lcd0";
+
+ reset-gpios = <&gpio4 6 GPIO_ACTIVE_HIGH>;
+
+ port {
+ lcd0_in: endpoint {
+ remote-endpoint = <&dsi1_out_ep>;
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/video/samsung-fimd.txt b/Documentation/devicetree/bindings/video/samsung-fimd.txt
index 778838a0336..2dad41b689a 100644
--- a/Documentation/devicetree/bindings/video/samsung-fimd.txt
+++ b/Documentation/devicetree/bindings/video/samsung-fimd.txt
@@ -39,6 +39,23 @@ Required properties:
Optional Properties:
- samsung,power-domain: a phandle to FIMD power domain node.
+- samsung,invert-vden: video enable signal is inverted
+- samsung,invert-vclk: video clock signal is inverted
+- display-timings: timing settings for FIMD, as described in document [1].
+ Can be used in case timings cannot be provided otherwise
+ or to override timings provided by the panel.
+
+The device node can contain 'port' child nodes according to the bindings defined
+in [2]. The following are properties specific to those nodes:
+- reg: (required) port index, can be:
+ 0 - for CAMIF0 input,
+ 1 - for CAMIF1 input,
+ 2 - for CAMIF2 input,
+ 3 - for parallel output,
+ 4 - for write-back interface
+
+[1]: Documentation/devicetree/bindings/video/display-timing.txt
+[2]: Documentation/devicetree/bindings/media/video-interfaces.txt
Example:
diff --git a/Documentation/devicetree/bindings/video/sharp,ls037v7dw01.txt b/Documentation/devicetree/bindings/video/sharp,ls037v7dw01.txt
new file mode 100644
index 00000000000..0cc8981e9d4
--- /dev/null
+++ b/Documentation/devicetree/bindings/video/sharp,ls037v7dw01.txt
@@ -0,0 +1,43 @@
+SHARP LS037V7DW01 TFT-LCD panel
+===================================
+
+Required properties:
+- compatible: "sharp,ls037v7dw01"
+
+Optional properties:
+- label: a symbolic name for the panel
+- enable-gpios: a GPIO spec for the optional enable pin.
+ This pin is the INI pin as specified in the LS037V7DW01.pdf file.
+- reset-gpios: a GPIO spec for the optional reset pin.
+ This pin is the RESB pin as specified in the LS037V7DW01.pdf file.
+- mode-gpios: a GPIO
+ ordered MO, LR, and UD as specified in the LS037V7DW01.pdf file.
+
+Required nodes:
+- Video port for DPI input
+
+This panel can have zero to five GPIOs to configure to change configuration
+between QVGA and VGA mode and the scan direction. As these pins can be also
+configured with external pulls, all the GPIOs are considered optional with holes
+in the array.
+
+Example
+-------
+
+Example when connected to a omap2+ based device:
+
+lcd0: display {
+ compatible = "sharp,ls037v7dw01";
+ power-supply = <&lcd_3v3>;
+ enable-gpios = <&gpio5 24 GPIO_ACTIVE_HIGH>; /* gpio152, lcd INI */
+ reset-gpios = <&gpio5 27 GPIO_ACTIVE_HIGH>; /* gpio155, lcd RESB */
+ mode-gpios = <&gpio5 26 GPIO_ACTIVE_HIGH /* gpio154, lcd MO */
+ &gpio1 2 GPIO_ACTIVE_HIGH /* gpio2, lcd LR */
+ &gpio1 3 GPIO_ACTIVE_HIGH>; /* gpio3, lcd UD */
+
+ port {
+ lcd_in: endpoint {
+ remote-endpoint = <&dpi_out>;
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/video/sony,acx565akm.txt b/Documentation/devicetree/bindings/video/sony,acx565akm.txt
new file mode 100644
index 00000000000..e1233328074
--- /dev/null
+++ b/Documentation/devicetree/bindings/video/sony,acx565akm.txt
@@ -0,0 +1,30 @@
+Sony ACX565AKM SDI Panel
+========================
+
+Required properties:
+- compatible: "sony,acx565akm"
+
+Optional properties:
+- label: a symbolic name for the panel
+- reset-gpios: panel reset gpio
+
+Required nodes:
+- Video port for SDI input
+
+Example
+-------
+
+acx565akm@2 {
+ compatible = "sony,acx565akm";
+ spi-max-frequency = <6000000>;
+ reg = <2>;
+
+ label = "lcd";
+ reset-gpios = <&gpio3 26 GPIO_ACTIVE_HIGH>; /* 90 */
+
+ port {
+ lcd_in: endpoint {
+ remote-endpoint = <&sdi_out>;
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/video/ssd1289fb.txt b/Documentation/devicetree/bindings/video/ssd1289fb.txt
new file mode 100644
index 00000000000..4fcd5e68cb6
--- /dev/null
+++ b/Documentation/devicetree/bindings/video/ssd1289fb.txt
@@ -0,0 +1,13 @@
+* Solomon SSD1289 Framebuffer Driver
+
+Required properties:
+ - compatible: Should be "solomon,ssd1289fb". The only supported bus for
+ now is lbc.
+ - reg: Should contain address of the controller on the LBC bus. The detail
+ was described in Documentation/devicetree/bindings/powerpc/fsl/lbc.txt
+
+Examples:
+display@2,0 {
+ compatible = "solomon,ssd1289fb";
+ reg = <0x2 0x0000 0x0004>;
+};
diff --git a/Documentation/devicetree/bindings/video/ti,omap-dss.txt b/Documentation/devicetree/bindings/video/ti,omap-dss.txt
new file mode 100644
index 00000000000..d5f1a3fe310
--- /dev/null
+++ b/Documentation/devicetree/bindings/video/ti,omap-dss.txt
@@ -0,0 +1,211 @@
+Texas Instruments OMAP Display Subsystem
+========================================
+
+Generic Description
+-------------------
+
+This document is a generic description of the OMAP Display Subsystem bindings.
+Binding details for each OMAP SoC version are described in respective binding
+documentation.
+
+The OMAP Display Subsystem (DSS) hardware consists of DSS Core, DISPC module and
+a number of encoder modules. All DSS versions contain DSS Core and DISPC, but
+the encoder modules vary.
+
+The DSS Core is the parent of the other DSS modules, and manages clock routing,
+integration to the SoC, etc.
+
+DISPC is the display controller, which reads pixels from the memory and outputs
+a RGB pixel stream to encoders.
+
+The encoder modules encode the received RGB pixel stream to a video output like
+HDMI, MIPI DPI, etc.
+
+Video Ports
+-----------
+
+The DSS Core and the encoders have video port outputs. The structure of the
+video ports is described in Documentation/devicetree/bindings/video/video-
+ports.txt, and the properties for the ports and endpoints for each encoder are
+described in the SoC's DSS binding documentation.
+
+The video ports are used to describe the connections to external hardware, like
+panels or external encoders.
+
+Aliases
+-------
+
+The board dts file may define aliases for displays to assign "displayX" style
+name for each display. If no aliases are defined, a semi-random number is used
+for the display.
+
+Example
+-------
+
+A shortened example of the DSS description for OMAP4, with non-relevant parts
+removed, defined in omap4.dtsi:
+
+dss: dss@58000000 {
+ compatible = "ti,omap4-dss";
+ reg = <0x58000000 0x80>;
+ status = "disabled";
+ ti,hwmods = "dss_core";
+ clocks = <&dss_dss_clk>;
+ clock-names = "fck";
+ #address-cells = <1>;
+ #size-cells = <1>;
+ ranges;
+
+ dispc@58001000 {
+ compatible = "ti,omap4-dispc";
+ reg = <0x58001000 0x1000>;
+ interrupts = <GIC_SPI 25 IRQ_TYPE_LEVEL_HIGH>;
+ ti,hwmods = "dss_dispc";
+ clocks = <&dss_dss_clk>;
+ clock-names = "fck";
+ };
+
+ hdmi: encoder@58006000 {
+ compatible = "ti,omap4-hdmi";
+ reg = <0x58006000 0x200>,
+ <0x58006200 0x100>,
+ <0x58006300 0x100>,
+ <0x58006400 0x1000>;
+ reg-names = "wp", "pll", "phy", "core";
+ interrupts = <GIC_SPI 101 IRQ_TYPE_LEVEL_HIGH>;
+ status = "disabled";
+ ti,hwmods = "dss_hdmi";
+ clocks = <&dss_48mhz_clk>, <&dss_sys_clk>;
+ clock-names = "fck", "sys_clk";
+ };
+};
+
+A shortened example of the board description for OMAP4 Panda board, defined in
+omap4-panda.dts.
+
+The Panda board has a DVI and a HDMI connector, and the board contains a TFP410
+chip (MIPI DPI to DVI encoder) and a TPD12S015 chip (HDMI ESD protection & level
+shifter). The video pipelines for the connectors are formed as follows:
+
+DSS Core --(MIPI DPI)--> TFP410 --(DVI)--> DVI Connector
+OMAP HDMI --(HDMI)--> TPD12S015 --(HDMI)--> HDMI Connector
+
+/ {
+ aliases {
+ display0 = &dvi0;
+ display1 = &hdmi0;
+ };
+
+ tfp410: encoder@0 {
+ compatible = "ti,tfp410";
+ gpios = <&gpio1 0 GPIO_ACTIVE_LOW>; /* 0, power-down */
+
+ pinctrl-names = "default";
+ pinctrl-0 = <&tfp410_pins>;
+
+ ports {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ port@0 {
+ reg = <0>;
+
+ tfp410_in: endpoint@0 {
+ remote-endpoint = <&dpi_out>;
+ };
+ };
+
+ port@1 {
+ reg = <1>;
+
+ tfp410_out: endpoint@0 {
+ remote-endpoint = <&dvi_connector_in>;
+ };
+ };
+ };
+ };
+
+ dvi0: connector@0 {
+ compatible = "dvi-connector";
+ label = "dvi";
+
+ i2c-bus = <&i2c3>;
+
+ port {
+ dvi_connector_in: endpoint {
+ remote-endpoint = <&tfp410_out>;
+ };
+ };
+ };
+
+ tpd12s015: encoder@1 {
+ compatible = "ti,tpd12s015";
+
+ pinctrl-names = "default";
+ pinctrl-0 = <&tpd12s015_pins>;
+
+ gpios = <&gpio2 28 GPIO_ACTIVE_HIGH>, /* 60, CT CP HPD */
+ <&gpio2 9 GPIO_ACTIVE_HIGH>, /* 41, LS OE */
+ <&gpio2 31 GPIO_ACTIVE_HIGH>; /* 63, HPD */
+
+ ports {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ port@0 {
+ reg = <0>;
+
+ tpd12s015_in: endpoint@0 {
+ remote-endpoint = <&hdmi_out>;
+ };
+ };
+
+ port@1 {
+ reg = <1>;
+
+ tpd12s015_out: endpoint@0 {
+ remote-endpoint = <&hdmi_connector_in>;
+ };
+ };
+ };
+ };
+
+ hdmi0: connector@1 {
+ compatible = "hdmi-connector";
+ label = "hdmi";
+
+ port {
+ hdmi_connector_in: endpoint {
+ remote-endpoint = <&tpd12s015_out>;
+ };
+ };
+ };
+};
+
+&dss {
+ status = "ok";
+
+ pinctrl-names = "default";
+ pinctrl-0 = <&dss_dpi_pins>;
+
+ port {
+ dpi_out: endpoint {
+ remote-endpoint = <&tfp410_in>;
+ data-lines = <24>;
+ };
+ };
+};
+
+&hdmi {
+ status = "ok";
+ vdda-supply = <&vdac>;
+
+ pinctrl-names = "default";
+ pinctrl-0 = <&dss_hdmi_pins>;
+
+ port {
+ hdmi_out: endpoint {
+ remote-endpoint = <&tpd12s015_in>;
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/video/ti,omap2-dss.txt b/Documentation/devicetree/bindings/video/ti,omap2-dss.txt
new file mode 100644
index 00000000000..fa8bb2ed117
--- /dev/null
+++ b/Documentation/devicetree/bindings/video/ti,omap2-dss.txt
@@ -0,0 +1,54 @@
+Texas Instruments OMAP2 Display Subsystem
+=========================================
+
+See Documentation/devicetree/bindings/video/ti,omap-dss.txt for generic
+description about OMAP Display Subsystem bindings.
+
+DSS Core
+--------
+
+Required properties:
+- compatible: "ti,omap2-dss"
+- reg: address and length of the register space
+- ti,hwmods: "dss_core"
+
+Optional nodes:
+- Video port for DPI output
+
+DPI Endpoint required properties:
+- data-lines: number of lines used
+
+
+DISPC
+-----
+
+Required properties:
+- compatible: "ti,omap2-dispc"
+- reg: address and length of the register space
+- ti,hwmods: "dss_dispc"
+- interrupts: the DISPC interrupt
+
+
+RFBI
+----
+
+Required properties:
+- compatible: "ti,omap2-rfbi"
+- reg: address and length of the register space
+- ti,hwmods: "dss_rfbi"
+
+
+VENC
+----
+
+Required properties:
+- compatible: "ti,omap2-venc"
+- reg: address and length of the register space
+- ti,hwmods: "dss_venc"
+- vdda-supply: power supply for DAC
+
+VENC Endpoint required properties:
+
+Required properties:
+- ti,invert-polarity: invert the polarity of the video signal
+- ti,channels: 1 for composite, 2 for s-video
diff --git a/Documentation/devicetree/bindings/video/ti,omap3-dss.txt b/Documentation/devicetree/bindings/video/ti,omap3-dss.txt
new file mode 100644
index 00000000000..0023fa4b132
--- /dev/null
+++ b/Documentation/devicetree/bindings/video/ti,omap3-dss.txt
@@ -0,0 +1,83 @@
+Texas Instruments OMAP3 Display Subsystem
+=========================================
+
+See Documentation/devicetree/bindings/video/ti,omap-dss.txt for generic
+description about OMAP Display Subsystem bindings.
+
+DSS Core
+--------
+
+Required properties:
+- compatible: "ti,omap3-dss"
+- reg: address and length of the register space
+- ti,hwmods: "dss_core"
+- clocks: handle to fclk
+- clock-names: "fck"
+
+Optional nodes:
+- Video ports:
+ - Port 0: DPI output
+ - Port 1: SDI output
+
+DPI Endpoint required properties:
+- data-lines: number of lines used
+
+SDI Endpoint required properties:
+- datapairs: number of datapairs used
+
+
+DISPC
+-----
+
+Required properties:
+- compatible: "ti,omap3-dispc"
+- reg: address and length of the register space
+- ti,hwmods: "dss_dispc"
+- interrupts: the DISPC interrupt
+- clocks: handle to fclk
+- clock-names: "fck"
+
+
+RFBI
+----
+
+Required properties:
+- compatible: "ti,omap3-rfbi"
+- reg: address and length of the register space
+- ti,hwmods: "dss_rfbi"
+- clocks: handles to fclk and iclk
+- clock-names: "fck", "ick"
+
+
+VENC
+----
+
+Required properties:
+- compatible: "ti,omap3-venc"
+- reg: address and length of the register space
+- ti,hwmods: "dss_venc"
+- vdda-supply: power supply for DAC
+- clocks: handle to fclk
+- clock-names: "fck"
+
+VENC Endpoint required properties:
+- ti,invert-polarity: invert the polarity of the video signal
+- ti,channels: 1 for composite, 2 for s-video
+
+
+DSI
+---
+
+Required properties:
+- compatible: "ti,omap3-dsi"
+- reg: addresses and lengths of the register spaces for 'proto', 'phy' and 'pll'
+- reg-names: "proto", "phy", "pll"
+- interrupts: the DSI interrupt line
+- ti,hwmods: "dss_dsi1"
+- vdd-supply: power supply for DSI
+- clocks: handles to fclk and pll clock
+- clock-names: "fck", "sys_clk"
+
+DSI Endpoint required properties:
+- lanes: list of pin numbers for the DSI lanes: CLK+, CLK-, DATA0+, DATA0-,
+ DATA1+, DATA1-, ...
diff --git a/Documentation/devicetree/bindings/video/ti,omap4-dss.txt b/Documentation/devicetree/bindings/video/ti,omap4-dss.txt
new file mode 100644
index 00000000000..b8c29fbd1fb
--- /dev/null
+++ b/Documentation/devicetree/bindings/video/ti,omap4-dss.txt
@@ -0,0 +1,115 @@
+Texas Instruments OMAP4 Display Subsystem
+=========================================
+
+See Documentation/devicetree/bindings/video/ti,omap-dss.txt for generic
+description about OMAP Display Subsystem bindings.
+
+DSS Core
+--------
+
+Required properties:
+- compatible: "ti,omap4-dss"
+- reg: address and length of the register space
+- ti,hwmods: "dss_core"
+- clocks: handle to fclk
+- clock-names: "fck"
+
+Required nodes:
+- DISPC
+
+Optional nodes:
+- DSS Submodules: RFBI, VENC, DSI, HDMI
+- Video port for DPI output
+
+DPI Endpoint required properties:
+- data-lines: number of lines used
+
+
+DISPC
+-----
+
+Required properties:
+- compatible: "ti,omap4-dispc"
+- reg: address and length of the register space
+- ti,hwmods: "dss_dispc"
+- interrupts: the DISPC interrupt
+- clocks: handle to fclk
+- clock-names: "fck"
+
+
+RFBI
+----
+
+Required properties:
+- compatible: "ti,omap4-rfbi"
+- reg: address and length of the register space
+- ti,hwmods: "dss_rfbi"
+- clocks: handles to fclk and iclk
+- clock-names: "fck", "ick"
+
+Optional nodes:
+- Video port for RFBI output
+- RFBI controlled peripherals
+
+
+VENC
+----
+
+Required properties:
+- compatible: "ti,omap4-venc"
+- reg: address and length of the register space
+- ti,hwmods: "dss_venc"
+- vdda-supply: power supply for DAC
+- clocks: handle to fclk
+- clock-names: "fck"
+
+Optional nodes:
+- Video port for VENC output
+
+VENC Endpoint required properties:
+- ti,invert-polarity: invert the polarity of the video signal
+- ti,channels: 1 for composite, 2 for s-video
+
+
+DSI
+---
+
+Required properties:
+- compatible: "ti,omap4-dsi"
+- reg: addresses and lengths of the register spaces for 'proto', 'phy' and 'pll'
+- reg-names: "proto", "phy", "pll"
+- interrupts: the DSI interrupt line
+- ti,hwmods: "dss_dsi1" or "dss_dsi2"
+- vdd-supply: power supply for DSI
+- clocks: handles to fclk and pll clock
+- clock-names: "fck", "sys_clk"
+
+Optional nodes:
+- Video port for DSI output
+- DSI controlled peripherals
+
+DSI Endpoint required properties:
+- lanes: list of pin numbers for the DSI lanes: CLK+, CLK-, DATA0+, DATA0-,
+ DATA1+, DATA1-, ...
+
+
+HDMI
+----
+
+Required properties:
+- compatible: "ti,omap4-hdmi"
+- reg: addresses and lengths of the register spaces for 'wp', 'pll', 'phy',
+ 'core'
+- reg-names: "wp", "pll", "phy", "core"
+- interrupts: the HDMI interrupt line
+- ti,hwmods: "dss_hdmi"
+- vdda-supply: vdda power supply
+- clocks: handles to fclk and pll clock
+- clock-names: "fck", "sys_clk"
+
+Optional nodes:
+- Video port for HDMI output
+
+HDMI Endpoint optional properties:
+- lanes: list of 8 pin numbers for the HDMI lanes: CLK+, CLK-, D0+, D0-,
+ D1+, D1-, D2+, D2-. (default: 0,1,2,3,4,5,6,7)
diff --git a/Documentation/devicetree/bindings/video/ti,omap5-dss.txt b/Documentation/devicetree/bindings/video/ti,omap5-dss.txt
new file mode 100644
index 00000000000..38ffc8fcd81
--- /dev/null
+++ b/Documentation/devicetree/bindings/video/ti,omap5-dss.txt
@@ -0,0 +1,96 @@
+Texas Instruments OMAP5 Display Subsystem
+=========================================
+
+See Documentation/devicetree/bindings/video/ti,omap-dss.txt for generic
+description about OMAP Display Subsystem bindings.
+
+DSS Core
+--------
+
+Required properties:
+- compatible: "ti,omap5-dss"
+- reg: address and length of the register space
+- ti,hwmods: "dss_core"
+- clocks: handle to fclk
+- clock-names: "fck"
+
+Required nodes:
+- DISPC
+
+Optional nodes:
+- DSS Submodules: RFBI, DSI, HDMI
+- Video port for DPI output
+
+DPI Endpoint required properties:
+- data-lines: number of lines used
+
+
+DISPC
+-----
+
+Required properties:
+- compatible: "ti,omap5-dispc"
+- reg: address and length of the register space
+- ti,hwmods: "dss_dispc"
+- interrupts: the DISPC interrupt
+- clocks: handle to fclk
+- clock-names: "fck"
+
+
+RFBI
+----
+
+Required properties:
+- compatible: "ti,omap5-rfbi"
+- reg: address and length of the register space
+- ti,hwmods: "dss_rfbi"
+- clocks: handles to fclk and iclk
+- clock-names: "fck", "ick"
+
+Optional nodes:
+- Video port for RFBI output
+- RFBI controlled peripherals
+
+
+DSI
+---
+
+Required properties:
+- compatible: "ti,omap5-dsi"
+- reg: addresses and lengths of the register spaces for 'proto', 'phy' and 'pll'
+- reg-names: "proto", "phy", "pll"
+- interrupts: the DSI interrupt line
+- ti,hwmods: "dss_dsi1" or "dss_dsi2"
+- vdd-supply: power supply for DSI
+- clocks: handles to fclk and pll clock
+- clock-names: "fck", "sys_clk"
+
+Optional nodes:
+- Video port for DSI output
+- DSI controlled peripherals
+
+DSI Endpoint required properties:
+- lanes: list of pin numbers for the DSI lanes: CLK+, CLK-, DATA0+, DATA0-,
+ DATA1+, DATA1-, ...
+
+
+HDMI
+----
+
+Required properties:
+- compatible: "ti,omap5-hdmi"
+- reg: addresses and lengths of the register spaces for 'wp', 'pll', 'phy',
+ 'core'
+- reg-names: "wp", "pll", "phy", "core"
+- interrupts: the HDMI interrupt line
+- ti,hwmods: "dss_hdmi"
+- vdda-supply: vdda power supply
+- clocks: handles to fclk and pll clock
+- clock-names: "fck", "sys_clk"
+
+Optional nodes:
+- Video port for HDMI output
+
+HDMI Endpoint optional properties:
+- lanes: list of 8 pin numbers for the HDMI lanes: CLK+, CLK-, D0+, D0-,
+ D1+, D1-, D2+, D2-. (default: 0,1,2,3,4,5,6,7)
diff --git a/Documentation/devicetree/bindings/video/ti,tfp410.txt b/Documentation/devicetree/bindings/video/ti,tfp410.txt
new file mode 100644
index 00000000000..2cbe32a3d0b
--- /dev/null
+++ b/Documentation/devicetree/bindings/video/ti,tfp410.txt
@@ -0,0 +1,41 @@
+TFP410 DPI to DVI encoder
+=========================
+
+Required properties:
+- compatible: "ti,tfp410"
+
+Optional properties:
+- powerdown-gpios: power-down gpio
+
+Required nodes:
+- Video port 0 for DPI input
+- Video port 1 for DVI output
+
+Example
+-------
+
+tfp410: encoder@0 {
+ compatible = "ti,tfp410";
+ powerdown-gpios = <&twl_gpio 2 GPIO_ACTIVE_LOW>;
+
+ ports {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ port@0 {
+ reg = <0>;
+
+ tfp410_in: endpoint@0 {
+ remote-endpoint = <&dpi_out>;
+ };
+ };
+
+ port@1 {
+ reg = <1>;
+
+ tfp410_out: endpoint@0 {
+ remote-endpoint = <&dvi_connector_in>;
+ };
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/video/ti,tpd12s015.txt b/Documentation/devicetree/bindings/video/ti,tpd12s015.txt
new file mode 100644
index 00000000000..26e6d32e3f2
--- /dev/null
+++ b/Documentation/devicetree/bindings/video/ti,tpd12s015.txt
@@ -0,0 +1,44 @@
+TPD12S015 HDMI level shifter and ESD protection chip
+====================================================
+
+Required properties:
+- compatible: "ti,tpd12s015"
+
+Optional properties:
+- gpios: CT CP HPD, LS OE and HPD gpios
+
+Required nodes:
+- Video port 0 for HDMI input
+- Video port 1 for HDMI output
+
+Example
+-------
+
+tpd12s015: encoder@1 {
+ compatible = "ti,tpd12s015";
+
+ gpios = <&gpio2 28 GPIO_ACTIVE_HIGH>, /* 60, CT CP HPD */
+ <&gpio2 9 GPIO_ACTIVE_HIGH>, /* 41, LS OE */
+ <&gpio2 31 GPIO_ACTIVE_HIGH>; /* 63, HPD */
+
+ ports {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ port@0 {
+ reg = <0>;
+
+ tpd12s015_in: endpoint@0 {
+ remote-endpoint = <&hdmi_out>;
+ };
+ };
+
+ port@1 {
+ reg = <1>;
+
+ tpd12s015_out: endpoint@0 {
+ remote-endpoint = <&hdmi_connector_in>;
+ };
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/video/toppoly,td028ttec1.txt b/Documentation/devicetree/bindings/video/toppoly,td028ttec1.txt
new file mode 100644
index 00000000000..7175dc3740a
--- /dev/null
+++ b/Documentation/devicetree/bindings/video/toppoly,td028ttec1.txt
@@ -0,0 +1,30 @@
+Toppoly TD028TTEC1 Panel
+========================
+
+Required properties:
+- compatible: "toppoly,td028ttec1"
+
+Optional properties:
+- label: a symbolic name for the panel
+
+Required nodes:
+- Video port for DPI input
+
+Example
+-------
+
+lcd-panel: td028ttec1@0 {
+ compatible = "toppoly,td028ttec1";
+ reg = <0>;
+ spi-max-frequency = <100000>;
+ spi-cpol;
+ spi-cpha;
+
+ label = "lcd";
+ port {
+ lcd_in: endpoint {
+ remote-endpoint = <&dpi_out>;
+ };
+ };
+};
+
diff --git a/Documentation/devicetree/bindings/video/tpo,td043mtea1.txt b/Documentation/devicetree/bindings/video/tpo,td043mtea1.txt
new file mode 100644
index 00000000000..ec6d6297516
--- /dev/null
+++ b/Documentation/devicetree/bindings/video/tpo,td043mtea1.txt
@@ -0,0 +1,33 @@
+TPO TD043MTEA1 Panel
+====================
+
+Required properties:
+- compatible: "tpo,td043mtea1"
+- reset-gpios: panel reset gpio
+
+Optional properties:
+- label: a symbolic name for the panel
+
+Required nodes:
+- Video port for DPI input
+
+Example
+-------
+
+lcd-panel: panel@0 {
+ compatible = "tpo,td043mtea1";
+ reg = <0>;
+ spi-max-frequency = <100000>;
+ spi-cpol;
+ spi-cpha;
+
+ label = "lcd";
+
+ reset-gpios = <&gpio7 7 0>;
+
+ port {
+ lcd_in: endpoint {
+ remote-endpoint = <&dpi_out>;
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/watchdog/atmel-wdt.txt b/Documentation/devicetree/bindings/watchdog/atmel-wdt.txt
index fcdd48f7dcf..f90e294d763 100644
--- a/Documentation/devicetree/bindings/watchdog/atmel-wdt.txt
+++ b/Documentation/devicetree/bindings/watchdog/atmel-wdt.txt
@@ -9,11 +9,37 @@ Required properties:
Optional properties:
- timeout-sec: contains the watchdog timeout in seconds.
+- interrupts : Should contain WDT interrupt.
+- atmel,max-heartbeat-sec : Should contain the maximum heartbeat value in
+ seconds. This value should be less or equal to 16. It is used to
+ compute the WDV field.
+- atmel,min-heartbeat-sec : Should contain the minimum heartbeat value in
+ seconds. This value must be smaller than the max-heartbeat-sec value.
+ It is used to compute the WDD field.
+- atmel,watchdog-type : Should be "hardware" or "software". Hardware watchdog
+ use the at91 watchdog reset. Software watchdog use the watchdog
+ interrupt to trigger a software reset.
+- atmel,reset-type : Should be "proc" or "all".
+ "all" : assert peripherals and processor reset signals
+ "proc" : assert the processor reset signal
+ This is valid only when using "hardware" watchdog.
+- atmel,disable : Should be present if you want to disable the watchdog.
+- atmel,idle-halt : Should be present if you want to stop the watchdog when
+ entering idle state.
+- atmel,dbg-halt : Should be present if you want to stop the watchdog when
+ entering debug state.
Example:
-
watchdog@fffffd40 {
compatible = "atmel,at91sam9260-wdt";
reg = <0xfffffd40 0x10>;
- timeout-sec = <10>;
+ interrupts = <1 IRQ_TYPE_LEVEL_HIGH 7>;
+ timeout-sec = <15>;
+ atmel,watchdog-type = "hardware";
+ atmel,reset-type = "all";
+ atmel,dbg-halt;
+ atmel,idle-halt;
+ atmel,max-heartbeat-sec = <16>;
+ atmel,min-heartbeat-sec = <0>;
+ status = "okay";
};
diff --git a/Documentation/devicetree/bindings/watchdog/davinci-wdt.txt b/Documentation/devicetree/bindings/watchdog/davinci-wdt.txt
index 75558ccd9a0..e60b9a13bdc 100644
--- a/Documentation/devicetree/bindings/watchdog/davinci-wdt.txt
+++ b/Documentation/devicetree/bindings/watchdog/davinci-wdt.txt
@@ -1,12 +1,24 @@
-DaVinci Watchdog Timer (WDT) Controller
+Texas Instruments DaVinci/Keystone Watchdog Timer (WDT) Controller
Required properties:
-- compatible : Should be "ti,davinci-wdt"
+- compatible : Should be "ti,davinci-wdt", "ti,keystone-wdt"
- reg : Should contain WDT registers location and length
+Optional properties:
+- timeout-sec : Contains the watchdog timeout in seconds
+- clocks : the clock feeding the watchdog timer.
+ Needed if platform uses clocks.
+ See clock-bindings.txt
+
+Documentation:
+Davinci DM646x - http://www.ti.com/lit/ug/spruer5b/spruer5b.pdf
+Keystone - http://www.ti.com/lit/ug/sprugv5a/sprugv5a.pdf
+
Examples:
wdt: wdt@2320000 {
compatible = "ti,davinci-wdt";
reg = <0x02320000 0x80>;
+ timeout-sec = <30>;
+ clocks = <&clkwdtimer0>;
};
diff --git a/Documentation/devicetree/bindings/watchdog/dw_wdt.txt b/Documentation/devicetree/bindings/watchdog/dw_wdt.txt
new file mode 100644
index 00000000000..08e16f684f2
--- /dev/null
+++ b/Documentation/devicetree/bindings/watchdog/dw_wdt.txt
@@ -0,0 +1,21 @@
+Synopsys Designware Watchdog Timer
+
+Required Properties:
+
+- compatible : Should contain "snps,dw-wdt"
+- reg : Base address and size of the watchdog timer registers.
+- clocks : phandle + clock-specifier for the clock that drives the
+ watchdog timer.
+
+Optional Properties:
+
+- interrupts : The interrupt used for the watchdog timeout warning.
+
+Example:
+
+ watchdog0: wd@ffd02000 {
+ compatible = "snps,dw-wdt";
+ reg = <0xffd02000 0x1000>;
+ interrupts = <0 171 4>;
+ clocks = <&per_base_clk>;
+ };
diff --git a/Documentation/devicetree/bindings/watchdog/gpio-wdt.txt b/Documentation/devicetree/bindings/watchdog/gpio-wdt.txt
new file mode 100644
index 00000000000..37afec19494
--- /dev/null
+++ b/Documentation/devicetree/bindings/watchdog/gpio-wdt.txt
@@ -0,0 +1,23 @@
+* GPIO-controlled Watchdog
+
+Required Properties:
+- compatible: Should contain "linux,wdt-gpio".
+- gpios: From common gpio binding; gpio connection to WDT reset pin.
+- hw_algo: The algorithm used by the driver. Should be one of the
+ following values:
+ - toggle: Either a high-to-low or a low-to-high transition clears
+ the WDT counter. The watchdog timer is disabled when GPIO is
+ left floating or connected to a three-state buffer.
+ - level: Low or high level starts counting WDT timeout,
+ the opposite level disables the WDT. Active level is determined
+ by the GPIO flags.
+- hw_margin_ms: Maximum time to reset watchdog circuit (milliseconds).
+
+Example:
+ watchdog: watchdog {
+ /* ADM706 */
+ compatible = "linux,wdt-gpio";
+ gpios = <&gpio3 9 GPIO_ACTIVE_LOW>;
+ hw_algo = "toggle";
+ hw_margin_ms = <1600>;
+ };
diff --git a/Documentation/devicetree/bindings/watchdog/marvel.txt b/Documentation/devicetree/bindings/watchdog/marvel.txt
index 5dc8d30061c..97223fddb7b 100644
--- a/Documentation/devicetree/bindings/watchdog/marvel.txt
+++ b/Documentation/devicetree/bindings/watchdog/marvel.txt
@@ -3,17 +3,31 @@
Required Properties:
- Compatibility : "marvell,orion-wdt"
-- reg : Address of the timer registers
+ "marvell,armada-370-wdt"
+ "marvell,armada-xp-wdt"
+ "marvell,armada-375-wdt"
+ "marvell,armada-380-wdt"
+
+- reg : Should contain two entries: first one with the
+ timer control address, second one with the
+ rstout enable address.
+
+For "marvell,armada-375-wdt" and "marvell,armada-380-wdt":
+
+- reg : A third entry is mandatory and should contain the
+ shared mask/unmask RSTOUT address.
Optional properties:
+- interrupts : Contains the IRQ for watchdog expiration
- timeout-sec : Contains the watchdog timeout in seconds
Example:
wdt@20300 {
compatible = "marvell,orion-wdt";
- reg = <0x20300 0x28>;
+ reg = <0x20300 0x28>, <0x20108 0x4>;
+ interrupts = <3>;
timeout-sec = <10>;
status = "okay";
};
diff --git a/Documentation/devicetree/bindings/gpio/men-a021-wdt.txt b/Documentation/devicetree/bindings/watchdog/men-a021-wdt.txt
index 370dee3226d..370dee3226d 100644
--- a/Documentation/devicetree/bindings/gpio/men-a021-wdt.txt
+++ b/Documentation/devicetree/bindings/watchdog/men-a021-wdt.txt
diff --git a/Documentation/devicetree/bindings/watchdog/moxa,moxart-watchdog.txt b/Documentation/devicetree/bindings/watchdog/moxa,moxart-watchdog.txt
new file mode 100644
index 00000000000..1169857d1d1
--- /dev/null
+++ b/Documentation/devicetree/bindings/watchdog/moxa,moxart-watchdog.txt
@@ -0,0 +1,15 @@
+MOXA ART Watchdog timer
+
+Required properties:
+
+- compatible : Must be "moxa,moxart-watchdog"
+- reg : Should contain registers location and length
+- clocks : Should contain phandle for the clock that drives the counter
+
+Example:
+
+ watchdog: watchdog@98500000 {
+ compatible = "moxa,moxart-watchdog";
+ reg = <0x98500000 0x10>;
+ clocks = <&coreclk>;
+ };
diff --git a/Documentation/devicetree/bindings/watchdog/of-xilinx-wdt.txt b/Documentation/devicetree/bindings/watchdog/of-xilinx-wdt.txt
new file mode 100644
index 00000000000..6d63782a737
--- /dev/null
+++ b/Documentation/devicetree/bindings/watchdog/of-xilinx-wdt.txt
@@ -0,0 +1,23 @@
+Xilinx AXI/PLB soft-core watchdog Device Tree Bindings
+---------------------------------------------------------
+
+Required properties:
+- compatible : Should be "xlnx,xps-timebase-wdt-1.00.a" or
+ "xlnx,xps-timebase-wdt-1.01.a".
+- reg : Physical base address and size
+
+Optional properties:
+- clock-frequency : Frequency of clock in Hz
+- xlnx,wdt-enable-once : 0 - Watchdog can be restarted
+ 1 - Watchdog can be enabled just once
+- xlnx,wdt-interval : Watchdog timeout interval in 2^<val> clock cycles,
+ <val> is integer from 8 to 31.
+
+Example:
+axi-timebase-wdt@40100000 {
+ clock-frequency = <50000000>;
+ compatible = "xlnx,xps-timebase-wdt-1.00.a";
+ reg = <0x40100000 0x10000>;
+ xlnx,wdt-enable-once = <0x0>;
+ xlnx,wdt-interval = <0x1b>;
+} ;
diff --git a/Documentation/devicetree/bindings/watchdog/rt2880-wdt.txt b/Documentation/devicetree/bindings/watchdog/rt2880-wdt.txt
new file mode 100644
index 00000000000..d7bab3db9d1
--- /dev/null
+++ b/Documentation/devicetree/bindings/watchdog/rt2880-wdt.txt
@@ -0,0 +1,19 @@
+Ralink Watchdog Timers
+
+Required properties:
+- compatible: must be "ralink,rt2880-wdt"
+- reg: physical base address of the controller and length of the register range
+
+Optional properties:
+- interrupt-parent: phandle to the INTC device node
+- interrupts: Specify the INTC interrupt number
+
+Example:
+
+ watchdog@120 {
+ compatible = "ralink,rt2880-wdt";
+ reg = <0x120 0x10>;
+
+ interrupt-parent = <&intc>;
+ interrupts = <1>;
+ };
diff --git a/Documentation/devicetree/bindings/watchdog/samsung-wdt.txt b/Documentation/devicetree/bindings/watchdog/samsung-wdt.txt
index 2aa486cc1ff..cfff37511aa 100644
--- a/Documentation/devicetree/bindings/watchdog/samsung-wdt.txt
+++ b/Documentation/devicetree/bindings/watchdog/samsung-wdt.txt
@@ -5,10 +5,29 @@ after a preset amount of time during which the WDT reset event has not
occurred.
Required properties:
-- compatible : should be "samsung,s3c2410-wdt"
+- compatible : should be one among the following
+ (a) "samsung,s3c2410-wdt" for Exynos4 and previous SoCs
+ (b) "samsung,exynos5250-wdt" for Exynos5250
+ (c) "samsung,exynos5420-wdt" for Exynos5420
+
- reg : base physical address of the controller and length of memory mapped
region.
- interrupts : interrupt number to the cpu.
+- samsung,syscon-phandle : reference to syscon node (This property required only
+ in case of compatible being "samsung,exynos5250-wdt" or "samsung,exynos5420-wdt".
+ In case of Exynos5250 and 5420 this property points to syscon node holding the PMU
+ base address)
Optional properties:
- timeout-sec : contains the watchdog timeout in seconds.
+
+Example:
+
+watchdog@101D0000 {
+ compatible = "samsung,exynos5250-wdt";
+ reg = <0x101D0000 0x100>;
+ interrupts = <0 42 0>;
+ clocks = <&clock 336>;
+ clock-names = "watchdog";
+ samsung,syscon-phandle = <&pmu_syscon>;
+};
diff --git a/Documentation/devicetree/bindings/watchdog/sirfsoc_wdt.txt b/Documentation/devicetree/bindings/watchdog/sirfsoc_wdt.txt
new file mode 100644
index 00000000000..9cbc76c89b2
--- /dev/null
+++ b/Documentation/devicetree/bindings/watchdog/sirfsoc_wdt.txt
@@ -0,0 +1,14 @@
+SiRFSoC Timer and Watchdog Timer(WDT) Controller
+
+Required properties:
+- compatible: "sirf,prima2-tick"
+- reg: Address range of tick timer/WDT register set
+- interrupts: interrupt number to the cpu
+
+Example:
+
+timer@b0020000 {
+ compatible = "sirf,prima2-tick";
+ reg = <0xb0020000 0x1000>;
+ interrupts = <0>;
+};
diff --git a/Documentation/devicetree/bindings/watchdog/sunxi-wdt.txt b/Documentation/devicetree/bindings/watchdog/sunxi-wdt.txt
index e39cb266c8f..b8f75c51453 100644
--- a/Documentation/devicetree/bindings/watchdog/sunxi-wdt.txt
+++ b/Documentation/devicetree/bindings/watchdog/sunxi-wdt.txt
@@ -2,13 +2,13 @@ Allwinner SoCs Watchdog timer
Required properties:
-- compatible : should be "allwinner,<soc-family>-wdt", the currently supported
- SoC families being sun4i and sun6i
+- compatible : should be either "allwinner,sun4i-a10-wdt" or
+ "allwinner,sun6i-a31-wdt"
- reg : Specifies base physical address and size of the registers.
Example:
wdt: watchdog@01c20c90 {
- compatible = "allwinner,sun4i-wdt";
+ compatible = "allwinner,sun4i-a10-wdt";
reg = <0x01c20c90 0x10>;
};
diff --git a/Documentation/devicetree/booting-without-of.txt b/Documentation/devicetree/booting-without-of.txt
index b2fb2f5e192..1f013bd0d32 100644
--- a/Documentation/devicetree/booting-without-of.txt
+++ b/Documentation/devicetree/booting-without-of.txt
@@ -1364,19 +1364,16 @@ Appendix A - Sample SOC node for MPC8540
phy0: ethernet-phy@0 {
interrupts = <5 1>;
reg = <0>;
- device_type = "ethernet-phy";
};
phy1: ethernet-phy@1 {
interrupts = <5 1>;
reg = <1>;
- device_type = "ethernet-phy";
};
phy3: ethernet-phy@3 {
interrupts = <7 1>;
reg = <3>;
- device_type = "ethernet-phy";
};
};
};
diff --git a/Documentation/dma-buf-sharing.txt b/Documentation/dma-buf-sharing.txt
index 505e71172ae..67a4087d53f 100644
--- a/Documentation/dma-buf-sharing.txt
+++ b/Documentation/dma-buf-sharing.txt
@@ -66,7 +66,7 @@ The dma_buf buffer sharing API usage contains the following steps:
Exporting modules which do not wish to provide any specific name may use the
helper define 'dma_buf_export()', with the same arguments as above, but
- without the last argument; a __FILE__ pre-processor directive will be
+ without the last argument; a KBUILD_MODNAME pre-processor directive will be
inserted in place of 'exp_name' instead.
2. Userspace gets a handle to pass around to potential buffer-users
@@ -217,7 +217,7 @@ NOTES:
and then allow further {map,unmap}_dma_buf operations from any buffer-user
from the migrated backing-storage.
- If the exporter cannot fulfil the backing-storage constraints of the new
+ If the exporter cannot fulfill the backing-storage constraints of the new
buffer-user device as requested, dma_buf_attach() would return an error to
denote non-compatibility of the new buffer-sharing request with the current
buffer.
@@ -352,7 +352,7 @@ Being able to mmap an export dma-buf buffer object has 2 main use-cases:
No special interfaces, userspace simply calls mmap on the dma-buf fd.
-2. Supporting existing mmap interfaces in exporters
+2. Supporting existing mmap interfaces in importers
Similar to the motivation for kernel cpu access it is again important that
the userspace code of a given importing subsystem can use the same interfaces
diff --git a/Documentation/dmatest.txt b/Documentation/dmatest.txt
index a2b5663eae2..dd77a81bdb8 100644
--- a/Documentation/dmatest.txt
+++ b/Documentation/dmatest.txt
@@ -15,39 +15,48 @@ be built as module or inside kernel. Let's consider those cases.
Part 2 - When dmatest is built as a module...
-After mounting debugfs and loading the module, the /sys/kernel/debug/dmatest
-folder with nodes will be created. There are two important files located. First
-is the 'run' node that controls run and stop phases of the test, and the second
-one, 'results', is used to get the test case results.
-
-Note that in this case test will not run on load automatically.
-
Example of usage:
+ % modprobe dmatest channel=dma0chan0 timeout=2000 iterations=1 run=1
+
+...or:
+ % modprobe dmatest
% echo dma0chan0 > /sys/module/dmatest/parameters/channel
% echo 2000 > /sys/module/dmatest/parameters/timeout
% echo 1 > /sys/module/dmatest/parameters/iterations
- % echo 1 > /sys/kernel/debug/dmatest/run
+ % echo 1 > /sys/module/dmatest/parameters/run
+
+...or on the kernel command line:
+
+ dmatest.channel=dma0chan0 dmatest.timeout=2000 dmatest.iterations=1 dmatest.run=1
Hint: available channel list could be extracted by running the following
command:
% ls -1 /sys/class/dma/
-After a while you will start to get messages about current status or error like
-in the original code.
+Once started a message like "dmatest: Started 1 threads using dma0chan0" is
+emitted. After that only test failure messages are reported until the test
+stops.
Note that running a new test will not stop any in progress test.
-The following command should return actual state of the test.
- % cat /sys/kernel/debug/dmatest/run
-
-To wait for test done the user may perform a busy loop that checks the state.
-
- % while [ $(cat /sys/kernel/debug/dmatest/run) = "Y" ]
- > do
- > echo -n "."
- > sleep 1
- > done
- > echo
+The following command returns the state of the test.
+ % cat /sys/module/dmatest/parameters/run
+
+To wait for test completion userpace can poll 'run' until it is false, or use
+the wait parameter. Specifying 'wait=1' when loading the module causes module
+initialization to pause until a test run has completed, while reading
+/sys/module/dmatest/parameters/wait waits for any running test to complete
+before returning. For example, the following scripts wait for 42 tests
+to complete before exiting. Note that if 'iterations' is set to 'infinite' then
+waiting is disabled.
+
+Example:
+ % modprobe dmatest run=1 iterations=42 wait=1
+ % modprobe -r dmatest
+...or:
+ % modprobe dmatest run=1 iterations=42
+ % cat /sys/module/dmatest/parameters/wait
+ % modprobe -r dmatest
Part 3 - When built-in in the kernel...
@@ -62,21 +71,22 @@ case. You always could check them at run-time by running
Part 4 - Gathering the test results
-The module provides a storage for the test results in the memory. The gathered
-data could be used after test is done.
+Test results are printed to the kernel log buffer with the format:
-The special file 'results' in the debugfs represents gathered data of the in
-progress test. The messages collected are printed to the kernel log as well.
+"dmatest: result <channel>: <test id>: '<error msg>' with src_off=<val> dst_off=<val> len=<val> (<err code>)"
Example of output:
- % cat /sys/kernel/debug/dmatest/results
- dma0chan0-copy0: #1: No errors with src_off=0x7bf dst_off=0x8ad len=0x3fea (0)
+ % dmesg | tail -n 1
+ dmatest: result dma0chan0-copy0: #1: No errors with src_off=0x7bf dst_off=0x8ad len=0x3fea (0)
The message format is unified across the different types of errors. A number in
the parens represents additional information, e.g. error code, error counter,
-or status.
+or status. A test thread also emits a summary line at completion listing the
+number of tests executed, number that failed, and a result code.
-Comparison between buffers is stored to the dedicated structure.
+Example:
+ % dmesg | tail -n 1
+ dmatest: dma0chan0-copy0: summary 1 test, 0 failures 1000 iops 100000 KB/s (0)
-Note that the verify result is now accessible only via file 'results' in the
-debugfs.
+The details of a data miscompare error are also emitted, but do not follow the
+above format.
diff --git a/Documentation/dontdiff b/Documentation/dontdiff
index b89a739a327..9de9813d0ec 100644
--- a/Documentation/dontdiff
+++ b/Documentation/dontdiff
@@ -1,5 +1,6 @@
*.a
*.aux
+*.bc
*.bin
*.bz2
*.cis
@@ -21,6 +22,7 @@
*.i
*.jpeg
*.ko
+*.ll
*.log
*.lst
*.lzma
@@ -35,6 +37,7 @@
*.out
*.patch
*.pdf
+*.plist
*.png
*.pot
*.ps
diff --git a/Documentation/driver-model/design-patterns.txt b/Documentation/driver-model/design-patterns.txt
new file mode 100644
index 00000000000..ba7b2df6490
--- /dev/null
+++ b/Documentation/driver-model/design-patterns.txt
@@ -0,0 +1,116 @@
+
+Device Driver Design Patterns
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+This document describes a few common design patterns found in device drivers.
+It is likely that subsystem maintainers will ask driver developers to
+conform to these design patterns.
+
+1. State Container
+2. container_of()
+
+
+1. State Container
+~~~~~~~~~~~~~~~~~~
+
+While the kernel contains a few device drivers that assume that they will
+only be probed() once on a certain system (singletons), it is custom to assume
+that the device the driver binds to will appear in several instances. This
+means that the probe() function and all callbacks need to be reentrant.
+
+The most common way to achieve this is to use the state container design
+pattern. It usually has this form:
+
+struct foo {
+ spinlock_t lock; /* Example member */
+ (...)
+};
+
+static int foo_probe(...)
+{
+ struct foo *foo;
+
+ foo = devm_kzalloc(dev, sizeof(*foo), GFP_KERNEL);
+ if (!foo)
+ return -ENOMEM;
+ spin_lock_init(&foo->lock);
+ (...)
+}
+
+This will create an instance of struct foo in memory every time probe() is
+called. This is our state container for this instance of the device driver.
+Of course it is then necessary to always pass this instance of the
+state around to all functions that need access to the state and its members.
+
+For example, if the driver is registering an interrupt handler, you would
+pass around a pointer to struct foo like this:
+
+static irqreturn_t foo_handler(int irq, void *arg)
+{
+ struct foo *foo = arg;
+ (...)
+}
+
+static int foo_probe(...)
+{
+ struct foo *foo;
+
+ (...)
+ ret = request_irq(irq, foo_handler, 0, "foo", foo);
+}
+
+This way you always get a pointer back to the correct instance of foo in
+your interrupt handler.
+
+
+2. container_of()
+~~~~~~~~~~~~~~~~~
+
+Continuing on the above example we add an offloaded work:
+
+struct foo {
+ spinlock_t lock;
+ struct workqueue_struct *wq;
+ struct work_struct offload;
+ (...)
+};
+
+static void foo_work(struct work_struct *work)
+{
+ struct foo *foo = container_of(work, struct foo, offload);
+
+ (...)
+}
+
+static irqreturn_t foo_handler(int irq, void *arg)
+{
+ struct foo *foo = arg;
+
+ queue_work(foo->wq, &foo->offload);
+ (...)
+}
+
+static int foo_probe(...)
+{
+ struct foo *foo;
+
+ foo->wq = create_singlethread_workqueue("foo-wq");
+ INIT_WORK(&foo->offload, foo_work);
+ (...)
+}
+
+The design pattern is the same for an hrtimer or something similar that will
+return a single argument which is a pointer to a struct member in the
+callback.
+
+container_of() is a macro defined in <linux/kernel.h>
+
+What container_of() does is to obtain a pointer to the containing struct from
+a pointer to a member by a simple subtraction using the offsetof() macro from
+standard C, which allows something similar to object oriented behaviours.
+Notice that the contained member must not be a pointer, but an actual member
+for this to work.
+
+We can see here that we avoid having global pointers to our struct foo *
+instance this way, while still keeping the number of parameters passed to the
+work function to a single pointer.
diff --git a/Documentation/driver-model/devres.txt b/Documentation/driver-model/devres.txt
index fcb34a5697e..1525e30483f 100644
--- a/Documentation/driver-model/devres.txt
+++ b/Documentation/driver-model/devres.txt
@@ -236,12 +236,17 @@ certainly invest a bit more effort into libata core layer).
MEM
devm_kzalloc()
devm_kfree()
+ devm_kmemdup()
+ devm_get_free_pages()
+ devm_free_pages()
IIO
devm_iio_device_alloc()
devm_iio_device_free()
devm_iio_trigger_alloc()
devm_iio_trigger_free()
+ devm_iio_device_register()
+ devm_iio_device_unregister()
IO region
devm_request_region()
@@ -283,6 +288,7 @@ REGULATOR
devm_regulator_get()
devm_regulator_put()
devm_regulator_bulk_get()
+ devm_regulator_register()
CLOCK
devm_clk_get()
@@ -302,3 +308,18 @@ PHY
SLAVE DMA ENGINE
devm_acpi_dma_controller_register()
+
+SPI
+ devm_spi_register_master()
+
+GPIO
+ devm_gpiod_get()
+ devm_gpiod_get_index()
+ devm_gpiod_get_optional()
+ devm_gpiod_get_index_optional()
+ devm_gpiod_put()
+
+MDIO
+ devm_mdiobus_alloc()
+ devm_mdiobus_alloc_size()
+ devm_mdiobus_free()
diff --git a/Documentation/driver-model/platform.txt b/Documentation/driver-model/platform.txt
index 41f41632ee5..07795ec51cd 100644
--- a/Documentation/driver-model/platform.txt
+++ b/Documentation/driver-model/platform.txt
@@ -48,7 +48,7 @@ struct platform_driver {
struct device_driver driver;
};
-Note that probe() should general verify that the specified device hardware
+Note that probe() should in general verify that the specified device hardware
actually exists; sometimes platform setup code can't be sure. The probing
can use device resources, including clocks, and device platform_data.
diff --git a/Documentation/dvb/contributors.txt b/Documentation/dvb/contributors.txt
index 47c30098dab..731a009723c 100644
--- a/Documentation/dvb/contributors.txt
+++ b/Documentation/dvb/contributors.txt
@@ -78,7 +78,7 @@ Peter Beutner <p.beutner@gmx.net>
Wilson Michaels <wilsonmichaels@earthlink.net>
for the lgdt330x frontend driver, and various bugfixes
-Michael Krufky <mkrufky@m1k.net>
+Michael Krufky <mkrufky@linuxtv.org>
for maintaining v4l/dvb inter-tree dependencies
Taylor Jacob <rtjacob@earthlink.net>
diff --git a/Documentation/dvb/get_dvb_firmware b/Documentation/dvb/get_dvb_firmware
index 5d5ee4c13fa..d91b8be80b6 100755
--- a/Documentation/dvb/get_dvb_firmware
+++ b/Documentation/dvb/get_dvb_firmware
@@ -28,8 +28,8 @@ use IO::Handle;
"opera1", "cx231xx", "cx18", "cx23885", "pvrusb2", "mpc718",
"af9015", "ngene", "az6027", "lme2510_lg", "lme2510c_s7395",
"lme2510c_s7395_old", "drxk", "drxk_terratec_h5",
- "drxk_hauppauge_hvr930c", "tda10071", "it9135", "it9137",
- "drxk_pctv", "drxk_terratec_htc_stick", "sms1xxx_hcw");
+ "drxk_hauppauge_hvr930c", "tda10071", "it9135", "drxk_pctv",
+ "drxk_terratec_htc_stick", "sms1xxx_hcw");
# Check args
syntax() if (scalar(@ARGV) != 1);
@@ -727,24 +727,6 @@ sub it9135 {
"$fwfile1 $fwfile2"
}
-sub it9137 {
- my $url = "http://kworld.server261.com/kworld/CD/ITE_TiVme/V1.00/";
- my $zipfile = "Driver_V10.323.1.0412.100412.zip";
- my $hash = "79b597dc648698ed6820845c0c9d0d37";
- my $tmpdir = tempdir(DIR => "/tmp", CLEANUP => 0);
- my $drvfile = "Driver_V10.323.1.0412.100412/Data/x86/IT9135BDA.sys";
- my $fwfile = "dvb-usb-it9137-01.fw";
-
- checkstandard();
-
- wgetfile($zipfile, $url . $zipfile);
- verify($zipfile, $hash);
- unzip($zipfile, $tmpdir);
- extract("$tmpdir/$drvfile", 69632, 5731, "$fwfile");
-
- "$fwfile"
-}
-
sub tda10071 {
my $sourcefile = "PCTV_460e_reference.zip";
my $url = "ftp://ftp.pctvsystems.com/TV/driver/PCTV%2070e%2080e%20100e%20320e%20330e%20800e/";
diff --git a/Documentation/dvb/it9137.txt b/Documentation/dvb/it9137.txt
deleted file mode 100644
index 9e6726eead9..00000000000
--- a/Documentation/dvb/it9137.txt
+++ /dev/null
@@ -1,9 +0,0 @@
-To extract firmware for Kworld UB499-2T (id 1b80:e409) you need to copy the
-following file(s) to this directory.
-
-IT9135BDA.sys Dated Mon 22 Mar 2010 02:20:08 GMT
-
-extract using dd
-dd if=IT9135BDA.sys ibs=1 skip=69632 count=5731 of=dvb-usb-it9137-01.fw
-
-copy to default firmware location.
diff --git a/Documentation/dynamic-debug-howto.txt b/Documentation/dynamic-debug-howto.txt
index 1bbdcfcf1f1..9417871b875 100644
--- a/Documentation/dynamic-debug-howto.txt
+++ b/Documentation/dynamic-debug-howto.txt
@@ -108,6 +108,12 @@ If your query set is big, you can batch them too:
~# cat query-batch-file > <debugfs>/dynamic_debug/control
+A another way is to use wildcard. The match rule support '*' (matches
+zero or more characters) and '?' (matches exactly one character).For
+example, you can match all usb drivers:
+
+ ~# echo "file drivers/usb/* +p" > <debugfs>/dynamic_debug/control
+
At the syntactical level, a command comprises a sequence of match
specifications, followed by a flags change specification.
@@ -315,6 +321,9 @@ nullarbor:~ # echo -n 'func svc_process -p' >
nullarbor:~ # echo -n 'format "nfsd: READ" +p' >
<debugfs>/dynamic_debug/control
+// enable messages in files of which the paths include string "usb"
+nullarbor:~ # echo -n '*usb* +p' > <debugfs>/dynamic_debug/control
+
// enable all messages
nullarbor:~ # echo -n '+p' > <debugfs>/dynamic_debug/control
diff --git a/Documentation/edac.txt b/Documentation/edac.txt
index 56c7e936430..73fff13e848 100644
--- a/Documentation/edac.txt
+++ b/Documentation/edac.txt
@@ -6,7 +6,7 @@ Written by Doug Thompson <dougthompson@xmission.com>
7 Dec 2005
17 Jul 2007 Updated
-(c) Mauro Carvalho Chehab <mchehab@redhat.com>
+(c) Mauro Carvalho Chehab
05 Aug 2009 Nehalem interface
EDAC is maintained and written by:
@@ -550,7 +550,7 @@ installs itself as:
/sys/devices/systm/edac/test-instance
in this directory are various controls, a symlink and one or more 'instance'
-directorys.
+directories.
The standard default controls are:
diff --git a/Documentation/x86/efi-stub.txt b/Documentation/efi-stub.txt
index 44e6bb6ead1..7747024d3bb 100644
--- a/Documentation/x86/efi-stub.txt
+++ b/Documentation/efi-stub.txt
@@ -1,13 +1,21 @@
The EFI Boot Stub
---------------------------
-On the x86 platform, a bzImage can masquerade as a PE/COFF image,
-thereby convincing EFI firmware loaders to load it as an EFI
-executable. The code that modifies the bzImage header, along with the
-EFI-specific entry point that the firmware loader jumps to are
-collectively known as the "EFI boot stub", and live in
+On the x86 and ARM platforms, a kernel zImage/bzImage can masquerade
+as a PE/COFF image, thereby convincing EFI firmware loaders to load
+it as an EFI executable. The code that modifies the bzImage header,
+along with the EFI-specific entry point that the firmware loader
+jumps to are collectively known as the "EFI boot stub", and live in
arch/x86/boot/header.S and arch/x86/boot/compressed/eboot.c,
-respectively.
+respectively. For ARM the EFI stub is implemented in
+arch/arm/boot/compressed/efi-header.S and
+arch/arm/boot/compressed/efi-stub.c. EFI stub code that is shared
+between architectures is in drivers/firmware/efi/efi-stub-helper.c.
+
+For arm64, there is no compressed kernel support, so the Image itself
+masquerades as a PE/COFF image and the EFI stub is linked into the
+kernel. The arm64 EFI stub lives in arch/arm64/kernel/efi-entry.S
+and arch/arm64/kernel/efi-stub.c.
By using the EFI boot stub it's possible to boot a Linux kernel
without the use of a conventional EFI boot loader, such as grub or
@@ -20,10 +28,13 @@ The EFI boot stub is enabled with the CONFIG_EFI_STUB kernel option.
**** How to install bzImage.efi
The bzImage located in arch/x86/boot/bzImage must be copied to the EFI
-System Partiion (ESP) and renamed with the extension ".efi". Without
+System Partition (ESP) and renamed with the extension ".efi". Without
the extension the EFI firmware loader will refuse to execute it. It's
not possible to execute bzImage.efi from the usual Linux file systems
-because EFI firmware doesn't have support for them.
+because EFI firmware doesn't have support for them. For ARM the
+arch/arm/boot/zImage should be copied to the system partition, and it
+may not need to be renamed. Similarly for arm64, arch/arm64/boot/Image
+should be copied but not necessarily renamed.
**** Passing kernel parameters from the EFI shell
@@ -63,3 +74,11 @@ Notice how bzImage.efi can be specified with a relative path. That's
because the image we're executing is interpreted by the EFI shell,
which understands relative paths, whereas the rest of the command line
is passed to bzImage.efi.
+
+
+**** The "dtb=" option
+
+For the ARM and arm64 architectures, we also need to be able to provide a
+device tree to the kernel. This is done with the "dtb=" command line option,
+and is processed in the same manner as the "initrd=" option that is
+described above.
diff --git a/Documentation/email-clients.txt b/Documentation/email-clients.txt
index 860c29a472a..9af538be375 100644
--- a/Documentation/email-clients.txt
+++ b/Documentation/email-clients.txt
@@ -1,6 +1,17 @@
Email clients info for Linux
======================================================================
+Git
+----------------------------------------------------------------------
+These days most developers use `git send-email` instead of regular
+email clients. The man page for this is quite good. On the receiving
+end, maintainers use `git am` to apply the patches.
+
+If you are new to git then send your first patch to yourself. Save it
+as raw text including all the headers. Run `git am raw_email.txt` and
+then review the changelog with `git log`. When that works then send
+the patch to the appropriate mailing list(s).
+
General Preferences
----------------------------------------------------------------------
Patches for the Linux kernel are submitted via email, preferably as
@@ -104,7 +115,7 @@ Then from the "Message" menu item, select insert file and choose your patch.
As an added bonus you can customise the message creation toolbar menu
and put the "insert file" icon there.
-Make the the composer window wide enough so that no lines wrap. As of
+Make the composer window wide enough so that no lines wrap. As of
KMail 1.13.5 (KDE 4.5.4), KMail will apply word wrapping when sending
the email if the lines wrap in the composer window. Having word wrapping
disabled in the Options menu isn't enough. Thus, if your patch has very
@@ -201,20 +212,15 @@ To beat some sense out of the internal editor, do this:
- Edit your Thunderbird config settings so that it won't use format=flowed.
Go to "edit->preferences->advanced->config editor" to bring up the
- thunderbird's registry editor, and set "mailnews.send_plaintext_flowed" to
- "false".
+ thunderbird's registry editor.
-- Disable HTML Format: Set "mail.identity.id1.compose_html" to "false".
+- Set "mailnews.send_plaintext_flowed" to "false"
-- Enable "preformat" mode: Set "editor.quotesPreformatted" to "true".
+- Set "mailnews.wraplength" from "72" to "0"
-- Enable UTF8: Set "prefs.converted-to-utf8" to "true".
+- "View" > "Message Body As" > "Plain Text"
-- Install the "toggle wordwrap" extension. Download the file from:
- https://addons.mozilla.org/thunderbird/addon/2351/
- Then go to "tools->add ons", select "install" at the bottom of the screen,
- and browse to where you saved the .xul file. This adds an "Enable
- Wordwrap" entry under the Options menu of the message composer.
+- "View" > "Character Encoding" > "Unicode (UTF-8)"
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
TkRat (GUI)
diff --git a/Documentation/extcon/porting-android-switch-class b/Documentation/extcon/porting-android-switch-class
index eb0fa5f4fe8..49c81caef84 100644
--- a/Documentation/extcon/porting-android-switch-class
+++ b/Documentation/extcon/porting-android-switch-class
@@ -25,8 +25,10 @@ MyungJoo Ham <myungjoo.ham@samsung.com>
@print_state: no change but type change (switch_dev->extcon_dev)
- switch_dev_register(sdev, dev)
- => extcon_dev_register(edev, dev)
- : no change but type change (sdev->edev)
+ => extcon_dev_register(edev)
+ : type change (sdev->edev)
+ : remove second param('dev'). if edev has parent device, should store
+ 'dev' to 'edev.dev.parent' before registering extcon device
- switch_dev_unregister(sdev)
=> extcon_dev_unregister(edev)
: no change but type change (sdev->edev)
@@ -48,7 +50,7 @@ so that they are still compatible with legacy userspace processes.
Extcon's extended features for switch device drivers with
complex features usually required magic numbers in state
value of switch_dev. With extcon, such magic numbers that
- support multiple cables (
+ support multiple cables are no more required or supported.
1. Define cable names at edev->supported_cable.
2. (Recommended) remove print_state callback.
@@ -112,11 +114,8 @@ exclusive, the two cables cannot be in ATTACHED state simulteneously.
****** ABI Location
- If "CONFIG_ANDROID" is enabled and "CONFIG_ANDROID_SWITCH" is
-disabled, /sys/class/switch/* are created as symbolic links to
-/sys/class/extcon/*. Because CONFIG_ANDROID_SWITCH creates
-/sys/class/switch directory, we disable symboling linking if
-CONFIG_ANDROID_SWITCH is enabled.
+ If "CONFIG_ANDROID" is enabled, /sys/class/switch/* are created
+as symbolic links to /sys/class/extcon/*.
The two files of switch class, name and state, are provided with
extcon, too. When the multistate support (STEP 2 of CHAPTER 1.) is
diff --git a/Documentation/fb/00-INDEX b/Documentation/fb/00-INDEX
index 30a70542e82..fe85e7c5907 100644
--- a/Documentation/fb/00-INDEX
+++ b/Documentation/fb/00-INDEX
@@ -5,6 +5,8 @@ please mail me.
00-INDEX
- this file.
+api.txt
+ - The frame buffer API between applications and buffer devices.
arkfb.txt
- info on the fbdev driver for ARK Logic chips.
aty128fb.txt
@@ -51,12 +53,16 @@ sh7760fb.txt
- info on the SH7760/SH7763 integrated LCDC Framebuffer driver.
sisfb.txt
- info on the framebuffer device driver for various SiS chips.
+sm501.txt
+ - info on the framebuffer device driver for sm501 videoframebuffer.
sstfb.txt
- info on the frame buffer driver for 3dfx' Voodoo Graphics boards.
tgafb.txt
- info on the TGA (DECChip 21030) frame buffer driver.
tridentfb.txt
info on the framebuffer driver for some Trident chip based cards.
+udlfb.txt
+ - Driver for DisplayLink USB 2.0 chips.
uvesafb.txt
- info on the userspace VESA (VBE2+ compliant) frame buffer device.
vesafb.txt
diff --git a/Documentation/fb/sm501.txt b/Documentation/fb/sm501.txt
index 8d17aebd264..187f3b3ccb6 100644
--- a/Documentation/fb/sm501.txt
+++ b/Documentation/fb/sm501.txt
@@ -3,7 +3,7 @@ Configuration:
You can pass the following kernel command line options to sm501 videoframebuffer:
sm501fb.bpp= SM501 Display driver:
- Specifiy bits-per-pixel if not specified by 'mode'
+ Specify bits-per-pixel if not specified by 'mode'
sm501fb.mode= SM501 Display driver:
Specify resolution as
diff --git a/Documentation/fb/sstfb.txt b/Documentation/fb/sstfb.txt
index 550ca775a4c..13db1075e4a 100644
--- a/Documentation/fb/sstfb.txt
+++ b/Documentation/fb/sstfb.txt
@@ -10,7 +10,7 @@ Introduction
The main page is located at <http://sstfb.sourceforge.net>, and if
you want the latest version, check out the CVS, as the driver is a work
in progress, I feel uncomfortable with releasing tarballs of something
- not completely working...Don't worry, it's still more than useable
+ not completely working...Don't worry, it's still more than usable
(I eat my own dog food)
Please read the Bug section, and report any success or failure to me
diff --git a/Documentation/filesystems/00-INDEX b/Documentation/filesystems/00-INDEX
index 8042050eb26..ac28149aede 100644
--- a/Documentation/filesystems/00-INDEX
+++ b/Documentation/filesystems/00-INDEX
@@ -2,6 +2,8 @@
- this file (info on some of the filesystems supported by linux).
Locking
- info on locking rules as they pertain to Linux VFS.
+Makefile
+ - Makefile for building the filsystems-part of DocBook.
9p.txt
- 9p (v9fs) is an implementation of the Plan 9 remote fs protocol.
adfs.txt
@@ -10,24 +12,32 @@ afs.txt
- info and examples for the distributed AFS (Andrew File System) fs.
affs.txt
- info and mount options for the Amiga Fast File System.
+autofs4-mount-control.txt
+ - info on device control operations for autofs4 module.
automount-support.txt
- information about filesystem automount support.
befs.txt
- information about the BeOS filesystem for Linux.
bfs.txt
- info for the SCO UnixWare Boot Filesystem (BFS).
+btrfs.txt
+ - info for the BTRFS filesystem.
+caching/
+ - directory containing filesystem cache documentation.
ceph.txt
- - info for the Ceph Distributed File System
-cifs.txt
- - description of the CIFS filesystem.
+ - info for the Ceph Distributed File System.
+cifs/
+ - directory containing CIFS filesystem documentation and example code.
coda.txt
- description of the CODA filesystem.
configfs/
- directory containing configfs documentation and example code.
cramfs.txt
- info on the cram filesystem for small storage (ROMs etc).
-dentry-locking.txt
- - info on the RCU-based dcache locking model.
+debugfs.txt
+ - info on the debugfs filesystem.
+devpts.txt
+ - info on the devpts filesystem.
directory-locking
- info about the locking scheme used for directory operations.
dlmfs.txt
@@ -35,7 +45,7 @@ dlmfs.txt
dnotify.txt
- info about directory notification in Linux.
dnotify_test.c
- - example program for dnotify
+ - example program for dnotify.
ecryptfs.txt
- docs on eCryptfs: stacked cryptographic filesystem for Linux.
efivarfs.txt
@@ -48,12 +58,18 @@ ext3.txt
- info, mount options and specifications for the Ext3 filesystem.
ext4.txt
- info, mount options and specifications for the Ext4 filesystem.
-files.txt
- - info on file management in the Linux kernel.
f2fs.txt
- info and mount options for the F2FS filesystem.
+fiemap.txt
+ - info on fiemap ioctl.
+files.txt
+ - info on file management in the Linux kernel.
fuse.txt
- info on the Filesystem in User SpacE including mount options.
+gfs2-glocks.txt
+ - info on the Global File System 2 - Glock internal locking rules.
+gfs2-uevents.txt
+ - info on the Global File System 2 - uevents.
gfs2.txt
- info on the Global File System 2.
hfs.txt
@@ -84,40 +100,58 @@ ntfs.txt
- info and mount options for the NTFS filesystem (Windows NT).
ocfs2.txt
- info and mount options for the OCFS2 clustered filesystem.
+omfs.txt
+ - info on the Optimized MPEG FileSystem.
+path-lookup.txt
+ - info on path walking and name lookup locking.
+pohmelfs/
+ - directory containing pohmelfs filesystem documentation.
porting
- various information on filesystem porting.
proc.txt
- info on Linux's /proc filesystem.
+qnx6.txt
+ - info on the QNX6 filesystem.
+quota.txt
+ - info on Quota subsystem.
ramfs-rootfs-initramfs.txt
- info on the 'in memory' filesystems ramfs, rootfs and initramfs.
-reiser4.txt
- - info on the Reiser4 filesystem based on dancing tree algorithms.
relay.txt
- info on relay, for efficient streaming from kernel to user space.
romfs.txt
- description of the ROMFS filesystem.
seq_file.txt
- - how to use the seq_file API
+ - how to use the seq_file API.
sharedsubtree.txt
- a description of shared subtrees for namespaces.
spufs.txt
- info and mount options for the SPU filesystem used on Cell.
+squashfs.txt
+ - info on the squashfs filesystem.
sysfs-pci.txt
- info on accessing PCI device resources through sysfs.
+sysfs-tagging.txt
+ - info on sysfs tagging to avoid duplicates.
sysfs.txt
- info on sysfs, a ram-based filesystem for exporting kernel objects.
sysv-fs.txt
- info on the SystemV/V7/Xenix/Coherent filesystem.
tmpfs.txt
- info on tmpfs, a filesystem that holds all files in virtual memory.
+ubifs.txt
+ - info on the Unsorted Block Images FileSystem.
udf.txt
- info and mount options for the UDF filesystem.
ufs.txt
- info on the ufs filesystem.
vfat.txt
- - info on using the VFAT filesystem used in Windows NT and Windows 95
+ - info on using the VFAT filesystem used in Windows NT and Windows 95.
vfs.txt
- - overview of the Virtual File System
+ - overview of the Virtual File System.
+xfs-delayed-logging-design.txt
+ - info on the XFS Delayed Logging Design.
+xfs-self-describing-metadata.txt
+ - info on XFS Self Describing Metadata.
xfs.txt
- info and mount options for the XFS filesystem.
xip.txt
diff --git a/Documentation/filesystems/9p.txt b/Documentation/filesystems/9p.txt
index 2c032144284..fec7144e817 100644
--- a/Documentation/filesystems/9p.txt
+++ b/Documentation/filesystems/9p.txt
@@ -69,10 +69,14 @@ OPTIONS
offering several exported file systems.
cache=mode specifies a caching policy. By default, no caches are used.
+ none = default no cache policy, metadata and data
+ alike are synchronous.
loose = no attempts are made at consistency,
intended for exclusive, read-only mounts
- fscache = use FS-Cache for a persistent, read-only
+ fscache = use FS-Cache for a persistent, read-only
cache backend.
+ mmap = minimal cache that is only used for read-write
+ mmap. Northing else is cached, like cache=none
debug=n specifies debug level. The debug level is a bitmask.
0x01 = display verbose error messages
@@ -147,8 +151,7 @@ on sourceforge (http://sourceforge.net/projects/v9fs).
News and other information is maintained on a Wiki.
(http://sf.net/apps/mediawiki/v9fs/index.php).
-Bug reports may be issued through the kernel.org bugzilla
-(http://bugzilla.kernel.org)
+Bug reports are best issued via the mailing list.
For more information on the Plan 9 Operating System check out
http://plan9.bell-labs.com/plan9
@@ -156,11 +159,3 @@ http://plan9.bell-labs.com/plan9
For information on Plan 9 from User Space (Plan 9 applications and libraries
ported to Linux/BSD/OSX/etc) check out http://swtch.com/plan9
-
-STATUS
-======
-
-The 2.6 kernel support is working on PPC and x86.
-
-PLEASE USE THE KERNEL BUGZILLA TO REPORT PROBLEMS. (http://bugzilla.kernel.org)
-
diff --git a/Documentation/filesystems/Locking b/Documentation/filesystems/Locking
index fe7afe22538..b18dd177902 100644
--- a/Documentation/filesystems/Locking
+++ b/Documentation/filesystems/Locking
@@ -47,6 +47,8 @@ prototypes:
int (*mknod) (struct inode *,struct dentry *,umode_t,dev_t);
int (*rename) (struct inode *, struct dentry *,
struct inode *, struct dentry *);
+ int (*rename2) (struct inode *, struct dentry *,
+ struct inode *, struct dentry *, unsigned int);
int (*readlink) (struct dentry *, char __user *,int);
void * (*follow_link) (struct dentry *, struct nameidata *);
void (*put_link) (struct dentry *, struct nameidata *, void *);
@@ -78,6 +80,7 @@ mkdir: yes
unlink: yes (both)
rmdir: yes (both) (see below)
rename: yes (all) (see below)
+rename2: yes (all) (see below)
readlink: no
follow_link: no
put_link: no
@@ -96,7 +99,8 @@ tmpfile: no
Additionally, ->rmdir(), ->unlink() and ->rename() have ->i_mutex on
victim.
- cross-directory ->rename() has (per-superblock) ->s_vfs_rename_sem.
+ cross-directory ->rename() and rename2() has (per-superblock)
+->s_vfs_rename_sem.
See Documentation/filesystems/directory-locking for more detailed discussion
of the locking scheme for directory operations.
@@ -192,13 +196,12 @@ prototypes:
void (*invalidatepage) (struct page *, unsigned int, unsigned int);
int (*releasepage) (struct page *, int);
void (*freepage)(struct page *);
- int (*direct_IO)(int, struct kiocb *, const struct iovec *iov,
- loff_t offset, unsigned long nr_segs);
+ int (*direct_IO)(int, struct kiocb *, struct iov_iter *iter, loff_t offset);
int (*get_xip_mem)(struct address_space *, pgoff_t, int, void **,
unsigned long *);
int (*migratepage)(struct address_space *, struct page *, struct page *);
int (*launder_page)(struct page *);
- int (*is_partially_uptodate)(struct page *, read_descriptor_t *, unsigned long);
+ int (*is_partially_uptodate)(struct page *, unsigned long, unsigned long);
int (*error_remove_page)(struct address_space *, struct page *);
int (*swap_activate)(struct file *);
int (*swap_deactivate)(struct file *);
@@ -427,6 +430,8 @@ prototypes:
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
ssize_t (*aio_read) (struct kiocb *, const struct iovec *, unsigned long, loff_t);
ssize_t (*aio_write) (struct kiocb *, const struct iovec *, unsigned long, loff_t);
+ ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
+ ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
int (*iterate) (struct file *, struct dir_context *);
unsigned int (*poll) (struct file *, struct poll_table_struct *);
long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
@@ -525,6 +530,7 @@ locking rules:
open: yes
close: yes
fault: yes can return with page locked
+map_pages: yes
page_mkwrite: yes can return with page locked
access: yes
@@ -536,6 +542,15 @@ the page, then ensure it is not already truncated (the page lock will block
subsequent truncate), and then return with VM_FAULT_LOCKED, and the page
locked. The VM will unlock the page.
+ ->map_pages() is called when VM asks to map easy accessible pages.
+Filesystem should find and map pages associated with offsets from "pgoff"
+till "max_pgoff". ->map_pages() is called with page table locked and must
+not block. If it's not possible to reach a page without blocking,
+filesystem should skip it. Filesystem should use do_set_pte() to setup
+page table entry. Pointer to entry associated with offset "pgoff" is
+passed in "pte" field in vm_fault structure. Pointers to entries for other
+offsets should be calculated relative to "pte".
+
->page_mkwrite() is called when a previously read-only pte is
about to become writeable. The filesystem again must ensure that there are
no truncate/invalidate races, and then return with the page locked. If
@@ -544,7 +559,7 @@ like the ->fault() handler, but simply return with VM_FAULT_NOPAGE, which
will cause the VM to retry the fault.
->access() is called when get_user_pages() fails in
-acces_process_vm(), typically used to debug a process through
+access_process_vm(), typically used to debug a process through
/proc/pid/mem or ptrace. This function is needed only for
VM_IO | VM_PFNMAP VMAs.
diff --git a/Documentation/filesystems/affs.txt b/Documentation/filesystems/affs.txt
index 81ac488e375..71b63c2b984 100644
--- a/Documentation/filesystems/affs.txt
+++ b/Documentation/filesystems/affs.txt
@@ -49,6 +49,10 @@ mode=mode Sets the mode flags to the given (octal) value, regardless
This is useful since most of the plain AmigaOS files
will map to 600.
+nofilenametruncate
+ The file system will return an error when filename exceeds
+ standard maximum filename length (30 characters).
+
reserved=num Sets the number of reserved blocks at the start of the
partition to num. You should never need this option.
Default is 2.
@@ -181,9 +185,8 @@ tested, though several hundred MB have been read and written using
this fs. For a most up-to-date list of bugs please consult
fs/affs/Changes.
-Filenames are truncated to 30 characters without warning (this
-can be changed by setting the compile-time option AFFS_NO_TRUNCATE
-in include/linux/amigaffs.h).
+By default, filenames are truncated to 30 characters without warning.
+'nofilenametruncate' mount option can change that behavior.
Case is ignored by the affs in filename matching, but Linux shells
do care about the case. Example (with /wb being an affs mounted fs):
diff --git a/Documentation/filesystems/autofs4-mount-control.txt b/Documentation/filesystems/autofs4-mount-control.txt
index 4c95935cbcf..aff22113a98 100644
--- a/Documentation/filesystems/autofs4-mount-control.txt
+++ b/Documentation/filesystems/autofs4-mount-control.txt
@@ -255,7 +255,7 @@ AUTOFS_DEV_IOCTL_OPENMOUNT and AUTOFS_DEV_IOCTL_CLOSEMOUNT
Obtain and release a file descriptor for an autofs managed mount point
path. The open call requires an initialized struct autofs_dev_ioctl with
-the the path field set and the size field adjusted appropriately as well
+the path field set and the size field adjusted appropriately as well
as the arg1 field set to the device number of the autofs mount. The
device number can be obtained from the mount options shown in
/proc/mounts. The close call requires an initialized struct
diff --git a/Documentation/filesystems/btrfs.txt b/Documentation/filesystems/btrfs.txt
index 9dae5940743..d11cc2f8077 100644
--- a/Documentation/filesystems/btrfs.txt
+++ b/Documentation/filesystems/btrfs.txt
@@ -38,7 +38,7 @@ Mount Options
=============
When mounting a btrfs filesystem, the following option are accepted.
-Unless otherwise specified, all options default to off.
+Options with (*) are default options and will not show in the mount options.
alloc_start=<bytes>
Debugging option to force all block allocations above a certain
@@ -46,10 +46,12 @@ Unless otherwise specified, all options default to off.
bytes, optionally with a K, M, or G suffix, case insensitive.
Default is 1MB.
+ noautodefrag(*)
autodefrag
- Detect small random writes into files and queue them up for the
- defrag process. Works best for small files; Not well suited for
- large database workloads.
+ Disable/enable auto defragmentation.
+ Auto defragmentation detects small random writes into files and queue
+ them up for the defrag process. Works best for small files;
+ Not well suited for large database workloads.
check_int
check_int_data
@@ -70,6 +72,12 @@ Unless otherwise specified, all options default to off.
See comments at the top of fs/btrfs/check-integrity.c for more info.
+ commit=<seconds>
+ Set the interval of periodic commit, 30 seconds by default. Higher
+ values defer data being synced to permanent storage with obvious
+ consequences when the system crashes. The upper bound is not forced,
+ but a warning is printed if it's more than 300 seconds (5 minutes).
+
compress
compress=<type>
compress-force
@@ -90,21 +98,26 @@ Unless otherwise specified, all options default to off.
can be avoided. Especially useful when trying to mount a multi-device
setup as root. May be specified multiple times for multiple devices.
+ nodiscard(*)
discard
- Issue frequent commands to let the block device reclaim space freed by
- the filesystem. This is useful for SSD devices, thinly provisioned
+ Disable/enable discard mount option.
+ Discard issues frequent commands to let the block device reclaim space
+ freed by the filesystem.
+ This is useful for SSD devices, thinly provisioned
LUNs and virtual machine images, but may have a significant
performance impact. (The fstrim command is also available to
initiate batch trims from userspace).
+ noenospc_debug(*)
enospc_debug
- Debugging option to be more verbose in some ENOSPC conditions.
+ Disable/enable debugging option to be more verbose in some ENOSPC conditions.
fatal_errors=<action>
Action to take when encountering a fatal error:
"bug" - BUG() on a fatal error. This is the default.
"panic" - panic() on a fatal error.
+ noflushoncommit(*)
flushoncommit
The 'flushoncommit' mount option forces any data dirtied by a write in a
prior transaction to commit as part of the current commit. This makes
@@ -128,33 +141,43 @@ Unless otherwise specified, all options default to off.
Specify that 1 metadata chunk should be allocated after every <value>
data chunks. Off by default.
+ acl(*)
noacl
- Disable support for Posix Access Control Lists (ACLs). See the
+ Enable/disable support for Posix Access Control Lists (ACLs). See the
acl(5) manual page for more information about ACLs.
+ barrier(*)
nobarrier
- Disables the use of block layer write barriers. Write barriers ensure
- that certain IOs make it through the device cache and are on persistent
- storage. If used on a device with a volatile (non-battery-backed)
- write-back cache, this option will lead to filesystem corruption on a
- system crash or power loss.
+ Enable/disable the use of block layer write barriers. Write barriers
+ ensure that certain IOs make it through the device cache and are on
+ persistent storage. If disabled on a device with a volatile
+ (non-battery-backed) write-back cache, nobarrier option will lead to
+ filesystem corruption on a system crash or power loss.
+ datacow(*)
nodatacow
- Disable data copy-on-write for newly created files. Implies nodatasum,
- and disables all compression.
+ Enable/disable data copy-on-write for newly created files.
+ Nodatacow implies nodatasum, and disables all compression.
+ datasum(*)
nodatasum
- Disable data checksumming for newly created files.
+ Enable/disable data checksumming for newly created files.
+ Datasum implies datacow.
+ treelog(*)
notreelog
- Disable the tree logging used for fsync and O_SYNC writes.
+ Enable/disable the tree logging used for fsync and O_SYNC writes.
recovery
Enable autorecovery attempts if a bad tree root is found at mount time.
Currently this scans a list of several previous tree roots and tries to
use the first readable.
- skip_balance
+ rescan_uuid_tree
+ Force check and rebuild procedure of the UUID tree. This should not
+ normally be needed.
+
+ skip_balance
Skip automatic resume of interrupted balance operation after mount.
May be resumed with "btrfs balance resume."
@@ -234,24 +257,14 @@ available from the git repository at the following location:
These include the following tools:
-mkfs.btrfs: create a filesystem
-
-btrfsctl: control program to create snapshots and subvolumes:
+* mkfs.btrfs: create a filesystem
- mount /dev/sda2 /mnt
- btrfsctl -s new_subvol_name /mnt
- btrfsctl -s snapshot_of_default /mnt/default
- btrfsctl -s snapshot_of_new_subvol /mnt/new_subvol_name
- btrfsctl -s snapshot_of_a_snapshot /mnt/snapshot_of_new_subvol
- ls /mnt
- default snapshot_of_a_snapshot snapshot_of_new_subvol
- new_subvol_name snapshot_of_default
+* btrfs: a single tool to manage the filesystems, refer to the manpage for more details
- Snapshots and subvolumes cannot be deleted right now, but you can
- rm -rf all the files and directories inside them.
+* 'btrfsck' or 'btrfs check': do a consistency check of the filesystem
-btrfsck: do a limited check of the FS extent trees.
+Other tools for specific tasks:
-btrfs-debug-tree: print all of the FS metadata in text form. Example:
+* btrfs-convert: in-place conversion from ext2/3/4 filesystems
- btrfs-debug-tree /dev/sda2 >& big_output_file
+* btrfs-image: dump filesystem metadata for debugging
diff --git a/Documentation/filesystems/caching/netfs-api.txt b/Documentation/filesystems/caching/netfs-api.txt
index 11a0a40ce44..aed6b94160b 100644
--- a/Documentation/filesystems/caching/netfs-api.txt
+++ b/Documentation/filesystems/caching/netfs-api.txt
@@ -29,15 +29,16 @@ This document contains the following sections:
(6) Index registration
(7) Data file registration
(8) Miscellaneous object registration
- (9) Setting the data file size
+ (9) Setting the data file size
(10) Page alloc/read/write
(11) Page uncaching
(12) Index and data file consistency
- (13) Miscellaneous cookie operations
- (14) Cookie unregistration
- (15) Index invalidation
- (16) Data file invalidation
- (17) FS-Cache specific page flags.
+ (13) Cookie enablement
+ (14) Miscellaneous cookie operations
+ (15) Cookie unregistration
+ (16) Index invalidation
+ (17) Data file invalidation
+ (18) FS-Cache specific page flags.
=============================
@@ -334,7 +335,8 @@ the path to the file:
struct fscache_cookie *
fscache_acquire_cookie(struct fscache_cookie *parent,
const struct fscache_object_def *def,
- void *netfs_data);
+ void *netfs_data,
+ bool enable);
This function creates an index entry in the index represented by parent,
filling in the index entry by calling the operations pointed to by def.
@@ -350,6 +352,10 @@ object needs to be created somewhere down the hierarchy. Furthermore, an index
may be created in several different caches independently at different times.
This is all handled transparently, and the netfs doesn't see any of it.
+A cookie will be created in the disabled state if enabled is false. A cookie
+must be enabled to do anything with it. A disabled cookie can be enabled by
+calling fscache_enable_cookie() (see below).
+
For example, with AFS, a cell would be added to the primary index. This index
entry would have a dependent inode containing a volume location index for the
volume mappings within this cell:
@@ -357,7 +363,7 @@ volume mappings within this cell:
cell->cache =
fscache_acquire_cookie(afs_cache_netfs.primary_index,
&afs_cell_cache_index_def,
- cell);
+ cell, true);
Then when a volume location was accessed, it would be entered into the cell's
index and an inode would be allocated that acts as a volume type and hash chain
@@ -366,7 +372,7 @@ combination:
vlocation->cache =
fscache_acquire_cookie(cell->cache,
&afs_vlocation_cache_index_def,
- vlocation);
+ vlocation, true);
And then a particular flavour of volume (R/O for example) could be added to
that index, creating another index for vnodes (AFS inode equivalents):
@@ -374,7 +380,7 @@ that index, creating another index for vnodes (AFS inode equivalents):
volume->cache =
fscache_acquire_cookie(vlocation->cache,
&afs_volume_cache_index_def,
- volume);
+ volume, true);
======================
@@ -388,7 +394,7 @@ the object definition should be something other than index type.
vnode->cache =
fscache_acquire_cookie(volume->cache,
&afs_vnode_cache_object_def,
- vnode);
+ vnode, true);
=================================
@@ -404,7 +410,7 @@ it would be some other type of object such as a data file.
xattr->cache =
fscache_acquire_cookie(vnode->cache,
&afs_xattr_cache_object_def,
- xattr);
+ xattr, true);
Miscellaneous objects might be used to store extended attributes or directory
entries for example.
@@ -733,6 +739,47 @@ Note that partial updates may happen automatically at other times, such as when
data blocks are added to a data file object.
+=================
+COOKIE ENABLEMENT
+=================
+
+Cookies exist in one of two states: enabled and disabled. If a cookie is
+disabled, it ignores all attempts to acquire child cookies; check, update or
+invalidate its state; allocate, read or write backing pages - though it is
+still possible to uncache pages and relinquish the cookie.
+
+The initial enablement state is set by fscache_acquire_cookie(), but the cookie
+can be enabled or disabled later. To disable a cookie, call:
+
+ void fscache_disable_cookie(struct fscache_cookie *cookie,
+ bool invalidate);
+
+If the cookie is not already disabled, this locks the cookie against other
+enable and disable ops, marks the cookie as being disabled, discards or
+invalidates any backing objects and waits for cessation of activity on any
+associated object before unlocking the cookie.
+
+All possible failures are handled internally. The caller should consider
+calling fscache_uncache_all_inode_pages() afterwards to make sure all page
+markings are cleared up.
+
+Cookies can be enabled or reenabled with:
+
+ void fscache_enable_cookie(struct fscache_cookie *cookie,
+ bool (*can_enable)(void *data),
+ void *data)
+
+If the cookie is not already enabled, this locks the cookie against other
+enable and disable ops, invokes can_enable() and, if the cookie is not an index
+cookie, will begin the procedure of acquiring backing objects.
+
+The optional can_enable() function is passed the data argument and returns a
+ruling as to whether or not enablement should actually be permitted to begin.
+
+All possible failures are handled internally. The cookie will only be marked
+as enabled if provisional backing objects are allocated.
+
+
===============================
MISCELLANEOUS COOKIE OPERATIONS
===============================
@@ -778,7 +825,7 @@ COOKIE UNREGISTRATION
To get rid of a cookie, this function should be called.
void fscache_relinquish_cookie(struct fscache_cookie *cookie,
- int retire);
+ bool retire);
If retire is non-zero, then the object will be marked for recycling, and all
copies of it will be removed from all active caches in which it is present.
diff --git a/Documentation/filesystems/directory-locking b/Documentation/filesystems/directory-locking
index ff7b611abf3..09bbf9a54f8 100644
--- a/Documentation/filesystems/directory-locking
+++ b/Documentation/filesystems/directory-locking
@@ -2,6 +2,10 @@
kinds of locks - per-inode (->i_mutex) and per-filesystem
(->s_vfs_rename_mutex).
+ When taking the i_mutex on multiple non-directory objects, we
+always acquire the locks in order by increasing address. We'll call
+that "inode pointer" order in the following.
+
For our purposes all operations fall in 5 classes:
1) read access. Locking rules: caller locks directory we are accessing.
@@ -12,8 +16,9 @@ kinds of locks - per-inode (->i_mutex) and per-filesystem
locks victim and calls the method.
4) rename() that is _not_ cross-directory. Locking rules: caller locks
-the parent, finds source and target, if target already exists - locks it
-and then calls the method.
+the parent and finds source and target. If target already exists, lock
+it. If source is a non-directory, lock it. If that means we need to
+lock both, lock them in inode pointer order.
5) link creation. Locking rules:
* lock parent
@@ -30,7 +35,9 @@ rules:
fail with -ENOTEMPTY
* if new parent is equal to or is a descendent of source
fail with -ELOOP
- * if target exists - lock it.
+ * If target exists, lock it. If source is a non-directory, lock
+ it. In case that means we need to lock both source and target,
+ do so in inode pointer order.
* call the method.
@@ -56,9 +63,11 @@ objects - A < B iff A is an ancestor of B.
renames will be blocked on filesystem lock and we don't start changing
the order until we had acquired all locks).
-(3) any operation holds at most one lock on non-directory object and
- that lock is acquired after all other locks. (Proof: see descriptions
- of operations).
+(3) locks on non-directory objects are acquired only after locks on
+ directory objects, and are acquired in inode pointer order.
+ (Proof: all operations but renames take lock on at most one
+ non-directory object, except renames, which take locks on source and
+ target in inode pointer order in the case they are not directories.)
Now consider the minimal deadlock. Each process is blocked on
attempt to acquire some lock and already holds at least one lock. Let's
@@ -66,9 +75,13 @@ consider the set of contended locks. First of all, filesystem lock is
not contended, since any process blocked on it is not holding any locks.
Thus all processes are blocked on ->i_mutex.
- Non-directory objects are not contended due to (3). Thus link
-creation can't be a part of deadlock - it can't be blocked on source
-and it means that it doesn't hold any locks.
+ By (3), any process holding a non-directory lock can only be
+waiting on another non-directory lock with a larger address. Therefore
+the process holding the "largest" such lock can always make progress, and
+non-directory objects are not included in the set of contended locks.
+
+ Thus link creation can't be a part of deadlock - it can't be
+blocked on source and it means that it doesn't hold any locks.
Any contended object is either held by cross-directory rename or
has a child that is also contended. Indeed, suppose that it is held by
diff --git a/Documentation/filesystems/f2fs.txt b/Documentation/filesystems/f2fs.txt
index 3cd27bed634..51afba17bba 100644
--- a/Documentation/filesystems/f2fs.txt
+++ b/Documentation/filesystems/f2fs.txt
@@ -119,6 +119,13 @@ active_logs=%u Support configuring the number of active logs. In the
Default number is 6.
disable_ext_identify Disable the extension list configured by mkfs, so f2fs
does not aware of cold files such as media files.
+inline_xattr Enable the inline xattrs feature.
+inline_data Enable the inline data feature: New created small(<~3.4k)
+ files can be written into inode block.
+flush_merge Merge concurrent cache_flush commands as much as possible
+ to eliminate redundant command issues. If the underlying
+ device handles the cache_flush command relatively slowly,
+ recommend to enable this option.
================================================================================
DEBUGFS ENTRIES
@@ -164,6 +171,47 @@ Files in /sys/fs/f2fs/<devname>
gc_idle = 1 will select the Cost Benefit approach
& setting gc_idle = 2 will select the greedy aproach.
+ reclaim_segments This parameter controls the number of prefree
+ segments to be reclaimed. If the number of prefree
+ segments is larger than the number of segments
+ in the proportion to the percentage over total
+ volume size, f2fs tries to conduct checkpoint to
+ reclaim the prefree segments to free segments.
+ By default, 5% over total # of segments.
+
+ max_small_discards This parameter controls the number of discard
+ commands that consist small blocks less than 2MB.
+ The candidates to be discarded are cached until
+ checkpoint is triggered, and issued during the
+ checkpoint. By default, it is disabled with 0.
+
+ ipu_policy This parameter controls the policy of in-place
+ updates in f2fs. There are five policies:
+ 0: F2FS_IPU_FORCE, 1: F2FS_IPU_SSR,
+ 2: F2FS_IPU_UTIL, 3: F2FS_IPU_SSR_UTIL,
+ 4: F2FS_IPU_DISABLE.
+
+ min_ipu_util This parameter controls the threshold to trigger
+ in-place-updates. The number indicates percentage
+ of the filesystem utilization, and used by
+ F2FS_IPU_UTIL and F2FS_IPU_SSR_UTIL policies.
+
+ max_victim_search This parameter controls the number of trials to
+ find a victim segment when conducting SSR and
+ cleaning operations. The default value is 4096
+ which covers 8GB block address range.
+
+ dir_level This parameter controls the directory level to
+ support large directory. If a directory has a
+ number of files, it can reduce the file lookup
+ latency by increasing this dir_level value.
+ Otherwise, it needs to decrease this value to
+ reduce the space overhead. The default value is 0.
+
+ ram_thresh This parameter controls the memory footprint used
+ by free nids and cached nat entries. By default,
+ 10 is set, which indicates 10 MB / 1 GB RAM.
+
================================================================================
USAGE
================================================================================
@@ -413,9 +461,11 @@ The number of blocks and buckets are determined by,
# of blocks in level #n = |
`- 4, Otherwise
- ,- 2^n, if n < MAX_DIR_HASH_DEPTH / 2,
+ ,- 2^(n + dir_level),
+ | if n + dir_level < MAX_DIR_HASH_DEPTH / 2,
# of buckets in level #n = |
- `- 2^((MAX_DIR_HASH_DEPTH / 2) - 1), Otherwise
+ `- 2^((MAX_DIR_HASH_DEPTH / 2) - 1),
+ Otherwise
When F2FS finds a file name in a directory, at first a hash value of the file
name is calculated. Then, F2FS scans the hash table in level #0 to find the
diff --git a/Documentation/filesystems/hfsplus.txt b/Documentation/filesystems/hfsplus.txt
index af1628a1061..59f7569fc9e 100644
--- a/Documentation/filesystems/hfsplus.txt
+++ b/Documentation/filesystems/hfsplus.txt
@@ -56,4 +56,4 @@ References
kernel source: <file:fs/hfsplus>
-Apple Technote 1150 http://developer.apple.com/technotes/tn/tn1150.html
+Apple Technote 1150 https://developer.apple.com/legacy/library/technotes/tn/tn1150.html
diff --git a/Documentation/filesystems/nfs/00-INDEX b/Documentation/filesystems/nfs/00-INDEX
index 66eb6c8c533..53f3b596ac0 100644
--- a/Documentation/filesystems/nfs/00-INDEX
+++ b/Documentation/filesystems/nfs/00-INDEX
@@ -12,6 +12,8 @@ nfs41-server.txt
- info on the Linux server implementation of NFSv4 minor version 1.
nfs-rdma.txt
- how to install and setup the Linux NFS/RDMA client and server software
+nfsd-admin-interfaces.txt
+ - Administrative interfaces for nfsd.
nfsroot.txt
- short guide on setting up a diskless box with NFS root filesystem.
pnfs.txt
@@ -20,5 +22,5 @@ rpc-cache.txt
- introduction to the caching mechanisms in the sunrpc layer.
idmapper.txt
- information for configuring request-keys to be used by idmapper
-knfsd-rpcgss.txt
+rpc-server-gss.txt
- Information on GSS authentication support in the NFS Server
diff --git a/Documentation/filesystems/nfs/nfs41-server.txt b/Documentation/filesystems/nfs/nfs41-server.txt
index 01c2db76979..c49cd7e796e 100644
--- a/Documentation/filesystems/nfs/nfs41-server.txt
+++ b/Documentation/filesystems/nfs/nfs41-server.txt
@@ -5,11 +5,11 @@ Server support for minorversion 1 can be controlled using the
by reading this file will contain either "+4.1" or "-4.1"
correspondingly.
-Currently, server support for minorversion 1 is disabled by default.
-It can be enabled at run time by writing the string "+4.1" to
+Currently, server support for minorversion 1 is enabled by default.
+It can be disabled at run time by writing the string "-4.1" to
the /proc/fs/nfsd/versions control file. Note that to write this
-control file, the nfsd service must be taken down. Use your user-mode
-nfs-utils to set this up; see rpc.nfsd(8)
+control file, the nfsd service must be taken down. You can use rpc.nfsd
+for this; see rpc.nfsd(8).
(Warning: older servers will interpret "+4.1" and "-4.1" as "+4" and
"-4", respectively. Therefore, code meant to work on both new and old
@@ -29,29 +29,6 @@ are still under development out of tree.
See http://wiki.linux-nfs.org/wiki/index.php/PNFS_prototype_design
for more information.
-The current implementation is intended for developers only: while it
-does support ordinary file operations on clients we have tested against
-(including the linux client), it is incomplete in ways which may limit
-features unexpectedly, cause known bugs in rare cases, or cause
-interoperability problems with future clients. Known issues:
-
- - gss support is questionable: currently mounts with kerberos
- from a linux client are possible, but we aren't really
- conformant with the spec (for example, we don't use kerberos
- on the backchannel correctly).
- - We do not support SSV, which provides security for shared
- client-server state (thus preventing unauthorized tampering
- with locks and opens, for example). It is mandatory for
- servers to support this, though no clients use it yet.
-
-In addition, some limitations are inherited from the current NFSv4
-implementation:
-
- - Incomplete delegation enforcement: if a file is renamed or
- unlinked by a local process, a client holding a delegation may
- continue to indefinitely allow opens of the file under the old
- name.
-
The table below, taken from the NFSv4.1 document, lists
the operations that are mandatory to implement (REQ), optional
(OPT), and NFSv4.0 operations that are required not to implement (MNI)
@@ -169,6 +146,16 @@ NS*| CB_WANTS_CANCELLED | OPT | FDELG, | Section 20.10 |
Implementation notes:
+SSV:
+* The spec claims this is mandatory, but we don't actually know of any
+ implementations, so we're ignoring it for now. The server returns
+ NFS4ERR_ENCR_ALG_UNSUPP on EXCHANGE_ID, which should be future-proof.
+
+GSS on the backchannel:
+* Again, theoretically required but not widely implemented (in
+ particular, the current Linux client doesn't request it). We return
+ NFS4ERR_ENCR_ALG_UNSUPP on CREATE_SESSION.
+
DELEGPURGE:
* mandatory only for servers that support CLAIM_DELEGATE_PREV and/or
CLAIM_DELEG_PREV_FH (which allows clients to keep delegations that
@@ -176,7 +163,6 @@ DELEGPURGE:
now.
EXCHANGE_ID:
-* only SP4_NONE state protection supported
* implementation ids are ignored
CREATE_SESSION:
@@ -190,7 +176,5 @@ Nonstandard compound limitations:
ca_maxrequestsize request and a ca_maxresponsesize reply, so we may
fail to live up to the promise we made in CREATE_SESSION fore channel
negotiation.
-* No more than one read-like operation allowed per compound; encoding
- replies that cross page boundaries (except for read data) not handled.
See also http://wiki.linux-nfs.org/wiki/index.php/Server_4.0_and_4.1_issues.
diff --git a/Documentation/filesystems/nilfs2.txt b/Documentation/filesystems/nilfs2.txt
index 873a2ab2e9f..41c3d332acc 100644
--- a/Documentation/filesystems/nilfs2.txt
+++ b/Documentation/filesystems/nilfs2.txt
@@ -25,9 +25,8 @@ available from the following download page. At least "mkfs.nilfs2",
cleaner or garbage collector) are required. Details on the tools are
described in the man pages included in the package.
-Project web page: http://www.nilfs.org/en/
-Download page: http://www.nilfs.org/en/download.html
-Git tree web page: http://www.nilfs.org/git/
+Project web page: http://nilfs.sourceforge.net/
+Download page: http://nilfs.sourceforge.net/en/download.html
List info: http://vger.kernel.org/vger-lists.html#linux-nilfs
Caveats
@@ -81,6 +80,69 @@ nodiscard(*) The discard/TRIM commands are sent to the underlying
block device when blocks are freed. This is useful
for SSD devices and sparse/thinly-provisioned LUNs.
+Ioctls
+======
+
+There is some NILFS2 specific functionality which can be accessed by applications
+through the system call interfaces. The list of all NILFS2 specific ioctls are
+shown in the table below.
+
+Table of NILFS2 specific ioctls
+..............................................................................
+ Ioctl Description
+ NILFS_IOCTL_CHANGE_CPMODE Change mode of given checkpoint between
+ checkpoint and snapshot state. This ioctl is
+ used in chcp and mkcp utilities.
+
+ NILFS_IOCTL_DELETE_CHECKPOINT Remove checkpoint from NILFS2 file system.
+ This ioctl is used in rmcp utility.
+
+ NILFS_IOCTL_GET_CPINFO Return info about requested checkpoints. This
+ ioctl is used in lscp utility and by
+ nilfs_cleanerd daemon.
+
+ NILFS_IOCTL_GET_CPSTAT Return checkpoints statistics. This ioctl is
+ used by lscp, rmcp utilities and by
+ nilfs_cleanerd daemon.
+
+ NILFS_IOCTL_GET_SUINFO Return segment usage info about requested
+ segments. This ioctl is used in lssu,
+ nilfs_resize utilities and by nilfs_cleanerd
+ daemon.
+
+ NILFS_IOCTL_SET_SUINFO Modify segment usage info of requested
+ segments. This ioctl is used by
+ nilfs_cleanerd daemon to skip unnecessary
+ cleaning operation of segments and reduce
+ performance penalty or wear of flash device
+ due to redundant move of in-use blocks.
+
+ NILFS_IOCTL_GET_SUSTAT Return segment usage statistics. This ioctl
+ is used in lssu, nilfs_resize utilities and
+ by nilfs_cleanerd daemon.
+
+ NILFS_IOCTL_GET_VINFO Return information on virtual block addresses.
+ This ioctl is used by nilfs_cleanerd daemon.
+
+ NILFS_IOCTL_GET_BDESCS Return information about descriptors of disk
+ block numbers. This ioctl is used by
+ nilfs_cleanerd daemon.
+
+ NILFS_IOCTL_CLEAN_SEGMENTS Do garbage collection operation in the
+ environment of requested parameters from
+ userspace. This ioctl is used by
+ nilfs_cleanerd daemon.
+
+ NILFS_IOCTL_SYNC Make a checkpoint. This ioctl is used in
+ mkcp utility.
+
+ NILFS_IOCTL_RESIZE Resize NILFS2 volume. This ioctl is used
+ by nilfs_resize utility.
+
+ NILFS_IOCTL_SET_ALLOC_RANGE Define lower limit of segments in bytes and
+ upper limit of segments in bytes. This ioctl
+ is used by nilfs_resize utility.
+
NILFS2 usage
============
diff --git a/Documentation/filesystems/ntfs.txt b/Documentation/filesystems/ntfs.txt
index 791af8dac06..61947facfc0 100644
--- a/Documentation/filesystems/ntfs.txt
+++ b/Documentation/filesystems/ntfs.txt
@@ -455,8 +455,6 @@ not have this problem with odd numbers of sectors.
ChangeLog
=========
-Note, a technical ChangeLog aimed at kernel hackers is in fs/ntfs/ChangeLog.
-
2.1.30:
- Fix writev() (it kept writing the first segment over and over again
instead of moving onto subsequent segments).
diff --git a/Documentation/filesystems/porting b/Documentation/filesystems/porting
index f0890581f7f..0f3a1390bf0 100644
--- a/Documentation/filesystems/porting
+++ b/Documentation/filesystems/porting
@@ -295,9 +295,9 @@ in the beginning of ->setattr unconditionally.
->clear_inode() and ->delete_inode() are gone; ->evict_inode() should
be used instead. It gets called whenever the inode is evicted, whether it has
remaining links or not. Caller does *not* evict the pagecache or inode-associated
-metadata buffers; getting rid of those is responsibility of method, as it had
-been for ->delete_inode(). Caller makes sure async writeback cannot be running
-for the inode while (or after) ->evict_inode() is called.
+metadata buffers; the method has to use truncate_inode_pages_final() to get rid
+of those. Caller makes sure async writeback cannot be running for the inode while
+(or after) ->evict_inode() is called.
->drop_inode() returns int now; it's called on final iput() with
inode->i_lock held and it returns true if filesystems wants the inode to be
@@ -455,3 +455,11 @@ in your dentry operations instead.
vfs_follow_link has been removed. Filesystems must use nd_set_link
from ->follow_link for normal symlinks, or nd_jump_link for magic
/proc/<pid> style links.
+--
+[mandatory]
+ iget5_locked()/ilookup5()/ilookup5_nowait() test() callback used to be
+ called with both ->i_lock and inode_hash_lock held; the former is *not*
+ taken anymore, so verify that your callbacks do not rely on it (none
+ of the in-tree instances did). inode_hash_lock is still held,
+ of course, so they are still serialized wrt removal from inode hash,
+ as well as wrt set() callback of iget5_locked().
diff --git a/Documentation/filesystems/proc.txt b/Documentation/filesystems/proc.txt
index 823c95faebd..ddc531a74d0 100644
--- a/Documentation/filesystems/proc.txt
+++ b/Documentation/filesystems/proc.txt
@@ -234,7 +234,7 @@ Table 1-2: Contents of the status files (as of 2.6.30-rc7)
ShdPnd bitmap of shared pending signals for the process
SigBlk bitmap of blocked signals
SigIgn bitmap of ignored signals
- SigCgt bitmap of catched signals
+ SigCgt bitmap of caught signals
CapInh bitmap of inheritable capabilities
CapPrm bitmap of permitted capabilities
CapEff bitmap of effective capabilities
@@ -300,7 +300,7 @@ Table 1-4: Contents of the stat files (as of 2.6.30-rc7)
pending bitmap of pending signals
blocked bitmap of blocked signals
sigign bitmap of ignored signals
- sigcatch bitmap of catched signals
+ sigcatch bitmap of caught signals
wchan address where process went to sleep
0 (place holder)
0 (place holder)
@@ -460,6 +460,7 @@ manner. The codes are the following:
nl - non-linear mapping
ar - architecture specific flag
dd - do not include area into core dump
+ sd - soft-dirty flag
mm - mixed map area
hg - huge page advise flag
nh - no-huge page advise flag
@@ -546,7 +547,7 @@ Table 1-5: Kernel info in /proc
sys See chapter 2
sysvipc Info of SysVIPC Resources (msg, sem, shm) (2.4)
tty Info of tty drivers
- uptime System uptime
+ uptime Wall clock since boot, combined idle time of all cpus
version Kernel version
video bttv info of video resources (2.4)
vmallocinfo Show vmalloced areas
@@ -766,6 +767,7 @@ The "Locked" indicates whether the mapping is locked in memory or not.
MemTotal: 16344972 kB
MemFree: 13634064 kB
+MemAvailable: 14836172 kB
Buffers: 3656 kB
Cached: 1195708 kB
SwapCached: 0 kB
@@ -798,6 +800,14 @@ AnonHugePages: 49152 kB
MemTotal: Total usable ram (i.e. physical ram minus a few reserved
bits and the kernel binary code)
MemFree: The sum of LowFree+HighFree
+MemAvailable: An estimate of how much memory is available for starting new
+ applications, without swapping. Calculated from MemFree,
+ SReclaimable, the size of the file LRU lists, and the low
+ watermarks in each zone.
+ The estimate takes into account that the system needs some
+ page cache to function well, and that not all reclaimable
+ slab will be reclaimable, due to items being in use. The
+ impact of those factors will vary from system to system.
Buffers: Relatively temporary storage for raw disk blocks
shouldn't get tremendously large (20MB or so)
Cached: in-memory cache for files read from the disk (the
@@ -844,7 +854,8 @@ WritebackTmp: Memory used by FUSE for temporary writeback buffers
if strict overcommit accounting is enabled (mode 2 in
'vm.overcommit_memory').
The CommitLimit is calculated with the following formula:
- CommitLimit = ('vm.overcommit_ratio' * Physical RAM) + Swap
+ CommitLimit = ([total RAM pages] - [total huge TLB pages]) *
+ overcommit_ratio / 100 + [total swap pages]
For example, on a system with 1G of physical RAM and 7G
of swap with a `vm.overcommit_ratio` of 30 it would
yield a CommitLimit of 7.3G.
@@ -1235,8 +1246,9 @@ second). The meanings of the columns are as follows, from left to right:
The "intr" line gives counts of interrupts serviced since boot time, for each
of the possible system interrupts. The first column is the total of all
-interrupts serviced; each subsequent column is the total for that particular
-interrupt.
+interrupts serviced including unnumbered architecture specific interrupts;
+each subsequent column is the total for that particular numbered interrupt.
+Unnumbered interrupts are not shown, only summed into the total.
The "ctxt" line gives the total number of context switches across all CPUs.
@@ -1376,8 +1388,8 @@ may allocate from based on an estimation of its current memory and swap use.
For example, if a task is using all allowed memory, its badness score will be
1000. If it is using half of its allowed memory, its score will be 500.
-There is an additional factor included in the badness score: root
-processes are given 3% extra memory over other tasks.
+There is an additional factor included in the badness score: the current memory
+and swap usage is discounted by 3% for root processes.
The amount of "allowed" memory depends on the context in which the oom killer
was called. If it is due to the memory assigned to the allocating task's cpuset
@@ -1638,18 +1650,21 @@ pids, so one need to either stop or freeze processes being inspected
if precise results are needed.
-3.7 /proc/<pid>/fdinfo/<fd> - Information about opened file
+3.8 /proc/<pid>/fdinfo/<fd> - Information about opened file
---------------------------------------------------------------
This file provides information associated with an opened file. The regular
-files have at least two fields -- 'pos' and 'flags'. The 'pos' represents
-the current offset of the opened file in decimal form [see lseek(2) for
-details] and 'flags' denotes the octal O_xxx mask the file has been
-created with [see open(2) for details].
+files have at least three fields -- 'pos', 'flags' and mnt_id. The 'pos'
+represents the current offset of the opened file in decimal form [see lseek(2)
+for details], 'flags' denotes the octal O_xxx mask the file has been
+created with [see open(2) for details] and 'mnt_id' represents mount ID of
+the file system containing the opened file [see 3.5 /proc/<pid>/mountinfo
+for details].
A typical output is
pos: 0
flags: 0100002
+ mnt_id: 19
The files such as eventfd, fsnotify, signalfd, epoll among the regular pos/flags
pair provide additional information particular to the objects they represent.
@@ -1658,6 +1673,7 @@ pair provide additional information particular to the objects they represent.
~~~~~~~~~~~~~
pos: 0
flags: 04002
+ mnt_id: 9
eventfd-count: 5a
where 'eventfd-count' is hex value of a counter.
@@ -1666,6 +1682,7 @@ pair provide additional information particular to the objects they represent.
~~~~~~~~~~~~~~
pos: 0
flags: 04002
+ mnt_id: 9
sigmask: 0000000000000200
where 'sigmask' is hex value of the signal mask associated
@@ -1675,6 +1692,7 @@ pair provide additional information particular to the objects they represent.
~~~~~~~~~~~
pos: 0
flags: 02
+ mnt_id: 9
tfd: 5 events: 1d data: ffffffffffffffff
where 'tfd' is a target file descriptor number in decimal form,
@@ -1708,6 +1726,7 @@ pair provide additional information particular to the objects they represent.
pos: 0
flags: 02
+ mnt_id: 9
fanotify flags:10 event-flags:0
fanotify mnt_id:12 mflags:40 mask:38 ignored_mask:40000003
fanotify ino:4f969 sdev:800013 mflags:0 mask:3b ignored_mask:40000000 fhandle-bytes:8 fhandle-type:1 f_handle:69f90400c275b5b4
diff --git a/Documentation/filesystems/seq_file.txt b/Documentation/filesystems/seq_file.txt
index a1e2e0dda90..1fe0ccb1af5 100644
--- a/Documentation/filesystems/seq_file.txt
+++ b/Documentation/filesystems/seq_file.txt
@@ -54,6 +54,15 @@ how the mechanism works without getting lost in other details. (Those
wanting to see the full source for this module can find it at
http://lwn.net/Articles/22359/).
+Deprecated create_proc_entry
+
+Note that the above article uses create_proc_entry which was removed in
+kernel 3.10. Current versions require the following update
+
+- entry = create_proc_entry("sequence", 0, NULL);
+- if (entry)
+- entry->proc_fops = &ct_file_ops;
++ entry = proc_create("sequence", 0, NULL, &ct_file_ops);
The iterator interface
diff --git a/Documentation/filesystems/sharedsubtree.txt b/Documentation/filesystems/sharedsubtree.txt
index 4ede421c968..32a173dd315 100644
--- a/Documentation/filesystems/sharedsubtree.txt
+++ b/Documentation/filesystems/sharedsubtree.txt
@@ -727,7 +727,7 @@ replicas continue to be exactly same.
mkdir -p /tmp/m3
mount --rbind /root /tmp/m3
- I wont' draw the tree..but it has 24 vfsmounts
+ I won't draw the tree..but it has 24 vfsmounts
at step i the number of vfsmounts is V[i] = i*V[i-1].
diff --git a/Documentation/filesystems/sysfs.txt b/Documentation/filesystems/sysfs.txt
index a6619b7064b..b35a64b82f9 100644
--- a/Documentation/filesystems/sysfs.txt
+++ b/Documentation/filesystems/sysfs.txt
@@ -108,12 +108,12 @@ static DEVICE_ATTR(foo, S_IWUSR | S_IRUGO, show_foo, store_foo);
is equivalent to doing:
static struct device_attribute dev_attr_foo = {
- .attr = {
+ .attr = {
.name = "foo",
.mode = S_IWUSR | S_IRUGO,
- .show = show_foo,
- .store = store_foo,
},
+ .show = show_foo,
+ .store = store_foo,
};
diff --git a/Documentation/filesystems/vfat.txt b/Documentation/filesystems/vfat.txt
index aa1f459fa6c..ce1126aceed 100644
--- a/Documentation/filesystems/vfat.txt
+++ b/Documentation/filesystems/vfat.txt
@@ -172,6 +172,11 @@ nfs=stale_rw|nostale_ro
To maintain backward compatibility, '-o nfs' is also accepted,
defaulting to stale_rw
+dos1xfloppy -- If set, use a fallback default BIOS Parameter Block
+ configuration, determined by backing device size. These static
+ parameters match defaults assumed by DOS 1.x for 160 kiB,
+ 180 kiB, 320 kiB, and 360 kiB floppies and floppy images.
+
<bool>: 0,1,yes,no,true,false
@@ -307,7 +312,7 @@ the following:
<proceeding files...>
<slot #3, id = 0x43, characters = "h is long">
- <slot #2, id = 0x02, characters = "xtension which">
+ <slot #2, id = 0x02, characters = "xtension whic">
<slot #1, id = 0x01, characters = "My Big File.E">
<directory entry, name = "MYBIGFIL.EXT">
diff --git a/Documentation/filesystems/vfs.txt b/Documentation/filesystems/vfs.txt
index f93a88250a4..a1d0d7a3016 100644
--- a/Documentation/filesystems/vfs.txt
+++ b/Documentation/filesystems/vfs.txt
@@ -347,6 +347,8 @@ struct inode_operations {
int (*mknod) (struct inode *,struct dentry *,umode_t,dev_t);
int (*rename) (struct inode *, struct dentry *,
struct inode *, struct dentry *);
+ int (*rename2) (struct inode *, struct dentry *,
+ struct inode *, struct dentry *, unsigned int);
int (*readlink) (struct dentry *, char __user *,int);
void * (*follow_link) (struct dentry *, struct nameidata *);
void (*put_link) (struct dentry *, struct nameidata *, void *);
@@ -359,11 +361,9 @@ struct inode_operations {
ssize_t (*listxattr) (struct dentry *, char *, size_t);
int (*removexattr) (struct dentry *, const char *);
void (*update_time)(struct inode *, struct timespec *, int);
- int (*atomic_open)(struct inode *, struct dentry *,
+ int (*atomic_open)(struct inode *, struct dentry *, struct file *,
+ unsigned open_flag, umode_t create_mode, int *opened);
int (*tmpfile) (struct inode *, struct dentry *, umode_t);
-} ____cacheline_aligned;
- struct file *, unsigned open_flag,
- umode_t create_mode, int *opened);
};
Again, all methods are called without any locks being held, unless
@@ -416,6 +416,20 @@ otherwise noted.
rename: called by the rename(2) system call to rename the object to
have the parent and name given by the second inode and dentry.
+ rename2: this has an additional flags argument compared to rename.
+ If no flags are supported by the filesystem then this method
+ need not be implemented. If some flags are supported then the
+ filesystem must return -EINVAL for any unsupported or unknown
+ flags. Currently the following flags are implemented:
+ (1) RENAME_NOREPLACE: this flag indicates that if the target
+ of the rename exists the rename should fail with -EEXIST
+ instead of replacing the target. The VFS already checks for
+ existence, so for local filesystems the RENAME_NOREPLACE
+ implementation is equivalent to plain rename.
+ (2) RENAME_EXCHANGE: exchange source and target. Both must
+ exist; this is checked by the VFS. Unlike plain rename,
+ source and target may be of different type.
+
readlink: called by the readlink(2) system call. Only required if
you want to support reading symbolic links
@@ -470,9 +484,11 @@ otherwise noted.
method the filesystem can look up, possibly create and open the file in
one atomic operation. If it cannot perform this (e.g. the file type
turned out to be wrong) it may signal this by returning 1 instead of
- usual 0 or -ve . This method is only called if the last
- component is negative or needs lookup. Cached positive dentries are
- still handled by f_op->open().
+ usual 0 or -ve . This method is only called if the last component is
+ negative or needs lookup. Cached positive dentries are still handled by
+ f_op->open(). If the file was created, the FILE_CREATED flag should be
+ set in "opened". In case of O_EXCL the method must only succeed if the
+ file didn't exist and hence FILE_CREATED shall always be set on success.
tmpfile: called in the end of O_TMPFILE open(). Optional, equivalent to
atomically creating, opening and unlinking a file in given directory.
@@ -573,14 +589,13 @@ struct address_space_operations {
void (*invalidatepage) (struct page *, unsigned int, unsigned int);
int (*releasepage) (struct page *, int);
void (*freepage)(struct page *);
- ssize_t (*direct_IO)(int, struct kiocb *, const struct iovec *iov,
- loff_t offset, unsigned long nr_segs);
+ ssize_t (*direct_IO)(int, struct kiocb *, struct iov_iter *iter, loff_t offset);
struct page* (*get_xip_page)(struct address_space *, sector_t,
int);
/* migrate the contents of a page to the specified target */
int (*migratepage) (struct page *, struct page *);
int (*launder_page) (struct page *);
- int (*is_partially_uptodate) (struct page *, read_descriptor_t *,
+ int (*is_partially_uptodate) (struct page *, unsigned long,
unsigned long);
void (*is_dirty_writeback) (struct page *, bool *, bool *);
int (*error_remove_page) (struct mapping *mapping, struct page *page);
@@ -782,7 +797,7 @@ struct file_operations
----------------------
This describes how the VFS can manipulate an open file. As of kernel
-3.5, the following members are defined:
+3.12, the following members are defined:
struct file_operations {
struct module *owner;
@@ -791,6 +806,8 @@ struct file_operations {
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
ssize_t (*aio_read) (struct kiocb *, const struct iovec *, unsigned long, loff_t);
ssize_t (*aio_write) (struct kiocb *, const struct iovec *, unsigned long, loff_t);
+ ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
+ ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
int (*iterate) (struct file *, struct dir_context *);
unsigned int (*poll) (struct file *, struct poll_table_struct *);
long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
@@ -803,9 +820,6 @@ struct file_operations {
int (*aio_fsync) (struct kiocb *, int datasync);
int (*fasync) (int, struct file *, int);
int (*lock) (struct file *, int, struct file_lock *);
- ssize_t (*readv) (struct file *, const struct iovec *, unsigned long, loff_t *);
- ssize_t (*writev) (struct file *, const struct iovec *, unsigned long, loff_t *);
- ssize_t (*sendfile) (struct file *, loff_t *, size_t, read_actor_t, void *);
ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
int (*check_flags)(int);
@@ -814,6 +828,7 @@ struct file_operations {
ssize_t (*splice_read)(struct file *, struct pipe_inode_info *, size_t, unsigned int);
int (*setlease)(struct file *, long arg, struct file_lock **);
long (*fallocate)(struct file *, int mode, loff_t offset, loff_t len);
+ int (*show_fdinfo)(struct seq_file *m, struct file *f);
};
Again, all methods are called without any locks being held, unless
@@ -823,11 +838,15 @@ otherwise noted.
read: called by read(2) and related system calls
- aio_read: called by io_submit(2) and other asynchronous I/O operations
+ aio_read: vectored, possibly asynchronous read
+
+ read_iter: possibly asynchronous read with iov_iter as destination
write: called by write(2) and related system calls
- aio_write: called by io_submit(2) and other asynchronous I/O operations
+ aio_write: vectored, possibly asynchronous write
+
+ write_iter: possibly asynchronous write with iov_iter as source
iterate: called when the VFS needs to read the directory contents
@@ -864,12 +883,6 @@ otherwise noted.
lock: called by the fcntl(2) system call for F_GETLK, F_SETLK, and F_SETLKW
commands
- readv: called by the readv(2) system call
-
- writev: called by the writev(2) system call
-
- sendfile: called by the sendfile(2) system call
-
get_unmapped_area: called by the mmap(2) system call
check_flags: called by the fcntl(2) system call for F_SETFL command
diff --git a/Documentation/fmc/fmc-write-eeprom.txt b/Documentation/fmc/fmc-write-eeprom.txt
index 44a3bc678bf..e0a9712156a 100644
--- a/Documentation/fmc/fmc-write-eeprom.txt
+++ b/Documentation/fmc/fmc-write-eeprom.txt
@@ -9,7 +9,12 @@ Overwriting the EEPROM is not something you should do daily, and it is
expected to only happen during manufacturing. For this reason, the
module makes it unlikely for the random user to change a working EEPROM.
-The module takes the following measures:
+However, since the EEPROM may include application-specific information
+other than the identification, later versions of this packages added
+write-support through sysfs. See *note Accessing the EEPROM::.
+
+To avoid damaging the EEPROM content, the module takes the following
+measures:
* It accepts a `file=' argument (within /lib/firmware) and if no
such argument is received, it doesn't write anything to EEPROM
@@ -70,56 +75,24 @@ first time.
[ 132.899872] fake-fmc: Product name: FmcDelay1ns4cha
-Writing to the EEPROM
+Accessing the EEPROM
=====================
-Once you have created a binary file for your EEPROM, you can write it
-to the storage medium using the fmc-write-eeprom (See *note
-fmc-write-eeprom::, while relying on a carrier driver. The procedure
-here shown here uses the SPEC driver
-(`http://www.ohwr.org/projects/spec-sw').
-
-The example assumes no driver is already loaded (actually, I unloaded
-them by hand as everything loads automatically at boot time after you
-installed the modules), and shows kernel messages together with
-commands. Here the prompt is spusa.root# and two SPEC cards are plugged
-in the system.
-
- spusa.root# insmod fmc.ko
- spusa.root# insmod spec.ko
- [13972.382818] spec 0000:02:00.0: probe for device 0002:0000
- [13972.392773] spec 0000:02:00.0: got file "fmc/spec-init.bin", 1484404 (0x16a674) bytes
- [13972.591388] spec 0000:02:00.0: FPGA programming successful
- [13972.883011] spec 0000:02:00.0: EEPROM has no FRU information
- [13972.888719] spec 0000:02:00.0: No device_id filled, using index
- [13972.894676] spec 0000:02:00.0: No mezzanine_name found
- [13972.899863] /home/rubini/wip/spec-sw/kernel/spec-gpio.c - spec_gpio_init
- [13972.906578] spec 0000:04:00.0: probe for device 0004:0000
- [13972.916509] spec 0000:04:00.0: got file "fmc/spec-init.bin", 1484404 (0x16a674) bytes
- [13973.115096] spec 0000:04:00.0: FPGA programming successful
- [13973.401798] spec 0000:04:00.0: EEPROM has no FRU information
- [13973.407474] spec 0000:04:00.0: No device_id filled, using index
- [13973.413417] spec 0000:04:00.0: No mezzanine_name found
- [13973.418600] /home/rubini/wip/spec-sw/kernel/spec-gpio.c - spec_gpio_init
- spusa.root# ls /sys/bus/fmc/devices
- fmc-0000 fmc-0001
- spusa.root# insmod fmc-write-eeprom.ko busid=0x0200 file=fdelay-eeprom.bin
- [14103.966259] spec 0000:02:00.0: Matching an generic driver (no ID)
- [14103.975519] spec 0000:02:00.0: programming 6155 bytes
- [14126.373762] spec 0000:02:00.0: write_eeprom: success
- [14126.378770] spec 0000:04:00.0: Matching an generic driver (no ID)
- [14126.384903] spec 0000:04:00.0: fmc_write_eeprom: no filename given: not programming
- [14126.392600] fmc_write_eeprom: probe of fmc-0001 failed with error -2
-
-Reading back the EEPROM
-=======================
-
-In order to read back the binary content of the EEPROM of your
-mezzanine device, the bus creates a read-only sysfs file called eeprom
-for each mezzanine it knows about:
-
- spusa.root# cd /sys/bus/fmc/devices; ls -l */eeprom
- -r--r--r-- 1 root root 8192 Apr 9 16:53 FmcDelay1ns4cha-f001/eeprom
- -r--r--r-- 1 root root 8192 Apr 9 17:19 fake-design-for-testing-f002/eeprom
- -r--r--r-- 1 root root 8192 Apr 9 17:19 fake-design-for-testing-f003/eeprom
- -r--r--r-- 1 root root 8192 Apr 9 17:19 fmc-f004/eeprom
+The bus creates a sysfs binary file called eeprom for each mezzanine it
+knows about:
+
+ spusa.root# cd /sys/bus/fmc/devices; ls -l */eeprom
+ -r--r--r-- 1 root root 8192 Feb 21 12:30 FmcAdc100m14b4cha-0800/eeprom
+ -r--r--r-- 1 root root 8192 Feb 21 12:30 FmcDelay1ns4cha-0200/eeprom
+ -r--r--r-- 1 root root 8192 Feb 21 12:30 FmcDio5cha-0400/eeprom
+
+Everybody can read the files and the superuser can also modify it, but
+the operation may on the carrier driver, if the carrier is unable to
+access the I2C bus. For example, the spec driver can access the bus
+only with its golden gateware: after a mezzanine driver reprogrammed
+the FPGA with a custom circuit, the carrier is unable to access the
+EEPROM and returns ENOTSUPP.
+
+An alternative way to write the EEPROM is the mezzanine driver
+fmc-write-eeprom (See *note fmc-write-eeprom::), but the procedure is
+more complex.
diff --git a/Documentation/futex-requeue-pi.txt b/Documentation/futex-requeue-pi.txt
index 9dc1ff4fd53..31b16610c41 100644
--- a/Documentation/futex-requeue-pi.txt
+++ b/Documentation/futex-requeue-pi.txt
@@ -67,7 +67,7 @@ pthread_cond_wait_pi(cond, mutex)
lock(cond->__data.__lock);
} while(...)
unlock(cond->__data.__lock);
- /* the kernel acquired the the mutex for us */
+ /* the kernel acquired the mutex for us */
}
pthread_cond_broadcast_pi(cond)
diff --git a/Documentation/gcov.txt b/Documentation/gcov.txt
index e7ca6478cd9..7b727783db7 100644
--- a/Documentation/gcov.txt
+++ b/Documentation/gcov.txt
@@ -50,6 +50,10 @@ Configure the kernel with:
CONFIG_DEBUG_FS=y
CONFIG_GCOV_KERNEL=y
+select the gcc's gcov format, default is autodetect based on gcc version:
+
+ CONFIG_GCOV_FORMAT_AUTODETECT=y
+
and to get coverage data for the entire kernel:
CONFIG_GCOV_PROFILE_ALL=y
diff --git a/Documentation/gpio/00-INDEX b/Documentation/gpio/00-INDEX
new file mode 100644
index 00000000000..1de43ae46ae
--- /dev/null
+++ b/Documentation/gpio/00-INDEX
@@ -0,0 +1,14 @@
+00-INDEX
+ - This file
+gpio.txt
+ - Introduction to GPIOs and their kernel interfaces
+consumer.txt
+ - How to obtain and use GPIOs in a driver
+driver.txt
+ - How to write a GPIO driver
+board.txt
+ - How to assign GPIOs to a consumer device and a function
+sysfs.txt
+ - Information about the GPIO sysfs interface
+gpio-legacy.txt
+ - Historical documentation of the deprecated GPIO integer interface
diff --git a/Documentation/gpio/board.txt b/Documentation/gpio/board.txt
new file mode 100644
index 00000000000..ba169faad5c
--- /dev/null
+++ b/Documentation/gpio/board.txt
@@ -0,0 +1,121 @@
+GPIO Mappings
+=============
+
+This document explains how GPIOs can be assigned to given devices and functions.
+Note that it only applies to the new descriptor-based interface. For a
+description of the deprecated integer-based GPIO interface please refer to
+gpio-legacy.txt (actually, there is no real mapping possible with the old
+interface; you just fetch an integer from somewhere and request the
+corresponding GPIO.
+
+Platforms that make use of GPIOs must select ARCH_REQUIRE_GPIOLIB (if GPIO usage
+is mandatory) or ARCH_WANT_OPTIONAL_GPIOLIB (if GPIO support can be omitted) in
+their Kconfig. Then, how GPIOs are mapped depends on what the platform uses to
+describe its hardware layout. Currently, mappings can be defined through device
+tree, ACPI, and platform data.
+
+Device Tree
+-----------
+GPIOs can easily be mapped to devices and functions in the device tree. The
+exact way to do it depends on the GPIO controller providing the GPIOs, see the
+device tree bindings for your controller.
+
+GPIOs mappings are defined in the consumer device's node, in a property named
+<function>-gpios, where <function> is the function the driver will request
+through gpiod_get(). For example:
+
+ foo_device {
+ compatible = "acme,foo";
+ ...
+ led-gpios = <&gpio 15 GPIO_ACTIVE_HIGH>, /* red */
+ <&gpio 16 GPIO_ACTIVE_HIGH>, /* green */
+ <&gpio 17 GPIO_ACTIVE_HIGH>; /* blue */
+
+ power-gpio = <&gpio 1 GPIO_ACTIVE_LOW>;
+ };
+
+This property will make GPIOs 15, 16 and 17 available to the driver under the
+"led" function, and GPIO 1 as the "power" GPIO:
+
+ struct gpio_desc *red, *green, *blue, *power;
+
+ red = gpiod_get_index(dev, "led", 0);
+ green = gpiod_get_index(dev, "led", 1);
+ blue = gpiod_get_index(dev, "led", 2);
+
+ power = gpiod_get(dev, "power");
+
+The led GPIOs will be active-high, while the power GPIO will be active-low (i.e.
+gpiod_is_active_low(power) will be true).
+
+ACPI
+----
+ACPI does not support function names for GPIOs. Therefore, only the "idx"
+argument of gpiod_get_index() is useful to discriminate between GPIOs assigned
+to a device. The "con_id" argument can still be set for debugging purposes (it
+will appear under error messages as well as debug and sysfs nodes).
+
+Platform Data
+-------------
+Finally, GPIOs can be bound to devices and functions using platform data. Board
+files that desire to do so need to include the following header:
+
+ #include <linux/gpio/driver.h>
+
+GPIOs are mapped by the means of tables of lookups, containing instances of the
+gpiod_lookup structure. Two macros are defined to help declaring such mappings:
+
+ GPIO_LOOKUP(chip_label, chip_hwnum, dev_id, con_id, flags)
+ GPIO_LOOKUP_IDX(chip_label, chip_hwnum, dev_id, con_id, idx, flags)
+
+where
+
+ - chip_label is the label of the gpiod_chip instance providing the GPIO
+ - chip_hwnum is the hardware number of the GPIO within the chip
+ - dev_id is the identifier of the device that will make use of this GPIO. It
+ can be NULL, in which case it will be matched for calls to gpiod_get()
+ with a NULL device.
+ - con_id is the name of the GPIO function from the device point of view. It
+ can be NULL, in which case it will match any function.
+ - idx is the index of the GPIO within the function.
+ - flags is defined to specify the following properties:
+ * GPIOF_ACTIVE_LOW - to configure the GPIO as active-low
+ * GPIOF_OPEN_DRAIN - GPIO pin is open drain type.
+ * GPIOF_OPEN_SOURCE - GPIO pin is open source type.
+
+In the future, these flags might be extended to support more properties.
+
+Note that GPIO_LOOKUP() is just a shortcut to GPIO_LOOKUP_IDX() where idx = 0.
+
+A lookup table can then be defined as follows, with an empty entry defining its
+end:
+
+struct gpiod_lookup_table gpios_table = {
+ .dev_id = "foo.0",
+ .table = {
+ GPIO_LOOKUP_IDX("gpio.0", 15, "led", 0, GPIO_ACTIVE_HIGH),
+ GPIO_LOOKUP_IDX("gpio.0", 16, "led", 1, GPIO_ACTIVE_HIGH),
+ GPIO_LOOKUP_IDX("gpio.0", 17, "led", 2, GPIO_ACTIVE_HIGH),
+ GPIO_LOOKUP("gpio.0", 1, "power", GPIO_ACTIVE_LOW),
+ { },
+ },
+};
+
+And the table can be added by the board code as follows:
+
+ gpiod_add_lookup_table(&gpios_table);
+
+The driver controlling "foo.0" will then be able to obtain its GPIOs as follows:
+
+ struct gpio_desc *red, *green, *blue, *power;
+
+ red = gpiod_get_index(dev, "led", 0);
+ green = gpiod_get_index(dev, "led", 1);
+ blue = gpiod_get_index(dev, "led", 2);
+
+ power = gpiod_get(dev, "power");
+ gpiod_direction_output(power, 1);
+
+Since the "power" GPIO is mapped as active-low, its actual signal will be 0
+after this code. Contrary to the legacy integer GPIO interface, the active-low
+property is handled during mapping and is thus transparent to GPIO consumers.
diff --git a/Documentation/gpio/consumer.txt b/Documentation/gpio/consumer.txt
new file mode 100644
index 00000000000..d8abfc31abb
--- /dev/null
+++ b/Documentation/gpio/consumer.txt
@@ -0,0 +1,202 @@
+GPIO Descriptor Consumer Interface
+==================================
+
+This document describes the consumer interface of the GPIO framework. Note that
+it describes the new descriptor-based interface. For a description of the
+deprecated integer-based GPIO interface please refer to gpio-legacy.txt.
+
+
+Guidelines for GPIOs consumers
+==============================
+
+Drivers that can't work without standard GPIO calls should have Kconfig entries
+that depend on GPIOLIB. The functions that allow a driver to obtain and use
+GPIOs are available by including the following file:
+
+ #include <linux/gpio/consumer.h>
+
+All the functions that work with the descriptor-based GPIO interface are
+prefixed with gpiod_. The gpio_ prefix is used for the legacy interface. No
+other function in the kernel should use these prefixes.
+
+
+Obtaining and Disposing GPIOs
+=============================
+
+With the descriptor-based interface, GPIOs are identified with an opaque,
+non-forgeable handler that must be obtained through a call to one of the
+gpiod_get() functions. Like many other kernel subsystems, gpiod_get() takes the
+device that will use the GPIO and the function the requested GPIO is supposed to
+fulfill:
+
+ struct gpio_desc *gpiod_get(struct device *dev, const char *con_id)
+
+If a function is implemented by using several GPIOs together (e.g. a simple LED
+device that displays digits), an additional index argument can be specified:
+
+ struct gpio_desc *gpiod_get_index(struct device *dev,
+ const char *con_id, unsigned int idx)
+
+Both functions return either a valid GPIO descriptor, or an error code checkable
+with IS_ERR() (they will never return a NULL pointer). -ENOENT will be returned
+if and only if no GPIO has been assigned to the device/function/index triplet,
+other error codes are used for cases where a GPIO has been assigned but an error
+occurred while trying to acquire it. This is useful to discriminate between mere
+errors and an absence of GPIO for optional GPIO parameters.
+
+Device-managed variants of these functions are also defined:
+
+ struct gpio_desc *devm_gpiod_get(struct device *dev, const char *con_id)
+
+ struct gpio_desc *devm_gpiod_get_index(struct device *dev,
+ const char *con_id,
+ unsigned int idx)
+
+A GPIO descriptor can be disposed of using the gpiod_put() function:
+
+ void gpiod_put(struct gpio_desc *desc)
+
+It is strictly forbidden to use a descriptor after calling this function. The
+device-managed variant is, unsurprisingly:
+
+ void devm_gpiod_put(struct device *dev, struct gpio_desc *desc)
+
+
+Using GPIOs
+===========
+
+Setting Direction
+-----------------
+The first thing a driver must do with a GPIO is setting its direction. This is
+done by invoking one of the gpiod_direction_*() functions:
+
+ int gpiod_direction_input(struct gpio_desc *desc)
+ int gpiod_direction_output(struct gpio_desc *desc, int value)
+
+The return value is zero for success, else a negative errno. It should be
+checked, since the get/set calls don't return errors and since misconfiguration
+is possible. You should normally issue these calls from a task context. However,
+for spinlock-safe GPIOs it is OK to use them before tasking is enabled, as part
+of early board setup.
+
+For output GPIOs, the value provided becomes the initial output value. This
+helps avoid signal glitching during system startup.
+
+A driver can also query the current direction of a GPIO:
+
+ int gpiod_get_direction(const struct gpio_desc *desc)
+
+This function will return either GPIOF_DIR_IN or GPIOF_DIR_OUT.
+
+Be aware that there is no default direction for GPIOs. Therefore, **using a GPIO
+without setting its direction first is illegal and will result in undefined
+behavior!**
+
+
+Spinlock-Safe GPIO Access
+-------------------------
+Most GPIO controllers can be accessed with memory read/write instructions. Those
+don't need to sleep, and can safely be done from inside hard (non-threaded) IRQ
+handlers and similar contexts.
+
+Use the following calls to access GPIOs from an atomic context:
+
+ int gpiod_get_value(const struct gpio_desc *desc);
+ void gpiod_set_value(struct gpio_desc *desc, int value);
+
+The values are boolean, zero for low, nonzero for high. When reading the value
+of an output pin, the value returned should be what's seen on the pin. That
+won't always match the specified output value, because of issues including
+open-drain signaling and output latencies.
+
+The get/set calls do not return errors because "invalid GPIO" should have been
+reported earlier from gpiod_direction_*(). However, note that not all platforms
+can read the value of output pins; those that can't should always return zero.
+Also, using these calls for GPIOs that can't safely be accessed without sleeping
+(see below) is an error.
+
+
+GPIO Access That May Sleep
+--------------------------
+Some GPIO controllers must be accessed using message based buses like I2C or
+SPI. Commands to read or write those GPIO values require waiting to get to the
+head of a queue to transmit a command and get its response. This requires
+sleeping, which can't be done from inside IRQ handlers.
+
+Platforms that support this type of GPIO distinguish them from other GPIOs by
+returning nonzero from this call:
+
+ int gpiod_cansleep(const struct gpio_desc *desc)
+
+To access such GPIOs, a different set of accessors is defined:
+
+ int gpiod_get_value_cansleep(const struct gpio_desc *desc)
+ void gpiod_set_value_cansleep(struct gpio_desc *desc, int value)
+
+Accessing such GPIOs requires a context which may sleep, for example a threaded
+IRQ handler, and those accessors must be used instead of spinlock-safe
+accessors without the cansleep() name suffix.
+
+Other than the fact that these accessors might sleep, and will work on GPIOs
+that can't be accessed from hardIRQ handlers, these calls act the same as the
+spinlock-safe calls.
+
+
+Active-low State and Raw GPIO Values
+------------------------------------
+Device drivers like to manage the logical state of a GPIO, i.e. the value their
+device will actually receive, no matter what lies between it and the GPIO line.
+In some cases, it might make sense to control the actual GPIO line value. The
+following set of calls ignore the active-low property of a GPIO and work on the
+raw line value:
+
+ int gpiod_get_raw_value(const struct gpio_desc *desc)
+ void gpiod_set_raw_value(struct gpio_desc *desc, int value)
+ int gpiod_get_raw_value_cansleep(const struct gpio_desc *desc)
+ void gpiod_set_raw_value_cansleep(struct gpio_desc *desc, int value)
+ int gpiod_direction_output_raw(struct gpio_desc *desc, int value)
+
+The active-low state of a GPIO can also be queried using the following call:
+
+ int gpiod_is_active_low(const struct gpio_desc *desc)
+
+Note that these functions should only be used with great moderation ; a driver
+should not have to care about the physical line level.
+
+GPIOs mapped to IRQs
+--------------------
+GPIO lines can quite often be used as IRQs. You can get the IRQ number
+corresponding to a given GPIO using the following call:
+
+ int gpiod_to_irq(const struct gpio_desc *desc)
+
+It will return an IRQ number, or an negative errno code if the mapping can't be
+done (most likely because that particular GPIO cannot be used as IRQ). It is an
+unchecked error to use a GPIO that wasn't set up as an input using
+gpiod_direction_input(), or to use an IRQ number that didn't originally come
+from gpiod_to_irq(). gpiod_to_irq() is not allowed to sleep.
+
+Non-error values returned from gpiod_to_irq() can be passed to request_irq() or
+free_irq(). They will often be stored into IRQ resources for platform devices,
+by the board-specific initialization code. Note that IRQ trigger options are
+part of the IRQ interface, e.g. IRQF_TRIGGER_FALLING, as are system wakeup
+capabilities.
+
+
+Interacting With the Legacy GPIO Subsystem
+==========================================
+Many kernel subsystems still handle GPIOs using the legacy integer-based
+interface. Although it is strongly encouraged to upgrade them to the safer
+descriptor-based API, the following two functions allow you to convert a GPIO
+descriptor into the GPIO integer namespace and vice-versa:
+
+ int desc_to_gpio(const struct gpio_desc *desc)
+ struct gpio_desc *gpio_to_desc(unsigned gpio)
+
+The GPIO number returned by desc_to_gpio() can be safely used as long as the
+GPIO descriptor has not been freed. All the same, a GPIO number passed to
+gpio_to_desc() must have been properly acquired, and usage of the returned GPIO
+descriptor is only possible after the GPIO number has been released.
+
+Freeing a GPIO obtained by one API with the other API is forbidden and an
+unchecked error.
diff --git a/Documentation/gpio/driver.txt b/Documentation/gpio/driver.txt
new file mode 100644
index 00000000000..fa9a0a8b373
--- /dev/null
+++ b/Documentation/gpio/driver.txt
@@ -0,0 +1,169 @@
+GPIO Descriptor Driver Interface
+================================
+
+This document serves as a guide for GPIO chip drivers writers. Note that it
+describes the new descriptor-based interface. For a description of the
+deprecated integer-based GPIO interface please refer to gpio-legacy.txt.
+
+Each GPIO controller driver needs to include the following header, which defines
+the structures used to define a GPIO driver:
+
+ #include <linux/gpio/driver.h>
+
+
+Internal Representation of GPIOs
+================================
+
+Inside a GPIO driver, individual GPIOs are identified by their hardware number,
+which is a unique number between 0 and n, n being the number of GPIOs managed by
+the chip. This number is purely internal: the hardware number of a particular
+GPIO descriptor is never made visible outside of the driver.
+
+On top of this internal number, each GPIO also need to have a global number in
+the integer GPIO namespace so that it can be used with the legacy GPIO
+interface. Each chip must thus have a "base" number (which can be automatically
+assigned), and for each GPIO the global number will be (base + hardware number).
+Although the integer representation is considered deprecated, it still has many
+users and thus needs to be maintained.
+
+So for example one platform could use numbers 32-159 for GPIOs, with a
+controller defining 128 GPIOs at a "base" of 32 ; while another platform uses
+numbers 0..63 with one set of GPIO controllers, 64-79 with another type of GPIO
+controller, and on one particular board 80-95 with an FPGA. The numbers need not
+be contiguous; either of those platforms could also use numbers 2000-2063 to
+identify GPIOs in a bank of I2C GPIO expanders.
+
+
+Controller Drivers: gpio_chip
+=============================
+
+In the gpiolib framework each GPIO controller is packaged as a "struct
+gpio_chip" (see linux/gpio/driver.h for its complete definition) with members
+common to each controller of that type:
+
+ - methods to establish GPIO direction
+ - methods used to access GPIO values
+ - method to return the IRQ number associated to a given GPIO
+ - flag saying whether calls to its methods may sleep
+ - optional debugfs dump method (showing extra state like pullup config)
+ - optional base number (will be automatically assigned if omitted)
+ - label for diagnostics and GPIOs mapping using platform data
+
+The code implementing a gpio_chip should support multiple instances of the
+controller, possibly using the driver model. That code will configure each
+gpio_chip and issue gpiochip_add(). Removing a GPIO controller should be rare;
+use gpiochip_remove() when it is unavoidable.
+
+Most often a gpio_chip is part of an instance-specific structure with state not
+exposed by the GPIO interfaces, such as addressing, power management, and more.
+Chips such as codecs will have complex non-GPIO state.
+
+Any debugfs dump method should normally ignore signals which haven't been
+requested as GPIOs. They can use gpiochip_is_requested(), which returns either
+NULL or the label associated with that GPIO when it was requested.
+
+
+GPIO drivers providing IRQs
+---------------------------
+It is custom that GPIO drivers (GPIO chips) are also providing interrupts,
+most often cascaded off a parent interrupt controller, and in some special
+cases the GPIO logic is melded with a SoC's primary interrupt controller.
+
+The IRQ portions of the GPIO block are implemented using an irqchip, using
+the header <linux/irq.h>. So basically such a driver is utilizing two sub-
+systems simultaneously: gpio and irq.
+
+GPIO irqchips usually fall in one of two categories:
+
+* CHAINED GPIO irqchips: these are usually the type that is embedded on
+ an SoC. This means that there is a fast IRQ handler for the GPIOs that
+ gets called in a chain from the parent IRQ handler, most typically the
+ system interrupt controller. This means the GPIO irqchip is registered
+ using irq_set_chained_handler() or the corresponding
+ gpiochip_set_chained_irqchip() helper function, and the GPIO irqchip
+ handler will be called immediately from the parent irqchip, while
+ holding the IRQs disabled. The GPIO irqchip will then end up calling
+ something like this sequence in its interrupt handler:
+
+ static irqreturn_t tc3589x_gpio_irq(int irq, void *data)
+ chained_irq_enter(...);
+ generic_handle_irq(...);
+ chained_irq_exit(...);
+
+ Chained GPIO irqchips typically can NOT set the .can_sleep flag on
+ struct gpio_chip, as everything happens directly in the callbacks.
+
+* NESTED THREADED GPIO irqchips: these are off-chip GPIO expanders and any
+ other GPIO irqchip residing on the other side of a sleeping bus. Of course
+ such drivers that need slow bus traffic to read out IRQ status and similar,
+ traffic which may in turn incur other IRQs to happen, cannot be handled
+ in a quick IRQ handler with IRQs disabled. Instead they need to spawn a
+ thread and then mask the parent IRQ line until the interrupt is handled
+ by the driver. The hallmark of this driver is to call something like
+ this in its interrupt handler:
+
+ static irqreturn_t tc3589x_gpio_irq(int irq, void *data)
+ ...
+ handle_nested_irq(irq);
+
+ The hallmark of threaded GPIO irqchips is that they set the .can_sleep
+ flag on struct gpio_chip to true, indicating that this chip may sleep
+ when accessing the GPIOs.
+
+To help out in handling the set-up and management of GPIO irqchips and the
+associated irqdomain and resource allocation callbacks, the gpiolib has
+some helpers that can be enabled by selecting the GPIOLIB_IRQCHIP Kconfig
+symbol:
+
+* gpiochip_irqchip_add(): adds an irqchip to a gpiochip. It will pass
+ the struct gpio_chip* for the chip to all IRQ callbacks, so the callbacks
+ need to embed the gpio_chip in its state container and obtain a pointer
+ to the container using container_of().
+ (See Documentation/driver-model/design-patterns.txt)
+
+* gpiochip_set_chained_irqchip(): sets up a chained irq handler for a
+ gpio_chip from a parent IRQ and passes the struct gpio_chip* as handler
+ data. (Notice handler data, since the irqchip data is likely used by the
+ parent irqchip!) This is for the chained type of chip.
+
+To use the helpers please keep the following in mind:
+
+- Make sure to assign all relevant members of the struct gpio_chip so that
+ the irqchip can initialize. E.g. .dev and .can_sleep shall be set up
+ properly.
+
+It is legal for any IRQ consumer to request an IRQ from any irqchip no matter
+if that is a combined GPIO+IRQ driver. The basic premise is that gpio_chip and
+irq_chip are orthogonal, and offering their services independent of each
+other.
+
+gpiod_to_irq() is just a convenience function to figure out the IRQ for a
+certain GPIO line and should not be relied upon to have been called before
+the IRQ is used.
+
+So always prepare the hardware and make it ready for action in respective
+callbacks from the GPIO and irqchip APIs. Do not rely on gpiod_to_irq() having
+been called first.
+
+This orthogonality leads to ambiguities that we need to solve: if there is
+competition inside the subsystem which side is using the resource (a certain
+GPIO line and register for example) it needs to deny certain operations and
+keep track of usage inside of the gpiolib subsystem. This is why the API
+below exists.
+
+
+Locking IRQ usage
+-----------------
+Input GPIOs can be used as IRQ signals. When this happens, a driver is requested
+to mark the GPIO as being used as an IRQ:
+
+ int gpiod_lock_as_irq(struct gpio_desc *desc)
+
+This will prevent the use of non-irq related GPIO APIs until the GPIO IRQ lock
+is released:
+
+ void gpiod_unlock_as_irq(struct gpio_desc *desc)
+
+When implementing an irqchip inside a GPIO driver, these two functions should
+typically be called in the .startup() and .shutdown() callbacks from the
+irqchip.
diff --git a/Documentation/gpio.txt b/Documentation/gpio/gpio-legacy.txt
index 6f83fa965b4..6f83fa965b4 100644
--- a/Documentation/gpio.txt
+++ b/Documentation/gpio/gpio-legacy.txt
diff --git a/Documentation/gpio/gpio.txt b/Documentation/gpio/gpio.txt
new file mode 100644
index 00000000000..cd9b356e88c
--- /dev/null
+++ b/Documentation/gpio/gpio.txt
@@ -0,0 +1,119 @@
+GPIO Interfaces
+===============
+
+The documents in this directory give detailed instructions on how to access
+GPIOs in drivers, and how to write a driver for a device that provides GPIOs
+itself.
+
+Due to the history of GPIO interfaces in the kernel, there are two different
+ways to obtain and use GPIOs:
+
+ - The descriptor-based interface is the preferred way to manipulate GPIOs,
+and is described by all the files in this directory excepted gpio-legacy.txt.
+ - The legacy integer-based interface which is considered deprecated (but still
+usable for compatibility reasons) is documented in gpio-legacy.txt.
+
+The remainder of this document applies to the new descriptor-based interface.
+gpio-legacy.txt contains the same information applied to the legacy
+integer-based interface.
+
+
+What is a GPIO?
+===============
+
+A "General Purpose Input/Output" (GPIO) is a flexible software-controlled
+digital signal. They are provided from many kinds of chip, and are familiar
+to Linux developers working with embedded and custom hardware. Each GPIO
+represents a bit connected to a particular pin, or "ball" on Ball Grid Array
+(BGA) packages. Board schematics show which external hardware connects to
+which GPIOs. Drivers can be written generically, so that board setup code
+passes such pin configuration data to drivers.
+
+System-on-Chip (SOC) processors heavily rely on GPIOs. In some cases, every
+non-dedicated pin can be configured as a GPIO; and most chips have at least
+several dozen of them. Programmable logic devices (like FPGAs) can easily
+provide GPIOs; multifunction chips like power managers, and audio codecs
+often have a few such pins to help with pin scarcity on SOCs; and there are
+also "GPIO Expander" chips that connect using the I2C or SPI serial buses.
+Most PC southbridges have a few dozen GPIO-capable pins (with only the BIOS
+firmware knowing how they're used).
+
+The exact capabilities of GPIOs vary between systems. Common options:
+
+ - Output values are writable (high=1, low=0). Some chips also have
+ options about how that value is driven, so that for example only one
+ value might be driven, supporting "wire-OR" and similar schemes for the
+ other value (notably, "open drain" signaling).
+
+ - Input values are likewise readable (1, 0). Some chips support readback
+ of pins configured as "output", which is very useful in such "wire-OR"
+ cases (to support bidirectional signaling). GPIO controllers may have
+ input de-glitch/debounce logic, sometimes with software controls.
+
+ - Inputs can often be used as IRQ signals, often edge triggered but
+ sometimes level triggered. Such IRQs may be configurable as system
+ wakeup events, to wake the system from a low power state.
+
+ - Usually a GPIO will be configurable as either input or output, as needed
+ by different product boards; single direction ones exist too.
+
+ - Most GPIOs can be accessed while holding spinlocks, but those accessed
+ through a serial bus normally can't. Some systems support both types.
+
+On a given board each GPIO is used for one specific purpose like monitoring
+MMC/SD card insertion/removal, detecting card write-protect status, driving
+a LED, configuring a transceiver, bit-banging a serial bus, poking a hardware
+watchdog, sensing a switch, and so on.
+
+
+Common GPIO Properties
+======================
+
+These properties are met through all the other documents of the GPIO interface
+and it is useful to understand them, especially if you need to define GPIO
+mappings.
+
+Active-High and Active-Low
+--------------------------
+It is natural to assume that a GPIO is "active" when its output signal is 1
+("high"), and inactive when it is 0 ("low"). However in practice the signal of a
+GPIO may be inverted before is reaches its destination, or a device could decide
+to have different conventions about what "active" means. Such decisions should
+be transparent to device drivers, therefore it is possible to define a GPIO as
+being either active-high ("1" means "active", the default) or active-low ("0"
+means "active") so that drivers only need to worry about the logical signal and
+not about what happens at the line level.
+
+Open Drain and Open Source
+--------------------------
+Sometimes shared signals need to use "open drain" (where only the low signal
+level is actually driven), or "open source" (where only the high signal level is
+driven) signaling. That term applies to CMOS transistors; "open collector" is
+used for TTL. A pullup or pulldown resistor causes the high or low signal level.
+This is sometimes called a "wire-AND"; or more practically, from the negative
+logic (low=true) perspective this is a "wire-OR".
+
+One common example of an open drain signal is a shared active-low IRQ line.
+Also, bidirectional data bus signals sometimes use open drain signals.
+
+Some GPIO controllers directly support open drain and open source outputs; many
+don't. When you need open drain signaling but your hardware doesn't directly
+support it, there's a common idiom you can use to emulate it with any GPIO pin
+that can be used as either an input or an output:
+
+ LOW: gpiod_direction_output(gpio, 0) ... this drives the signal and overrides
+ the pullup.
+
+ HIGH: gpiod_direction_input(gpio) ... this turns off the output, so the pullup
+ (or some other device) controls the signal.
+
+The same logic can be applied to emulate open source signaling, by driving the
+high signal and configuring the GPIO as input for low. This open drain/open
+source emulation can be handled transparently by the GPIO framework.
+
+If you are "driving" the signal high but gpiod_get_value(gpio) reports a low
+value (after the appropriate rise time passes), you know some other component is
+driving the shared signal low. That's not necessarily an error. As one common
+example, that's how I2C clocks are stretched: a slave that needs a slower clock
+delays the rising edge of SCK, and the I2C master adjusts its signaling rate
+accordingly.
diff --git a/Documentation/gpio/sysfs.txt b/Documentation/gpio/sysfs.txt
new file mode 100644
index 00000000000..c2c3a97f8ff
--- /dev/null
+++ b/Documentation/gpio/sysfs.txt
@@ -0,0 +1,155 @@
+GPIO Sysfs Interface for Userspace
+==================================
+
+Platforms which use the "gpiolib" implementors framework may choose to
+configure a sysfs user interface to GPIOs. This is different from the
+debugfs interface, since it provides control over GPIO direction and
+value instead of just showing a gpio state summary. Plus, it could be
+present on production systems without debugging support.
+
+Given appropriate hardware documentation for the system, userspace could
+know for example that GPIO #23 controls the write protect line used to
+protect boot loader segments in flash memory. System upgrade procedures
+may need to temporarily remove that protection, first importing a GPIO,
+then changing its output state, then updating the code before re-enabling
+the write protection. In normal use, GPIO #23 would never be touched,
+and the kernel would have no need to know about it.
+
+Again depending on appropriate hardware documentation, on some systems
+userspace GPIO can be used to determine system configuration data that
+standard kernels won't know about. And for some tasks, simple userspace
+GPIO drivers could be all that the system really needs.
+
+Note that standard kernel drivers exist for common "LEDs and Buttons"
+GPIO tasks: "leds-gpio" and "gpio_keys", respectively. Use those
+instead of talking directly to the GPIOs; they integrate with kernel
+frameworks better than your userspace code could.
+
+
+Paths in Sysfs
+--------------
+There are three kinds of entry in /sys/class/gpio:
+
+ - Control interfaces used to get userspace control over GPIOs;
+
+ - GPIOs themselves; and
+
+ - GPIO controllers ("gpio_chip" instances).
+
+That's in addition to standard files including the "device" symlink.
+
+The control interfaces are write-only:
+
+ /sys/class/gpio/
+
+ "export" ... Userspace may ask the kernel to export control of
+ a GPIO to userspace by writing its number to this file.
+
+ Example: "echo 19 > export" will create a "gpio19" node
+ for GPIO #19, if that's not requested by kernel code.
+
+ "unexport" ... Reverses the effect of exporting to userspace.
+
+ Example: "echo 19 > unexport" will remove a "gpio19"
+ node exported using the "export" file.
+
+GPIO signals have paths like /sys/class/gpio/gpio42/ (for GPIO #42)
+and have the following read/write attributes:
+
+ /sys/class/gpio/gpioN/
+
+ "direction" ... reads as either "in" or "out". This value may
+ normally be written. Writing as "out" defaults to
+ initializing the value as low. To ensure glitch free
+ operation, values "low" and "high" may be written to
+ configure the GPIO as an output with that initial value.
+
+ Note that this attribute *will not exist* if the kernel
+ doesn't support changing the direction of a GPIO, or
+ it was exported by kernel code that didn't explicitly
+ allow userspace to reconfigure this GPIO's direction.
+
+ "value" ... reads as either 0 (low) or 1 (high). If the GPIO
+ is configured as an output, this value may be written;
+ any nonzero value is treated as high.
+
+ If the pin can be configured as interrupt-generating interrupt
+ and if it has been configured to generate interrupts (see the
+ description of "edge"), you can poll(2) on that file and
+ poll(2) will return whenever the interrupt was triggered. If
+ you use poll(2), set the events POLLPRI and POLLERR. If you
+ use select(2), set the file descriptor in exceptfds. After
+ poll(2) returns, either lseek(2) to the beginning of the sysfs
+ file and read the new value or close the file and re-open it
+ to read the value.
+
+ "edge" ... reads as either "none", "rising", "falling", or
+ "both". Write these strings to select the signal edge(s)
+ that will make poll(2) on the "value" file return.
+
+ This file exists only if the pin can be configured as an
+ interrupt generating input pin.
+
+ "active_low" ... reads as either 0 (false) or 1 (true). Write
+ any nonzero value to invert the value attribute both
+ for reading and writing. Existing and subsequent
+ poll(2) support configuration via the edge attribute
+ for "rising" and "falling" edges will follow this
+ setting.
+
+GPIO controllers have paths like /sys/class/gpio/gpiochip42/ (for the
+controller implementing GPIOs starting at #42) and have the following
+read-only attributes:
+
+ /sys/class/gpio/gpiochipN/
+
+ "base" ... same as N, the first GPIO managed by this chip
+
+ "label" ... provided for diagnostics (not always unique)
+
+ "ngpio" ... how many GPIOs this manges (N to N + ngpio - 1)
+
+Board documentation should in most cases cover what GPIOs are used for
+what purposes. However, those numbers are not always stable; GPIOs on
+a daughtercard might be different depending on the base board being used,
+or other cards in the stack. In such cases, you may need to use the
+gpiochip nodes (possibly in conjunction with schematics) to determine
+the correct GPIO number to use for a given signal.
+
+
+Exporting from Kernel code
+--------------------------
+Kernel code can explicitly manage exports of GPIOs which have already been
+requested using gpio_request():
+
+ /* export the GPIO to userspace */
+ int gpiod_export(struct gpio_desc *desc, bool direction_may_change);
+
+ /* reverse gpio_export() */
+ void gpiod_unexport(struct gpio_desc *desc);
+
+ /* create a sysfs link to an exported GPIO node */
+ int gpiod_export_link(struct device *dev, const char *name,
+ struct gpio_desc *desc);
+
+ /* change the polarity of a GPIO node in sysfs */
+ int gpiod_sysfs_set_active_low(struct gpio_desc *desc, int value);
+
+After a kernel driver requests a GPIO, it may only be made available in
+the sysfs interface by gpiod_export(). The driver can control whether the
+signal direction may change. This helps drivers prevent userspace code
+from accidentally clobbering important system state.
+
+This explicit exporting can help with debugging (by making some kinds
+of experiments easier), or can provide an always-there interface that's
+suitable for documenting as part of a board support package.
+
+After the GPIO has been exported, gpiod_export_link() allows creating
+symlinks from elsewhere in sysfs to the GPIO sysfs node. Drivers can
+use this to provide the interface under their own device in sysfs with
+a descriptive name.
+
+Drivers can use gpiod_sysfs_set_active_low() to hide GPIO line polarity
+differences between boards from user space. Polarity change can be done both
+before and after gpiod_export(), and previously enabled poll(2) support for
+either rising or falling edge will be reconfigured to follow this setting.
diff --git a/Documentation/hid/hid-transport.txt b/Documentation/hid/hid-transport.txt
new file mode 100644
index 00000000000..3dcba9fd4a3
--- /dev/null
+++ b/Documentation/hid/hid-transport.txt
@@ -0,0 +1,317 @@
+ HID I/O Transport Drivers
+ ===========================
+
+The HID subsystem is independent of the underlying transport driver. Initially,
+only USB was supported, but other specifications adopted the HID design and
+provided new transport drivers. The kernel includes at least support for USB,
+Bluetooth, I2C and user-space I/O drivers.
+
+1) HID Bus
+==========
+
+The HID subsystem is designed as a bus. Any I/O subsystem may provide HID
+devices and register them with the HID bus. HID core then loads generic device
+drivers on top of it. The transport drivers are responsible of raw data
+transport and device setup/management. HID core is responsible of
+report-parsing, report interpretation and the user-space API. Device specifics
+and quirks are handled by all layers depending on the quirk.
+
+ +-----------+ +-----------+ +-----------+ +-----------+
+ | Device #1 | | Device #i | | Device #j | | Device #k |
+ +-----------+ +-----------+ +-----------+ +-----------+
+ \\ // \\ //
+ +------------+ +------------+
+ | I/O Driver | | I/O Driver |
+ +------------+ +------------+
+ || ||
+ +------------------+ +------------------+
+ | Transport Driver | | Transport Driver |
+ +------------------+ +------------------+
+ \___ ___/
+ \ /
+ +----------------+
+ | HID Core |
+ +----------------+
+ / | | \
+ / | | \
+ ____________/ | | \_________________
+ / | | \
+ / | | \
+ +----------------+ +-----------+ +------------------+ +------------------+
+ | Generic Driver | | MT Driver | | Custom Driver #1 | | Custom Driver #2 |
+ +----------------+ +-----------+ +------------------+ +------------------+
+
+Example Drivers:
+ I/O: USB, I2C, Bluetooth-l2cap
+ Transport: USB-HID, I2C-HID, BT-HIDP
+
+Everything below "HID Core" is simplified in this graph as it is only of
+interest to HID device drivers. Transport drivers do not need to know the
+specifics.
+
+1.1) Device Setup
+-----------------
+
+I/O drivers normally provide hotplug detection or device enumeration APIs to the
+transport drivers. Transport drivers use this to find any suitable HID device.
+They allocate HID device objects and register them with HID core. Transport
+drivers are not required to register themselves with HID core. HID core is never
+aware of which transport drivers are available and is not interested in it. It
+is only interested in devices.
+
+Transport drivers attach a constant "struct hid_ll_driver" object with each
+device. Once a device is registered with HID core, the callbacks provided via
+this struct are used by HID core to communicate with the device.
+
+Transport drivers are responsible of detecting device failures and unplugging.
+HID core will operate a device as long as it is registered regardless of any
+device failures. Once transport drivers detect unplug or failure events, they
+must unregister the device from HID core and HID core will stop using the
+provided callbacks.
+
+1.2) Transport Driver Requirements
+----------------------------------
+
+The terms "asynchronous" and "synchronous" in this document describe the
+transmission behavior regarding acknowledgements. An asynchronous channel must
+not perform any synchronous operations like waiting for acknowledgements or
+verifications. Generally, HID calls operating on asynchronous channels must be
+running in atomic-context just fine.
+On the other hand, synchronous channels can be implemented by the transport
+driver in whatever way they like. They might just be the same as asynchronous
+channels, but they can also provide acknowledgement reports, automatic
+retransmission on failure, etc. in a blocking manner. If such functionality is
+required on asynchronous channels, a transport-driver must implement that via
+its own worker threads.
+
+HID core requires transport drivers to follow a given design. A Transport
+driver must provide two bi-directional I/O channels to each HID device. These
+channels must not necessarily be bi-directional in the hardware itself. A
+transport driver might just provide 4 uni-directional channels. Or it might
+multiplex all four on a single physical channel. However, in this document we
+will describe them as two bi-directional channels as they have several
+properties in common.
+
+ - Interrupt Channel (intr): The intr channel is used for asynchronous data
+ reports. No management commands or data acknowledgements are sent on this
+ channel. Any unrequested incoming or outgoing data report must be sent on
+ this channel and is never acknowledged by the remote side. Devices usually
+ send their input events on this channel. Outgoing events are normally
+ not send via intr, except if high throughput is required.
+ - Control Channel (ctrl): The ctrl channel is used for synchronous requests and
+ device management. Unrequested data input events must not be sent on this
+ channel and are normally ignored. Instead, devices only send management
+ events or answers to host requests on this channel.
+ The control-channel is used for direct blocking queries to the device
+ independent of any events on the intr-channel.
+ Outgoing reports are usually sent on the ctrl channel via synchronous
+ SET_REPORT requests.
+
+Communication between devices and HID core is mostly done via HID reports. A
+report can be of one of three types:
+
+ - INPUT Report: Input reports provide data from device to host. This
+ data may include button events, axis events, battery status or more. This
+ data is generated by the device and sent to the host with or without
+ requiring explicit requests. Devices can choose to send data continuously or
+ only on change.
+ - OUTPUT Report: Output reports change device states. They are sent from host
+ to device and may include LED requests, rumble requests or more. Output
+ reports are never sent from device to host, but a host can retrieve their
+ current state.
+ Hosts may choose to send output reports either continuously or only on
+ change.
+ - FEATURE Report: Feature reports are used for specific static device features
+ and never reported spontaneously. A host can read and/or write them to access
+ data like battery-state or device-settings.
+ Feature reports are never sent without requests. A host must explicitly set
+ or retrieve a feature report. This also means, feature reports are never sent
+ on the intr channel as this channel is asynchronous.
+
+INPUT and OUTPUT reports can be sent as pure data reports on the intr channel.
+For INPUT reports this is the usual operational mode. But for OUTPUT reports,
+this is rarely done as OUTPUT reports are normally quite scarce. But devices are
+free to make excessive use of asynchronous OUTPUT reports (for instance, custom
+HID audio speakers make great use of it).
+
+Plain reports must not be sent on the ctrl channel, though. Instead, the ctrl
+channel provides synchronous GET/SET_REPORT requests. Plain reports are only
+allowed on the intr channel and are the only means of data there.
+
+ - GET_REPORT: A GET_REPORT request has a report ID as payload and is sent
+ from host to device. The device must answer with a data report for the
+ requested report ID on the ctrl channel as a synchronous acknowledgement.
+ Only one GET_REPORT request can be pending for each device. This restriction
+ is enforced by HID core as several transport drivers don't allow multiple
+ simultaneous GET_REPORT requests.
+ Note that data reports which are sent as answer to a GET_REPORT request are
+ not handled as generic device events. That is, if a device does not operate
+ in continuous data reporting mode, an answer to GET_REPORT does not replace
+ the raw data report on the intr channel on state change.
+ GET_REPORT is only used by custom HID device drivers to query device state.
+ Normally, HID core caches any device state so this request is not necessary
+ on devices that follow the HID specs except during device initialization to
+ retrieve the current state.
+ GET_REPORT requests can be sent for any of the 3 report types and shall
+ return the current report state of the device. However, OUTPUT reports as
+ payload may be blocked by the underlying transport driver if the
+ specification does not allow them.
+ - SET_REPORT: A SET_REPORT request has a report ID plus data as payload. It is
+ sent from host to device and a device must update it's current report state
+ according to the given data. Any of the 3 report types can be used. However,
+ INPUT reports as payload might be blocked by the underlying transport driver
+ if the specification does not allow them.
+ A device must answer with a synchronous acknowledgement. However, HID core
+ does not require transport drivers to forward this acknowledgement to HID
+ core.
+ Same as for GET_REPORT, only one SET_REPORT can be pending at a time. This
+ restriction is enforced by HID core as some transport drivers do not support
+ multiple synchronous SET_REPORT requests.
+
+Other ctrl-channel requests are supported by USB-HID but are not available
+(or deprecated) in most other transport level specifications:
+
+ - GET/SET_IDLE: Only used by USB-HID and I2C-HID.
+ - GET/SET_PROTOCOL: Not used by HID core.
+ - RESET: Used by I2C-HID, not hooked up in HID core.
+ - SET_POWER: Used by I2C-HID, not hooked up in HID core.
+
+2) HID API
+==========
+
+2.1) Initialization
+-------------------
+
+Transport drivers normally use the following procedure to register a new device
+with HID core:
+
+ struct hid_device *hid;
+ int ret;
+
+ hid = hid_allocate_device();
+ if (IS_ERR(hid)) {
+ ret = PTR_ERR(hid);
+ goto err_<...>;
+ }
+
+ strlcpy(hid->name, <device-name-src>, 127);
+ strlcpy(hid->phys, <device-phys-src>, 63);
+ strlcpy(hid->uniq, <device-uniq-src>, 63);
+
+ hid->ll_driver = &custom_ll_driver;
+ hid->bus = <device-bus>;
+ hid->vendor = <device-vendor>;
+ hid->product = <device-product>;
+ hid->version = <device-version>;
+ hid->country = <device-country>;
+ hid->dev.parent = <pointer-to-parent-device>;
+ hid->driver_data = <transport-driver-data-field>;
+
+ ret = hid_add_device(hid);
+ if (ret)
+ goto err_<...>;
+
+Once hid_add_device() is entered, HID core might use the callbacks provided in
+"custom_ll_driver". Note that fields like "country" can be ignored by underlying
+transport-drivers if not supported.
+
+To unregister a device, use:
+
+ hid_destroy_device(hid);
+
+Once hid_destroy_device() returns, HID core will no longer make use of any
+driver callbacks.
+
+2.2) hid_ll_driver operations
+-----------------------------
+
+The available HID callbacks are:
+ - int (*start) (struct hid_device *hdev)
+ Called from HID device drivers once they want to use the device. Transport
+ drivers can choose to setup their device in this callback. However, normally
+ devices are already set up before transport drivers register them to HID core
+ so this is mostly only used by USB-HID.
+
+ - void (*stop) (struct hid_device *hdev)
+ Called from HID device drivers once they are done with a device. Transport
+ drivers can free any buffers and deinitialize the device. But note that
+ ->start() might be called again if another HID device driver is loaded on the
+ device.
+ Transport drivers are free to ignore it and deinitialize devices after they
+ destroyed them via hid_destroy_device().
+
+ - int (*open) (struct hid_device *hdev)
+ Called from HID device drivers once they are interested in data reports.
+ Usually, while user-space didn't open any input API/etc., device drivers are
+ not interested in device data and transport drivers can put devices asleep.
+ However, once ->open() is called, transport drivers must be ready for I/O.
+ ->open() calls are nested for each client that opens the HID device.
+
+ - void (*close) (struct hid_device *hdev)
+ Called from HID device drivers after ->open() was called but they are no
+ longer interested in device reports. (Usually if user-space closed any input
+ devices of the driver).
+ Transport drivers can put devices asleep and terminate any I/O of all
+ ->open() calls have been followed by a ->close() call. However, ->start() may
+ be called again if the device driver is interested in input reports again.
+
+ - int (*parse) (struct hid_device *hdev)
+ Called once during device setup after ->start() has been called. Transport
+ drivers must read the HID report-descriptor from the device and tell HID core
+ about it via hid_parse_report().
+
+ - int (*power) (struct hid_device *hdev, int level)
+ Called by HID core to give PM hints to transport drivers. Usually this is
+ analogical to the ->open() and ->close() hints and redundant.
+
+ - void (*request) (struct hid_device *hdev, struct hid_report *report,
+ int reqtype)
+ Send an HID request on the ctrl channel. "report" contains the report that
+ should be sent and "reqtype" the request type. Request-type can be
+ HID_REQ_SET_REPORT or HID_REQ_GET_REPORT.
+ This callback is optional. If not provided, HID core will assemble a raw
+ report following the HID specs and send it via the ->raw_request() callback.
+ The transport driver is free to implement this asynchronously.
+
+ - int (*wait) (struct hid_device *hdev)
+ Used by HID core before calling ->request() again. A transport driver can use
+ it to wait for any pending requests to complete if only one request is
+ allowed at a time.
+
+ - int (*raw_request) (struct hid_device *hdev, unsigned char reportnum,
+ __u8 *buf, size_t count, unsigned char rtype,
+ int reqtype)
+ Same as ->request() but provides the report as raw buffer. This request shall
+ be synchronous. A transport driver must not use ->wait() to complete such
+ requests. This request is mandatory and hid core will reject the device if
+ it is missing.
+
+ - int (*output_report) (struct hid_device *hdev, __u8 *buf, size_t len)
+ Send raw output report via intr channel. Used by some HID device drivers
+ which require high throughput for outgoing requests on the intr channel. This
+ must not cause SET_REPORT calls! This must be implemented as asynchronous
+ output report on the intr channel!
+
+ - int (*idle) (struct hid_device *hdev, int report, int idle, int reqtype)
+ Perform SET/GET_IDLE request. Only used by USB-HID, do not implement!
+
+2.3) Data Path
+--------------
+
+Transport drivers are responsible of reading data from I/O devices. They must
+handle any I/O-related state-tracking themselves. HID core does not implement
+protocol handshakes or other management commands which can be required by the
+given HID transport specification.
+
+Every raw data packet read from a device must be fed into HID core via
+hid_input_report(). You must specify the channel-type (intr or ctrl) and report
+type (input/output/feature). Under normal conditions, only input reports are
+provided via this API.
+
+Responses to GET_REPORT requests via ->request() must also be provided via this
+API. Responses to ->raw_request() are synchronous and must be intercepted by the
+transport driver and not passed to hid_input_report().
+Acknowledgements to SET_REPORT requests are not of interest to HID core.
+
+----------------------------------------------------
+Written 2013, David Herrmann <dh.herrmann@gmail.com>
diff --git a/Documentation/hid/uhid.txt b/Documentation/hid/uhid.txt
index dc35a2b75ee..54c8f9706a9 100644
--- a/Documentation/hid/uhid.txt
+++ b/Documentation/hid/uhid.txt
@@ -93,6 +93,11 @@ the request was handled successfully.
event to the kernel. The payload is of type struct uhid_create_req and
contains information about your device. You can start I/O now.
+ UHID_CREATE2:
+ Same as UHID_CREATE, but the HID report descriptor data (rd_data) is an array
+ inside struct uhid_create2_req, instead of a pointer to a separate array.
+ Enables use from languages that don't support pointers, e.g. Python.
+
UHID_DESTROY:
This destroys the internal HID device. No further I/O will be accepted. There
may still be pending messages that you can receive with read() but no further
@@ -105,6 +110,12 @@ the request was handled successfully.
contains a data-payload. This is the raw data that you read from your device.
The kernel will parse the HID reports and react on it.
+ UHID_INPUT2:
+ Same as UHID_INPUT, but the data array is the last field of uhid_input2_req.
+ Enables userspace to write only the required bytes to kernel (ev.type +
+ ev.u.input2.size + the part of the data array that matters), instead of
+ the entire struct uhid_input2_req.
+
UHID_FEATURE_ANSWER:
If you receive a UHID_FEATURE request you must answer with this request. You
must copy the "id" field from the request into the answer. Set the "err" field
@@ -114,7 +125,7 @@ the request was handled successfully.
read()
------
-read() will return a queued ouput report. These output reports can be of type
+read() will return a queued output report. These output reports can be of type
UHID_START, UHID_STOP, UHID_OPEN, UHID_CLOSE, UHID_OUTPUT or UHID_OUTPUT_EV. No
reaction is required to any of them but you should handle them according to your
needs. Only UHID_OUTPUT and UHID_OUTPUT_EV have payloads.
diff --git a/Documentation/hsi.txt b/Documentation/hsi.txt
new file mode 100644
index 00000000000..6ac6cd51852
--- /dev/null
+++ b/Documentation/hsi.txt
@@ -0,0 +1,75 @@
+HSI - High-speed Synchronous Serial Interface
+
+1. Introduction
+~~~~~~~~~~~~~~~
+
+High Speed Syncronous Interface (HSI) is a fullduplex, low latency protocol,
+that is optimized for die-level interconnect between an Application Processor
+and a Baseband chipset. It has been specified by the MIPI alliance in 2003 and
+implemented by multiple vendors since then.
+
+The HSI interface supports full duplex communication over multiple channels
+(typically 8) and is capable of reaching speeds up to 200 Mbit/s.
+
+The serial protocol uses two signals, DATA and FLAG as combined data and clock
+signals and an additional READY signal for flow control. An additional WAKE
+signal can be used to wakeup the chips from standby modes. The signals are
+commonly prefixed by AC for signals going from the application die to the
+cellular die and CA for signals going the other way around.
+
++------------+ +---------------+
+| Cellular | | Application |
+| Die | | Die |
+| | - - - - - - CAWAKE - - - - - - >| |
+| T|------------ CADATA ------------>|R |
+| X|------------ CAFLAG ------------>|X |
+| |<----------- ACREADY ------------| |
+| | | |
+| | | |
+| |< - - - - - ACWAKE - - - - - - -| |
+| R|<----------- ACDATA -------------|T |
+| X|<----------- ACFLAG -------------|X |
+| |------------ CAREADY ----------->| |
+| | | |
+| | | |
++------------+ +---------------+
+
+2. HSI Subsystem in Linux
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+In the Linux kernel the hsi subsystem is supposed to be used for HSI devices.
+The hsi subsystem contains drivers for hsi controllers including support for
+multi-port controllers and provides a generic API for using the HSI ports.
+
+It also contains HSI client drivers, which make use of the generic API to
+implement a protocol used on the HSI interface. These client drivers can
+use an arbitrary number of channels.
+
+3. hsi-char Device
+~~~~~~~~~~~~~~~~~~
+
+Each port automatically registers a generic client driver called hsi_char,
+which provides a charecter device for userspace representing the HSI port.
+It can be used to communicate via HSI from userspace. Userspace may
+configure the hsi_char device using the following ioctl commands:
+
+* HSC_RESET:
+ - flush the HSI port
+
+* HSC_SET_PM
+ - enable or disable the client.
+
+* HSC_SEND_BREAK
+ - send break
+
+* HSC_SET_RX
+ - set RX configuration
+
+* HSC_GET_RX
+ - get RX configuration
+
+* HSC_SET_TX
+ - set TX configuration
+
+* HSC_GET_TX
+ - get TX configuration
diff --git a/Documentation/hwmon/adc128d818 b/Documentation/hwmon/adc128d818
new file mode 100644
index 00000000000..39c95004dab
--- /dev/null
+++ b/Documentation/hwmon/adc128d818
@@ -0,0 +1,47 @@
+Kernel driver adc128d818
+========================
+
+Supported chips:
+ * Texas Instruments ADC818D818
+ Prefix: 'adc818d818'
+ Addresses scanned: I2C 0x1d, 0x1e, 0x1f, 0x2d, 0x2e, 0x2f
+ Datasheet: Publicly available at the TI website
+ http://www.ti.com/
+
+Author: Guenter Roeck
+
+Description
+-----------
+
+This driver implements support for the Texas Instruments ADC128D818.
+It is described as 'ADC System Monitor with Temperature Sensor'.
+
+The ADC128D818 implements one temperature sensor and seven voltage sensors.
+
+Temperatures are measured in degrees Celsius. There is one set of limits.
+When the HOT Temperature Limit is crossed, this will cause an alarm that will
+be reasserted until the temperature drops below the HOT Hysteresis.
+Measurements are guaranteed between -55 and +125 degrees. The temperature
+measurement has a resolution of 0.5 degrees; the limits have a resolution
+of 1 degree.
+
+Voltage sensors (also known as IN sensors) report their values in volts.
+An alarm is triggered if the voltage has crossed a programmable minimum
+or maximum limit. Note that minimum in this case always means 'closest to
+zero'; this is important for negative voltage measurements. All voltage
+inputs can measure voltages between 0 and 2.55 volts, with a resolution
+of 0.625 mV.
+
+If an alarm triggers, it will remain triggered until the hardware register
+is read at least once. This means that the cause for the alarm may
+already have disappeared by the time the alarm is read. The driver
+caches the alarm status for each sensor until it is at least reported
+once, to ensure that alarms are reported to user space.
+
+The ADC128D818 only updates its values approximately once per second;
+reading it more often will do no harm, but will return 'old' values.
+
+In addition to the scanned address list, the chip can also be configured for
+addresses 0x35 to 0x37. Those addresses are not scanned. You have to instantiate
+the driver explicitly if the chip is configured for any of those addresses in
+your system.
diff --git a/Documentation/hwmon/adm1025 b/Documentation/hwmon/adm1025
index 39d2b781b5d..99f05049c68 100644
--- a/Documentation/hwmon/adm1025
+++ b/Documentation/hwmon/adm1025
@@ -18,7 +18,7 @@ The NE1619 presents some differences with the original ADM1025:
Authors:
Chen-Yuan Wu <gwu@esoft.com>,
- Jean Delvare <khali@linux-fr.org>
+ Jean Delvare <jdelvare@suse.de>
Description
-----------
diff --git a/Documentation/hwmon/adm1031 b/Documentation/hwmon/adm1031
index be92a77da1d..a143117c99c 100644
--- a/Documentation/hwmon/adm1031
+++ b/Documentation/hwmon/adm1031
@@ -16,7 +16,7 @@ Supported chips:
Authors:
Alexandre d'Alton <alex@alexdalton.org>
- Jean Delvare <khali@linux-fr.org>
+ Jean Delvare <jdelvare@suse.de>
Description
-----------
diff --git a/Documentation/hwmon/adm9240 b/Documentation/hwmon/adm9240
index 36e8ec6aa86..9b174fc700c 100644
--- a/Documentation/hwmon/adm9240
+++ b/Documentation/hwmon/adm9240
@@ -25,7 +25,7 @@ Authors:
Philip Edelbrock <phil@netroedge.com>,
Michiel Rook <michiel@grendelproject.nl>,
Grant Coady <gcoady.lk@gmail.com> with guidance
- from Jean Delvare <khali@linux-fr.org>
+ from Jean Delvare <jdelvare@suse.de>
Interface
---------
diff --git a/Documentation/hwmon/ds1621 b/Documentation/hwmon/ds1621
index 896cdc972ca..f775e612f58 100644
--- a/Documentation/hwmon/ds1621
+++ b/Documentation/hwmon/ds1621
@@ -31,7 +31,7 @@ Authors:
Christian W. Zuckschwerdt <zany@triq.net>
valuable contributions by Jan M. Sendler <sendler@sendler.de>
ported to 2.6 by Aurelien Jarno <aurelien@aurel32.net>
- with the help of Jean Delvare <khali@linux-fr.org>
+ with the help of Jean Delvare <jdelvare@suse.de>
Module Parameters
------------------
diff --git a/Documentation/hwmon/emc1403 b/Documentation/hwmon/emc1403
new file mode 100644
index 00000000000..a869b0ef6a9
--- /dev/null
+++ b/Documentation/hwmon/emc1403
@@ -0,0 +1,59 @@
+Kernel driver emc1403
+=====================
+
+Supported chips:
+ * SMSC / Microchip EMC1402, EMC1412
+ Addresses scanned: I2C 0x18, 0x1c, 0x29, 0x4c, 0x4d, 0x5c
+ Prefix: 'emc1402'
+ Datasheets:
+ http://ww1.microchip.com/downloads/en/DeviceDoc/1412.pdf
+ http://ww1.microchip.com/downloads/en/DeviceDoc/1402.pdf
+ * SMSC / Microchip EMC1403, EMC1404, EMC1413, EMC1414
+ Addresses scanned: I2C 0x18, 0x29, 0x4c, 0x4d
+ Prefix: 'emc1403', 'emc1404'
+ Datasheets:
+ http://ww1.microchip.com/downloads/en/DeviceDoc/1403_1404.pdf
+ http://ww1.microchip.com/downloads/en/DeviceDoc/1413_1414.pdf
+ * SMSC / Microchip EMC1422
+ Addresses scanned: I2C 0x4c
+ Prefix: 'emc1422'
+ Datasheet:
+ http://ww1.microchip.com/downloads/en/DeviceDoc/1422.pdf
+ * SMSC / Microchip EMC1423, EMC1424
+ Addresses scanned: I2C 0x4c
+ Prefix: 'emc1423', 'emc1424'
+ Datasheet:
+ http://ww1.microchip.com/downloads/en/DeviceDoc/1423_1424.pdf
+
+Author:
+ Kalhan Trisal <kalhan.trisal@intel.com
+
+
+Description
+-----------
+
+The Standard Microsystems Corporation (SMSC) / Microchip EMC14xx chips
+contain up to four temperature sensors. EMC14x2 support two sensors
+(one internal, one external). EMC14x3 support three sensors (one internal,
+two external), and EMC14x4 support four sensors (one internal, three
+external).
+
+The chips implement three limits for each sensor: low (tempX_min), high
+(tempX_max) and critical (tempX_crit.) The chips also implement an
+hysteresis mechanism which applies to all limits. The relative difference
+is stored in a single register on the chip, which means that the relative
+difference between the limit and its hysteresis is always the same for
+all three limits.
+
+This implementation detail implies the following:
+* When setting a limit, its hysteresis will automatically follow, the
+ difference staying unchanged. For example, if the old critical limit
+ was 80 degrees C, and the hysteresis was 75 degrees C, and you change
+ the critical limit to 90 degrees C, then the hysteresis will
+ automatically change to 85 degrees C.
+* The hysteresis values can't be set independently. We decided to make
+ only temp1_crit_hyst writable, while all other hysteresis attributes
+ are read-only. Setting temp1_crit_hyst writes the difference between
+ temp1_crit_hyst and temp1_crit into the chip, and the same relative
+ hysteresis applies automatically to all other limits.
+* The limits should be set before the hysteresis.
diff --git a/Documentation/hwmon/emc6w201 b/Documentation/hwmon/emc6w201
index 32f355aaf56..757629b1289 100644
--- a/Documentation/hwmon/emc6w201
+++ b/Documentation/hwmon/emc6w201
@@ -7,7 +7,7 @@ Supported chips:
Addresses scanned: I2C 0x2c, 0x2d, 0x2e
Datasheet: Not public
-Author: Jean Delvare <khali@linux-fr.org>
+Author: Jean Delvare <jdelvare@suse.de>
Description
diff --git a/Documentation/hwmon/f71805f b/Documentation/hwmon/f71805f
index f0d55976740..48a356084bc 100644
--- a/Documentation/hwmon/f71805f
+++ b/Documentation/hwmon/f71805f
@@ -15,7 +15,7 @@ Supported chips:
Addresses scanned: none, address read from Super I/O config space
Datasheet: Available from the Fintek website
-Author: Jean Delvare <khali@linux-fr.org>
+Author: Jean Delvare <jdelvare@suse.de>
Thanks to Denis Kieft from Barracuda Networks for the donation of a
test system (custom Jetway K8M8MS motherboard, with CPU and RAM) and
diff --git a/Documentation/hwmon/gl518sm b/Documentation/hwmon/gl518sm
index 26f9f3c02dc..494bb55b6e7 100644
--- a/Documentation/hwmon/gl518sm
+++ b/Documentation/hwmon/gl518sm
@@ -14,7 +14,7 @@ Authors:
Frodo Looijaard <frodol@dds.nl>,
Kyösti Mälkki <kmalkki@cc.hut.fi>
Hong-Gunn Chew <hglinux@gunnet.org>
- Jean Delvare <khali@linux-fr.org>
+ Jean Delvare <jdelvare@suse.de>
Description
-----------
diff --git a/Documentation/hwmon/hwmon-kernel-api.txt b/Documentation/hwmon/hwmon-kernel-api.txt
new file mode 100644
index 00000000000..2ecdbfc85ec
--- /dev/null
+++ b/Documentation/hwmon/hwmon-kernel-api.txt
@@ -0,0 +1,107 @@
+The Linux Hardware Monitoring kernel API.
+=========================================
+
+Guenter Roeck
+
+Introduction
+------------
+
+This document describes the API that can be used by hardware monitoring
+drivers that want to use the hardware monitoring framework.
+
+This document does not describe what a hardware monitoring (hwmon) Driver or
+Device is. It also does not describe the API which can be used by user space
+to communicate with a hardware monitoring device. If you want to know this
+then please read the following file: Documentation/hwmon/sysfs-interface.
+
+For additional guidelines on how to write and improve hwmon drivers, please
+also read Documentation/hwmon/submitting-patches.
+
+The API
+-------
+Each hardware monitoring driver must #include <linux/hwmon.h> and, in most
+cases, <linux/hwmon-sysfs.h>. linux/hwmon.h declares the following
+register/unregister functions:
+
+struct device *hwmon_device_register(struct device *dev);
+struct device *
+hwmon_device_register_with_groups(struct device *dev, const char *name,
+ void *drvdata,
+ const struct attribute_group **groups);
+
+struct device *
+devm_hwmon_device_register_with_groups(struct device *dev,
+ const char *name, void *drvdata,
+ const struct attribute_group **groups);
+
+void hwmon_device_unregister(struct device *dev);
+void devm_hwmon_device_unregister(struct device *dev);
+
+hwmon_device_register registers a hardware monitoring device. The parameter
+of this function is a pointer to the parent device.
+This function returns a pointer to the newly created hardware monitoring device
+or PTR_ERR for failure. If this registration function is used, hardware
+monitoring sysfs attributes are expected to have been created and attached to
+the parent device prior to calling hwmon_device_register. A name attribute must
+have been created by the caller.
+
+hwmon_device_register_with_groups is similar to hwmon_device_register. However,
+it has additional parameters. The name parameter is a pointer to the hwmon
+device name. The registration function wil create a name sysfs attribute
+pointing to this name. The drvdata parameter is the pointer to the local
+driver data. hwmon_device_register_with_groups will attach this pointer
+to the newly allocated hwmon device. The pointer can be retrieved by the driver
+using dev_get_drvdata() on the hwmon device pointer. The groups parameter is
+a pointer to a list of sysfs attribute groups. The list must be NULL terminated.
+hwmon_device_register_with_groups creates the hwmon device with name attribute
+as well as all sysfs attributes attached to the hwmon device.
+
+devm_hwmon_device_register_with_groups is similar to
+hwmon_device_register_with_groups. However, it is device managed, meaning the
+hwmon device does not have to be removed explicitly by the removal function.
+
+hwmon_device_unregister deregisters a registered hardware monitoring device.
+The parameter of this function is the pointer to the registered hardware
+monitoring device structure. This function must be called from the driver
+remove function if the hardware monitoring device was registered with
+hwmon_device_register or with hwmon_device_register_with_groups.
+
+devm_hwmon_device_unregister does not normally have to be called. It is only
+needed for error handling, and only needed if the driver probe fails after
+the call to devm_hwmon_device_register_with_groups.
+
+The header file linux/hwmon-sysfs.h provides a number of useful macros to
+declare and use hardware monitoring sysfs attributes.
+
+In many cases, you can use the exsting define DEVICE_ATTR to declare such
+attributes. This is feasible if an attribute has no additional context. However,
+in many cases there will be additional information such as a sensor index which
+will need to be passed to the sysfs attribute handling function.
+
+SENSOR_DEVICE_ATTR and SENSOR_DEVICE_ATTR_2 can be used to define attributes
+which need such additional context information. SENSOR_DEVICE_ATTR requires
+one additional argument, SENSOR_DEVICE_ATTR_2 requires two.
+
+SENSOR_DEVICE_ATTR defines a struct sensor_device_attribute variable.
+This structure has the following fields.
+
+struct sensor_device_attribute {
+ struct device_attribute dev_attr;
+ int index;
+};
+
+You can use to_sensor_dev_attr to get the pointer to this structure from the
+attribute read or write function. Its parameter is the device to which the
+attribute is attached.
+
+SENSOR_DEVICE_ATTR_2 defines a struct sensor_device_attribute_2 variable,
+which is defined as follows.
+
+struct sensor_device_attribute_2 {
+ struct device_attribute dev_attr;
+ u8 index;
+ u8 nr;
+};
+
+Use to_sensor_dev_attr_2 to get the pointer to this structure. Its parameter
+is the device to which the attribute is attached.
diff --git a/Documentation/hwmon/it87 b/Documentation/hwmon/it87
index c263740f0cb..fe80e9adebf 100644
--- a/Documentation/hwmon/it87
+++ b/Documentation/hwmon/it87
@@ -2,6 +2,10 @@ Kernel driver it87
==================
Supported chips:
+ * IT8603E/IT8623E
+ Prefix: 'it8603'
+ Addresses scanned: from Super I/O config space (8 I/O ports)
+ Datasheet: Not publicly available
* IT8705F
Prefix: 'it87'
Addresses scanned: from Super I/O config space (8 I/O ports)
@@ -53,7 +57,7 @@ Supported chips:
Authors:
Christophe Gauthron
- Jean Delvare <khali@linux-fr.org>
+ Jean Delvare <jdelvare@suse.de>
Module Parameters
@@ -90,9 +94,9 @@ motherboard models.
Description
-----------
-This driver implements support for the IT8705F, IT8712F, IT8716F,
-IT8718F, IT8720F, IT8721F, IT8726F, IT8728F, IT8758E, IT8771E, IT8772E,
-IT8782F, IT8783E/F, and SiS950 chips.
+This driver implements support for the IT8603E, IT8623E, IT8705F, IT8712F,
+IT8716F, IT8718F, IT8720F, IT8721F, IT8726F, IT8728F, IT8758E, IT8771E,
+IT8772E, IT8782F, IT8783E/F, and SiS950 chips.
These chips are 'Super I/O chips', supporting floppy disks, infrared ports,
joysticks and other miscellaneous stuff. For hardware monitoring, they
@@ -129,6 +133,10 @@ to userspace applications.
The IT8728F, IT8771E, and IT8772E are considered compatible with the IT8721F,
until a datasheet becomes available (hopefully.)
+The IT8603E/IT8623E is a custom design, hardware monitoring part is similar to
+IT8728F. It only supports 16-bit fan mode, the full speed mode of the
+fan is not supported (value 0 of pwmX_enable).
+
Temperatures are measured in degrees Celsius. An alarm is triggered once
when the Overtemperature Shutdown limit is crossed.
@@ -145,13 +153,16 @@ alarm is triggered if the voltage has crossed a programmable minimum or
maximum limit. Note that minimum in this case always means 'closest to
zero'; this is important for negative voltage measurements. All voltage
inputs can measure voltages between 0 and 4.08 volts, with a resolution of
-0.016 volt (except IT8721F/IT8758E and IT8728F: 0.012 volt.) The battery
-voltage in8 does not have limit registers.
-
-On the IT8721F/IT8758E, IT8782F, and IT8783E/F, some voltage inputs are
-internal and scaled inside the chip (in7 (optional for IT8782F and IT8783E/F),
-in8 and optionally in3). The driver handles this transparently so user-space
-doesn't have to care.
+0.016 volt (except IT8603E, IT8721F/IT8758E and IT8728F: 0.012 volt.) The
+battery voltage in8 does not have limit registers.
+
+On the IT8603E, IT8721F/IT8758E, IT8782F, and IT8783E/F, some voltage inputs
+are internal and scaled inside the chip:
+* in3 (optional)
+* in7 (optional for IT8782F and IT8783E/F)
+* in8 (always)
+* in9 (relevant for IT8603E only)
+The driver handles this transparently so user-space doesn't have to care.
The VID lines (IT8712F/IT8716F/IT8718F/IT8720F) encode the core voltage value:
the voltage level your processor should work with. This is hardcoded by
diff --git a/Documentation/hwmon/jc42 b/Documentation/hwmon/jc42
index 868d74d6b77..f3893f7440d 100644
--- a/Documentation/hwmon/jc42
+++ b/Documentation/hwmon/jc42
@@ -5,9 +5,12 @@ Supported chips:
* Analog Devices ADT7408
Datasheets:
http://www.analog.com/static/imported-files/data_sheets/ADT7408.pdf
- * Atmel AT30TS00
+ * Atmel AT30TS00, AT30TS002A/B, AT30TSE004A
Datasheets:
http://www.atmel.com/Images/doc8585.pdf
+ http://www.atmel.com/Images/doc8711.pdf
+ http://www.atmel.com/Images/Atmel-8852-SEEPROM-AT30TSE002A-Datasheet.pdf
+ http://www.atmel.com/Images/Atmel-8868-DTS-AT30TSE004A-Datasheet.pdf
* IDT TSE2002B3, TSE2002GB2, TS3000B3, TS3000GB2
Datasheets:
http://www.idt.com/sites/default/files/documents/IDT_TSE2002B3C_DST_20100512_120303152056.pdf
@@ -34,12 +37,13 @@ Supported chips:
Datasheet:
http://www.onsemi.com/pub_link/Collateral/CAT34TS02-D.PDF
http://www.onsemi.com/pub/Collateral/CAT6095-D.PDF
- * ST Microelectronics STTS424, STTS424E02, STTS2002, STTS3000
+ * ST Microelectronics STTS424, STTS424E02, STTS2002, STTS2004, STTS3000
Datasheets:
- http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/CD00157556.pdf
- http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/CD00157558.pdf
- http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/CD00225278.pdf
- http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATA_BRIEF/CD00270920.pdf
+ http://www.st.com/web/en/resource/technical/document/datasheet/CD00157556.pdf
+ http://www.st.com/web/en/resource/technical/document/datasheet/CD00157558.pdf
+ http://www.st.com/web/en/resource/technical/document/datasheet/CD00266638.pdf
+ http://www.st.com/web/en/resource/technical/document/datasheet/CD00225278.pdf
+ http://www.st.com/web/en/resource/technical/document/datasheet/DM00076709.pdf
* JEDEC JC 42.4 compliant temperature sensor chips
Datasheet:
http://www.jedec.org/sites/default/files/docs/4_01_04R19.pdf
diff --git a/Documentation/hwmon/k10temp b/Documentation/hwmon/k10temp
index 4dfdc8f8363..ee6d30ec152 100644
--- a/Documentation/hwmon/k10temp
+++ b/Documentation/hwmon/k10temp
@@ -11,8 +11,8 @@ Supported chips:
Socket S1G2: Athlon (X2), Sempron (X2), Turion X2 (Ultra)
* AMD Family 12h processors: "Llano" (E2/A4/A6/A8-Series)
* AMD Family 14h processors: "Brazos" (C/E/G/Z-Series)
-* AMD Family 15h processors: "Bulldozer" (FX-Series), "Trinity"
-* AMD Family 16h processors: "Kabini"
+* AMD Family 15h processors: "Bulldozer" (FX-Series), "Trinity", "Kaveri"
+* AMD Family 16h processors: "Kabini", "Mullins"
Prefix: 'k10temp'
Addresses scanned: PCI space
@@ -46,7 +46,7 @@ Description
-----------
This driver permits reading of the internal temperature sensor of AMD
-Family 10h/11h/12h/14h/15h processors.
+Family 10h/11h/12h/14h/15h/16h processors.
All these processors have a sensor, but on those for Socket F or AM2+,
the sensor may return inconsistent values (erratum 319). The driver
diff --git a/Documentation/hwmon/lm25066 b/Documentation/hwmon/lm25066
index c1b57d72efc..b34c3de5c1b 100644
--- a/Documentation/hwmon/lm25066
+++ b/Documentation/hwmon/lm25066
@@ -8,6 +8,11 @@ Supported chips:
Datasheets:
http://www.ti.com/lit/gpn/lm25056
http://www.ti.com/lit/gpn/lm25056a
+ * TI LM25063
+ Prefix: 'lm25063'
+ Addresses scanned: -
+ Datasheet:
+ To be announced
* National Semiconductor LM25066
Prefix: 'lm25066'
Addresses scanned: -
@@ -32,7 +37,7 @@ Description
-----------
This driver supports hardware montoring for National Semiconductor / TI LM25056,
-LM25066, LM5064, and LM5064 Power Management, Monitoring, Control, and
+LM25063, LM25066, LM5064, and LM5066 Power Management, Monitoring, Control, and
Protection ICs.
The driver is a client driver to the core PMBus driver. Please see
@@ -64,8 +69,12 @@ in1_input Measured input voltage.
in1_average Average measured input voltage.
in1_min Minimum input voltage.
in1_max Maximum input voltage.
+in1_crit Critical high input voltage (LM25063 only).
+in1_lcrit Critical low input voltage (LM25063 only).
in1_min_alarm Input voltage low alarm.
in1_max_alarm Input voltage high alarm.
+in1_lcrit_alarm Input voltage critical low alarm (LM25063 only).
+in1_crit_alarm Input voltage critical high alarm. (LM25063 only).
in2_label "vmon"
in2_input Measured voltage on VAUX pin
@@ -80,12 +89,16 @@ in3_input Measured output voltage.
in3_average Average measured output voltage.
in3_min Minimum output voltage.
in3_min_alarm Output voltage low alarm.
+in3_highest Historical minimum output voltage (LM25063 only).
+in3_lowest Historical maximum output voltage (LM25063 only).
curr1_label "iin"
curr1_input Measured input current.
curr1_average Average measured input current.
curr1_max Maximum input current.
+curr1_crit Critical input current (LM25063 only).
curr1_max_alarm Input current high alarm.
+curr1_crit_alarm Input current critical high alarm (LM25063 only).
power1_label "pin"
power1_input Measured input power.
@@ -95,6 +108,11 @@ power1_alarm Input power alarm
power1_input_highest Historical maximum power.
power1_reset_history Write any value to reset maximum power history.
+power2_label "pout". LM25063 only.
+power2_input Measured output power.
+power2_max Maximum output power limit.
+power2_crit Critical output power limit.
+
temp1_input Measured temperature.
temp1_max Maximum temperature.
temp1_crit Critical high temperature.
diff --git a/Documentation/hwmon/lm63 b/Documentation/hwmon/lm63
index 4d30d209881..4a00461512a 100644
--- a/Documentation/hwmon/lm63
+++ b/Documentation/hwmon/lm63
@@ -18,7 +18,7 @@ Supported chips:
Datasheet: Publicly available at the National Semiconductor website
http://www.national.com/pf/LM/LM96163.html
-Author: Jean Delvare <khali@linux-fr.org>
+Author: Jean Delvare <jdelvare@suse.de>
Thanks go to Tyan and especially Alex Buckingham for setting up a remote
access to their S4882 test platform for this driver.
diff --git a/Documentation/hwmon/lm70 b/Documentation/hwmon/lm70
index 86d182942c5..1bb2db44067 100644
--- a/Documentation/hwmon/lm70
+++ b/Documentation/hwmon/lm70
@@ -43,5 +43,5 @@ data (0.03125 degrees celsius resolution).
Thanks to
---------
-Jean Delvare <khali@linux-fr.org> for mentoring the hwmon-side driver
+Jean Delvare <jdelvare@suse.de> for mentoring the hwmon-side driver
development.
diff --git a/Documentation/hwmon/lm77 b/Documentation/hwmon/lm77
index 57c3a46d637..bfc915fe363 100644
--- a/Documentation/hwmon/lm77
+++ b/Documentation/hwmon/lm77
@@ -18,5 +18,21 @@ sensor incorporates a band-gap type temperature sensor,
10-bit ADC, and a digital comparator with user-programmable upper
and lower limit values.
-Limits can be set through the Overtemperature Shutdown register and
-Hysteresis register.
+The LM77 implements 3 limits: low (temp1_min), high (temp1_max) and
+critical (temp1_crit.) It also implements an hysteresis mechanism which
+applies to all 3 limits. The relative difference is stored in a single
+register on the chip, which means that the relative difference between
+the limit and its hysteresis is always the same for all 3 limits.
+
+This implementation detail implies the following:
+* When setting a limit, its hysteresis will automatically follow, the
+ difference staying unchanged. For example, if the old critical limit
+ was 80 degrees C, and the hysteresis was 75 degrees C, and you change
+ the critical limit to 90 degrees C, then the hysteresis will
+ automatically change to 85 degrees C.
+* All 3 hysteresis can't be set independently. We decided to make
+ temp1_crit_hyst writable, while temp1_min_hyst and temp1_max_hyst are
+ read-only. Setting temp1_crit_hyst writes the difference between
+ temp1_crit_hyst and temp1_crit into the chip, and the same relative
+ hysteresis applies automatically to the low and high limits.
+* The limits should be set before the hysteresis.
diff --git a/Documentation/hwmon/lm78 b/Documentation/hwmon/lm78
index 2bdc881a0c1..4dd47731789 100644
--- a/Documentation/hwmon/lm78
+++ b/Documentation/hwmon/lm78
@@ -14,7 +14,7 @@ Supported chips:
http://www.national.com/
Authors: Frodo Looijaard <frodol@dds.nl>
- Jean Delvare <khali@linux-fr.org>
+ Jean Delvare <jdelvare@suse.de>
Description
-----------
diff --git a/Documentation/hwmon/lm83 b/Documentation/hwmon/lm83
index a04d1fe9269..50be5cb26de 100644
--- a/Documentation/hwmon/lm83
+++ b/Documentation/hwmon/lm83
@@ -13,7 +13,7 @@ Supported chips:
http://www.national.com/pf/LM/LM82.html
-Author: Jean Delvare <khali@linux-fr.org>
+Author: Jean Delvare <jdelvare@suse.de>
Description
-----------
diff --git a/Documentation/hwmon/lm87 b/Documentation/hwmon/lm87
index 6b47b67fd96..a2339fd9acb 100644
--- a/Documentation/hwmon/lm87
+++ b/Documentation/hwmon/lm87
@@ -17,7 +17,7 @@ Authors:
Mark Studebaker <mdsxyz123@yahoo.com>,
Stephen Rousset <stephen.rousset@rocketlogix.com>,
Dan Eaton <dan.eaton@rocketlogix.com>,
- Jean Delvare <khali@linux-fr.org>,
+ Jean Delvare <jdelvare@suse.de>,
Original 2.6 port Jeff Oliver
Description
diff --git a/Documentation/hwmon/lm90 b/Documentation/hwmon/lm90
index b466974e142..8122675d30f 100644
--- a/Documentation/hwmon/lm90
+++ b/Documentation/hwmon/lm90
@@ -122,8 +122,14 @@ Supported chips:
Prefix: 'g781'
Addresses scanned: I2C 0x4c, 0x4d
Datasheet: Not publicly available from GMT
+ * Texas Instruments TMP451
+ Prefix: 'tmp451'
+ Addresses scanned: I2C 0x4c
+ Datasheet: Publicly available at TI website
+ http://www.ti.com/litv/pdf/sbos686
+
-Author: Jean Delvare <khali@linux-fr.org>
+Author: Jean Delvare <jdelvare@suse.de>
Description
diff --git a/Documentation/hwmon/lm92 b/Documentation/hwmon/lm92
index 7705bfaa070..22f68ad032c 100644
--- a/Documentation/hwmon/lm92
+++ b/Documentation/hwmon/lm92
@@ -19,7 +19,7 @@ Supported chips:
Authors:
Abraham van der Merwe <abraham@2d3d.co.za>
- Jean Delvare <khali@linux-fr.org>
+ Jean Delvare <jdelvare@suse.de>
Description
diff --git a/Documentation/hwmon/lm95245 b/Documentation/hwmon/lm95245
index cbd8aeab712..77eaf2812d2 100644
--- a/Documentation/hwmon/lm95245
+++ b/Documentation/hwmon/lm95245
@@ -24,8 +24,12 @@ is given within a range of -127 to +127.875 degrees. Remote temperatures are
given within a range of -127 to +255 degrees. Resolution depends on
temperature input and range.
-Each sensor has its own critical limit, but the hysteresis is common to all
-two channels.
+Each sensor has its own critical limit. Additionally, there is a relative
+hysteresis value common to both critical limits. To make life easier to
+user-space applications, two absolute values are exported, one for each
+channel, but these values are of course linked. Only the local hysteresis
+can be set from user-space, and the same delta applies to the remote
+hysteresis.
The lm95245 driver can change its update interval to a fixed set of values.
It will round up to the next selectable interval. See the datasheet for exact
diff --git a/Documentation/hwmon/ltc2945 b/Documentation/hwmon/ltc2945
new file mode 100644
index 00000000000..f8d0f7f19ad
--- /dev/null
+++ b/Documentation/hwmon/ltc2945
@@ -0,0 +1,84 @@
+Kernel driver ltc2945
+=====================
+
+Supported chips:
+ * Linear Technology LTC2945
+ Prefix: 'ltc2945'
+ Addresses scanned: -
+ Datasheet:
+ http://cds.linear.com/docs/en/datasheet/2945fa.pdf
+
+Author: Guenter Roeck <linux@roeck-us.net>
+
+
+Description
+-----------
+
+The LTC2945 is a rail-to-rail system monitor that measures current, voltage,
+and power consumption.
+
+
+Usage Notes
+-----------
+
+This driver does not probe for LTC2945 devices, since there is no register
+which can be safely used to identify the chip. You will have to instantiate
+the devices explicitly.
+
+Example: the following will load the driver for an LTC2945 at address 0x10
+on I2C bus #1:
+$ modprobe ltc2945
+$ echo ltc2945 0x10 > /sys/bus/i2c/devices/i2c-1/new_device
+
+
+Sysfs entries
+-------------
+
+Voltage readings provided by this driver are reported as obtained from the ADC
+registers. If a set of voltage divider resistors is installed, calculate the
+real voltage by multiplying the reported value with (R1+R2)/R2, where R1 is the
+value of the divider resistor against the measured voltage and R2 is the value
+of the divider resistor against Ground.
+
+Current reading provided by this driver is reported as obtained from the ADC
+Current Sense register. The reported value assumes that a 1 mOhm sense resistor
+is installed. If a different sense resistor is installed, calculate the real
+current by dividing the reported value by the sense resistor value in mOhm.
+
+in1_input VIN voltage (mV). Voltage is measured either at
+ SENSE+ or VDD pin depending on chip configuration.
+in1_min Undervoltage threshold
+in1_max Overvoltage threshold
+in1_lowest Lowest measured voltage
+in1_highest Highest measured voltage
+in1_reset_history Write 1 to reset in1 history
+in1_min_alarm Undervoltage alarm
+in1_max_alarm Overvoltage alarm
+
+in2_input ADIN voltage (mV)
+in2_min Undervoltage threshold
+in2_max Overvoltage threshold
+in2_lowest Lowest measured voltage
+in2_highest Highest measured voltage
+in2_reset_history Write 1 to reset in2 history
+in2_min_alarm Undervoltage alarm
+in2_max_alarm Overvoltage alarm
+
+curr1_input SENSE current (mA)
+curr1_min Undercurrent threshold
+curr1_max Overcurrent threshold
+curr1_lowest Lowest measured current
+curr1_highest Highest measured current
+curr1_reset_history Write 1 to reset curr1 history
+curr1_min_alarm Undercurrent alarm
+curr1_max_alarm Overcurrent alarm
+
+power1_input Power (in uW). Power is calculated based on SENSE+/VDD
+ voltage or ADIN voltage depending on chip configuration.
+power1_min Low lower threshold
+power1_max High power threshold
+power1_input_lowest Historical minimum power use
+power1_input_highest Historical maximum power use
+power1_reset_history Write 1 to reset power1 history
+power1_min_alarm Low power alarm
+power1_max_alarm High power alarm
diff --git a/Documentation/hwmon/ltc2978 b/Documentation/hwmon/ltc2978
index dc0d08c6130..686c078bb0e 100644
--- a/Documentation/hwmon/ltc2978
+++ b/Documentation/hwmon/ltc2978
@@ -6,10 +6,15 @@ Supported chips:
Prefix: 'ltc2974'
Addresses scanned: -
Datasheet: http://www.linear.com/product/ltc2974
- * Linear Technology LTC2978
+ * Linear Technology LTC2977
+ Prefix: 'ltc2977'
+ Addresses scanned: -
+ Datasheet: http://www.linear.com/product/ltc2977
+ * Linear Technology LTC2978, LTC2978A
Prefix: 'ltc2978'
Addresses scanned: -
Datasheet: http://www.linear.com/product/ltc2978
+ http://www.linear.com/product/ltc2978a
* Linear Technology LTC3880
Prefix: 'ltc3880'
Addresses scanned: -
@@ -18,6 +23,10 @@ Supported chips:
Prefix: 'ltc3883'
Addresses scanned: -
Datasheet: http://www.linear.com/product/ltc3883
+ * Linear Technology LTM4676
+ Prefix: 'ltm4676'
+ Addresses scanned: -
+ Datasheet: http://www.linear.com/product/ltm4676
Author: Guenter Roeck <linux@roeck-us.net>
@@ -26,8 +35,10 @@ Description
-----------
LTC2974 is a quad digital power supply manager. LTC2978 is an octal power supply
-monitor. LTC3880 is a dual output poly-phase step-down DC/DC controller. LTC3883
-is a single phase step-down DC/DC controller.
+monitor. LTC2977 is a pin compatible replacement for LTC2978. LTC3880 is a dual
+output poly-phase step-down DC/DC controller. LTC3883 is a single phase
+step-down DC/DC controller. LTM4676 is a dual 13A or single 26A uModule
+regulator.
Usage Notes
@@ -49,23 +60,27 @@ Sysfs attributes
in1_label "vin"
in1_input Measured input voltage.
in1_min Minimum input voltage.
-in1_max Maximum input voltage. LTC2974 and LTC2978 only.
-in1_lcrit Critical minimum input voltage. LTC2974 and LTC2978
- only.
+in1_max Maximum input voltage.
+ LTC2974, LTC2977, and LTC2978 only.
+in1_lcrit Critical minimum input voltage.
+ LTC2974, LTC2977, and LTC2978 only.
in1_crit Critical maximum input voltage.
in1_min_alarm Input voltage low alarm.
-in1_max_alarm Input voltage high alarm. LTC2974 and LTC2978 only.
-in1_lcrit_alarm Input voltage critical low alarm. LTC2974 and LTC2978
- only.
+in1_max_alarm Input voltage high alarm.
+ LTC2974, LTC2977, and LTC2978 only.
+in1_lcrit_alarm Input voltage critical low alarm.
+ LTC2974, LTC2977, and LTC2978 only.
in1_crit_alarm Input voltage critical high alarm.
-in1_lowest Lowest input voltage. LTC2974 and LTC2978 only.
+in1_lowest Lowest input voltage.
+ LTC2974, LTC2977, and LTC2978 only.
in1_highest Highest input voltage.
in1_reset_history Reset input voltage history.
in[N]_label "vout[1-8]".
LTC2974: N=2-5
+ LTC2977: N=2-9
LTC2978: N=2-9
- LTC3880: N=2-3
+ LTC3880, LTM4676: N=2-3
LTC3883: N=2
in[N]_input Measured output voltage.
in[N]_min Minimum output voltage.
@@ -83,21 +98,23 @@ in[N]_reset_history Reset output voltage history.
temp[N]_input Measured temperature.
On LTC2974, temp[1-4] report external temperatures,
and temp5 reports the chip temperature.
- On LTC2978, only one temperature measurement is
- supported and reports the chip temperature.
- On LTC3880, temp1 and temp2 report external
+ On LTC2977 and LTC2978, only one temperature measurement
+ is supported and reports the chip temperature.
+ On LTC3880 and LTM4676, temp1 and temp2 report external
temperatures, and temp3 reports the chip temperature.
On LTC3883, temp1 reports an external temperature,
and temp2 reports the chip temperature.
-temp[N]_min Mimimum temperature. LTC2974 and LTC2978 only.
+temp[N]_min Mimimum temperature. LTC2974, LCT2977, and LTC2978 only.
temp[N]_max Maximum temperature.
temp[N]_lcrit Critical low temperature.
temp[N]_crit Critical high temperature.
-temp[N]_min_alarm Temperature low alarm. LTC2974 and LTC2978 only.
+temp[N]_min_alarm Temperature low alarm.
+ LTC2974, LTC2977, and LTC2978 only.
temp[N]_max_alarm Temperature high alarm.
temp[N]_lcrit_alarm Temperature critical low alarm.
temp[N]_crit_alarm Temperature critical high alarm.
-temp[N]_lowest Lowest measured temperature. LTC2974 and LTC2978 only.
+temp[N]_lowest Lowest measured temperature.
+ LTC2974, LTC2977, and LTC2978 only.
Not supported for chip temperature sensor on LTC2974.
temp[N]_highest Highest measured temperature. Not supported for chip
temperature sensor on LTC2974.
@@ -109,12 +126,13 @@ power1_input Measured input power.
power[N]_label "pout[1-4]".
LTC2974: N=1-4
+ LTC2977: Not supported
LTC2978: Not supported
- LTC3880: N=1-2
+ LTC3880, LTM4676: N=1-2
LTC3883: N=2
power[N]_input Measured output power.
-curr1_label "iin". LTC3880 and LTC3883 only.
+curr1_label "iin". LTC3880, LTC3883, and LTM4676 only.
curr1_input Measured input current.
curr1_max Maximum input current.
curr1_max_alarm Input current high alarm.
@@ -123,8 +141,9 @@ curr1_reset_history Reset input current history. LTC3883 only.
curr[N]_label "iout[1-4]".
LTC2974: N=1-4
+ LTC2977: not supported
LTC2978: not supported
- LTC3880: N=2-3
+ LTC3880, LTM4676: N=2-3
LTC3883: N=2
curr[N]_input Measured output current.
curr[N]_max Maximum output current.
diff --git a/Documentation/hwmon/ltc4260 b/Documentation/hwmon/ltc4260
new file mode 100644
index 00000000000..c4ff4ad998b
--- /dev/null
+++ b/Documentation/hwmon/ltc4260
@@ -0,0 +1,56 @@
+Kernel driver ltc4260
+=====================
+
+Supported chips:
+ * Linear Technology LTC4260
+ Prefix: 'ltc4260'
+ Addresses scanned: -
+ Datasheet:
+ http://cds.linear.com/docs/en/datasheet/4260fc.pdf
+
+Author: Guenter Roeck <linux@roeck-us.net>
+
+
+Description
+-----------
+
+The LTC4260 Hot Swap controller allows a board to be safely inserted
+and removed from a live backplane.
+
+
+Usage Notes
+-----------
+
+This driver does not probe for LTC4260 devices, since there is no register
+which can be safely used to identify the chip. You will have to instantiate
+the devices explicitly.
+
+Example: the following will load the driver for an LTC4260 at address 0x10
+on I2C bus #1:
+$ modprobe ltc4260
+$ echo ltc4260 0x10 > /sys/bus/i2c/devices/i2c-1/new_device
+
+
+Sysfs entries
+-------------
+
+Voltage readings provided by this driver are reported as obtained from the ADC
+registers. If a set of voltage divider resistors is installed, calculate the
+real voltage by multiplying the reported value with (R1+R2)/R2, where R1 is the
+value of the divider resistor against the measured voltage and R2 is the value
+of the divider resistor against Ground.
+
+Current reading provided by this driver is reported as obtained from the ADC
+Current Sense register. The reported value assumes that a 1 mOhm sense resistor
+is installed. If a different sense resistor is installed, calculate the real
+current by dividing the reported value by the sense resistor value in mOhm.
+
+in1_input SOURCE voltage (mV)
+in1_min_alarm Undervoltage alarm
+in1_max_alarm Overvoltage alarm
+
+in2_input ADIN voltage (mV)
+in2_alarm Power bad alarm
+
+curr1_input SENSE current (mA)
+curr1_alarm SENSE overcurrent alarm
diff --git a/Documentation/hwmon/max1619 b/Documentation/hwmon/max1619
index e6d87398cc8..518bae3a80c 100644
--- a/Documentation/hwmon/max1619
+++ b/Documentation/hwmon/max1619
@@ -10,7 +10,7 @@ Supported chips:
Authors:
Oleksij Rempel <bug-track@fisher-privat.net>,
- Jean Delvare <khali@linux-fr.org>
+ Jean Delvare <jdelvare@suse.de>
Description
-----------
diff --git a/Documentation/hwmon/nct6683 b/Documentation/hwmon/nct6683
new file mode 100644
index 00000000000..c1301d4300c
--- /dev/null
+++ b/Documentation/hwmon/nct6683
@@ -0,0 +1,57 @@
+Kernel driver nct6683
+=====================
+
+Supported chips:
+ * Nuvoton NCT6683D
+ Prefix: 'nct6683'
+ Addresses scanned: ISA address retrieved from Super I/O registers
+ Datasheet: Available from Nuvoton upon request
+
+Authors:
+ Guenter Roeck <linux@roeck-us.net>
+
+Description
+-----------
+
+This driver implements support for the Nuvoton NCT6683D eSIO chip.
+
+The chips implement up to shared 32 temperature and voltage sensors.
+It supports up to 16 fan rotation sensors and up to 8 fan control engines.
+
+Temperatures are measured in degrees Celsius. Measurement resolution is
+0.5 degrees C.
+
+Voltage sensors (also known as IN sensors) report their values in millivolts.
+
+Fan rotation speeds are reported in RPM (rotations per minute).
+
+Usage Note
+----------
+
+Limit register locations on Intel boards with EC firmware version 1.0
+build date 04/03/13 do not match the register locations in the Nuvoton
+datasheet. Nuvoton confirms that Intel uses a special firmware version
+with different register addresses. The specification describing the Intel
+firmware is held under NDA by Nuvoton and Intel and not available
+to the public.
+
+Some of the register locations can be reverse engineered; others are too
+well hidden. Given this, writing any values from the operating system is
+considered too risky with this firmware and has been disabled. All limits
+must all be written from the BIOS.
+
+The driver has only been tested with the Intel firmware, and by default
+only instantiates on Intel boards. To enable it on non-Intel boards,
+set the 'force' module parameter to 1.
+
+Tested Boards and Firmware Versions
+-----------------------------------
+
+The driver has been reported to work with the following boards and
+firmware versions.
+
+Board Firmware version
+---------------------------------------------------------------
+Intel DH87RL NCT6683D EC firmware version 1.0 build 04/03/13
+Intel DH87MC NCT6683D EC firmware version 1.0 build 04/03/13
+Intel DB85FL NCT6683D EC firmware version 1.0 build 04/03/13
diff --git a/Documentation/hwmon/ntc_thermistor b/Documentation/hwmon/ntc_thermistor
index 3bfda94096f..057b77029f2 100644
--- a/Documentation/hwmon/ntc_thermistor
+++ b/Documentation/hwmon/ntc_thermistor
@@ -1,7 +1,7 @@
Kernel driver ntc_thermistor
=================
-Supported thermistors:
+Supported thermistors from Murata:
* Murata NTC Thermistors NCP15WB473, NCP18WB473, NCP21WB473, NCP03WB473, NCP15WL333
Prefixes: 'ncp15wb473', 'ncp18wb473', 'ncp21wb473', 'ncp03wb473', 'ncp15wl333'
Datasheet: Publicly available at Murata
@@ -15,9 +15,9 @@ Authors:
Description
-----------
-The NTC thermistor is a simple thermistor that requires users to provide the
-resistance and lookup the corresponding compensation table to get the
-temperature input.
+The NTC (Negative Temperature Coefficient) thermistor is a simple thermistor
+that requires users to provide the resistance and lookup the corresponding
+compensation table to get the temperature input.
The NTC driver provides lookup tables with a linear approximation function
and four circuit models with an option not to use any of the four models.
diff --git a/Documentation/hwmon/pc87360 b/Documentation/hwmon/pc87360
index cbac32b59c8..d5f5cf16ce5 100644
--- a/Documentation/hwmon/pc87360
+++ b/Documentation/hwmon/pc87360
@@ -7,7 +7,7 @@ Supported chips:
Addresses scanned: none, address read from Super I/O config space
Datasheets: No longer available
-Authors: Jean Delvare <khali@linux-fr.org>
+Authors: Jean Delvare <jdelvare@suse.de>
Thanks to Sandeep Mehta, Tonko de Rooy and Daniel Ceregatti for testing.
Thanks to Rudolf Marek for helping me investigate conversion issues.
diff --git a/Documentation/hwmon/pc87427 b/Documentation/hwmon/pc87427
index 8fdd08c9e48..c313eb66e08 100644
--- a/Documentation/hwmon/pc87427
+++ b/Documentation/hwmon/pc87427
@@ -7,7 +7,7 @@ Supported chips:
Addresses scanned: none, address read from Super I/O config space
Datasheet: No longer available
-Author: Jean Delvare <khali@linux-fr.org>
+Author: Jean Delvare <jdelvare@suse.de>
Thanks to Amir Habibi at Candelis for setting up a test system, and to
Michael Kress for testing several iterations of this driver.
diff --git a/Documentation/hwmon/pcf8591 b/Documentation/hwmon/pcf8591
index ac020b3bb7b..447c0702c0e 100644
--- a/Documentation/hwmon/pcf8591
+++ b/Documentation/hwmon/pcf8591
@@ -11,7 +11,7 @@ Supported chips:
Authors:
Aurelien Jarno <aurelien@aurel32.net>
valuable contributions by Jan M. Sendler <sendler@sendler.de>,
- Jean Delvare <khali@linux-fr.org>
+ Jean Delvare <jdelvare@suse.de>
Description
diff --git a/Documentation/hwmon/shtc1 b/Documentation/hwmon/shtc1
new file mode 100644
index 00000000000..6b1e05458f0
--- /dev/null
+++ b/Documentation/hwmon/shtc1
@@ -0,0 +1,43 @@
+Kernel driver shtc1
+===================
+
+Supported chips:
+ * Sensirion SHTC1
+ Prefix: 'shtc1'
+ Addresses scanned: none
+ Datasheet: http://www.sensirion.com/file/datasheet_shtc1
+
+ * Sensirion SHTW1
+ Prefix: 'shtw1'
+ Addresses scanned: none
+ Datasheet: Not publicly available
+
+Author:
+ Johannes Winkelmann <johannes.winkelmann@sensirion.com>
+
+Description
+-----------
+
+This driver implements support for the Sensirion SHTC1 chip, a humidity and
+temperature sensor. Temperature is measured in degrees celsius, relative
+humidity is expressed as a percentage. Driver can be used as well for SHTW1
+chip, which has the same electrical interface.
+
+The device communicates with the I2C protocol. All sensors are set to I2C
+address 0x70. See Documentation/i2c/instantiating-devices for methods to
+instantiate the device.
+
+There are two options configurable by means of shtc1_platform_data:
+1. blocking (pull the I2C clock line down while performing the measurement) or
+ non-blocking mode. Blocking mode will guarantee the fastest result but
+ the I2C bus will be busy during that time. By default, non-blocking mode
+ is used. Make sure clock-stretching works properly on your device if you
+ want to use blocking mode.
+2. high or low accuracy. High accuracy is used by default and using it is
+ strongly recommended.
+
+sysfs-Interface
+---------------
+
+temp1_input - temperature input
+humidity1_input - humidity input
diff --git a/Documentation/hwmon/smsc47m1 b/Documentation/hwmon/smsc47m1
index 2a13378dcf2..10a24b42068 100644
--- a/Documentation/hwmon/smsc47m1
+++ b/Documentation/hwmon/smsc47m1
@@ -25,7 +25,7 @@ Authors:
With assistance from Bruce Allen <ballen@uwm.edu>, and his
fan.c program: http://www.lsc-group.phys.uwm.edu/%7Eballen/driver/
Gabriele Gorla <gorlik@yahoo.com>,
- Jean Delvare <khali@linux-fr.org>
+ Jean Delvare <jdelvare@suse.de>
Description
-----------
diff --git a/Documentation/hwmon/sysfs-interface b/Documentation/hwmon/sysfs-interface
index 79f8257dd79..2cc95ad4660 100644
--- a/Documentation/hwmon/sysfs-interface
+++ b/Documentation/hwmon/sysfs-interface
@@ -327,6 +327,13 @@ temp[1-*]_max_hyst
from the max value.
RW
+temp[1-*]_min_hyst
+ Temperature hysteresis value for min limit.
+ Unit: millidegree Celsius
+ Must be reported as an absolute temperature, NOT a delta
+ from the min value.
+ RW
+
temp[1-*]_input Temperature input value.
Unit: millidegree Celsius
RO
@@ -362,6 +369,13 @@ temp[1-*]_lcrit Temperature critical min value, typically lower than
Unit: millidegree Celsius
RW
+temp[1-*]_lcrit_hyst
+ Temperature hysteresis value for critical min limit.
+ Unit: millidegree Celsius
+ Must be reported as an absolute temperature, NOT a delta
+ from the critical min value.
+ RW
+
temp[1-*]_offset
Temperature offset which is added to the temperature reading
by the chip.
diff --git a/Documentation/hwmon/w83627ehf b/Documentation/hwmon/w83627ehf
index ceaf6f652b0..735c42a85ea 100644
--- a/Documentation/hwmon/w83627ehf
+++ b/Documentation/hwmon/w83627ehf
@@ -36,7 +36,7 @@ Supported chips:
Datasheet: Available from Nuvoton upon request
Authors:
- Jean Delvare <khali@linux-fr.org>
+ Jean Delvare <jdelvare@suse.de>
Yuan Mu (Winbond)
Rudolf Marek <r.marek@assembler.cz>
David Hubbard <david.c.hubbard@gmail.com>
diff --git a/Documentation/hwmon/w83795 b/Documentation/hwmon/w83795
index 9f160371f46..d3e678216b9 100644
--- a/Documentation/hwmon/w83795
+++ b/Documentation/hwmon/w83795
@@ -13,7 +13,7 @@ Supported chips:
Authors:
Wei Song (Nuvoton)
- Jean Delvare <khali@linux-fr.org>
+ Jean Delvare <jdelvare@suse.de>
Pin mapping
diff --git a/Documentation/hwmon/w83l785ts b/Documentation/hwmon/w83l785ts
index bd1fa9d4468..c8978478871 100644
--- a/Documentation/hwmon/w83l785ts
+++ b/Documentation/hwmon/w83l785ts
@@ -9,7 +9,7 @@ Supported chips:
http://www.winbond-usa.com/products/winbond_products/pdfs/PCIC/W83L785TS-S.pdf
Authors:
- Jean Delvare <khali@linux-fr.org>
+ Jean Delvare <jdelvare@suse.de>
Description
-----------
diff --git a/Documentation/i2c/busses/i2c-i801 b/Documentation/i2c/busses/i2c-i801
index d29dea0f323..adf5e33e831 100644
--- a/Documentation/i2c/busses/i2c-i801
+++ b/Documentation/i2c/busses/i2c-i801
@@ -25,6 +25,8 @@ Supported adapters:
* Intel Avoton (SOC)
* Intel Wellsburg (PCH)
* Intel Coleto Creek (PCH)
+ * Intel Wildcat Point-LP (PCH)
+ * Intel BayTrail (SOC)
Datasheets: Publicly available at the Intel website
On Intel Patsburg and later chipsets, both the normal host SMBus controller
@@ -32,7 +34,7 @@ and the additional 'Integrated Device Function' controllers are supported.
Authors:
Mark Studebaker <mdsxyz123@yahoo.com>
- Jean Delvare <khali@linux-fr.org>
+ Jean Delvare <jdelvare@suse.de>
Module Parameters
diff --git a/Documentation/i2c/busses/i2c-parport b/Documentation/i2c/busses/i2c-parport
index 2461c7b53b2..0e2d17b460f 100644
--- a/Documentation/i2c/busses/i2c-parport
+++ b/Documentation/i2c/busses/i2c-parport
@@ -1,6 +1,6 @@
Kernel driver i2c-parport
-Author: Jean Delvare <khali@linux-fr.org>
+Author: Jean Delvare <jdelvare@suse.de>
This is a unified driver for several i2c-over-parallel-port adapters,
such as the ones made by Philips, Velleman or ELV. This driver is
diff --git a/Documentation/i2c/busses/i2c-parport-light b/Documentation/i2c/busses/i2c-parport-light
index c22ee063e1e..7071b8ba0af 100644
--- a/Documentation/i2c/busses/i2c-parport-light
+++ b/Documentation/i2c/busses/i2c-parport-light
@@ -1,6 +1,6 @@
Kernel driver i2c-parport-light
-Author: Jean Delvare <khali@linux-fr.org>
+Author: Jean Delvare <jdelvare@suse.de>
This driver is a light version of i2c-parport. It doesn't depend
on the parport driver, and uses direct I/O access instead. This might be
diff --git a/Documentation/i2c/busses/i2c-piix4 b/Documentation/i2c/busses/i2c-piix4
index c097e0f020f..aa959fd2245 100644
--- a/Documentation/i2c/busses/i2c-piix4
+++ b/Documentation/i2c/busses/i2c-piix4
@@ -13,7 +13,7 @@ Supported adapters:
* AMD SP5100 (SB700 derivative found on some server mainboards)
Datasheet: Publicly available at the AMD website
http://support.amd.com/us/Embedded_TechDocs/44413.pdf
- * AMD Hudson-2, CZ
+ * AMD Hudson-2, ML, CZ
Datasheet: Not publicly available
* Standard Microsystems (SMSC) SLC90E66 (Victory66) southbridge
Datasheet: Publicly available at the SMSC website http://www.smsc.com
diff --git a/Documentation/i2c/busses/i2c-taos-evm b/Documentation/i2c/busses/i2c-taos-evm
index 63f62bcbf59..60299555dcf 100644
--- a/Documentation/i2c/busses/i2c-taos-evm
+++ b/Documentation/i2c/busses/i2c-taos-evm
@@ -1,6 +1,6 @@
Kernel driver i2c-taos-evm
-Author: Jean Delvare <khali@linux-fr.org>
+Author: Jean Delvare <jdelvare@suse.de>
This is a driver for the evaluation modules for TAOS I2C/SMBus chips.
The modules include an SMBus master with limited capabilities, which can
diff --git a/Documentation/i2c/busses/i2c-viapro b/Documentation/i2c/busses/i2c-viapro
index b88f91ae580..ab64ce21c25 100644
--- a/Documentation/i2c/busses/i2c-viapro
+++ b/Documentation/i2c/busses/i2c-viapro
@@ -28,7 +28,7 @@ Supported adapters:
Authors:
Kyösti Mälkki <kmalkki@cc.hut.fi>,
Mark D. Studebaker <mdsxyz123@yahoo.com>,
- Jean Delvare <khali@linux-fr.org>
+ Jean Delvare <jdelvare@suse.de>
Module Parameters
-----------------
diff --git a/Documentation/i2c/fault-codes b/Documentation/i2c/fault-codes
index 045765c0b9b..47c25abb7d5 100644
--- a/Documentation/i2c/fault-codes
+++ b/Documentation/i2c/fault-codes
@@ -64,9 +64,6 @@ EINVAL
detected before any I/O operation was started. Use a more
specific fault code when you can.
- One example would be a driver trying an SMBus Block Write
- with block size outside the range of 1-32 bytes.
-
EIO
This rather vague error means something went wrong when
performing an I/O operation. Use a more specific fault
diff --git a/Documentation/i2c/functionality b/Documentation/i2c/functionality
index b0ff2ab596c..4556a3eb87c 100644
--- a/Documentation/i2c/functionality
+++ b/Documentation/i2c/functionality
@@ -46,7 +46,7 @@ A few combinations of the above flags are also defined for your convenience:
and write_block_data commands
I2C_FUNC_SMBUS_I2C_BLOCK Handles the SMBus read_i2c_block_data
and write_i2c_block_data commands
- I2C_FUNC_SMBUS_EMUL Handles all SMBus commands than can be
+ I2C_FUNC_SMBUS_EMUL Handles all SMBus commands that can be
emulated by a real I2C adapter (using
the transparent emulation layer)
diff --git a/Documentation/i2c/i2c-protocol b/Documentation/i2c/i2c-protocol
index 0b3e62d1f77..ff6d6cee6c7 100644
--- a/Documentation/i2c/i2c-protocol
+++ b/Documentation/i2c/i2c-protocol
@@ -6,8 +6,8 @@ Key to symbols
S (1 bit) : Start bit
P (1 bit) : Stop bit
Rd/Wr (1 bit) : Read/Write bit. Rd equals 1, Wr equals 0.
-A, NA (1 bit) : Accept and reverse accept bit.
-Addr (7 bits): I2C 7 bit address. Note that this can be expanded as usual to
+A, NA (1 bit) : Accept and reverse accept bit.
+Addr (7 bits): I2C 7 bit address. Note that this can be expanded as usual to
get a 10 bit I2C address.
Comm (8 bits): Command byte, a data byte which often selects a register on
the device.
@@ -49,11 +49,20 @@ a byte read, followed by a byte write:
Modified transactions
=====================
-The following modifications to the I2C protocol can also be generated,
-with the exception of I2C_M_NOSTART these are usually only needed to
-work around device issues:
+The following modifications to the I2C protocol can also be generated by
+setting these flags for i2c messages. With the exception of I2C_M_NOSTART, they
+are usually only needed to work around device issues:
- Flag I2C_M_NOSTART:
+I2C_M_IGNORE_NAK:
+ Normally message is interrupted immediately if there is [NA] from the
+ client. Setting this flag treats any [NA] as [A], and all of
+ message is sent.
+ These messages may still fail to SCL lo->hi timeout.
+
+I2C_M_NO_RD_ACK:
+ In a read message, master A/NA bit is skipped.
+
+I2C_M_NOSTART:
In a combined transaction, no 'S Addr Wr/Rd [A]' is generated at some
point. For example, setting I2C_M_NOSTART on the second partial message
generates something like:
@@ -67,17 +76,13 @@ work around device issues:
I2C device but may also be used between direction changes by some
rare devices.
- Flags I2C_M_REV_DIR_ADDR
+I2C_M_REV_DIR_ADDR:
This toggles the Rd/Wr flag. That is, if you want to do a write, but
need to emit an Rd instead of a Wr, or vice versa, you set this
flag. For example:
S Addr Rd [A] Data [A] Data [A] ... [A] Data [A] P
- Flags I2C_M_IGNORE_NAK
- Normally message is interrupted immediately if there is [NA] from the
- client. Setting this flag treats any [NA] as [A], and all of
- message is sent.
- These messages may still fail to SCL lo->hi timeout.
-
- Flags I2C_M_NO_RD_ACK
- In a read message, master A/NA bit is skipped.
+I2C_M_STOP:
+ Force a stop condition (P) after the message. Some I2C related protocols
+ like SCCB require that. Normally, you really don't want to get interrupted
+ between the messages of one transfer.
diff --git a/Documentation/i2c/instantiating-devices b/Documentation/i2c/instantiating-devices
index c70e7a7638d..0d85ac1935b 100644
--- a/Documentation/i2c/instantiating-devices
+++ b/Documentation/i2c/instantiating-devices
@@ -8,8 +8,8 @@ reason, the kernel code must instantiate I2C devices explicitly. There are
several ways to achieve this, depending on the context and requirements.
-Method 1: Declare the I2C devices by bus number
------------------------------------------------
+Method 1a: Declare the I2C devices by bus number
+------------------------------------------------
This method is appropriate when the I2C bus is a system bus as is the case
for many embedded systems. On such systems, each I2C bus has a number
@@ -51,6 +51,43 @@ The devices will be automatically unbound and destroyed when the I2C bus
they sit on goes away (if ever.)
+Method 1b: Declare the I2C devices via devicetree
+-------------------------------------------------
+
+This method has the same implications as method 1a. The declaration of I2C
+devices is here done via devicetree as subnodes of the master controller.
+
+Example:
+
+ i2c1: i2c@400a0000 {
+ /* ... master properties skipped ... */
+ clock-frequency = <100000>;
+
+ flash@50 {
+ compatible = "atmel,24c256";
+ reg = <0x50>;
+ };
+
+ pca9532: gpio@60 {
+ compatible = "nxp,pca9532";
+ gpio-controller;
+ #gpio-cells = <2>;
+ reg = <0x60>;
+ };
+ };
+
+Here, two devices are attached to the bus using a speed of 100kHz. For
+additional properties which might be needed to set up the device, please refer
+to its devicetree documentation in Documentation/devicetree/bindings/.
+
+
+Method 1c: Declare the I2C devices via ACPI
+-------------------------------------------
+
+ACPI can also describe I2C devices. There is special documentation for this
+which is currently located at Documentation/acpi/enumeration.txt.
+
+
Method 2: Instantiate the devices explicitly
--------------------------------------------
diff --git a/Documentation/ide/00-INDEX b/Documentation/ide/00-INDEX
index d6b778842b7..22f98ca7953 100644
--- a/Documentation/ide/00-INDEX
+++ b/Documentation/ide/00-INDEX
@@ -10,3 +10,5 @@ ide-tape.txt
- info on the IDE ATAPI streaming tape driver
ide.txt
- important info for users of ATA devices (IDE/EIDE disks and CD-ROMS).
+warm-plug-howto.txt
+ - using sysfs to remove and add IDE devices. \ No newline at end of file
diff --git a/Documentation/input/alps.txt b/Documentation/input/alps.txt
index e544c7ff8cf..90bca6f988e 100644
--- a/Documentation/input/alps.txt
+++ b/Documentation/input/alps.txt
@@ -94,7 +94,7 @@ PS/2 packet format
Note that the device never signals overflow condition.
-ALPS Absolute Mode - Protocol Verion 1
+ALPS Absolute Mode - Protocol Version 1
--------------------------------------
byte 0: 1 0 0 0 1 x9 x8 x7
diff --git a/Documentation/input/elantech.txt b/Documentation/input/elantech.txt
index 5602eb71ad5..e1ae127ed09 100644
--- a/Documentation/input/elantech.txt
+++ b/Documentation/input/elantech.txt
@@ -504,9 +504,12 @@ byte 5:
* reg_10
bit 7 6 5 4 3 2 1 0
- 0 0 0 0 0 0 0 A
+ 0 0 0 0 R F T A
A: 1 = enable absolute tracking
+ T: 1 = enable two finger mode auto correct
+ F: 1 = disable ABS Position Filter
+ R: 1 = enable real hardware resolution
6.2 Native absolute mode 6 byte packet format
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
diff --git a/Documentation/input/event-codes.txt b/Documentation/input/event-codes.txt
index f1ea2c69648..c587a966413 100644
--- a/Documentation/input/event-codes.txt
+++ b/Documentation/input/event-codes.txt
@@ -281,6 +281,19 @@ gestures can normally be extracted from it.
If INPUT_PROP_SEMI_MT is not set, the device is assumed to be a true MT
device.
+INPUT_PROP_TOPBUTTONPAD:
+-----------------------
+Some laptops, most notably the Lenovo *40 series provide a trackstick
+device but do not have physical buttons associated with the trackstick
+device. Instead, the top area of the touchpad is marked to show
+visual/haptic areas for left, middle, right buttons intended to be used
+with the trackstick.
+
+If INPUT_PROP_TOPBUTTONPAD is set, userspace should emulate buttons
+accordingly. This property does not affect kernel behavior.
+The kernel does not provide button emulation for such devices but treats
+them as any other INPUT_PROP_BUTTONPAD device.
+
Guidelines:
==========
The guidelines below ensure proper single-touch and multi-finger functionality.
diff --git a/Documentation/input/gamepad.txt b/Documentation/input/gamepad.txt
index 8002c894c6b..3f6d8a5e9cd 100644
--- a/Documentation/input/gamepad.txt
+++ b/Documentation/input/gamepad.txt
@@ -68,7 +68,7 @@ features that you need, first. How each feature is mapped is described below.
Legacy drivers often don't comply to these rules. As we cannot change them
for backwards-compatibility reasons, you need to provide fixup mappings in
user-space yourself. Some of them might also provide module-options that
-change the mappings so you can adivce users to set these.
+change the mappings so you can advise users to set these.
All new gamepads are supposed to comply with this mapping. Please report any
bugs, if they don't.
@@ -122,12 +122,14 @@ D-Pad:
BTN_DPAD_*
Analog buttons are reported as:
ABS_HAT0X and ABS_HAT0Y
+ (for ABS values negative is left/up, positive is right/down)
Analog-Sticks:
The left analog-stick is reported as ABS_X, ABS_Y. The right analog stick is
reported as ABS_RX, ABS_RY. Zero, one or two sticks may be present.
If analog-sticks provide digital buttons, they are mapped accordingly as
BTN_THUMBL (first/left) and BTN_THUMBR (second/right).
+ (for ABS values negative is left/up, positive is right/down)
Triggers:
Trigger buttons can be available as digital or analog buttons or both. User-
@@ -138,6 +140,7 @@ Triggers:
ABS_HAT2X (right/ZR) and BTN_TL2 or ABS_HAT2Y (left/ZL).
If only one trigger-button combination is present (upper+lower), they are
reported as "right" triggers (BTN_TR/ABS_HAT1X).
+ (ABS trigger values start at 0, pressure is reported as positive values)
Menu-Pad:
Menu buttons are always digital and are mapped according to their location
@@ -147,10 +150,10 @@ Menu-Pad:
BTN_START
Many pads also have a third button which is branded or has a special symbol
and meaning. Such buttons are mapped as BTN_MODE. Examples are the Nintendo
- "HOME" button, the XBox "X"-button or Sony "P" button.
+ "HOME" button, the XBox "X"-button or Sony "PS" button.
Rumble:
- Rumble is adverticed as FF_RUMBLE.
+ Rumble is advertised as FF_RUMBLE.
----------------------------------------------------------------------------
Written 2013 by David Herrmann <dh.herrmann@gmail.com>
diff --git a/Documentation/input/input.txt b/Documentation/input/input.txt
index 666c06c5ab0..0acfddbe202 100644
--- a/Documentation/input/input.txt
+++ b/Documentation/input/input.txt
@@ -226,7 +226,7 @@ And so on up to js31.
~~~~~~~~~~~
evdev is the generic input event interface. It passes the events
generated in the kernel straight to the program, with timestamps. The
-API is still evolving, but should be useable now. It's described in
+API is still evolving, but should be usable now. It's described in
section 5.
This should be the way for GPM and X to get keyboard and mouse
diff --git a/Documentation/input/joystick-api.txt b/Documentation/input/joystick-api.txt
index c507330740c..943b18eac91 100644
--- a/Documentation/input/joystick-api.txt
+++ b/Documentation/input/joystick-api.txt
@@ -16,14 +16,14 @@ joystick.
By default, the device is opened in blocking mode.
- int fd = open ("/dev/js0", O_RDONLY);
+ int fd = open ("/dev/input/js0", O_RDONLY);
2. Event Reading
~~~~~~~~~~~~~~~~
struct js_event e;
- read (fd, &e, sizeof(struct js_event));
+ read (fd, &e, sizeof(e));
where js_event is defined as
@@ -34,8 +34,8 @@ where js_event is defined as
__u8 number; /* axis/button number */
};
-If the read is successful, it will return sizeof(struct js_event), unless
-you wanted to read more than one event per read as described in section 3.1.
+If the read is successful, it will return sizeof(e), unless you wanted to read
+more than one event per read as described in section 3.1.
2.1 js_event.type
@@ -99,9 +99,9 @@ may work well if you handle JS_EVENT_INIT events separately,
if ((js_event.type & ~JS_EVENT_INIT) == JS_EVENT_BUTTON) {
if (js_event.value)
- buttons_state |= (1 << js_event.number);
- else
- buttons_state &= ~(1 << js_event.number);
+ buttons_state |= (1 << js_event.number);
+ else
+ buttons_state &= ~(1 << js_event.number);
}
is much safer since it can't lose sync with the driver. As you would
@@ -144,14 +144,14 @@ all events on the queue (that is, until you get a -1).
For example,
while (1) {
- while (read (fd, &e, sizeof(struct js_event)) > 0) {
- process_event (e);
- }
- /* EAGAIN is returned when the queue is empty */
- if (errno != EAGAIN) {
- /* error */
- }
- /* do something interesting with processed events */
+ while (read (fd, &e, sizeof(e)) > 0) {
+ process_event (e);
+ }
+ /* EAGAIN is returned when the queue is empty */
+ if (errno != EAGAIN) {
+ /* error */
+ }
+ /* do something interesting with processed events */
}
One reason for emptying the queue is that if it gets full you'll start
@@ -181,7 +181,7 @@ at a time using the typical read(2) functionality. For that, you would
replace the read above with something like
struct js_event mybuffer[0xff];
- int i = read (fd, mybuffer, sizeof(struct mybuffer));
+ int i = read (fd, mybuffer, sizeof(mybuffer));
In this case, read would return -1 if the queue was empty, or some
other value in which the number of events read would be i /
@@ -269,9 +269,9 @@ The driver offers backward compatibility, though. Here's a quick summary:
struct JS_DATA_TYPE js;
while (1) {
if (read (fd, &js, JS_RETURN) != JS_RETURN) {
- /* error */
- }
- usleep (1000);
+ /* error */
+ }
+ usleep (1000);
}
As you can figure out from the example, the read returns immediately,
diff --git a/Documentation/input/joystick.txt b/Documentation/input/joystick.txt
index 304262bb661..8d027dc86c1 100644
--- a/Documentation/input/joystick.txt
+++ b/Documentation/input/joystick.txt
@@ -116,7 +116,7 @@ your needs:
For testing the joystick driver functionality, there is the jstest
program in the utilities package. You run it by typing:
- jstest /dev/js0
+ jstest /dev/input/js0
And it should show a line with the joystick values, which update as you
move the stick, and press its buttons. The axes should all be zero when the
@@ -136,7 +136,7 @@ joystick should be autocalibrated by the driver automagically. However, with
some analog joysticks, that either do not use linear resistors, or if you
want better precision, you can use the jscal program
- jscal -c /dev/js0
+ jscal -c /dev/input/js0
included in the joystick package to set better correction coefficients than
what the driver would choose itself.
@@ -145,7 +145,7 @@ what the driver would choose itself.
calibration using the jstest command, and if you do, you then can save the
correction coefficients into a file
- jscal -p /dev/js0 > /etc/joystick.cal
+ jscal -p /dev/input/js0 > /etc/joystick.cal
And add a line to your rc script executing that file
@@ -556,7 +556,7 @@ interface, and "old" for the "0.x" interface. You run it by typing:
5. FAQ
~~~~~~
-Q: Running 'jstest /dev/js0' results in "File not found" error. What's the
+Q: Running 'jstest /dev/input/js0' results in "File not found" error. What's the
cause?
A: The device files don't exist. Create them (see section 2.2).
diff --git a/Documentation/input/multi-touch-protocol.txt b/Documentation/input/multi-touch-protocol.txt
index de139b18184..7b4f59c09ee 100644
--- a/Documentation/input/multi-touch-protocol.txt
+++ b/Documentation/input/multi-touch-protocol.txt
@@ -372,7 +372,7 @@ simple scheme, which is compatible with earlier usage, is:
Rationale: We have no information about the orientation of the touching
ellipse, so approximate it with an inscribed circle instead. The tool
-ellipse should align with the the vector (T - C), so the diameter must
+ellipse should align with the vector (T - C), so the diameter must
increase with distance(T, C). Finally, assume that the touch diameter is
equal to the tool thickness, and we arrive at the formulas above.
diff --git a/Documentation/io-mapping.txt b/Documentation/io-mapping.txt
index 473e43b2d58..5ca78426f54 100644
--- a/Documentation/io-mapping.txt
+++ b/Documentation/io-mapping.txt
@@ -38,7 +38,7 @@ maps are more efficient:
void io_mapping_unmap_atomic(void *vaddr)
- 'vaddr' must be the the value returned by the last
+ 'vaddr' must be the value returned by the last
io_mapping_map_atomic_wc call. This unmaps the specified
page and allows the task to sleep once again.
diff --git a/Documentation/ioctl/ioctl-number.txt b/Documentation/ioctl/ioctl-number.txt
index 2a5f0e14efa..d7e43fa8857 100644
--- a/Documentation/ioctl/ioctl-number.txt
+++ b/Documentation/ioctl/ioctl-number.txt
@@ -73,6 +73,7 @@ Code Seq#(hex) Include File Comments
0x09 all linux/raid/md_u.h
0x10 00-0F drivers/char/s390/vmcp.h
0x10 10-1F arch/s390/include/uapi/sclp_ctl.h
+0x10 20-2F arch/s390/include/uapi/asm/hypfs.h
0x12 all linux/fs.h
linux/blkpg.h
0x1b all InfiniBand Subsystem <http://infiniband.sourceforge.net/>
@@ -138,6 +139,7 @@ Code Seq#(hex) Include File Comments
'H' C0-DF net/bluetooth/cmtp/cmtp.h conflict!
'H' C0-DF net/bluetooth/bnep/bnep.h conflict!
'H' F1 linux/hid-roccat.h <mailto:erazor_de@users.sourceforge.net>
+'H' F8-FA sound/firewire.h
'I' all linux/isdn.h conflict!
'I' 00-0F drivers/isdn/divert/isdn_divert.h conflict!
'I' 40-4F linux/mISDNif.h conflict!
diff --git a/Documentation/irqflags-tracing.txt b/Documentation/irqflags-tracing.txt
index 67aa71e7303..f6da05670e1 100644
--- a/Documentation/irqflags-tracing.txt
+++ b/Documentation/irqflags-tracing.txt
@@ -22,13 +22,6 @@ rather straightforward and risk-free manner.
Architectures that want to support this need to do a couple of
code-organizational changes first:
-- move their irq-flags manipulation code from their asm/system.h header
- to asm/irqflags.h
-
-- rename local_irq_disable()/etc to raw_local_irq_disable()/etc. so that
- the linux/irqflags.h code can inject callbacks and can construct the
- real local_irq_disable()/etc APIs.
-
- add and enable TRACE_IRQFLAGS_SUPPORT in their arch level Kconfig file
and then a couple of functional changes are needed as well to implement
diff --git a/Documentation/ja_JP/HOWTO b/Documentation/ja_JP/HOWTO
index 8148a47fc70..b61885c35ce 100644
--- a/Documentation/ja_JP/HOWTO
+++ b/Documentation/ja_JP/HOWTO
@@ -149,7 +149,7 @@ linux-api@ver.kernel.org に送ることを勧めます。
この他にパッチを作る方法についてのよくできた記述は-
"The Perfect Patch"
- http://userweb.kernel.org/~akpm/stuff/tpp.txt
+ http://www.ozlabs.org/~akpm/stuff/tpp.txt
"Linux kernel patch submission format"
http://linux.yyz.us/patch-format.html
@@ -315,7 +315,7 @@ Andrew Morton が Linux-kernel メーリングリストにカーネルリリー
もし、3.x.y カーネルが存在しない場合には、番号が一番大きい 3.x が
最新の安定版カーネルです。
-3.x.y は "stable" チーム <stable@kernel.org> でメンテされており、必
+3.x.y は "stable" チーム <stable@vger.kernel.org> でメンテされており、必
要に応じてリリースされます。通常のリリース期間は 2週間毎ですが、差し迫っ
た問題がなければもう少し長くなることもあります。セキュリティ関連の問題
の場合はこれに対してだいたいの場合、すぐにリリースがされます。
@@ -622,7 +622,7 @@ Linux カーネルコミュニティは、一度に大量のコードの塊を
これについて全てがどのようにあるべきかについての詳細は、以下のドキュメ
ントの ChangeLog セクションを見てください-
"The Perfect Patch"
- http://userweb.kernel.org/~akpm/stuff/tpp.txt
+ http://www.ozlabs.org/~akpm/stuff/tpp.txt
これらのどれもが、時にはとても困難です。これらの慣例を完璧に実施するに
は数年かかるかもしれません。これは継続的な改善のプロセスであり、そのた
diff --git a/Documentation/ja_JP/SubmittingPatches b/Documentation/ja_JP/SubmittingPatches
index 97f78dd0c08..5d6ae639bfa 100644
--- a/Documentation/ja_JP/SubmittingPatches
+++ b/Documentation/ja_JP/SubmittingPatches
@@ -98,11 +98,6 @@ dontdiff ファイルには Linux カーネルのビルドプロセスの過程
Quilt:
http://savannah.nongnu.org/projects/quilt
-Andrew Morton's patch scripts:
-http://userweb.kernel.org/~akpm/stuff/patch-scripts.tar.gz
-このリンクの先のスクリプトの代わりとして、quilt がパッチマネジメント
-ツールとして推奨されています(上のリンクを見てください)。
-
2) パッチに対する説明
パッチの中の変更点に対する技術的な詳細について説明してください。
@@ -695,7 +690,7 @@ gcc においては、マクロと同じくらい軽いです。
----------------------
Andrew Morton, "The perfect patch" (tpp).
- <http://userweb.kernel.org/~akpm/stuff/tpp.txt>
+ <http://www.ozlabs.org/~akpm/stuff/tpp.txt>
Jeff Garzik, "Linux kernel patch submission format".
<http://linux.yyz.us/patch-format.html>
@@ -707,7 +702,7 @@ Greg Kroah-Hartman, "How to piss off a kernel subsystem maintainer".
<http://www.kroah.com/log/2006/01/11/>
NO!!!! No more huge patch bombs to linux-kernel@vger.kernel.org people!
- <http://marc.theaimsgroup.com/?l=linux-kernel&m=112112749912944&w=2>
+ <https://lkml.org/lkml/2005/7/11/336>
Kernel Documentation/CodingStyle:
<http://users.sosdg.org/~qiyong/lxr/source/Documentation/CodingStyle>
diff --git a/Documentation/ja_JP/stable_kernel_rules.txt b/Documentation/ja_JP/stable_kernel_rules.txt
index 14265837c4c..9dbda9b5d21 100644
--- a/Documentation/ja_JP/stable_kernel_rules.txt
+++ b/Documentation/ja_JP/stable_kernel_rules.txt
@@ -50,16 +50,16 @@ linux-2.6.29/Documentation/stable_kernel_rules.txt
-stable ツリーにパッチを送付する手続き-
- - 上記の規則に従っているかを確認した後に、stable@kernel.org にパッチ
+ - 上記の規則に従っているかを確認した後に、stable@vger.kernel.org にパッチ
を送る。
- 送信者はパッチがキューに受け付けられた際には ACK を、却下された場合
には NAK を受け取る。この反応は開発者たちのスケジュールによって、数
日かかる場合がある。
- もし受け取られたら、パッチは他の開発者たちと関連するサブシステムの
メンテナーによるレビューのために -stable キューに追加される。
- - パッチに stable@kernel.org のアドレスが付加されているときには、それ
+ - パッチに stable@vger.kernel.org のアドレスが付加されているときには、それ
が Linus のツリーに入る時に自動的に stable チームに email される。
- - セキュリティパッチはこのエイリアス (stable@kernel.org) に送られるべ
+ - セキュリティパッチはこのエイリアス (stable@vger.kernel.org) に送られるべ
きではなく、代わりに security@kernel.org のアドレスに送られる。
レビューサイクル-
diff --git a/Documentation/java.txt b/Documentation/java.txt
index e6a72328154..418020584cc 100644
--- a/Documentation/java.txt
+++ b/Documentation/java.txt
@@ -188,6 +188,9 @@ shift
#define CP_METHODREF 10
#define CP_INTERFACEMETHODREF 11
#define CP_NAMEANDTYPE 12
+#define CP_METHODHANDLE 15
+#define CP_METHODTYPE 16
+#define CP_INVOKEDYNAMIC 18
/* Define some commonly used error messages */
@@ -242,14 +245,19 @@ void skip_constant(FILE *classfile, u_int16_t *cur)
break;
case CP_CLASS:
case CP_STRING:
+ case CP_METHODTYPE:
seekerr = fseek(classfile, 2, SEEK_CUR);
break;
+ case CP_METHODHANDLE:
+ seekerr = fseek(classfile, 3, SEEK_CUR);
+ break;
case CP_INTEGER:
case CP_FLOAT:
case CP_FIELDREF:
case CP_METHODREF:
case CP_INTERFACEMETHODREF:
case CP_NAMEANDTYPE:
+ case CP_INVOKEDYNAMIC:
seekerr = fseek(classfile, 4, SEEK_CUR);
break;
case CP_LONG:
diff --git a/Documentation/kbuild/kconfig-language.txt b/Documentation/kbuild/kconfig-language.txt
index c420676c6fe..350f733bf2c 100644
--- a/Documentation/kbuild/kconfig-language.txt
+++ b/Documentation/kbuild/kconfig-language.txt
@@ -157,6 +157,10 @@ applicable everywhere (see syntax).
to the build environment (if this is desired, it can be done via
another symbol).
+ - "allnoconfig_y"
+ This declares the symbol as one that should have the value y when
+ using "allnoconfig". Used for symbols that hide other symbols.
+
Menu dependencies
-----------------
diff --git a/Documentation/kbuild/kconfig.txt b/Documentation/kbuild/kconfig.txt
index 8ef6dbb6a46..bbc99c0c109 100644
--- a/Documentation/kbuild/kconfig.txt
+++ b/Documentation/kbuild/kconfig.txt
@@ -20,16 +20,9 @@ symbols have been introduced.
To see a list of new config symbols when using "make oldconfig", use
cp user/some/old.config .config
- yes "" | make oldconfig >conf.new
+ make listnewconfig
-and the config program will list as (NEW) any new symbols that have
-unknown values. Of course, the .config file is also updated with
-new (default) values, so you can use:
-
- grep "(NEW)" conf.new
-
-to see the new config symbols or you can use diffconfig to see the
-differences between the previous and new .config files:
+and the config program will list any new symbols, one per line.
scripts/diffconfig .config.old .config | less
diff --git a/Documentation/kbuild/makefiles.txt b/Documentation/kbuild/makefiles.txt
index d567a7cc552..c600e2f44a6 100644
--- a/Documentation/kbuild/makefiles.txt
+++ b/Documentation/kbuild/makefiles.txt
@@ -1171,7 +1171,7 @@ When kbuild executes, the following steps are followed (roughly):
obvious reason.
dtc
- Create flattend device tree blob object suitable for linking
+ Create flattened device tree blob object suitable for linking
into vmlinux. Device tree blobs linked into vmlinux are placed
in an init section in the image. Platform code *must* copy the
blob to non-init memory prior to calling unflatten_device_tree().
diff --git a/Documentation/kbuild/modules.txt b/Documentation/kbuild/modules.txt
index 69372fb98cf..3fb39e0116b 100644
--- a/Documentation/kbuild/modules.txt
+++ b/Documentation/kbuild/modules.txt
@@ -470,7 +470,7 @@ build.
Sometimes, an external module uses exported symbols from
another external module. kbuild needs to have full knowledge of
- all symbols to avoid spliitting out warnings about undefined
+ all symbols to avoid spitting out warnings about undefined
symbols. Three solutions exist for this situation.
NOTE: The method with a top-level kbuild file is recommended
diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt
index 1a036cd972f..b7fa2f59945 100644
--- a/Documentation/kernel-parameters.txt
+++ b/Documentation/kernel-parameters.txt
@@ -1,27 +1,37 @@
Kernel Parameters
~~~~~~~~~~~~~~~~~
-The following is a consolidated list of the kernel parameters as implemented
-(mostly) by the __setup() macro and sorted into English Dictionary order
-(defined as ignoring all punctuation and sorting digits before letters in a
-case insensitive manner), and with descriptions where known.
-
-Module parameters for loadable modules are specified only as the
-parameter name with optional '=' and value as appropriate, such as:
-
- modprobe usbcore blinkenlights=1
-
-Module parameters for modules that are built into the kernel image
-are specified on the kernel command line with the module name plus
-'.' plus parameter name, with '=' and value if appropriate, such as:
-
- usbcore.blinkenlights=1
+The following is a consolidated list of the kernel parameters as
+implemented by the __setup(), core_param() and module_param() macros
+and sorted into English Dictionary order (defined as ignoring all
+punctuation and sorting digits before letters in a case insensitive
+manner), and with descriptions where known.
+
+The kernel parses parameters from the kernel command line up to "--";
+if it doesn't recognize a parameter and it doesn't contain a '.', the
+parameter gets passed to init: parameters with '=' go into init's
+environment, others are passed as command line arguments to init.
+Everything after "--" is passed as an argument to init.
+
+Module parameters can be specified in two ways: via the kernel command
+line with a module name prefix, or via modprobe, e.g.:
+
+ (kernel command line) usbcore.blinkenlights=1
+ (modprobe command line) modprobe usbcore blinkenlights=1
+
+Parameters for modules which are built into the kernel need to be
+specified on the kernel command line. modprobe looks through the
+kernel command line (/proc/cmdline) and collects module parameters
+when it loads a module, so the kernel command line can be used for
+loadable modules too.
Hyphens (dashes) and underscores are equivalent in parameter names, so
log_buf_len=1M print-fatal-signals=1
can also be entered as
log-buf-len=1M print_fatal_signals=1
+Double-quotes can be used to protect spaces in values, e.g.:
+ param="spaces in here"
This document may not be entirely up to date and comprehensive. The command
"modinfo -p ${modulename}" shows a current list of all parameters of a loadable
@@ -214,6 +224,11 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
unusable. The "log_buf_len" parameter may be useful
if you need to capture more output.
+ acpi_force_table_verification [HW,ACPI]
+ Enable table checksum verification during early stage.
+ By default, this is disabled due to x86 early mapping
+ size limitation.
+
acpi_irq_balance [HW,ACPI]
ACPI will balance active IRQs
default in APIC mode
@@ -229,7 +244,31 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
use by PCI
Format: <irq>,<irq>...
- acpi_no_auto_ssdt [HW,ACPI] Disable automatic loading of SSDT
+ acpi_no_auto_serialize [HW,ACPI]
+ Disable auto-serialization of AML methods
+ AML control methods that contain the opcodes to create
+ named objects will be marked as "Serialized" by the
+ auto-serialization feature.
+ This feature is enabled by default.
+ This option allows to turn off the feature.
+
+ acpi_no_static_ssdt [HW,ACPI]
+ Disable installation of static SSDTs at early boot time
+ By default, SSDTs contained in the RSDT/XSDT will be
+ installed automatically and they will appear under
+ /sys/firmware/acpi/tables.
+ This option turns off this feature.
+ Note that specifying this option does not affect
+ dynamic table installation which will install SSDT
+ tables to /sys/firmware/acpi/tables/dynamic.
+
+ acpica_no_return_repair [HW, ACPI]
+ Disable AML predefined validation mechanism
+ This mechanism can repair the evaluation result to make
+ the return objects more ACPI specification compliant.
+ This option is useful for developers to identify the
+ root cause of an AML interpreter issue when the issue
+ has something to do with the repair mechanism.
acpi_os_name= [HW,ACPI] Tell ACPI BIOS the name of the OS
Format: To spoof as Windows 98: ="Microsoft Windows"
@@ -298,8 +337,6 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
acpi_sci= [HW,ACPI] ACPI System Control Interrupt trigger mode
Format: { level | edge | high | low }
- acpi_serialize [HW,ACPI] force serialization of AML methods
-
acpi_skip_timer_override [HW,ACPI]
Recognize and ignore IRQ0/pin2 Interrupt Override.
For broken nForce2 BIOS resulting in XT-PIC timer.
@@ -343,6 +380,9 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
no: ACPI OperationRegions are not marked as reserved,
no further checks are performed.
+ acpi_no_memhotplug [ACPI] Disable memory hotplug. Useful for kdump
+ kernels.
+
add_efi_memmap [EFI; X86] Include EFI memory map in
kernel's map of available physical RAM.
@@ -463,6 +503,22 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
atkbd.softrepeat= [HW]
Use software keyboard repeat
+ audit= [KNL] Enable the audit sub-system
+ Format: { "0" | "1" } (0 = disabled, 1 = enabled)
+ 0 - kernel audit is disabled and can not be enabled
+ until the next reboot
+ unset - kernel audit is initialized but disabled and
+ will be fully enabled by the userspace auditd.
+ 1 - kernel audit is initialized and partially enabled,
+ storing at most audit_backlog_limit messages in
+ RAM until it is fully enabled by the userspace
+ auditd.
+ Default: unset
+
+ audit_backlog_limit= [KNL] Set the audit queue size limit.
+ Format: <int> (must be >=0)
+ Default: 64
+
baycom_epp= [HW,AX25]
Format: <io>,<mode>
@@ -480,6 +536,10 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
Format: <io>,<irq>,<mode>
See header of drivers/net/hamradio/baycom_ser_hdx.c.
+ blkdevparts= Manual partition parsing of block device(s) for
+ embedded devices based on command line input.
+ See Documentation/block/cmdline-partition.txt
+
boot_delay= Milliseconds to delay each printk during boot.
Values larger than 10 seconds (10000) are changed to
no delay (0).
@@ -511,7 +571,14 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
cgroup_disable= [KNL] Disable a particular controller
Format: {name of the controller(s) to disable}
- {Currently supported controllers - "memory"}
+ The effects of cgroup_disable=foo are:
+ - foo isn't auto-mounted if you mount all cgroups in
+ a single hierarchy
+ - foo isn't visible as an individually mountable
+ subsystem
+ {Currently only "memory" controller deal with this and
+ cut the overhead, others just disable the usage. So
+ only cgroup_disable=memory is actually worthy}
checkreqprot [SELINUX] Set initial checkreqprot flag value.
Format: { "0" | "1" }
@@ -573,8 +640,11 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
Also note the kernel might malfunction if you disable
some critical bits.
- cma=nn[MG] [ARM,KNL]
- Sets the size of kernel global memory area for contiguous
+ cma=nn[MG]@[start[MG][-end[MG]]]
+ [ARM,X86,KNL]
+ Sets the size of kernel global memory area for
+ contiguous memory allocations and optionally the
+ placement constraint by the physical address range of
memory allocations. For more information, see
include/linux/dma-contiguous.h
@@ -760,16 +830,18 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
dhash_entries= [KNL]
Set number of hash buckets for dentry cache.
- digi= [HW,SERIAL]
- IO parameters + enable/disable command.
-
- digiepca= [HW,SERIAL]
- See drivers/char/README.epca and
- Documentation/serial/digiepca.txt.
-
disable= [IPV6]
See Documentation/networking/ipv6.txt.
+ disable_cpu_apicid= [X86,APIC,SMP]
+ Format: <int>
+ The number of initial APIC ID for the
+ corresponding CPU to be disabled at boot,
+ mostly used for the kdump 2nd kernel to
+ disable BSP to wake up multiple CPUs without
+ causing system reset or hang due to sending
+ INIT from AP to BSP.
+
disable_ddw [PPC/PSERIES]
Disable Dynamic DMA Window support. Use this if
to workaround buggy firmware.
@@ -831,7 +903,13 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
Enable debug messages at boot time. See
Documentation/dynamic-debug-howto.txt for details.
+ early_ioremap_debug [KNL]
+ Enable debug messages in early_ioremap support. This
+ is useful for tracking down temporary early mappings
+ which are not unmapped.
+
earlycon= [KNL] Output early console device and options.
+
uart[8250],io,<addr>[,options]
uart[8250],mmio,<addr>[,options]
uart[8250],mmio32,<addr>[,options]
@@ -841,8 +919,17 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
(mmio) or 32-bit (mmio32).
The options are the same as for ttyS, above.
- earlyprintk= [X86,SH,BLACKFIN,ARM]
+ pl011,<addr>
+ Start an early, polled-mode console on a pl011 serial
+ port at the specified address. The pl011 serial port
+ must already be setup and configured. Options are not
+ yet supported.
+
+ smh Use ARM semihosting calls for early console.
+
+ earlyprintk= [X86,SH,BLACKFIN,ARM,M68k]
earlyprintk=vga
+ earlyprintk=efi
earlyprintk=xen
earlyprintk=serial[,ttySn[,baudrate]]
earlyprintk=serial[,0x...[,baudrate]]
@@ -856,7 +943,8 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
Append ",keep" to not disable it when the real console
takes over.
- Only vga or serial or usb debug port at a time.
+ Only one of vga, efi, serial, or usb debug port can
+ be used at a time.
Currently only ttyS0 and ttyS1 may be specified by
name. Other I/O ports may be explicitly specified
@@ -870,11 +958,19 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
Interaction with the standard serial driver is not
very good.
- The VGA output is eventually overwritten by the real
- console.
+ The VGA and EFI output is eventually overwritten by
+ the real console.
The xen output can only be used by Xen PV guests.
+ edac_report= [HW,EDAC] Control how to report EDAC event
+ Format: {"on" | "off" | "force"}
+ on: enable EDAC to report H/W event. May be overridden
+ by other higher priority error reporting module.
+ off: disable H/W event reporting through EDAC.
+ force: enforce the use of EDAC to report H/W event.
+ default: on.
+
ekgdboc= [X86,KGDB] Allow early kernel console debugging
ekgdboc=kbd
@@ -884,6 +980,12 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
edd= [EDD]
Format: {"off" | "on" | "skip[mbr]"}
+ efi= [EFI]
+ Format: { "old_map" }
+ old_map [X86-64]: switch to the old ioremap-based EFI
+ runtime services mapping. 32-bit still uses this one by
+ default.
+
efi_no_storage_paranoia [EFI; X86]
Using this parameter you can use more than 50% of
your efi variable storage. Use this parameter only if
@@ -956,6 +1058,13 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
parameter will force ia64_sal_cache_flush to call
ia64_pal_cache_flush instead of SAL_CACHE_FLUSH.
+ forcepae [X86-32]
+ Forcefully enable Physical Address Extension (PAE).
+ Many Pentium M systems disable PAE but may have a
+ functionally usable PAE implementation.
+ Warning: use of this parameter will taint the kernel
+ and may cause unknown problems.
+
ftrace=[tracer]
[FTRACE] will set and start the specified tracer
as early as possible in order to facilitate early
@@ -1007,7 +1116,9 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
debugfs files are removed at module unload time.
gpt [EFI] Forces disk with valid GPT signature but
- invalid Protective MBR to be treated as GPT.
+ invalid Protective MBR to be treated as GPT. If the
+ primary GPT is corrupted, it enables the backup/alternate
+ GPT to be used instead.
grcan.enable0= [HW] Configuration of physical interface 0. Determines
the "Enable 0" bit of the configuration register.
@@ -1064,6 +1175,9 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
VIA, nVidia)
verbose: show contents of HPET registers during setup
+ hpet_mmap= [X86, HPET_MMAP] Allow userspace to mmap HPET
+ registers. Default set by CONFIG_HPET_MMAP_DEFAULT.
+
hugepages= [HW,X86-32,IA-64] HugeTLB pages to allocate at boot.
hugepagesz= [HW,IA-64,PPC,X86-64] The size of the HugeTLB pages.
On x86-64 and powerpc, this option can be specified
@@ -1181,15 +1295,24 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
owned by uid=0.
ima_hash= [IMA]
- Format: { "sha1" | "md5" }
+ Format: { md5 | sha1 | rmd160 | sha256 | sha384
+ | sha512 | ... }
default: "sha1"
+ The list of supported hash algorithms is defined
+ in crypto/hash_info.h.
+
ima_tcb [IMA]
Load a policy which meets the needs of the Trusted
Computing Base. This means IMA will measure all
programs exec'd, files mmap'd for exec, and all files
opened for read by uid=0.
+ ima_template= [IMA]
+ Select one of defined IMA measurements template formats.
+ Formats: { "ima" | "ima-ng" }
+ Default: "ima-ng"
+
init= [KNL]
Format: <full_path>
Run specified binary instead of /sbin/init as init
@@ -1199,6 +1322,10 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
for working out where the kernel is dying during
startup.
+ initcall_blacklist= [KNL] Do not execute a comma-separated list of
+ initcall functions. Useful for debugging built-in
+ modules and initcalls.
+
initrd= [BOOT] Specify the location of the initial ramdisk
inport.irq= [HW] Inport (ATI XL and Microsoft) busmouse driver
@@ -1347,6 +1474,13 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
js= [HW,JOY] Analog joystick
See Documentation/input/joystick.txt.
+ kaslr/nokaslr [X86]
+ Enable/disable kernel and module base offset ASLR
+ (Address Space Layout Randomization) if built into
+ the kernel. When CONFIG_HIBERNATION is selected,
+ kASLR is disabled by default. When kASLR is enabled,
+ hibernation will be disabled.
+
keepinitrd [HW,ARM]
kernelcore=nn[KMG] [KNL,X86,IA-64,PPC] This parameter
@@ -1357,7 +1491,7 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
pages. In the event, a node is too small to have both
kernelcore and Movable pages, kernelcore pages will
take priority and other nodes will have a larger number
- of kernelcore pages. The Movable zone is used for the
+ of Movable pages. The Movable zone is used for the
allocation of pages that may be reclaimed or moved
by the page migration subsystem. This means that
HugeTLB pages may not be allocated from this zone.
@@ -1397,6 +1531,13 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
Valid arguments: on, off
Default: on
+ kmemcheck= [X86] Boot-time kmemcheck enable/disable/one-shot mode
+ Valid arguments: 0, 1, 2
+ kmemcheck=0 (disabled)
+ kmemcheck=1 (enabled)
+ kmemcheck=2 (one-shot mode)
+ Default: 2 (one-shot mode)
+
kstack=N [X86] Print N words from the kernel stack
in oops dumps.
@@ -1511,6 +1652,8 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
* atapi_dmadir: Enable ATAPI DMADIR bridge support
+ * disable: Disable this device.
+
If there are multiple matching configurations changing
the same attribute, the last one is used.
@@ -1648,16 +1791,16 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
option description.
memmap=nn[KMG]@ss[KMG]
- [KNL] Force usage of a specific region of memory
- Region of memory to be used, from ss to ss+nn.
+ [KNL] Force usage of a specific region of memory.
+ Region of memory to be used is from ss to ss+nn.
memmap=nn[KMG]#ss[KMG]
[KNL,ACPI] Mark specific memory as ACPI data.
- Region of memory to be used, from ss to ss+nn.
+ Region of memory to be marked is from ss to ss+nn.
memmap=nn[KMG]$ss[KMG]
[KNL,ACPI] Mark specific memory as reserved.
- Region of memory to be used, from ss to ss+nn.
+ Region of memory to be reserved is from ss to ss+nn.
Example: Exclude memory from 0x18690000-0x1869ffff
memmap=64K$0x18690000
or
@@ -1769,6 +1912,9 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
that the amount of memory usable for all allocations
is not too small.
+ movable_node [KNL,X86] Boot-time switch to enable the effects
+ of CONFIG_MOVABLE_NODE=y. See mm/Kconfig for details.
+
MTD_Partition= [MTD]
Format: <name>,<region-number>,<size>,<offset>
@@ -2041,6 +2187,8 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
in certain environments such as networked servers or
real-time systems.
+ nohibernate [HIBERNATION] Disable hibernation and resume.
+
nohz= [KNL] Boottime enable/disable dynamic ticks
Valid arguments: on, off
Default: on
@@ -2114,10 +2262,10 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
noreplace-smp [X86-32,SMP] Don't replace SMP instructions
with UP alternatives
- nordrand [X86] Disable the direct use of the RDRAND
- instruction even if it is supported by the
- processor. RDRAND is still available to user
- space applications.
+ nordrand [X86] Disable kernel use of the RDRAND and
+ RDSEED instructions even if they are supported
+ by the processor. RDRAND and RDSEED are still
+ available to user space applications.
noresume [SWSUSP] Disables resume and restores original swap
space.
@@ -2228,6 +2376,14 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
timeout < 0: reboot immediately
Format: <timeout>
+ crash_kexec_post_notifiers
+ Run kdump after running panic-notifiers and dumping
+ kmsg. This only for the users who doubt kdump always
+ succeeds in any situation.
+ Note that this also increases risks of kdump failure,
+ because some panic notifiers can make the crashed
+ kernel more unstable.
+
parkbd.port= [HW] Parallel port number the keyboard adapter is
connected to, default is 0.
Format: <parport#>
@@ -2452,6 +2608,13 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
pcmv= [HW,PCMCIA] BadgePAD 4
+ pd_ignore_unused
+ [PM]
+ Keep all power-domains already enabled by bootloader on,
+ even if no driver has claimed them. This is useful
+ for debug and development, but should not be
+ needed on a platform with proper driver support.
+
pd. [PARIDE]
See Documentation/blockdev/paride.txt.
@@ -2595,7 +2758,7 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
ramdisk_size= [RAM] Sizes of RAM disks in kilobytes
See Documentation/blockdev/ramdisk.txt.
- rcu_nocbs= [KNL,BOOT]
+ rcu_nocbs= [KNL]
In kernels built with CONFIG_RCU_NOCB_CPU=y, set
the specified list of CPUs to be no-callback CPUs.
Invocation of these CPUs' RCU callbacks will
@@ -2604,11 +2767,10 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
for RCU-preempt, and "s" for RCU-sched, and "N"
is the CPU number. This reduces OS jitter on the
offloaded CPUs, which can be useful for HPC and
-
real-time workloads. It can also improve energy
efficiency for asymmetric multiprocessors.
- rcu_nocb_poll [KNL,BOOT]
+ rcu_nocb_poll [KNL]
Rather than requiring that offloaded CPUs
(specified by rcu_nocbs= above) explicitly
awaken the corresponding "rcuoN" kthreads,
@@ -2619,126 +2781,151 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
energy efficiency by requiring that the kthreads
periodically wake up to do the polling.
- rcutree.blimit= [KNL,BOOT]
- Set maximum number of finished RCU callbacks to process
- in one batch.
+ rcutree.blimit= [KNL]
+ Set maximum number of finished RCU callbacks to
+ process in one batch.
- rcutree.fanout_leaf= [KNL,BOOT]
+ rcutree.rcu_fanout_leaf= [KNL]
Increase the number of CPUs assigned to each
leaf rcu_node structure. Useful for very large
systems.
- rcutree.jiffies_till_first_fqs= [KNL,BOOT]
+ rcutree.jiffies_till_sched_qs= [KNL]
+ Set required age in jiffies for a
+ given grace period before RCU starts
+ soliciting quiescent-state help from
+ rcu_note_context_switch().
+
+ rcutree.jiffies_till_first_fqs= [KNL]
Set delay from grace-period initialization to
first attempt to force quiescent states.
Units are jiffies, minimum value is zero,
and maximum value is HZ.
- rcutree.jiffies_till_next_fqs= [KNL,BOOT]
+ rcutree.jiffies_till_next_fqs= [KNL]
Set delay between subsequent attempts to force
quiescent states. Units are jiffies, minimum
value is one, and maximum value is HZ.
- rcutree.qhimark= [KNL,BOOT]
- Set threshold of queued
- RCU callbacks over which batch limiting is disabled.
+ rcutree.qhimark= [KNL]
+ Set threshold of queued RCU callbacks beyond which
+ batch limiting is disabled.
- rcutree.qlowmark= [KNL,BOOT]
+ rcutree.qlowmark= [KNL]
Set threshold of queued RCU callbacks below which
batch limiting is re-enabled.
- rcutree.rcu_cpu_stall_suppress= [KNL,BOOT]
- Suppress RCU CPU stall warning messages.
-
- rcutree.rcu_cpu_stall_timeout= [KNL,BOOT]
- Set timeout for RCU CPU stall warning messages.
-
- rcutree.rcu_idle_gp_delay= [KNL,BOOT]
+ rcutree.rcu_idle_gp_delay= [KNL]
Set wakeup interval for idle CPUs that have
RCU callbacks (RCU_FAST_NO_HZ=y).
- rcutree.rcu_idle_lazy_gp_delay= [KNL,BOOT]
+ rcutree.rcu_idle_lazy_gp_delay= [KNL]
Set wakeup interval for idle CPUs that have
only "lazy" RCU callbacks (RCU_FAST_NO_HZ=y).
Lazy RCU callbacks are those which RCU can
prove do nothing more than free memory.
- rcutorture.fqs_duration= [KNL,BOOT]
+ rcutorture.fqs_duration= [KNL]
Set duration of force_quiescent_state bursts.
- rcutorture.fqs_holdoff= [KNL,BOOT]
+ rcutorture.fqs_holdoff= [KNL]
Set holdoff time within force_quiescent_state bursts.
- rcutorture.fqs_stutter= [KNL,BOOT]
+ rcutorture.fqs_stutter= [KNL]
Set wait time between force_quiescent_state bursts.
- rcutorture.irqreader= [KNL,BOOT]
- Test RCU readers from irq handlers.
+ rcutorture.gp_exp= [KNL]
+ Use expedited update-side primitives.
+
+ rcutorture.gp_normal= [KNL]
+ Use normal (non-expedited) update-side primitives.
+ If both gp_exp and gp_normal are set, do both.
+ If neither gp_exp nor gp_normal are set, still
+ do both.
- rcutorture.n_barrier_cbs= [KNL,BOOT]
+ rcutorture.n_barrier_cbs= [KNL]
Set callbacks/threads for rcu_barrier() testing.
- rcutorture.nfakewriters= [KNL,BOOT]
+ rcutorture.nfakewriters= [KNL]
Set number of concurrent RCU writers. These just
stress RCU, they don't participate in the actual
test, hence the "fake".
- rcutorture.nreaders= [KNL,BOOT]
+ rcutorture.nreaders= [KNL]
Set number of RCU readers.
- rcutorture.onoff_holdoff= [KNL,BOOT]
+ rcutorture.object_debug= [KNL]
+ Enable debug-object double-call_rcu() testing.
+
+ rcutorture.onoff_holdoff= [KNL]
Set time (s) after boot for CPU-hotplug testing.
- rcutorture.onoff_interval= [KNL,BOOT]
+ rcutorture.onoff_interval= [KNL]
Set time (s) between CPU-hotplug operations, or
zero to disable CPU-hotplug testing.
- rcutorture.shuffle_interval= [KNL,BOOT]
+ rcutorture.rcutorture_runnable= [BOOT]
+ Start rcutorture running at boot time.
+
+ rcutorture.shuffle_interval= [KNL]
Set task-shuffle interval (s). Shuffling tasks
allows some CPUs to go into dyntick-idle mode
during the rcutorture test.
- rcutorture.shutdown_secs= [KNL,BOOT]
+ rcutorture.shutdown_secs= [KNL]
Set time (s) after boot system shutdown. This
is useful for hands-off automated testing.
- rcutorture.stall_cpu= [KNL,BOOT]
+ rcutorture.stall_cpu= [KNL]
Duration of CPU stall (s) to test RCU CPU stall
warnings, zero to disable.
- rcutorture.stall_cpu_holdoff= [KNL,BOOT]
+ rcutorture.stall_cpu_holdoff= [KNL]
Time to wait (s) after boot before inducing stall.
- rcutorture.stat_interval= [KNL,BOOT]
+ rcutorture.stat_interval= [KNL]
Time (s) between statistics printk()s.
- rcutorture.stutter= [KNL,BOOT]
+ rcutorture.stutter= [KNL]
Time (s) to stutter testing, for example, specifying
five seconds causes the test to run for five seconds,
wait for five seconds, and so on. This tests RCU's
ability to transition abruptly to and from idle.
- rcutorture.test_boost= [KNL,BOOT]
+ rcutorture.test_boost= [KNL]
Test RCU priority boosting? 0=no, 1=maybe, 2=yes.
"Maybe" means test if the RCU implementation
under test support RCU priority boosting.
- rcutorture.test_boost_duration= [KNL,BOOT]
+ rcutorture.test_boost_duration= [KNL]
Duration (s) of each individual boost test.
- rcutorture.test_boost_interval= [KNL,BOOT]
+ rcutorture.test_boost_interval= [KNL]
Interval (s) between each boost test.
- rcutorture.test_no_idle_hz= [KNL,BOOT]
+ rcutorture.test_no_idle_hz= [KNL]
Test RCU's dyntick-idle handling. See also the
rcutorture.shuffle_interval parameter.
- rcutorture.torture_type= [KNL,BOOT]
+ rcutorture.torture_type= [KNL]
Specify the RCU implementation to test.
- rcutorture.verbose= [KNL,BOOT]
+ rcutorture.verbose= [KNL]
Enable additional printk() statements.
+ rcupdate.rcu_expedited= [KNL]
+ Use expedited grace-period primitives, for
+ example, synchronize_rcu_expedited() instead
+ of synchronize_rcu(). This reduces latency,
+ but can increase CPU utilization, degrade
+ real-time latency, and degrade energy efficiency.
+
+ rcupdate.rcu_cpu_stall_suppress= [KNL]
+ Suppress RCU CPU stall warning messages.
+
+ rcupdate.rcu_cpu_stall_timeout= [KNL]
+ Set timeout for RCU CPU stall warning messages.
+
rdinit= [KNL]
Format: <full_path>
Run specified binary instead of /init from the ramdisk,
@@ -2760,6 +2947,13 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
[KNL, SMP] Set scheduler's default relax_domain_level.
See Documentation/cgroups/cpusets.txt.
+ relative_sleep_states=
+ [SUSPEND] Use sleep state labeling where the deepest
+ state available other than hibernation is always "mem".
+ Format: { "0" | "1" }
+ 0 -- Traditional sleep state labels.
+ 1 -- Relative sleep state labels.
+
reserve= [KNL,BUGS] Force the kernel to ignore some iomem area
reservetop= [X86-32]
@@ -2797,15 +2991,13 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
noresume Don't check if there's a hibernation image
present during boot.
nocompress Don't compress/decompress hibernation images.
+ no Disable hibernation and resume.
retain_initrd [RAM] Keep initrd memory after extraction
rhash_entries= [KNL,NET]
Set number of hash buckets for route cache
- riscom8= [HW,SERIAL]
- Format: <io_board1>[,<io_board2>[,...<io_boardN>]]
-
ro [KNL] Mount root device read-only on boot
root= [KNL] Root filesystem
@@ -2944,12 +3136,14 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
[KNL] Should the soft-lockup detector generate panics.
Format: <integer>
+ softlockup_all_cpu_backtrace=
+ [KNL] Should the soft-lockup detector generate
+ backtraces on all cpus.
+ Format: <integer>
+
sonypi.*= [HW] Sony Programmable I/O Control Device driver
See Documentation/laptops/sonypi.txt
- specialix= [HW,SERIAL] Specialix multi-serial port adapter
- See Documentation/serial/specialix.txt.
-
spia_io_base= [HW,MTD]
spia_fio_base=
spia_pedr=
@@ -3021,7 +3215,11 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
controller if no parameter or 1 is given or disable
it if 0 is given (See Documentation/cgroups/memory.txt)
- swiotlb= [IA-64] Number of I/O TLB slabs
+ swiotlb= [ARM,IA-64,PPC,MIPS,X86]
+ Format: { <int> | force }
+ <int> -- Number of I/O TLB slabs
+ force -- force using of bounce buffers even if they
+ wouldn't be automatically used by the kernel
switches= [HW,M68k]
@@ -3302,14 +3500,24 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
of CONFIG_HIGHPTE.
vdso= [X86,SH]
- vdso=2: enable compat VDSO (default with COMPAT_VDSO)
- vdso=1: enable VDSO (default)
+ On X86_32, this is an alias for vdso32=. Otherwise:
+
+ vdso=1: enable VDSO (the default)
vdso=0: disable VDSO mapping
- vdso32= [X86]
- vdso32=2: enable compat VDSO (default with COMPAT_VDSO)
- vdso32=1: enable 32-bit VDSO (default)
- vdso32=0: disable 32-bit VDSO mapping
+ vdso32= [X86] Control the 32-bit vDSO
+ vdso32=1: enable 32-bit VDSO
+ vdso32=0 or vdso32=2: disable 32-bit VDSO
+
+ See the help text for CONFIG_COMPAT_VDSO for more
+ details. If CONFIG_COMPAT_VDSO is set, the default is
+ vdso32=0; otherwise, the default is vdso32=1.
+
+ For compatibility with older kernels, vdso32=2 is an
+ alias for vdso32=0.
+
+ Try vdso32=0 if you encounter an error that says:
+ dl_main: Assertion `(void *) ph->p_vaddr == _rtld_local._dl_sysinfo_dso' failed!
vector= [IA-64,SMP]
vector=percpu: enable percpu vector domain
@@ -3467,11 +3675,11 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
default x2apic cluster mode on platforms
supporting x2apic.
- x86_mrst_timer= [X86-32,APBT]
- Choose timer option for x86 Moorestown MID platform.
+ x86_intel_mid_timer= [X86-32,APBT]
+ Choose timer option for x86 Intel MID platform.
Two valid options are apbt timer only and lapic timer
plus one apbt timer for broadcast timer.
- x86_mrst_timer=apbt_only | lapic_and_apbt
+ x86_intel_mid_timer=apbt_only | lapic_and_apbt
xen_emul_unplug= [HW,X86,XEN]
Unplug Xen emulated devices
@@ -3485,6 +3693,10 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
the unplug protocol
never -- do not unplug even if version check succeeds
+ xen_nopvspin [X86,XEN]
+ Disables the ticketlock slowpath using Xen PV
+ optimizations.
+
xirc2ps_cs= [NET,PCMCIA]
Format:
<irq>,<irq_mask>,<io>,<full_duplex>,<do_sound>,<lockup_hack>[,<irq2>[,<irq3>[,<irq4>]]]
diff --git a/Documentation/kernel-per-CPU-kthreads.txt b/Documentation/kernel-per-CPU-kthreads.txt
index 32351bfabf2..f3cd299fcc4 100644
--- a/Documentation/kernel-per-CPU-kthreads.txt
+++ b/Documentation/kernel-per-CPU-kthreads.txt
@@ -162,7 +162,18 @@ Purpose: Execute workqueue requests
To reduce its OS jitter, do any of the following:
1. Run your workload at a real-time priority, which will allow
preempting the kworker daemons.
-2. Do any of the following needed to avoid jitter that your
+2. A given workqueue can be made visible in the sysfs filesystem
+ by passing the WQ_SYSFS to that workqueue's alloc_workqueue().
+ Such a workqueue can be confined to a given subset of the
+ CPUs using the /sys/devices/virtual/workqueue/*/cpumask sysfs
+ files. The set of WQ_SYSFS workqueues can be displayed using
+ "ls sys/devices/virtual/workqueue". That said, the workqueues
+ maintainer would like to caution people against indiscriminately
+ sprinkling WQ_SYSFS across all the workqueues. The reason for
+ caution is that it is easy to add WQ_SYSFS, but because sysfs is
+ part of the formal user/kernel API, it can be nearly impossible
+ to remove it, even if its addition was a mistake.
+3. Do any of the following needed to avoid jitter that your
application cannot tolerate:
a. Build your kernel with CONFIG_SLUB=y rather than
CONFIG_SLAB=y, thus avoiding the slab allocator's periodic
@@ -181,12 +192,17 @@ To reduce its OS jitter, do any of the following:
make sure that this is safe on your particular system.
d. It is not possible to entirely get rid of OS jitter
from vmstat_update() on CONFIG_SMP=y systems, but you
- can decrease its frequency by writing a large value to
- /proc/sys/vm/stat_interval. The default value is HZ,
- for an interval of one second. Of course, larger values
- will make your virtual-memory statistics update more
- slowly. Of course, you can also run your workload at
- a real-time priority, thus preempting vmstat_update().
+ can decrease its frequency by writing a large value
+ to /proc/sys/vm/stat_interval. The default value is
+ HZ, for an interval of one second. Of course, larger
+ values will make your virtual-memory statistics update
+ more slowly. Of course, you can also run your workload
+ at a real-time priority, thus preempting vmstat_update(),
+ but if your workload is CPU-bound, this is a bad idea.
+ However, there is an RFC patch from Christoph Lameter
+ (based on an earlier one from Gilad Ben-Yossef) that
+ reduces or even eliminates vmstat overhead for some
+ workloads at https://lkml.org/lkml/2013/9/4/379.
e. If running on high-end powerpc servers, build with
CONFIG_PPC_RTAS_DAEMON=n. This prevents the RTAS
daemon from running on each CPU every second or so.
diff --git a/Documentation/kmemcheck.txt b/Documentation/kmemcheck.txt
index 9398a501fdb..a41bdebbe87 100644
--- a/Documentation/kmemcheck.txt
+++ b/Documentation/kmemcheck.txt
@@ -541,7 +541,7 @@ initialized. This is the beginning of the struct:
92 } _sifields;
93 } siginfo_t;
-On 64-bit, the int is 4 bytes long, so it must the the union member that has
+On 64-bit, the int is 4 bytes long, so it must the union member that has
not been initialized. We can verify this using gdb:
$ gdb vmlinux
diff --git a/Documentation/kmemleak.txt b/Documentation/kmemleak.txt
index b6e39739a36..b772418bf06 100644
--- a/Documentation/kmemleak.txt
+++ b/Documentation/kmemleak.txt
@@ -11,9 +11,7 @@ with the difference that the orphan objects are not freed but only
reported via /sys/kernel/debug/kmemleak. A similar method is used by the
Valgrind tool (memcheck --leak-check) to detect the memory leaks in
user-space applications.
-
-Please check DEBUG_KMEMLEAK dependencies in lib/Kconfig.debug for supported
-architectures.
+Kmemleak is supported on x86, arm, powerpc, sparc, sh, microblaze, ppc, mips, s390, metag and tile.
Usage
-----
@@ -53,7 +51,8 @@ Memory scanning parameters can be modified at run-time by writing to the
(default 600, 0 to stop the automatic scanning)
scan - trigger a memory scan
clear - clear list of current memory leak suspects, done by
- marking all current reported unreferenced objects grey
+ marking all current reported unreferenced objects grey,
+ or free all kmemleak objects if kmemleak has been disabled.
dump=<addr> - dump information about the object found at <addr>
Kmemleak can also be disabled at boot-time by passing "kmemleak=off" on
@@ -68,7 +67,7 @@ Basic Algorithm
The memory allocations via kmalloc, vmalloc, kmem_cache_alloc and
friends are traced and the pointers, together with additional
-information like size and stack trace, are stored in a prio search tree.
+information like size and stack trace, are stored in a rbtree.
The corresponding freeing function calls are tracked and the pointers
removed from the kmemleak data structures.
@@ -84,7 +83,7 @@ The scanning algorithm steps:
1. mark all objects as white (remaining white objects will later be
considered orphan)
2. scan the memory starting with the data section and stacks, checking
- the values against the addresses stored in the prio search tree. If
+ the values against the addresses stored in the rbtree. If
a pointer to a white object is found, the object is added to the
gray list
3. scan the gray objects for matching addresses (some white objects
@@ -120,6 +119,18 @@ Then as usual to get your report with:
# cat /sys/kernel/debug/kmemleak
+Freeing kmemleak internal objects
+---------------------------------
+
+To allow access to previosuly found memory leaks after kmemleak has been
+disabled by the user or due to an fatal error, internal kmemleak objects
+won't be freed when kmemleak is disabled, and those objects may occupy
+a large part of physical memory.
+
+In this situation, you may reclaim memory with:
+
+ # echo clear > /sys/kernel/debug/kmemleak
+
Kmemleak API
------------
@@ -131,6 +142,7 @@ kmemleak_alloc_percpu - notify of a percpu memory block allocation
kmemleak_free - notify of a memory block freeing
kmemleak_free_part - notify of a partial memory block freeing
kmemleak_free_percpu - notify of a percpu memory block freeing
+kmemleak_update_trace - update object allocation stack trace
kmemleak_not_leak - mark an object as not a leak
kmemleak_ignore - do not scan or report an object as leak
kmemleak_scan_area - add scan areas inside a memory block
diff --git a/Documentation/ko_KR/HOWTO b/Documentation/ko_KR/HOWTO
index 680e6463595..dc2ff8f611e 100644
--- a/Documentation/ko_KR/HOWTO
+++ b/Documentation/ko_KR/HOWTO
@@ -122,7 +122,7 @@ mtk.manpages@gmail.com의 메인테이너에게 보낼 것을 권장한다.
올바른 패치들을 만드는 법에 관한 훌륭한 다른 문서들이 있다.
"The Perfect Patch"
- http://userweb.kernel.org/~akpm/stuff/tpp.txt
+ http://www.ozlabs.org/~akpm/stuff/tpp.txt
"Linux kernel patch submission format"
http://linux.yyz.us/patch-format.html
@@ -213,7 +213,7 @@ Documentation/DocBook/ 디렉토리 내에서 만들어지며 PDF, Postscript, H
것은 Linux Cross-Reference project이며 그것은 자기 참조 방식이며
소스코드를 인덱스된 웹 페이지들의 형태로 보여준다. 최신의 멋진 커널
코드 저장소는 다음을 통하여 참조할 수 있다.
- http://users.sosdg.org/~qiyong/lxr/
+ http://lxr.linux.no/+trees
개발 프로세스
@@ -222,20 +222,20 @@ Documentation/DocBook/ 디렉토리 내에서 만들어지며 PDF, Postscript, H
리눅스 커널 개발 프로세스는 현재 몇몇 다른 메인 커널 "브랜치들"과
서브시스템에 특화된 커널 브랜치들로 구성된다. 몇몇 다른 메인
브랜치들은 다음과 같다.
- - main 2.6.x 커널 트리
- - 2.6.x.y - 안정된 커널 트리
- - 2.6.x -git 커널 패치들
- - 2.6.x -mm 커널 패치들
+ - main 3.x 커널 트리
+ - 3.x.y - 안정된 커널 트리
+ - 3.x -git 커널 패치들
- 서브시스템을 위한 커널 트리들과 패치들
+ - 3.x - 통합 테스트를 위한 next 커널 트리
-2.6.x 커널 트리
+3.x 커널 트리
---------------
-2.6.x 커널들은 Linux Torvalds가 관리하며 kernel.org의 pub/linux/kernel/v2.6/
+3.x 커널들은 Linux Torvalds가 관리하며 kernel.org의 pub/linux/kernel/v3.x/
디렉토리에서 참조될 수 있다.개발 프로세스는 다음과 같다.
- 새로운 커널이 배포되자마자 2주의 시간이 주어진다. 이 기간동은
메인테이너들은 큰 diff들을 Linus에게 제출할 수 있다. 대개 이 패치들은
- 몇 주 동안 -mm 커널내에 이미 있었던 것들이다. 큰 변경들을 제출하는 데
+ 몇 주 동안 -next 커널내에 이미 있었던 것들이다. 큰 변경들을 제출하는 데
선호되는 방법은 git(커널의 소스 관리 툴, 더 많은 정보들은 http://git.or.cz/
에서 참조할 수 있다)를 사용하는 것이지만 순수한 패치파일의 형식으로 보내는
것도 무관하다.
@@ -262,20 +262,20 @@ Andrew Morton의 글이 있다.
버그의 상황에 따라 배포되는 것이지 미리정해 놓은 시간에 따라
배포되는 것은 아니기 때문이다."
-2.6.x.y - 안정 커널 트리
+3.x.y - 안정 커널 트리
------------------------
-4 자리 숫자로 이루어진 버젼의 커널들은 -stable 커널들이다. 그것들은 2.6.x
+3 자리 숫자로 이루어진 버젼의 커널들은 -stable 커널들이다. 그것들은 3.x
커널에서 발견된 큰 회귀들이나 보안 문제들 중 비교적 작고 중요한 수정들을
포함한다.
이것은 가장 최근의 안정적인 커널을 원하는 사용자에게 추천되는 브랜치이며,
개발/실험적 버젼을 테스트하는 것을 돕고자 하는 사용자들과는 별로 관련이 없다.
-어떤 2.6.x.y 커널도 사용할 수 없다면 그때는 가장 높은 숫자의 2.6.x
+어떤 3.x.y 커널도 사용할 수 없다면 그때는 가장 높은 숫자의 3.x
커널이 현재의 안정 커널이다.
-2.6.x.y는 "stable" 팀<stable@kernel.org>에 의해 관리되며 거의 매번 격주로
+3.x.y는 "stable" 팀<stable@vger.kernel.org>에 의해 관리되며 거의 매번 격주로
배포된다.
커널 트리 문서들 내에 Documentation/stable_kernel_rules.txt 파일은 어떤
@@ -283,84 +283,46 @@ Andrew Morton의 글이 있다.
진행되는지를 설명한다.
-2.6.x -git 패치들
+3.x -git 패치들
------------------
git 저장소(그러므로 -git이라는 이름이 붙음)에는 날마다 관리되는 Linus의
커널 트리의 snapshot 들이 있다. 이 패치들은 일반적으로 날마다 배포되며
Linus의 트리의 현재 상태를 나타낸다. 이 패치들은 정상적인지 조금도
살펴보지 않고 자동적으로 생성된 것이므로 -rc 커널들 보다도 더 실험적이다.
-2.6.x -mm 커널 패치들
----------------------
-Andrew Morton에 의해 배포된 실험적인 커널 패치들이다. Andrew는 모든 다른
-서브시스템 커널 트리와 패치들을 가져와서 리눅스 커널 메일링 리스트로
-온 많은 패치들과 한데 묶는다. 이 트리는 새로운 기능들과 패치들을 위한
-장소를 제공하는 역할을 한다. 하나의 패치가 -mm에 한동안 있으면서 그 가치가
-증명되게 되면 Andrew나 서브시스템 메인테이너는 그것을 메인라인에 포함시키기
-위하여 Linus에게 보낸다.
-
-커널 트리에 포함하고 싶은 모든 새로운 패치들은 Linus에게 보내지기 전에
--mm 트리에서 테스트를 하는 것을 적극 추천한다.
-
-이 커널들은 안정되게 사용할 시스템에서에 실행하는 것은 적합하지 않으며
-다른 브랜치들의 어떤 것들보다 위험하다.
-
-여러분이 커널 개발 프로세스를 돕길 원한다면 이 커널 배포들을 사용하고
-테스트한 후 어떤 문제를 발견하거나 또는 모든 것이 잘 동작한다면 리눅스
-커널 메일링 리스트로 피드백을 해달라.
-
-이 커널들은 일반적으로 모든 다른 실험적인 패치들과 배포될 당시의
-사용가능한 메인라인 -git 커널들의 몇몇 변경을 포함한다.
-
--mm 커널들은 정해진 일정대로 배포되지 않는다. 하지만 대개 몇몇 -mm 커널들은
-각 -rc 커널(1부터 3이 흔함) 사이에서 배포된다.
-
서브시스템 커널 트리들과 패치들
-------------------------------
-많은 다른 커널 서브시스템 개발자들은 커널의 다른 부분들에서 무슨 일이
-일어나고 있는지를 볼수 있도록 그들의 개발 트리를 공개한다. 이 트리들은
-위에서 설명하였던 것 처럼 -mm 커널 배포들로 합쳐진다.
-
-다음은 활용가능한 커널 트리들을 나열한다.
- git trees:
- - Kbuild development tree, Sam Ravnborg < sam@ravnborg.org>
- git.kernel.org:/pub/scm/linux/kernel/git/sam/kbuild.git
-
- - ACPI development tree, Len Brown <len.brown@intel.com >
- git.kernel.org:/pub/scm/linux/kernel/git/lenb/linux-acpi-2.6.git
-
- - Block development tree, Jens Axboe <jens.axboe@oracle.com>
- git.kernel.org:/pub/scm/linux/kernel/git/axboe/linux-2.6-block.git
-
- - DRM development tree, Dave Airlie <airlied@linux.ie>
- git.kernel.org:/pub/scm/linux/kernel/git/airlied/drm-2.6.git
-
- - ia64 development tree, Tony Luck < tony.luck@intel.com>
- git.kernel.org:/pub/scm/linux/kernel/git/aegl/linux-2.6.git
-
- - infiniband, Roland Dreier <rolandd@cisco.com >
- git.kernel.org:/pub/scm/linux/kernel/git/roland/infiniband.git
-
- - libata, Jeff Garzik <jgarzik@pobox.com>
- git.kernel.org:/pub/scm/linux/kernel/git/jgarzik/libata-dev.git
-
- - network drivers, Jeff Garzik <jgarzik@pobox.com>
- git.kernel.org:/pub/scm/linux/kernel/git/jgarzik/netdev-2.6.git
-
- - pcmcia, Dominik Brodowski < linux@dominikbrodowski.net>
- git.kernel.org:/pub/scm/linux/kernel/git/brodo/pcmcia-2.6.git
-
- - SCSI, James Bottomley < James.Bottomley@SteelEye.com>
- git.kernel.org:/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6.git
-
- quilt trees:
- - USB, PCI, Driver Core, and I2C, Greg Kroah-Hartman < gregkh@linuxfoundation.org>
- kernel.org/pub/linux/kernel/people/gregkh/gregkh-2.6/
- - x86-64, partly i386, Andi Kleen < ak@suse.de>
- ftp.firstfloor.org:/pub/ak/x86_64/quilt/
-
- 다른 커널 트리들은 http://kernel.org/git와 MAINTAINERS 파일에서 참조할 수
- 있다.
+다양한 커널 서브시스템의 메인테이너들 --- 그리고 많은 커널 서브시스템 개발자들
+--- 은 그들의 현재 개발 상태를 소스 저장소로 노출한다. 이를 통해 다른 사람들도
+커널의 다른 영역에 어떤 변화가 이루어지고 있는지 알 수 있다. 급속히 개발이
+진행되는 영역이 있고 그렇지 않은 영역이 있으므로, 개발자는 다른 개발자가 제출한
+수정 사항과 자신의 수정사항의 충돌이나 동일한 일을 동시에 두사람이 따로
+진행하는 사태를 방지하기 위해 급속히 개발이 진행되고 있는 영역에 작업의
+베이스를 맞춰줄 것이 요구된다.
+
+대부분의 이러한 저장소는 git 트리지만, git이 아닌 SCM으로 관리되거나, quilt
+시리즈로 제공되는 패치들도 존재한다. 이러한 서브시스템 저장소들은 MAINTAINERS
+파일에 나열되어 있다. 대부분은 http://git.kernel.org 에서 볼 수 있다.
+
+제안된 패치는 서브시스템 트리에 커밋되기 전에 메일링 리스트를 통해
+리뷰된다(아래의 관련 섹션을 참고하기 바란다). 일부 커널 서브시스템의 경우, 이
+리뷰 프로세스는 patchwork라는 도구를 통해 추적된다. patchwork은 등록된 패치와
+패치에 대한 코멘트, 패치의 버전을 볼 수 있는 웹 인터페이스를 제공하고,
+메인테이너는 패치를 리뷰 중, 리뷰 통과, 또는 반려됨으로 표시할 수 있다.
+대부분의 이러한 patchwork 사이트는 http://patchwork.kernel.org/ 또는
+http://patchwork.ozlabs.org/ 에 나열되어 있다.
+
+3.x - 통합 테스트를 위한 next 커널 트리
+-----------------------------------------
+서브시스템 트리들의 변경사항들은 mainline 3.x 트리로 들어오기 전에 통합
+테스트를 거쳐야 한다. 이런 목적으로, 모든 서브시스템 트리의 변경사항을 거의
+매일 받아가는 특수한 테스트 저장소가 존재한다:
+ http://git.kernel.org/?p=linux/kernel/git/sfr/linux-next.git
+ http://linux.f-seidel.de/linux-next/pmwiki/
+
+이런 식으로, -next 커널을 통해 다음 머지 기간에 메인라인 커널에 어떤 변경이
+가해질 것인지 간략히 알 수 있다. 모험심 강한 테스터라면 -next 커널에서 테스트를
+수행하는 것도 좋을 것이다.
버그 보고
---------
@@ -597,7 +559,7 @@ Pat이라는 이름을 가진 여자가 있을 수도 있는 것이다. 리눅
이것이 무엇인지 더 자세한 것을 알고 싶다면 다음 문서의 ChageLog 항을 봐라.
"The Perfect Patch"
- http://userweb.kernel.org/~akpm/stuff/tpp.txt
+ http://www.ozlabs.org/~akpm/stuff/tpp.txt
diff --git a/Documentation/kobject.txt b/Documentation/kobject.txt
index c5182bb2c16..f87241dfed8 100644
--- a/Documentation/kobject.txt
+++ b/Documentation/kobject.txt
@@ -342,7 +342,10 @@ kset use:
When you are finished with the kset, call:
void kset_unregister(struct kset *kset);
-to destroy it.
+to destroy it. This removes the kset from sysfs and decrements its reference
+count. When the reference count goes to zero, the kset will be released.
+Because other references to the kset may still exist, the release may happen
+after kset_unregister() returns.
An example of using a kset can be seen in the
samples/kobject/kset-example.c file in the kernel tree.
diff --git a/Documentation/kprobes.txt b/Documentation/kprobes.txt
index 0cfb00fd86f..4bbeca8483e 100644
--- a/Documentation/kprobes.txt
+++ b/Documentation/kprobes.txt
@@ -22,8 +22,9 @@ Appendix B: The kprobes sysctl interface
Kprobes enables you to dynamically break into any kernel routine and
collect debugging and performance information non-disruptively. You
-can trap at almost any kernel code address, specifying a handler
+can trap at almost any kernel code address(*), specifying a handler
routine to be invoked when the breakpoint is hit.
+(*: some parts of the kernel code can not be trapped, see 1.5 Blacklist)
There are currently three types of probes: kprobes, jprobes, and
kretprobes (also called return probes). A kprobe can be inserted
@@ -273,6 +274,19 @@ using one of the following techniques:
or
- Execute 'sysctl -w debug.kprobes_optimization=n'
+1.5 Blacklist
+
+Kprobes can probe most of the kernel except itself. This means
+that there are some functions where kprobes cannot probe. Probing
+(trapping) such functions can cause a recursive trap (e.g. double
+fault) or the nested probe handler may never be called.
+Kprobes manages such functions as a blacklist.
+If you want to add a function into the blacklist, you just need
+to (1) include linux/kprobes.h and (2) use NOKPROBE_SYMBOL() macro
+to specify a blacklisted function.
+Kprobes checks the given probe address against the blacklist and
+rejects registering it, if the given address is in the blacklist.
+
2. Architectures Supported
Kprobes, jprobes, and return probes are implemented on the following
diff --git a/Documentation/laptops/00-INDEX b/Documentation/laptops/00-INDEX
index fa688538e75..d399ae1fc72 100644
--- a/Documentation/laptops/00-INDEX
+++ b/Documentation/laptops/00-INDEX
@@ -1,13 +1,15 @@
00-INDEX
- This file
-acer-wmi.txt
- - information on the Acer Laptop WMI Extras driver.
+Makefile
+ - Makefile for building dslm example program.
asus-laptop.txt
- information on the Asus Laptop Extras driver.
disk-shock-protection.txt
- information on hard disk shock protection.
dslm.c
- Simple Disk Sleep Monitor program
+freefall.c
+ - (HP/DELL) laptop accelerometer program for disk protection.
laptop-mode.txt
- how to conserve battery power using laptop-mode.
sony-laptop.txt
diff --git a/Documentation/laptops/hpfall.c b/Documentation/laptops/freefall.c
index a4a8fc5d05d..aab2ff09e86 100644
--- a/Documentation/laptops/hpfall.c
+++ b/Documentation/laptops/freefall.c
@@ -1,7 +1,9 @@
-/* Disk protection for HP machines.
+/* Disk protection for HP/DELL machines.
*
* Copyright 2008 Eric Piel
* Copyright 2009 Pavel Machek <pavel@ucw.cz>
+ * Copyright 2012 Sonal Santan
+ * Copyright 2014 Pali Rohár <pali.rohar@gmail.com>
*
* GPLv2.
*/
@@ -18,24 +20,31 @@
#include <signal.h>
#include <sys/mman.h>
#include <sched.h>
+#include <syslog.h>
-char unload_heads_path[64];
+static int noled;
+static char unload_heads_path[64];
+static char device_path[32];
+static const char app_name[] = "FREE FALL";
-int set_unload_heads_path(char *device)
+static int set_unload_heads_path(char *device)
{
char devname[64];
if (strlen(device) <= 5 || strncmp(device, "/dev/", 5) != 0)
return -EINVAL;
- strncpy(devname, device + 5, sizeof(devname));
+ strncpy(devname, device + 5, sizeof(devname) - 1);
+ strncpy(device_path, device, sizeof(device_path) - 1);
- snprintf(unload_heads_path, sizeof(unload_heads_path),
+ snprintf(unload_heads_path, sizeof(unload_heads_path) - 1,
"/sys/block/%s/device/unload_heads", devname);
return 0;
}
-int valid_disk(void)
+
+static int valid_disk(void)
{
int fd = open(unload_heads_path, O_RDONLY);
+
if (fd < 0) {
perror(unload_heads_path);
return 0;
@@ -45,43 +54,54 @@ int valid_disk(void)
return 1;
}
-void write_int(char *path, int i)
+static void write_int(char *path, int i)
{
char buf[1024];
int fd = open(path, O_RDWR);
+
if (fd < 0) {
perror("open");
exit(1);
}
+
sprintf(buf, "%d", i);
+
if (write(fd, buf, strlen(buf)) != strlen(buf)) {
perror("write");
exit(1);
}
+
close(fd);
}
-void set_led(int on)
+static void set_led(int on)
{
+ if (noled)
+ return;
write_int("/sys/class/leds/hp::hddprotect/brightness", on);
}
-void protect(int seconds)
+static void protect(int seconds)
{
+ const char *str = (seconds == 0) ? "Unparked" : "Parked";
+
write_int(unload_heads_path, seconds*1000);
+ syslog(LOG_INFO, "%s %s disk head\n", str, device_path);
}
-int on_ac(void)
+static int on_ac(void)
{
-// /sys/class/power_supply/AC0/online
+ /* /sys/class/power_supply/AC0/online */
+ return 1;
}
-int lid_open(void)
+static int lid_open(void)
{
-// /proc/acpi/button/lid/LID/state
+ /* /proc/acpi/button/lid/LID/state */
+ return 1;
}
-void ignore_me(void)
+static void ignore_me(int signum)
{
protect(0);
set_led(0);
@@ -90,6 +110,7 @@ void ignore_me(void)
int main(int argc, char **argv)
{
int fd, ret;
+ struct stat st;
struct sched_param param;
if (argc == 1)
@@ -111,7 +132,16 @@ int main(int argc, char **argv)
return EXIT_FAILURE;
}
- daemon(0, 0);
+ if (stat("/sys/class/leds/hp::hddprotect/brightness", &st))
+ noled = 1;
+
+ if (daemon(0, 0) != 0) {
+ perror("daemon");
+ return EXIT_FAILURE;
+ }
+
+ openlog(app_name, LOG_CONS | LOG_PID | LOG_NDELAY, LOG_LOCAL1);
+
param.sched_priority = sched_get_priority_max(SCHED_FIFO);
sched_setscheduler(0, SCHED_FIFO, &param);
mlockall(MCL_CURRENT|MCL_FUTURE);
@@ -141,6 +171,7 @@ int main(int argc, char **argv)
alarm(20);
}
+ closelog();
close(fd);
return EXIT_SUCCESS;
}
diff --git a/Documentation/laptops/thinkpad-acpi.txt b/Documentation/laptops/thinkpad-acpi.txt
index 86c52360ffe..fc04c14de4b 100644
--- a/Documentation/laptops/thinkpad-acpi.txt
+++ b/Documentation/laptops/thinkpad-acpi.txt
@@ -1,7 +1,7 @@
ThinkPad ACPI Extras Driver
- Version 0.24
- December 11th, 2009
+ Version 0.25
+ October 16th, 2013
Borislav Deianov <borislav@users.sf.net>
Henrique de Moraes Holschuh <hmh@hmh.eng.br>
@@ -741,6 +741,9 @@ compiled with the CONFIG_THINKPAD_ACPI_UNSAFE_LEDS option enabled.
Distributions must never enable this option. Individual users that
are aware of the consequences are welcome to enabling it.
+Audio mute and microphone mute LEDs are supported, but currently not
+visible to userspace. They are used by the snd-hda-intel audio driver.
+
procfs notes:
The available commands are:
diff --git a/Documentation/leds/00-INDEX b/Documentation/leds/00-INDEX
index 1ecd1596633..b4ef1f34e25 100644
--- a/Documentation/leds/00-INDEX
+++ b/Documentation/leds/00-INDEX
@@ -1,3 +1,7 @@
+00-INDEX
+ - This file
+leds-blinkm.txt
+ - Driver for BlinkM LED-devices.
leds-class.txt
- documents LED handling under Linux.
leds-lp3944.txt
@@ -12,3 +16,7 @@ leds-lp55xx.txt
- description about lp55xx common driver.
leds-lm3556.txt
- notes on how to use the leds-lm3556 driver.
+ledtrig-oneshot.txt
+ - One-shot LED trigger for both sporadic and dense events.
+ledtrig-transient.txt
+ - LED Transient Trigger, one shot timer activation.
diff --git a/Documentation/leds/leds-lp55xx.txt b/Documentation/leds/leds-lp55xx.txt
index 82713ff92eb..bcea12a0c58 100644
--- a/Documentation/leds/leds-lp55xx.txt
+++ b/Documentation/leds/leds-lp55xx.txt
@@ -73,6 +73,10 @@ select_engine : Select which engine is used for running program
run_engine : Start program which is loaded via the firmware interface
firmware : Load program data
+In case of LP5523, one more command is required, 'enginex_leds'.
+It is used for selecting LED output(s) at each engine number.
+In more details, please refer to 'leds-lp5523.txt'.
+
For example, run blinking pattern in engine #1 of LP5521
echo 1 > /sys/bus/i2c/devices/xxxx/select_engine
echo 1 > /sys/class/firmware/lp5521/loading
@@ -81,10 +85,12 @@ echo 0 > /sys/class/firmware/lp5521/loading
echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
For example, run blinking pattern in engine #3 of LP55231
+Two LEDs are configured as pattern output channels.
echo 3 > /sys/bus/i2c/devices/xxxx/select_engine
echo 1 > /sys/class/firmware/lp55231/loading
echo "9d0740ff7e0040007e00a0010000" > /sys/class/firmware/lp55231/data
echo 0 > /sys/class/firmware/lp55231/loading
+echo "000001100" > /sys/bus/i2c/devices/xxxx/engine3_leds
echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
To start blinking patterns in engine #2 and #3 simultaneously,
@@ -99,17 +105,19 @@ done
echo 1 > /sys/class/leds/red/device/run_engine
Here is another example for LP5523.
+Full LED strings are selected by 'engine2_leds'.
echo 2 > /sys/bus/i2c/devices/xxxx/select_engine
echo 1 > /sys/class/firmware/lp5523/loading
echo "9d80400004ff05ff437f0000" > /sys/class/firmware/lp5523/data
echo 0 > /sys/class/firmware/lp5523/loading
+echo "111111111" > /sys/bus/i2c/devices/xxxx/engine2_leds
echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
As soon as 'loading' is set to 0, registered callback is called.
Inside the callback, the selected engine is loaded and memory is updated.
To run programmed pattern, 'run_engine' attribute should be enabled.
-The pattern sqeuence of LP8501 is same as LP5523.
+The pattern sqeuence of LP8501 is similar to LP5523.
However pattern data is specific.
Ex 1) Engine 1 is used
echo 1 > /sys/bus/i2c/devices/xxxx/select_engine
diff --git a/Documentation/lockstat.txt b/Documentation/lockstat.txt
index dd2f7b26ca3..72d01068975 100644
--- a/Documentation/lockstat.txt
+++ b/Documentation/lockstat.txt
@@ -46,16 +46,14 @@ With these hooks we provide the following statistics:
contentions - number of lock acquisitions that had to wait
wait time min - shortest (non-0) time we ever had to wait for a lock
max - longest time we ever had to wait for a lock
- total - total time we spend waiting on this lock
+ total - total time we spend waiting on this lock
+ avg - average time spent waiting on this lock
acq-bounces - number of lock acquisitions that involved x-cpu data
acquisitions - number of times we took the lock
hold time min - shortest (non-0) time we ever held the lock
- max - longest time we ever held the lock
- total - total time this lock was held
-
-From these number various other statistics can be derived, such as:
-
- hold time average = hold time total / acquisitions
+ max - longest time we ever held the lock
+ total - total time this lock was held
+ avg - average time this lock was held
These numbers are gathered per lock class, per read/write state (when
applicable).
@@ -84,37 +82,38 @@ Look at the current lock statistics:
# less /proc/lock_stat
-01 lock_stat version 0.3
-02 -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
-03 class name con-bounces contentions waittime-min waittime-max waittime-total acq-bounces acquisitions holdtime-min holdtime-max holdtime-total
-04 -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
+01 lock_stat version 0.4
+02-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
+03 class name con-bounces contentions waittime-min waittime-max waittime-total waittime-avg acq-bounces acquisitions holdtime-min holdtime-max holdtime-total holdtime-avg
+04-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
05
-06 &mm->mmap_sem-W: 233 538 18446744073708 22924.27 607243.51 1342 45806 1.71 8595.89 1180582.34
-07 &mm->mmap_sem-R: 205 587 18446744073708 28403.36 731975.00 1940 412426 0.58 187825.45 6307502.88
-08 ---------------
-09 &mm->mmap_sem 487 [<ffffffff8053491f>] do_page_fault+0x466/0x928
-10 &mm->mmap_sem 179 [<ffffffff802a6200>] sys_mprotect+0xcd/0x21d
-11 &mm->mmap_sem 279 [<ffffffff80210a57>] sys_mmap+0x75/0xce
-12 &mm->mmap_sem 76 [<ffffffff802a490b>] sys_munmap+0x32/0x59
-13 ---------------
-14 &mm->mmap_sem 270 [<ffffffff80210a57>] sys_mmap+0x75/0xce
-15 &mm->mmap_sem 431 [<ffffffff8053491f>] do_page_fault+0x466/0x928
-16 &mm->mmap_sem 138 [<ffffffff802a490b>] sys_munmap+0x32/0x59
-17 &mm->mmap_sem 145 [<ffffffff802a6200>] sys_mprotect+0xcd/0x21d
+06 &mm->mmap_sem-W: 46 84 0.26 939.10 16371.53 194.90 47291 2922365 0.16 2220301.69 17464026916.32 5975.99
+07 &mm->mmap_sem-R: 37 100 1.31 299502.61 325629.52 3256.30 212344 34316685 0.10 7744.91 95016910.20 2.77
+08 ---------------
+09 &mm->mmap_sem 1 [<ffffffff811502a7>] khugepaged_scan_mm_slot+0x57/0x280
+19 &mm->mmap_sem 96 [<ffffffff815351c4>] __do_page_fault+0x1d4/0x510
+11 &mm->mmap_sem 34 [<ffffffff81113d77>] vm_mmap_pgoff+0x87/0xd0
+12 &mm->mmap_sem 17 [<ffffffff81127e71>] vm_munmap+0x41/0x80
+13 ---------------
+14 &mm->mmap_sem 1 [<ffffffff81046fda>] dup_mmap+0x2a/0x3f0
+15 &mm->mmap_sem 60 [<ffffffff81129e29>] SyS_mprotect+0xe9/0x250
+16 &mm->mmap_sem 41 [<ffffffff815351c4>] __do_page_fault+0x1d4/0x510
+17 &mm->mmap_sem 68 [<ffffffff81113d77>] vm_mmap_pgoff+0x87/0xd0
18
-19 ...............................................................................................................................................................................................
+19.............................................................................................................................................................................................................................
20
-21 dcache_lock: 621 623 0.52 118.26 1053.02 6745 91930 0.29 316.29 118423.41
-22 -----------
-23 dcache_lock 179 [<ffffffff80378274>] _atomic_dec_and_lock+0x34/0x54
-24 dcache_lock 113 [<ffffffff802cc17b>] d_alloc+0x19a/0x1eb
-25 dcache_lock 99 [<ffffffff802ca0dc>] d_rehash+0x1b/0x44
-26 dcache_lock 104 [<ffffffff802cbca0>] d_instantiate+0x36/0x8a
-27 -----------
-28 dcache_lock 192 [<ffffffff80378274>] _atomic_dec_and_lock+0x34/0x54
-29 dcache_lock 98 [<ffffffff802ca0dc>] d_rehash+0x1b/0x44
-30 dcache_lock 72 [<ffffffff802cc17b>] d_alloc+0x19a/0x1eb
-31 dcache_lock 112 [<ffffffff802cbca0>] d_instantiate+0x36/0x8a
+21 unix_table_lock: 110 112 0.21 49.24 163.91 1.46 21094 66312 0.12 624.42 31589.81 0.48
+22 ---------------
+23 unix_table_lock 45 [<ffffffff8150ad8e>] unix_create1+0x16e/0x1b0
+24 unix_table_lock 47 [<ffffffff8150b111>] unix_release_sock+0x31/0x250
+25 unix_table_lock 15 [<ffffffff8150ca37>] unix_find_other+0x117/0x230
+26 unix_table_lock 5 [<ffffffff8150a09f>] unix_autobind+0x11f/0x1b0
+27 ---------------
+28 unix_table_lock 39 [<ffffffff8150b111>] unix_release_sock+0x31/0x250
+29 unix_table_lock 49 [<ffffffff8150ad8e>] unix_create1+0x16e/0x1b0
+30 unix_table_lock 20 [<ffffffff8150ca37>] unix_find_other+0x117/0x230
+31 unix_table_lock 4 [<ffffffff8150a09f>] unix_autobind+0x11f/0x1b0
+
This excerpt shows the first two lock class statistics. Line 01 shows the
output version - each time the format changes this will be updated. Line 02-04
@@ -131,30 +130,30 @@ The integer part of the time values is in us.
Dealing with nested locks, subclasses may appear:
-32...............................................................................................................................................................................................
+32...........................................................................................................................................................................................................................
33
-34 &rq->lock: 13128 13128 0.43 190.53 103881.26 97454 3453404 0.00 401.11 13224683.11
+34 &rq->lock: 13128 13128 0.43 190.53 103881.26 7.91 97454 3453404 0.00 401.11 13224683.11 3.82
35 ---------
-36 &rq->lock 645 [<ffffffff8103bfc4>] task_rq_lock+0x43/0x75
-37 &rq->lock 297 [<ffffffff8104ba65>] try_to_wake_up+0x127/0x25a
-38 &rq->lock 360 [<ffffffff8103c4c5>] select_task_rq_fair+0x1f0/0x74a
-39 &rq->lock 428 [<ffffffff81045f98>] scheduler_tick+0x46/0x1fb
+36 &rq->lock 645 [<ffffffff8103bfc4>] task_rq_lock+0x43/0x75
+37 &rq->lock 297 [<ffffffff8104ba65>] try_to_wake_up+0x127/0x25a
+38 &rq->lock 360 [<ffffffff8103c4c5>] select_task_rq_fair+0x1f0/0x74a
+39 &rq->lock 428 [<ffffffff81045f98>] scheduler_tick+0x46/0x1fb
40 ---------
-41 &rq->lock 77 [<ffffffff8103bfc4>] task_rq_lock+0x43/0x75
-42 &rq->lock 174 [<ffffffff8104ba65>] try_to_wake_up+0x127/0x25a
-43 &rq->lock 4715 [<ffffffff8103ed4b>] double_rq_lock+0x42/0x54
-44 &rq->lock 893 [<ffffffff81340524>] schedule+0x157/0x7b8
+41 &rq->lock 77 [<ffffffff8103bfc4>] task_rq_lock+0x43/0x75
+42 &rq->lock 174 [<ffffffff8104ba65>] try_to_wake_up+0x127/0x25a
+43 &rq->lock 4715 [<ffffffff8103ed4b>] double_rq_lock+0x42/0x54
+44 &rq->lock 893 [<ffffffff81340524>] schedule+0x157/0x7b8
45
-46...............................................................................................................................................................................................
+46...........................................................................................................................................................................................................................
47
-48 &rq->lock/1: 11526 11488 0.33 388.73 136294.31 21461 38404 0.00 37.93 109388.53
+48 &rq->lock/1: 1526 11488 0.33 388.73 136294.31 11.86 21461 38404 0.00 37.93 109388.53 2.84
49 -----------
-50 &rq->lock/1 11526 [<ffffffff8103ed58>] double_rq_lock+0x4f/0x54
+50 &rq->lock/1 11526 [<ffffffff8103ed58>] double_rq_lock+0x4f/0x54
51 -----------
-52 &rq->lock/1 5645 [<ffffffff8103ed4b>] double_rq_lock+0x42/0x54
-53 &rq->lock/1 1224 [<ffffffff81340524>] schedule+0x157/0x7b8
-54 &rq->lock/1 4336 [<ffffffff8103ed58>] double_rq_lock+0x4f/0x54
-55 &rq->lock/1 181 [<ffffffff8104ba65>] try_to_wake_up+0x127/0x25a
+52 &rq->lock/1 5645 [<ffffffff8103ed4b>] double_rq_lock+0x42/0x54
+53 &rq->lock/1 1224 [<ffffffff81340524>] schedule+0x157/0x7b8
+54 &rq->lock/1 4336 [<ffffffff8103ed58>] double_rq_lock+0x4f/0x54
+55 &rq->lock/1 181 [<ffffffff8104ba65>] try_to_wake_up+0x127/0x25a
Line 48 shows statistics for the second subclass (/1) of &rq->lock class
(subclass starts from 0), since in this case, as line 50 suggests,
@@ -163,16 +162,16 @@ double_rq_lock actually acquires a nested lock of two spinlocks.
View the top contending locks:
# grep : /proc/lock_stat | head
- &inode->i_data.tree_lock-W: 15 21657 0.18 1093295.30 11547131054.85 58 10415 0.16 87.51 6387.60
- &inode->i_data.tree_lock-R: 0 0 0.00 0.00 0.00 23302 231198 0.25 8.45 98023.38
- dcache_lock: 1037 1161 0.38 45.32 774.51 6611 243371 0.15 306.48 77387.24
- &inode->i_mutex: 161 286 18446744073709 62882.54 1244614.55 3653 20598 18446744073709 62318.60 1693822.74
- &zone->lru_lock: 94 94 0.53 7.33 92.10 4366 32690 0.29 59.81 16350.06
- &inode->i_data.i_mmap_mutex: 79 79 0.40 3.77 53.03 11779 87755 0.28 116.93 29898.44
- &q->__queue_lock: 48 50 0.52 31.62 86.31 774 13131 0.17 113.08 12277.52
- &rq->rq_lock_key: 43 47 0.74 68.50 170.63 3706 33929 0.22 107.99 17460.62
- &rq->rq_lock_key#2: 39 46 0.75 6.68 49.03 2979 32292 0.17 125.17 17137.63
- tasklist_lock-W: 15 15 1.45 10.87 32.70 1201 7390 0.58 62.55 13648.47
+ clockevents_lock: 2926159 2947636 0.15 46882.81 1784540466.34 605.41 3381345 3879161 0.00 2260.97 53178395.68 13.71
+ tick_broadcast_lock: 346460 346717 0.18 2257.43 39364622.71 113.54 3642919 4242696 0.00 2263.79 49173646.60 11.59
+ &mapping->i_mmap_mutex: 203896 203899 3.36 645530.05 31767507988.39 155800.21 3361776 8893984 0.17 2254.15 14110121.02 1.59
+ &rq->lock: 135014 136909 0.18 606.09 842160.68 6.15 1540728 10436146 0.00 728.72 17606683.41 1.69
+ &(&zone->lru_lock)->rlock: 93000 94934 0.16 59.18 188253.78 1.98 1199912 3809894 0.15 391.40 3559518.81 0.93
+ tasklist_lock-W: 40667 41130 0.23 1189.42 428980.51 10.43 270278 510106 0.16 653.51 3939674.91 7.72
+ tasklist_lock-R: 21298 21305 0.20 1310.05 215511.12 10.12 186204 241258 0.14 1162.33 1179779.23 4.89
+ rcu_node_1: 47656 49022 0.16 635.41 193616.41 3.95 844888 1865423 0.00 764.26 1656226.96 0.89
+ &(&dentry->d_lockref.lock)->rlock: 39791 40179 0.15 1302.08 88851.96 2.21 2790851 12527025 0.10 1910.75 3379714.27 0.27
+ rcu_node_0: 29203 30064 0.16 786.55 1555573.00 51.74 88963 244254 0.00 398.87 428872.51 1.76
Clear the statistics:
diff --git a/Documentation/m68k/00-INDEX b/Documentation/m68k/00-INDEX
index a014e9f0076..2be8c6b00e7 100644
--- a/Documentation/m68k/00-INDEX
+++ b/Documentation/m68k/00-INDEX
@@ -1,5 +1,7 @@
00-INDEX
- this file
+README.buddha
+ - Amiga Buddha and Catweasel IDE Driver
kernel-options.txt
- command line options for Linux/m68k
diff --git a/Documentation/magic-number.txt b/Documentation/magic-number.txt
index 76d80a64bbe..4c8e142db2e 100644
--- a/Documentation/magic-number.txt
+++ b/Documentation/magic-number.txt
@@ -63,8 +63,6 @@ Magic Name Number Structure File
PG_MAGIC 'P' pg_{read,write}_hdr include/linux/pg.h
CMAGIC 0x0111 user include/linux/a.out.h
MKISS_DRIVER_MAGIC 0x04bf mkiss_channel drivers/net/mkiss.h
-RISCOM8_MAGIC 0x0907 riscom_port drivers/char/riscom8.h
-SPECIALIX_MAGIC 0x0907 specialix_port drivers/char/specialix_io8.h
HDLC_MAGIC 0x239e n_hdlc drivers/char/n_hdlc.c
APM_BIOS_MAGIC 0x4101 apm_user arch/x86/kernel/apm_32.c
CYCLADES_MAGIC 0x4359 cyclades_port include/linux/cyclades.h
@@ -82,7 +80,6 @@ STRIP_MAGIC 0x5303 strip drivers/net/strip.c
X25_ASY_MAGIC 0x5303 x25_asy drivers/net/x25_asy.h
SIXPACK_MAGIC 0x5304 sixpack drivers/net/hamradio/6pack.h
AX25_MAGIC 0x5316 ax_disp drivers/net/mkiss.h
-ESP_MAGIC 0x53ee esp_struct drivers/char/esp.h
TTY_MAGIC 0x5401 tty_struct include/linux/tty.h
MGSL_MAGIC 0x5401 mgsl_info drivers/char/synclink.c
TTY_DRIVER_MAGIC 0x5402 tty_driver include/linux/tty_driver.h
@@ -94,13 +91,10 @@ USB_BLUETOOTH_MAGIC 0x6d02 usb_bluetooth drivers/usb/class/bluetty.c
RFCOMM_TTY_MAGIC 0x6d02 net/bluetooth/rfcomm/tty.c
USB_SERIAL_PORT_MAGIC 0x7301 usb_serial_port drivers/usb/serial/usb-serial.h
CG_MAGIC 0x00090255 ufs_cylinder_group include/linux/ufs_fs.h
-A2232_MAGIC 0x000a2232 gs_port drivers/char/ser_a2232.h
RPORT_MAGIC 0x00525001 r_port drivers/char/rocket_int.h
LSEMAGIC 0x05091998 lse drivers/fc4/fc.c
GDTIOCTL_MAGIC 0x06030f07 gdth_iowr_str drivers/scsi/gdth_ioctl.h
RIEBL_MAGIC 0x09051990 drivers/net/atarilance.c
-RIO_MAGIC 0x12345678 gs_port drivers/char/rio/rio_linux.c
-SX_MAGIC 0x12345678 gs_port drivers/char/sx.h
NBD_REQUEST_MAGIC 0x12560953 nbd_request include/linux/nbd.h
RED_MAGIC2 0x170fc2a5 (any) mm/slab.c
BAYCOM_MAGIC 0x19730510 baycom_state drivers/net/baycom_epp.c
@@ -116,7 +110,6 @@ ISDN_ASYNC_MAGIC 0x49344C01 modem_info include/linux/isdn.h
CTC_ASYNC_MAGIC 0x49344C01 ctc_tty_info drivers/s390/net/ctctty.c
ISDN_NET_MAGIC 0x49344C02 isdn_net_local_s drivers/isdn/i4l/isdn_net_lib.h
SAVEKMSG_MAGIC2 0x4B4D5347 savekmsg arch/*/amiga/config.c
-STLI_BOARDMAGIC 0x4bc6c825 stlibrd include/linux/istallion.h
CS_STATE_MAGIC 0x4c4f4749 cs_state sound/oss/cs46xx.c
SLAB_C_MAGIC 0x4f17a36d kmem_cache mm/slab.c
COW_MAGIC 0x4f4f4f4d cow_header_v1 arch/um/drivers/ubd_user.c
@@ -127,10 +120,8 @@ SCC_MAGIC 0x52696368 gs_port drivers/char/scc.h
SAVEKMSG_MAGIC1 0x53415645 savekmsg arch/*/amiga/config.c
GDA_MAGIC 0x58464552 gda arch/mips/include/asm/sn/gda.h
RED_MAGIC1 0x5a2cf071 (any) mm/slab.c
-STL_PORTMAGIC 0x5a7182c9 stlport include/linux/stallion.h
EEPROM_MAGIC_VALUE 0x5ab478d2 lanai_dev drivers/atm/lanai.c
HDLCDRV_MAGIC 0x5ac6e778 hdlcdrv_state include/linux/hdlcdrv.h
-EPCA_MAGIC 0x5c6df104 channel include/linux/epca.h
PCXX_MAGIC 0x5c6df104 channel drivers/char/pcxx.h
KV_MAGIC 0x5f4b565f kernel_vars_s arch/mips/include/asm/sn/klkernvars.h
I810_STATE_MAGIC 0x63657373 i810_state sound/oss/i810_audio.c
@@ -142,17 +133,14 @@ SLOT_MAGIC 0x67267322 slot drivers/hotplug/acpiphp.h
LO_MAGIC 0x68797548 nbd_device include/linux/nbd.h
OPROFILE_MAGIC 0x6f70726f super_block drivers/oprofile/oprofilefs.h
M3_STATE_MAGIC 0x734d724d m3_state sound/oss/maestro3.c
-STL_PANELMAGIC 0x7ef621a1 stlpanel include/linux/stallion.h
VMALLOC_MAGIC 0x87654320 snd_alloc_track sound/core/memory.c
KMALLOC_MAGIC 0x87654321 snd_alloc_track sound/core/memory.c
PWC_MAGIC 0x89DC10AB pwc_device drivers/usb/media/pwc.h
NBD_REPLY_MAGIC 0x96744668 nbd_reply include/linux/nbd.h
-STL_BOARDMAGIC 0xa2267f52 stlbrd include/linux/stallion.h
ENI155_MAGIC 0xa54b872d midway_eprom drivers/atm/eni.h
SCI_MAGIC 0xbabeface gs_port drivers/char/sh-sci.h
CODA_MAGIC 0xC0DAC0DA coda_file_info fs/coda/coda_fs_i.h
DPMEM_MAGIC 0xc0ffee11 gdt_pci_sram drivers/scsi/gdth.h
-STLI_PORTMAGIC 0xe671c7a1 stliport include/linux/istallion.h
YAM_MAGIC 0xF10A7654 yam_port drivers/net/hamradio/yam.c
CCB_MAGIC 0xf2691ad2 ccb drivers/scsi/ncr53c8xx.c
QUEUE_MAGIC_FREE 0xf7e1c9a3 queue_entry drivers/scsi/arm/queue.c
diff --git a/Documentation/md.txt b/Documentation/md.txt
index fbb2fcbf16b..f925666e434 100644
--- a/Documentation/md.txt
+++ b/Documentation/md.txt
@@ -533,7 +533,7 @@ also have
found. The count in 'mismatch_cnt' is the number of sectors
that were re-written, or (for 'check') would have been
re-written. As most raid levels work in units of pages rather
- than sectors, this my be larger than the number of actual errors
+ than sectors, this may be larger than the number of actual errors
by a factor of the number of sectors in a page.
bitmap_set_bits
diff --git a/Documentation/memory-barriers.txt b/Documentation/memory-barriers.txt
index c8c42e64e95..f1dc4a21559 100644
--- a/Documentation/memory-barriers.txt
+++ b/Documentation/memory-barriers.txt
@@ -115,8 +115,8 @@ For example, consider the following sequence of events:
CPU 1 CPU 2
=============== ===============
{ A == 1; B == 2 }
- A = 3; x = A;
- B = 4; y = B;
+ A = 3; x = B;
+ B = 4; y = A;
The set of accesses as seen by the memory system in the middle can be arranged
in 24 different combinations:
@@ -194,18 +194,22 @@ There are some minimal guarantees that may be expected of a CPU:
(*) On any given CPU, dependent memory accesses will be issued in order, with
respect to itself. This means that for:
- Q = P; D = *Q;
+ ACCESS_ONCE(Q) = P; smp_read_barrier_depends(); D = ACCESS_ONCE(*Q);
the CPU will issue the following memory operations:
Q = LOAD P, D = LOAD *Q
- and always in that order.
+ and always in that order. On most systems, smp_read_barrier_depends()
+ does nothing, but it is required for DEC Alpha. The ACCESS_ONCE()
+ is required to prevent compiler mischief. Please note that you
+ should normally use something like rcu_dereference() instead of
+ open-coding smp_read_barrier_depends().
(*) Overlapping loads and stores within a particular CPU will appear to be
ordered within that CPU. This means that for:
- a = *X; *X = b;
+ a = ACCESS_ONCE(*X); ACCESS_ONCE(*X) = b;
the CPU will only issue the following sequence of memory operations:
@@ -213,7 +217,7 @@ There are some minimal guarantees that may be expected of a CPU:
And for:
- *X = c; d = *X;
+ ACCESS_ONCE(*X) = c; d = ACCESS_ONCE(*X);
the CPU will only issue:
@@ -224,6 +228,12 @@ There are some minimal guarantees that may be expected of a CPU:
And there are a number of things that _must_ or _must_not_ be assumed:
+ (*) It _must_not_ be assumed that the compiler will do what you want with
+ memory references that are not protected by ACCESS_ONCE(). Without
+ ACCESS_ONCE(), the compiler is within its rights to do all sorts
+ of "creative" transformations, which are covered in the Compiler
+ Barrier section.
+
(*) It _must_not_ be assumed that independent loads and stores will be issued
in the order given. This means that for:
@@ -371,33 +381,44 @@ Memory barriers come in four basic varieties:
And a couple of implicit varieties:
- (5) LOCK operations.
+ (5) ACQUIRE operations.
This acts as a one-way permeable barrier. It guarantees that all memory
- operations after the LOCK operation will appear to happen after the LOCK
- operation with respect to the other components of the system.
+ operations after the ACQUIRE operation will appear to happen after the
+ ACQUIRE operation with respect to the other components of the system.
+ ACQUIRE operations include LOCK operations and smp_load_acquire()
+ operations.
- Memory operations that occur before a LOCK operation may appear to happen
- after it completes.
+ Memory operations that occur before an ACQUIRE operation may appear to
+ happen after it completes.
- A LOCK operation should almost always be paired with an UNLOCK operation.
+ An ACQUIRE operation should almost always be paired with a RELEASE
+ operation.
- (6) UNLOCK operations.
+ (6) RELEASE operations.
This also acts as a one-way permeable barrier. It guarantees that all
- memory operations before the UNLOCK operation will appear to happen before
- the UNLOCK operation with respect to the other components of the system.
+ memory operations before the RELEASE operation will appear to happen
+ before the RELEASE operation with respect to the other components of the
+ system. RELEASE operations include UNLOCK operations and
+ smp_store_release() operations.
- Memory operations that occur after an UNLOCK operation may appear to
+ Memory operations that occur after a RELEASE operation may appear to
happen before it completes.
- LOCK and UNLOCK operations are guaranteed to appear with respect to each
- other strictly in the order specified.
+ The use of ACQUIRE and RELEASE operations generally precludes the need
+ for other sorts of memory barrier (but note the exceptions mentioned in
+ the subsection "MMIO write barrier"). In addition, a RELEASE+ACQUIRE
+ pair is -not- guaranteed to act as a full memory barrier. However, after
+ an ACQUIRE on a given variable, all memory accesses preceding any prior
+ RELEASE on that same variable are guaranteed to be visible. In other
+ words, within a given variable's critical section, all accesses of all
+ previous critical sections for that variable are guaranteed to have
+ completed.
- The use of LOCK and UNLOCK operations generally precludes the need for
- other sorts of memory barrier (but note the exceptions mentioned in the
- subsection "MMIO write barrier").
+ This means that ACQUIRE acts as a minimal "acquire" operation and
+ RELEASE acts as a minimal "release" operation.
Memory barriers are only required where there's a possibility of interaction
@@ -450,14 +471,14 @@ The usage requirements of data dependency barriers are a little subtle, and
it's not always obvious that they're needed. To illustrate, consider the
following sequence of events:
- CPU 1 CPU 2
- =============== ===============
+ CPU 1 CPU 2
+ =============== ===============
{ A == 1, B == 2, C = 3, P == &A, Q == &C }
B = 4;
<write barrier>
- P = &B
- Q = P;
- D = *Q;
+ ACCESS_ONCE(P) = &B
+ Q = ACCESS_ONCE(P);
+ D = *Q;
There's a clear data dependency here, and it would seem that by the end of the
sequence, Q must be either &A or &B, and that:
@@ -477,15 +498,15 @@ Alpha).
To deal with this, a data dependency barrier or better must be inserted
between the address load and the data load:
- CPU 1 CPU 2
- =============== ===============
+ CPU 1 CPU 2
+ =============== ===============
{ A == 1, B == 2, C = 3, P == &A, Q == &C }
B = 4;
<write barrier>
- P = &B
- Q = P;
- <data dependency barrier>
- D = *Q;
+ ACCESS_ONCE(P) = &B
+ Q = ACCESS_ONCE(P);
+ <data dependency barrier>
+ D = *Q;
This enforces the occurrence of one of the two implications, and prevents the
third possibility from arising.
@@ -500,25 +521,26 @@ odd-numbered bank is idle, one can see the new value of the pointer P (&B),
but the old value of the variable B (2).
-Another example of where data dependency barriers might by required is where a
+Another example of where data dependency barriers might be required is where a
number is read from memory and then used to calculate the index for an array
access:
- CPU 1 CPU 2
- =============== ===============
+ CPU 1 CPU 2
+ =============== ===============
{ M[0] == 1, M[1] == 2, M[3] = 3, P == 0, Q == 3 }
M[1] = 4;
<write barrier>
- P = 1
- Q = P;
- <data dependency barrier>
- D = M[Q];
+ ACCESS_ONCE(P) = 1
+ Q = ACCESS_ONCE(P);
+ <data dependency barrier>
+ D = M[Q];
-The data dependency barrier is very important to the RCU system, for example.
-See rcu_dereference() in include/linux/rcupdate.h. This permits the current
-target of an RCU'd pointer to be replaced with a new modified target, without
-the replacement target appearing to be incompletely initialised.
+The data dependency barrier is very important to the RCU system,
+for example. See rcu_assign_pointer() and rcu_dereference() in
+include/linux/rcupdate.h. This permits the current target of an RCU'd
+pointer to be replaced with a new modified target, without the replacement
+target appearing to be incompletely initialised.
See also the subsection on "Cache Coherency" for a more thorough example.
@@ -530,24 +552,203 @@ A control dependency requires a full read memory barrier, not simply a data
dependency barrier to make it work correctly. Consider the following bit of
code:
- q = &a;
- if (p) {
- <data dependency barrier>
- q = &b;
+ q = ACCESS_ONCE(a);
+ if (q) {
+ <data dependency barrier> /* BUG: No data dependency!!! */
+ p = ACCESS_ONCE(b);
}
- x = *q;
This will not have the desired effect because there is no actual data
-dependency, but rather a control dependency that the CPU may short-circuit by
-attempting to predict the outcome in advance. In such a case what's actually
-required is:
+dependency, but rather a control dependency that the CPU may short-circuit
+by attempting to predict the outcome in advance, so that other CPUs see
+the load from b as having happened before the load from a. In such a
+case what's actually required is:
- q = &a;
- if (p) {
+ q = ACCESS_ONCE(a);
+ if (q) {
<read barrier>
- q = &b;
+ p = ACCESS_ONCE(b);
+ }
+
+However, stores are not speculated. This means that ordering -is- provided
+in the following example:
+
+ q = ACCESS_ONCE(a);
+ if (ACCESS_ONCE(q)) {
+ ACCESS_ONCE(b) = p;
}
- x = *q;
+
+Please note that ACCESS_ONCE() is not optional! Without the ACCESS_ONCE(),
+the compiler is within its rights to transform this example:
+
+ q = a;
+ if (q) {
+ b = p; /* BUG: Compiler can reorder!!! */
+ do_something();
+ } else {
+ b = p; /* BUG: Compiler can reorder!!! */
+ do_something_else();
+ }
+
+into this, which of course defeats the ordering:
+
+ b = p;
+ q = a;
+ if (q)
+ do_something();
+ else
+ do_something_else();
+
+Worse yet, if the compiler is able to prove (say) that the value of
+variable 'a' is always non-zero, it would be well within its rights
+to optimize the original example by eliminating the "if" statement
+as follows:
+
+ q = a;
+ b = p; /* BUG: Compiler can reorder!!! */
+ do_something();
+
+The solution is again ACCESS_ONCE() and barrier(), which preserves the
+ordering between the load from variable 'a' and the store to variable 'b':
+
+ q = ACCESS_ONCE(a);
+ if (q) {
+ barrier();
+ ACCESS_ONCE(b) = p;
+ do_something();
+ } else {
+ barrier();
+ ACCESS_ONCE(b) = p;
+ do_something_else();
+ }
+
+The initial ACCESS_ONCE() is required to prevent the compiler from
+proving the value of 'a', and the pair of barrier() invocations are
+required to prevent the compiler from pulling the two identical stores
+to 'b' out from the legs of the "if" statement.
+
+It is important to note that control dependencies absolutely require a
+a conditional. For example, the following "optimized" version of
+the above example breaks ordering, which is why the barrier() invocations
+are absolutely required if you have identical stores in both legs of
+the "if" statement:
+
+ q = ACCESS_ONCE(a);
+ ACCESS_ONCE(b) = p; /* BUG: No ordering vs. load from a!!! */
+ if (q) {
+ /* ACCESS_ONCE(b) = p; -- moved up, BUG!!! */
+ do_something();
+ } else {
+ /* ACCESS_ONCE(b) = p; -- moved up, BUG!!! */
+ do_something_else();
+ }
+
+It is of course legal for the prior load to be part of the conditional,
+for example, as follows:
+
+ if (ACCESS_ONCE(a) > 0) {
+ barrier();
+ ACCESS_ONCE(b) = q / 2;
+ do_something();
+ } else {
+ barrier();
+ ACCESS_ONCE(b) = q / 3;
+ do_something_else();
+ }
+
+This will again ensure that the load from variable 'a' is ordered before the
+stores to variable 'b'.
+
+In addition, you need to be careful what you do with the local variable 'q',
+otherwise the compiler might be able to guess the value and again remove
+the needed conditional. For example:
+
+ q = ACCESS_ONCE(a);
+ if (q % MAX) {
+ barrier();
+ ACCESS_ONCE(b) = p;
+ do_something();
+ } else {
+ barrier();
+ ACCESS_ONCE(b) = p;
+ do_something_else();
+ }
+
+If MAX is defined to be 1, then the compiler knows that (q % MAX) is
+equal to zero, in which case the compiler is within its rights to
+transform the above code into the following:
+
+ q = ACCESS_ONCE(a);
+ ACCESS_ONCE(b) = p;
+ do_something_else();
+
+This transformation loses the ordering between the load from variable 'a'
+and the store to variable 'b'. If you are relying on this ordering, you
+should do something like the following:
+
+ q = ACCESS_ONCE(a);
+ BUILD_BUG_ON(MAX <= 1); /* Order load from a with store to b. */
+ if (q % MAX) {
+ ACCESS_ONCE(b) = p;
+ do_something();
+ } else {
+ ACCESS_ONCE(b) = p;
+ do_something_else();
+ }
+
+Finally, control dependencies do -not- provide transitivity. This is
+demonstrated by two related examples:
+
+ CPU 0 CPU 1
+ ===================== =====================
+ r1 = ACCESS_ONCE(x); r2 = ACCESS_ONCE(y);
+ if (r1 >= 0) if (r2 >= 0)
+ ACCESS_ONCE(y) = 1; ACCESS_ONCE(x) = 1;
+
+ assert(!(r1 == 1 && r2 == 1));
+
+The above two-CPU example will never trigger the assert(). However,
+if control dependencies guaranteed transitivity (which they do not),
+then adding the following two CPUs would guarantee a related assertion:
+
+ CPU 2 CPU 3
+ ===================== =====================
+ ACCESS_ONCE(x) = 2; ACCESS_ONCE(y) = 2;
+
+ assert(!(r1 == 2 && r2 == 2 && x == 1 && y == 1)); /* FAILS!!! */
+
+But because control dependencies do -not- provide transitivity, the
+above assertion can fail after the combined four-CPU example completes.
+If you need the four-CPU example to provide ordering, you will need
+smp_mb() between the loads and stores in the CPU 0 and CPU 1 code fragments.
+
+In summary:
+
+ (*) Control dependencies can order prior loads against later stores.
+ However, they do -not- guarantee any other sort of ordering:
+ Not prior loads against later loads, nor prior stores against
+ later anything. If you need these other forms of ordering,
+ use smb_rmb(), smp_wmb(), or, in the case of prior stores and
+ later loads, smp_mb().
+
+ (*) If both legs of the "if" statement begin with identical stores
+ to the same variable, a barrier() statement is required at the
+ beginning of each leg of the "if" statement.
+
+ (*) Control dependencies require at least one run-time conditional
+ between the prior load and the subsequent store, and this
+ conditional must involve the prior load. If the compiler
+ is able to optimize the conditional away, it will have also
+ optimized away the ordering. Careful use of ACCESS_ONCE() can
+ help to preserve the needed conditional.
+
+ (*) Control dependencies require that the compiler avoid reordering the
+ dependency into nonexistence. Careful use of ACCESS_ONCE() or
+ barrier() can help to preserve your control dependency. Please
+ see the Compiler Barrier section for more information.
+
+ (*) Control dependencies do -not- provide transitivity. If you
+ need transitivity, use smp_mb().
SMP BARRIER PAIRING
@@ -561,23 +762,23 @@ barrier, though a general barrier would also be viable. Similarly a read
barrier or a data dependency barrier should always be paired with at least an
write barrier, though, again, a general barrier is viable:
- CPU 1 CPU 2
- =============== ===============
- a = 1;
+ CPU 1 CPU 2
+ =============== ===============
+ ACCESS_ONCE(a) = 1;
<write barrier>
- b = 2; x = b;
- <read barrier>
- y = a;
+ ACCESS_ONCE(b) = 2; x = ACCESS_ONCE(b);
+ <read barrier>
+ y = ACCESS_ONCE(a);
Or:
- CPU 1 CPU 2
- =============== ===============================
+ CPU 1 CPU 2
+ =============== ===============================
a = 1;
<write barrier>
- b = &a; x = b;
- <data dependency barrier>
- y = *x;
+ ACCESS_ONCE(b) = &a; x = ACCESS_ONCE(b);
+ <data dependency barrier>
+ y = *x;
Basically, the read barrier always has to be there, even though it can be of
the "weaker" type.
@@ -586,13 +787,13 @@ the "weaker" type.
match the loads after the read barrier or the data dependency barrier, and vice
versa:
- CPU 1 CPU 2
- =============== ===============
- a = 1; }---- --->{ v = c
- b = 2; } \ / { w = d
- <write barrier> \ <read barrier>
- c = 3; } / \ { x = a;
- d = 4; }---- --->{ y = b;
+ CPU 1 CPU 2
+ =================== ===================
+ ACCESS_ONCE(a) = 1; }---- --->{ v = ACCESS_ONCE(c);
+ ACCESS_ONCE(b) = 2; } \ / { w = ACCESS_ONCE(d);
+ <write barrier> \ <read barrier>
+ ACCESS_ONCE(c) = 3; } / \ { x = ACCESS_ONCE(a);
+ ACCESS_ONCE(d) = 4; }---- --->{ y = ACCESS_ONCE(b);
EXAMPLES OF MEMORY BARRIER SEQUENCES
@@ -882,12 +1083,12 @@ cache it for later use.
Consider:
- CPU 1 CPU 2
+ CPU 1 CPU 2
======================= =======================
- LOAD B
- DIVIDE } Divide instructions generally
- DIVIDE } take a long time to perform
- LOAD A
+ LOAD B
+ DIVIDE } Divide instructions generally
+ DIVIDE } take a long time to perform
+ LOAD A
Which might appear as this:
@@ -910,13 +1111,13 @@ Which might appear as this:
Placing a read barrier or a data dependency barrier just before the second
load:
- CPU 1 CPU 2
+ CPU 1 CPU 2
======================= =======================
- LOAD B
- DIVIDE
- DIVIDE
+ LOAD B
+ DIVIDE
+ DIVIDE
<read barrier>
- LOAD A
+ LOAD A
will force any value speculatively obtained to be reconsidered to an extent
dependent on the type of barrier used. If there was no change made to the
@@ -1042,10 +1243,294 @@ compiler from moving the memory accesses either side of it to the other side:
barrier();
-This is a general barrier - lesser varieties of compiler barrier do not exist.
+This is a general barrier -- there are no read-read or write-write variants
+of barrier(). However, ACCESS_ONCE() can be thought of as a weak form
+for barrier() that affects only the specific accesses flagged by the
+ACCESS_ONCE().
+
+The barrier() function has the following effects:
+
+ (*) Prevents the compiler from reordering accesses following the
+ barrier() to precede any accesses preceding the barrier().
+ One example use for this property is to ease communication between
+ interrupt-handler code and the code that was interrupted.
+
+ (*) Within a loop, forces the compiler to load the variables used
+ in that loop's conditional on each pass through that loop.
+
+The ACCESS_ONCE() function can prevent any number of optimizations that,
+while perfectly safe in single-threaded code, can be fatal in concurrent
+code. Here are some examples of these sorts of optimizations:
+
+ (*) The compiler is within its rights to reorder loads and stores
+ to the same variable, and in some cases, the CPU is within its
+ rights to reorder loads to the same variable. This means that
+ the following code:
+
+ a[0] = x;
+ a[1] = x;
+
+ Might result in an older value of x stored in a[1] than in a[0].
+ Prevent both the compiler and the CPU from doing this as follows:
+
+ a[0] = ACCESS_ONCE(x);
+ a[1] = ACCESS_ONCE(x);
+
+ In short, ACCESS_ONCE() provides cache coherence for accesses from
+ multiple CPUs to a single variable.
+
+ (*) The compiler is within its rights to merge successive loads from
+ the same variable. Such merging can cause the compiler to "optimize"
+ the following code:
+
+ while (tmp = a)
+ do_something_with(tmp);
+
+ into the following code, which, although in some sense legitimate
+ for single-threaded code, is almost certainly not what the developer
+ intended:
+
+ if (tmp = a)
+ for (;;)
+ do_something_with(tmp);
+
+ Use ACCESS_ONCE() to prevent the compiler from doing this to you:
+
+ while (tmp = ACCESS_ONCE(a))
+ do_something_with(tmp);
+
+ (*) The compiler is within its rights to reload a variable, for example,
+ in cases where high register pressure prevents the compiler from
+ keeping all data of interest in registers. The compiler might
+ therefore optimize the variable 'tmp' out of our previous example:
+
+ while (tmp = a)
+ do_something_with(tmp);
+
+ This could result in the following code, which is perfectly safe in
+ single-threaded code, but can be fatal in concurrent code:
+
+ while (a)
+ do_something_with(a);
+
+ For example, the optimized version of this code could result in
+ passing a zero to do_something_with() in the case where the variable
+ a was modified by some other CPU between the "while" statement and
+ the call to do_something_with().
+
+ Again, use ACCESS_ONCE() to prevent the compiler from doing this:
+
+ while (tmp = ACCESS_ONCE(a))
+ do_something_with(tmp);
+
+ Note that if the compiler runs short of registers, it might save
+ tmp onto the stack. The overhead of this saving and later restoring
+ is why compilers reload variables. Doing so is perfectly safe for
+ single-threaded code, so you need to tell the compiler about cases
+ where it is not safe.
+
+ (*) The compiler is within its rights to omit a load entirely if it knows
+ what the value will be. For example, if the compiler can prove that
+ the value of variable 'a' is always zero, it can optimize this code:
+
+ while (tmp = a)
+ do_something_with(tmp);
+
+ Into this:
+
+ do { } while (0);
+
+ This transformation is a win for single-threaded code because it gets
+ rid of a load and a branch. The problem is that the compiler will
+ carry out its proof assuming that the current CPU is the only one
+ updating variable 'a'. If variable 'a' is shared, then the compiler's
+ proof will be erroneous. Use ACCESS_ONCE() to tell the compiler
+ that it doesn't know as much as it thinks it does:
+
+ while (tmp = ACCESS_ONCE(a))
+ do_something_with(tmp);
+
+ But please note that the compiler is also closely watching what you
+ do with the value after the ACCESS_ONCE(). For example, suppose you
+ do the following and MAX is a preprocessor macro with the value 1:
+
+ while ((tmp = ACCESS_ONCE(a)) % MAX)
+ do_something_with(tmp);
-The compiler barrier has no direct effect on the CPU, which may then reorder
-things however it wishes.
+ Then the compiler knows that the result of the "%" operator applied
+ to MAX will always be zero, again allowing the compiler to optimize
+ the code into near-nonexistence. (It will still load from the
+ variable 'a'.)
+
+ (*) Similarly, the compiler is within its rights to omit a store entirely
+ if it knows that the variable already has the value being stored.
+ Again, the compiler assumes that the current CPU is the only one
+ storing into the variable, which can cause the compiler to do the
+ wrong thing for shared variables. For example, suppose you have
+ the following:
+
+ a = 0;
+ /* Code that does not store to variable a. */
+ a = 0;
+
+ The compiler sees that the value of variable 'a' is already zero, so
+ it might well omit the second store. This would come as a fatal
+ surprise if some other CPU might have stored to variable 'a' in the
+ meantime.
+
+ Use ACCESS_ONCE() to prevent the compiler from making this sort of
+ wrong guess:
+
+ ACCESS_ONCE(a) = 0;
+ /* Code that does not store to variable a. */
+ ACCESS_ONCE(a) = 0;
+
+ (*) The compiler is within its rights to reorder memory accesses unless
+ you tell it not to. For example, consider the following interaction
+ between process-level code and an interrupt handler:
+
+ void process_level(void)
+ {
+ msg = get_message();
+ flag = true;
+ }
+
+ void interrupt_handler(void)
+ {
+ if (flag)
+ process_message(msg);
+ }
+
+ There is nothing to prevent the compiler from transforming
+ process_level() to the following, in fact, this might well be a
+ win for single-threaded code:
+
+ void process_level(void)
+ {
+ flag = true;
+ msg = get_message();
+ }
+
+ If the interrupt occurs between these two statement, then
+ interrupt_handler() might be passed a garbled msg. Use ACCESS_ONCE()
+ to prevent this as follows:
+
+ void process_level(void)
+ {
+ ACCESS_ONCE(msg) = get_message();
+ ACCESS_ONCE(flag) = true;
+ }
+
+ void interrupt_handler(void)
+ {
+ if (ACCESS_ONCE(flag))
+ process_message(ACCESS_ONCE(msg));
+ }
+
+ Note that the ACCESS_ONCE() wrappers in interrupt_handler()
+ are needed if this interrupt handler can itself be interrupted
+ by something that also accesses 'flag' and 'msg', for example,
+ a nested interrupt or an NMI. Otherwise, ACCESS_ONCE() is not
+ needed in interrupt_handler() other than for documentation purposes.
+ (Note also that nested interrupts do not typically occur in modern
+ Linux kernels, in fact, if an interrupt handler returns with
+ interrupts enabled, you will get a WARN_ONCE() splat.)
+
+ You should assume that the compiler can move ACCESS_ONCE() past
+ code not containing ACCESS_ONCE(), barrier(), or similar primitives.
+
+ This effect could also be achieved using barrier(), but ACCESS_ONCE()
+ is more selective: With ACCESS_ONCE(), the compiler need only forget
+ the contents of the indicated memory locations, while with barrier()
+ the compiler must discard the value of all memory locations that
+ it has currented cached in any machine registers. Of course,
+ the compiler must also respect the order in which the ACCESS_ONCE()s
+ occur, though the CPU of course need not do so.
+
+ (*) The compiler is within its rights to invent stores to a variable,
+ as in the following example:
+
+ if (a)
+ b = a;
+ else
+ b = 42;
+
+ The compiler might save a branch by optimizing this as follows:
+
+ b = 42;
+ if (a)
+ b = a;
+
+ In single-threaded code, this is not only safe, but also saves
+ a branch. Unfortunately, in concurrent code, this optimization
+ could cause some other CPU to see a spurious value of 42 -- even
+ if variable 'a' was never zero -- when loading variable 'b'.
+ Use ACCESS_ONCE() to prevent this as follows:
+
+ if (a)
+ ACCESS_ONCE(b) = a;
+ else
+ ACCESS_ONCE(b) = 42;
+
+ The compiler can also invent loads. These are usually less
+ damaging, but they can result in cache-line bouncing and thus in
+ poor performance and scalability. Use ACCESS_ONCE() to prevent
+ invented loads.
+
+ (*) For aligned memory locations whose size allows them to be accessed
+ with a single memory-reference instruction, prevents "load tearing"
+ and "store tearing," in which a single large access is replaced by
+ multiple smaller accesses. For example, given an architecture having
+ 16-bit store instructions with 7-bit immediate fields, the compiler
+ might be tempted to use two 16-bit store-immediate instructions to
+ implement the following 32-bit store:
+
+ p = 0x00010002;
+
+ Please note that GCC really does use this sort of optimization,
+ which is not surprising given that it would likely take more
+ than two instructions to build the constant and then store it.
+ This optimization can therefore be a win in single-threaded code.
+ In fact, a recent bug (since fixed) caused GCC to incorrectly use
+ this optimization in a volatile store. In the absence of such bugs,
+ use of ACCESS_ONCE() prevents store tearing in the following example:
+
+ ACCESS_ONCE(p) = 0x00010002;
+
+ Use of packed structures can also result in load and store tearing,
+ as in this example:
+
+ struct __attribute__((__packed__)) foo {
+ short a;
+ int b;
+ short c;
+ };
+ struct foo foo1, foo2;
+ ...
+
+ foo2.a = foo1.a;
+ foo2.b = foo1.b;
+ foo2.c = foo1.c;
+
+ Because there are no ACCESS_ONCE() wrappers and no volatile markings,
+ the compiler would be well within its rights to implement these three
+ assignment statements as a pair of 32-bit loads followed by a pair
+ of 32-bit stores. This would result in load tearing on 'foo1.b'
+ and store tearing on 'foo2.b'. ACCESS_ONCE() again prevents tearing
+ in this example:
+
+ foo2.a = foo1.a;
+ ACCESS_ONCE(foo2.b) = ACCESS_ONCE(foo1.b);
+ foo2.c = foo1.c;
+
+All that aside, it is never necessary to use ACCESS_ONCE() on a variable
+that has been marked volatile. For example, because 'jiffies' is marked
+volatile, it is never necessary to say ACCESS_ONCE(jiffies). The reason
+for this is that ACCESS_ONCE() is implemented as a volatile cast, which
+has no effect when its argument is already marked volatile.
+
+Please note that these compiler barriers have no direct effect on the CPU,
+which may then reorder things however it wishes.
CPU MEMORY BARRIERS
@@ -1098,20 +1583,21 @@ There are some more advanced barrier functions:
insert anything more than a compiler barrier in a UP compilation.
- (*) smp_mb__before_atomic_dec();
- (*) smp_mb__after_atomic_dec();
- (*) smp_mb__before_atomic_inc();
- (*) smp_mb__after_atomic_inc();
+ (*) smp_mb__before_atomic();
+ (*) smp_mb__after_atomic();
+
+ These are for use with atomic (such as add, subtract, increment and
+ decrement) functions that don't return a value, especially when used for
+ reference counting. These functions do not imply memory barriers.
- These are for use with atomic add, subtract, increment and decrement
- functions that don't return a value, especially when used for reference
- counting. These functions do not imply memory barriers.
+ These are also used for atomic bitop functions that do not return a
+ value (such as set_bit and clear_bit).
As an example, consider a piece of code that marks an object as being dead
and then decrements the object's reference count:
obj->dead = 1;
- smp_mb__before_atomic_dec();
+ smp_mb__before_atomic();
atomic_dec(&obj->ref_count);
This makes sure that the death mark on the object is perceived to be set
@@ -1121,27 +1607,6 @@ There are some more advanced barrier functions:
operations" subsection for information on where to use these.
- (*) smp_mb__before_clear_bit(void);
- (*) smp_mb__after_clear_bit(void);
-
- These are for use similar to the atomic inc/dec barriers. These are
- typically used for bitwise unlocking operations, so care must be taken as
- there are no implicit memory barriers here either.
-
- Consider implementing an unlock operation of some nature by clearing a
- locking bit. The clear_bit() would then need to be barriered like this:
-
- smp_mb__before_clear_bit();
- clear_bit( ... );
-
- This prevents memory operations before the clear leaking to after it. See
- the subsection on "Locking Functions" with reference to UNLOCK operation
- implications.
-
- See Documentation/atomic_ops.txt for more information. See the "Atomic
- operations" subsection for information on where to use these.
-
-
MMIO WRITE BARRIER
------------------
@@ -1169,8 +1634,8 @@ provide more substantial guarantees, but these may not be relied upon outside
of arch specific code.
-LOCKING FUNCTIONS
------------------
+ACQUIRING FUNCTIONS
+-------------------
The Linux kernel has a number of locking constructs:
@@ -1181,65 +1646,138 @@ The Linux kernel has a number of locking constructs:
(*) R/W semaphores
(*) RCU
-In all cases there are variants on "LOCK" operations and "UNLOCK" operations
+In all cases there are variants on "ACQUIRE" operations and "RELEASE" operations
for each construct. These operations all imply certain barriers:
- (1) LOCK operation implication:
+ (1) ACQUIRE operation implication:
- Memory operations issued after the LOCK will be completed after the LOCK
- operation has completed.
+ Memory operations issued after the ACQUIRE will be completed after the
+ ACQUIRE operation has completed.
- Memory operations issued before the LOCK may be completed after the LOCK
- operation has completed.
+ Memory operations issued before the ACQUIRE may be completed after
+ the ACQUIRE operation has completed. An smp_mb__before_spinlock(),
+ combined with a following ACQUIRE, orders prior loads against
+ subsequent loads and stores and also orders prior stores against
+ subsequent stores. Note that this is weaker than smp_mb()! The
+ smp_mb__before_spinlock() primitive is free on many architectures.
- (2) UNLOCK operation implication:
+ (2) RELEASE operation implication:
- Memory operations issued before the UNLOCK will be completed before the
- UNLOCK operation has completed.
+ Memory operations issued before the RELEASE will be completed before the
+ RELEASE operation has completed.
- Memory operations issued after the UNLOCK may be completed before the
- UNLOCK operation has completed.
+ Memory operations issued after the RELEASE may be completed before the
+ RELEASE operation has completed.
- (3) LOCK vs LOCK implication:
+ (3) ACQUIRE vs ACQUIRE implication:
- All LOCK operations issued before another LOCK operation will be completed
- before that LOCK operation.
+ All ACQUIRE operations issued before another ACQUIRE operation will be
+ completed before that ACQUIRE operation.
- (4) LOCK vs UNLOCK implication:
+ (4) ACQUIRE vs RELEASE implication:
- All LOCK operations issued before an UNLOCK operation will be completed
- before the UNLOCK operation.
+ All ACQUIRE operations issued before a RELEASE operation will be
+ completed before the RELEASE operation.
- All UNLOCK operations issued before a LOCK operation will be completed
- before the LOCK operation.
+ (5) Failed conditional ACQUIRE implication:
- (5) Failed conditional LOCK implication:
-
- Certain variants of the LOCK operation may fail, either due to being
- unable to get the lock immediately, or due to receiving an unblocked
+ Certain locking variants of the ACQUIRE operation may fail, either due to
+ being unable to get the lock immediately, or due to receiving an unblocked
signal whilst asleep waiting for the lock to become available. Failed
locks do not imply any sort of barrier.
-Therefore, from (1), (2) and (4) an UNLOCK followed by an unconditional LOCK is
-equivalent to a full barrier, but a LOCK followed by an UNLOCK is not.
-
-[!] Note: one of the consequences of LOCKs and UNLOCKs being only one-way
- barriers is that the effects of instructions outside of a critical section
- may seep into the inside of the critical section.
+[!] Note: one of the consequences of lock ACQUIREs and RELEASEs being only
+one-way barriers is that the effects of instructions outside of a critical
+section may seep into the inside of the critical section.
-A LOCK followed by an UNLOCK may not be assumed to be full memory barrier
-because it is possible for an access preceding the LOCK to happen after the
-LOCK, and an access following the UNLOCK to happen before the UNLOCK, and the
-two accesses can themselves then cross:
+An ACQUIRE followed by a RELEASE may not be assumed to be full memory barrier
+because it is possible for an access preceding the ACQUIRE to happen after the
+ACQUIRE, and an access following the RELEASE to happen before the RELEASE, and
+the two accesses can themselves then cross:
*A = a;
- LOCK
- UNLOCK
+ ACQUIRE M
+ RELEASE M
*B = b;
may occur as:
- LOCK, STORE *B, STORE *A, UNLOCK
+ ACQUIRE M, STORE *B, STORE *A, RELEASE M
+
+When the ACQUIRE and RELEASE are a lock acquisition and release,
+respectively, this same reordering can occur if the lock's ACQUIRE and
+RELEASE are to the same lock variable, but only from the perspective of
+another CPU not holding that lock. In short, a ACQUIRE followed by an
+RELEASE may -not- be assumed to be a full memory barrier.
+
+Similarly, the reverse case of a RELEASE followed by an ACQUIRE does not
+imply a full memory barrier. If it is necessary for a RELEASE-ACQUIRE
+pair to produce a full barrier, the ACQUIRE can be followed by an
+smp_mb__after_unlock_lock() invocation. This will produce a full barrier
+if either (a) the RELEASE and the ACQUIRE are executed by the same
+CPU or task, or (b) the RELEASE and ACQUIRE act on the same variable.
+The smp_mb__after_unlock_lock() primitive is free on many architectures.
+Without smp_mb__after_unlock_lock(), the CPU's execution of the critical
+sections corresponding to the RELEASE and the ACQUIRE can cross, so that:
+
+ *A = a;
+ RELEASE M
+ ACQUIRE N
+ *B = b;
+
+could occur as:
+
+ ACQUIRE N, STORE *B, STORE *A, RELEASE M
+
+It might appear that this reordering could introduce a deadlock.
+However, this cannot happen because if such a deadlock threatened,
+the RELEASE would simply complete, thereby avoiding the deadlock.
+
+ Why does this work?
+
+ One key point is that we are only talking about the CPU doing
+ the reordering, not the compiler. If the compiler (or, for
+ that matter, the developer) switched the operations, deadlock
+ -could- occur.
+
+ But suppose the CPU reordered the operations. In this case,
+ the unlock precedes the lock in the assembly code. The CPU
+ simply elected to try executing the later lock operation first.
+ If there is a deadlock, this lock operation will simply spin (or
+ try to sleep, but more on that later). The CPU will eventually
+ execute the unlock operation (which preceded the lock operation
+ in the assembly code), which will unravel the potential deadlock,
+ allowing the lock operation to succeed.
+
+ But what if the lock is a sleeplock? In that case, the code will
+ try to enter the scheduler, where it will eventually encounter
+ a memory barrier, which will force the earlier unlock operation
+ to complete, again unraveling the deadlock. There might be
+ a sleep-unlock race, but the locking primitive needs to resolve
+ such races properly in any case.
+
+With smp_mb__after_unlock_lock(), the two critical sections cannot overlap.
+For example, with the following code, the store to *A will always be
+seen by other CPUs before the store to *B:
+
+ *A = a;
+ RELEASE M
+ ACQUIRE N
+ smp_mb__after_unlock_lock();
+ *B = b;
+
+The operations will always occur in one of the following orders:
+
+ STORE *A, RELEASE, ACQUIRE, smp_mb__after_unlock_lock(), STORE *B
+ STORE *A, ACQUIRE, RELEASE, smp_mb__after_unlock_lock(), STORE *B
+ ACQUIRE, STORE *A, RELEASE, smp_mb__after_unlock_lock(), STORE *B
+
+If the RELEASE and ACQUIRE were instead both operating on the same lock
+variable, only the first of these alternatives can occur. In addition,
+the more strongly ordered systems may rule out some of the above orders.
+But in any case, as noted earlier, the smp_mb__after_unlock_lock()
+ensures that the store to *A will always be seen as happening before
+the store to *B.
Locks and semaphores may not provide any guarantee of ordering on UP compiled
systems, and so cannot be counted on in such a situation to actually achieve
@@ -1253,33 +1791,33 @@ As an example, consider the following:
*A = a;
*B = b;
- LOCK
+ ACQUIRE
*C = c;
*D = d;
- UNLOCK
+ RELEASE
*E = e;
*F = f;
The following sequence of events is acceptable:
- LOCK, {*F,*A}, *E, {*C,*D}, *B, UNLOCK
+ ACQUIRE, {*F,*A}, *E, {*C,*D}, *B, RELEASE
[+] Note that {*F,*A} indicates a combined access.
But none of the following are:
- {*F,*A}, *B, LOCK, *C, *D, UNLOCK, *E
- *A, *B, *C, LOCK, *D, UNLOCK, *E, *F
- *A, *B, LOCK, *C, UNLOCK, *D, *E, *F
- *B, LOCK, *C, *D, UNLOCK, {*F,*A}, *E
+ {*F,*A}, *B, ACQUIRE, *C, *D, RELEASE, *E
+ *A, *B, *C, ACQUIRE, *D, RELEASE, *E, *F
+ *A, *B, ACQUIRE, *C, RELEASE, *D, *E, *F
+ *B, ACQUIRE, *C, *D, RELEASE, {*F,*A}, *E
INTERRUPT DISABLING FUNCTIONS
-----------------------------
-Functions that disable interrupts (LOCK equivalent) and enable interrupts
-(UNLOCK equivalent) will act as compiler barriers only. So if memory or I/O
+Functions that disable interrupts (ACQUIRE equivalent) and enable interrupts
+(RELEASE equivalent) will act as compiler barriers only. So if memory or I/O
barriers are required in such a situation, they must be provided from some
other means.
@@ -1418,75 +1956,81 @@ Other functions that imply barriers:
(*) schedule() and similar imply full memory barriers.
-=================================
-INTER-CPU LOCKING BARRIER EFFECTS
-=================================
+===================================
+INTER-CPU ACQUIRING BARRIER EFFECTS
+===================================
On SMP systems locking primitives give a more substantial form of barrier: one
that does affect memory access ordering on other CPUs, within the context of
conflict on any particular lock.
-LOCKS VS MEMORY ACCESSES
-------------------------
+ACQUIRES VS MEMORY ACCESSES
+---------------------------
Consider the following: the system has a pair of spinlocks (M) and (Q), and
three CPUs; then should the following sequence of events occur:
CPU 1 CPU 2
=============================== ===============================
- *A = a; *E = e;
- LOCK M LOCK Q
- *B = b; *F = f;
- *C = c; *G = g;
- UNLOCK M UNLOCK Q
- *D = d; *H = h;
+ ACCESS_ONCE(*A) = a; ACCESS_ONCE(*E) = e;
+ ACQUIRE M ACQUIRE Q
+ ACCESS_ONCE(*B) = b; ACCESS_ONCE(*F) = f;
+ ACCESS_ONCE(*C) = c; ACCESS_ONCE(*G) = g;
+ RELEASE M RELEASE Q
+ ACCESS_ONCE(*D) = d; ACCESS_ONCE(*H) = h;
Then there is no guarantee as to what order CPU 3 will see the accesses to *A
through *H occur in, other than the constraints imposed by the separate locks
on the separate CPUs. It might, for example, see:
- *E, LOCK M, LOCK Q, *G, *C, *F, *A, *B, UNLOCK Q, *D, *H, UNLOCK M
+ *E, ACQUIRE M, ACQUIRE Q, *G, *C, *F, *A, *B, RELEASE Q, *D, *H, RELEASE M
But it won't see any of:
- *B, *C or *D preceding LOCK M
- *A, *B or *C following UNLOCK M
- *F, *G or *H preceding LOCK Q
- *E, *F or *G following UNLOCK Q
+ *B, *C or *D preceding ACQUIRE M
+ *A, *B or *C following RELEASE M
+ *F, *G or *H preceding ACQUIRE Q
+ *E, *F or *G following RELEASE Q
However, if the following occurs:
CPU 1 CPU 2
=============================== ===============================
- *A = a;
- LOCK M [1]
- *B = b;
- *C = c;
- UNLOCK M [1]
- *D = d; *E = e;
- LOCK M [2]
- *F = f;
- *G = g;
- UNLOCK M [2]
- *H = h;
+ ACCESS_ONCE(*A) = a;
+ ACQUIRE M [1]
+ ACCESS_ONCE(*B) = b;
+ ACCESS_ONCE(*C) = c;
+ RELEASE M [1]
+ ACCESS_ONCE(*D) = d; ACCESS_ONCE(*E) = e;
+ ACQUIRE M [2]
+ smp_mb__after_unlock_lock();
+ ACCESS_ONCE(*F) = f;
+ ACCESS_ONCE(*G) = g;
+ RELEASE M [2]
+ ACCESS_ONCE(*H) = h;
CPU 3 might see:
- *E, LOCK M [1], *C, *B, *A, UNLOCK M [1],
- LOCK M [2], *H, *F, *G, UNLOCK M [2], *D
+ *E, ACQUIRE M [1], *C, *B, *A, RELEASE M [1],
+ ACQUIRE M [2], *H, *F, *G, RELEASE M [2], *D
But assuming CPU 1 gets the lock first, CPU 3 won't see any of:
- *B, *C, *D, *F, *G or *H preceding LOCK M [1]
- *A, *B or *C following UNLOCK M [1]
- *F, *G or *H preceding LOCK M [2]
- *A, *B, *C, *E, *F or *G following UNLOCK M [2]
+ *B, *C, *D, *F, *G or *H preceding ACQUIRE M [1]
+ *A, *B or *C following RELEASE M [1]
+ *F, *G or *H preceding ACQUIRE M [2]
+ *A, *B, *C, *E, *F or *G following RELEASE M [2]
+Note that the smp_mb__after_unlock_lock() is critically important
+here: Without it CPU 3 might see some of the above orderings.
+Without smp_mb__after_unlock_lock(), the accesses are not guaranteed
+to be seen in order unless CPU 3 holds lock M.
-LOCKS VS I/O ACCESSES
----------------------
+
+ACQUIRES VS I/O ACCESSES
+------------------------
Under certain circumstances (especially involving NUMA), I/O accesses within
two spinlocked sections on two different CPUs may be seen as interleaved by the
@@ -1687,28 +2231,30 @@ explicit lock operations, described later). These include:
xchg();
cmpxchg();
- atomic_xchg();
- atomic_cmpxchg();
- atomic_inc_return();
- atomic_dec_return();
- atomic_add_return();
- atomic_sub_return();
- atomic_inc_and_test();
- atomic_dec_and_test();
- atomic_sub_and_test();
- atomic_add_negative();
- atomic_add_unless(); /* when succeeds (returns 1) */
+ atomic_xchg(); atomic_long_xchg();
+ atomic_cmpxchg(); atomic_long_cmpxchg();
+ atomic_inc_return(); atomic_long_inc_return();
+ atomic_dec_return(); atomic_long_dec_return();
+ atomic_add_return(); atomic_long_add_return();
+ atomic_sub_return(); atomic_long_sub_return();
+ atomic_inc_and_test(); atomic_long_inc_and_test();
+ atomic_dec_and_test(); atomic_long_dec_and_test();
+ atomic_sub_and_test(); atomic_long_sub_and_test();
+ atomic_add_negative(); atomic_long_add_negative();
test_and_set_bit();
test_and_clear_bit();
test_and_change_bit();
-These are used for such things as implementing LOCK-class and UNLOCK-class
+ /* when succeeds (returns 1) */
+ atomic_add_unless(); atomic_long_add_unless();
+
+These are used for such things as implementing ACQUIRE-class and RELEASE-class
operations and adjusting reference counters towards object destruction, and as
such the implicit memory barrier effects are necessary.
The following operations are potential problems as they do _not_ imply memory
-barriers, but might be used for implementing such things as UNLOCK-class
+barriers, but might be used for implementing such things as RELEASE-class
operations:
atomic_set();
@@ -1717,11 +2263,11 @@ operations:
change_bit();
With these the appropriate explicit memory barrier should be used if necessary
-(smp_mb__before_clear_bit() for instance).
+(smp_mb__before_atomic() for instance).
The following also do _not_ imply memory barriers, and so may require explicit
-memory barriers under some circumstances (smp_mb__before_atomic_dec() for
+memory barriers under some circumstances (smp_mb__before_atomic() for
instance):
atomic_add();
@@ -1750,7 +2296,7 @@ The following operations are special locking primitives:
clear_bit_unlock();
__clear_bit_unlock();
-These implement LOCK-class and UNLOCK-class operations. These should be used in
+These implement ACQUIRE-class and RELEASE-class operations. These should be used in
preference to other operations when implementing locking primitives, because
their implementations can be optimised on many architectures.
@@ -1887,8 +2433,8 @@ functions:
space should suffice for PCI.
[*] NOTE! attempting to load from the same location as was written to may
- cause a malfunction - consider the 16550 Rx/Tx serial registers for
- example.
+ cause a malfunction - consider the 16550 Rx/Tx serial registers for
+ example.
Used with prefetchable I/O memory, an mmiowb() barrier may be required to
force stores to be ordered.
@@ -1955,19 +2501,19 @@ barriers for the most part act at the interface between the CPU and its cache
:
+--------+ +--------+ : +--------+ +-----------+
| | | | : | | | | +--------+
- | CPU | | Memory | : | CPU | | | | |
- | Core |--->| Access |----->| Cache |<-->| | | |
+ | CPU | | Memory | : | CPU | | | | |
+ | Core |--->| Access |----->| Cache |<-->| | | |
| | | Queue | : | | | |--->| Memory |
- | | | | : | | | | | |
- +--------+ +--------+ : +--------+ | | | |
+ | | | | : | | | | | |
+ +--------+ +--------+ : +--------+ | | | |
: | Cache | +--------+
: | Coherency |
: | Mechanism | +--------+
+--------+ +--------+ : +--------+ | | | |
| | | | : | | | | | |
| CPU | | Memory | : | CPU | | |--->| Device |
- | Core |--->| Access |----->| Cache |<-->| | | |
- | | | Queue | : | | | | | |
+ | Core |--->| Access |----->| Cache |<-->| | | |
+ | | | Queue | : | | | | | |
| | | | : | | | | +--------+
+--------+ +--------+ : +--------+ +-----------+
:
@@ -2090,7 +2636,7 @@ CPU's caches by some other cache event:
p = &v; q = p;
<D:request p>
<B:modify p=&v> <D:commit p=&v>
- <D:read p>
+ <D:read p>
x = *q;
<C:read *q> Reads from v before v updated in cache
<C:unbusy>
@@ -2115,7 +2661,7 @@ queue before processing any further requests:
p = &v; q = p;
<D:request p>
<B:modify p=&v> <D:commit p=&v>
- <D:read p>
+ <D:read p>
smp_read_barrier_depends()
<C:unbusy>
<C:commit v=2>
@@ -2177,11 +2723,11 @@ A programmer might take it for granted that the CPU will perform memory
operations in exactly the order specified, so that if the CPU is, for example,
given the following piece of code to execute:
- a = *A;
- *B = b;
- c = *C;
- d = *D;
- *E = e;
+ a = ACCESS_ONCE(*A);
+ ACCESS_ONCE(*B) = b;
+ c = ACCESS_ONCE(*C);
+ d = ACCESS_ONCE(*D);
+ ACCESS_ONCE(*E) = e;
they would then expect that the CPU will complete the memory operation for each
instruction before moving on to the next one, leading to a definite sequence of
@@ -2228,12 +2774,12 @@ However, it is guaranteed that a CPU will be self-consistent: it will see its
_own_ accesses appear to be correctly ordered, without the need for a memory
barrier. For instance with the following code:
- U = *A;
- *A = V;
- *A = W;
- X = *A;
- *A = Y;
- Z = *A;
+ U = ACCESS_ONCE(*A);
+ ACCESS_ONCE(*A) = V;
+ ACCESS_ONCE(*A) = W;
+ X = ACCESS_ONCE(*A);
+ ACCESS_ONCE(*A) = Y;
+ Z = ACCESS_ONCE(*A);
and assuming no intervention by an external influence, it can be assumed that
the final result will appear to be:
@@ -2250,7 +2796,12 @@ accesses:
in that order, but, without intervention, the sequence may have almost any
combination of elements combined or discarded, provided the program's view of
-the world remains consistent.
+the world remains consistent. Note that ACCESS_ONCE() is -not- optional
+in the above example, as there are architectures where a given CPU might
+reorder successive loads to the same location. On such architectures,
+ACCESS_ONCE() does whatever is necessary to prevent this, for example, on
+Itanium the volatile casts used by ACCESS_ONCE() cause GCC to emit the
+special ld.acq and st.rel instructions that prevent such reordering.
The compiler may also combine, discard or defer elements of the sequence before
the CPU even sees them.
@@ -2264,13 +2815,13 @@ may be reduced to:
*A = W;
-since, without a write barrier, it can be assumed that the effect of the
-storage of V to *A is lost. Similarly:
+since, without either a write barrier or an ACCESS_ONCE(), it can be
+assumed that the effect of the storage of V to *A is lost. Similarly:
*A = Y;
Z = *A;
-may, without a memory barrier, be reduced to:
+may, without a memory barrier or an ACCESS_ONCE(), be reduced to:
*A = Y;
Z = Y;
diff --git a/Documentation/memory-hotplug.txt b/Documentation/memory-hotplug.txt
index 58340d50f8a..45134dc2385 100644
--- a/Documentation/memory-hotplug.txt
+++ b/Documentation/memory-hotplug.txt
@@ -88,16 +88,21 @@ phase by hand.
1.3. Unit of Memory online/offline operation
------------
-Memory hotplug uses SPARSEMEM memory model. SPARSEMEM divides the whole memory
-into chunks of the same size. The chunk is called a "section". The size of
-a section is architecture dependent. For example, power uses 16MiB, ia64 uses
-1GiB. The unit of online/offline operation is "one section". (see Section 3.)
+Memory hotplug uses SPARSEMEM memory model which allows memory to be divided
+into chunks of the same size. These chunks are called "sections". The size of
+a memory section is architecture dependent. For example, power uses 16MiB, ia64
+uses 1GiB.
-To determine the size of sections, please read this file:
+Memory sections are combined into chunks referred to as "memory blocks". The
+size of a memory block is architecture dependent and represents the logical
+unit upon which memory online/offline operations are to be performed. The
+default size of a memory block is the same as memory section size unless an
+architecture specifies otherwise. (see Section 3.)
+
+To determine the size (in bytes) of a memory block please read this file:
/sys/devices/system/memory/block_size_bytes
-This file shows the size of sections in byte.
-----------------------
2. Kernel Configuration
@@ -123,42 +128,35 @@ config options.
(CONFIG_ACPI_CONTAINER).
This option can be kernel module too.
+
--------------------------------
-4 sysfs files for memory hotplug
+3 sysfs files for memory hotplug
--------------------------------
-All sections have their device information in sysfs. Each section is part of
-a memory block under /sys/devices/system/memory as
+All memory blocks have their device information in sysfs. Each memory block
+is described under /sys/devices/system/memory as
/sys/devices/system/memory/memoryXXX
-(XXX is the section id.)
+(XXX is the memory block id.)
-Now, XXX is defined as (start_address_of_section / section_size) of the first
-section contained in the memory block. The files 'phys_index' and
-'end_phys_index' under each directory report the beginning and end section id's
-for the memory block covered by the sysfs directory. It is expected that all
+For the memory block covered by the sysfs directory. It is expected that all
memory sections in this range are present and no memory holes exist in the
range. Currently there is no way to determine if there is a memory hole, but
the existence of one should not affect the hotplug capabilities of the memory
block.
-For example, assume 1GiB section size. A device for a memory starting at
+For example, assume 1GiB memory block size. A device for a memory starting at
0x100000000 is /sys/device/system/memory/memory4
(0x100000000 / 1Gib = 4)
This device covers address range [0x100000000 ... 0x140000000)
-Under each section, you can see 4 or 5 files, the end_phys_index file being
-a recent addition and not present on older kernels.
+Under each memory block, you can see 4 files:
-/sys/devices/system/memory/memoryXXX/start_phys_index
-/sys/devices/system/memory/memoryXXX/end_phys_index
+/sys/devices/system/memory/memoryXXX/phys_index
/sys/devices/system/memory/memoryXXX/phys_device
/sys/devices/system/memory/memoryXXX/state
/sys/devices/system/memory/memoryXXX/removable
-'phys_index' : read-only and contains section id of the first section
- in the memory block, same as XXX.
-'end_phys_index' : read-only and contains section id of the last section
- in the memory block.
+'phys_index' : read-only and contains memory block id, same as XXX.
'state' : read-write
at read: contains online/offline state of memory.
at write: user can specify "online_kernel",
@@ -185,6 +183,7 @@ For example:
A backlink will also be created:
/sys/devices/system/memory/memory9/node0 -> ../../node/node0
+
--------------------------------
4. Physical memory hot-add phase
--------------------------------
@@ -210,15 +209,12 @@ If memory device is found, memory hotplug code will be called.
4.2 Notify memory hot-add event by hand
------------
-On powerpc, the firmware does not notify a memory hotplug event to the kernel.
-Therefore, "probe" interface is supported to notify the event to the kernel.
-This interface depends on CONFIG_ARCH_MEMORY_PROBE.
-
-CONFIG_ARCH_MEMORY_PROBE is supported on powerpc only. On x86, this config
-option is disabled by default since ACPI notifies a memory hotplug event to
-the kernel, which performs its hotplug operation as the result. Please
-enable this option if you need the "probe" interface for testing purposes
-on x86.
+On some architectures, the firmware may not notify the kernel of a memory
+hotplug event. Therefore, the memory "probe" interface is supported to
+explicitly notify the kernel. This interface depends on
+CONFIG_ARCH_MEMORY_PROBE and can be configured on powerpc, sh, and x86
+if hotplug is supported, although for x86 this should be handled by ACPI
+notification.
Probe interface is located at
/sys/devices/system/memory/probe
@@ -227,11 +223,10 @@ You can tell the physical address of new memory to the kernel by
% echo start_address_of_new_memory > /sys/devices/system/memory/probe
-Then, [start_address_of_new_memory, start_address_of_new_memory + section_size)
-memory range is hot-added. In this case, hotplug script is not called (in
-current implementation). You'll have to online memory by yourself.
-Please see "How to online memory" in this text.
-
+Then, [start_address_of_new_memory, start_address_of_new_memory +
+memory_block_size] memory range is hot-added. In this case, hotplug script is
+not called (in current implementation). You'll have to online memory by
+yourself. Please see "How to online memory" in this text.
------------------------------
@@ -240,36 +235,36 @@ Please see "How to online memory" in this text.
5.1. State of memory
------------
-To see (online/offline) state of memory section, read 'state' file.
+To see (online/offline) state of a memory block, read 'state' file.
% cat /sys/device/system/memory/memoryXXX/state
-If the memory section is online, you'll read "online".
-If the memory section is offline, you'll read "offline".
+If the memory block is online, you'll read "online".
+If the memory block is offline, you'll read "offline".
5.2. How to online memory
------------
Even if the memory is hot-added, it is not at ready-to-use state.
-For using newly added memory, you have to "online" the memory section.
+For using newly added memory, you have to "online" the memory block.
-For onlining, you have to write "online" to the section's state file as:
+For onlining, you have to write "online" to the memory block's state file as:
% echo online > /sys/devices/system/memory/memoryXXX/state
-This onlining will not change the ZONE type of the target memory section,
-If the memory section is in ZONE_NORMAL, you can change it to ZONE_MOVABLE:
+This onlining will not change the ZONE type of the target memory block,
+If the memory block is in ZONE_NORMAL, you can change it to ZONE_MOVABLE:
% echo online_movable > /sys/devices/system/memory/memoryXXX/state
-(NOTE: current limit: this memory section must be adjacent to ZONE_MOVABLE)
+(NOTE: current limit: this memory block must be adjacent to ZONE_MOVABLE)
-And if the memory section is in ZONE_MOVABLE, you can change it to ZONE_NORMAL:
+And if the memory block is in ZONE_MOVABLE, you can change it to ZONE_NORMAL:
% echo online_kernel > /sys/devices/system/memory/memoryXXX/state
-(NOTE: current limit: this memory section must be adjacent to ZONE_NORMAL)
+(NOTE: current limit: this memory block must be adjacent to ZONE_NORMAL)
-After this, section memoryXXX's state will be 'online' and the amount of
+After this, memory block XXX's state will be 'online' and the amount of
available memory will be increased.
Currently, newly added memory is added as ZONE_NORMAL (for powerpc, ZONE_DMA).
@@ -284,22 +279,22 @@ This may be changed in future.
6.1 Memory offline and ZONE_MOVABLE
------------
Memory offlining is more complicated than memory online. Because memory offline
-has to make the whole memory section be unused, memory offline can fail if
-the section includes memory which cannot be freed.
+has to make the whole memory block be unused, memory offline can fail if
+the memory block includes memory which cannot be freed.
In general, memory offline can use 2 techniques.
-(1) reclaim and free all memory in the section.
-(2) migrate all pages in the section.
+(1) reclaim and free all memory in the memory block.
+(2) migrate all pages in the memory block.
In the current implementation, Linux's memory offline uses method (2), freeing
-all pages in the section by page migration. But not all pages are
+all pages in the memory block by page migration. But not all pages are
migratable. Under current Linux, migratable pages are anonymous pages and
-page caches. For offlining a section by migration, the kernel has to guarantee
-that the section contains only migratable pages.
+page caches. For offlining a memory block by migration, the kernel has to
+guarantee that the memory block contains only migratable pages.
-Now, a boot option for making a section which consists of migratable pages is
-supported. By specifying "kernelcore=" or "movablecore=" boot option, you can
+Now, a boot option for making a memory block which consists of migratable pages
+is supported. By specifying "kernelcore=" or "movablecore=" boot option, you can
create ZONE_MOVABLE...a zone which is just used for movable pages.
(See also Documentation/kernel-parameters.txt)
@@ -315,28 +310,27 @@ creates ZONE_MOVABLE as following.
Size of memory for movable pages (for offline) is ZZZZ.
-Note) Unfortunately, there is no information to show which section belongs
+Note: Unfortunately, there is no information to show which memory block belongs
to ZONE_MOVABLE. This is TBD.
6.2. How to offline memory
------------
-You can offline a section by using the same sysfs interface that was used in
-memory onlining.
+You can offline a memory block by using the same sysfs interface that was used
+in memory onlining.
% echo offline > /sys/devices/system/memory/memoryXXX/state
-If offline succeeds, the state of the memory section is changed to be "offline".
+If offline succeeds, the state of the memory block is changed to be "offline".
If it fails, some error core (like -EBUSY) will be returned by the kernel.
-Even if a section does not belong to ZONE_MOVABLE, you can try to offline it.
-If it doesn't contain 'unmovable' memory, you'll get success.
+Even if a memory block does not belong to ZONE_MOVABLE, you can try to offline
+it. If it doesn't contain 'unmovable' memory, you'll get success.
-A section under ZONE_MOVABLE is considered to be able to be offlined easily.
-But under some busy state, it may return -EBUSY. Even if a memory section
-cannot be offlined due to -EBUSY, you can retry offlining it and may be able to
-offline it (or not).
-(For example, a page is referred to by some kernel internal call and released
- soon.)
+A memory block under ZONE_MOVABLE is considered to be able to be offlined
+easily. But under some busy state, it may return -EBUSY. Even if a memory
+block cannot be offlined due to -EBUSY, you can retry offlining it and may be
+able to offline it (or not). (For example, a page is referred to by some kernel
+internal call and released soon.)
Consideration:
Memory hotplug's design direction is to make the possibility of memory offlining
@@ -373,11 +367,11 @@ MEMORY_GOING_OFFLINE
Generated to begin the process of offlining memory. Allocations are no
longer possible from the memory but some of the memory to be offlined
is still in use. The callback can be used to free memory known to a
- subsystem from the indicated memory section.
+ subsystem from the indicated memory block.
MEMORY_CANCEL_OFFLINE
Generated if MEMORY_GOING_OFFLINE fails. Memory is available again from
- the section that we attempted to offline.
+ the memory block that we attempted to offline.
MEMORY_OFFLINE
Generated after offlining memory is complete.
@@ -413,8 +407,8 @@ node if necessary.
--------------
- allowing memory hot-add to ZONE_MOVABLE. maybe we need some switch like
sysctl or new control file.
- - showing memory section and physical device relationship.
- - showing memory section is under ZONE_MOVABLE or not
+ - showing memory block and physical device relationship.
+ - showing memory block is under ZONE_MOVABLE or not
- test and make it better memory offlining.
- support HugeTLB page migration and offlining.
- memmap removing at memory offline.
diff --git a/Documentation/mic/mic_overview.txt b/Documentation/mic/mic_overview.txt
new file mode 100644
index 00000000000..b4192922480
--- /dev/null
+++ b/Documentation/mic/mic_overview.txt
@@ -0,0 +1,51 @@
+An Intel MIC X100 device is a PCIe form factor add-in coprocessor
+card based on the Intel Many Integrated Core (MIC) architecture
+that runs a Linux OS. It is a PCIe endpoint in a platform and therefore
+implements the three required standard address spaces i.e. configuration,
+memory and I/O. The host OS loads a device driver as is typical for
+PCIe devices. The card itself runs a bootstrap after reset that
+transfers control to the card OS downloaded from the host driver. The
+host driver supports OSPM suspend and resume operations. It shuts down
+the card during suspend and reboots the card OS during resume.
+The card OS as shipped by Intel is a Linux kernel with modifications
+for the X100 devices.
+
+Since it is a PCIe card, it does not have the ability to host hardware
+devices for networking, storage and console. We provide these devices
+on X100 coprocessors thus enabling a self-bootable equivalent environment
+for applications. A key benefit of our solution is that it leverages
+the standard virtio framework for network, disk and console devices,
+though in our case the virtio framework is used across a PCIe bus.
+
+Here is a block diagram of the various components described above. The
+virtio backends are situated on the host rather than the card given better
+single threaded performance for the host compared to MIC, the ability of
+the host to initiate DMA's to/from the card using the MIC DMA engine and
+the fact that the virtio block storage backend can only be on the host.
+
+ |
+ +----------+ | +----------+
+ | Card OS | | | Host OS |
+ +----------+ | +----------+
+ |
++-------+ +--------+ +------+ | +---------+ +--------+ +--------+
+| Virtio| |Virtio | |Virtio| | |Virtio | |Virtio | |Virtio |
+| Net | |Console | |Block | | |Net | |Console | |Block |
+| Driver| |Driver | |Driver| | |backend | |backend | |backend |
++-------+ +--------+ +------+ | +---------+ +--------+ +--------+
+ | | | | | | |
+ | | | |User | | |
+ | | | |------|------------|---------|-------
+ +-------------------+ |Kernel +--------------------------+
+ | | | Virtio over PCIe IOCTLs |
+ | | +--------------------------+
+ +--------------+ | |
+ |Intel MIC | | +---------------+
+ |Card Driver | | |Intel MIC |
+ +--------------+ | |Host Driver |
+ | | +---------------+
+ | | |
+ +-------------------------------------------------------------+
+ | |
+ | PCIe Bus |
+ +-------------------------------------------------------------+
diff --git a/Documentation/mic/mpssd/.gitignore b/Documentation/mic/mpssd/.gitignore
new file mode 100644
index 00000000000..8b7c72f07c9
--- /dev/null
+++ b/Documentation/mic/mpssd/.gitignore
@@ -0,0 +1 @@
+mpssd
diff --git a/Documentation/mic/mpssd/Makefile b/Documentation/mic/mpssd/Makefile
new file mode 100644
index 00000000000..eb860a7d152
--- /dev/null
+++ b/Documentation/mic/mpssd/Makefile
@@ -0,0 +1,19 @@
+#
+# Makefile - Intel MIC User Space Tools.
+# Copyright(c) 2013, Intel Corporation.
+#
+ifdef DEBUG
+CFLAGS += $(USERWARNFLAGS) -I. -g -Wall -DDEBUG=$(DEBUG)
+else
+CFLAGS += $(USERWARNFLAGS) -I. -g -Wall
+endif
+
+mpssd: mpssd.o sysfs.o
+ $(CC) $(CFLAGS) -o $@ $^ -lpthread
+
+install:
+ install mpssd /usr/sbin/mpssd
+ install micctrl /usr/sbin/micctrl
+
+clean:
+ rm -f mpssd *.o
diff --git a/Documentation/mic/mpssd/micctrl b/Documentation/mic/mpssd/micctrl
new file mode 100755
index 00000000000..8f2629b41c5
--- /dev/null
+++ b/Documentation/mic/mpssd/micctrl
@@ -0,0 +1,173 @@
+#!/bin/bash
+# Intel MIC Platform Software Stack (MPSS)
+#
+# Copyright(c) 2013 Intel Corporation.
+#
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License, version 2, as
+# published by the Free Software Foundation.
+#
+# This program is distributed in the hope that it will be useful, but
+# WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# General Public License for more details.
+#
+# The full GNU General Public License is included in this distribution in
+# the file called "COPYING".
+#
+# Intel MIC User Space Tools.
+#
+# micctrl - Controls MIC boot/start/stop.
+#
+# chkconfig: 2345 95 05
+# description: start MPSS stack processing.
+#
+### BEGIN INIT INFO
+# Provides: micctrl
+### END INIT INFO
+
+# Source function library.
+. /etc/init.d/functions
+
+sysfs="/sys/class/mic"
+
+_status()
+{
+ f=$sysfs/$1
+ echo -e $1 state: "`cat $f/state`" shutdown_status: "`cat $f/shutdown_status`"
+}
+
+status()
+{
+ if [ "`echo $1 | head -c3`" == "mic" ]; then
+ _status $1
+ return $?
+ fi
+ for f in $sysfs/*
+ do
+ _status `basename $f`
+ RETVAL=$?
+ [ $RETVAL -ne 0 ] && return $RETVAL
+ done
+ return 0
+}
+
+_reset()
+{
+ f=$sysfs/$1
+ echo reset > $f/state
+}
+
+reset()
+{
+ if [ "`echo $1 | head -c3`" == "mic" ]; then
+ _reset $1
+ return $?
+ fi
+ for f in $sysfs/*
+ do
+ _reset `basename $f`
+ RETVAL=$?
+ [ $RETVAL -ne 0 ] && return $RETVAL
+ done
+ return 0
+}
+
+_boot()
+{
+ f=$sysfs/$1
+ echo "linux" > $f/bootmode
+ echo "mic/uos.img" > $f/firmware
+ echo "mic/$1.image" > $f/ramdisk
+ echo "boot" > $f/state
+}
+
+boot()
+{
+ if [ "`echo $1 | head -c3`" == "mic" ]; then
+ _boot $1
+ return $?
+ fi
+ for f in $sysfs/*
+ do
+ _boot `basename $f`
+ RETVAL=$?
+ [ $RETVAL -ne 0 ] && return $RETVAL
+ done
+ return 0
+}
+
+_shutdown()
+{
+ f=$sysfs/$1
+ echo shutdown > $f/state
+}
+
+shutdown()
+{
+ if [ "`echo $1 | head -c3`" == "mic" ]; then
+ _shutdown $1
+ return $?
+ fi
+ for f in $sysfs/*
+ do
+ _shutdown `basename $f`
+ RETVAL=$?
+ [ $RETVAL -ne 0 ] && return $RETVAL
+ done
+ return 0
+}
+
+_wait()
+{
+ f=$sysfs/$1
+ while [ "`cat $f/state`" != "offline" -a "`cat $f/state`" != "online" ]
+ do
+ sleep 1
+ echo -e "Waiting for $1 to go offline"
+ done
+}
+
+wait()
+{
+ if [ "`echo $1 | head -c3`" == "mic" ]; then
+ _wait $1
+ return $?
+ fi
+ # Wait for the cards to go offline
+ for f in $sysfs/*
+ do
+ _wait `basename $f`
+ RETVAL=$?
+ [ $RETVAL -ne 0 ] && return $RETVAL
+ done
+ return 0
+}
+
+if [ ! -d "$sysfs" ]; then
+ echo -e $"Module unloaded "
+ exit 3
+fi
+
+case $1 in
+ -s)
+ status $2
+ ;;
+ -r)
+ reset $2
+ ;;
+ -b)
+ boot $2
+ ;;
+ -S)
+ shutdown $2
+ ;;
+ -w)
+ wait $2
+ ;;
+ *)
+ echo $"Usage: $0 {-s (status) |-r (reset) |-b (boot) |-S (shutdown) |-w (wait)}"
+ exit 2
+esac
+
+exit $?
diff --git a/Documentation/mic/mpssd/mpss b/Documentation/mic/mpssd/mpss
new file mode 100755
index 00000000000..3136c68dad0
--- /dev/null
+++ b/Documentation/mic/mpssd/mpss
@@ -0,0 +1,202 @@
+#!/bin/bash
+# Intel MIC Platform Software Stack (MPSS)
+#
+# Copyright(c) 2013 Intel Corporation.
+#
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License, version 2, as
+# published by the Free Software Foundation.
+#
+# This program is distributed in the hope that it will be useful, but
+# WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# General Public License for more details.
+#
+# The full GNU General Public License is included in this distribution in
+# the file called "COPYING".
+#
+# Intel MIC User Space Tools.
+#
+# mpss Start mpssd.
+#
+# chkconfig: 2345 95 05
+# description: start MPSS stack processing.
+#
+### BEGIN INIT INFO
+# Provides: mpss
+# Required-Start:
+# Required-Stop:
+# Short-Description: MPSS stack control
+# Description: MPSS stack control
+### END INIT INFO
+
+# Source function library.
+. /etc/init.d/functions
+
+exec=/usr/sbin/mpssd
+sysfs="/sys/class/mic"
+
+start()
+{
+ [ -x $exec ] || exit 5
+
+ if [ "`ps -e | awk '{print $4}' | grep mpssd | head -1`" = "mpssd" ]; then
+ echo -e $"MPSSD already running! "
+ success
+ echo
+ return 0
+ fi
+
+ echo -e $"Starting MPSS Stack"
+ echo -e $"Loading MIC_HOST Module"
+
+ # Ensure the driver is loaded
+ if [ ! -d "$sysfs" ]; then
+ modprobe mic_host
+ RETVAL=$?
+ if [ $RETVAL -ne 0 ]; then
+ failure
+ echo
+ return $RETVAL
+ fi
+ fi
+
+ # Start the daemon
+ echo -n $"Starting MPSSD "
+ $exec
+ RETVAL=$?
+ if [ $RETVAL -ne 0 ]; then
+ failure
+ echo
+ return $RETVAL
+ fi
+ success
+ echo
+
+ sleep 5
+
+ # Boot the cards
+ micctrl -b
+
+ # Wait till ping works
+ for f in $sysfs/*
+ do
+ count=100
+ ipaddr=`cat $f/cmdline`
+ ipaddr=${ipaddr#*address,}
+ ipaddr=`echo $ipaddr | cut -d, -f1 | cut -d\; -f1`
+ while [ $count -ge 0 ]
+ do
+ echo -e "Pinging "`basename $f`" "
+ ping -c 1 $ipaddr &> /dev/null
+ RETVAL=$?
+ if [ $RETVAL -eq 0 ]; then
+ success
+ break
+ fi
+ sleep 1
+ count=`expr $count - 1`
+ done
+ [ $RETVAL -ne 0 ] && failure || success
+ echo
+ done
+ return $RETVAL
+}
+
+stop()
+{
+ echo -e $"Shutting down MPSS Stack: "
+
+ # Bail out if module is unloaded
+ if [ ! -d "$sysfs" ]; then
+ echo -n $"Module unloaded "
+ success
+ echo
+ return 0
+ fi
+
+ # Shut down the cards.
+ micctrl -S
+
+ # Wait for the cards to go offline
+ for f in $sysfs/*
+ do
+ while [ "`cat $f/state`" != "offline" ]
+ do
+ sleep 1
+ echo -e "Waiting for "`basename $f`" to go offline"
+ done
+ done
+
+ # Display the status of the cards
+ micctrl -s
+
+ # Kill MPSSD now
+ echo -n $"Killing MPSSD"
+ killall -9 mpssd 2>/dev/null
+ RETVAL=$?
+ [ $RETVAL -ne 0 ] && failure || success
+ echo
+ return $RETVAL
+}
+
+restart()
+{
+ stop
+ sleep 5
+ start
+}
+
+status()
+{
+ micctrl -s
+ if [ "`ps -e | awk '{print $4}' | grep mpssd | head -n 1`" = "mpssd" ]; then
+ echo "mpssd is running"
+ else
+ echo "mpssd is stopped"
+ fi
+ return 0
+}
+
+unload()
+{
+ if [ ! -d "$sysfs" ]; then
+ echo -n $"No MIC_HOST Module: "
+ success
+ echo
+ return
+ fi
+
+ stop
+
+ sleep 5
+ echo -n $"Removing MIC_HOST Module: "
+ modprobe -r mic_host
+ RETVAL=$?
+ [ $RETVAL -ne 0 ] && failure || success
+ echo
+ return $RETVAL
+}
+
+case $1 in
+ start)
+ start
+ ;;
+ stop)
+ stop
+ ;;
+ restart)
+ restart
+ ;;
+ status)
+ status
+ ;;
+ unload)
+ unload
+ ;;
+ *)
+ echo $"Usage: $0 {start|stop|restart|status|unload}"
+ exit 2
+esac
+
+exit $?
diff --git a/Documentation/mic/mpssd/mpssd.c b/Documentation/mic/mpssd/mpssd.c
new file mode 100644
index 00000000000..4d17487d5ad
--- /dev/null
+++ b/Documentation/mic/mpssd/mpssd.c
@@ -0,0 +1,1727 @@
+/*
+ * Intel MIC Platform Software Stack (MPSS)
+ *
+ * Copyright(c) 2013 Intel Corporation.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License, version 2, as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * The full GNU General Public License is included in this distribution in
+ * the file called "COPYING".
+ *
+ * Intel MIC User Space Tools.
+ */
+
+#define _GNU_SOURCE
+
+#include <stdlib.h>
+#include <fcntl.h>
+#include <getopt.h>
+#include <assert.h>
+#include <unistd.h>
+#include <stdbool.h>
+#include <signal.h>
+#include <poll.h>
+#include <features.h>
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <sys/mman.h>
+#include <sys/socket.h>
+#include <linux/virtio_ring.h>
+#include <linux/virtio_net.h>
+#include <linux/virtio_console.h>
+#include <linux/virtio_blk.h>
+#include <linux/version.h>
+#include "mpssd.h"
+#include <linux/mic_ioctl.h>
+#include <linux/mic_common.h>
+
+static void init_mic(struct mic_info *mic);
+
+static FILE *logfp;
+static struct mic_info mic_list;
+
+#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
+
+#define min_t(type, x, y) ({ \
+ type __min1 = (x); \
+ type __min2 = (y); \
+ __min1 < __min2 ? __min1 : __min2; })
+
+/* align addr on a size boundary - adjust address up/down if needed */
+#define _ALIGN_DOWN(addr, size) ((addr)&(~((size)-1)))
+#define _ALIGN_UP(addr, size) _ALIGN_DOWN(addr + size - 1, size)
+
+/* align addr on a size boundary - adjust address up if needed */
+#define _ALIGN(addr, size) _ALIGN_UP(addr, size)
+
+/* to align the pointer to the (next) page boundary */
+#define PAGE_ALIGN(addr) _ALIGN(addr, PAGE_SIZE)
+
+#define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))
+
+#define GSO_ENABLED 1
+#define MAX_GSO_SIZE (64 * 1024)
+#define ETH_H_LEN 14
+#define MAX_NET_PKT_SIZE (_ALIGN_UP(MAX_GSO_SIZE + ETH_H_LEN, 64))
+#define MIC_DEVICE_PAGE_END 0x1000
+
+#ifndef VIRTIO_NET_HDR_F_DATA_VALID
+#define VIRTIO_NET_HDR_F_DATA_VALID 2 /* Csum is valid */
+#endif
+
+static struct {
+ struct mic_device_desc dd;
+ struct mic_vqconfig vqconfig[2];
+ __u32 host_features, guest_acknowledgements;
+ struct virtio_console_config cons_config;
+} virtcons_dev_page = {
+ .dd = {
+ .type = VIRTIO_ID_CONSOLE,
+ .num_vq = ARRAY_SIZE(virtcons_dev_page.vqconfig),
+ .feature_len = sizeof(virtcons_dev_page.host_features),
+ .config_len = sizeof(virtcons_dev_page.cons_config),
+ },
+ .vqconfig[0] = {
+ .num = htole16(MIC_VRING_ENTRIES),
+ },
+ .vqconfig[1] = {
+ .num = htole16(MIC_VRING_ENTRIES),
+ },
+};
+
+static struct {
+ struct mic_device_desc dd;
+ struct mic_vqconfig vqconfig[2];
+ __u32 host_features, guest_acknowledgements;
+ struct virtio_net_config net_config;
+} virtnet_dev_page = {
+ .dd = {
+ .type = VIRTIO_ID_NET,
+ .num_vq = ARRAY_SIZE(virtnet_dev_page.vqconfig),
+ .feature_len = sizeof(virtnet_dev_page.host_features),
+ .config_len = sizeof(virtnet_dev_page.net_config),
+ },
+ .vqconfig[0] = {
+ .num = htole16(MIC_VRING_ENTRIES),
+ },
+ .vqconfig[1] = {
+ .num = htole16(MIC_VRING_ENTRIES),
+ },
+#if GSO_ENABLED
+ .host_features = htole32(
+ 1 << VIRTIO_NET_F_CSUM |
+ 1 << VIRTIO_NET_F_GSO |
+ 1 << VIRTIO_NET_F_GUEST_TSO4 |
+ 1 << VIRTIO_NET_F_GUEST_TSO6 |
+ 1 << VIRTIO_NET_F_GUEST_ECN |
+ 1 << VIRTIO_NET_F_GUEST_UFO),
+#else
+ .host_features = 0,
+#endif
+};
+
+static const char *mic_config_dir = "/etc/sysconfig/mic";
+static const char *virtblk_backend = "VIRTBLK_BACKEND";
+static struct {
+ struct mic_device_desc dd;
+ struct mic_vqconfig vqconfig[1];
+ __u32 host_features, guest_acknowledgements;
+ struct virtio_blk_config blk_config;
+} virtblk_dev_page = {
+ .dd = {
+ .type = VIRTIO_ID_BLOCK,
+ .num_vq = ARRAY_SIZE(virtblk_dev_page.vqconfig),
+ .feature_len = sizeof(virtblk_dev_page.host_features),
+ .config_len = sizeof(virtblk_dev_page.blk_config),
+ },
+ .vqconfig[0] = {
+ .num = htole16(MIC_VRING_ENTRIES),
+ },
+ .host_features =
+ htole32(1<<VIRTIO_BLK_F_SEG_MAX),
+ .blk_config = {
+ .seg_max = htole32(MIC_VRING_ENTRIES - 2),
+ .capacity = htole64(0),
+ }
+};
+
+static char *myname;
+
+static int
+tap_configure(struct mic_info *mic, char *dev)
+{
+ pid_t pid;
+ char *ifargv[7];
+ char ipaddr[IFNAMSIZ];
+ int ret = 0;
+
+ pid = fork();
+ if (pid == 0) {
+ ifargv[0] = "ip";
+ ifargv[1] = "link";
+ ifargv[2] = "set";
+ ifargv[3] = dev;
+ ifargv[4] = "up";
+ ifargv[5] = NULL;
+ mpsslog("Configuring %s\n", dev);
+ ret = execvp("ip", ifargv);
+ if (ret < 0) {
+ mpsslog("%s execvp failed errno %s\n",
+ mic->name, strerror(errno));
+ return ret;
+ }
+ }
+ if (pid < 0) {
+ mpsslog("%s fork failed errno %s\n",
+ mic->name, strerror(errno));
+ return ret;
+ }
+
+ ret = waitpid(pid, NULL, 0);
+ if (ret < 0) {
+ mpsslog("%s waitpid failed errno %s\n",
+ mic->name, strerror(errno));
+ return ret;
+ }
+
+ snprintf(ipaddr, IFNAMSIZ, "172.31.%d.254/24", mic->id);
+
+ pid = fork();
+ if (pid == 0) {
+ ifargv[0] = "ip";
+ ifargv[1] = "addr";
+ ifargv[2] = "add";
+ ifargv[3] = ipaddr;
+ ifargv[4] = "dev";
+ ifargv[5] = dev;
+ ifargv[6] = NULL;
+ mpsslog("Configuring %s ipaddr %s\n", dev, ipaddr);
+ ret = execvp("ip", ifargv);
+ if (ret < 0) {
+ mpsslog("%s execvp failed errno %s\n",
+ mic->name, strerror(errno));
+ return ret;
+ }
+ }
+ if (pid < 0) {
+ mpsslog("%s fork failed errno %s\n",
+ mic->name, strerror(errno));
+ return ret;
+ }
+
+ ret = waitpid(pid, NULL, 0);
+ if (ret < 0) {
+ mpsslog("%s waitpid failed errno %s\n",
+ mic->name, strerror(errno));
+ return ret;
+ }
+ mpsslog("MIC name %s %s %d DONE!\n",
+ mic->name, __func__, __LINE__);
+ return 0;
+}
+
+static int tun_alloc(struct mic_info *mic, char *dev)
+{
+ struct ifreq ifr;
+ int fd, err;
+#if GSO_ENABLED
+ unsigned offload;
+#endif
+ fd = open("/dev/net/tun", O_RDWR);
+ if (fd < 0) {
+ mpsslog("Could not open /dev/net/tun %s\n", strerror(errno));
+ goto done;
+ }
+
+ memset(&ifr, 0, sizeof(ifr));
+
+ ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
+ if (*dev)
+ strncpy(ifr.ifr_name, dev, IFNAMSIZ);
+
+ err = ioctl(fd, TUNSETIFF, (void *)&ifr);
+ if (err < 0) {
+ mpsslog("%s %s %d TUNSETIFF failed %s\n",
+ mic->name, __func__, __LINE__, strerror(errno));
+ close(fd);
+ return err;
+ }
+#if GSO_ENABLED
+ offload = TUN_F_CSUM | TUN_F_TSO4 | TUN_F_TSO6 |
+ TUN_F_TSO_ECN | TUN_F_UFO;
+
+ err = ioctl(fd, TUNSETOFFLOAD, offload);
+ if (err < 0) {
+ mpsslog("%s %s %d TUNSETOFFLOAD failed %s\n",
+ mic->name, __func__, __LINE__, strerror(errno));
+ close(fd);
+ return err;
+ }
+#endif
+ strcpy(dev, ifr.ifr_name);
+ mpsslog("Created TAP %s\n", dev);
+done:
+ return fd;
+}
+
+#define NET_FD_VIRTIO_NET 0
+#define NET_FD_TUN 1
+#define MAX_NET_FD 2
+
+static void set_dp(struct mic_info *mic, int type, void *dp)
+{
+ switch (type) {
+ case VIRTIO_ID_CONSOLE:
+ mic->mic_console.console_dp = dp;
+ return;
+ case VIRTIO_ID_NET:
+ mic->mic_net.net_dp = dp;
+ return;
+ case VIRTIO_ID_BLOCK:
+ mic->mic_virtblk.block_dp = dp;
+ return;
+ }
+ mpsslog("%s %s %d not found\n", mic->name, __func__, type);
+ assert(0);
+}
+
+static void *get_dp(struct mic_info *mic, int type)
+{
+ switch (type) {
+ case VIRTIO_ID_CONSOLE:
+ return mic->mic_console.console_dp;
+ case VIRTIO_ID_NET:
+ return mic->mic_net.net_dp;
+ case VIRTIO_ID_BLOCK:
+ return mic->mic_virtblk.block_dp;
+ }
+ mpsslog("%s %s %d not found\n", mic->name, __func__, type);
+ assert(0);
+ return NULL;
+}
+
+static struct mic_device_desc *get_device_desc(struct mic_info *mic, int type)
+{
+ struct mic_device_desc *d;
+ int i;
+ void *dp = get_dp(mic, type);
+
+ for (i = sizeof(struct mic_bootparam); i < PAGE_SIZE;
+ i += mic_total_desc_size(d)) {
+ d = dp + i;
+
+ /* End of list */
+ if (d->type == 0)
+ break;
+
+ if (d->type == -1)
+ continue;
+
+ mpsslog("%s %s d-> type %d d %p\n",
+ mic->name, __func__, d->type, d);
+
+ if (d->type == (__u8)type)
+ return d;
+ }
+ mpsslog("%s %s %d not found\n", mic->name, __func__, type);
+ assert(0);
+ return NULL;
+}
+
+/* See comments in vhost.c for explanation of next_desc() */
+static unsigned next_desc(struct vring_desc *desc)
+{
+ unsigned int next;
+
+ if (!(le16toh(desc->flags) & VRING_DESC_F_NEXT))
+ return -1U;
+ next = le16toh(desc->next);
+ return next;
+}
+
+/* Sum up all the IOVEC length */
+static ssize_t
+sum_iovec_len(struct mic_copy_desc *copy)
+{
+ ssize_t sum = 0;
+ int i;
+
+ for (i = 0; i < copy->iovcnt; i++)
+ sum += copy->iov[i].iov_len;
+ return sum;
+}
+
+static inline void verify_out_len(struct mic_info *mic,
+ struct mic_copy_desc *copy)
+{
+ if (copy->out_len != sum_iovec_len(copy)) {
+ mpsslog("%s %s %d BUG copy->out_len 0x%x len 0x%zx\n",
+ mic->name, __func__, __LINE__,
+ copy->out_len, sum_iovec_len(copy));
+ assert(copy->out_len == sum_iovec_len(copy));
+ }
+}
+
+/* Display an iovec */
+static void
+disp_iovec(struct mic_info *mic, struct mic_copy_desc *copy,
+ const char *s, int line)
+{
+ int i;
+
+ for (i = 0; i < copy->iovcnt; i++)
+ mpsslog("%s %s %d copy->iov[%d] addr %p len 0x%zx\n",
+ mic->name, s, line, i,
+ copy->iov[i].iov_base, copy->iov[i].iov_len);
+}
+
+static inline __u16 read_avail_idx(struct mic_vring *vr)
+{
+ return ACCESS_ONCE(vr->info->avail_idx);
+}
+
+static inline void txrx_prepare(int type, bool tx, struct mic_vring *vr,
+ struct mic_copy_desc *copy, ssize_t len)
+{
+ copy->vr_idx = tx ? 0 : 1;
+ copy->update_used = true;
+ if (type == VIRTIO_ID_NET)
+ copy->iov[1].iov_len = len - sizeof(struct virtio_net_hdr);
+ else
+ copy->iov[0].iov_len = len;
+}
+
+/* Central API which triggers the copies */
+static int
+mic_virtio_copy(struct mic_info *mic, int fd,
+ struct mic_vring *vr, struct mic_copy_desc *copy)
+{
+ int ret;
+
+ ret = ioctl(fd, MIC_VIRTIO_COPY_DESC, copy);
+ if (ret) {
+ mpsslog("%s %s %d errno %s ret %d\n",
+ mic->name, __func__, __LINE__,
+ strerror(errno), ret);
+ }
+ return ret;
+}
+
+/*
+ * This initialization routine requires at least one
+ * vring i.e. vr0. vr1 is optional.
+ */
+static void *
+init_vr(struct mic_info *mic, int fd, int type,
+ struct mic_vring *vr0, struct mic_vring *vr1, int num_vq)
+{
+ int vr_size;
+ char *va;
+
+ vr_size = PAGE_ALIGN(vring_size(MIC_VRING_ENTRIES,
+ MIC_VIRTIO_RING_ALIGN) + sizeof(struct _mic_vring_info));
+ va = mmap(NULL, MIC_DEVICE_PAGE_END + vr_size * num_vq,
+ PROT_READ, MAP_SHARED, fd, 0);
+ if (MAP_FAILED == va) {
+ mpsslog("%s %s %d mmap failed errno %s\n",
+ mic->name, __func__, __LINE__,
+ strerror(errno));
+ goto done;
+ }
+ set_dp(mic, type, va);
+ vr0->va = (struct mic_vring *)&va[MIC_DEVICE_PAGE_END];
+ vr0->info = vr0->va +
+ vring_size(MIC_VRING_ENTRIES, MIC_VIRTIO_RING_ALIGN);
+ vring_init(&vr0->vr,
+ MIC_VRING_ENTRIES, vr0->va, MIC_VIRTIO_RING_ALIGN);
+ mpsslog("%s %s vr0 %p vr0->info %p vr_size 0x%x vring 0x%x ",
+ __func__, mic->name, vr0->va, vr0->info, vr_size,
+ vring_size(MIC_VRING_ENTRIES, MIC_VIRTIO_RING_ALIGN));
+ mpsslog("magic 0x%x expected 0x%x\n",
+ le32toh(vr0->info->magic), MIC_MAGIC + type);
+ assert(le32toh(vr0->info->magic) == MIC_MAGIC + type);
+ if (vr1) {
+ vr1->va = (struct mic_vring *)
+ &va[MIC_DEVICE_PAGE_END + vr_size];
+ vr1->info = vr1->va + vring_size(MIC_VRING_ENTRIES,
+ MIC_VIRTIO_RING_ALIGN);
+ vring_init(&vr1->vr,
+ MIC_VRING_ENTRIES, vr1->va, MIC_VIRTIO_RING_ALIGN);
+ mpsslog("%s %s vr1 %p vr1->info %p vr_size 0x%x vring 0x%x ",
+ __func__, mic->name, vr1->va, vr1->info, vr_size,
+ vring_size(MIC_VRING_ENTRIES, MIC_VIRTIO_RING_ALIGN));
+ mpsslog("magic 0x%x expected 0x%x\n",
+ le32toh(vr1->info->magic), MIC_MAGIC + type + 1);
+ assert(le32toh(vr1->info->magic) == MIC_MAGIC + type + 1);
+ }
+done:
+ return va;
+}
+
+static void
+wait_for_card_driver(struct mic_info *mic, int fd, int type)
+{
+ struct pollfd pollfd;
+ int err;
+ struct mic_device_desc *desc = get_device_desc(mic, type);
+
+ pollfd.fd = fd;
+ mpsslog("%s %s Waiting .... desc-> type %d status 0x%x\n",
+ mic->name, __func__, type, desc->status);
+ while (1) {
+ pollfd.events = POLLIN;
+ pollfd.revents = 0;
+ err = poll(&pollfd, 1, -1);
+ if (err < 0) {
+ mpsslog("%s %s poll failed %s\n",
+ mic->name, __func__, strerror(errno));
+ continue;
+ }
+
+ if (pollfd.revents) {
+ mpsslog("%s %s Waiting... desc-> type %d status 0x%x\n",
+ mic->name, __func__, type, desc->status);
+ if (desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
+ mpsslog("%s %s poll.revents %d\n",
+ mic->name, __func__, pollfd.revents);
+ mpsslog("%s %s desc-> type %d status 0x%x\n",
+ mic->name, __func__, type,
+ desc->status);
+ break;
+ }
+ }
+ }
+}
+
+/* Spin till we have some descriptors */
+static void
+spin_for_descriptors(struct mic_info *mic, struct mic_vring *vr)
+{
+ __u16 avail_idx = read_avail_idx(vr);
+
+ while (avail_idx == le16toh(ACCESS_ONCE(vr->vr.avail->idx))) {
+#ifdef DEBUG
+ mpsslog("%s %s waiting for desc avail %d info_avail %d\n",
+ mic->name, __func__,
+ le16toh(vr->vr.avail->idx), vr->info->avail_idx);
+#endif
+ sched_yield();
+ }
+}
+
+static void *
+virtio_net(void *arg)
+{
+ static __u8 vnet_hdr[2][sizeof(struct virtio_net_hdr)];
+ static __u8 vnet_buf[2][MAX_NET_PKT_SIZE] __attribute__ ((aligned(64)));
+ struct iovec vnet_iov[2][2] = {
+ { { .iov_base = vnet_hdr[0], .iov_len = sizeof(vnet_hdr[0]) },
+ { .iov_base = vnet_buf[0], .iov_len = sizeof(vnet_buf[0]) } },
+ { { .iov_base = vnet_hdr[1], .iov_len = sizeof(vnet_hdr[1]) },
+ { .iov_base = vnet_buf[1], .iov_len = sizeof(vnet_buf[1]) } },
+ };
+ struct iovec *iov0 = vnet_iov[0], *iov1 = vnet_iov[1];
+ struct mic_info *mic = (struct mic_info *)arg;
+ char if_name[IFNAMSIZ];
+ struct pollfd net_poll[MAX_NET_FD];
+ struct mic_vring tx_vr, rx_vr;
+ struct mic_copy_desc copy;
+ struct mic_device_desc *desc;
+ int err;
+
+ snprintf(if_name, IFNAMSIZ, "mic%d", mic->id);
+ mic->mic_net.tap_fd = tun_alloc(mic, if_name);
+ if (mic->mic_net.tap_fd < 0)
+ goto done;
+
+ if (tap_configure(mic, if_name))
+ goto done;
+ mpsslog("MIC name %s id %d\n", mic->name, mic->id);
+
+ net_poll[NET_FD_VIRTIO_NET].fd = mic->mic_net.virtio_net_fd;
+ net_poll[NET_FD_VIRTIO_NET].events = POLLIN;
+ net_poll[NET_FD_TUN].fd = mic->mic_net.tap_fd;
+ net_poll[NET_FD_TUN].events = POLLIN;
+
+ if (MAP_FAILED == init_vr(mic, mic->mic_net.virtio_net_fd,
+ VIRTIO_ID_NET, &tx_vr, &rx_vr,
+ virtnet_dev_page.dd.num_vq)) {
+ mpsslog("%s init_vr failed %s\n",
+ mic->name, strerror(errno));
+ goto done;
+ }
+
+ copy.iovcnt = 2;
+ desc = get_device_desc(mic, VIRTIO_ID_NET);
+
+ while (1) {
+ ssize_t len;
+
+ net_poll[NET_FD_VIRTIO_NET].revents = 0;
+ net_poll[NET_FD_TUN].revents = 0;
+
+ /* Start polling for data from tap and virtio net */
+ err = poll(net_poll, 2, -1);
+ if (err < 0) {
+ mpsslog("%s poll failed %s\n",
+ __func__, strerror(errno));
+ continue;
+ }
+ if (!(desc->status & VIRTIO_CONFIG_S_DRIVER_OK))
+ wait_for_card_driver(mic, mic->mic_net.virtio_net_fd,
+ VIRTIO_ID_NET);
+ /*
+ * Check if there is data to be read from TUN and write to
+ * virtio net fd if there is.
+ */
+ if (net_poll[NET_FD_TUN].revents & POLLIN) {
+ copy.iov = iov0;
+ len = readv(net_poll[NET_FD_TUN].fd,
+ copy.iov, copy.iovcnt);
+ if (len > 0) {
+ struct virtio_net_hdr *hdr
+ = (struct virtio_net_hdr *)vnet_hdr[0];
+
+ /* Disable checksums on the card since we are on
+ a reliable PCIe link */
+ hdr->flags |= VIRTIO_NET_HDR_F_DATA_VALID;
+#ifdef DEBUG
+ mpsslog("%s %s %d hdr->flags 0x%x ", mic->name,
+ __func__, __LINE__, hdr->flags);
+ mpsslog("copy.out_len %d hdr->gso_type 0x%x\n",
+ copy.out_len, hdr->gso_type);
+#endif
+#ifdef DEBUG
+ disp_iovec(mic, copy, __func__, __LINE__);
+ mpsslog("%s %s %d read from tap 0x%lx\n",
+ mic->name, __func__, __LINE__,
+ len);
+#endif
+ spin_for_descriptors(mic, &tx_vr);
+ txrx_prepare(VIRTIO_ID_NET, 1, &tx_vr, &copy,
+ len);
+
+ err = mic_virtio_copy(mic,
+ mic->mic_net.virtio_net_fd, &tx_vr,
+ &copy);
+ if (err < 0) {
+ mpsslog("%s %s %d mic_virtio_copy %s\n",
+ mic->name, __func__, __LINE__,
+ strerror(errno));
+ }
+ if (!err)
+ verify_out_len(mic, &copy);
+#ifdef DEBUG
+ disp_iovec(mic, copy, __func__, __LINE__);
+ mpsslog("%s %s %d wrote to net 0x%lx\n",
+ mic->name, __func__, __LINE__,
+ sum_iovec_len(&copy));
+#endif
+ /* Reinitialize IOV for next run */
+ iov0[1].iov_len = MAX_NET_PKT_SIZE;
+ } else if (len < 0) {
+ disp_iovec(mic, &copy, __func__, __LINE__);
+ mpsslog("%s %s %d read failed %s ", mic->name,
+ __func__, __LINE__, strerror(errno));
+ mpsslog("cnt %d sum %zd\n",
+ copy.iovcnt, sum_iovec_len(&copy));
+ }
+ }
+
+ /*
+ * Check if there is data to be read from virtio net and
+ * write to TUN if there is.
+ */
+ if (net_poll[NET_FD_VIRTIO_NET].revents & POLLIN) {
+ while (rx_vr.info->avail_idx !=
+ le16toh(rx_vr.vr.avail->idx)) {
+ copy.iov = iov1;
+ txrx_prepare(VIRTIO_ID_NET, 0, &rx_vr, &copy,
+ MAX_NET_PKT_SIZE
+ + sizeof(struct virtio_net_hdr));
+
+ err = mic_virtio_copy(mic,
+ mic->mic_net.virtio_net_fd, &rx_vr,
+ &copy);
+ if (!err) {
+#ifdef DEBUG
+ struct virtio_net_hdr *hdr
+ = (struct virtio_net_hdr *)
+ vnet_hdr[1];
+
+ mpsslog("%s %s %d hdr->flags 0x%x, ",
+ mic->name, __func__, __LINE__,
+ hdr->flags);
+ mpsslog("out_len %d gso_type 0x%x\n",
+ copy.out_len,
+ hdr->gso_type);
+#endif
+ /* Set the correct output iov_len */
+ iov1[1].iov_len = copy.out_len -
+ sizeof(struct virtio_net_hdr);
+ verify_out_len(mic, &copy);
+#ifdef DEBUG
+ disp_iovec(mic, copy, __func__,
+ __LINE__);
+ mpsslog("%s %s %d ",
+ mic->name, __func__, __LINE__);
+ mpsslog("read from net 0x%lx\n",
+ sum_iovec_len(copy));
+#endif
+ len = writev(net_poll[NET_FD_TUN].fd,
+ copy.iov, copy.iovcnt);
+ if (len != sum_iovec_len(&copy)) {
+ mpsslog("Tun write failed %s ",
+ strerror(errno));
+ mpsslog("len 0x%zx ", len);
+ mpsslog("read_len 0x%zx\n",
+ sum_iovec_len(&copy));
+ } else {
+#ifdef DEBUG
+ disp_iovec(mic, &copy, __func__,
+ __LINE__);
+ mpsslog("%s %s %d ",
+ mic->name, __func__,
+ __LINE__);
+ mpsslog("wrote to tap 0x%lx\n",
+ len);
+#endif
+ }
+ } else {
+ mpsslog("%s %s %d mic_virtio_copy %s\n",
+ mic->name, __func__, __LINE__,
+ strerror(errno));
+ break;
+ }
+ }
+ }
+ if (net_poll[NET_FD_VIRTIO_NET].revents & POLLERR)
+ mpsslog("%s: %s: POLLERR\n", __func__, mic->name);
+ }
+done:
+ pthread_exit(NULL);
+}
+
+/* virtio_console */
+#define VIRTIO_CONSOLE_FD 0
+#define MONITOR_FD (VIRTIO_CONSOLE_FD + 1)
+#define MAX_CONSOLE_FD (MONITOR_FD + 1) /* must be the last one + 1 */
+#define MAX_BUFFER_SIZE PAGE_SIZE
+
+static void *
+virtio_console(void *arg)
+{
+ static __u8 vcons_buf[2][PAGE_SIZE];
+ struct iovec vcons_iov[2] = {
+ { .iov_base = vcons_buf[0], .iov_len = sizeof(vcons_buf[0]) },
+ { .iov_base = vcons_buf[1], .iov_len = sizeof(vcons_buf[1]) },
+ };
+ struct iovec *iov0 = &vcons_iov[0], *iov1 = &vcons_iov[1];
+ struct mic_info *mic = (struct mic_info *)arg;
+ int err;
+ struct pollfd console_poll[MAX_CONSOLE_FD];
+ int pty_fd;
+ char *pts_name;
+ ssize_t len;
+ struct mic_vring tx_vr, rx_vr;
+ struct mic_copy_desc copy;
+ struct mic_device_desc *desc;
+
+ pty_fd = posix_openpt(O_RDWR);
+ if (pty_fd < 0) {
+ mpsslog("can't open a pseudoterminal master device: %s\n",
+ strerror(errno));
+ goto _return;
+ }
+ pts_name = ptsname(pty_fd);
+ if (pts_name == NULL) {
+ mpsslog("can't get pts name\n");
+ goto _close_pty;
+ }
+ printf("%s console message goes to %s\n", mic->name, pts_name);
+ mpsslog("%s console message goes to %s\n", mic->name, pts_name);
+ err = grantpt(pty_fd);
+ if (err < 0) {
+ mpsslog("can't grant access: %s %s\n",
+ pts_name, strerror(errno));
+ goto _close_pty;
+ }
+ err = unlockpt(pty_fd);
+ if (err < 0) {
+ mpsslog("can't unlock a pseudoterminal: %s %s\n",
+ pts_name, strerror(errno));
+ goto _close_pty;
+ }
+ console_poll[MONITOR_FD].fd = pty_fd;
+ console_poll[MONITOR_FD].events = POLLIN;
+
+ console_poll[VIRTIO_CONSOLE_FD].fd = mic->mic_console.virtio_console_fd;
+ console_poll[VIRTIO_CONSOLE_FD].events = POLLIN;
+
+ if (MAP_FAILED == init_vr(mic, mic->mic_console.virtio_console_fd,
+ VIRTIO_ID_CONSOLE, &tx_vr, &rx_vr,
+ virtcons_dev_page.dd.num_vq)) {
+ mpsslog("%s init_vr failed %s\n",
+ mic->name, strerror(errno));
+ goto _close_pty;
+ }
+
+ copy.iovcnt = 1;
+ desc = get_device_desc(mic, VIRTIO_ID_CONSOLE);
+
+ for (;;) {
+ console_poll[MONITOR_FD].revents = 0;
+ console_poll[VIRTIO_CONSOLE_FD].revents = 0;
+ err = poll(console_poll, MAX_CONSOLE_FD, -1);
+ if (err < 0) {
+ mpsslog("%s %d: poll failed: %s\n", __func__, __LINE__,
+ strerror(errno));
+ continue;
+ }
+ if (!(desc->status & VIRTIO_CONFIG_S_DRIVER_OK))
+ wait_for_card_driver(mic,
+ mic->mic_console.virtio_console_fd,
+ VIRTIO_ID_CONSOLE);
+
+ if (console_poll[MONITOR_FD].revents & POLLIN) {
+ copy.iov = iov0;
+ len = readv(pty_fd, copy.iov, copy.iovcnt);
+ if (len > 0) {
+#ifdef DEBUG
+ disp_iovec(mic, copy, __func__, __LINE__);
+ mpsslog("%s %s %d read from tap 0x%lx\n",
+ mic->name, __func__, __LINE__,
+ len);
+#endif
+ spin_for_descriptors(mic, &tx_vr);
+ txrx_prepare(VIRTIO_ID_CONSOLE, 1, &tx_vr,
+ &copy, len);
+
+ err = mic_virtio_copy(mic,
+ mic->mic_console.virtio_console_fd,
+ &tx_vr, &copy);
+ if (err < 0) {
+ mpsslog("%s %s %d mic_virtio_copy %s\n",
+ mic->name, __func__, __LINE__,
+ strerror(errno));
+ }
+ if (!err)
+ verify_out_len(mic, &copy);
+#ifdef DEBUG
+ disp_iovec(mic, copy, __func__, __LINE__);
+ mpsslog("%s %s %d wrote to net 0x%lx\n",
+ mic->name, __func__, __LINE__,
+ sum_iovec_len(copy));
+#endif
+ /* Reinitialize IOV for next run */
+ iov0->iov_len = PAGE_SIZE;
+ } else if (len < 0) {
+ disp_iovec(mic, &copy, __func__, __LINE__);
+ mpsslog("%s %s %d read failed %s ",
+ mic->name, __func__, __LINE__,
+ strerror(errno));
+ mpsslog("cnt %d sum %zd\n",
+ copy.iovcnt, sum_iovec_len(&copy));
+ }
+ }
+
+ if (console_poll[VIRTIO_CONSOLE_FD].revents & POLLIN) {
+ while (rx_vr.info->avail_idx !=
+ le16toh(rx_vr.vr.avail->idx)) {
+ copy.iov = iov1;
+ txrx_prepare(VIRTIO_ID_CONSOLE, 0, &rx_vr,
+ &copy, PAGE_SIZE);
+
+ err = mic_virtio_copy(mic,
+ mic->mic_console.virtio_console_fd,
+ &rx_vr, &copy);
+ if (!err) {
+ /* Set the correct output iov_len */
+ iov1->iov_len = copy.out_len;
+ verify_out_len(mic, &copy);
+#ifdef DEBUG
+ disp_iovec(mic, copy, __func__,
+ __LINE__);
+ mpsslog("%s %s %d ",
+ mic->name, __func__, __LINE__);
+ mpsslog("read from net 0x%lx\n",
+ sum_iovec_len(copy));
+#endif
+ len = writev(pty_fd,
+ copy.iov, copy.iovcnt);
+ if (len != sum_iovec_len(&copy)) {
+ mpsslog("Tun write failed %s ",
+ strerror(errno));
+ mpsslog("len 0x%zx ", len);
+ mpsslog("read_len 0x%zx\n",
+ sum_iovec_len(&copy));
+ } else {
+#ifdef DEBUG
+ disp_iovec(mic, copy, __func__,
+ __LINE__);
+ mpsslog("%s %s %d ",
+ mic->name, __func__,
+ __LINE__);
+ mpsslog("wrote to tap 0x%lx\n",
+ len);
+#endif
+ }
+ } else {
+ mpsslog("%s %s %d mic_virtio_copy %s\n",
+ mic->name, __func__, __LINE__,
+ strerror(errno));
+ break;
+ }
+ }
+ }
+ if (console_poll[NET_FD_VIRTIO_NET].revents & POLLERR)
+ mpsslog("%s: %s: POLLERR\n", __func__, mic->name);
+ }
+_close_pty:
+ close(pty_fd);
+_return:
+ pthread_exit(NULL);
+}
+
+static void
+add_virtio_device(struct mic_info *mic, struct mic_device_desc *dd)
+{
+ char path[PATH_MAX];
+ int fd, err;
+
+ snprintf(path, PATH_MAX, "/dev/mic%d", mic->id);
+ fd = open(path, O_RDWR);
+ if (fd < 0) {
+ mpsslog("Could not open %s %s\n", path, strerror(errno));
+ return;
+ }
+
+ err = ioctl(fd, MIC_VIRTIO_ADD_DEVICE, dd);
+ if (err < 0) {
+ mpsslog("Could not add %d %s\n", dd->type, strerror(errno));
+ close(fd);
+ return;
+ }
+ switch (dd->type) {
+ case VIRTIO_ID_NET:
+ mic->mic_net.virtio_net_fd = fd;
+ mpsslog("Added VIRTIO_ID_NET for %s\n", mic->name);
+ break;
+ case VIRTIO_ID_CONSOLE:
+ mic->mic_console.virtio_console_fd = fd;
+ mpsslog("Added VIRTIO_ID_CONSOLE for %s\n", mic->name);
+ break;
+ case VIRTIO_ID_BLOCK:
+ mic->mic_virtblk.virtio_block_fd = fd;
+ mpsslog("Added VIRTIO_ID_BLOCK for %s\n", mic->name);
+ break;
+ }
+}
+
+static bool
+set_backend_file(struct mic_info *mic)
+{
+ FILE *config;
+ char buff[PATH_MAX], *line, *evv, *p;
+
+ snprintf(buff, PATH_MAX, "%s/mpssd%03d.conf", mic_config_dir, mic->id);
+ config = fopen(buff, "r");
+ if (config == NULL)
+ return false;
+ do { /* look for "virtblk_backend=XXXX" */
+ line = fgets(buff, PATH_MAX, config);
+ if (line == NULL)
+ break;
+ if (*line == '#')
+ continue;
+ p = strchr(line, '\n');
+ if (p)
+ *p = '\0';
+ } while (strncmp(line, virtblk_backend, strlen(virtblk_backend)) != 0);
+ fclose(config);
+ if (line == NULL)
+ return false;
+ evv = strchr(line, '=');
+ if (evv == NULL)
+ return false;
+ mic->mic_virtblk.backend_file = malloc(strlen(evv) + 1);
+ if (mic->mic_virtblk.backend_file == NULL) {
+ mpsslog("%s %d can't allocate memory\n", mic->name, mic->id);
+ return false;
+ }
+ strcpy(mic->mic_virtblk.backend_file, evv + 1);
+ return true;
+}
+
+#define SECTOR_SIZE 512
+static bool
+set_backend_size(struct mic_info *mic)
+{
+ mic->mic_virtblk.backend_size = lseek(mic->mic_virtblk.backend, 0,
+ SEEK_END);
+ if (mic->mic_virtblk.backend_size < 0) {
+ mpsslog("%s: can't seek: %s\n",
+ mic->name, mic->mic_virtblk.backend_file);
+ return false;
+ }
+ virtblk_dev_page.blk_config.capacity =
+ mic->mic_virtblk.backend_size / SECTOR_SIZE;
+ if ((mic->mic_virtblk.backend_size % SECTOR_SIZE) != 0)
+ virtblk_dev_page.blk_config.capacity++;
+
+ virtblk_dev_page.blk_config.capacity =
+ htole64(virtblk_dev_page.blk_config.capacity);
+
+ return true;
+}
+
+static bool
+open_backend(struct mic_info *mic)
+{
+ if (!set_backend_file(mic))
+ goto _error_exit;
+ mic->mic_virtblk.backend = open(mic->mic_virtblk.backend_file, O_RDWR);
+ if (mic->mic_virtblk.backend < 0) {
+ mpsslog("%s: can't open: %s\n", mic->name,
+ mic->mic_virtblk.backend_file);
+ goto _error_free;
+ }
+ if (!set_backend_size(mic))
+ goto _error_close;
+ mic->mic_virtblk.backend_addr = mmap(NULL,
+ mic->mic_virtblk.backend_size,
+ PROT_READ|PROT_WRITE, MAP_SHARED,
+ mic->mic_virtblk.backend, 0L);
+ if (mic->mic_virtblk.backend_addr == MAP_FAILED) {
+ mpsslog("%s: can't map: %s %s\n",
+ mic->name, mic->mic_virtblk.backend_file,
+ strerror(errno));
+ goto _error_close;
+ }
+ return true;
+
+ _error_close:
+ close(mic->mic_virtblk.backend);
+ _error_free:
+ free(mic->mic_virtblk.backend_file);
+ _error_exit:
+ return false;
+}
+
+static void
+close_backend(struct mic_info *mic)
+{
+ munmap(mic->mic_virtblk.backend_addr, mic->mic_virtblk.backend_size);
+ close(mic->mic_virtblk.backend);
+ free(mic->mic_virtblk.backend_file);
+}
+
+static bool
+start_virtblk(struct mic_info *mic, struct mic_vring *vring)
+{
+ if (((unsigned long)&virtblk_dev_page.blk_config % 8) != 0) {
+ mpsslog("%s: blk_config is not 8 byte aligned.\n",
+ mic->name);
+ return false;
+ }
+ add_virtio_device(mic, &virtblk_dev_page.dd);
+ if (MAP_FAILED == init_vr(mic, mic->mic_virtblk.virtio_block_fd,
+ VIRTIO_ID_BLOCK, vring, NULL,
+ virtblk_dev_page.dd.num_vq)) {
+ mpsslog("%s init_vr failed %s\n",
+ mic->name, strerror(errno));
+ return false;
+ }
+ return true;
+}
+
+static void
+stop_virtblk(struct mic_info *mic)
+{
+ int vr_size, ret;
+
+ vr_size = PAGE_ALIGN(vring_size(MIC_VRING_ENTRIES,
+ MIC_VIRTIO_RING_ALIGN) + sizeof(struct _mic_vring_info));
+ ret = munmap(mic->mic_virtblk.block_dp,
+ MIC_DEVICE_PAGE_END + vr_size * virtblk_dev_page.dd.num_vq);
+ if (ret < 0)
+ mpsslog("%s munmap errno %d\n", mic->name, errno);
+ close(mic->mic_virtblk.virtio_block_fd);
+}
+
+static __u8
+header_error_check(struct vring_desc *desc)
+{
+ if (le32toh(desc->len) != sizeof(struct virtio_blk_outhdr)) {
+ mpsslog("%s() %d: length is not sizeof(virtio_blk_outhd)\n",
+ __func__, __LINE__);
+ return -EIO;
+ }
+ if (!(le16toh(desc->flags) & VRING_DESC_F_NEXT)) {
+ mpsslog("%s() %d: alone\n",
+ __func__, __LINE__);
+ return -EIO;
+ }
+ if (le16toh(desc->flags) & VRING_DESC_F_WRITE) {
+ mpsslog("%s() %d: not read\n",
+ __func__, __LINE__);
+ return -EIO;
+ }
+ return 0;
+}
+
+static int
+read_header(int fd, struct virtio_blk_outhdr *hdr, __u32 desc_idx)
+{
+ struct iovec iovec;
+ struct mic_copy_desc copy;
+
+ iovec.iov_len = sizeof(*hdr);
+ iovec.iov_base = hdr;
+ copy.iov = &iovec;
+ copy.iovcnt = 1;
+ copy.vr_idx = 0; /* only one vring on virtio_block */
+ copy.update_used = false; /* do not update used index */
+ return ioctl(fd, MIC_VIRTIO_COPY_DESC, &copy);
+}
+
+static int
+transfer_blocks(int fd, struct iovec *iovec, __u32 iovcnt)
+{
+ struct mic_copy_desc copy;
+
+ copy.iov = iovec;
+ copy.iovcnt = iovcnt;
+ copy.vr_idx = 0; /* only one vring on virtio_block */
+ copy.update_used = false; /* do not update used index */
+ return ioctl(fd, MIC_VIRTIO_COPY_DESC, &copy);
+}
+
+static __u8
+status_error_check(struct vring_desc *desc)
+{
+ if (le32toh(desc->len) != sizeof(__u8)) {
+ mpsslog("%s() %d: length is not sizeof(status)\n",
+ __func__, __LINE__);
+ return -EIO;
+ }
+ return 0;
+}
+
+static int
+write_status(int fd, __u8 *status)
+{
+ struct iovec iovec;
+ struct mic_copy_desc copy;
+
+ iovec.iov_base = status;
+ iovec.iov_len = sizeof(*status);
+ copy.iov = &iovec;
+ copy.iovcnt = 1;
+ copy.vr_idx = 0; /* only one vring on virtio_block */
+ copy.update_used = true; /* Update used index */
+ return ioctl(fd, MIC_VIRTIO_COPY_DESC, &copy);
+}
+
+static void *
+virtio_block(void *arg)
+{
+ struct mic_info *mic = (struct mic_info *)arg;
+ int ret;
+ struct pollfd block_poll;
+ struct mic_vring vring;
+ __u16 avail_idx;
+ __u32 desc_idx;
+ struct vring_desc *desc;
+ struct iovec *iovec, *piov;
+ __u8 status;
+ __u32 buffer_desc_idx;
+ struct virtio_blk_outhdr hdr;
+ void *fos;
+
+ for (;;) { /* forever */
+ if (!open_backend(mic)) { /* No virtblk */
+ for (mic->mic_virtblk.signaled = 0;
+ !mic->mic_virtblk.signaled;)
+ sleep(1);
+ continue;
+ }
+
+ /* backend file is specified. */
+ if (!start_virtblk(mic, &vring))
+ goto _close_backend;
+ iovec = malloc(sizeof(*iovec) *
+ le32toh(virtblk_dev_page.blk_config.seg_max));
+ if (!iovec) {
+ mpsslog("%s: can't alloc iovec: %s\n",
+ mic->name, strerror(ENOMEM));
+ goto _stop_virtblk;
+ }
+
+ block_poll.fd = mic->mic_virtblk.virtio_block_fd;
+ block_poll.events = POLLIN;
+ for (mic->mic_virtblk.signaled = 0;
+ !mic->mic_virtblk.signaled;) {
+ block_poll.revents = 0;
+ /* timeout in 1 sec to see signaled */
+ ret = poll(&block_poll, 1, 1000);
+ if (ret < 0) {
+ mpsslog("%s %d: poll failed: %s\n",
+ __func__, __LINE__,
+ strerror(errno));
+ continue;
+ }
+
+ if (!(block_poll.revents & POLLIN)) {
+#ifdef DEBUG
+ mpsslog("%s %d: block_poll.revents=0x%x\n",
+ __func__, __LINE__, block_poll.revents);
+#endif
+ continue;
+ }
+
+ /* POLLIN */
+ while (vring.info->avail_idx !=
+ le16toh(vring.vr.avail->idx)) {
+ /* read header element */
+ avail_idx =
+ vring.info->avail_idx &
+ (vring.vr.num - 1);
+ desc_idx = le16toh(
+ vring.vr.avail->ring[avail_idx]);
+ desc = &vring.vr.desc[desc_idx];
+#ifdef DEBUG
+ mpsslog("%s() %d: avail_idx=%d ",
+ __func__, __LINE__,
+ vring.info->avail_idx);
+ mpsslog("vring.vr.num=%d desc=%p\n",
+ vring.vr.num, desc);
+#endif
+ status = header_error_check(desc);
+ ret = read_header(
+ mic->mic_virtblk.virtio_block_fd,
+ &hdr, desc_idx);
+ if (ret < 0) {
+ mpsslog("%s() %d %s: ret=%d %s\n",
+ __func__, __LINE__,
+ mic->name, ret,
+ strerror(errno));
+ break;
+ }
+ /* buffer element */
+ piov = iovec;
+ status = 0;
+ fos = mic->mic_virtblk.backend_addr +
+ (hdr.sector * SECTOR_SIZE);
+ buffer_desc_idx = next_desc(desc);
+ desc_idx = buffer_desc_idx;
+ for (desc = &vring.vr.desc[buffer_desc_idx];
+ desc->flags & VRING_DESC_F_NEXT;
+ desc_idx = next_desc(desc),
+ desc = &vring.vr.desc[desc_idx]) {
+ piov->iov_len = desc->len;
+ piov->iov_base = fos;
+ piov++;
+ fos += desc->len;
+ }
+ /* Returning NULLs for VIRTIO_BLK_T_GET_ID. */
+ if (hdr.type & ~(VIRTIO_BLK_T_OUT |
+ VIRTIO_BLK_T_GET_ID)) {
+ /*
+ VIRTIO_BLK_T_IN - does not do
+ anything. Probably for documenting.
+ VIRTIO_BLK_T_SCSI_CMD - for
+ virtio_scsi.
+ VIRTIO_BLK_T_FLUSH - turned off in
+ config space.
+ VIRTIO_BLK_T_BARRIER - defined but not
+ used in anywhere.
+ */
+ mpsslog("%s() %d: type %x ",
+ __func__, __LINE__,
+ hdr.type);
+ mpsslog("is not supported\n");
+ status = -ENOTSUP;
+
+ } else {
+ ret = transfer_blocks(
+ mic->mic_virtblk.virtio_block_fd,
+ iovec,
+ piov - iovec);
+ if (ret < 0 &&
+ status != 0)
+ status = ret;
+ }
+ /* write status and update used pointer */
+ if (status != 0)
+ status = status_error_check(desc);
+ ret = write_status(
+ mic->mic_virtblk.virtio_block_fd,
+ &status);
+#ifdef DEBUG
+ mpsslog("%s() %d: write status=%d on desc=%p\n",
+ __func__, __LINE__,
+ status, desc);
+#endif
+ }
+ }
+ free(iovec);
+_stop_virtblk:
+ stop_virtblk(mic);
+_close_backend:
+ close_backend(mic);
+ } /* forever */
+
+ pthread_exit(NULL);
+}
+
+static void
+reset(struct mic_info *mic)
+{
+#define RESET_TIMEOUT 120
+ int i = RESET_TIMEOUT;
+ setsysfs(mic->name, "state", "reset");
+ while (i) {
+ char *state;
+ state = readsysfs(mic->name, "state");
+ if (!state)
+ goto retry;
+ mpsslog("%s: %s %d state %s\n",
+ mic->name, __func__, __LINE__, state);
+
+ /*
+ * If the shutdown was initiated by OSPM, the state stays
+ * in "suspended" which is also a valid condition for reset.
+ */
+ if ((!strcmp(state, "offline")) ||
+ (!strcmp(state, "suspended"))) {
+ free(state);
+ break;
+ }
+ free(state);
+retry:
+ sleep(1);
+ i--;
+ }
+}
+
+static int
+get_mic_shutdown_status(struct mic_info *mic, char *shutdown_status)
+{
+ if (!strcmp(shutdown_status, "nop"))
+ return MIC_NOP;
+ if (!strcmp(shutdown_status, "crashed"))
+ return MIC_CRASHED;
+ if (!strcmp(shutdown_status, "halted"))
+ return MIC_HALTED;
+ if (!strcmp(shutdown_status, "poweroff"))
+ return MIC_POWER_OFF;
+ if (!strcmp(shutdown_status, "restart"))
+ return MIC_RESTART;
+ mpsslog("%s: BUG invalid status %s\n", mic->name, shutdown_status);
+ /* Invalid state */
+ assert(0);
+};
+
+static int get_mic_state(struct mic_info *mic, char *state)
+{
+ if (!strcmp(state, "offline"))
+ return MIC_OFFLINE;
+ if (!strcmp(state, "online"))
+ return MIC_ONLINE;
+ if (!strcmp(state, "shutting_down"))
+ return MIC_SHUTTING_DOWN;
+ if (!strcmp(state, "reset_failed"))
+ return MIC_RESET_FAILED;
+ if (!strcmp(state, "suspending"))
+ return MIC_SUSPENDING;
+ if (!strcmp(state, "suspended"))
+ return MIC_SUSPENDED;
+ mpsslog("%s: BUG invalid state %s\n", mic->name, state);
+ /* Invalid state */
+ assert(0);
+};
+
+static void mic_handle_shutdown(struct mic_info *mic)
+{
+#define SHUTDOWN_TIMEOUT 60
+ int i = SHUTDOWN_TIMEOUT, ret, stat = 0;
+ char *shutdown_status;
+ while (i) {
+ shutdown_status = readsysfs(mic->name, "shutdown_status");
+ if (!shutdown_status)
+ continue;
+ mpsslog("%s: %s %d shutdown_status %s\n",
+ mic->name, __func__, __LINE__, shutdown_status);
+ switch (get_mic_shutdown_status(mic, shutdown_status)) {
+ case MIC_RESTART:
+ mic->restart = 1;
+ case MIC_HALTED:
+ case MIC_POWER_OFF:
+ case MIC_CRASHED:
+ free(shutdown_status);
+ goto reset;
+ default:
+ break;
+ }
+ free(shutdown_status);
+ sleep(1);
+ i--;
+ }
+reset:
+ ret = kill(mic->pid, SIGTERM);
+ mpsslog("%s: %s %d kill pid %d ret %d\n",
+ mic->name, __func__, __LINE__,
+ mic->pid, ret);
+ if (!ret) {
+ ret = waitpid(mic->pid, &stat,
+ WIFSIGNALED(stat));
+ mpsslog("%s: %s %d waitpid ret %d pid %d\n",
+ mic->name, __func__, __LINE__,
+ ret, mic->pid);
+ }
+ if (ret == mic->pid)
+ reset(mic);
+}
+
+static void *
+mic_config(void *arg)
+{
+ struct mic_info *mic = (struct mic_info *)arg;
+ char *state = NULL;
+ char pathname[PATH_MAX];
+ int fd, ret;
+ struct pollfd ufds[1];
+ char value[4096];
+
+ snprintf(pathname, PATH_MAX - 1, "%s/%s/%s",
+ MICSYSFSDIR, mic->name, "state");
+
+ fd = open(pathname, O_RDONLY);
+ if (fd < 0) {
+ mpsslog("%s: opening file %s failed %s\n",
+ mic->name, pathname, strerror(errno));
+ goto error;
+ }
+
+ do {
+ ret = lseek(fd, 0, SEEK_SET);
+ if (ret < 0) {
+ mpsslog("%s: Failed to seek to file start '%s': %s\n",
+ mic->name, pathname, strerror(errno));
+ goto close_error1;
+ }
+ ret = read(fd, value, sizeof(value));
+ if (ret < 0) {
+ mpsslog("%s: Failed to read sysfs entry '%s': %s\n",
+ mic->name, pathname, strerror(errno));
+ goto close_error1;
+ }
+retry:
+ state = readsysfs(mic->name, "state");
+ if (!state)
+ goto retry;
+ mpsslog("%s: %s %d state %s\n",
+ mic->name, __func__, __LINE__, state);
+ switch (get_mic_state(mic, state)) {
+ case MIC_SHUTTING_DOWN:
+ mic_handle_shutdown(mic);
+ goto close_error;
+ case MIC_SUSPENDING:
+ mic->boot_on_resume = 1;
+ setsysfs(mic->name, "state", "suspend");
+ mic_handle_shutdown(mic);
+ goto close_error;
+ case MIC_OFFLINE:
+ if (mic->boot_on_resume) {
+ setsysfs(mic->name, "state", "boot");
+ mic->boot_on_resume = 0;
+ }
+ break;
+ default:
+ break;
+ }
+ free(state);
+
+ ufds[0].fd = fd;
+ ufds[0].events = POLLERR | POLLPRI;
+ ret = poll(ufds, 1, -1);
+ if (ret < 0) {
+ mpsslog("%s: poll failed %s\n",
+ mic->name, strerror(errno));
+ goto close_error1;
+ }
+ } while (1);
+close_error:
+ free(state);
+close_error1:
+ close(fd);
+error:
+ init_mic(mic);
+ pthread_exit(NULL);
+}
+
+static void
+set_cmdline(struct mic_info *mic)
+{
+ char buffer[PATH_MAX];
+ int len;
+
+ len = snprintf(buffer, PATH_MAX,
+ "clocksource=tsc highres=off nohz=off ");
+ len += snprintf(buffer + len, PATH_MAX,
+ "cpufreq_on;corec6_off;pc3_off;pc6_off ");
+ len += snprintf(buffer + len, PATH_MAX,
+ "ifcfg=static;address,172.31.%d.1;netmask,255.255.255.0",
+ mic->id);
+
+ setsysfs(mic->name, "cmdline", buffer);
+ mpsslog("%s: Command line: \"%s\"\n", mic->name, buffer);
+ snprintf(buffer, PATH_MAX, "172.31.%d.1", mic->id);
+ mpsslog("%s: IPADDR: \"%s\"\n", mic->name, buffer);
+}
+
+static void
+set_log_buf_info(struct mic_info *mic)
+{
+ int fd;
+ off_t len;
+ char system_map[] = "/lib/firmware/mic/System.map";
+ char *map, *temp, log_buf[17] = {'\0'};
+
+ fd = open(system_map, O_RDONLY);
+ if (fd < 0) {
+ mpsslog("%s: Opening System.map failed: %d\n",
+ mic->name, errno);
+ return;
+ }
+ len = lseek(fd, 0, SEEK_END);
+ if (len < 0) {
+ mpsslog("%s: Reading System.map size failed: %d\n",
+ mic->name, errno);
+ close(fd);
+ return;
+ }
+ map = mmap(NULL, len, PROT_READ, MAP_PRIVATE, fd, 0);
+ if (map == MAP_FAILED) {
+ mpsslog("%s: mmap of System.map failed: %d\n",
+ mic->name, errno);
+ close(fd);
+ return;
+ }
+ temp = strstr(map, "__log_buf");
+ if (!temp) {
+ mpsslog("%s: __log_buf not found: %d\n", mic->name, errno);
+ munmap(map, len);
+ close(fd);
+ return;
+ }
+ strncpy(log_buf, temp - 19, 16);
+ setsysfs(mic->name, "log_buf_addr", log_buf);
+ mpsslog("%s: log_buf_addr: %s\n", mic->name, log_buf);
+ temp = strstr(map, "log_buf_len");
+ if (!temp) {
+ mpsslog("%s: log_buf_len not found: %d\n", mic->name, errno);
+ munmap(map, len);
+ close(fd);
+ return;
+ }
+ strncpy(log_buf, temp - 19, 16);
+ setsysfs(mic->name, "log_buf_len", log_buf);
+ mpsslog("%s: log_buf_len: %s\n", mic->name, log_buf);
+ munmap(map, len);
+ close(fd);
+}
+
+static void init_mic(struct mic_info *mic);
+
+static void
+change_virtblk_backend(int x, siginfo_t *siginfo, void *p)
+{
+ struct mic_info *mic;
+
+ for (mic = mic_list.next; mic != NULL; mic = mic->next)
+ mic->mic_virtblk.signaled = 1/* true */;
+}
+
+static void
+init_mic(struct mic_info *mic)
+{
+ struct sigaction ignore = {
+ .sa_flags = 0,
+ .sa_handler = SIG_IGN
+ };
+ struct sigaction act = {
+ .sa_flags = SA_SIGINFO,
+ .sa_sigaction = change_virtblk_backend,
+ };
+ char buffer[PATH_MAX];
+ int err;
+
+ /*
+ * Currently, one virtio block device is supported for each MIC card
+ * at a time. Any user (or test) can send a SIGUSR1 to the MIC daemon.
+ * The signal informs the virtio block backend about a change in the
+ * configuration file which specifies the virtio backend file name on
+ * the host. Virtio block backend then re-reads the configuration file
+ * and switches to the new block device. This signalling mechanism may
+ * not be required once multiple virtio block devices are supported by
+ * the MIC daemon.
+ */
+ sigaction(SIGUSR1, &ignore, NULL);
+
+ mic->pid = fork();
+ switch (mic->pid) {
+ case 0:
+ set_log_buf_info(mic);
+ set_cmdline(mic);
+ add_virtio_device(mic, &virtcons_dev_page.dd);
+ add_virtio_device(mic, &virtnet_dev_page.dd);
+ err = pthread_create(&mic->mic_console.console_thread, NULL,
+ virtio_console, mic);
+ if (err)
+ mpsslog("%s virtcons pthread_create failed %s\n",
+ mic->name, strerror(err));
+ err = pthread_create(&mic->mic_net.net_thread, NULL,
+ virtio_net, mic);
+ if (err)
+ mpsslog("%s virtnet pthread_create failed %s\n",
+ mic->name, strerror(err));
+ err = pthread_create(&mic->mic_virtblk.block_thread, NULL,
+ virtio_block, mic);
+ if (err)
+ mpsslog("%s virtblk pthread_create failed %s\n",
+ mic->name, strerror(err));
+ sigemptyset(&act.sa_mask);
+ err = sigaction(SIGUSR1, &act, NULL);
+ if (err)
+ mpsslog("%s sigaction SIGUSR1 failed %s\n",
+ mic->name, strerror(errno));
+ while (1)
+ sleep(60);
+ case -1:
+ mpsslog("fork failed MIC name %s id %d errno %d\n",
+ mic->name, mic->id, errno);
+ break;
+ default:
+ if (mic->restart) {
+ snprintf(buffer, PATH_MAX, "boot");
+ setsysfs(mic->name, "state", buffer);
+ mpsslog("%s restarting mic %d\n",
+ mic->name, mic->restart);
+ mic->restart = 0;
+ }
+ pthread_create(&mic->config_thread, NULL, mic_config, mic);
+ }
+}
+
+static void
+start_daemon(void)
+{
+ struct mic_info *mic;
+
+ for (mic = mic_list.next; mic != NULL; mic = mic->next)
+ init_mic(mic);
+
+ while (1)
+ sleep(60);
+}
+
+static int
+init_mic_list(void)
+{
+ struct mic_info *mic = &mic_list;
+ struct dirent *file;
+ DIR *dp;
+ int cnt = 0;
+
+ dp = opendir(MICSYSFSDIR);
+ if (!dp)
+ return 0;
+
+ while ((file = readdir(dp)) != NULL) {
+ if (!strncmp(file->d_name, "mic", 3)) {
+ mic->next = calloc(1, sizeof(struct mic_info));
+ if (mic->next) {
+ mic = mic->next;
+ mic->id = atoi(&file->d_name[3]);
+ mic->name = malloc(strlen(file->d_name) + 16);
+ if (mic->name)
+ strcpy(mic->name, file->d_name);
+ mpsslog("MIC name %s id %d\n", mic->name,
+ mic->id);
+ cnt++;
+ }
+ }
+ }
+
+ closedir(dp);
+ return cnt;
+}
+
+void
+mpsslog(char *format, ...)
+{
+ va_list args;
+ char buffer[4096];
+ char ts[52], *ts1;
+ time_t t;
+
+ if (logfp == NULL)
+ return;
+
+ va_start(args, format);
+ vsprintf(buffer, format, args);
+ va_end(args);
+
+ time(&t);
+ ts1 = ctime_r(&t, ts);
+ ts1[strlen(ts1) - 1] = '\0';
+ fprintf(logfp, "%s: %s", ts1, buffer);
+
+ fflush(logfp);
+}
+
+int
+main(int argc, char *argv[])
+{
+ int cnt;
+ pid_t pid;
+
+ myname = argv[0];
+
+ logfp = fopen(LOGFILE_NAME, "a+");
+ if (!logfp) {
+ fprintf(stderr, "cannot open logfile '%s'\n", LOGFILE_NAME);
+ exit(1);
+ }
+ pid = fork();
+ switch (pid) {
+ case 0:
+ break;
+ case -1:
+ exit(2);
+ default:
+ exit(0);
+ }
+
+ mpsslog("MIC Daemon start\n");
+
+ cnt = init_mic_list();
+ if (cnt == 0) {
+ mpsslog("MIC module not loaded\n");
+ exit(3);
+ }
+ mpsslog("MIC found %d devices\n", cnt);
+
+ start_daemon();
+
+ exit(0);
+}
diff --git a/Documentation/mic/mpssd/mpssd.h b/Documentation/mic/mpssd/mpssd.h
new file mode 100644
index 00000000000..f5f18b15d9a
--- /dev/null
+++ b/Documentation/mic/mpssd/mpssd.h
@@ -0,0 +1,102 @@
+/*
+ * Intel MIC Platform Software Stack (MPSS)
+ *
+ * Copyright(c) 2013 Intel Corporation.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License, version 2, as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * The full GNU General Public License is included in this distribution in
+ * the file called "COPYING".
+ *
+ * Intel MIC User Space Tools.
+ */
+#ifndef _MPSSD_H_
+#define _MPSSD_H_
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <fcntl.h>
+#include <unistd.h>
+#include <dirent.h>
+#include <libgen.h>
+#include <pthread.h>
+#include <stdarg.h>
+#include <time.h>
+#include <errno.h>
+#include <sys/dir.h>
+#include <sys/ioctl.h>
+#include <sys/poll.h>
+#include <sys/types.h>
+#include <sys/socket.h>
+#include <sys/stat.h>
+#include <sys/types.h>
+#include <sys/mman.h>
+#include <sys/utsname.h>
+#include <sys/wait.h>
+#include <netinet/in.h>
+#include <arpa/inet.h>
+#include <netdb.h>
+#include <pthread.h>
+#include <signal.h>
+#include <limits.h>
+#include <syslog.h>
+#include <getopt.h>
+#include <net/if.h>
+#include <linux/if_tun.h>
+#include <linux/if_tun.h>
+#include <linux/virtio_ids.h>
+
+#define MICSYSFSDIR "/sys/class/mic"
+#define LOGFILE_NAME "/var/log/mpssd"
+#define PAGE_SIZE 4096
+
+struct mic_console_info {
+ pthread_t console_thread;
+ int virtio_console_fd;
+ void *console_dp;
+};
+
+struct mic_net_info {
+ pthread_t net_thread;
+ int virtio_net_fd;
+ int tap_fd;
+ void *net_dp;
+};
+
+struct mic_virtblk_info {
+ pthread_t block_thread;
+ int virtio_block_fd;
+ void *block_dp;
+ volatile sig_atomic_t signaled;
+ char *backend_file;
+ int backend;
+ void *backend_addr;
+ long backend_size;
+};
+
+struct mic_info {
+ int id;
+ char *name;
+ pthread_t config_thread;
+ pid_t pid;
+ struct mic_console_info mic_console;
+ struct mic_net_info mic_net;
+ struct mic_virtblk_info mic_virtblk;
+ int restart;
+ int boot_on_resume;
+ struct mic_info *next;
+};
+
+__attribute__((format(printf, 1, 2)))
+void mpsslog(char *format, ...);
+char *readsysfs(char *dir, char *entry);
+int setsysfs(char *dir, char *entry, char *value);
+#endif
diff --git a/Documentation/mic/mpssd/sysfs.c b/Documentation/mic/mpssd/sysfs.c
new file mode 100644
index 00000000000..8dd32693608
--- /dev/null
+++ b/Documentation/mic/mpssd/sysfs.c
@@ -0,0 +1,102 @@
+/*
+ * Intel MIC Platform Software Stack (MPSS)
+ *
+ * Copyright(c) 2013 Intel Corporation.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License, version 2, as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * The full GNU General Public License is included in this distribution in
+ * the file called "COPYING".
+ *
+ * Intel MIC User Space Tools.
+ */
+
+#include "mpssd.h"
+
+#define PAGE_SIZE 4096
+
+char *
+readsysfs(char *dir, char *entry)
+{
+ char filename[PATH_MAX];
+ char value[PAGE_SIZE];
+ char *string = NULL;
+ int fd;
+ int len;
+
+ if (dir == NULL)
+ snprintf(filename, PATH_MAX, "%s/%s", MICSYSFSDIR, entry);
+ else
+ snprintf(filename, PATH_MAX,
+ "%s/%s/%s", MICSYSFSDIR, dir, entry);
+
+ fd = open(filename, O_RDONLY);
+ if (fd < 0) {
+ mpsslog("Failed to open sysfs entry '%s': %s\n",
+ filename, strerror(errno));
+ return NULL;
+ }
+
+ len = read(fd, value, sizeof(value));
+ if (len < 0) {
+ mpsslog("Failed to read sysfs entry '%s': %s\n",
+ filename, strerror(errno));
+ goto readsys_ret;
+ }
+ if (len == 0)
+ goto readsys_ret;
+
+ value[len - 1] = '\0';
+
+ string = malloc(strlen(value) + 1);
+ if (string)
+ strcpy(string, value);
+
+readsys_ret:
+ close(fd);
+ return string;
+}
+
+int
+setsysfs(char *dir, char *entry, char *value)
+{
+ char filename[PATH_MAX];
+ char *oldvalue;
+ int fd, ret = 0;
+
+ if (dir == NULL)
+ snprintf(filename, PATH_MAX, "%s/%s", MICSYSFSDIR, entry);
+ else
+ snprintf(filename, PATH_MAX, "%s/%s/%s",
+ MICSYSFSDIR, dir, entry);
+
+ oldvalue = readsysfs(dir, entry);
+
+ fd = open(filename, O_RDWR);
+ if (fd < 0) {
+ ret = errno;
+ mpsslog("Failed to open sysfs entry '%s': %s\n",
+ filename, strerror(errno));
+ goto done;
+ }
+
+ if (!oldvalue || strcmp(value, oldvalue)) {
+ if (write(fd, value, strlen(value)) < 0) {
+ ret = errno;
+ mpsslog("Failed to write new sysfs entry '%s': %s\n",
+ filename, strerror(errno));
+ }
+ }
+ close(fd);
+done:
+ if (oldvalue)
+ free(oldvalue);
+ return ret;
+}
diff --git a/Documentation/misc-devices/eeprom b/Documentation/misc-devices/eeprom
index f7e8104b576..ba692011f22 100644
--- a/Documentation/misc-devices/eeprom
+++ b/Documentation/misc-devices/eeprom
@@ -38,7 +38,7 @@ Supported chips:
Authors:
Frodo Looijaard <frodol@dds.nl>,
Philip Edelbrock <phil@netroedge.com>,
- Jean Delvare <khali@linux-fr.org>,
+ Jean Delvare <jdelvare@suse.de>,
Greg Kroah-Hartman <greg@kroah.com>,
IBM Corp.
diff --git a/Documentation/misc-devices/mei/mei-amt-version.c b/Documentation/misc-devices/mei/mei-amt-version.c
index 49e4f770864..57d0d871dcf 100644
--- a/Documentation/misc-devices/mei/mei-amt-version.c
+++ b/Documentation/misc-devices/mei/mei-amt-version.c
@@ -115,8 +115,6 @@ static bool mei_init(struct mei *me, const uuid_le *guid,
struct mei_client *cl;
struct mei_connect_client_data data;
- mei_deinit(me);
-
me->verbose = verbose;
me->fd = open("/dev/mei", O_RDWR);
diff --git a/Documentation/module-signing.txt b/Documentation/module-signing.txt
new file mode 100644
index 00000000000..09c2382ad05
--- /dev/null
+++ b/Documentation/module-signing.txt
@@ -0,0 +1,241 @@
+ ==============================
+ KERNEL MODULE SIGNING FACILITY
+ ==============================
+
+CONTENTS
+
+ - Overview.
+ - Configuring module signing.
+ - Generating signing keys.
+ - Public keys in the kernel.
+ - Manually signing modules.
+ - Signed modules and stripping.
+ - Loading signed modules.
+ - Non-valid signatures and unsigned modules.
+ - Administering/protecting the private key.
+
+
+========
+OVERVIEW
+========
+
+The kernel module signing facility cryptographically signs modules during
+installation and then checks the signature upon loading the module. This
+allows increased kernel security by disallowing the loading of unsigned modules
+or modules signed with an invalid key. Module signing increases security by
+making it harder to load a malicious module into the kernel. The module
+signature checking is done by the kernel so that it is not necessary to have
+trusted userspace bits.
+
+This facility uses X.509 ITU-T standard certificates to encode the public keys
+involved. The signatures are not themselves encoded in any industrial standard
+type. The facility currently only supports the RSA public key encryption
+standard (though it is pluggable and permits others to be used). The possible
+hash algorithms that can be used are SHA-1, SHA-224, SHA-256, SHA-384, and
+SHA-512 (the algorithm is selected by data in the signature).
+
+
+==========================
+CONFIGURING MODULE SIGNING
+==========================
+
+The module signing facility is enabled by going to the "Enable Loadable Module
+Support" section of the kernel configuration and turning on
+
+ CONFIG_MODULE_SIG "Module signature verification"
+
+This has a number of options available:
+
+ (1) "Require modules to be validly signed" (CONFIG_MODULE_SIG_FORCE)
+
+ This specifies how the kernel should deal with a module that has a
+ signature for which the key is not known or a module that is unsigned.
+
+ If this is off (ie. "permissive"), then modules for which the key is not
+ available and modules that are unsigned are permitted, but the kernel will
+ be marked as being tainted, and the concerned modules will be marked as
+ tainted, shown with the character 'E'.
+
+ If this is on (ie. "restrictive"), only modules that have a valid
+ signature that can be verified by a public key in the kernel's possession
+ will be loaded. All other modules will generate an error.
+
+ Irrespective of the setting here, if the module has a signature block that
+ cannot be parsed, it will be rejected out of hand.
+
+
+ (2) "Automatically sign all modules" (CONFIG_MODULE_SIG_ALL)
+
+ If this is on then modules will be automatically signed during the
+ modules_install phase of a build. If this is off, then the modules must
+ be signed manually using:
+
+ scripts/sign-file
+
+
+ (3) "Which hash algorithm should modules be signed with?"
+
+ This presents a choice of which hash algorithm the installation phase will
+ sign the modules with:
+
+ CONFIG_MODULE_SIG_SHA1 "Sign modules with SHA-1"
+ CONFIG_MODULE_SIG_SHA224 "Sign modules with SHA-224"
+ CONFIG_MODULE_SIG_SHA256 "Sign modules with SHA-256"
+ CONFIG_MODULE_SIG_SHA384 "Sign modules with SHA-384"
+ CONFIG_MODULE_SIG_SHA512 "Sign modules with SHA-512"
+
+ The algorithm selected here will also be built into the kernel (rather
+ than being a module) so that modules signed with that algorithm can have
+ their signatures checked without causing a dependency loop.
+
+
+=======================
+GENERATING SIGNING KEYS
+=======================
+
+Cryptographic keypairs are required to generate and check signatures. A
+private key is used to generate a signature and the corresponding public key is
+used to check it. The private key is only needed during the build, after which
+it can be deleted or stored securely. The public key gets built into the
+kernel so that it can be used to check the signatures as the modules are
+loaded.
+
+Under normal conditions, the kernel build will automatically generate a new
+keypair using openssl if one does not exist in the files:
+
+ signing_key.priv
+ signing_key.x509
+
+during the building of vmlinux (the public part of the key needs to be built
+into vmlinux) using parameters in the:
+
+ x509.genkey
+
+file (which is also generated if it does not already exist).
+
+It is strongly recommended that you provide your own x509.genkey file.
+
+Most notably, in the x509.genkey file, the req_distinguished_name section
+should be altered from the default:
+
+ [ req_distinguished_name ]
+ O = Magrathea
+ CN = Glacier signing key
+ emailAddress = slartibartfast@magrathea.h2g2
+
+The generated RSA key size can also be set with:
+
+ [ req ]
+ default_bits = 4096
+
+
+It is also possible to manually generate the key private/public files using the
+x509.genkey key generation configuration file in the root node of the Linux
+kernel sources tree and the openssl command. The following is an example to
+generate the public/private key files:
+
+ openssl req -new -nodes -utf8 -sha256 -days 36500 -batch -x509 \
+ -config x509.genkey -outform DER -out signing_key.x509 \
+ -keyout signing_key.priv
+
+
+=========================
+PUBLIC KEYS IN THE KERNEL
+=========================
+
+The kernel contains a ring of public keys that can be viewed by root. They're
+in a keyring called ".system_keyring" that can be seen by:
+
+ [root@deneb ~]# cat /proc/keys
+ ...
+ 223c7853 I------ 1 perm 1f030000 0 0 keyring .system_keyring: 1
+ 302d2d52 I------ 1 perm 1f010000 0 0 asymmetri Fedora kernel signing key: d69a84e6bce3d216b979e9505b3e3ef9a7118079: X509.RSA a7118079 []
+ ...
+
+Beyond the public key generated specifically for module signing, any file
+placed in the kernel source root directory or the kernel build root directory
+whose name is suffixed with ".x509" will be assumed to be an X.509 public key
+and will be added to the keyring.
+
+Further, the architecture code may take public keys from a hardware store and
+add those in also (e.g. from the UEFI key database).
+
+Finally, it is possible to add additional public keys by doing:
+
+ keyctl padd asymmetric "" [.system_keyring-ID] <[key-file]
+
+e.g.:
+
+ keyctl padd asymmetric "" 0x223c7853 <my_public_key.x509
+
+Note, however, that the kernel will only permit keys to be added to
+.system_keyring _if_ the new key's X.509 wrapper is validly signed by a key
+that is already resident in the .system_keyring at the time the key was added.
+
+
+=========================
+MANUALLY SIGNING MODULES
+=========================
+
+To manually sign a module, use the scripts/sign-file tool available in
+the Linux kernel source tree. The script requires 4 arguments:
+
+ 1. The hash algorithm (e.g., sha256)
+ 2. The private key filename
+ 3. The public key filename
+ 4. The kernel module to be signed
+
+The following is an example to sign a kernel module:
+
+ scripts/sign-file sha512 kernel-signkey.priv \
+ kernel-signkey.x509 module.ko
+
+The hash algorithm used does not have to match the one configured, but if it
+doesn't, you should make sure that hash algorithm is either built into the
+kernel or can be loaded without requiring itself.
+
+
+============================
+SIGNED MODULES AND STRIPPING
+============================
+
+A signed module has a digital signature simply appended at the end. The string
+"~Module signature appended~." at the end of the module's file confirms that a
+signature is present but it does not confirm that the signature is valid!
+
+Signed modules are BRITTLE as the signature is outside of the defined ELF
+container. Thus they MAY NOT be stripped once the signature is computed and
+attached. Note the entire module is the signed payload, including any and all
+debug information present at the time of signing.
+
+
+======================
+LOADING SIGNED MODULES
+======================
+
+Modules are loaded with insmod, modprobe, init_module() or finit_module(),
+exactly as for unsigned modules as no processing is done in userspace. The
+signature checking is all done within the kernel.
+
+
+=========================================
+NON-VALID SIGNATURES AND UNSIGNED MODULES
+=========================================
+
+If CONFIG_MODULE_SIG_FORCE is enabled or enforcemodulesig=1 is supplied on
+the kernel command line, the kernel will only load validly signed modules
+for which it has a public key. Otherwise, it will also load modules that are
+unsigned. Any module for which the kernel has a key, but which proves to have
+a signature mismatch will not be permitted to load.
+
+Any module that has an unparseable signature will be rejected.
+
+
+=========================================
+ADMINISTERING/PROTECTING THE PRIVATE KEY
+=========================================
+
+Since the private key is used to sign modules, viruses and malware could use
+the private key to sign modules and compromise the operating system. The
+private key must be either destroyed or moved to a secure location and not kept
+in the root node of the kernel source tree.
diff --git a/Documentation/mtd/nand/pxa3xx-nand.txt b/Documentation/mtd/nand/pxa3xx-nand.txt
new file mode 100644
index 00000000000..1074cbc67ec
--- /dev/null
+++ b/Documentation/mtd/nand/pxa3xx-nand.txt
@@ -0,0 +1,113 @@
+
+About this document
+===================
+
+Some notes about Marvell's NAND controller available in PXA and Armada 370/XP
+SoC (aka NFCv1 and NFCv2), with an emphasis on the latter.
+
+NFCv2 controller background
+===========================
+
+The controller has a 2176 bytes FIFO buffer. Therefore, in order to support
+larger pages, I/O operations on 4 KiB and 8 KiB pages is done with a set of
+chunked transfers.
+
+For instance, if we choose a 2048 data chunk and set "BCH" ECC (see below)
+we'll have this layout in the pages:
+
+ ------------------------------------------------------------------------------
+ | 2048B data | 32B spare | 30B ECC || 2048B data | 32B spare | 30B ECC | ... |
+ ------------------------------------------------------------------------------
+
+The driver reads the data and spare portions independently and builds an internal
+buffer with this layout (in the 4 KiB page case):
+
+ ------------------------------------------
+ | 4096B data | 64B spare |
+ ------------------------------------------
+
+Also, for the READOOB command the driver disables the ECC and reads a 'spare + ECC'
+OOB, one per chunk read.
+
+ -------------------------------------------------------------------
+ | 4096B data | 32B spare | 30B ECC | 32B spare | 30B ECC |
+ -------------------------------------------------------------------
+
+So, in order to achieve reading (for instance), we issue several READ0 commands
+(with some additional controller-specific magic) and read two chunks of 2080B
+(2048 data + 32 spare) each.
+The driver accommodates this data to expose the NAND core a contiguous buffer
+(4096 data + spare) or (4096 + spare + ECC + spare + ECC).
+
+ECC
+===
+
+The controller has built-in hardware ECC capabilities. In addition it is
+configurable between two modes: 1) Hamming, 2) BCH.
+
+Note that the actual BCH mode: BCH-4 or BCH-8 will depend on the way
+the controller is configured to transfer the data.
+
+In the BCH mode the ECC code will be calculated for each transferred chunk
+and expected to be located (when reading/programming) right after the spare
+bytes as the figure above shows.
+
+So, repeating the above scheme, a 2048B data chunk will be followed by 32B
+spare, and then the ECC controller will read/write the ECC code (30B in
+this case):
+
+ ------------------------------------
+ | 2048B data | 32B spare | 30B ECC |
+ ------------------------------------
+
+If the ECC mode is 'BCH' then the ECC is *always* 30 bytes long.
+If the ECC mode is 'Hamming' the ECC is 6 bytes long, for each 512B block.
+So in Hamming mode, a 2048B page will have a 24B ECC.
+
+Despite all of the above, the controller requires the driver to only read or
+write in multiples of 8-bytes, because the data buffer is 64-bits.
+
+OOB
+===
+
+Because of the above scheme, and because the "spare" OOB is really located in
+the middle of a page, spare OOB cannot be read or write independently of the
+data area. In other words, in order to read the OOB (aka READOOB), the entire
+page (aka READ0) has to be read.
+
+In the same sense, in order to write to the spare OOB the driver has to write
+an *entire* page.
+
+Factory bad blocks handling
+===========================
+
+Given the ECC BCH requires to layout the device's pages in a split
+data/OOB/data/OOB way, the controller has a view of the flash page that's
+different from the specified (aka the manufacturer's) view. In other words,
+
+Factory view:
+
+ -----------------------------------------------
+ | Data |x OOB |
+ -----------------------------------------------
+
+Driver's view:
+
+ -----------------------------------------------
+ | Data | OOB | Data x | OOB |
+ -----------------------------------------------
+
+It can be seen from the above, that the factory bad block marker must be
+searched within the 'data' region, and not in the usual OOB region.
+
+In addition, this means under regular usage the driver will write such
+position (since it belongs to the data region) and every used block is
+likely to be marked as bad.
+
+For this reason, marking the block as bad in the OOB is explicitly
+disabled by using the NAND_BBT_NO_OOB_BBM option in the driver. The rationale
+for this is that there's no point in marking a block as bad, because good
+blocks are also 'marked as bad' (in the OOB BBM sense) under normal usage.
+
+Instead, the driver relies on the bad block table alone, and should only perform
+the bad block scan on the very first time (when the device hasn't been used).
diff --git a/Documentation/mtd/spi-nor.txt b/Documentation/mtd/spi-nor.txt
new file mode 100644
index 00000000000..548d6306ebc
--- /dev/null
+++ b/Documentation/mtd/spi-nor.txt
@@ -0,0 +1,62 @@
+ SPI NOR framework
+ ============================================
+
+Part I - Why do we need this framework?
+---------------------------------------
+
+SPI bus controllers (drivers/spi/) only deal with streams of bytes; the bus
+controller operates agnostic of the specific device attached. However, some
+controllers (such as Freescale's QuadSPI controller) cannot easily handle
+arbitrary streams of bytes, but rather are designed specifically for SPI NOR.
+
+In particular, Freescale's QuadSPI controller must know the NOR commands to
+find the right LUT sequence. Unfortunately, the SPI subsystem has no notion of
+opcodes, addresses, or data payloads; a SPI controller simply knows to send or
+receive bytes (Tx and Rx). Therefore, we must define a new layering scheme under
+which the controller driver is aware of the opcodes, addressing, and other
+details of the SPI NOR protocol.
+
+Part II - How does the framework work?
+--------------------------------------
+
+This framework just adds a new layer between the MTD and the SPI bus driver.
+With this new layer, the SPI NOR controller driver does not depend on the
+m25p80 code anymore.
+
+ Before this framework, the layer is like:
+
+ MTD
+ ------------------------
+ m25p80
+ ------------------------
+ SPI bus driver
+ ------------------------
+ SPI NOR chip
+
+ After this framework, the layer is like:
+ MTD
+ ------------------------
+ SPI NOR framework
+ ------------------------
+ m25p80
+ ------------------------
+ SPI bus driver
+ ------------------------
+ SPI NOR chip
+
+ With the SPI NOR controller driver (Freescale QuadSPI), it looks like:
+ MTD
+ ------------------------
+ SPI NOR framework
+ ------------------------
+ fsl-quadSPI
+ ------------------------
+ SPI NOR chip
+
+Part III - How can drivers use the framework?
+---------------------------------------------
+
+The main API is spi_nor_scan(). Before you call the hook, a driver should
+initialize the necessary fields for spi_nor{}. Please see
+drivers/mtd/spi-nor/spi-nor.c for detail. Please also refer to fsl-quadspi.c
+when you want to write a new driver for a SPI NOR controller.
diff --git a/Documentation/mutex-design.txt b/Documentation/mutex-design.txt
index 38c10fd7f41..ee231ed09ec 100644
--- a/Documentation/mutex-design.txt
+++ b/Documentation/mutex-design.txt
@@ -1,139 +1,157 @@
Generic Mutex Subsystem
started by Ingo Molnar <mingo@redhat.com>
+updated by Davidlohr Bueso <davidlohr@hp.com>
- "Why on earth do we need a new mutex subsystem, and what's wrong
- with semaphores?"
+What are mutexes?
+-----------------
-firstly, there's nothing wrong with semaphores. But if the simpler
-mutex semantics are sufficient for your code, then there are a couple
-of advantages of mutexes:
+In the Linux kernel, mutexes refer to a particular locking primitive
+that enforces serialization on shared memory systems, and not only to
+the generic term referring to 'mutual exclusion' found in academia
+or similar theoretical text books. Mutexes are sleeping locks which
+behave similarly to binary semaphores, and were introduced in 2006[1]
+as an alternative to these. This new data structure provided a number
+of advantages, including simpler interfaces, and at that time smaller
+code (see Disadvantages).
- - 'struct mutex' is smaller on most architectures: E.g. on x86,
- 'struct semaphore' is 20 bytes, 'struct mutex' is 16 bytes.
- A smaller structure size means less RAM footprint, and better
- CPU-cache utilization.
+[1] http://lwn.net/Articles/164802/
- - tighter code. On x86 i get the following .text sizes when
- switching all mutex-alike semaphores in the kernel to the mutex
- subsystem:
+Implementation
+--------------
- text data bss dec hex filename
- 3280380 868188 396860 4545428 455b94 vmlinux-semaphore
- 3255329 865296 396732 4517357 44eded vmlinux-mutex
+Mutexes are represented by 'struct mutex', defined in include/linux/mutex.h
+and implemented in kernel/locking/mutex.c. These locks use a three
+state atomic counter (->count) to represent the different possible
+transitions that can occur during the lifetime of a lock:
- that's 25051 bytes of code saved, or a 0.76% win - off the hottest
- codepaths of the kernel. (The .data savings are 2892 bytes, or 0.33%)
- Smaller code means better icache footprint, which is one of the
- major optimization goals in the Linux kernel currently.
+ 1: unlocked
+ 0: locked, no waiters
+ negative: locked, with potential waiters
- - the mutex subsystem is slightly faster and has better scalability for
- contended workloads. On an 8-way x86 system, running a mutex-based
- kernel and testing creat+unlink+close (of separate, per-task files)
- in /tmp with 16 parallel tasks, the average number of ops/sec is:
+In its most basic form it also includes a wait-queue and a spinlock
+that serializes access to it. CONFIG_SMP systems can also include
+a pointer to the lock task owner (->owner) as well as a spinner MCS
+lock (->osq), both described below in (ii).
- Semaphores: Mutexes:
+When acquiring a mutex, there are three possible paths that can be
+taken, depending on the state of the lock:
- $ ./test-mutex V 16 10 $ ./test-mutex V 16 10
- 8 CPUs, running 16 tasks. 8 CPUs, running 16 tasks.
- checking VFS performance. checking VFS performance.
- avg loops/sec: 34713 avg loops/sec: 84153
- CPU utilization: 63% CPU utilization: 22%
+(i) fastpath: tries to atomically acquire the lock by decrementing the
+ counter. If it was already taken by another task it goes to the next
+ possible path. This logic is architecture specific. On x86-64, the
+ locking fastpath is 2 instructions:
- i.e. in this workload, the mutex based kernel was 2.4 times faster
- than the semaphore based kernel, _and_ it also had 2.8 times less CPU
- utilization. (In terms of 'ops per CPU cycle', the semaphore kernel
- performed 551 ops/sec per 1% of CPU time used, while the mutex kernel
- performed 3825 ops/sec per 1% of CPU time used - it was 6.9 times
- more efficient.)
-
- the scalability difference is visible even on a 2-way P4 HT box:
-
- Semaphores: Mutexes:
-
- $ ./test-mutex V 16 10 $ ./test-mutex V 16 10
- 4 CPUs, running 16 tasks. 8 CPUs, running 16 tasks.
- checking VFS performance. checking VFS performance.
- avg loops/sec: 127659 avg loops/sec: 181082
- CPU utilization: 100% CPU utilization: 34%
-
- (the straight performance advantage of mutexes is 41%, the per-cycle
- efficiency of mutexes is 4.1 times better.)
-
- - there are no fastpath tradeoffs, the mutex fastpath is just as tight
- as the semaphore fastpath. On x86, the locking fastpath is 2
- instructions:
-
- c0377ccb <mutex_lock>:
- c0377ccb: f0 ff 08 lock decl (%eax)
- c0377cce: 78 0e js c0377cde <.text..lock.mutex>
- c0377cd0: c3 ret
+ 0000000000000e10 <mutex_lock>:
+ e21: f0 ff 0b lock decl (%rbx)
+ e24: 79 08 jns e2e <mutex_lock+0x1e>
the unlocking fastpath is equally tight:
- c0377cd1 <mutex_unlock>:
- c0377cd1: f0 ff 00 lock incl (%eax)
- c0377cd4: 7e 0f jle c0377ce5 <.text..lock.mutex+0x7>
- c0377cd6: c3 ret
-
- - 'struct mutex' semantics are well-defined and are enforced if
- CONFIG_DEBUG_MUTEXES is turned on. Semaphores on the other hand have
- virtually no debugging code or instrumentation. The mutex subsystem
- checks and enforces the following rules:
-
- * - only one task can hold the mutex at a time
- * - only the owner can unlock the mutex
- * - multiple unlocks are not permitted
- * - recursive locking is not permitted
- * - a mutex object must be initialized via the API
- * - a mutex object must not be initialized via memset or copying
- * - task may not exit with mutex held
- * - memory areas where held locks reside must not be freed
- * - held mutexes must not be reinitialized
- * - mutexes may not be used in hardware or software interrupt
- * contexts such as tasklets and timers
-
- furthermore, there are also convenience features in the debugging
- code:
-
- * - uses symbolic names of mutexes, whenever they are printed in debug output
- * - point-of-acquire tracking, symbolic lookup of function names
- * - list of all locks held in the system, printout of them
- * - owner tracking
- * - detects self-recursing locks and prints out all relevant info
- * - detects multi-task circular deadlocks and prints out all affected
- * locks and tasks (and only those tasks)
+ 0000000000000bc0 <mutex_unlock>:
+ bc8: f0 ff 07 lock incl (%rdi)
+ bcb: 7f 0a jg bd7 <mutex_unlock+0x17>
+
+
+(ii) midpath: aka optimistic spinning, tries to spin for acquisition
+ while the lock owner is running and there are no other tasks ready
+ to run that have higher priority (need_resched). The rationale is
+ that if the lock owner is running, it is likely to release the lock
+ soon. The mutex spinners are queued up using MCS lock so that only
+ one spinner can compete for the mutex.
+
+ The MCS lock (proposed by Mellor-Crummey and Scott) is a simple spinlock
+ with the desirable properties of being fair and with each cpu trying
+ to acquire the lock spinning on a local variable. It avoids expensive
+ cacheline bouncing that common test-and-set spinlock implementations
+ incur. An MCS-like lock is specially tailored for optimistic spinning
+ for sleeping lock implementation. An important feature of the customized
+ MCS lock is that it has the extra property that spinners are able to exit
+ the MCS spinlock queue when they need to reschedule. This further helps
+ avoid situations where MCS spinners that need to reschedule would continue
+ waiting to spin on mutex owner, only to go directly to slowpath upon
+ obtaining the MCS lock.
+
+
+(iii) slowpath: last resort, if the lock is still unable to be acquired,
+ the task is added to the wait-queue and sleeps until woken up by the
+ unlock path. Under normal circumstances it blocks as TASK_UNINTERRUPTIBLE.
+
+While formally kernel mutexes are sleepable locks, it is path (ii) that
+makes them more practically a hybrid type. By simply not interrupting a
+task and busy-waiting for a few cycles instead of immediately sleeping,
+the performance of this lock has been seen to significantly improve a
+number of workloads. Note that this technique is also used for rw-semaphores.
+
+Semantics
+---------
+
+The mutex subsystem checks and enforces the following rules:
+
+ - Only one task can hold the mutex at a time.
+ - Only the owner can unlock the mutex.
+ - Multiple unlocks are not permitted.
+ - Recursive locking/unlocking is not permitted.
+ - A mutex must only be initialized via the API (see below).
+ - A task may not exit with a mutex held.
+ - Memory areas where held locks reside must not be freed.
+ - Held mutexes must not be reinitialized.
+ - Mutexes may not be used in hardware or software interrupt
+ contexts such as tasklets and timers.
+
+These semantics are fully enforced when CONFIG DEBUG_MUTEXES is enabled.
+In addition, the mutex debugging code also implements a number of other
+features that make lock debugging easier and faster:
+
+ - Uses symbolic names of mutexes, whenever they are printed
+ in debug output.
+ - Point-of-acquire tracking, symbolic lookup of function names,
+ list of all locks held in the system, printout of them.
+ - Owner tracking.
+ - Detects self-recursing locks and prints out all relevant info.
+ - Detects multi-task circular deadlocks and prints out all affected
+ locks and tasks (and only those tasks).
+
+
+Interfaces
+----------
+Statically define the mutex:
+ DEFINE_MUTEX(name);
+
+Dynamically initialize the mutex:
+ mutex_init(mutex);
+
+Acquire the mutex, uninterruptible:
+ void mutex_lock(struct mutex *lock);
+ void mutex_lock_nested(struct mutex *lock, unsigned int subclass);
+ int mutex_trylock(struct mutex *lock);
+
+Acquire the mutex, interruptible:
+ int mutex_lock_interruptible_nested(struct mutex *lock,
+ unsigned int subclass);
+ int mutex_lock_interruptible(struct mutex *lock);
+
+Acquire the mutex, interruptible, if dec to 0:
+ int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock);
+
+Unlock the mutex:
+ void mutex_unlock(struct mutex *lock);
+
+Test if the mutex is taken:
+ int mutex_is_locked(struct mutex *lock);
Disadvantages
-------------
-The stricter mutex API means you cannot use mutexes the same way you
-can use semaphores: e.g. they cannot be used from an interrupt context,
-nor can they be unlocked from a different context that which acquired
-it. [ I'm not aware of any other (e.g. performance) disadvantages from
-using mutexes at the moment, please let me know if you find any. ]
-
-Implementation of mutexes
--------------------------
-
-'struct mutex' is the new mutex type, defined in include/linux/mutex.h
-and implemented in kernel/mutex.c. It is a counter-based mutex with a
-spinlock and a wait-list. The counter has 3 states: 1 for "unlocked",
-0 for "locked" and negative numbers (usually -1) for "locked, potential
-waiters queued".
-
-the APIs of 'struct mutex' have been streamlined:
-
- DEFINE_MUTEX(name);
+Unlike its original design and purpose, 'struct mutex' is larger than
+most locks in the kernel. E.g: on x86-64 it is 40 bytes, almost twice
+as large as 'struct semaphore' (24 bytes) and 8 bytes shy of the
+'struct rw_semaphore' variant. Larger structure sizes mean more CPU
+cache and memory footprint.
- mutex_init(mutex);
+When to use mutexes
+-------------------
- void mutex_lock(struct mutex *lock);
- int mutex_lock_interruptible(struct mutex *lock);
- int mutex_trylock(struct mutex *lock);
- void mutex_unlock(struct mutex *lock);
- int mutex_is_locked(struct mutex *lock);
- void mutex_lock_nested(struct mutex *lock, unsigned int subclass);
- int mutex_lock_interruptible_nested(struct mutex *lock,
- unsigned int subclass);
- int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock);
+Unless the strict semantics of mutexes are unsuitable and/or the critical
+region prevents the lock from being shared, always prefer them to any other
+locking primitive.
diff --git a/Documentation/networking/00-INDEX b/Documentation/networking/00-INDEX
index f11580f8719..557b6ef70c2 100644
--- a/Documentation/networking/00-INDEX
+++ b/Documentation/networking/00-INDEX
@@ -6,8 +6,14 @@
- information on the 3Com Etherlink III Series Ethernet cards.
6pack.txt
- info on the 6pack protocol, an alternative to KISS for AX.25
-DLINK.txt
- - info on the D-Link DE-600/DE-620 parallel port pocket adapters
+LICENSE.qla3xxx
+ - GPLv2 for QLogic Linux Networking HBA Driver
+LICENSE.qlge
+ - GPLv2 for QLogic Linux qlge NIC Driver
+LICENSE.qlcnic
+ - GPLv2 for QLogic Linux qlcnic NIC Driver
+Makefile
+ - Makefile for docsrc.
PLIP.txt
- PLIP: The Parallel Line Internet Protocol device driver
README.ipw2100
@@ -17,7 +23,7 @@ README.ipw2200
README.sb1000
- info on General Instrument/NextLevel SURFboard1000 cable modem.
alias.txt
- - info on using alias network devices
+ - info on using alias network devices.
arcnet-hardware.txt
- tons of info on ARCnet, hubs, jumper settings for ARCnet cards, etc.
arcnet.txt
@@ -80,7 +86,7 @@ framerelay.txt
- info on using Frame Relay/Data Link Connection Identifier (DLCI).
gen_stats.txt
- Generic networking statistics for netlink users.
-generic_hdlc.txt
+generic-hdlc.txt
- The generic High Level Data Link Control (HDLC) layer.
generic_netlink.txt
- info on Generic Netlink
@@ -88,6 +94,8 @@ gianfar.txt
- Gianfar Ethernet Driver.
i40e.txt
- README for the Intel Ethernet Controller XL710 Driver (i40e).
+i40evf.txt
+ - Short note on the Driver for the Intel(R) XL710 X710 Virtual Function
ieee802154.txt
- Linux IEEE 802.15.4 implementation, API and drivers
igb.txt
@@ -102,6 +110,8 @@ ipddp.txt
- AppleTalk-IP Decapsulation and AppleTalk-IP Encapsulation
iphase.txt
- Interphase PCI ATM (i)Chip IA Linux driver info.
+ipsec.txt
+ - Note on not compressing IPSec payload and resulting failed policy check.
ipv6.txt
- Options to the ipv6 kernel module.
ipvs-sysctl.txt
@@ -120,6 +130,8 @@ lapb-module.txt
- programming information of the LAPB module.
ltpc.txt
- the Apple or Farallon LocalTalk PC card driver
+mac80211-auth-assoc-deauth.txt
+ - authentication and association / deauth-disassoc with max80211
mac80211-injection.txt
- HOWTO use packet injection with mac80211
multiqueue.txt
@@ -134,6 +146,10 @@ netdevices.txt
- info on network device driver functions exported to the kernel.
netif-msg.txt
- Design of the network interface message level setting (NETIF_MSG_*).
+netlink_mmap.txt
+ - memory mapped I/O with netlink
+nf_conntrack-sysctl.txt
+ - list of netfilter-sysctl knobs.
nfc.txt
- The Linux Near Field Communication (NFS) subsystem.
openvswitch.txt
@@ -176,7 +192,7 @@ skfp.txt
- SysKonnect FDDI (SK-5xxx, Compaq Netelligent) driver info.
smc9.txt
- the driver for SMC's 9000 series of Ethernet cards
-spider-net.txt
+spider_net.txt
- README for the Spidernet Driver (as found in PS3 / Cell BE).
stmmac.txt
- README for the STMicro Synopsys Ethernet driver.
@@ -188,6 +204,8 @@ tcp.txt
- short blurb on how TCP output takes place.
tcp-thin.txt
- kernel tuning options for low rate 'thin' TCP streams.
+team.txt
+ - pointer to information for ethernet teaming devices.
tlan.txt
- ThunderLAN (Compaq Netelligent 10/100, Olicom OC-2xxx) driver info.
tproxy.txt
@@ -200,6 +218,8 @@ vortex.txt
- info on using 3Com Vortex (3c590, 3c592, 3c595, 3c597) Ethernet cards.
vxge.txt
- README for the Neterion X3100 PCIe Server Adapter.
+vxlan.txt
+ - Virtual extensible LAN overview
x25.txt
- general info on X.25 development.
x25-iface.txt
diff --git a/Documentation/networking/3c505.txt b/Documentation/networking/3c505.txt
deleted file mode 100644
index 72f38b13101..00000000000
--- a/Documentation/networking/3c505.txt
+++ /dev/null
@@ -1,45 +0,0 @@
-The 3Com Etherlink Plus (3c505) driver.
-
-This driver now uses DMA. There is currently no support for PIO operation.
-The default DMA channel is 6; this is _not_ autoprobed, so you must
-make sure you configure it correctly. If loading the driver as a
-module, you can do this with "modprobe 3c505 dma=n". If the driver is
-linked statically into the kernel, you must either use an "ether="
-statement on the command line, or change the definition of ELP_DMA in 3c505.h.
-
-The driver will warn you if it has to fall back on the compiled in
-default DMA channel.
-
-If no base address is given at boot time, the driver will autoprobe
-ports 0x300, 0x280 and 0x310 (in that order). If no IRQ is given, the driver
-will try to probe for it.
-
-The driver can be used as a loadable module.
-
-Theoretically, one instance of the driver can now run multiple cards,
-in the standard way (when loading a module, say "modprobe 3c505
-io=0x300,0x340 irq=10,11 dma=6,7" or whatever). I have not tested
-this, though.
-
-The driver may now support revision 2 hardware; the dependency on
-being able to read the host control register has been removed. This
-is also untested, since I don't have a suitable card.
-
-Known problems:
- I still see "DMA upload timed out" messages from time to time. These
-seem to be fairly non-fatal though.
- The card is old and slow.
-
-To do:
- Improve probe/setup code
- Test multicast and promiscuous operation
-
-Authors:
- The driver is mainly written by Craig Southeren, email
- <craigs@ineluki.apana.org.au>.
- Parts of the driver (adapting the driver to 1.1.4+ kernels,
- IRQ/address detection, some changes) and this README by
- Juha Laiho <jlaiho@ichaos.nullnet.fi>.
- DMA mode, more fixes, etc, by Philip Blundell <pjb27@cam.ac.uk>
- Multicard support, Software configurable DMA, etc., by
- Christopher Collins <ccollins@pcug.org.au>
diff --git a/Documentation/networking/altera_tse.txt b/Documentation/networking/altera_tse.txt
new file mode 100644
index 00000000000..3f24df8c6e6
--- /dev/null
+++ b/Documentation/networking/altera_tse.txt
@@ -0,0 +1,263 @@
+ Altera Triple-Speed Ethernet MAC driver
+
+Copyright (C) 2008-2014 Altera Corporation
+
+This is the driver for the Altera Triple-Speed Ethernet (TSE) controllers
+using the SGDMA and MSGDMA soft DMA IP components. The driver uses the
+platform bus to obtain component resources. The designs used to test this
+driver were built for a Cyclone(R) V SOC FPGA board, a Cyclone(R) V FPGA board,
+and tested with ARM and NIOS processor hosts seperately. The anticipated use
+cases are simple communications between an embedded system and an external peer
+for status and simple configuration of the embedded system.
+
+For more information visit www.altera.com and www.rocketboards.org. Support
+forums for the driver may be found on www.rocketboards.org, and a design used
+to test this driver may be found there as well. Support is also available from
+the maintainer of this driver, found in MAINTAINERS.
+
+The Triple-Speed Ethernet, SGDMA, and MSGDMA components are all soft IP
+components that can be assembled and built into an FPGA using the Altera
+Quartus toolchain. Quartus 13.1 and 14.0 were used to build the design that
+this driver was tested against. The sopc2dts tool is used to create the
+device tree for the driver, and may be found at rocketboards.org.
+
+The driver probe function examines the device tree and determines if the
+Triple-Speed Ethernet instance is using an SGDMA or MSGDMA component. The
+probe function then installs the appropriate set of DMA routines to
+initialize, setup transmits, receives, and interrupt handling primitives for
+the respective configurations.
+
+The SGDMA component is to be deprecated in the near future (over the next 1-2
+years as of this writing in early 2014) in favor of the MSGDMA component.
+SGDMA support is included for existing designs and reference in case a
+developer wishes to support their own soft DMA logic and driver support. Any
+new designs should not use the SGDMA.
+
+The SGDMA supports only a single transmit or receive operation at a time, and
+therefore will not perform as well compared to the MSGDMA soft IP. Please
+visit www.altera.com for known, documented SGDMA errata.
+
+Scatter-gather DMA is not supported by the SGDMA or MSGDMA at this time.
+Scatter-gather DMA will be added to a future maintenance update to this
+driver.
+
+Jumbo frames are not supported at this time.
+
+The driver limits PHY operations to 10/100Mbps, and has not yet been fully
+tested for 1Gbps. This support will be added in a future maintenance update.
+
+1) Kernel Configuration
+The kernel configuration option is ALTERA_TSE:
+ Device Drivers ---> Network device support ---> Ethernet driver support --->
+ Altera Triple-Speed Ethernet MAC support (ALTERA_TSE)
+
+2) Driver parameters list:
+ debug: message level (0: no output, 16: all);
+ dma_rx_num: Number of descriptors in the RX list (default is 64);
+ dma_tx_num: Number of descriptors in the TX list (default is 64).
+
+3) Command line options
+Driver parameters can be also passed in command line by using:
+ altera_tse=dma_rx_num:128,dma_tx_num:512
+
+4) Driver information and notes
+
+4.1) Transmit process
+When the driver's transmit routine is called by the kernel, it sets up a
+transmit descriptor by calling the underlying DMA transmit routine (SGDMA or
+MSGDMA), and initites a transmit operation. Once the transmit is complete, an
+interrupt is driven by the transmit DMA logic. The driver handles the transmit
+completion in the context of the interrupt handling chain by recycling
+resource required to send and track the requested transmit operation.
+
+4.2) Receive process
+The driver will post receive buffers to the receive DMA logic during driver
+intialization. Receive buffers may or may not be queued depending upon the
+underlying DMA logic (MSGDMA is able queue receive buffers, SGDMA is not able
+to queue receive buffers to the SGDMA receive logic). When a packet is
+received, the DMA logic generates an interrupt. The driver handles a receive
+interrupt by obtaining the DMA receive logic status, reaping receive
+completions until no more receive completions are available.
+
+4.3) Interrupt Mitigation
+The driver is able to mitigate the number of its DMA interrupts
+using NAPI for receive operations. Interrupt mitigation is not yet supported
+for transmit operations, but will be added in a future maintenance release.
+
+4.4) Ethtool support
+Ethtool is supported. Driver statistics and internal errors can be taken using:
+ethtool -S ethX command. It is possible to dump registers etc.
+
+4.5) PHY Support
+The driver is compatible with PAL to work with PHY and GPHY devices.
+
+4.7) List of source files:
+ o Kconfig
+ o Makefile
+ o altera_tse_main.c: main network device driver
+ o altera_tse_ethtool.c: ethtool support
+ o altera_tse.h: private driver structure and common definitions
+ o altera_msgdma.h: MSGDMA implementation function definitions
+ o altera_sgdma.h: SGDMA implementation function definitions
+ o altera_msgdma.c: MSGDMA implementation
+ o altera_sgdma.c: SGDMA implementation
+ o altera_sgdmahw.h: SGDMA register and descriptor definitions
+ o altera_msgdmahw.h: MSGDMA register and descriptor definitions
+ o altera_utils.c: Driver utility functions
+ o altera_utils.h: Driver utility function definitions
+
+5) Debug Information
+
+The driver exports debug information such as internal statistics,
+debug information, MAC and DMA registers etc.
+
+A user may use the ethtool support to get statistics:
+e.g. using: ethtool -S ethX (that shows the statistics counters)
+or sees the MAC registers: e.g. using: ethtool -d ethX
+
+The developer can also use the "debug" module parameter to get
+further debug information.
+
+6) Statistics Support
+
+The controller and driver support a mix of IEEE standard defined statistics,
+RFC defined statistics, and driver or Altera defined statistics. The four
+specifications containing the standard definitions for these statistics are
+as follows:
+
+ o IEEE 802.3-2012 - IEEE Standard for Ethernet.
+ o RFC 2863 found at http://www.rfc-editor.org/rfc/rfc2863.txt.
+ o RFC 2819 found at http://www.rfc-editor.org/rfc/rfc2819.txt.
+ o Altera Triple Speed Ethernet User Guide, found at http://www.altera.com
+
+The statistics supported by the TSE and the device driver are as follows:
+
+"tx_packets" is equivalent to aFramesTransmittedOK defined in IEEE 802.3-2012,
+Section 5.2.2.1.2. This statistics is the count of frames that are successfully
+transmitted.
+
+"rx_packets" is equivalent to aFramesReceivedOK defined in IEEE 802.3-2012,
+Section 5.2.2.1.5. This statistic is the count of frames that are successfully
+received. This count does not include any error packets such as CRC errors,
+length errors, or alignment errors.
+
+"rx_crc_errors" is equivalent to aFrameCheckSequenceErrors defined in IEEE
+802.3-2012, Section 5.2.2.1.6. This statistic is the count of frames that are
+an integral number of bytes in length and do not pass the CRC test as the frame
+is received.
+
+"rx_align_errors" is equivalent to aAlignmentErrors defined in IEEE 802.3-2012,
+Section 5.2.2.1.7. This statistic is the count of frames that are not an
+integral number of bytes in length and do not pass the CRC test as the frame is
+received.
+
+"tx_bytes" is equivalent to aOctetsTransmittedOK defined in IEEE 802.3-2012,
+Section 5.2.2.1.8. This statistic is the count of data and pad bytes
+successfully transmitted from the interface.
+
+"rx_bytes" is equivalent to aOctetsReceivedOK defined in IEEE 802.3-2012,
+Section 5.2.2.1.14. This statistic is the count of data and pad bytes
+successfully received by the controller.
+
+"tx_pause" is equivalent to aPAUSEMACCtrlFramesTransmitted defined in IEEE
+802.3-2012, Section 30.3.4.2. This statistic is a count of PAUSE frames
+transmitted from the network controller.
+
+"rx_pause" is equivalent to aPAUSEMACCtrlFramesReceived defined in IEEE
+802.3-2012, Section 30.3.4.3. This statistic is a count of PAUSE frames
+received by the network controller.
+
+"rx_errors" is equivalent to ifInErrors defined in RFC 2863. This statistic is
+a count of the number of packets received containing errors that prevented the
+packet from being delivered to a higher level protocol.
+
+"tx_errors" is equivalent to ifOutErrors defined in RFC 2863. This statistic
+is a count of the number of packets that could not be transmitted due to errors.
+
+"rx_unicast" is equivalent to ifInUcastPkts defined in RFC 2863. This
+statistic is a count of the number of packets received that were not addressed
+to the broadcast address or a multicast group.
+
+"rx_multicast" is equivalent to ifInMulticastPkts defined in RFC 2863. This
+statistic is a count of the number of packets received that were addressed to
+a multicast address group.
+
+"rx_broadcast" is equivalent to ifInBroadcastPkts defined in RFC 2863. This
+statistic is a count of the number of packets received that were addressed to
+the broadcast address.
+
+"tx_discards" is equivalent to ifOutDiscards defined in RFC 2863. This
+statistic is the number of outbound packets not transmitted even though an
+error was not detected. An example of a reason this might occur is to free up
+internal buffer space.
+
+"tx_unicast" is equivalent to ifOutUcastPkts defined in RFC 2863. This
+statistic counts the number of packets transmitted that were not addressed to
+a multicast group or broadcast address.
+
+"tx_multicast" is equivalent to ifOutMulticastPkts defined in RFC 2863. This
+statistic counts the number of packets transmitted that were addressed to a
+multicast group.
+
+"tx_broadcast" is equivalent to ifOutBroadcastPkts defined in RFC 2863. This
+statistic counts the number of packets transmitted that were addressed to a
+broadcast address.
+
+"ether_drops" is equivalent to etherStatsDropEvents defined in RFC 2819.
+This statistic counts the number of packets dropped due to lack of internal
+controller resources.
+
+"rx_total_bytes" is equivalent to etherStatsOctets defined in RFC 2819.
+This statistic counts the total number of bytes received by the controller,
+including error and discarded packets.
+
+"rx_total_packets" is equivalent to etherStatsPkts defined in RFC 2819.
+This statistic counts the total number of packets received by the controller,
+including error, discarded, unicast, multicast, and broadcast packets.
+
+"rx_undersize" is equivalent to etherStatsUndersizePkts defined in RFC 2819.
+This statistic counts the number of correctly formed packets received less
+than 64 bytes long.
+
+"rx_oversize" is equivalent to etherStatsOversizePkts defined in RFC 2819.
+This statistic counts the number of correctly formed packets greater than 1518
+bytes long.
+
+"rx_64_bytes" is equivalent to etherStatsPkts64Octets defined in RFC 2819.
+This statistic counts the total number of packets received that were 64 octets
+in length.
+
+"rx_65_127_bytes" is equivalent to etherStatsPkts65to127Octets defined in RFC
+2819. This statistic counts the total number of packets received that were
+between 65 and 127 octets in length inclusive.
+
+"rx_128_255_bytes" is equivalent to etherStatsPkts128to255Octets defined in
+RFC 2819. This statistic is the total number of packets received that were
+between 128 and 255 octets in length inclusive.
+
+"rx_256_511_bytes" is equivalent to etherStatsPkts256to511Octets defined in
+RFC 2819. This statistic is the total number of packets received that were
+between 256 and 511 octets in length inclusive.
+
+"rx_512_1023_bytes" is equivalent to etherStatsPkts512to1023Octets defined in
+RFC 2819. This statistic is the total number of packets received that were
+between 512 and 1023 octets in length inclusive.
+
+"rx_1024_1518_bytes" is equivalent to etherStatsPkts1024to1518Octets define
+in RFC 2819. This statistic is the total number of packets received that were
+between 1024 and 1518 octets in length inclusive.
+
+"rx_gte_1519_bytes" is a statistic defined specific to the behavior of the
+Altera TSE. This statistics counts the number of received good and errored
+frames between the length of 1519 and the maximum frame length configured
+in the frm_length register. See the Altera TSE User Guide for More details.
+
+"rx_jabbers" is equivalent to etherStatsJabbers defined in RFC 2819. This
+statistic is the total number of packets received that were longer than 1518
+octets, and had either a bad CRC with an integral number of octets (CRC Error)
+or a bad CRC with a non-integral number of octets (Alignment Error).
+
+"rx_runts" is equivalent to etherStatsFragments defined in RFC 2819. This
+statistic is the total number of packets received that were less than 64 octets
+in length and had either a bad CRC with an integral number of octets (CRC
+error) or a bad CRC with a non-integral number of octets (Alignment Error).
diff --git a/Documentation/networking/batman-adv.txt b/Documentation/networking/batman-adv.txt
index c1d82047a4b..58e49042fc2 100644
--- a/Documentation/networking/batman-adv.txt
+++ b/Documentation/networking/batman-adv.txt
@@ -66,19 +66,17 @@ All mesh wide settings can be found in batman's own interface
folder:
# ls /sys/class/net/bat0/mesh/
-# aggregated_ogms gw_bandwidth log_level
-# ap_isolation gw_mode orig_interval
-# bonding gw_sel_class routing_algo
-# bridge_loop_avoidance hop_penalty vis_mode
-# fragmentation
-
+#aggregated_ogms distributed_arp_table gw_sel_class orig_interval
+#ap_isolation fragmentation hop_penalty routing_algo
+#bonding gw_bandwidth isolation_mark vlan0
+#bridge_loop_avoidance gw_mode log_level
There is a special folder for debugging information:
# ls /sys/kernel/debug/batman_adv/bat0/
# bla_backbone_table log transtable_global
# bla_claim_table originators transtable_local
-# gateways socket vis_data
+# gateways socket
Some of the files contain all sort of status information regard-
ing the mesh network. For example, you can view the table of
@@ -127,51 +125,6 @@ ously assigned to interfaces now used by batman advanced, e.g.
# ifconfig eth0 0.0.0.0
-VISUALIZATION
--------------
-
-If you want topology visualization, at least one mesh node must
-be configured as VIS-server:
-
-# echo "server" > /sys/class/net/bat0/mesh/vis_mode
-
-Each node is either configured as "server" or as "client" (de-
-fault: "client"). Clients send their topology data to the server
-next to them, and server synchronize with other servers. If there
-is no server configured (default) within the mesh, no topology
-information will be transmitted. With these "synchronizing
-servers", there can be 1 or more vis servers sharing the same (or
-at least very similar) data.
-
-When configured as server, you can get a topology snapshot of
-your mesh:
-
-# cat /sys/kernel/debug/batman_adv/bat0/vis_data
-
-This raw output is intended to be easily parsable and convertable
-with other tools. Have a look at the batctl README if you want a
-vis output in dot or json format for instance and how those out-
-puts could then be visualised in an image.
-
-The raw format consists of comma separated values per entry where
-each entry is giving information about a certain source inter-
-face. Each entry can/has to have the following values:
--> "mac" - mac address of an originator's source interface
- (each line begins with it)
--> "TQ mac value" - src mac's link quality towards mac address
- of a neighbor originator's interface which
- is being used for routing
--> "TT mac" - TT announced by source mac
--> "PRIMARY" - this is a primary interface
--> "SEC mac" - secondary mac address of source
- (requires preceding PRIMARY)
-
-The TQ value has a range from 4 to 255 with 255 being the best.
-The TT entries are showing which hosts are connected to the mesh
-via bat0 or being bridged into the mesh network. The PRIMARY/SEC
-values are only applied on primary interfaces
-
-
LOGGING/DEBUGGING
-----------------
@@ -245,5 +198,5 @@ Mailing-list: b.a.t.m.a.n@open-mesh.org (optional subscription
You can also contact the Authors:
-Marek Lindner <lindner_marek@yahoo.de>
-Simon Wunderlich <siwu@hrz.tu-chemnitz.de>
+Marek Lindner <mareklindner@neomailbox.ch>
+Simon Wunderlich <sw@simonwunderlich.de>
diff --git a/Documentation/networking/bonding.txt b/Documentation/networking/bonding.txt
index 87bbcfee2e0..9c723ecd002 100644
--- a/Documentation/networking/bonding.txt
+++ b/Documentation/networking/bonding.txt
@@ -270,16 +270,15 @@ arp_ip_target
arp_validate
Specifies whether or not ARP probes and replies should be
- validated in the active-backup mode. This causes the ARP
- monitor to examine the incoming ARP requests and replies, and
- only consider a slave to be up if it is receiving the
- appropriate ARP traffic.
+ validated in any mode that supports arp monitoring, or whether
+ non-ARP traffic should be filtered (disregarded) for link
+ monitoring purposes.
Possible values are:
none or 0
- No validation is performed. This is the default.
+ No validation or filtering is performed.
active or 1
@@ -293,31 +292,68 @@ arp_validate
Validation is performed for all slaves.
- For the active slave, the validation checks ARP replies to
- confirm that they were generated by an arp_ip_target. Since
- backup slaves do not typically receive these replies, the
- validation performed for backup slaves is on the ARP request
- sent out via the active slave. It is possible that some
- switch or network configurations may result in situations
- wherein the backup slaves do not receive the ARP requests; in
- such a situation, validation of backup slaves must be
- disabled.
-
- The validation of ARP requests on backup slaves is mainly
- helping bonding to decide which slaves are more likely to
- work in case of the active slave failure, it doesn't really
- guarantee that the backup slave will work if it's selected
- as the next active slave.
-
- This option is useful in network configurations in which
- multiple bonding hosts are concurrently issuing ARPs to one or
- more targets beyond a common switch. Should the link between
- the switch and target fail (but not the switch itself), the
- probe traffic generated by the multiple bonding instances will
- fool the standard ARP monitor into considering the links as
- still up. Use of the arp_validate option can resolve this, as
- the ARP monitor will only consider ARP requests and replies
- associated with its own instance of bonding.
+ filter or 4
+
+ Filtering is applied to all slaves. No validation is
+ performed.
+
+ filter_active or 5
+
+ Filtering is applied to all slaves, validation is performed
+ only for the active slave.
+
+ filter_backup or 6
+
+ Filtering is applied to all slaves, validation is performed
+ only for backup slaves.
+
+ Validation:
+
+ Enabling validation causes the ARP monitor to examine the incoming
+ ARP requests and replies, and only consider a slave to be up if it
+ is receiving the appropriate ARP traffic.
+
+ For an active slave, the validation checks ARP replies to confirm
+ that they were generated by an arp_ip_target. Since backup slaves
+ do not typically receive these replies, the validation performed
+ for backup slaves is on the broadcast ARP request sent out via the
+ active slave. It is possible that some switch or network
+ configurations may result in situations wherein the backup slaves
+ do not receive the ARP requests; in such a situation, validation
+ of backup slaves must be disabled.
+
+ The validation of ARP requests on backup slaves is mainly helping
+ bonding to decide which slaves are more likely to work in case of
+ the active slave failure, it doesn't really guarantee that the
+ backup slave will work if it's selected as the next active slave.
+
+ Validation is useful in network configurations in which multiple
+ bonding hosts are concurrently issuing ARPs to one or more targets
+ beyond a common switch. Should the link between the switch and
+ target fail (but not the switch itself), the probe traffic
+ generated by the multiple bonding instances will fool the standard
+ ARP monitor into considering the links as still up. Use of
+ validation can resolve this, as the ARP monitor will only consider
+ ARP requests and replies associated with its own instance of
+ bonding.
+
+ Filtering:
+
+ Enabling filtering causes the ARP monitor to only use incoming ARP
+ packets for link availability purposes. Arriving packets that are
+ not ARPs are delivered normally, but do not count when determining
+ if a slave is available.
+
+ Filtering operates by only considering the reception of ARP
+ packets (any ARP packet, regardless of source or destination) when
+ determining if a slave has received traffic for link availability
+ purposes.
+
+ Filtering is useful in network configurations in which significant
+ levels of third party broadcast traffic would fool the standard
+ ARP monitor into considering the links as still up. Use of
+ filtering can resolve this, as only ARP traffic is considered for
+ link availability purposes.
This option was added in bonding version 3.1.0.
@@ -549,13 +585,19 @@ mode
balance-tlb or 5
Adaptive transmit load balancing: channel bonding that
- does not require any special switch support. The
- outgoing traffic is distributed according to the
- current load (computed relative to the speed) on each
- slave. Incoming traffic is received by the current
- slave. If the receiving slave fails, another slave
- takes over the MAC address of the failed receiving
- slave.
+ does not require any special switch support.
+
+ In tlb_dynamic_lb=1 mode; the outgoing traffic is
+ distributed according to the current load (computed
+ relative to the speed) on each slave.
+
+ In tlb_dynamic_lb=0 mode; the load balancing based on
+ current load is disabled and the load is distributed
+ only using the hash distribution.
+
+ Incoming traffic is received by the current slave.
+ If the receiving slave fails, another slave takes over
+ the MAC address of the failed receiving slave.
Prerequisite:
@@ -639,6 +681,15 @@ num_unsol_na
are generated by the ipv4 and ipv6 code and the numbers of
repetitions cannot be set independently.
+packets_per_slave
+
+ Specify the number of packets to transmit through a slave before
+ moving to the next one. When set to 0 then a slave is chosen at
+ random.
+
+ The valid range is 0 - 65535; the default value is 1. This option
+ has effect only in balance-rr mode.
+
primary
A string (eth0, eth2, etc) specifying which slave is the
@@ -648,7 +699,8 @@ primary
one slave is preferred over another, e.g., when one slave has
higher throughput than another.
- The primary option is only valid for active-backup mode.
+ The primary option is only valid for active-backup(1),
+ balance-tlb (5) and balance-alb (6) mode.
primary_reselect
@@ -690,6 +742,28 @@ primary_reselect
This option was added for bonding version 3.6.0.
+tlb_dynamic_lb
+
+ Specifies if dynamic shuffling of flows is enabled in tlb
+ mode. The value has no effect on any other modes.
+
+ The default behavior of tlb mode is to shuffle active flows across
+ slaves based on the load in that interval. This gives nice lb
+ characteristics but can cause packet reordering. If re-ordering is
+ a concern use this variable to disable flow shuffling and rely on
+ load balancing provided solely by the hash distribution.
+ xmit-hash-policy can be used to select the appropriate hashing for
+ the setup.
+
+ The sysfs entry can be used to change the setting per bond device
+ and the initial value is derived from the module parameter. The
+ sysfs entry is allowed to be changed only if the bond device is
+ down.
+
+ The default value is "1" that enables flow shuffling while value "0"
+ disables it. This option was added in bonding driver 3.7.1
+
+
updelay
Specifies the time, in milliseconds, to wait before enabling a
@@ -723,7 +797,7 @@ use_carrier
xmit_hash_policy
Selects the transmit hash policy to use for slave selection in
- balance-xor and 802.3ad modes. Possible values are:
+ balance-xor, 802.3ad, and tlb modes. Possible values are:
layer2
@@ -743,21 +817,16 @@ xmit_hash_policy
protocol information to generate the hash.
Uses XOR of hardware MAC addresses and IP addresses to
- generate the hash. The IPv4 formula is
-
- (((source IP XOR dest IP) AND 0xffff) XOR
- ( source MAC XOR destination MAC ))
- modulo slave count
+ generate the hash. The formula is
- The IPv6 formula is
+ hash = source MAC XOR destination MAC
+ hash = hash XOR source IP XOR destination IP
+ hash = hash XOR (hash RSHIFT 16)
+ hash = hash XOR (hash RSHIFT 8)
+ And then hash is reduced modulo slave count.
- hash = (source ip quad 2 XOR dest IP quad 2) XOR
- (source ip quad 3 XOR dest IP quad 3) XOR
- (source ip quad 4 XOR dest IP quad 4)
-
- (((hash >> 24) XOR (hash >> 16) XOR (hash >> 8) XOR hash)
- XOR (source MAC XOR destination MAC))
- modulo slave count
+ If the protocol is IPv6 then the source and destination
+ addresses are first hashed using ipv6_addr_hash.
This algorithm will place all traffic to a particular
network peer on the same slave. For non-IP traffic,
@@ -779,21 +848,16 @@ xmit_hash_policy
slaves, although a single connection will not span
multiple slaves.
- The formula for unfragmented IPv4 TCP and UDP packets is
-
- ((source port XOR dest port) XOR
- ((source IP XOR dest IP) AND 0xffff)
- modulo slave count
+ The formula for unfragmented TCP and UDP packets is
- The formula for unfragmented IPv6 TCP and UDP packets is
+ hash = source port, destination port (as in the header)
+ hash = hash XOR source IP XOR destination IP
+ hash = hash XOR (hash RSHIFT 16)
+ hash = hash XOR (hash RSHIFT 8)
+ And then hash is reduced modulo slave count.
- hash = (source port XOR dest port) XOR
- ((source ip quad 2 XOR dest IP quad 2) XOR
- (source ip quad 3 XOR dest IP quad 3) XOR
- (source ip quad 4 XOR dest IP quad 4))
-
- ((hash >> 24) XOR (hash >> 16) XOR (hash >> 8) XOR hash)
- modulo slave count
+ If the protocol is IPv6 then the source and destination
+ addresses are first hashed using ipv6_addr_hash.
For fragmented TCP or UDP packets and all other IPv4 and
IPv6 protocol traffic, the source and destination port
@@ -801,10 +865,6 @@ xmit_hash_policy
formula is the same as for the layer2 transmit hash
policy.
- The IPv4 policy is intended to mimic the behavior of
- certain switches, notably Cisco switches with PFC2 as
- well as some Foundry and IBM products.
-
This algorithm is not fully 802.3ad compliant. A
single TCP or UDP conversation containing both
fragmented and unfragmented packets will see packets
@@ -815,6 +875,26 @@ xmit_hash_policy
conversations. Other implementations of 802.3ad may
or may not tolerate this noncompliance.
+ encap2+3
+
+ This policy uses the same formula as layer2+3 but it
+ relies on skb_flow_dissect to obtain the header fields
+ which might result in the use of inner headers if an
+ encapsulation protocol is used. For example this will
+ improve the performance for tunnel users because the
+ packets will be distributed according to the encapsulated
+ flows.
+
+ encap3+4
+
+ This policy uses the same formula as layer3+4 but it
+ relies on skb_flow_dissect to obtain the header fields
+ which might result in the use of inner headers if an
+ encapsulation protocol is used. For example this will
+ improve the performance for tunnel users because the
+ packets will be distributed according to the encapsulated
+ flows.
+
The default value is layer2. This option was added in bonding
version 2.6.3. In earlier versions of bonding, this parameter
does not exist, and the layer2 policy is the only policy. The
@@ -838,6 +918,14 @@ resend_igmp
This option was added for bonding version 3.7.0.
+lp_interval
+
+ Specifies the number of seconds between instances where the bonding
+ driver sends learning packets to each slaves peer switch.
+
+ The valid range is 1 - 0x7fffffff; the default value is 1. This Option
+ has effect only in balance-tlb and balance-alb modes.
+
3. Configuring Bonding Devices
==============================
@@ -1362,6 +1450,12 @@ To add ARP targets:
To remove an ARP target:
# echo -192.168.0.100 > /sys/class/net/bond0/bonding/arp_ip_target
+To configure the interval between learning packet transmits:
+# echo 12 > /sys/class/net/bond0/bonding/lp_interval
+ NOTE: the lp_inteval is the number of seconds between instances where
+the bonding driver sends learning packets to each slaves peer switch. The
+default interval is 1 second.
+
Example Configuration
---------------------
We begin with the same example that is shown in section 3.3,
diff --git a/Documentation/networking/can.txt b/Documentation/networking/can.txt
index 820f55344ed..2236d6dcb7d 100644
--- a/Documentation/networking/can.txt
+++ b/Documentation/networking/can.txt
@@ -2,21 +2,20 @@
can.txt
-Readme file for the Controller Area Network Protocol Family (aka Socket CAN)
+Readme file for the Controller Area Network Protocol Family (aka SocketCAN)
This file contains
- 1 Overview / What is Socket CAN
+ 1 Overview / What is SocketCAN
2 Motivation / Why using the socket API
- 3 Socket CAN concept
+ 3 SocketCAN concept
3.1 receive lists
3.2 local loopback of sent frames
- 3.3 network security issues (capabilities)
- 3.4 network problem notifications
+ 3.3 network problem notifications
- 4 How to use Socket CAN
+ 4 How to use SocketCAN
4.1 RAW protocol sockets with can_filters (SOCK_RAW)
4.1.1 RAW socket option CAN_RAW_FILTER
4.1.2 RAW socket option CAN_RAW_ERR_FILTER
@@ -25,10 +24,16 @@ This file contains
4.1.5 RAW socket option CAN_RAW_FD_FRAMES
4.1.6 RAW socket returned message flags
4.2 Broadcast Manager protocol sockets (SOCK_DGRAM)
+ 4.2.1 Broadcast Manager operations
+ 4.2.2 Broadcast Manager message flags
+ 4.2.3 Broadcast Manager transmission timers
+ 4.2.4 Broadcast Manager message sequence transmission
+ 4.2.5 Broadcast Manager receive filter timers
+ 4.2.6 Broadcast Manager multiplex message receive filter
4.3 connected transport protocols (SOCK_SEQPACKET)
4.4 unconnected transport protocols (SOCK_DGRAM)
- 5 Socket CAN core module
+ 5 SocketCAN core module
5.1 can.ko module params
5.2 procfs content
5.3 writing own CAN protocol modules
@@ -45,20 +50,20 @@ This file contains
6.6 CAN FD (flexible data rate) driver support
6.7 supported CAN hardware
- 7 Socket CAN resources
+ 7 SocketCAN resources
8 Credits
============================================================================
-1. Overview / What is Socket CAN
+1. Overview / What is SocketCAN
--------------------------------
The socketcan package is an implementation of CAN protocols
(Controller Area Network) for Linux. CAN is a networking technology
which has widespread use in automation, embedded devices, and
automotive fields. While there have been other CAN implementations
-for Linux based on character devices, Socket CAN uses the Berkeley
+for Linux based on character devices, SocketCAN uses the Berkeley
socket API, the Linux network stack and implements the CAN device
drivers as network interfaces. The CAN socket API has been designed
as similar as possible to the TCP/IP protocols to allow programmers,
@@ -68,7 +73,7 @@ sockets.
2. Motivation / Why using the socket API
----------------------------------------
-There have been CAN implementations for Linux before Socket CAN so the
+There have been CAN implementations for Linux before SocketCAN so the
question arises, why we have started another project. Most existing
implementations come as a device driver for some CAN hardware, they
are based on character devices and provide comparatively little
@@ -83,10 +88,10 @@ the CAN controller requires employment of another device driver and
often the need for adaption of large parts of the application to the
new driver's API.
-Socket CAN was designed to overcome all of these limitations. A new
+SocketCAN was designed to overcome all of these limitations. A new
protocol family has been implemented which provides a socket interface
to user space applications and which builds upon the Linux network
-layer, so to use all of the provided queueing functionality. A device
+layer, enabling use all of the provided queueing functionality. A device
driver for CAN controller hardware registers itself with the Linux
network layer as a network device, so that CAN frames from the
controller can be passed up to the network layer and on to the CAN
@@ -140,15 +145,15 @@ solution for a couple of reasons:
providing an API for device drivers to register with. However, then
it would be no more difficult, or may be even easier, to use the
networking framework provided by the Linux kernel, and this is what
- Socket CAN does.
+ SocketCAN does.
The use of the networking framework of the Linux kernel is just the
natural and most appropriate way to implement CAN for Linux.
-3. Socket CAN concept
+3. SocketCAN concept
---------------------
- As described in chapter 2 it is the main goal of Socket CAN to
+ As described in chapter 2 it is the main goal of SocketCAN to
provide a socket interface to user space applications which builds
upon the Linux network layer. In contrast to the commonly known
TCP/IP and ethernet networking, the CAN bus is a broadcast-only(!)
@@ -162,11 +167,11 @@ solution for a couple of reasons:
The network transparent access of multiple applications leads to the
problem that different applications may be interested in the same
- CAN-IDs from the same CAN network interface. The Socket CAN core
+ CAN-IDs from the same CAN network interface. The SocketCAN core
module - which implements the protocol family CAN - provides several
high efficient receive lists for this reason. If e.g. a user space
application opens a CAN RAW socket, the raw protocol module itself
- requests the (range of) CAN-IDs from the Socket CAN core that are
+ requests the (range of) CAN-IDs from the SocketCAN core that are
requested by the user. The subscription and unsubscription of
CAN-IDs can be done for specific CAN interfaces or for all(!) known
CAN interfaces with the can_rx_(un)register() functions provided to
@@ -211,21 +216,7 @@ solution for a couple of reasons:
* = you really like to have this when you're running analyser tools
like 'candump' or 'cansniffer' on the (same) node.
- 3.3 network security issues (capabilities)
-
- The Controller Area Network is a local field bus transmitting only
- broadcast messages without any routing and security concepts.
- In the majority of cases the user application has to deal with
- raw CAN frames. Therefore it might be reasonable NOT to restrict
- the CAN access only to the user root, as known from other networks.
- Since the currently implemented CAN_RAW and CAN_BCM sockets can only
- send and receive frames to/from CAN interfaces it does not affect
- security of others networks to allow all users to access the CAN.
- To enable non-root users to access CAN_RAW and CAN_BCM protocol
- sockets the Kconfig options CAN_RAW_USER and/or CAN_BCM_USER may be
- selected at kernel compile time.
-
- 3.4 network problem notifications
+ 3.3 network problem notifications
The use of the CAN bus may lead to several problems on the physical
and media access control layer. Detecting and logging of these lower
@@ -245,11 +236,11 @@ solution for a couple of reasons:
by default. The format of the CAN error message frame is briefly
described in the Linux header file "include/linux/can/error.h".
-4. How to use Socket CAN
+4. How to use SocketCAN
------------------------
Like TCP/IP, you first need to open a socket for communicating over a
- CAN network. Since Socket CAN implements a new protocol family, you
+ CAN network. Since SocketCAN implements a new protocol family, you
need to pass PF_CAN as the first argument to the socket(2) system
call. Currently, there are two CAN protocols to choose from, the raw
socket protocol and the broadcast manager (BCM). So to open a socket,
@@ -280,8 +271,8 @@ solution for a couple of reasons:
};
The alignment of the (linear) payload data[] to a 64bit boundary
- allows the user to define own structs and unions to easily access the
- CAN payload. There is no given byteorder on the CAN bus by
+ allows the user to define their own structs and unions to easily access
+ the CAN payload. There is no given byteorder on the CAN bus by
default. A read(2) system call on a CAN_RAW socket transfers a
struct can_frame to the user space.
@@ -473,11 +464,46 @@ solution for a couple of reasons:
setsockopt(s, SOL_CAN_RAW, CAN_RAW_FILTER, NULL, 0);
- To set the filters to zero filters is quite obsolete as not read
+ To set the filters to zero filters is quite obsolete as to not read
data causes the raw socket to discard the received CAN frames. But
having this 'send only' use-case we may remove the receive list in the
Kernel to save a little (really a very little!) CPU usage.
+ 4.1.1.1 CAN filter usage optimisation
+
+ The CAN filters are processed in per-device filter lists at CAN frame
+ reception time. To reduce the number of checks that need to be performed
+ while walking through the filter lists the CAN core provides an optimized
+ filter handling when the filter subscription focusses on a single CAN ID.
+
+ For the possible 2048 SFF CAN identifiers the identifier is used as an index
+ to access the corresponding subscription list without any further checks.
+ For the 2^29 possible EFF CAN identifiers a 10 bit XOR folding is used as
+ hash function to retrieve the EFF table index.
+
+ To benefit from the optimized filters for single CAN identifiers the
+ CAN_SFF_MASK or CAN_EFF_MASK have to be set into can_filter.mask together
+ with set CAN_EFF_FLAG and CAN_RTR_FLAG bits. A set CAN_EFF_FLAG bit in the
+ can_filter.mask makes clear that it matters whether a SFF or EFF CAN ID is
+ subscribed. E.g. in the example from above
+
+ rfilter[0].can_id = 0x123;
+ rfilter[0].can_mask = CAN_SFF_MASK;
+
+ both SFF frames with CAN ID 0x123 and EFF frames with 0xXXXXX123 can pass.
+
+ To filter for only 0x123 (SFF) and 0x12345678 (EFF) CAN identifiers the
+ filter has to be defined in this way to benefit from the optimized filters:
+
+ struct can_filter rfilter[2];
+
+ rfilter[0].can_id = 0x123;
+ rfilter[0].can_mask = (CAN_EFF_FLAG | CAN_RTR_FLAG | CAN_SFF_MASK);
+ rfilter[1].can_id = 0x12345678 | CAN_EFF_FLAG;
+ rfilter[1].can_mask = (CAN_EFF_FLAG | CAN_RTR_FLAG | CAN_EFF_MASK);
+
+ setsockopt(s, SOL_CAN_RAW, CAN_RAW_FILTER, &rfilter, sizeof(rfilter));
+
4.1.2 RAW socket option CAN_RAW_ERR_FILTER
As described in chapter 3.4 the CAN interface driver can generate so
@@ -563,12 +589,6 @@ solution for a couple of reasons:
not specified in the struct can_frame and therefore it is only valid in
CANFD_MTU sized CAN FD frames.
- As long as the payload length is <=8 the received CAN frames from CAN FD
- capable CAN devices can be received and read by legacy sockets too. When
- user-generated CAN FD frames have a payload length <=8 these can be send
- by legacy CAN network interfaces too. Sending CAN FD frames with payload
- length > 8 to a legacy CAN network interface returns an -EMSGSIZE error.
-
Implementation hint for new CAN applications:
To build a CAN FD aware application use struct canfd_frame as basic CAN
@@ -593,21 +613,232 @@ solution for a couple of reasons:
In order to receive such messages, CAN_RAW_RECV_OWN_MSGS must be set.
4.2 Broadcast Manager protocol sockets (SOCK_DGRAM)
+
+ The Broadcast Manager protocol provides a command based configuration
+ interface to filter and send (e.g. cyclic) CAN messages in kernel space.
+
+ Receive filters can be used to down sample frequent messages; detect events
+ such as message contents changes, packet length changes, and do time-out
+ monitoring of received messages.
+
+ Periodic transmission tasks of CAN frames or a sequence of CAN frames can be
+ created and modified at runtime; both the message content and the two
+ possible transmit intervals can be altered.
+
+ A BCM socket is not intended for sending individual CAN frames using the
+ struct can_frame as known from the CAN_RAW socket. Instead a special BCM
+ configuration message is defined. The basic BCM configuration message used
+ to communicate with the broadcast manager and the available operations are
+ defined in the linux/can/bcm.h include. The BCM message consists of a
+ message header with a command ('opcode') followed by zero or more CAN frames.
+ The broadcast manager sends responses to user space in the same form:
+
+ struct bcm_msg_head {
+ __u32 opcode; /* command */
+ __u32 flags; /* special flags */
+ __u32 count; /* run 'count' times with ival1 */
+ struct timeval ival1, ival2; /* count and subsequent interval */
+ canid_t can_id; /* unique can_id for task */
+ __u32 nframes; /* number of can_frames following */
+ struct can_frame frames[0];
+ };
+
+ The aligned payload 'frames' uses the same basic CAN frame structure defined
+ at the beginning of section 4 and in the include/linux/can.h include. All
+ messages to the broadcast manager from user space have this structure.
+
+ Note a CAN_BCM socket must be connected instead of bound after socket
+ creation (example without error checking):
+
+ int s;
+ struct sockaddr_can addr;
+ struct ifreq ifr;
+
+ s = socket(PF_CAN, SOCK_DGRAM, CAN_BCM);
+
+ strcpy(ifr.ifr_name, "can0");
+ ioctl(s, SIOCGIFINDEX, &ifr);
+
+ addr.can_family = AF_CAN;
+ addr.can_ifindex = ifr.ifr_ifindex;
+
+ connect(s, (struct sockaddr *)&addr, sizeof(addr))
+
+ (..)
+
+ The broadcast manager socket is able to handle any number of in flight
+ transmissions or receive filters concurrently. The different RX/TX jobs are
+ distinguished by the unique can_id in each BCM message. However additional
+ CAN_BCM sockets are recommended to communicate on multiple CAN interfaces.
+ When the broadcast manager socket is bound to 'any' CAN interface (=> the
+ interface index is set to zero) the configured receive filters apply to any
+ CAN interface unless the sendto() syscall is used to overrule the 'any' CAN
+ interface index. When using recvfrom() instead of read() to retrieve BCM
+ socket messages the originating CAN interface is provided in can_ifindex.
+
+ 4.2.1 Broadcast Manager operations
+
+ The opcode defines the operation for the broadcast manager to carry out,
+ or details the broadcast managers response to several events, including
+ user requests.
+
+ Transmit Operations (user space to broadcast manager):
+
+ TX_SETUP: Create (cyclic) transmission task.
+
+ TX_DELETE: Remove (cyclic) transmission task, requires only can_id.
+
+ TX_READ: Read properties of (cyclic) transmission task for can_id.
+
+ TX_SEND: Send one CAN frame.
+
+ Transmit Responses (broadcast manager to user space):
+
+ TX_STATUS: Reply to TX_READ request (transmission task configuration).
+
+ TX_EXPIRED: Notification when counter finishes sending at initial interval
+ 'ival1'. Requires the TX_COUNTEVT flag to be set at TX_SETUP.
+
+ Receive Operations (user space to broadcast manager):
+
+ RX_SETUP: Create RX content filter subscription.
+
+ RX_DELETE: Remove RX content filter subscription, requires only can_id.
+
+ RX_READ: Read properties of RX content filter subscription for can_id.
+
+ Receive Responses (broadcast manager to user space):
+
+ RX_STATUS: Reply to RX_READ request (filter task configuration).
+
+ RX_TIMEOUT: Cyclic message is detected to be absent (timer ival1 expired).
+
+ RX_CHANGED: BCM message with updated CAN frame (detected content change).
+ Sent on first message received or on receipt of revised CAN messages.
+
+ 4.2.2 Broadcast Manager message flags
+
+ When sending a message to the broadcast manager the 'flags' element may
+ contain the following flag definitions which influence the behaviour:
+
+ SETTIMER: Set the values of ival1, ival2 and count
+
+ STARTTIMER: Start the timer with the actual values of ival1, ival2
+ and count. Starting the timer leads simultaneously to emit a CAN frame.
+
+ TX_COUNTEVT: Create the message TX_EXPIRED when count expires
+
+ TX_ANNOUNCE: A change of data by the process is emitted immediately.
+
+ TX_CP_CAN_ID: Copies the can_id from the message header to each
+ subsequent frame in frames. This is intended as usage simplification. For
+ TX tasks the unique can_id from the message header may differ from the
+ can_id(s) stored for transmission in the subsequent struct can_frame(s).
+
+ RX_FILTER_ID: Filter by can_id alone, no frames required (nframes=0).
+
+ RX_CHECK_DLC: A change of the DLC leads to an RX_CHANGED.
+
+ RX_NO_AUTOTIMER: Prevent automatically starting the timeout monitor.
+
+ RX_ANNOUNCE_RESUME: If passed at RX_SETUP and a receive timeout occurred, a
+ RX_CHANGED message will be generated when the (cyclic) receive restarts.
+
+ TX_RESET_MULTI_IDX: Reset the index for the multiple frame transmission.
+
+ RX_RTR_FRAME: Send reply for RTR-request (placed in op->frames[0]).
+
+ 4.2.3 Broadcast Manager transmission timers
+
+ Periodic transmission configurations may use up to two interval timers.
+ In this case the BCM sends a number of messages ('count') at an interval
+ 'ival1', then continuing to send at another given interval 'ival2'. When
+ only one timer is needed 'count' is set to zero and only 'ival2' is used.
+ When SET_TIMER and START_TIMER flag were set the timers are activated.
+ The timer values can be altered at runtime when only SET_TIMER is set.
+
+ 4.2.4 Broadcast Manager message sequence transmission
+
+ Up to 256 CAN frames can be transmitted in a sequence in the case of a cyclic
+ TX task configuration. The number of CAN frames is provided in the 'nframes'
+ element of the BCM message head. The defined number of CAN frames are added
+ as array to the TX_SETUP BCM configuration message.
+
+ /* create a struct to set up a sequence of four CAN frames */
+ struct {
+ struct bcm_msg_head msg_head;
+ struct can_frame frame[4];
+ } mytxmsg;
+
+ (..)
+ mytxmsg.nframes = 4;
+ (..)
+
+ write(s, &mytxmsg, sizeof(mytxmsg));
+
+ With every transmission the index in the array of CAN frames is increased
+ and set to zero at index overflow.
+
+ 4.2.5 Broadcast Manager receive filter timers
+
+ The timer values ival1 or ival2 may be set to non-zero values at RX_SETUP.
+ When the SET_TIMER flag is set the timers are enabled:
+
+ ival1: Send RX_TIMEOUT when a received message is not received again within
+ the given time. When START_TIMER is set at RX_SETUP the timeout detection
+ is activated directly - even without a former CAN frame reception.
+
+ ival2: Throttle the received message rate down to the value of ival2. This
+ is useful to reduce messages for the application when the signal inside the
+ CAN frame is stateless as state changes within the ival2 periode may get
+ lost.
+
+ 4.2.6 Broadcast Manager multiplex message receive filter
+
+ To filter for content changes in multiplex message sequences an array of more
+ than one CAN frames can be passed in a RX_SETUP configuration message. The
+ data bytes of the first CAN frame contain the mask of relevant bits that
+ have to match in the subsequent CAN frames with the received CAN frame.
+ If one of the subsequent CAN frames is matching the bits in that frame data
+ mark the relevant content to be compared with the previous received content.
+ Up to 257 CAN frames (multiplex filter bit mask CAN frame plus 256 CAN
+ filters) can be added as array to the TX_SETUP BCM configuration message.
+
+ /* usually used to clear CAN frame data[] - beware of endian problems! */
+ #define U64_DATA(p) (*(unsigned long long*)(p)->data)
+
+ struct {
+ struct bcm_msg_head msg_head;
+ struct can_frame frame[5];
+ } msg;
+
+ msg.msg_head.opcode = RX_SETUP;
+ msg.msg_head.can_id = 0x42;
+ msg.msg_head.flags = 0;
+ msg.msg_head.nframes = 5;
+ U64_DATA(&msg.frame[0]) = 0xFF00000000000000ULL; /* MUX mask */
+ U64_DATA(&msg.frame[1]) = 0x01000000000000FFULL; /* data mask (MUX 0x01) */
+ U64_DATA(&msg.frame[2]) = 0x0200FFFF000000FFULL; /* data mask (MUX 0x02) */
+ U64_DATA(&msg.frame[3]) = 0x330000FFFFFF0003ULL; /* data mask (MUX 0x33) */
+ U64_DATA(&msg.frame[4]) = 0x4F07FC0FF0000000ULL; /* data mask (MUX 0x4F) */
+
+ write(s, &msg, sizeof(msg));
+
4.3 connected transport protocols (SOCK_SEQPACKET)
4.4 unconnected transport protocols (SOCK_DGRAM)
-5. Socket CAN core module
+5. SocketCAN core module
-------------------------
- The Socket CAN core module implements the protocol family
+ The SocketCAN core module implements the protocol family
PF_CAN. CAN protocol modules are loaded by the core module at
runtime. The core module provides an interface for CAN protocol
modules to subscribe needed CAN IDs (see chapter 3.1).
5.1 can.ko module params
- - stats_timer: To calculate the Socket CAN core statistics
+ - stats_timer: To calculate the SocketCAN core statistics
(e.g. current/maximum frames per second) this 1 second timer is
invoked at can.ko module start time by default. This timer can be
disabled by using stattimer=0 on the module commandline.
@@ -616,7 +847,7 @@ solution for a couple of reasons:
5.2 procfs content
- As described in chapter 3.1 the Socket CAN core uses several filter
+ As described in chapter 3.1 the SocketCAN core uses several filter
lists to deliver received CAN frames to CAN protocol modules. These
receive lists, their filters and the count of filter matches can be
checked in the appropriate receive list. All entries contain the
@@ -643,15 +874,15 @@ solution for a couple of reasons:
Additional procfs files in /proc/net/can
- stats - Socket CAN core statistics (rx/tx frames, match ratios, ...)
+ stats - SocketCAN core statistics (rx/tx frames, match ratios, ...)
reset_stats - manual statistic reset
- version - prints the Socket CAN core version and the ABI version
+ version - prints the SocketCAN core version and the ABI version
5.3 writing own CAN protocol modules
To implement a new protocol in the protocol family PF_CAN a new
protocol has to be defined in include/linux/can.h .
- The prototypes and definitions to use the Socket CAN core can be
+ The prototypes and definitions to use the SocketCAN core can be
accessed by including include/linux/can/core.h .
In addition to functions that register the CAN protocol and the
CAN device notifier chain there are functions to subscribe CAN
@@ -821,7 +1052,7 @@ solution for a couple of reasons:
in case of a bus-off condition after the specified delay time
in milliseconds. By default it's off.
- "bitrate 125000 sample_point 0.875"
+ "bitrate 125000 sample-point 0.875"
Shows the real bit-rate in bits/sec and the sample-point in the
range 0.000..0.999. If the calculation of bit-timing parameters
is enabled in the kernel (CONFIG_CAN_CALC_BITTIMING=y), the
@@ -888,7 +1119,7 @@ solution for a couple of reasons:
$ ip link set canX up type can bitrate 125000
- A device may enter the "bus-off" state if too much errors occurred on
+ A device may enter the "bus-off" state if too many errors occurred on
the CAN bus. Then no more messages are received or sent. An automatic
bus-off recovery can be enabled by setting the "restart-ms" to a
non-zero value, e.g.:
@@ -908,7 +1139,7 @@ solution for a couple of reasons:
CAN FD capable CAN controllers support two different bitrates for the
arbitration phase and the payload phase of the CAN FD frame. Therefore a
- second bittiming has to be specified in order to enable the CAN FD bitrate.
+ second bit timing has to be specified in order to enable the CAN FD bitrate.
Additionally CAN FD capable CAN controllers support up to 64 bytes of
payload. The representation of this length in can_frame.can_dlc and
@@ -933,21 +1164,16 @@ solution for a couple of reasons:
6.7 Supported CAN hardware
Please check the "Kconfig" file in "drivers/net/can" to get an actual
- list of the support CAN hardware. On the Socket CAN project website
+ list of the support CAN hardware. On the SocketCAN project website
(see chapter 7) there might be further drivers available, also for
older kernel versions.
-7. Socket CAN resources
+7. SocketCAN resources
-----------------------
- You can find further resources for Socket CAN like user space tools,
- support for old kernel versions, more drivers, mailing lists, etc.
- at the BerliOS OSS project website for Socket CAN:
-
- http://developer.berlios.de/projects/socketcan
-
- If you have questions, bug fixes, etc., don't hesitate to post them to
- the Socketcan-Users mailing list. But please search the archives first.
+ The Linux CAN / SocketCAN project ressources (project site / mailing list)
+ are referenced in the MAINTAINERS file in the Linux source tree.
+ Search for CAN NETWORK [LAYERS|DRIVERS].
8. Credits
----------
diff --git a/Documentation/networking/cdc_mbim.txt b/Documentation/networking/cdc_mbim.txt
new file mode 100644
index 00000000000..a15ea602aa5
--- /dev/null
+++ b/Documentation/networking/cdc_mbim.txt
@@ -0,0 +1,339 @@
+ cdc_mbim - Driver for CDC MBIM Mobile Broadband modems
+ ========================================================
+
+The cdc_mbim driver supports USB devices conforming to the "Universal
+Serial Bus Communications Class Subclass Specification for Mobile
+Broadband Interface Model" [1], which is a further development of
+"Universal Serial Bus Communications Class Subclass Specifications for
+Network Control Model Devices" [2] optimized for Mobile Broadband
+devices, aka "3G/LTE modems".
+
+
+Command Line Parameters
+=======================
+
+The cdc_mbim driver has no parameters of its own. But the probing
+behaviour for NCM 1.0 backwards compatible MBIM functions (an
+"NCM/MBIM function" as defined in section 3.2 of [1]) is affected
+by a cdc_ncm driver parameter:
+
+prefer_mbim
+-----------
+Type: Boolean
+Valid Range: N/Y (0-1)
+Default Value: Y (MBIM is preferred)
+
+This parameter sets the system policy for NCM/MBIM functions. Such
+functions will be handled by either the cdc_ncm driver or the cdc_mbim
+driver depending on the prefer_mbim setting. Setting prefer_mbim=N
+makes the cdc_mbim driver ignore these functions and lets the cdc_ncm
+driver handle them instead.
+
+The parameter is writable, and can be changed at any time. A manual
+unbind/bind is required to make the change effective for NCM/MBIM
+functions bound to the "wrong" driver
+
+
+Basic usage
+===========
+
+MBIM functions are inactive when unmanaged. The cdc_mbim driver only
+provides an userspace interface to the MBIM control channel, and will
+not participate in the management of the function. This implies that a
+userspace MBIM management application always is required to enable a
+MBIM function.
+
+Such userspace applications includes, but are not limited to:
+ - mbimcli (included with the libmbim [3] library), and
+ - ModemManager [4]
+
+Establishing a MBIM IP session reequires at least these actions by the
+management application:
+ - open the control channel
+ - configure network connection settings
+ - connect to network
+ - configure IP interface
+
+Management application development
+----------------------------------
+The driver <-> userspace interfaces are described below. The MBIM
+control channel protocol is described in [1].
+
+
+MBIM control channel userspace ABI
+==================================
+
+/dev/cdc-wdmX character device
+------------------------------
+The driver creates a two-way pipe to the MBIM function control channel
+using the cdc-wdm driver as a subdriver. The userspace end of the
+control channel pipe is a /dev/cdc-wdmX character device.
+
+The cdc_mbim driver does not process or police messages on the control
+channel. The channel is fully delegated to the userspace management
+application. It is therefore up to this application to ensure that it
+complies with all the control channel requirements in [1].
+
+The cdc-wdmX device is created as a child of the MBIM control
+interface USB device. The character device associated with a specific
+MBIM function can be looked up using sysfs. For example:
+
+ bjorn@nemi:~$ ls /sys/bus/usb/drivers/cdc_mbim/2-4:2.12/usbmisc
+ cdc-wdm0
+
+ bjorn@nemi:~$ grep . /sys/bus/usb/drivers/cdc_mbim/2-4:2.12/usbmisc/cdc-wdm0/dev
+ 180:0
+
+
+USB configuration descriptors
+-----------------------------
+The wMaxControlMessage field of the CDC MBIM functional descriptor
+limits the maximum control message size. The managament application is
+responsible for negotiating a control message size complying with the
+requirements in section 9.3.1 of [1], taking this descriptor field
+into consideration.
+
+The userspace application can access the CDC MBIM functional
+descriptor of a MBIM function using either of the two USB
+configuration descriptor kernel interfaces described in [6] or [7].
+
+See also the ioctl documentation below.
+
+
+Fragmentation
+-------------
+The userspace application is responsible for all control message
+fragmentation and defragmentaion, as described in section 9.5 of [1].
+
+
+/dev/cdc-wdmX write()
+---------------------
+The MBIM control messages from the management application *must not*
+exceed the negotiated control message size.
+
+
+/dev/cdc-wdmX read()
+--------------------
+The management application *must* accept control messages of up the
+negotiated control message size.
+
+
+/dev/cdc-wdmX ioctl()
+--------------------
+IOCTL_WDM_MAX_COMMAND: Get Maximum Command Size
+This ioctl returns the wMaxControlMessage field of the CDC MBIM
+functional descriptor for MBIM devices. This is intended as a
+convenience, eliminating the need to parse the USB descriptors from
+userspace.
+
+ #include <stdio.h>
+ #include <fcntl.h>
+ #include <sys/ioctl.h>
+ #include <linux/types.h>
+ #include <linux/usb/cdc-wdm.h>
+ int main()
+ {
+ __u16 max;
+ int fd = open("/dev/cdc-wdm0", O_RDWR);
+ if (!ioctl(fd, IOCTL_WDM_MAX_COMMAND, &max))
+ printf("wMaxControlMessage is %d\n", max);
+ }
+
+
+Custom device services
+----------------------
+The MBIM specification allows vendors to freely define additional
+services. This is fully supported by the cdc_mbim driver.
+
+Support for new MBIM services, including vendor specified services, is
+implemented entirely in userspace, like the rest of the MBIM control
+protocol
+
+New services should be registered in the MBIM Registry [5].
+
+
+
+MBIM data channel userspace ABI
+===============================
+
+wwanY network device
+--------------------
+The cdc_mbim driver represents the MBIM data channel as a single
+network device of the "wwan" type. This network device is initially
+mapped to MBIM IP session 0.
+
+
+Multiplexed IP sessions (IPS)
+-----------------------------
+MBIM allows multiplexing up to 256 IP sessions over a single USB data
+channel. The cdc_mbim driver models such IP sessions as 802.1q VLAN
+subdevices of the master wwanY device, mapping MBIM IP session Z to
+VLAN ID Z for all values of Z greater than 0.
+
+The device maximum Z is given in the MBIM_DEVICE_CAPS_INFO structure
+described in section 10.5.1 of [1].
+
+The userspace management application is responsible for adding new
+VLAN links prior to establishing MBIM IP sessions where the SessionId
+is greater than 0. These links can be added by using the normal VLAN
+kernel interfaces, either ioctl or netlink.
+
+For example, adding a link for a MBIM IP session with SessionId 3:
+
+ ip link add link wwan0 name wwan0.3 type vlan id 3
+
+The driver will automatically map the "wwan0.3" network device to MBIM
+IP session 3.
+
+
+Device Service Streams (DSS)
+----------------------------
+MBIM also allows up to 256 non-IP data streams to be multiplexed over
+the same shared USB data channel. The cdc_mbim driver models these
+sessions as another set of 802.1q VLAN subdevices of the master wwanY
+device, mapping MBIM DSS session A to VLAN ID (256 + A) for all values
+of A.
+
+The device maximum A is given in the MBIM_DEVICE_SERVICES_INFO
+structure described in section 10.5.29 of [1].
+
+The DSS VLAN subdevices are used as a practical interface between the
+shared MBIM data channel and a MBIM DSS aware userspace application.
+It is not intended to be presented as-is to an end user. The
+assumption is that an userspace application initiating a DSS session
+also takes care of the necessary framing of the DSS data, presenting
+the stream to the end user in an appropriate way for the stream type.
+
+The network device ABI requires a dummy ethernet header for every DSS
+data frame being transported. The contents of this header is
+arbitrary, with the following exceptions:
+ - TX frames using an IP protocol (0x0800 or 0x86dd) will be dropped
+ - RX frames will have the protocol field set to ETH_P_802_3 (but will
+ not be properly formatted 802.3 frames)
+ - RX frames will have the destination address set to the hardware
+ address of the master device
+
+The DSS supporting userspace management application is responsible for
+adding the dummy ethernet header on TX and stripping it on RX.
+
+This is a simple example using tools commonly available, exporting
+DssSessionId 5 as a pty character device pointed to by a /dev/nmea
+symlink:
+
+ ip link add link wwan0 name wwan0.dss5 type vlan id 261
+ ip link set dev wwan0.dss5 up
+ socat INTERFACE:wwan0.dss5,type=2 PTY:,echo=0,link=/dev/nmea
+
+This is only an example, most suitable for testing out a DSS
+service. Userspace applications supporting specific MBIM DSS services
+are expected to use the tools and programming interfaces required by
+that service.
+
+Note that adding VLAN links for DSS sessions is entirely optional. A
+management application may instead choose to bind a packet socket
+directly to the master network device, using the received VLAN tags to
+map frames to the correct DSS session and adding 18 byte VLAN ethernet
+headers with the appropriate tag on TX. In this case using a socket
+filter is recommended, matching only the DSS VLAN subset. This avoid
+unnecessary copying of unrelated IP session data to userspace. For
+example:
+
+ static struct sock_filter dssfilter[] = {
+ /* use special negative offsets to get VLAN tag */
+ BPF_STMT(BPF_LD|BPF_B|BPF_ABS, SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT),
+ BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, 1, 0, 6), /* true */
+
+ /* verify DSS VLAN range */
+ BPF_STMT(BPF_LD|BPF_H|BPF_ABS, SKF_AD_OFF + SKF_AD_VLAN_TAG),
+ BPF_JUMP(BPF_JMP|BPF_JGE|BPF_K, 256, 0, 4), /* 256 is first DSS VLAN */
+ BPF_JUMP(BPF_JMP|BPF_JGE|BPF_K, 512, 3, 0), /* 511 is last DSS VLAN */
+
+ /* verify ethertype */
+ BPF_STMT(BPF_LD|BPF_H|BPF_ABS, 2 * ETH_ALEN),
+ BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, ETH_P_802_3, 0, 1),
+
+ BPF_STMT(BPF_RET|BPF_K, (u_int)-1), /* accept */
+ BPF_STMT(BPF_RET|BPF_K, 0), /* ignore */
+ };
+
+
+
+Tagged IP session 0 VLAN
+------------------------
+As described above, MBIM IP session 0 is treated as special by the
+driver. It is initially mapped to untagged frames on the wwanY
+network device.
+
+This mapping implies a few restrictions on multiplexed IPS and DSS
+sessions, which may not always be practical:
+ - no IPS or DSS session can use a frame size greater than the MTU on
+ IP session 0
+ - no IPS or DSS session can be in the up state unless the network
+ device representing IP session 0 also is up
+
+These problems can be avoided by optionally making the driver map IP
+session 0 to a VLAN subdevice, similar to all other IP sessions. This
+behaviour is triggered by adding a VLAN link for the magic VLAN ID
+4094. The driver will then immediately start mapping MBIM IP session
+0 to this VLAN, and will drop untagged frames on the master wwanY
+device.
+
+Tip: It might be less confusing to the end user to name this VLAN
+subdevice after the MBIM SessionID instead of the VLAN ID. For
+example:
+
+ ip link add link wwan0 name wwan0.0 type vlan id 4094
+
+
+VLAN mapping
+------------
+
+Summarizing the cdc_mbim driver mapping described above, we have this
+relationship between VLAN tags on the wwanY network device and MBIM
+sessions on the shared USB data channel:
+
+ VLAN ID MBIM type MBIM SessionID Notes
+ ---------------------------------------------------------
+ untagged IPS 0 a)
+ 1 - 255 IPS 1 - 255 <VLANID>
+ 256 - 511 DSS 0 - 255 <VLANID - 256>
+ 512 - 4093 b)
+ 4094 IPS 0 c)
+
+ a) if no VLAN ID 4094 link exists, else dropped
+ b) unsupported VLAN range, unconditionally dropped
+ c) if a VLAN ID 4094 link exists, else dropped
+
+
+
+
+References
+==========
+
+[1] USB Implementers Forum, Inc. - "Universal Serial Bus
+ Communications Class Subclass Specification for Mobile Broadband
+ Interface Model", Revision 1.0 (Errata 1), May 1, 2013
+ - http://www.usb.org/developers/docs/devclass_docs/
+
+[2] USB Implementers Forum, Inc. - "Universal Serial Bus
+ Communications Class Subclass Specifications for Network Control
+ Model Devices", Revision 1.0 (Errata 1), November 24, 2010
+ - http://www.usb.org/developers/docs/devclass_docs/
+
+[3] libmbim - "a glib-based library for talking to WWAN modems and
+ devices which speak the Mobile Interface Broadband Model (MBIM)
+ protocol"
+ - http://www.freedesktop.org/wiki/Software/libmbim/
+
+[4] ModemManager - "a DBus-activated daemon which controls mobile
+ broadband (2G/3G/4G) devices and connections"
+ - http://www.freedesktop.org/wiki/Software/ModemManager/
+
+[5] "MBIM (Mobile Broadband Interface Model) Registry"
+ - http://compliance.usb.org/mbim/
+
+[6] "/proc/bus/usb filesystem output"
+ - Documentation/usb/proc_usb_info.txt
+
+[7] "/sys/bus/usb/devices/.../descriptors"
+ - Documentation/ABI/stable/sysfs-bus-usb
diff --git a/Documentation/networking/dccp.txt b/Documentation/networking/dccp.txt
index d718bc2ff1c..55c575fcaf1 100644
--- a/Documentation/networking/dccp.txt
+++ b/Documentation/networking/dccp.txt
@@ -18,8 +18,8 @@ Introduction
Datagram Congestion Control Protocol (DCCP) is an unreliable, connection
oriented protocol designed to solve issues present in UDP and TCP, particularly
for real-time and multimedia (streaming) traffic.
-It divides into a base protocol (RFC 4340) and plugable congestion control
-modules called CCIDs. Like plugable TCP congestion control, at least one CCID
+It divides into a base protocol (RFC 4340) and pluggable congestion control
+modules called CCIDs. Like pluggable TCP congestion control, at least one CCID
needs to be enabled in order for the protocol to function properly. In the Linux
implementation, this is the TCP-like CCID2 (RFC 4341). Additional CCIDs, such as
the TCP-friendly CCID3 (RFC 4342), are optional.
@@ -86,7 +86,7 @@ built-in CCIDs.
DCCP_SOCKOPT_CCID is write-only and sets both the TX and RX CCIDs at the same
time, combining the operation of the next two socket options. This option is
-preferrable over the latter two, since often applications will use the same
+preferable over the latter two, since often applications will use the same
type of CCID for both directions; and mixed use of CCIDs is not currently well
understood. This socket option takes as argument at least one uint8_t value, or
an array of uint8_t values, which must match available CCIDS (see above). CCIDs
diff --git a/Documentation/networking/e100.txt b/Documentation/networking/e100.txt
index 13a32124bca..f862cf3aff3 100644
--- a/Documentation/networking/e100.txt
+++ b/Documentation/networking/e100.txt
@@ -103,7 +103,7 @@ Additional Configurations
PRO/100 Family of Adapters is e100.
As an example, if you install the e100 driver for two PRO/100 adapters
- (eth0 and eth1), add the following to a configuraton file in /etc/modprobe.d/
+ (eth0 and eth1), add the following to a configuration file in /etc/modprobe.d/
alias eth0 e100
alias eth1 e100
diff --git a/Documentation/networking/filter.txt b/Documentation/networking/filter.txt
index cdb3e40b9d1..ee78eba78a9 100644
--- a/Documentation/networking/filter.txt
+++ b/Documentation/networking/filter.txt
@@ -1,49 +1,1027 @@
-filter.txt: Linux Socket Filtering
-Written by: Jay Schulist <jschlst@samba.org>
+Linux Socket Filtering aka Berkeley Packet Filter (BPF)
+=======================================================
Introduction
-============
-
- Linux Socket Filtering is derived from the Berkeley
-Packet Filter. There are some distinct differences between
-the BSD and Linux Kernel Filtering.
-
-Linux Socket Filtering (LSF) allows a user-space program to
-attach a filter onto any socket and allow or disallow certain
-types of data to come through the socket. LSF follows exactly
-the same filter code structure as the BSD Berkeley Packet Filter
-(BPF), so referring to the BSD bpf.4 manpage is very helpful in
-creating filters.
-
-LSF is much simpler than BPF. One does not have to worry about
-devices or anything like that. You simply create your filter
-code, send it to the kernel via the SO_ATTACH_FILTER option and
-if your filter code passes the kernel check on it, you then
-immediately begin filtering data on that socket.
-
-You can also detach filters from your socket via the
-SO_DETACH_FILTER option. This will probably not be used much
-since when you close a socket that has a filter on it the
-filter is automagically removed. The other less common case
-may be adding a different filter on the same socket where you had another
-filter that is still running: the kernel takes care of removing
-the old one and placing your new one in its place, assuming your
-filter has passed the checks, otherwise if it fails the old filter
-will remain on that socket.
-
-SO_LOCK_FILTER option allows to lock the filter attached to a
-socket. Once set, a filter cannot be removed or changed. This allows
-one process to setup a socket, attach a filter, lock it then drop
-privileges and be assured that the filter will be kept until the
-socket is closed.
-
-Examples
-========
-
-Ioctls-
-setsockopt(sockfd, SOL_SOCKET, SO_ATTACH_FILTER, &Filter, sizeof(Filter));
-setsockopt(sockfd, SOL_SOCKET, SO_DETACH_FILTER, &value, sizeof(value));
-setsockopt(sockfd, SOL_SOCKET, SO_LOCK_FILTER, &value, sizeof(value));
-
-See the BSD bpf.4 manpage and the BSD Packet Filter paper written by
-Steven McCanne and Van Jacobson of Lawrence Berkeley Laboratory.
+------------
+
+Linux Socket Filtering (LSF) is derived from the Berkeley Packet Filter.
+Though there are some distinct differences between the BSD and Linux
+Kernel filtering, but when we speak of BPF or LSF in Linux context, we
+mean the very same mechanism of filtering in the Linux kernel.
+
+BPF allows a user-space program to attach a filter onto any socket and
+allow or disallow certain types of data to come through the socket. LSF
+follows exactly the same filter code structure as BSD's BPF, so referring
+to the BSD bpf.4 manpage is very helpful in creating filters.
+
+On Linux, BPF is much simpler than on BSD. One does not have to worry
+about devices or anything like that. You simply create your filter code,
+send it to the kernel via the SO_ATTACH_FILTER option and if your filter
+code passes the kernel check on it, you then immediately begin filtering
+data on that socket.
+
+You can also detach filters from your socket via the SO_DETACH_FILTER
+option. This will probably not be used much since when you close a socket
+that has a filter on it the filter is automagically removed. The other
+less common case may be adding a different filter on the same socket where
+you had another filter that is still running: the kernel takes care of
+removing the old one and placing your new one in its place, assuming your
+filter has passed the checks, otherwise if it fails the old filter will
+remain on that socket.
+
+SO_LOCK_FILTER option allows to lock the filter attached to a socket. Once
+set, a filter cannot be removed or changed. This allows one process to
+setup a socket, attach a filter, lock it then drop privileges and be
+assured that the filter will be kept until the socket is closed.
+
+The biggest user of this construct might be libpcap. Issuing a high-level
+filter command like `tcpdump -i em1 port 22` passes through the libpcap
+internal compiler that generates a structure that can eventually be loaded
+via SO_ATTACH_FILTER to the kernel. `tcpdump -i em1 port 22 -ddd`
+displays what is being placed into this structure.
+
+Although we were only speaking about sockets here, BPF in Linux is used
+in many more places. There's xt_bpf for netfilter, cls_bpf in the kernel
+qdisc layer, SECCOMP-BPF (SECure COMPuting [1]), and lots of other places
+such as team driver, PTP code, etc where BPF is being used.
+
+ [1] Documentation/prctl/seccomp_filter.txt
+
+Original BPF paper:
+
+Steven McCanne and Van Jacobson. 1993. The BSD packet filter: a new
+architecture for user-level packet capture. In Proceedings of the
+USENIX Winter 1993 Conference Proceedings on USENIX Winter 1993
+Conference Proceedings (USENIX'93). USENIX Association, Berkeley,
+CA, USA, 2-2. [http://www.tcpdump.org/papers/bpf-usenix93.pdf]
+
+Structure
+---------
+
+User space applications include <linux/filter.h> which contains the
+following relevant structures:
+
+struct sock_filter { /* Filter block */
+ __u16 code; /* Actual filter code */
+ __u8 jt; /* Jump true */
+ __u8 jf; /* Jump false */
+ __u32 k; /* Generic multiuse field */
+};
+
+Such a structure is assembled as an array of 4-tuples, that contains
+a code, jt, jf and k value. jt and jf are jump offsets and k a generic
+value to be used for a provided code.
+
+struct sock_fprog { /* Required for SO_ATTACH_FILTER. */
+ unsigned short len; /* Number of filter blocks */
+ struct sock_filter __user *filter;
+};
+
+For socket filtering, a pointer to this structure (as shown in
+follow-up example) is being passed to the kernel through setsockopt(2).
+
+Example
+-------
+
+#include <sys/socket.h>
+#include <sys/types.h>
+#include <arpa/inet.h>
+#include <linux/if_ether.h>
+/* ... */
+
+/* From the example above: tcpdump -i em1 port 22 -dd */
+struct sock_filter code[] = {
+ { 0x28, 0, 0, 0x0000000c },
+ { 0x15, 0, 8, 0x000086dd },
+ { 0x30, 0, 0, 0x00000014 },
+ { 0x15, 2, 0, 0x00000084 },
+ { 0x15, 1, 0, 0x00000006 },
+ { 0x15, 0, 17, 0x00000011 },
+ { 0x28, 0, 0, 0x00000036 },
+ { 0x15, 14, 0, 0x00000016 },
+ { 0x28, 0, 0, 0x00000038 },
+ { 0x15, 12, 13, 0x00000016 },
+ { 0x15, 0, 12, 0x00000800 },
+ { 0x30, 0, 0, 0x00000017 },
+ { 0x15, 2, 0, 0x00000084 },
+ { 0x15, 1, 0, 0x00000006 },
+ { 0x15, 0, 8, 0x00000011 },
+ { 0x28, 0, 0, 0x00000014 },
+ { 0x45, 6, 0, 0x00001fff },
+ { 0xb1, 0, 0, 0x0000000e },
+ { 0x48, 0, 0, 0x0000000e },
+ { 0x15, 2, 0, 0x00000016 },
+ { 0x48, 0, 0, 0x00000010 },
+ { 0x15, 0, 1, 0x00000016 },
+ { 0x06, 0, 0, 0x0000ffff },
+ { 0x06, 0, 0, 0x00000000 },
+};
+
+struct sock_fprog bpf = {
+ .len = ARRAY_SIZE(code),
+ .filter = code,
+};
+
+sock = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL));
+if (sock < 0)
+ /* ... bail out ... */
+
+ret = setsockopt(sock, SOL_SOCKET, SO_ATTACH_FILTER, &bpf, sizeof(bpf));
+if (ret < 0)
+ /* ... bail out ... */
+
+/* ... */
+close(sock);
+
+The above example code attaches a socket filter for a PF_PACKET socket
+in order to let all IPv4/IPv6 packets with port 22 pass. The rest will
+be dropped for this socket.
+
+The setsockopt(2) call to SO_DETACH_FILTER doesn't need any arguments
+and SO_LOCK_FILTER for preventing the filter to be detached, takes an
+integer value with 0 or 1.
+
+Note that socket filters are not restricted to PF_PACKET sockets only,
+but can also be used on other socket families.
+
+Summary of system calls:
+
+ * setsockopt(sockfd, SOL_SOCKET, SO_ATTACH_FILTER, &val, sizeof(val));
+ * setsockopt(sockfd, SOL_SOCKET, SO_DETACH_FILTER, &val, sizeof(val));
+ * setsockopt(sockfd, SOL_SOCKET, SO_LOCK_FILTER, &val, sizeof(val));
+
+Normally, most use cases for socket filtering on packet sockets will be
+covered by libpcap in high-level syntax, so as an application developer
+you should stick to that. libpcap wraps its own layer around all that.
+
+Unless i) using/linking to libpcap is not an option, ii) the required BPF
+filters use Linux extensions that are not supported by libpcap's compiler,
+iii) a filter might be more complex and not cleanly implementable with
+libpcap's compiler, or iv) particular filter codes should be optimized
+differently than libpcap's internal compiler does; then in such cases
+writing such a filter "by hand" can be of an alternative. For example,
+xt_bpf and cls_bpf users might have requirements that could result in
+more complex filter code, or one that cannot be expressed with libpcap
+(e.g. different return codes for various code paths). Moreover, BPF JIT
+implementors may wish to manually write test cases and thus need low-level
+access to BPF code as well.
+
+BPF engine and instruction set
+------------------------------
+
+Under tools/net/ there's a small helper tool called bpf_asm which can
+be used to write low-level filters for example scenarios mentioned in the
+previous section. Asm-like syntax mentioned here has been implemented in
+bpf_asm and will be used for further explanations (instead of dealing with
+less readable opcodes directly, principles are the same). The syntax is
+closely modelled after Steven McCanne's and Van Jacobson's BPF paper.
+
+The BPF architecture consists of the following basic elements:
+
+ Element Description
+
+ A 32 bit wide accumulator
+ X 32 bit wide X register
+ M[] 16 x 32 bit wide misc registers aka "scratch memory
+ store", addressable from 0 to 15
+
+A program, that is translated by bpf_asm into "opcodes" is an array that
+consists of the following elements (as already mentioned):
+
+ op:16, jt:8, jf:8, k:32
+
+The element op is a 16 bit wide opcode that has a particular instruction
+encoded. jt and jf are two 8 bit wide jump targets, one for condition
+"jump if true", the other one "jump if false". Eventually, element k
+contains a miscellaneous argument that can be interpreted in different
+ways depending on the given instruction in op.
+
+The instruction set consists of load, store, branch, alu, miscellaneous
+and return instructions that are also represented in bpf_asm syntax. This
+table lists all bpf_asm instructions available resp. what their underlying
+opcodes as defined in linux/filter.h stand for:
+
+ Instruction Addressing mode Description
+
+ ld 1, 2, 3, 4, 10 Load word into A
+ ldi 4 Load word into A
+ ldh 1, 2 Load half-word into A
+ ldb 1, 2 Load byte into A
+ ldx 3, 4, 5, 10 Load word into X
+ ldxi 4 Load word into X
+ ldxb 5 Load byte into X
+
+ st 3 Store A into M[]
+ stx 3 Store X into M[]
+
+ jmp 6 Jump to label
+ ja 6 Jump to label
+ jeq 7, 8 Jump on k == A
+ jneq 8 Jump on k != A
+ jne 8 Jump on k != A
+ jlt 8 Jump on k < A
+ jle 8 Jump on k <= A
+ jgt 7, 8 Jump on k > A
+ jge 7, 8 Jump on k >= A
+ jset 7, 8 Jump on k & A
+
+ add 0, 4 A + <x>
+ sub 0, 4 A - <x>
+ mul 0, 4 A * <x>
+ div 0, 4 A / <x>
+ mod 0, 4 A % <x>
+ neg 0, 4 !A
+ and 0, 4 A & <x>
+ or 0, 4 A | <x>
+ xor 0, 4 A ^ <x>
+ lsh 0, 4 A << <x>
+ rsh 0, 4 A >> <x>
+
+ tax Copy A into X
+ txa Copy X into A
+
+ ret 4, 9 Return
+
+The next table shows addressing formats from the 2nd column:
+
+ Addressing mode Syntax Description
+
+ 0 x/%x Register X
+ 1 [k] BHW at byte offset k in the packet
+ 2 [x + k] BHW at the offset X + k in the packet
+ 3 M[k] Word at offset k in M[]
+ 4 #k Literal value stored in k
+ 5 4*([k]&0xf) Lower nibble * 4 at byte offset k in the packet
+ 6 L Jump label L
+ 7 #k,Lt,Lf Jump to Lt if true, otherwise jump to Lf
+ 8 #k,Lt Jump to Lt if predicate is true
+ 9 a/%a Accumulator A
+ 10 extension BPF extension
+
+The Linux kernel also has a couple of BPF extensions that are used along
+with the class of load instructions by "overloading" the k argument with
+a negative offset + a particular extension offset. The result of such BPF
+extensions are loaded into A.
+
+Possible BPF extensions are shown in the following table:
+
+ Extension Description
+
+ len skb->len
+ proto skb->protocol
+ type skb->pkt_type
+ poff Payload start offset
+ ifidx skb->dev->ifindex
+ nla Netlink attribute of type X with offset A
+ nlan Nested Netlink attribute of type X with offset A
+ mark skb->mark
+ queue skb->queue_mapping
+ hatype skb->dev->type
+ rxhash skb->hash
+ cpu raw_smp_processor_id()
+ vlan_tci vlan_tx_tag_get(skb)
+ vlan_pr vlan_tx_tag_present(skb)
+ rand prandom_u32()
+
+These extensions can also be prefixed with '#'.
+Examples for low-level BPF:
+
+** ARP packets:
+
+ ldh [12]
+ jne #0x806, drop
+ ret #-1
+ drop: ret #0
+
+** IPv4 TCP packets:
+
+ ldh [12]
+ jne #0x800, drop
+ ldb [23]
+ jneq #6, drop
+ ret #-1
+ drop: ret #0
+
+** (Accelerated) VLAN w/ id 10:
+
+ ld vlan_tci
+ jneq #10, drop
+ ret #-1
+ drop: ret #0
+
+** icmp random packet sampling, 1 in 4
+ ldh [12]
+ jne #0x800, drop
+ ldb [23]
+ jneq #1, drop
+ # get a random uint32 number
+ ld rand
+ mod #4
+ jneq #1, drop
+ ret #-1
+ drop: ret #0
+
+** SECCOMP filter example:
+
+ ld [4] /* offsetof(struct seccomp_data, arch) */
+ jne #0xc000003e, bad /* AUDIT_ARCH_X86_64 */
+ ld [0] /* offsetof(struct seccomp_data, nr) */
+ jeq #15, good /* __NR_rt_sigreturn */
+ jeq #231, good /* __NR_exit_group */
+ jeq #60, good /* __NR_exit */
+ jeq #0, good /* __NR_read */
+ jeq #1, good /* __NR_write */
+ jeq #5, good /* __NR_fstat */
+ jeq #9, good /* __NR_mmap */
+ jeq #14, good /* __NR_rt_sigprocmask */
+ jeq #13, good /* __NR_rt_sigaction */
+ jeq #35, good /* __NR_nanosleep */
+ bad: ret #0 /* SECCOMP_RET_KILL */
+ good: ret #0x7fff0000 /* SECCOMP_RET_ALLOW */
+
+The above example code can be placed into a file (here called "foo"), and
+then be passed to the bpf_asm tool for generating opcodes, output that xt_bpf
+and cls_bpf understands and can directly be loaded with. Example with above
+ARP code:
+
+$ ./bpf_asm foo
+4,40 0 0 12,21 0 1 2054,6 0 0 4294967295,6 0 0 0,
+
+In copy and paste C-like output:
+
+$ ./bpf_asm -c foo
+{ 0x28, 0, 0, 0x0000000c },
+{ 0x15, 0, 1, 0x00000806 },
+{ 0x06, 0, 0, 0xffffffff },
+{ 0x06, 0, 0, 0000000000 },
+
+In particular, as usage with xt_bpf or cls_bpf can result in more complex BPF
+filters that might not be obvious at first, it's good to test filters before
+attaching to a live system. For that purpose, there's a small tool called
+bpf_dbg under tools/net/ in the kernel source directory. This debugger allows
+for testing BPF filters against given pcap files, single stepping through the
+BPF code on the pcap's packets and to do BPF machine register dumps.
+
+Starting bpf_dbg is trivial and just requires issuing:
+
+# ./bpf_dbg
+
+In case input and output do not equal stdin/stdout, bpf_dbg takes an
+alternative stdin source as a first argument, and an alternative stdout
+sink as a second one, e.g. `./bpf_dbg test_in.txt test_out.txt`.
+
+Other than that, a particular libreadline configuration can be set via
+file "~/.bpf_dbg_init" and the command history is stored in the file
+"~/.bpf_dbg_history".
+
+Interaction in bpf_dbg happens through a shell that also has auto-completion
+support (follow-up example commands starting with '>' denote bpf_dbg shell).
+The usual workflow would be to ...
+
+> load bpf 6,40 0 0 12,21 0 3 2048,48 0 0 23,21 0 1 1,6 0 0 65535,6 0 0 0
+ Loads a BPF filter from standard output of bpf_asm, or transformed via
+ e.g. `tcpdump -iem1 -ddd port 22 | tr '\n' ','`. Note that for JIT
+ debugging (next section), this command creates a temporary socket and
+ loads the BPF code into the kernel. Thus, this will also be useful for
+ JIT developers.
+
+> load pcap foo.pcap
+ Loads standard tcpdump pcap file.
+
+> run [<n>]
+bpf passes:1 fails:9
+ Runs through all packets from a pcap to account how many passes and fails
+ the filter will generate. A limit of packets to traverse can be given.
+
+> disassemble
+l0: ldh [12]
+l1: jeq #0x800, l2, l5
+l2: ldb [23]
+l3: jeq #0x1, l4, l5
+l4: ret #0xffff
+l5: ret #0
+ Prints out BPF code disassembly.
+
+> dump
+/* { op, jt, jf, k }, */
+{ 0x28, 0, 0, 0x0000000c },
+{ 0x15, 0, 3, 0x00000800 },
+{ 0x30, 0, 0, 0x00000017 },
+{ 0x15, 0, 1, 0x00000001 },
+{ 0x06, 0, 0, 0x0000ffff },
+{ 0x06, 0, 0, 0000000000 },
+ Prints out C-style BPF code dump.
+
+> breakpoint 0
+breakpoint at: l0: ldh [12]
+> breakpoint 1
+breakpoint at: l1: jeq #0x800, l2, l5
+ ...
+ Sets breakpoints at particular BPF instructions. Issuing a `run` command
+ will walk through the pcap file continuing from the current packet and
+ break when a breakpoint is being hit (another `run` will continue from
+ the currently active breakpoint executing next instructions):
+
+ > run
+ -- register dump --
+ pc: [0] <-- program counter
+ code: [40] jt[0] jf[0] k[12] <-- plain BPF code of current instruction
+ curr: l0: ldh [12] <-- disassembly of current instruction
+ A: [00000000][0] <-- content of A (hex, decimal)
+ X: [00000000][0] <-- content of X (hex, decimal)
+ M[0,15]: [00000000][0] <-- folded content of M (hex, decimal)
+ -- packet dump -- <-- Current packet from pcap (hex)
+ len: 42
+ 0: 00 19 cb 55 55 a4 00 14 a4 43 78 69 08 06 00 01
+ 16: 08 00 06 04 00 01 00 14 a4 43 78 69 0a 3b 01 26
+ 32: 00 00 00 00 00 00 0a 3b 01 01
+ (breakpoint)
+ >
+
+> breakpoint
+breakpoints: 0 1
+ Prints currently set breakpoints.
+
+> step [-<n>, +<n>]
+ Performs single stepping through the BPF program from the current pc
+ offset. Thus, on each step invocation, above register dump is issued.
+ This can go forwards and backwards in time, a plain `step` will break
+ on the next BPF instruction, thus +1. (No `run` needs to be issued here.)
+
+> select <n>
+ Selects a given packet from the pcap file to continue from. Thus, on
+ the next `run` or `step`, the BPF program is being evaluated against
+ the user pre-selected packet. Numbering starts just as in Wireshark
+ with index 1.
+
+> quit
+#
+ Exits bpf_dbg.
+
+JIT compiler
+------------
+
+The Linux kernel has a built-in BPF JIT compiler for x86_64, SPARC, PowerPC,
+ARM and s390 and can be enabled through CONFIG_BPF_JIT. The JIT compiler is
+transparently invoked for each attached filter from user space or for internal
+kernel users if it has been previously enabled by root:
+
+ echo 1 > /proc/sys/net/core/bpf_jit_enable
+
+For JIT developers, doing audits etc, each compile run can output the generated
+opcode image into the kernel log via:
+
+ echo 2 > /proc/sys/net/core/bpf_jit_enable
+
+Example output from dmesg:
+
+[ 3389.935842] flen=6 proglen=70 pass=3 image=ffffffffa0069c8f
+[ 3389.935847] JIT code: 00000000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 68
+[ 3389.935849] JIT code: 00000010: 44 2b 4f 6c 4c 8b 87 d8 00 00 00 be 0c 00 00 00
+[ 3389.935850] JIT code: 00000020: e8 1d 94 ff e0 3d 00 08 00 00 75 16 be 17 00 00
+[ 3389.935851] JIT code: 00000030: 00 e8 28 94 ff e0 83 f8 01 75 07 b8 ff ff 00 00
+[ 3389.935852] JIT code: 00000040: eb 02 31 c0 c9 c3
+
+In the kernel source tree under tools/net/, there's bpf_jit_disasm for
+generating disassembly out of the kernel log's hexdump:
+
+# ./bpf_jit_disasm
+70 bytes emitted from JIT compiler (pass:3, flen:6)
+ffffffffa0069c8f + <x>:
+ 0: push %rbp
+ 1: mov %rsp,%rbp
+ 4: sub $0x60,%rsp
+ 8: mov %rbx,-0x8(%rbp)
+ c: mov 0x68(%rdi),%r9d
+ 10: sub 0x6c(%rdi),%r9d
+ 14: mov 0xd8(%rdi),%r8
+ 1b: mov $0xc,%esi
+ 20: callq 0xffffffffe0ff9442
+ 25: cmp $0x800,%eax
+ 2a: jne 0x0000000000000042
+ 2c: mov $0x17,%esi
+ 31: callq 0xffffffffe0ff945e
+ 36: cmp $0x1,%eax
+ 39: jne 0x0000000000000042
+ 3b: mov $0xffff,%eax
+ 40: jmp 0x0000000000000044
+ 42: xor %eax,%eax
+ 44: leaveq
+ 45: retq
+
+Issuing option `-o` will "annotate" opcodes to resulting assembler
+instructions, which can be very useful for JIT developers:
+
+# ./bpf_jit_disasm -o
+70 bytes emitted from JIT compiler (pass:3, flen:6)
+ffffffffa0069c8f + <x>:
+ 0: push %rbp
+ 55
+ 1: mov %rsp,%rbp
+ 48 89 e5
+ 4: sub $0x60,%rsp
+ 48 83 ec 60
+ 8: mov %rbx,-0x8(%rbp)
+ 48 89 5d f8
+ c: mov 0x68(%rdi),%r9d
+ 44 8b 4f 68
+ 10: sub 0x6c(%rdi),%r9d
+ 44 2b 4f 6c
+ 14: mov 0xd8(%rdi),%r8
+ 4c 8b 87 d8 00 00 00
+ 1b: mov $0xc,%esi
+ be 0c 00 00 00
+ 20: callq 0xffffffffe0ff9442
+ e8 1d 94 ff e0
+ 25: cmp $0x800,%eax
+ 3d 00 08 00 00
+ 2a: jne 0x0000000000000042
+ 75 16
+ 2c: mov $0x17,%esi
+ be 17 00 00 00
+ 31: callq 0xffffffffe0ff945e
+ e8 28 94 ff e0
+ 36: cmp $0x1,%eax
+ 83 f8 01
+ 39: jne 0x0000000000000042
+ 75 07
+ 3b: mov $0xffff,%eax
+ b8 ff ff 00 00
+ 40: jmp 0x0000000000000044
+ eb 02
+ 42: xor %eax,%eax
+ 31 c0
+ 44: leaveq
+ c9
+ 45: retq
+ c3
+
+For BPF JIT developers, bpf_jit_disasm, bpf_asm and bpf_dbg provides a useful
+toolchain for developing and testing the kernel's JIT compiler.
+
+BPF kernel internals
+--------------------
+Internally, for the kernel interpreter, a different instruction set
+format with similar underlying principles from BPF described in previous
+paragraphs is being used. However, the instruction set format is modelled
+closer to the underlying architecture to mimic native instruction sets, so
+that a better performance can be achieved (more details later). This new
+ISA is called 'eBPF' or 'internal BPF' interchangeably. (Note: eBPF which
+originates from [e]xtended BPF is not the same as BPF extensions! While
+eBPF is an ISA, BPF extensions date back to classic BPF's 'overloading'
+of BPF_LD | BPF_{B,H,W} | BPF_ABS instruction.)
+
+It is designed to be JITed with one to one mapping, which can also open up
+the possibility for GCC/LLVM compilers to generate optimized eBPF code through
+an eBPF backend that performs almost as fast as natively compiled code.
+
+The new instruction set was originally designed with the possible goal in
+mind to write programs in "restricted C" and compile into eBPF with a optional
+GCC/LLVM backend, so that it can just-in-time map to modern 64-bit CPUs with
+minimal performance overhead over two steps, that is, C -> eBPF -> native code.
+
+Currently, the new format is being used for running user BPF programs, which
+includes seccomp BPF, classic socket filters, cls_bpf traffic classifier,
+team driver's classifier for its load-balancing mode, netfilter's xt_bpf
+extension, PTP dissector/classifier, and much more. They are all internally
+converted by the kernel into the new instruction set representation and run
+in the eBPF interpreter. For in-kernel handlers, this all works transparently
+by using sk_unattached_filter_create() for setting up the filter, resp.
+sk_unattached_filter_destroy() for destroying it. The macro
+SK_RUN_FILTER(filter, ctx) transparently invokes eBPF interpreter or JITed
+code to run the filter. 'filter' is a pointer to struct sk_filter that we
+got from sk_unattached_filter_create(), and 'ctx' the given context (e.g.
+skb pointer). All constraints and restrictions from sk_chk_filter() apply
+before a conversion to the new layout is being done behind the scenes!
+
+Currently, the classic BPF format is being used for JITing on most of the
+architectures. Only x86-64 performs JIT compilation from eBPF instruction set,
+however, future work will migrate other JIT compilers as well, so that they
+will profit from the very same benefits.
+
+Some core changes of the new internal format:
+
+- Number of registers increase from 2 to 10:
+
+ The old format had two registers A and X, and a hidden frame pointer. The
+ new layout extends this to be 10 internal registers and a read-only frame
+ pointer. Since 64-bit CPUs are passing arguments to functions via registers
+ the number of args from eBPF program to in-kernel function is restricted
+ to 5 and one register is used to accept return value from an in-kernel
+ function. Natively, x86_64 passes first 6 arguments in registers, aarch64/
+ sparcv9/mips64 have 7 - 8 registers for arguments; x86_64 has 6 callee saved
+ registers, and aarch64/sparcv9/mips64 have 11 or more callee saved registers.
+
+ Therefore, eBPF calling convention is defined as:
+
+ * R0 - return value from in-kernel function, and exit value for eBPF program
+ * R1 - R5 - arguments from eBPF program to in-kernel function
+ * R6 - R9 - callee saved registers that in-kernel function will preserve
+ * R10 - read-only frame pointer to access stack
+
+ Thus, all eBPF registers map one to one to HW registers on x86_64, aarch64,
+ etc, and eBPF calling convention maps directly to ABIs used by the kernel on
+ 64-bit architectures.
+
+ On 32-bit architectures JIT may map programs that use only 32-bit arithmetic
+ and may let more complex programs to be interpreted.
+
+ R0 - R5 are scratch registers and eBPF program needs spill/fill them if
+ necessary across calls. Note that there is only one eBPF program (== one
+ eBPF main routine) and it cannot call other eBPF functions, it can only
+ call predefined in-kernel functions, though.
+
+- Register width increases from 32-bit to 64-bit:
+
+ Still, the semantics of the original 32-bit ALU operations are preserved
+ via 32-bit subregisters. All eBPF registers are 64-bit with 32-bit lower
+ subregisters that zero-extend into 64-bit if they are being written to.
+ That behavior maps directly to x86_64 and arm64 subregister definition, but
+ makes other JITs more difficult.
+
+ 32-bit architectures run 64-bit internal BPF programs via interpreter.
+ Their JITs may convert BPF programs that only use 32-bit subregisters into
+ native instruction set and let the rest being interpreted.
+
+ Operation is 64-bit, because on 64-bit architectures, pointers are also
+ 64-bit wide, and we want to pass 64-bit values in/out of kernel functions,
+ so 32-bit eBPF registers would otherwise require to define register-pair
+ ABI, thus, there won't be able to use a direct eBPF register to HW register
+ mapping and JIT would need to do combine/split/move operations for every
+ register in and out of the function, which is complex, bug prone and slow.
+ Another reason is the use of atomic 64-bit counters.
+
+- Conditional jt/jf targets replaced with jt/fall-through:
+
+ While the original design has constructs such as "if (cond) jump_true;
+ else jump_false;", they are being replaced into alternative constructs like
+ "if (cond) jump_true; /* else fall-through */".
+
+- Introduces bpf_call insn and register passing convention for zero overhead
+ calls from/to other kernel functions:
+
+ Before an in-kernel function call, the internal BPF program needs to
+ place function arguments into R1 to R5 registers to satisfy calling
+ convention, then the interpreter will take them from registers and pass
+ to in-kernel function. If R1 - R5 registers are mapped to CPU registers
+ that are used for argument passing on given architecture, the JIT compiler
+ doesn't need to emit extra moves. Function arguments will be in the correct
+ registers and BPF_CALL instruction will be JITed as single 'call' HW
+ instruction. This calling convention was picked to cover common call
+ situations without performance penalty.
+
+ After an in-kernel function call, R1 - R5 are reset to unreadable and R0 has
+ a return value of the function. Since R6 - R9 are callee saved, their state
+ is preserved across the call.
+
+ For example, consider three C functions:
+
+ u64 f1() { return (*_f2)(1); }
+ u64 f2(u64 a) { return f3(a + 1, a); }
+ u64 f3(u64 a, u64 b) { return a - b; }
+
+ GCC can compile f1, f3 into x86_64:
+
+ f1:
+ movl $1, %edi
+ movq _f2(%rip), %rax
+ jmp *%rax
+ f3:
+ movq %rdi, %rax
+ subq %rsi, %rax
+ ret
+
+ Function f2 in eBPF may look like:
+
+ f2:
+ bpf_mov R2, R1
+ bpf_add R1, 1
+ bpf_call f3
+ bpf_exit
+
+ If f2 is JITed and the pointer stored to '_f2'. The calls f1 -> f2 -> f3 and
+ returns will be seamless. Without JIT, __sk_run_filter() interpreter needs to
+ be used to call into f2.
+
+ For practical reasons all eBPF programs have only one argument 'ctx' which is
+ already placed into R1 (e.g. on __sk_run_filter() startup) and the programs
+ can call kernel functions with up to 5 arguments. Calls with 6 or more arguments
+ are currently not supported, but these restrictions can be lifted if necessary
+ in the future.
+
+ On 64-bit architectures all register map to HW registers one to one. For
+ example, x86_64 JIT compiler can map them as ...
+
+ R0 - rax
+ R1 - rdi
+ R2 - rsi
+ R3 - rdx
+ R4 - rcx
+ R5 - r8
+ R6 - rbx
+ R7 - r13
+ R8 - r14
+ R9 - r15
+ R10 - rbp
+
+ ... since x86_64 ABI mandates rdi, rsi, rdx, rcx, r8, r9 for argument passing
+ and rbx, r12 - r15 are callee saved.
+
+ Then the following internal BPF pseudo-program:
+
+ bpf_mov R6, R1 /* save ctx */
+ bpf_mov R2, 2
+ bpf_mov R3, 3
+ bpf_mov R4, 4
+ bpf_mov R5, 5
+ bpf_call foo
+ bpf_mov R7, R0 /* save foo() return value */
+ bpf_mov R1, R6 /* restore ctx for next call */
+ bpf_mov R2, 6
+ bpf_mov R3, 7
+ bpf_mov R4, 8
+ bpf_mov R5, 9
+ bpf_call bar
+ bpf_add R0, R7
+ bpf_exit
+
+ After JIT to x86_64 may look like:
+
+ push %rbp
+ mov %rsp,%rbp
+ sub $0x228,%rsp
+ mov %rbx,-0x228(%rbp)
+ mov %r13,-0x220(%rbp)
+ mov %rdi,%rbx
+ mov $0x2,%esi
+ mov $0x3,%edx
+ mov $0x4,%ecx
+ mov $0x5,%r8d
+ callq foo
+ mov %rax,%r13
+ mov %rbx,%rdi
+ mov $0x2,%esi
+ mov $0x3,%edx
+ mov $0x4,%ecx
+ mov $0x5,%r8d
+ callq bar
+ add %r13,%rax
+ mov -0x228(%rbp),%rbx
+ mov -0x220(%rbp),%r13
+ leaveq
+ retq
+
+ Which is in this example equivalent in C to:
+
+ u64 bpf_filter(u64 ctx)
+ {
+ return foo(ctx, 2, 3, 4, 5) + bar(ctx, 6, 7, 8, 9);
+ }
+
+ In-kernel functions foo() and bar() with prototype: u64 (*)(u64 arg1, u64
+ arg2, u64 arg3, u64 arg4, u64 arg5); will receive arguments in proper
+ registers and place their return value into '%rax' which is R0 in eBPF.
+ Prologue and epilogue are emitted by JIT and are implicit in the
+ interpreter. R0-R5 are scratch registers, so eBPF program needs to preserve
+ them across the calls as defined by calling convention.
+
+ For example the following program is invalid:
+
+ bpf_mov R1, 1
+ bpf_call foo
+ bpf_mov R0, R1
+ bpf_exit
+
+ After the call the registers R1-R5 contain junk values and cannot be read.
+ In the future an eBPF verifier can be used to validate internal BPF programs.
+
+Also in the new design, eBPF is limited to 4096 insns, which means that any
+program will terminate quickly and will only call a fixed number of kernel
+functions. Original BPF and the new format are two operand instructions,
+which helps to do one-to-one mapping between eBPF insn and x86 insn during JIT.
+
+The input context pointer for invoking the interpreter function is generic,
+its content is defined by a specific use case. For seccomp register R1 points
+to seccomp_data, for converted BPF filters R1 points to a skb.
+
+A program, that is translated internally consists of the following elements:
+
+ op:16, jt:8, jf:8, k:32 ==> op:8, dst_reg:4, src_reg:4, off:16, imm:32
+
+So far 87 internal BPF instructions were implemented. 8-bit 'op' opcode field
+has room for new instructions. Some of them may use 16/24/32 byte encoding. New
+instructions must be multiple of 8 bytes to preserve backward compatibility.
+
+Internal BPF is a general purpose RISC instruction set. Not every register and
+every instruction are used during translation from original BPF to new format.
+For example, socket filters are not using 'exclusive add' instruction, but
+tracing filters may do to maintain counters of events, for example. Register R9
+is not used by socket filters either, but more complex filters may be running
+out of registers and would have to resort to spill/fill to stack.
+
+Internal BPF can used as generic assembler for last step performance
+optimizations, socket filters and seccomp are using it as assembler. Tracing
+filters may use it as assembler to generate code from kernel. In kernel usage
+may not be bounded by security considerations, since generated internal BPF code
+may be optimizing internal code path and not being exposed to the user space.
+Safety of internal BPF can come from a verifier (TBD). In such use cases as
+described, it may be used as safe instruction set.
+
+Just like the original BPF, the new format runs within a controlled environment,
+is deterministic and the kernel can easily prove that. The safety of the program
+can be determined in two steps: first step does depth-first-search to disallow
+loops and other CFG validation; second step starts from the first insn and
+descends all possible paths. It simulates execution of every insn and observes
+the state change of registers and stack.
+
+eBPF opcode encoding
+--------------------
+
+eBPF is reusing most of the opcode encoding from classic to simplify conversion
+of classic BPF to eBPF. For arithmetic and jump instructions the 8-bit 'code'
+field is divided into three parts:
+
+ +----------------+--------+--------------------+
+ | 4 bits | 1 bit | 3 bits |
+ | operation code | source | instruction class |
+ +----------------+--------+--------------------+
+ (MSB) (LSB)
+
+Three LSB bits store instruction class which is one of:
+
+ Classic BPF classes: eBPF classes:
+
+ BPF_LD 0x00 BPF_LD 0x00
+ BPF_LDX 0x01 BPF_LDX 0x01
+ BPF_ST 0x02 BPF_ST 0x02
+ BPF_STX 0x03 BPF_STX 0x03
+ BPF_ALU 0x04 BPF_ALU 0x04
+ BPF_JMP 0x05 BPF_JMP 0x05
+ BPF_RET 0x06 [ class 6 unused, for future if needed ]
+ BPF_MISC 0x07 BPF_ALU64 0x07
+
+When BPF_CLASS(code) == BPF_ALU or BPF_JMP, 4th bit encodes source operand ...
+
+ BPF_K 0x00
+ BPF_X 0x08
+
+ * in classic BPF, this means:
+
+ BPF_SRC(code) == BPF_X - use register X as source operand
+ BPF_SRC(code) == BPF_K - use 32-bit immediate as source operand
+
+ * in eBPF, this means:
+
+ BPF_SRC(code) == BPF_X - use 'src_reg' register as source operand
+ BPF_SRC(code) == BPF_K - use 32-bit immediate as source operand
+
+... and four MSB bits store operation code.
+
+If BPF_CLASS(code) == BPF_ALU or BPF_ALU64 [ in eBPF ], BPF_OP(code) is one of:
+
+ BPF_ADD 0x00
+ BPF_SUB 0x10
+ BPF_MUL 0x20
+ BPF_DIV 0x30
+ BPF_OR 0x40
+ BPF_AND 0x50
+ BPF_LSH 0x60
+ BPF_RSH 0x70
+ BPF_NEG 0x80
+ BPF_MOD 0x90
+ BPF_XOR 0xa0
+ BPF_MOV 0xb0 /* eBPF only: mov reg to reg */
+ BPF_ARSH 0xc0 /* eBPF only: sign extending shift right */
+ BPF_END 0xd0 /* eBPF only: endianness conversion */
+
+If BPF_CLASS(code) == BPF_JMP, BPF_OP(code) is one of:
+
+ BPF_JA 0x00
+ BPF_JEQ 0x10
+ BPF_JGT 0x20
+ BPF_JGE 0x30
+ BPF_JSET 0x40
+ BPF_JNE 0x50 /* eBPF only: jump != */
+ BPF_JSGT 0x60 /* eBPF only: signed '>' */
+ BPF_JSGE 0x70 /* eBPF only: signed '>=' */
+ BPF_CALL 0x80 /* eBPF only: function call */
+ BPF_EXIT 0x90 /* eBPF only: function return */
+
+So BPF_ADD | BPF_X | BPF_ALU means 32-bit addition in both classic BPF
+and eBPF. There are only two registers in classic BPF, so it means A += X.
+In eBPF it means dst_reg = (u32) dst_reg + (u32) src_reg; similarly,
+BPF_XOR | BPF_K | BPF_ALU means A ^= imm32 in classic BPF and analogous
+src_reg = (u32) src_reg ^ (u32) imm32 in eBPF.
+
+Classic BPF is using BPF_MISC class to represent A = X and X = A moves.
+eBPF is using BPF_MOV | BPF_X | BPF_ALU code instead. Since there are no
+BPF_MISC operations in eBPF, the class 7 is used as BPF_ALU64 to mean
+exactly the same operations as BPF_ALU, but with 64-bit wide operands
+instead. So BPF_ADD | BPF_X | BPF_ALU64 means 64-bit addition, i.e.:
+dst_reg = dst_reg + src_reg
+
+Classic BPF wastes the whole BPF_RET class to represent a single 'ret'
+operation. Classic BPF_RET | BPF_K means copy imm32 into return register
+and perform function exit. eBPF is modeled to match CPU, so BPF_JMP | BPF_EXIT
+in eBPF means function exit only. The eBPF program needs to store return
+value into register R0 before doing a BPF_EXIT. Class 6 in eBPF is currently
+unused and reserved for future use.
+
+For load and store instructions the 8-bit 'code' field is divided as:
+
+ +--------+--------+-------------------+
+ | 3 bits | 2 bits | 3 bits |
+ | mode | size | instruction class |
+ +--------+--------+-------------------+
+ (MSB) (LSB)
+
+Size modifier is one of ...
+
+ BPF_W 0x00 /* word */
+ BPF_H 0x08 /* half word */
+ BPF_B 0x10 /* byte */
+ BPF_DW 0x18 /* eBPF only, double word */
+
+... which encodes size of load/store operation:
+
+ B - 1 byte
+ H - 2 byte
+ W - 4 byte
+ DW - 8 byte (eBPF only)
+
+Mode modifier is one of:
+
+ BPF_IMM 0x00 /* classic BPF only, reserved in eBPF */
+ BPF_ABS 0x20
+ BPF_IND 0x40
+ BPF_MEM 0x60
+ BPF_LEN 0x80 /* classic BPF only, reserved in eBPF */
+ BPF_MSH 0xa0 /* classic BPF only, reserved in eBPF */
+ BPF_XADD 0xc0 /* eBPF only, exclusive add */
+
+eBPF has two non-generic instructions: (BPF_ABS | <size> | BPF_LD) and
+(BPF_IND | <size> | BPF_LD) which are used to access packet data.
+
+They had to be carried over from classic to have strong performance of
+socket filters running in eBPF interpreter. These instructions can only
+be used when interpreter context is a pointer to 'struct sk_buff' and
+have seven implicit operands. Register R6 is an implicit input that must
+contain pointer to sk_buff. Register R0 is an implicit output which contains
+the data fetched from the packet. Registers R1-R5 are scratch registers
+and must not be used to store the data across BPF_ABS | BPF_LD or
+BPF_IND | BPF_LD instructions.
+
+These instructions have implicit program exit condition as well. When
+eBPF program is trying to access the data beyond the packet boundary,
+the interpreter will abort the execution of the program. JIT compilers
+therefore must preserve this property. src_reg and imm32 fields are
+explicit inputs to these instructions.
+
+For example:
+
+ BPF_IND | BPF_W | BPF_LD means:
+
+ R0 = ntohl(*(u32 *) (((struct sk_buff *) R6)->data + src_reg + imm32))
+ and R1 - R5 were scratched.
+
+Unlike classic BPF instruction set, eBPF has generic load/store operations:
+
+BPF_MEM | <size> | BPF_STX: *(size *) (dst_reg + off) = src_reg
+BPF_MEM | <size> | BPF_ST: *(size *) (dst_reg + off) = imm32
+BPF_MEM | <size> | BPF_LDX: dst_reg = *(size *) (src_reg + off)
+BPF_XADD | BPF_W | BPF_STX: lock xadd *(u32 *)(dst_reg + off16) += src_reg
+BPF_XADD | BPF_DW | BPF_STX: lock xadd *(u64 *)(dst_reg + off16) += src_reg
+
+Where size is one of: BPF_B or BPF_H or BPF_W or BPF_DW. Note that 1 and
+2 byte atomic increments are not supported.
+
+Testing
+-------
+
+Next to the BPF toolchain, the kernel also ships a test module that contains
+various test cases for classic and internal BPF that can be executed against
+the BPF interpreter and JIT compiler. It can be found in lib/test_bpf.c and
+enabled via Kconfig:
+
+ CONFIG_TEST_BPF=m
+
+After the module has been built and installed, the test suite can be executed
+via insmod or modprobe against 'test_bpf' module. Results of the test cases
+including timings in nsec can be found in the kernel log (dmesg).
+
+Misc
+----
+
+Also trinity, the Linux syscall fuzzer, has built-in support for BPF and
+SECCOMP-BPF kernel fuzzing.
+
+Written by
+----------
+
+The document was written in the hope that it is found useful and in order
+to give potential BPF hackers or security auditors a better overview of
+the underlying architecture.
+
+Jay Schulist <jschlst@samba.org>
+Daniel Borkmann <dborkman@redhat.com>
+Alexei Starovoitov <ast@plumgrid.com>
diff --git a/Documentation/networking/gianfar.txt b/Documentation/networking/gianfar.txt
index ad474ea07d0..ba1daea7f2e 100644
--- a/Documentation/networking/gianfar.txt
+++ b/Documentation/networking/gianfar.txt
@@ -1,38 +1,8 @@
The Gianfar Ethernet Driver
-Sysfs File description
Author: Andy Fleming <afleming@freescale.com>
Updated: 2005-07-28
-SYSFS
-
-Several of the features of the gianfar driver are controlled
-through sysfs files. These are:
-
-bd_stash:
-To stash RX Buffer Descriptors in the L2, echo 'on' or '1' to
-bd_stash, echo 'off' or '0' to disable
-
-rx_stash_len:
-To stash the first n bytes of the packet in L2, echo the number
-of bytes to buf_stash_len. echo 0 to disable.
-
-WARNING: You could really screw these up if you set them too low or high!
-fifo_threshold:
-To change the number of bytes the controller needs in the
-fifo before it starts transmission, echo the number of bytes to
-fifo_thresh. Range should be 0-511.
-
-fifo_starve:
-When the FIFO has less than this many bytes during a transmit, it
-enters starve mode, and increases the priority of TX memory
-transactions. To change, echo the number of bytes to
-fifo_starve. Range should be 0-511.
-
-fifo_starve_off:
-Once in starve mode, the FIFO remains there until it has this
-many bytes. To change, echo the number of bytes to
-fifo_starve_off. Range should be 0-511.
CHECKSUM OFFLOADING
diff --git a/Documentation/networking/i40evf.txt b/Documentation/networking/i40evf.txt
new file mode 100644
index 00000000000..21e41271af7
--- /dev/null
+++ b/Documentation/networking/i40evf.txt
@@ -0,0 +1,47 @@
+Linux* Base Driver for Intel(R) Network Connection
+==================================================
+
+Intel XL710 X710 Virtual Function Linux driver.
+Copyright(c) 2013 Intel Corporation.
+
+Contents
+========
+
+- Identifying Your Adapter
+- Known Issues/Troubleshooting
+- Support
+
+This file describes the i40evf Linux* Base Driver for the Intel(R) XL710
+X710 Virtual Function.
+
+The i40evf driver supports XL710 and X710 virtual function devices that
+can only be activated on kernels with CONFIG_PCI_IOV enabled.
+
+The guest OS loading the i40evf driver must support MSI-X interrupts.
+
+Identifying Your Adapter
+========================
+
+For more information on how to identify your adapter, go to the Adapter &
+Driver ID Guide at:
+
+ http://support.intel.com/support/go/network/adapter/idguide.htm
+
+Known Issues/Troubleshooting
+============================
+
+
+Support
+=======
+
+For general information, go to the Intel support website at:
+
+ http://support.intel.com
+
+or the Intel Wired Networking project hosted by Sourceforge at:
+
+ http://sourceforge.net/projects/e1000
+
+If an issue is identified with the released source code on the supported
+kernel with a supported adapter, email the specific information related
+to the issue to e1000-devel@lists.sf.net
diff --git a/Documentation/networking/ieee802154.txt b/Documentation/networking/ieee802154.txt
index 09eb57329f1..22bbc7225f8 100644
--- a/Documentation/networking/ieee802154.txt
+++ b/Documentation/networking/ieee802154.txt
@@ -4,7 +4,7 @@
Introduction
============
-The IEEE 802.15.4 working group focuses on standartization of bottom
+The IEEE 802.15.4 working group focuses on standardization of bottom
two layers: Medium Access Control (MAC) and Physical (PHY). And there
are mainly two options available for upper layers:
- ZigBee - proprietary protocol from ZigBee Alliance
@@ -66,7 +66,7 @@ net_device, with .type = ARPHRD_IEEE802154. Data is exchanged with socket family
code via plain sk_buffs. On skb reception skb->cb must contain additional
info as described in the struct ieee802154_mac_cb. During packet transmission
the skb->cb is used to provide additional data to device's header_ops->create
-function. Be aware, that this data can be overriden later (when socket code
+function. Be aware that this data can be overridden later (when socket code
submits skb to qdisc), so if you need something from that cb later, you should
store info in the skb->data on your own.
diff --git a/Documentation/networking/igb.txt b/Documentation/networking/igb.txt
index 4ebbd659256..43d3549366a 100644
--- a/Documentation/networking/igb.txt
+++ b/Documentation/networking/igb.txt
@@ -36,54 +36,6 @@ Default Value: 0
This parameter adds support for SR-IOV. It causes the driver to spawn up to
max_vfs worth of virtual function.
-QueuePairs
-----------
-Valid Range: 0-1
-Default Value: 1 (TX and RX will be paired onto one interrupt vector)
-
-If set to 0, when MSI-X is enabled, the TX and RX will attempt to occupy
-separate vectors.
-
-This option can be overridden to 1 if there are not sufficient interrupts
-available. This can occur if any combination of RSS, VMDQ, and max_vfs
-results in more than 4 queues being used.
-
-Node
-----
-Valid Range: 0-n
-Default Value: -1 (off)
-
- 0 - n: where n is the number of the NUMA node that should be used to
- allocate memory for this adapter port.
- -1: uses the driver default of allocating memory on whichever processor is
- running insmod/modprobe.
-
- The Node parameter will allow you to pick which NUMA node you want to have
- the adapter allocate memory from. All driver structures, in-memory queues,
- and receive buffers will be allocated on the node specified. This parameter
- is only useful when interrupt affinity is specified, otherwise some portion
- of the time the interrupt could run on a different core than the memory is
- allocated on, causing slower memory access and impacting throughput, CPU, or
- both.
-
-EEE
----
-Valid Range: 0-1
-Default Value: 1 (enabled)
-
- A link between two EEE-compliant devices will result in periodic bursts of
- data followed by long periods where in the link is in an idle state. This Low
- Power Idle (LPI) state is supported in both 1Gbps and 100Mbps link speeds.
- NOTE: EEE support requires autonegotiation.
-
-DMAC
-----
-Valid Range: 0-1
-Default Value: 1 (enabled)
- Enables or disables DMA Coalescing feature.
-
-
-
Additional Configurations
=========================
diff --git a/Documentation/networking/ip-sysctl.txt b/Documentation/networking/ip-sysctl.txt
index a46d78583ae..ab42c95f998 100644
--- a/Documentation/networking/ip-sysctl.txt
+++ b/Documentation/networking/ip-sysctl.txt
@@ -15,13 +15,47 @@ ip_default_ttl - INTEGER
forwarded) IP packets. Should be between 1 and 255 inclusive.
Default: 64 (as recommended by RFC1700)
-ip_no_pmtu_disc - BOOLEAN
- Disable Path MTU Discovery.
- default FALSE
+ip_no_pmtu_disc - INTEGER
+ Disable Path MTU Discovery. If enabled in mode 1 and a
+ fragmentation-required ICMP is received, the PMTU to this
+ destination will be set to min_pmtu (see below). You will need
+ to raise min_pmtu to the smallest interface MTU on your system
+ manually if you want to avoid locally generated fragments.
+
+ In mode 2 incoming Path MTU Discovery messages will be
+ discarded. Outgoing frames are handled the same as in mode 1,
+ implicitly setting IP_PMTUDISC_DONT on every created socket.
+
+ Mode 3 is a hardend pmtu discover mode. The kernel will only
+ accept fragmentation-needed errors if the underlying protocol
+ can verify them besides a plain socket lookup. Current
+ protocols for which pmtu events will be honored are TCP, SCTP
+ and DCCP as they verify e.g. the sequence number or the
+ association. This mode should not be enabled globally but is
+ only intended to secure e.g. name servers in namespaces where
+ TCP path mtu must still work but path MTU information of other
+ protocols should be discarded. If enabled globally this mode
+ could break other protocols.
+
+ Possible values: 0-3
+ Default: FALSE
min_pmtu - INTEGER
default 552 - minimum discovered Path MTU
+ip_forward_use_pmtu - BOOLEAN
+ By default we don't trust protocol path MTUs while forwarding
+ because they could be easily forged and can lead to unwanted
+ fragmentation by the router.
+ You only need to enable this if you have user-space software
+ which tries to discover path mtus by itself and depends on the
+ kernel honoring this information. This is normally not the
+ case.
+ Default: 0 (disabled)
+ Possible values:
+ 0 - disabled
+ 1 - enabled
+
route/max_size - INTEGER
Maximum number of routes allowed in the kernel. Increase
this when using large numbers of interfaces and/or routes.
@@ -156,6 +190,16 @@ tcp_app_win - INTEGER
buffer. Value 0 is special, it means that nothing is reserved.
Default: 31
+tcp_autocorking - BOOLEAN
+ Enable TCP auto corking :
+ When applications do consecutive small write()/sendmsg() system calls,
+ we try to coalesce these small writes as much as possible, to lower
+ total amount of sent packets. This is done if at least one prior
+ packet for the flow is waiting in Qdisc queues or device transmit
+ queue. Applications can still use TCP_CORK for optimal behavior
+ when they know how/when to uncork their sockets.
+ Default : 1
+
tcp_available_congestion_control - STRING
Shows the available congestion control choices that are registered.
More congestion control algorithms may be available as modules,
@@ -267,17 +311,6 @@ tcp_max_orphans - INTEGER
more aggressively. Let me to remind again: each orphan eats
up to ~64K of unswappable memory.
-tcp_max_ssthresh - INTEGER
- Limited Slow-Start for TCP with large congestion windows (cwnd) defined in
- RFC3742. Limited slow-start is a mechanism to limit growth of the cwnd
- on the region where cwnd is larger than tcp_max_ssthresh. TCP increases cwnd
- by at most tcp_max_ssthresh segments, and by at least tcp_max_ssthresh/2
- segments per RTT when the cwnd is above tcp_max_ssthresh.
- If TCP connection increased cwnd to thousands (or tens of thousands) segments,
- and thousands of packets were being dropped during slow-start, you can set
- tcp_max_ssthresh to improve performance for new TCP connection.
- Default: 0 (off)
-
tcp_max_syn_backlog - INTEGER
Maximal number of remembered connection requests, which have not
received an acknowledgment from connecting client.
@@ -451,7 +484,7 @@ tcp_fastopen - INTEGER
connect() to perform a TCP handshake automatically.
The values (bitmap) are
- 1: Enables sending data in the opening SYN on the client.
+ 1: Enables sending data in the opening SYN on the client w/ MSG_FASTOPEN.
2: Enables TCP Fast Open on the server side, i.e., allowing data in
a SYN packet to be accepted and passed to the application before
3-way hand shake finishes.
@@ -464,7 +497,7 @@ tcp_fastopen - INTEGER
different ways of setting max_qlen without the TCP_FASTOPEN socket
option.
- Default: 0
+ Default: 1
Note that the client & server side Fast Open flags (1 and 2
respectively) must be also enabled before the rest of flags can take
@@ -588,9 +621,6 @@ tcp_limit_output_bytes - INTEGER
typical pfifo_fast qdiscs.
tcp_limit_output_bytes limits the number of bytes on qdisc
or device to reduce artificial RTT/cwnd and reduce bufferbloat.
- Note: For GSO/TSO enabled flows, we try to have at least two
- packets in flight. Reducing tcp_limit_output_bytes might also
- reduce the size of individual GSO packet (64KB being the max)
Default: 131072
tcp_challenge_ack_limit - INTEGER
@@ -1058,6 +1088,12 @@ igmpv3_unsolicited_report_interval - INTEGER
IGMPv3 report retransmit will take place.
Default: 1000 (1 seconds)
+promote_secondaries - BOOLEAN
+ When a primary IP address is removed from this interface
+ promote a corresponding secondary IP address instead of
+ removing all the corresponding secondary IP addresses.
+
+
tag - INTEGER
Allows you to write a number, which can be used as required.
Default value is 0.
@@ -1088,6 +1124,21 @@ bindv6only - BOOLEAN
Default: FALSE (as specified in RFC3493)
+flowlabel_consistency - BOOLEAN
+ Protect the consistency (and unicity) of flow label.
+ You have to disable it to use IPV6_FL_F_REFLECT flag on the
+ flow label manager.
+ TRUE: enabled
+ FALSE: disabled
+ Default: TRUE
+
+anycast_src_echo_reply - BOOLEAN
+ Controls the use of anycast addresses as source addresses for ICMPv6
+ echo reply
+ TRUE: enabled
+ FALSE: disabled
+ Default: FALSE
+
IPv6 Fragmentation:
ip6frag_high_thresh - INTEGER
diff --git a/Documentation/networking/ipsec.txt b/Documentation/networking/ipsec.txt
new file mode 100644
index 00000000000..8dbc08b7e43
--- /dev/null
+++ b/Documentation/networking/ipsec.txt
@@ -0,0 +1,38 @@
+
+Here documents known IPsec corner cases which need to be keep in mind when
+deploy various IPsec configuration in real world production environment.
+
+1. IPcomp: Small IP packet won't get compressed at sender, and failed on
+ policy check on receiver.
+
+Quote from RFC3173:
+2.2. Non-Expansion Policy
+
+ If the total size of a compressed payload and the IPComp header, as
+ defined in section 3, is not smaller than the size of the original
+ payload, the IP datagram MUST be sent in the original non-compressed
+ form. To clarify: If an IP datagram is sent non-compressed, no
+
+ IPComp header is added to the datagram. This policy ensures saving
+ the decompression processing cycles and avoiding incurring IP
+ datagram fragmentation when the expanded datagram is larger than the
+ MTU.
+
+ Small IP datagrams are likely to expand as a result of compression.
+ Therefore, a numeric threshold should be applied before compression,
+ where IP datagrams of size smaller than the threshold are sent in the
+ original form without attempting compression. The numeric threshold
+ is implementation dependent.
+
+Current IPComp implementation is indeed by the book, while as in practice
+when sending non-compressed packet to the peer(whether or not packet len
+is smaller than the threshold or the compressed len is large than original
+packet len), the packet is dropped when checking the policy as this packet
+matches the selector but not coming from any XFRM layer, i.e., with no
+security path. Such naked packet will not eventually make it to upper layer.
+The result is much more wired to the user when ping peer with different
+payload length.
+
+One workaround is try to set "level use" for each policy if user observed
+above scenario. The consequence of doing so is small packet(uncompressed)
+will skip policy checking on receiver side.
diff --git a/Documentation/networking/l2tp.txt b/Documentation/networking/l2tp.txt
index e63fc1f7bf8..c74434de2fa 100644
--- a/Documentation/networking/l2tp.txt
+++ b/Documentation/networking/l2tp.txt
@@ -197,7 +197,7 @@ state information because the file format is subject to change. It is
implemented to provide extra debug information to help diagnose
problems.) Users should use the netlink API.
-/proc/net/pppol2tp is also provided for backwards compaibility with
+/proc/net/pppol2tp is also provided for backwards compatibility with
the original pppol2tp driver. It lists information about L2TPv2
tunnels and sessions only. Its use is discouraged.
diff --git a/Documentation/networking/netdev-FAQ.txt b/Documentation/networking/netdev-FAQ.txt
index d9112f01c44..0fe1c6e0dbc 100644
--- a/Documentation/networking/netdev-FAQ.txt
+++ b/Documentation/networking/netdev-FAQ.txt
@@ -4,23 +4,23 @@ Information you need to know about netdev
Q: What is netdev?
-A: It is a mailing list for all network related linux stuff. This includes
+A: It is a mailing list for all network-related Linux stuff. This includes
anything found under net/ (i.e. core code like IPv6) and drivers/net
- (i.e. hardware specific drivers) in the linux source tree.
+ (i.e. hardware specific drivers) in the Linux source tree.
Note that some subsystems (e.g. wireless drivers) which have a high volume
of traffic have their own specific mailing lists.
- The netdev list is managed (like many other linux mailing lists) through
+ The netdev list is managed (like many other Linux mailing lists) through
VGER ( http://vger.kernel.org/ ) and archives can be found below:
http://marc.info/?l=linux-netdev
http://www.spinics.net/lists/netdev/
- Aside from subsystems like that mentioned above, all network related linux
- development (i.e. RFC, review, comments, etc) takes place on netdev.
+ Aside from subsystems like that mentioned above, all network-related Linux
+ development (i.e. RFC, review, comments, etc.) takes place on netdev.
-Q: How do the changes posted to netdev make their way into linux?
+Q: How do the changes posted to netdev make their way into Linux?
A: There are always two trees (git repositories) in play. Both are driven
by David Miller, the main network maintainer. There is the "net" tree,
@@ -35,7 +35,7 @@ A: There are always two trees (git repositories) in play. Both are driven
Q: How often do changes from these trees make it to the mainline Linus tree?
A: To understand this, you need to know a bit of background information
- on the cadence of linux development. Each new release starts off with
+ on the cadence of Linux development. Each new release starts off with
a two week "merge window" where the main maintainers feed their new
stuff to Linus for merging into the mainline tree. After the two weeks,
the merge window is closed, and it is called/tagged "-rc1". No new
@@ -46,7 +46,7 @@ A: To understand this, you need to know a bit of background information
things are in a state of churn), and a week after the last vX.Y-rcN
was done, the official "vX.Y" is released.
- Relating that to netdev: At the beginning of the 2 week merge window,
+ Relating that to netdev: At the beginning of the 2-week merge window,
the net-next tree will be closed - no new changes/features. The
accumulated new content of the past ~10 weeks will be passed onto
mainline/Linus via a pull request for vX.Y -- at the same time,
@@ -59,16 +59,16 @@ A: To understand this, you need to know a bit of background information
IMPORTANT: Do not send new net-next content to netdev during the
period during which net-next tree is closed.
- Shortly after the two weeks have passed, (and vX.Y-rc1 is released) the
+ Shortly after the two weeks have passed (and vX.Y-rc1 is released), the
tree for net-next reopens to collect content for the next (vX.Y+1) release.
If you aren't subscribed to netdev and/or are simply unsure if net-next
has re-opened yet, simply check the net-next git repository link above for
- any new networking related commits.
+ any new networking-related commits.
The "net" tree continues to collect fixes for the vX.Y content, and
is fed back to Linus at regular (~weekly) intervals. Meaning that the
- focus for "net" is on stablilization and bugfixes.
+ focus for "net" is on stabilization and bugfixes.
Finally, the vX.Y gets released, and the whole cycle starts over.
@@ -217,7 +217,7 @@ A: Attention to detail. Re-read your own work as if you were the
to why it happens, and then if necessary, explain why the fix proposed
is the best way to get things done. Don't mangle whitespace, and as
is common, don't mis-indent function arguments that span multiple lines.
- If it is your 1st patch, mail it to yourself so you can test apply
+ If it is your first patch, mail it to yourself so you can test apply
it to an unpatched tree to confirm infrastructure didn't mangle it.
Finally, go back and read Documentation/SubmittingPatches to be
diff --git a/Documentation/networking/netdevices.txt b/Documentation/networking/netdevices.txt
index c7ecc708049..0b1cf6b2a59 100644
--- a/Documentation/networking/netdevices.txt
+++ b/Documentation/networking/netdevices.txt
@@ -10,12 +10,12 @@ network devices.
struct net_device allocation rules
==================================
Network device structures need to persist even after module is unloaded and
-must be allocated with kmalloc. If device has registered successfully,
-it will be freed on last use by free_netdev. This is required to handle the
-pathologic case cleanly (example: rmmod mydriver </sys/class/net/myeth/mtu )
+must be allocated with alloc_netdev_mqs() and friends.
+If device has registered successfully, it will be freed on last use
+by free_netdev(). This is required to handle the pathologic case cleanly
+(example: rmmod mydriver </sys/class/net/myeth/mtu )
-There are routines in net_init.c to handle the common cases of
-alloc_etherdev, alloc_netdev. These reserve extra space for driver
+alloc_netdev_mqs()/alloc_netdev() reserve extra space for driver
private data which gets freed when the network device is freed. If
separately allocated data is attached to the network device
(netdev_priv(dev)) then it is up to the module exit handler to free that.
diff --git a/Documentation/networking/netlink_mmap.txt b/Documentation/networking/netlink_mmap.txt
index 53337883954..c6af4bac5aa 100644
--- a/Documentation/networking/netlink_mmap.txt
+++ b/Documentation/networking/netlink_mmap.txt
@@ -45,7 +45,7 @@ processing.
Conversion of the reception path involves calling poll() on the file
descriptor, once the socket is readable the frames from the ring are
-processsed in order until no more messages are available, as indicated by
+processed in order until no more messages are available, as indicated by
a status word in the frame header.
On kernel side, in order to make use of memory mapped I/O on receive, the
@@ -56,7 +56,7 @@ Dumps of kernel databases automatically support memory mapped I/O.
Conversion of the transmit path involves changing message construction to
use memory from the TX ring instead of (usually) a buffer declared on the
-stack and setting up the frame header approriately. Optionally poll() can
+stack and setting up the frame header appropriately. Optionally poll() can
be used to wait for free frames in the TX ring.
Structured and definitions for using memory mapped I/O are contained in
@@ -226,12 +226,12 @@ Ring setup:
void *rx_ring, *tx_ring;
/* Configure ring parameters */
- if (setsockopt(fd, NETLINK_RX_RING, &req, sizeof(req)) < 0)
+ if (setsockopt(fd, SOL_NETLINK, NETLINK_RX_RING, &req, sizeof(req)) < 0)
exit(1);
- if (setsockopt(fd, NETLINK_TX_RING, &req, sizeof(req)) < 0)
+ if (setsockopt(fd, SOL_NETLINK, NETLINK_TX_RING, &req, sizeof(req)) < 0)
exit(1)
- /* Calculate size of each invididual ring */
+ /* Calculate size of each individual ring */
ring_size = req.nm_block_nr * req.nm_block_size;
/* Map RX/TX rings. The TX ring is located after the RX ring */
diff --git a/Documentation/networking/operstates.txt b/Documentation/networking/operstates.txt
index 97694572338..355c6d8ef8a 100644
--- a/Documentation/networking/operstates.txt
+++ b/Documentation/networking/operstates.txt
@@ -89,8 +89,8 @@ packets. The name 'carrier' and the inversion are historical, think of
it as lower layer.
Note that for certain kind of soft-devices, which are not managing any
-real hardware, there is possible to set this bit from userpsace.
-One should use TVL IFLA_CARRIER to do so.
+real hardware, it is possible to set this bit from userspace. One
+should use TVL IFLA_CARRIER to do so.
netif_carrier_ok() can be used to query that bit.
diff --git a/Documentation/networking/packet_mmap.txt b/Documentation/networking/packet_mmap.txt
index c01223628a8..38112d512f4 100644
--- a/Documentation/networking/packet_mmap.txt
+++ b/Documentation/networking/packet_mmap.txt
@@ -98,6 +98,11 @@ by the kernel.
The destruction of the socket and all associated resources
is done by a simple call to close(fd).
+Similarly as without PACKET_MMAP, it is possible to use one socket
+for capture and transmission. This can be done by mapping the
+allocated RX and TX buffer ring with a single mmap() call.
+See "Mapping and use of the circular buffer (ring)".
+
Next I will describe PACKET_MMAP settings and its constraints,
also the mapping of the circular buffer in the user process and
the use of this buffer.
@@ -123,6 +128,16 @@ Transmission process is similar to capture as shown below.
[shutdown] close() --------> destruction of the transmission socket and
deallocation of all associated resources.
+Socket creation and destruction is also straight forward, and is done
+the same way as in capturing described in the previous paragraph:
+
+ int fd = socket(PF_PACKET, mode, 0);
+
+The protocol can optionally be 0 in case we only want to transmit
+via this socket, which avoids an expensive call to packet_rcv().
+In this case, you also need to bind(2) the TX_RING with sll_protocol = 0
+set. Otherwise, htons(ETH_P_ALL) or any other protocol, for example.
+
Binding the socket to your network interface is mandatory (with zero copy) to
know the header size of frames used in the circular buffer.
@@ -404,6 +419,19 @@ tp_block_size/tp_frame_size frames there will be a gap between
the frames. This is because a frame cannot be spawn across two
blocks.
+To use one socket for capture and transmission, the mapping of both the
+RX and TX buffer ring has to be done with one call to mmap:
+
+ ...
+ setsockopt(fd, SOL_PACKET, PACKET_RX_RING, &foo, sizeof(foo));
+ setsockopt(fd, SOL_PACKET, PACKET_TX_RING, &bar, sizeof(bar));
+ ...
+ rx_ring = mmap(0, size * 2, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
+ tx_ring = rx_ring + size;
+
+RX must be the first as the kernel maps the TX ring memory right
+after the RX one.
+
At the beginning of each frame there is an status field (see
struct tpacket_hdr). If this field is 0 means that the frame is ready
to be used for the kernel, If not, there is a frame the user can read
@@ -425,7 +453,7 @@ TP_STATUS_COPY : This flag indicates that the frame (and associated
enabled previously with setsockopt() and
the PACKET_COPY_THRESH option.
- The number of frames than can be buffered to
+ The number of frames that can be buffered to
be read with recvfrom is limited like a normal socket.
See the SO_RCVBUF option in the socket (7) man page.
@@ -507,8 +535,6 @@ where 'tpacket_version' can be TPACKET_V1 (default), TPACKET_V2, TPACKET_V3.
TPACKET_V1:
- Default if not otherwise specified by setsockopt(2)
- RX_RING, TX_RING available
- - VLAN metadata information available for packets
- (TP_STATUS_VLAN_VALID)
TPACKET_V1 --> TPACKET_V2:
- Made 64 bit clean due to unsigned long usage in TPACKET_V1
@@ -516,6 +542,13 @@ TPACKET_V1 --> TPACKET_V2:
userspace and the like
- Timestamp resolution in nanoseconds instead of microseconds
- RX_RING, TX_RING available
+ - VLAN metadata information available for packets
+ (TP_STATUS_VLAN_VALID, TP_STATUS_VLAN_TPID_VALID),
+ in the tpacket2_hdr structure:
+ - TP_STATUS_VLAN_VALID bit being set into the tp_status field indicates
+ that the tp_vlan_tci field has valid VLAN TCI value
+ - TP_STATUS_VLAN_TPID_VALID bit being set into the tp_status field
+ indicates that the tp_vlan_tpid field has valid VLAN TPID value
- How to switch to TPACKET_V2:
1. Replace struct tpacket_hdr by struct tpacket2_hdr
2. Query header len and save
@@ -545,11 +578,12 @@ processes. This also works in combination with mmap(2) on packet sockets.
Currently implemented fanout policies are:
- - PACKET_FANOUT_HASH: schedule to socket by skb's rxhash
+ - PACKET_FANOUT_HASH: schedule to socket by skb's packet hash
- PACKET_FANOUT_LB: schedule to socket by round-robin
- PACKET_FANOUT_CPU: schedule to socket by CPU packet arrives on
- PACKET_FANOUT_RND: schedule to socket by random selection
- PACKET_FANOUT_ROLLOVER: if one socket is full, rollover to another
+ - PACKET_FANOUT_QM: schedule to socket by skbs recorded queue_mapping
Minimal example code by David S. Miller (try things like "./test eth0 hash",
"./test eth0 lb", etc.):
@@ -943,6 +977,27 @@ int main(int argc, char **argp)
}
-------------------------------------------------------------------------------
++ PACKET_QDISC_BYPASS
+-------------------------------------------------------------------------------
+
+If there is a requirement to load the network with many packets in a similar
+fashion as pktgen does, you might set the following option after socket
+creation:
+
+ int one = 1;
+ setsockopt(fd, SOL_PACKET, PACKET_QDISC_BYPASS, &one, sizeof(one));
+
+This has the side-effect, that packets sent through PF_PACKET will bypass the
+kernel's qdisc layer and are forcedly pushed to the driver directly. Meaning,
+packet are not buffered, tc disciplines are ignored, increased loss can occur
+and such packets are also not visible to other PF_PACKET sockets anymore. So,
+you have been warned; generally, this can be useful for stress testing various
+components of a system.
+
+On default, PACKET_QDISC_BYPASS is disabled and needs to be explicitly enabled
+on PF_PACKET sockets.
+
+-------------------------------------------------------------------------------
+ PACKET_TIMESTAMP
-------------------------------------------------------------------------------
diff --git a/Documentation/networking/phy.txt b/Documentation/networking/phy.txt
index d5b1a393524..3544c98401f 100644
--- a/Documentation/networking/phy.txt
+++ b/Documentation/networking/phy.txt
@@ -48,7 +48,7 @@ The MDIO bus
time, so it is safe for them to block, waiting for an interrupt to signal
the operation is complete
- 2) A reset function is necessary. This is used to return the bus to an
+ 2) A reset function is optional. This is used to return the bus to an
initialized state.
3) A probe function is needed. This function should set up anything the bus
@@ -253,15 +253,25 @@ Writing a PHY driver
Each driver consists of a number of function pointers:
+ soft_reset: perform a PHY software reset
config_init: configures PHY into a sane state after a reset.
For instance, a Davicom PHY requires descrambling disabled.
- probe: Does any setup needed by the driver
+ probe: Allocate phy->priv, optionally refuse to bind.
+ PHY may not have been reset or had fixups run yet.
suspend/resume: power management
config_aneg: Changes the speed/duplex/negotiation settings
+ aneg_done: Determines the auto-negotiation result
read_status: Reads the current speed/duplex/negotiation settings
ack_interrupt: Clear a pending interrupt
+ did_interrupt: Checks if the PHY generated an interrupt
config_intr: Enable or disable interrupts
remove: Does any driver take-down
+ ts_info: Queries about the HW timestamping status
+ hwtstamp: Set the PHY HW timestamping configuration
+ rxtstamp: Requests a receive timestamp at the PHY level for a 'skb'
+ txtsamp: Requests a transmit timestamp at the PHY level for a 'skb'
+ set_wol: Enable Wake-on-LAN at the PHY level
+ get_wol: Get the Wake-on-LAN status at the PHY level
Of these, only config_aneg and read_status are required to be
assigned by the driver code. The rest are optional. Also, it is
diff --git a/Documentation/networking/pktgen.txt b/Documentation/networking/pktgen.txt
index 75e4fd708cc..0e30c7845b2 100644
--- a/Documentation/networking/pktgen.txt
+++ b/Documentation/networking/pktgen.txt
@@ -102,13 +102,20 @@ Examples:
The 'minimum' MAC is what you set with dstmac.
pgset "flag [name]" Set a flag to determine behaviour. Current flags
- are: IPSRC_RND #IP Source is random (between min/max),
- IPDST_RND, UDPSRC_RND,
- UDPDST_RND, MACSRC_RND, MACDST_RND
+ are: IPSRC_RND # IP source is random (between min/max)
+ IPDST_RND # IP destination is random
+ UDPSRC_RND, UDPDST_RND,
+ MACSRC_RND, MACDST_RND
+ TXSIZE_RND, IPV6,
MPLS_RND, VID_RND, SVID_RND
+ FLOW_SEQ,
QUEUE_MAP_RND # queue map random
QUEUE_MAP_CPU # queue map mirrors smp_processor_id()
+ UDPCSUM,
+ IPSEC # IPsec encapsulation (needs CONFIG_XFRM)
+ NODE_ALLOC # node specific memory allocation
+ pgset spi SPI_VALUE Set specific SA used to transform packet.
pgset "udp_src_min 9" set UDP source port min, If < udp_src_max, then
cycle through the port range.
@@ -177,6 +184,18 @@ Note when adding devices to a specific CPU there good idea to also assign
/proc/irq/XX/smp_affinity so the TX-interrupts gets bound to the same CPU.
as this reduces cache bouncing when freeing skb's.
+Enable IPsec
+============
+Default IPsec transformation with ESP encapsulation plus Transport mode
+could be enabled by simply setting:
+
+pgset "flag IPSEC"
+pgset "flows 1"
+
+To avoid breaking existing testbed scripts for using AH type and tunnel mode,
+user could use "pgset spi SPI_VALUE" to specify which formal of transformation
+to employ.
+
Current commands and configuration options
==========================================
@@ -219,12 +238,22 @@ udp_dst_max
flag
IPSRC_RND
- TXSIZE_RND
IPDST_RND
UDPSRC_RND
UDPDST_RND
MACSRC_RND
MACDST_RND
+ TXSIZE_RND
+ IPV6
+ MPLS_RND
+ VID_RND
+ SVID_RND
+ FLOW_SEQ
+ QUEUE_MAP_RND
+ QUEUE_MAP_CPU
+ UDPCSUM
+ IPSEC
+ NODE_ALLOC
dst_min
dst_max
diff --git a/Documentation/networking/regulatory.txt b/Documentation/networking/regulatory.txt
index 9551622d0a7..356f791af57 100644
--- a/Documentation/networking/regulatory.txt
+++ b/Documentation/networking/regulatory.txt
@@ -159,10 +159,10 @@ struct ieee80211_regdomain mydriver_jp_regdom = {
REG_RULE(2412-20, 2484+20, 40, 6, 20, 0),
/* IEEE 802.11a, channels 34..48 */
REG_RULE(5170-20, 5240+20, 40, 6, 20,
- NL80211_RRF_PASSIVE_SCAN),
+ NL80211_RRF_NO_IR),
/* IEEE 802.11a, channels 52..64 */
REG_RULE(5260-20, 5320+20, 40, 6, 20,
- NL80211_RRF_NO_IBSS |
+ NL80211_RRF_NO_IR|
NL80211_RRF_DFS),
}
};
diff --git a/Documentation/networking/rxrpc.txt b/Documentation/networking/rxrpc.txt
index 60d05eb77c6..16a924c486b 100644
--- a/Documentation/networking/rxrpc.txt
+++ b/Documentation/networking/rxrpc.txt
@@ -27,6 +27,8 @@ Contents of this document:
(*) AF_RXRPC kernel interface.
+ (*) Configurable parameters.
+
========
OVERVIEW
@@ -144,7 +146,7 @@ An overview of the RxRPC protocol:
(*) Calls use ACK packets to handle reliability. Data packets are also
explicitly sequenced per call.
- (*) There are two types of positive acknowledgement: hard-ACKs and soft-ACKs.
+ (*) There are two types of positive acknowledgment: hard-ACKs and soft-ACKs.
A hard-ACK indicates to the far side that all the data received to a point
has been received and processed; a soft-ACK indicates that the data has
been received but may yet be discarded and re-requested. The sender may
@@ -864,3 +866,82 @@ The kernel interface functions are as follows:
This is used to allocate a null RxRPC key that can be used to indicate
anonymous security for a particular domain.
+
+
+=======================
+CONFIGURABLE PARAMETERS
+=======================
+
+The RxRPC protocol driver has a number of configurable parameters that can be
+adjusted through sysctls in /proc/net/rxrpc/:
+
+ (*) req_ack_delay
+
+ The amount of time in milliseconds after receiving a packet with the
+ request-ack flag set before we honour the flag and actually send the
+ requested ack.
+
+ Usually the other side won't stop sending packets until the advertised
+ reception window is full (to a maximum of 255 packets), so delaying the
+ ACK permits several packets to be ACK'd in one go.
+
+ (*) soft_ack_delay
+
+ The amount of time in milliseconds after receiving a new packet before we
+ generate a soft-ACK to tell the sender that it doesn't need to resend.
+
+ (*) idle_ack_delay
+
+ The amount of time in milliseconds after all the packets currently in the
+ received queue have been consumed before we generate a hard-ACK to tell
+ the sender it can free its buffers, assuming no other reason occurs that
+ we would send an ACK.
+
+ (*) resend_timeout
+
+ The amount of time in milliseconds after transmitting a packet before we
+ transmit it again, assuming no ACK is received from the receiver telling
+ us they got it.
+
+ (*) max_call_lifetime
+
+ The maximum amount of time in seconds that a call may be in progress
+ before we preemptively kill it.
+
+ (*) dead_call_expiry
+
+ The amount of time in seconds before we remove a dead call from the call
+ list. Dead calls are kept around for a little while for the purpose of
+ repeating ACK and ABORT packets.
+
+ (*) connection_expiry
+
+ The amount of time in seconds after a connection was last used before we
+ remove it from the connection list. Whilst a connection is in existence,
+ it serves as a placeholder for negotiated security; when it is deleted,
+ the security must be renegotiated.
+
+ (*) transport_expiry
+
+ The amount of time in seconds after a transport was last used before we
+ remove it from the transport list. Whilst a transport is in existence, it
+ serves to anchor the peer data and keeps the connection ID counter.
+
+ (*) rxrpc_rx_window_size
+
+ The size of the receive window in packets. This is the maximum number of
+ unconsumed received packets we're willing to hold in memory for any
+ particular call.
+
+ (*) rxrpc_rx_mtu
+
+ The maximum packet MTU size that we're willing to receive in bytes. This
+ indicates to the peer whether we're willing to accept jumbo packets.
+
+ (*) rxrpc_rx_jumbo_max
+
+ The maximum number of packets that we're willing to accept in a jumbo
+ packet. Non-terminal packets in a jumbo packet must contain a four byte
+ header plus exactly 1412 bytes of data. The terminal packet must contain
+ a four byte header plus any amount of data. In any event, a jumbo packet
+ may not exceed rxrpc_rx_mtu in size.
diff --git a/Documentation/networking/scaling.txt b/Documentation/networking/scaling.txt
index ca6977f5b2e..99ca40e8e81 100644
--- a/Documentation/networking/scaling.txt
+++ b/Documentation/networking/scaling.txt
@@ -429,7 +429,7 @@ RPS and RFS were introduced in kernel 2.6.35. XPS was incorporated into
(therbert@google.com)
Accelerated RFS was introduced in 2.6.35. Original patches were
-submitted by Ben Hutchings (bhutchings@solarflare.com)
+submitted by Ben Hutchings (bwh@kernel.org)
Authors:
Tom Herbert (therbert@google.com)
diff --git a/Documentation/networking/spider_net.txt b/Documentation/networking/spider_net.txt
index 4b4adb8eb14..b0b75f8463b 100644
--- a/Documentation/networking/spider_net.txt
+++ b/Documentation/networking/spider_net.txt
@@ -73,7 +73,7 @@ Thus, in an idle system, the GDACTDPA, tail and head pointers will
all be pointing at the same descr, which should be "empty". All of the
other descrs in the ring should be "empty" as well.
-The show_rx_chain() routine will print out the the locations of the
+The show_rx_chain() routine will print out the locations of the
GDACTDPA, tail and head pointers. It will also summarize the contents
of the ring, starting at the tail pointer, and listing the status
of the descrs that follow.
diff --git a/Documentation/networking/stmmac.txt b/Documentation/networking/stmmac.txt
index 457b8bbafb0..2090895b08d 100644
--- a/Documentation/networking/stmmac.txt
+++ b/Documentation/networking/stmmac.txt
@@ -127,8 +127,9 @@ struct plat_stmmacenet_data {
int riwt_off;
void (*fix_mac_speed)(void *priv, unsigned int speed);
void (*bus_setup)(void __iomem *ioaddr);
- int (*init)(struct platform_device *pdev);
- void (*exit)(struct platform_device *pdev);
+ void *(*setup)(struct platform_device *pdev);
+ int (*init)(struct platform_device *pdev, void *priv);
+ void (*exit)(struct platform_device *pdev, void *priv);
void *custom_cfg;
void *custom_data;
void *bsp_priv;
@@ -160,7 +161,7 @@ Where:
o pmt: core has the embedded power module (optional).
o force_sf_dma_mode: force DMA to use the Store and Forward mode
instead of the Threshold.
- o force_thresh_dma_mode: force DMA to use the Shreshold mode other than
+ o force_thresh_dma_mode: force DMA to use the Threshold mode other than
the Store and Forward mode.
o riwt_off: force to disable the RX watchdog feature and switch to NAPI mode.
o fix_mac_speed: this callback is used for modifying some syscfg registers
@@ -169,13 +170,16 @@ Where:
o bus_setup: perform HW setup of the bus. For example, on some ST platforms
this field is used to configure the AMBA bridge to generate more
efficient STBus traffic.
- o init/exit: callbacks used for calling a custom initialization;
+ o setup/init/exit: callbacks used for calling a custom initialization;
this is sometime necessary on some platforms (e.g. ST boxes)
where the HW needs to have set some PIO lines or system cfg
- registers.
+ registers. setup should return a pointer to private data,
+ which will be stored in bsp_priv, and then passed to init and
+ exit callbacks. init/exit callbacks should not use or modify
+ platform data.
o custom_cfg/custom_data: this is a custom configuration that can be passed
while initializing the resources.
- o bsp_priv: another private poiter.
+ o bsp_priv: another private pointer.
For MDIO bus The we have:
@@ -271,7 +275,7 @@ reset procedure etc).
o dwmac1000_dma.c: dma functions for the GMAC chip;
o dwmac1000.h: specific header file for the GMAC;
o dwmac100_core: MAC 100 core and dma code;
- o dwmac100_dma.c: dma funtions for the MAC chip;
+ o dwmac100_dma.c: dma functions for the MAC chip;
o dwmac1000.h: specific header file for the MAC;
o dwmac_lib.c: generic DMA functions shared among chips;
o enh_desc.c: functions for handling enhanced descriptors;
@@ -364,4 +368,4 @@ Auto-negotiated Link Parter Ability.
10) TODO:
o XGMAC is not supported.
o Complete the TBI & RTBI support.
- o extened VLAN support for 3.70a SYNP GMAC.
+ o extend VLAN support for 3.70a SYNP GMAC.
diff --git a/Documentation/networking/tcp.txt b/Documentation/networking/tcp.txt
index 7d11bb5dc30..bdc4c0db51e 100644
--- a/Documentation/networking/tcp.txt
+++ b/Documentation/networking/tcp.txt
@@ -30,7 +30,7 @@ A congestion control mechanism can be registered through functions in
tcp_cong.c. The functions used by the congestion control mechanism are
registered via passing a tcp_congestion_ops struct to
tcp_register_congestion_control. As a minimum name, ssthresh,
-cong_avoid, min_cwnd must be valid.
+cong_avoid must be valid.
Private data for a congestion control mechanism is stored in tp->ca_priv.
tcp_ca(tp) returns a pointer to this space. This is preallocated space - it
diff --git a/Documentation/networking/timestamping.txt b/Documentation/networking/timestamping.txt
index 98097d8cb91..bc355412490 100644
--- a/Documentation/networking/timestamping.txt
+++ b/Documentation/networking/timestamping.txt
@@ -21,26 +21,38 @@ has such a feature).
SO_TIMESTAMPING:
-Instructs the socket layer which kind of information is wanted. The
-parameter is an integer with some of the following bits set. Setting
-other bits is an error and doesn't change the current state.
-
-SOF_TIMESTAMPING_TX_HARDWARE: try to obtain send time stamp in hardware
-SOF_TIMESTAMPING_TX_SOFTWARE: if SOF_TIMESTAMPING_TX_HARDWARE is off or
- fails, then do it in software
-SOF_TIMESTAMPING_RX_HARDWARE: return the original, unmodified time stamp
- as generated by the hardware
-SOF_TIMESTAMPING_RX_SOFTWARE: if SOF_TIMESTAMPING_RX_HARDWARE is off or
- fails, then do it in software
-SOF_TIMESTAMPING_RAW_HARDWARE: return original raw hardware time stamp
-SOF_TIMESTAMPING_SYS_HARDWARE: return hardware time stamp transformed to
- the system time base
-SOF_TIMESTAMPING_SOFTWARE: return system time stamp generated in
- software
-
-SOF_TIMESTAMPING_TX/RX determine how time stamps are generated.
-SOF_TIMESTAMPING_RAW/SYS determine how they are reported in the
-following control message:
+Instructs the socket layer which kind of information should be collected
+and/or reported. The parameter is an integer with some of the following
+bits set. Setting other bits is an error and doesn't change the current
+state.
+
+Four of the bits are requests to the stack to try to generate
+timestamps. Any combination of them is valid.
+
+SOF_TIMESTAMPING_TX_HARDWARE: try to obtain send time stamps in hardware
+SOF_TIMESTAMPING_TX_SOFTWARE: try to obtain send time stamps in software
+SOF_TIMESTAMPING_RX_HARDWARE: try to obtain receive time stamps in hardware
+SOF_TIMESTAMPING_RX_SOFTWARE: try to obtain receive time stamps in software
+
+The other three bits control which timestamps will be reported in a
+generated control message. If none of these bits are set or if none of
+the set bits correspond to data that is available, then the control
+message will not be generated:
+
+SOF_TIMESTAMPING_SOFTWARE: report systime if available
+SOF_TIMESTAMPING_SYS_HARDWARE: report hwtimetrans if available
+SOF_TIMESTAMPING_RAW_HARDWARE: report hwtimeraw if available
+
+It is worth noting that timestamps may be collected for reasons other
+than being requested by a particular socket with
+SOF_TIMESTAMPING_[TR]X_(HARD|SOFT)WARE. For example, most drivers that
+can generate hardware receive timestamps ignore
+SOF_TIMESTAMPING_RX_HARDWARE. It is still a good idea to set that flag
+in case future drivers pay attention.
+
+If timestamps are reported, they will appear in a control message with
+cmsg_level==SOL_SOCKET, cmsg_type==SO_TIMESTAMPING, and a payload like
+this:
struct scm_timestamping {
struct timespec systime;
@@ -85,7 +97,7 @@ Filled in if SOF_TIMESTAMPING_SYS_HARDWARE is set. Requires support
by the network device and will be empty without that support.
-SIOCSHWTSTAMP:
+SIOCSHWTSTAMP, SIOCGHWTSTAMP:
Hardware time stamping must also be initialized for each device driver
that is expected to do hardware time stamping. The parameter is defined in
@@ -115,6 +127,10 @@ Only a processes with admin rights may change the configuration. User
space is responsible to ensure that multiple processes don't interfere
with each other and that the settings are reset.
+Any process can read the actual configuration by passing this
+structure to ioctl(SIOCGHWTSTAMP) in the same way. However, this has
+not been implemented in all drivers.
+
/* possible values for hwtstamp_config->tx_type */
enum {
/*
@@ -157,7 +173,8 @@ DEVICE IMPLEMENTATION
A driver which supports hardware time stamping must support the
SIOCSHWTSTAMP ioctl and update the supplied struct hwtstamp_config with
-the actual values as described in the section on SIOCSHWTSTAMP.
+the actual values as described in the section on SIOCSHWTSTAMP. It
+should also support SIOCGHWTSTAMP.
Time stamps for received packets must be stored in the skb. To get a pointer
to the shared time stamp structure of the skb call skb_hwtstamps(). Then
@@ -185,6 +202,9 @@ Time stamps for outgoing packets are to be generated as follows:
and not free the skb. A driver not supporting hardware time stamping doesn't
do that. A driver must never touch sk_buff::tstamp! It is used to store
software generated time stamps by the network subsystem.
+- Driver should call skb_tx_timestamp() as close to passing sk_buff to hardware
+ as possible. skb_tx_timestamp() provides a software time stamp if requested
+ and hardware timestamping is not possible (SKBTX_IN_PROGRESS not set).
- As soon as the driver has sent the packet and/or obtained a
hardware time stamp for it, it passes the time stamp back by
calling skb_hwtstamp_tx() with the original skb, the raw
@@ -195,6 +215,3 @@ Time stamps for outgoing packets are to be generated as follows:
this would occur at a later time in the processing pipeline than other
software time stamping and therefore could lead to unexpected deltas
between time stamps.
-- If the driver did not set the SKBTX_IN_PROGRESS flag (see above), then
- dev_hard_start_xmit() checks whether software time stamping
- is wanted as fallback and potentially generates the time stamp.
diff --git a/Documentation/networking/timestamping/.gitignore b/Documentation/networking/timestamping/.gitignore
index 71e81eb2e22..a380159765c 100644
--- a/Documentation/networking/timestamping/.gitignore
+++ b/Documentation/networking/timestamping/.gitignore
@@ -1 +1,2 @@
timestamping
+hwtstamp_config
diff --git a/Documentation/networking/timestamping/Makefile b/Documentation/networking/timestamping/Makefile
index e79973443e9..d934afc8306 100644
--- a/Documentation/networking/timestamping/Makefile
+++ b/Documentation/networking/timestamping/Makefile
@@ -2,12 +2,13 @@
obj- := dummy.o
# List of programs to build
-hostprogs-y := timestamping
+hostprogs-y := timestamping hwtstamp_config
# Tell kbuild to always build the programs
always := $(hostprogs-y)
HOSTCFLAGS_timestamping.o += -I$(objtree)/usr/include
+HOSTCFLAGS_hwtstamp_config.o += -I$(objtree)/usr/include
clean:
- rm -f timestamping
+ rm -f timestamping hwtstamp_config
diff --git a/Documentation/networking/timestamping/hwtstamp_config.c b/Documentation/networking/timestamping/hwtstamp_config.c
new file mode 100644
index 00000000000..e8b685a7f15
--- /dev/null
+++ b/Documentation/networking/timestamping/hwtstamp_config.c
@@ -0,0 +1,134 @@
+/* Test program for SIOC{G,S}HWTSTAMP
+ * Copyright 2013 Solarflare Communications
+ * Author: Ben Hutchings
+ */
+
+#include <errno.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include <sys/socket.h>
+#include <sys/ioctl.h>
+
+#include <linux/if.h>
+#include <linux/net_tstamp.h>
+#include <linux/sockios.h>
+
+static int
+lookup_value(const char **names, int size, const char *name)
+{
+ int value;
+
+ for (value = 0; value < size; value++)
+ if (names[value] && strcasecmp(names[value], name) == 0)
+ return value;
+
+ return -1;
+}
+
+static const char *
+lookup_name(const char **names, int size, int value)
+{
+ return (value >= 0 && value < size) ? names[value] : NULL;
+}
+
+static void list_names(FILE *f, const char **names, int size)
+{
+ int value;
+
+ for (value = 0; value < size; value++)
+ if (names[value])
+ fprintf(f, " %s\n", names[value]);
+}
+
+static const char *tx_types[] = {
+#define TX_TYPE(name) [HWTSTAMP_TX_ ## name] = #name
+ TX_TYPE(OFF),
+ TX_TYPE(ON),
+ TX_TYPE(ONESTEP_SYNC)
+#undef TX_TYPE
+};
+#define N_TX_TYPES ((int)(sizeof(tx_types) / sizeof(tx_types[0])))
+
+static const char *rx_filters[] = {
+#define RX_FILTER(name) [HWTSTAMP_FILTER_ ## name] = #name
+ RX_FILTER(NONE),
+ RX_FILTER(ALL),
+ RX_FILTER(SOME),
+ RX_FILTER(PTP_V1_L4_EVENT),
+ RX_FILTER(PTP_V1_L4_SYNC),
+ RX_FILTER(PTP_V1_L4_DELAY_REQ),
+ RX_FILTER(PTP_V2_L4_EVENT),
+ RX_FILTER(PTP_V2_L4_SYNC),
+ RX_FILTER(PTP_V2_L4_DELAY_REQ),
+ RX_FILTER(PTP_V2_L2_EVENT),
+ RX_FILTER(PTP_V2_L2_SYNC),
+ RX_FILTER(PTP_V2_L2_DELAY_REQ),
+ RX_FILTER(PTP_V2_EVENT),
+ RX_FILTER(PTP_V2_SYNC),
+ RX_FILTER(PTP_V2_DELAY_REQ),
+#undef RX_FILTER
+};
+#define N_RX_FILTERS ((int)(sizeof(rx_filters) / sizeof(rx_filters[0])))
+
+static void usage(void)
+{
+ fputs("Usage: hwtstamp_config if_name [tx_type rx_filter]\n"
+ "tx_type is any of (case-insensitive):\n",
+ stderr);
+ list_names(stderr, tx_types, N_TX_TYPES);
+ fputs("rx_filter is any of (case-insensitive):\n", stderr);
+ list_names(stderr, rx_filters, N_RX_FILTERS);
+}
+
+int main(int argc, char **argv)
+{
+ struct ifreq ifr;
+ struct hwtstamp_config config;
+ const char *name;
+ int sock;
+
+ if ((argc != 2 && argc != 4) || (strlen(argv[1]) >= IFNAMSIZ)) {
+ usage();
+ return 2;
+ }
+
+ if (argc == 4) {
+ config.flags = 0;
+ config.tx_type = lookup_value(tx_types, N_TX_TYPES, argv[2]);
+ config.rx_filter = lookup_value(rx_filters, N_RX_FILTERS, argv[3]);
+ if (config.tx_type < 0 || config.rx_filter < 0) {
+ usage();
+ return 2;
+ }
+ }
+
+ sock = socket(AF_INET, SOCK_DGRAM, 0);
+ if (sock < 0) {
+ perror("socket");
+ return 1;
+ }
+
+ strcpy(ifr.ifr_name, argv[1]);
+ ifr.ifr_data = (caddr_t)&config;
+
+ if (ioctl(sock, (argc == 2) ? SIOCGHWTSTAMP : SIOCSHWTSTAMP, &ifr)) {
+ perror("ioctl");
+ return 1;
+ }
+
+ printf("flags = %#x\n", config.flags);
+ name = lookup_name(tx_types, N_TX_TYPES, config.tx_type);
+ if (name)
+ printf("tx_type = %s\n", name);
+ else
+ printf("tx_type = %d\n", config.tx_type);
+ name = lookup_name(rx_filters, N_RX_FILTERS, config.rx_filter);
+ if (name)
+ printf("rx_filter = %s\n", name);
+ else
+ printf("rx_filter = %d\n", config.rx_filter);
+
+ return 0;
+}
diff --git a/Documentation/networking/vortex.txt b/Documentation/networking/vortex.txt
index 9a8041dcbb5..97282da82b7 100644
--- a/Documentation/networking/vortex.txt
+++ b/Documentation/networking/vortex.txt
@@ -68,7 +68,7 @@ Module parameters
There are several parameters which may be provided to the driver when
its module is loaded. These are usually placed in /etc/modprobe.d/*.conf
-configuretion files. Example:
+configuration files. Example:
options 3c59x debug=3 rx_copybreak=300
@@ -178,7 +178,7 @@ max_interrupt_work=N
The driver's interrupt service routine can handle many receive and
transmit packets in a single invocation. It does this in a loop.
- The value of max_interrupt_work governs how mnay times the interrupt
+ The value of max_interrupt_work governs how many times the interrupt
service routine will loop. The default value is 32 loops. If this
is exceeded the interrupt service routine gives up and generates a
warning message "eth0: Too much work in interrupt".
diff --git a/Documentation/networking/x25-iface.txt b/Documentation/networking/x25-iface.txt
index 78f662ee062..7f213b556e8 100644
--- a/Documentation/networking/x25-iface.txt
+++ b/Documentation/networking/x25-iface.txt
@@ -105,7 +105,7 @@ reduced by the following measures or a combination thereof:
later.
The lapb module interface was modified to support this. Its
data_indication() method should now transparently pass the
- netif_rx() return value to the (lapb mopdule) caller.
+ netif_rx() return value to the (lapb module) caller.
(2) Drivers for kernel versions 2.2.x should always check the global
variable netdev_dropping when a new frame is received. The driver
should only call netif_rx() if netdev_dropping is zero. Otherwise
diff --git a/Documentation/oops-tracing.txt b/Documentation/oops-tracing.txt
index 13032c0140d..e3155995ddd 100644
--- a/Documentation/oops-tracing.txt
+++ b/Documentation/oops-tracing.txt
@@ -265,6 +265,9 @@ characters, each representing a particular tainted value.
13: 'O' if an externally-built ("out-of-tree") module has been loaded.
+ 14: 'E' if an unsigned module has been loaded in a kernel supporting
+ module signature.
+
The primary reason for the 'Tainted: ' string is to tell kernel
debuggers if this is a clean kernel or if anything unusual has
occurred. Tainting is permanent: even if an offending module is
diff --git a/Documentation/phy.txt b/Documentation/phy.txt
new file mode 100644
index 00000000000..ebff6ee5244
--- /dev/null
+++ b/Documentation/phy.txt
@@ -0,0 +1,178 @@
+ PHY SUBSYSTEM
+ Kishon Vijay Abraham I <kishon@ti.com>
+
+This document explains the Generic PHY Framework along with the APIs provided,
+and how-to-use.
+
+1. Introduction
+
+*PHY* is the abbreviation for physical layer. It is used to connect a device
+to the physical medium e.g., the USB controller has a PHY to provide functions
+such as serialization, de-serialization, encoding, decoding and is responsible
+for obtaining the required data transmission rate. Note that some USB
+controllers have PHY functionality embedded into it and others use an external
+PHY. Other peripherals that use PHY include Wireless LAN, Ethernet,
+SATA etc.
+
+The intention of creating this framework is to bring the PHY drivers spread
+all over the Linux kernel to drivers/phy to increase code re-use and for
+better code maintainability.
+
+This framework will be of use only to devices that use external PHY (PHY
+functionality is not embedded within the controller).
+
+2. Registering/Unregistering the PHY provider
+
+PHY provider refers to an entity that implements one or more PHY instances.
+For the simple case where the PHY provider implements only a single instance of
+the PHY, the framework provides its own implementation of of_xlate in
+of_phy_simple_xlate. If the PHY provider implements multiple instances, it
+should provide its own implementation of of_xlate. of_xlate is used only for
+dt boot case.
+
+#define of_phy_provider_register(dev, xlate) \
+ __of_phy_provider_register((dev), THIS_MODULE, (xlate))
+
+#define devm_of_phy_provider_register(dev, xlate) \
+ __devm_of_phy_provider_register((dev), THIS_MODULE, (xlate))
+
+of_phy_provider_register and devm_of_phy_provider_register macros can be used to
+register the phy_provider and it takes device and of_xlate as
+arguments. For the dt boot case, all PHY providers should use one of the above
+2 macros to register the PHY provider.
+
+void devm_of_phy_provider_unregister(struct device *dev,
+ struct phy_provider *phy_provider);
+void of_phy_provider_unregister(struct phy_provider *phy_provider);
+
+devm_of_phy_provider_unregister and of_phy_provider_unregister can be used to
+unregister the PHY.
+
+3. Creating the PHY
+
+The PHY driver should create the PHY in order for other peripheral controllers
+to make use of it. The PHY framework provides 2 APIs to create the PHY.
+
+struct phy *phy_create(struct device *dev, const struct phy_ops *ops,
+ struct phy_init_data *init_data);
+struct phy *devm_phy_create(struct device *dev, const struct phy_ops *ops,
+ struct phy_init_data *init_data);
+
+The PHY drivers can use one of the above 2 APIs to create the PHY by passing
+the device pointer, phy ops and init_data.
+phy_ops is a set of function pointers for performing PHY operations such as
+init, exit, power_on and power_off. *init_data* is mandatory to get a reference
+to the PHY in the case of non-dt boot. See section *Board File Initialization*
+on how init_data should be used.
+
+Inorder to dereference the private data (in phy_ops), the phy provider driver
+can use phy_set_drvdata() after creating the PHY and use phy_get_drvdata() in
+phy_ops to get back the private data.
+
+4. Getting a reference to the PHY
+
+Before the controller can make use of the PHY, it has to get a reference to
+it. This framework provides the following APIs to get a reference to the PHY.
+
+struct phy *phy_get(struct device *dev, const char *string);
+struct phy *phy_optional_get(struct device *dev, const char *string);
+struct phy *devm_phy_get(struct device *dev, const char *string);
+struct phy *devm_phy_optional_get(struct device *dev, const char *string);
+
+phy_get, phy_optional_get, devm_phy_get and devm_phy_optional_get can
+be used to get the PHY. In the case of dt boot, the string arguments
+should contain the phy name as given in the dt data and in the case of
+non-dt boot, it should contain the label of the PHY. The two
+devm_phy_get associates the device with the PHY using devres on
+successful PHY get. On driver detach, release function is invoked on
+the the devres data and devres data is freed. phy_optional_get and
+devm_phy_optional_get should be used when the phy is optional. These
+two functions will never return -ENODEV, but instead returns NULL when
+the phy cannot be found.
+
+It should be noted that NULL is a valid phy reference. All phy
+consumer calls on the NULL phy become NOPs. That is the release calls,
+the phy_init() and phy_exit() calls, and phy_power_on() and
+phy_power_off() calls are all NOP when applied to a NULL phy. The NULL
+phy is useful in devices for handling optional phy devices.
+
+5. Releasing a reference to the PHY
+
+When the controller no longer needs the PHY, it has to release the reference
+to the PHY it has obtained using the APIs mentioned in the above section. The
+PHY framework provides 2 APIs to release a reference to the PHY.
+
+void phy_put(struct phy *phy);
+void devm_phy_put(struct device *dev, struct phy *phy);
+
+Both these APIs are used to release a reference to the PHY and devm_phy_put
+destroys the devres associated with this PHY.
+
+6. Destroying the PHY
+
+When the driver that created the PHY is unloaded, it should destroy the PHY it
+created using one of the following 2 APIs.
+
+void phy_destroy(struct phy *phy);
+void devm_phy_destroy(struct device *dev, struct phy *phy);
+
+Both these APIs destroy the PHY and devm_phy_destroy destroys the devres
+associated with this PHY.
+
+7. PM Runtime
+
+This subsystem is pm runtime enabled. So while creating the PHY,
+pm_runtime_enable of the phy device created by this subsystem is called and
+while destroying the PHY, pm_runtime_disable is called. Note that the phy
+device created by this subsystem will be a child of the device that calls
+phy_create (PHY provider device).
+
+So pm_runtime_get_sync of the phy_device created by this subsystem will invoke
+pm_runtime_get_sync of PHY provider device because of parent-child relationship.
+It should also be noted that phy_power_on and phy_power_off performs
+phy_pm_runtime_get_sync and phy_pm_runtime_put respectively.
+There are exported APIs like phy_pm_runtime_get, phy_pm_runtime_get_sync,
+phy_pm_runtime_put, phy_pm_runtime_put_sync, phy_pm_runtime_allow and
+phy_pm_runtime_forbid for performing PM operations.
+
+8. Board File Initialization
+
+Certain board file initialization is necessary in order to get a reference
+to the PHY in the case of non-dt boot.
+Say we have a single device that implements 3 PHYs that of USB, SATA and PCIe,
+then in the board file the following initialization should be done.
+
+struct phy_consumer consumers[] = {
+ PHY_CONSUMER("dwc3.0", "usb"),
+ PHY_CONSUMER("pcie.0", "pcie"),
+ PHY_CONSUMER("sata.0", "sata"),
+};
+PHY_CONSUMER takes 2 parameters, first is the device name of the controller
+(PHY consumer) and second is the port name.
+
+struct phy_init_data init_data = {
+ .consumers = consumers,
+ .num_consumers = ARRAY_SIZE(consumers),
+};
+
+static const struct platform_device pipe3_phy_dev = {
+ .name = "pipe3-phy",
+ .id = -1,
+ .dev = {
+ .platform_data = {
+ .init_data = &init_data,
+ },
+ },
+};
+
+then, while doing phy_create, the PHY driver should pass this init_data
+ phy_create(dev, ops, pdata->init_data);
+
+and the controller driver (phy consumer) should pass the port name along with
+the device to get a reference to the PHY
+ phy_get(dev, "pcie");
+
+9. DeviceTree Binding
+
+The documentation for PHY dt binding can be found @
+Documentation/devicetree/bindings/phy/phy-bindings.txt
diff --git a/Documentation/phy/samsung-usb2.txt b/Documentation/phy/samsung-usb2.txt
new file mode 100644
index 00000000000..ed12d437189
--- /dev/null
+++ b/Documentation/phy/samsung-usb2.txt
@@ -0,0 +1,135 @@
+.------------------------------------------------------------------------------+
+| Samsung USB 2.0 PHY adaptation layer |
++-----------------------------------------------------------------------------+'
+
+| 1. Description
++----------------
+
+The architecture of the USB 2.0 PHY module in Samsung SoCs is similar
+among many SoCs. In spite of the similarities it proved difficult to
+create a one driver that would fit all these PHY controllers. Often
+the differences were minor and were found in particular bits of the
+registers of the PHY. In some rare cases the order of register writes or
+the PHY powering up process had to be altered. This adaptation layer is
+a compromise between having separate drivers and having a single driver
+with added support for many special cases.
+
+| 2. Files description
++----------------------
+
+- phy-samsung-usb2.c
+ This is the main file of the adaptation layer. This file contains
+ the probe function and provides two callbacks to the Generic PHY
+ Framework. This two callbacks are used to power on and power off the
+ phy. They carry out the common work that has to be done on all version
+ of the PHY module. Depending on which SoC was chosen they execute SoC
+ specific callbacks. The specific SoC version is selected by choosing
+ the appropriate compatible string. In addition, this file contains
+ struct of_device_id definitions for particular SoCs.
+
+- phy-samsung-usb2.h
+ This is the include file. It declares the structures used by this
+ driver. In addition it should contain extern declarations for
+ structures that describe particular SoCs.
+
+| 3. Supporting SoCs
++--------------------
+
+To support a new SoC a new file should be added to the drivers/phy
+directory. Each SoC's configuration is stored in an instance of the
+struct samsung_usb2_phy_config.
+
+struct samsung_usb2_phy_config {
+ const struct samsung_usb2_common_phy *phys;
+ int (*rate_to_clk)(unsigned long, u32 *);
+ unsigned int num_phys;
+ bool has_mode_switch;
+};
+
+The num_phys is the number of phys handled by the driver. *phys is an
+array that contains the configuration for each phy. The has_mode_switch
+property is a boolean flag that determines whether the SoC has USB host
+and device on a single pair of pins. If so, a special register has to
+be modified to change the internal routing of these pins between a USB
+device or host module.
+
+For example the configuration for Exynos 4210 is following:
+
+const struct samsung_usb2_phy_config exynos4210_usb2_phy_config = {
+ .has_mode_switch = 0,
+ .num_phys = EXYNOS4210_NUM_PHYS,
+ .phys = exynos4210_phys,
+ .rate_to_clk = exynos4210_rate_to_clk,
+}
+
+- int (*rate_to_clk)(unsigned long, u32 *)
+ The rate_to_clk callback is to convert the rate of the clock
+ used as the reference clock for the PHY module to the value
+ that should be written in the hardware register.
+
+The exynos4210_phys configuration array is as follows:
+
+static const struct samsung_usb2_common_phy exynos4210_phys[] = {
+ {
+ .label = "device",
+ .id = EXYNOS4210_DEVICE,
+ .power_on = exynos4210_power_on,
+ .power_off = exynos4210_power_off,
+ },
+ {
+ .label = "host",
+ .id = EXYNOS4210_HOST,
+ .power_on = exynos4210_power_on,
+ .power_off = exynos4210_power_off,
+ },
+ {
+ .label = "hsic0",
+ .id = EXYNOS4210_HSIC0,
+ .power_on = exynos4210_power_on,
+ .power_off = exynos4210_power_off,
+ },
+ {
+ .label = "hsic1",
+ .id = EXYNOS4210_HSIC1,
+ .power_on = exynos4210_power_on,
+ .power_off = exynos4210_power_off,
+ },
+ {},
+};
+
+- int (*power_on)(struct samsung_usb2_phy_instance *);
+- int (*power_off)(struct samsung_usb2_phy_instance *);
+ These two callbacks are used to power on and power off the phy
+ by modifying appropriate registers.
+
+Final change to the driver is adding appropriate compatible value to the
+phy-samsung-usb2.c file. In case of Exynos 4210 the following lines were
+added to the struct of_device_id samsung_usb2_phy_of_match[] array:
+
+#ifdef CONFIG_PHY_EXYNOS4210_USB2
+ {
+ .compatible = "samsung,exynos4210-usb2-phy",
+ .data = &exynos4210_usb2_phy_config,
+ },
+#endif
+
+To add further flexibility to the driver the Kconfig file enables to
+include support for selected SoCs in the compiled driver. The Kconfig
+entry for Exynos 4210 is following:
+
+config PHY_EXYNOS4210_USB2
+ bool "Support for Exynos 4210"
+ depends on PHY_SAMSUNG_USB2
+ depends on CPU_EXYNOS4210
+ help
+ Enable USB PHY support for Exynos 4210. This option requires that
+ Samsung USB 2.0 PHY driver is enabled and means that support for this
+ particular SoC is compiled in the driver. In case of Exynos 4210 four
+ phys are available - device, host, HSCI0 and HSCI1.
+
+The newly created file that supports the new SoC has to be also added to the
+Makefile. In case of Exynos 4210 the added line is following:
+
+obj-$(CONFIG_PHY_EXYNOS4210_USB2) += phy-exynos4210-usb2.o
+
+After completing these steps the support for the new SoC should be ready.
diff --git a/Documentation/pinctrl.txt b/Documentation/pinctrl.txt
index c0ffd30eb55..23f1590f49f 100644
--- a/Documentation/pinctrl.txt
+++ b/Documentation/pinctrl.txt
@@ -18,7 +18,7 @@ Definition of PIN CONTROLLER:
- A pin controller is a piece of hardware, usually a set of registers, that
can control PINs. It may be able to multiplex, bias, set load capacitance,
- set drive strength etc for individual pins or groups of pins.
+ set drive strength, etc. for individual pins or groups of pins.
Definition of PIN:
@@ -90,7 +90,7 @@ selected drivers, you need to select them from your machine's Kconfig entry,
since these are so tightly integrated with the machines they are used on.
See for example arch/arm/mach-u300/Kconfig for an example.
-Pins usually have fancier names than this. You can find these in the dataheet
+Pins usually have fancier names than this. You can find these in the datasheet
for your chip. Notice that the core pinctrl.h file provides a fancy macro
called PINCTRL_PIN() to create the struct entries. As you can see I enumerated
the pins from 0 in the upper left corner to 63 in the lower right corner.
@@ -185,7 +185,7 @@ static struct pinctrl_desc foo_desc = {
};
The pin control subsystem will call the .get_groups_count() function to
-determine total number of legal selectors, then it will call the other functions
+determine the total number of legal selectors, then it will call the other functions
to retrieve the name and pins of the group. Maintaining the data structure of
the groups is up to the driver, this is just a simple example - in practice you
may need more entries in your group structure, for example specific register
@@ -195,7 +195,7 @@ ranges associated with each group and so on.
Pin configuration
=================
-Pins can sometimes be software-configured in an various ways, mostly related
+Pins can sometimes be software-configured in various ways, mostly related
to their electronic properties when used as inputs or outputs. For example you
may be able to make an output pin high impedance, or "tristate" meaning it is
effectively disconnected. You may be able to connect an input pin to VDD or GND
@@ -291,7 +291,7 @@ Since the pin controller subsystem have its pinspace local to the pin
controller we need a mapping so that the pin control subsystem can figure out
which pin controller handles control of a certain GPIO pin. Since a single
pin controller may be muxing several GPIO ranges (typically SoCs that have
-one set of pins but internally several GPIO silicon blocks, each modelled as
+one set of pins, but internally several GPIO silicon blocks, each modelled as
a struct gpio_chip) any number of GPIO ranges can be added to a pin controller
instance like this:
@@ -358,7 +358,12 @@ static struct pinctrl_gpio_range gpio_range = {
.gc = &chip;
};
-In this case the pin_base property will be ignored.
+In this case the pin_base property will be ignored. If the name of a pin
+group is known, the pins and npins elements of the above structure can be
+initialised using the function pinctrl_get_group_pins(), e.g. for pin
+group "foo":
+
+pinctrl_get_group_pins(pctl, "foo", &gpio_range.pins, &gpio_range.npins);
When GPIO-specific functions in the pin control subsystem are called, these
ranges will be used to look up the appropriate pin controller by inspecting
@@ -368,9 +373,9 @@ will be called on that specific pin controller.
For all functionalities dealing with pin biasing, pin muxing etc, the pin
controller subsystem will look up the corresponding pin number from the passed
-in gpio number, and use the range's internals to retrive a pin number. After
+in gpio number, and use the range's internals to retrieve a pin number. After
that, the subsystem passes it on to the pin control driver, so the driver
-will get an pin number into its handled number range. Further it is also passed
+will get a pin number into its handled number range. Further it is also passed
the range ID value, so that the pin controller knows which range it should
deal with.
@@ -425,8 +430,8 @@ pins you see some will be taken by things like a few VCC and GND to feed power
to the chip, and quite a few will be taken by large ports like an external
memory interface. The remaining pins will often be subject to pin multiplexing.
-The example 8x8 PGA package above will have pin numbers 0 thru 63 assigned to
-its physical pins. It will name the pins { A1, A2, A3 ... H6, H7, H8 } using
+The example 8x8 PGA package above will have pin numbers 0 through 63 assigned
+to its physical pins. It will name the pins { A1, A2, A3 ... H6, H7, H8 } using
pinctrl_register_pins() and a suitable data set as shown earlier.
In this 8x8 BGA package the pins { A8, A7, A6, A5 } can be used as an SPI port
@@ -437,7 +442,7 @@ we cannot use the SPI port and I2C port at the same time. However in the inside
of the package the silicon performing the SPI logic can alternatively be routed
out on pins { G4, G3, G2, G1 }.
-On the botton row at { A1, B1, C1, D1, E1, F1, G1, H1 } we have something
+On the bottom row at { A1, B1, C1, D1, E1, F1, G1, H1 } we have something
special - it's an external MMC bus that can be 2, 4 or 8 bits wide, and it will
consume 2, 4 or 8 pins respectively, so either { A1, B1 } are taken or
{ A1, B1, C1, D1 } or all of them. If we use all 8 bits, we cannot use the SPI
@@ -544,7 +549,7 @@ Assumptions:
We assume that the number of possible function maps to pin groups is limited by
the hardware. I.e. we assume that there is no system where any function can be
-mapped to any pin, like in a phone exchange. So the available pins groups for
+mapped to any pin, like in a phone exchange. So the available pin groups for
a certain function will be limited to a few choices (say up to eight or so),
not hundreds or any amount of choices. This is the characteristic we have found
by inspecting available pinmux hardware, and a necessary assumption since we
@@ -559,7 +564,7 @@ The pinmux core takes care of preventing conflicts on pins and calling
the pin controller driver to execute different settings.
It is the responsibility of the pinmux driver to impose further restrictions
-(say for example infer electronic limitations due to load etc) to determine
+(say for example infer electronic limitations due to load, etc.) to determine
whether or not the requested function can actually be allowed, and in case it
is possible to perform the requested mux setting, poke the hardware so that
this happens.
@@ -750,7 +755,7 @@ Pin control interaction with the GPIO subsystem
Note that the following implies that the use case is to use a certain pin
from the Linux kernel using the API in <linux/gpio.h> with gpio_request()
and similar functions. There are cases where you may be using something
-that your datasheet calls "GPIO mode" but actually is just an electrical
+that your datasheet calls "GPIO mode", but actually is just an electrical
configuration for a certain device. See the section below named
"GPIO mode pitfalls" for more details on this scenario.
@@ -866,7 +871,7 @@ hardware and shall be put into different subsystems:
- Registers (or fields within registers) that control muxing of signals
from various other HW blocks (e.g. I2C, MMC, or GPIO) onto pins should
- be exposed through the pinctrl subssytem, as mux functions.
+ be exposed through the pinctrl subsystem, as mux functions.
- Registers (or fields within registers) that control GPIO functionality
such as setting a GPIO's output value, reading a GPIO's input value, or
@@ -890,7 +895,7 @@ Example: a pin is usually muxed in to be used as a UART TX line. But during
system sleep, we need to put this pin into "GPIO mode" and ground it.
If you make a 1-to-1 map to the GPIO subsystem for this pin, you may start
-to think that you need to come up with something real complex, that the
+to think that you need to come up with something really complex, that the
pin shall be used for UART TX and GPIO at the same time, that you will grab
a pin control handle and set it to a certain state to enable UART TX to be
muxed in, then twist it over to GPIO mode and use gpio_direction_output()
@@ -959,12 +964,12 @@ GPIO mode.
This will give the desired effect without any bogus interaction with the
GPIO subsystem. It is just an electrical configuration used by that device
when going to sleep, it might imply that the pin is set into something the
-datasheet calls "GPIO mode" but that is not the point: it is still used
+datasheet calls "GPIO mode", but that is not the point: it is still used
by that UART device to control the pins that pertain to that very UART
driver, putting them into modes needed by the UART. GPIO in the Linux
kernel sense are just some 1-bit line, and is a different use case.
-How the registers are poked to attain the push/pull and output low
+How the registers are poked to attain the push or pull, and output low
configuration and the muxing of the "u0" or "gpio-mode" group onto these
pins is a question for the driver.
@@ -972,7 +977,7 @@ Some datasheets will be more helpful and refer to the "GPIO mode" as
"low power mode" rather than anything to do with GPIO. This often means
the same thing electrically speaking, but in this latter case the
software engineers will usually quickly identify that this is some
-specific muxing/configuration rather than anything related to the GPIO
+specific muxing or configuration rather than anything related to the GPIO
API.
@@ -1019,8 +1024,7 @@ up the device struct (just like with clockdev or regulators). The function name
must match a function provided by the pinmux driver handling this pin range.
As you can see we may have several pin controllers on the system and thus
-we need to specify which one of them that contain the functions we wish
-to map.
+we need to specify which one of them contains the functions we wish to map.
You register this pinmux mapping to the pinmux subsystem by simply:
@@ -1249,10 +1253,10 @@ The semantics of the pinctrl APIs are:
pinctrl_get().
- pinctrl_lookup_state() is called in process context to obtain a handle to a
- specific state for a the client device. This operation may be slow too.
+ specific state for a client device. This operation may be slow, too.
- pinctrl_select_state() programs pin controller hardware according to the
- definition of the state as given by the mapping table. In theory this is a
+ definition of the state as given by the mapping table. In theory, this is a
fast-path operation, since it only involved blasting some register settings
into hardware. However, note that some pin controllers may have their
registers on a slow/IRQ-based bus, so client devices should not assume they
diff --git a/Documentation/platform/x86-laptop-drivers.txt b/Documentation/platform/x86-laptop-drivers.txt
new file mode 100644
index 00000000000..01facd2590b
--- /dev/null
+++ b/Documentation/platform/x86-laptop-drivers.txt
@@ -0,0 +1,18 @@
+compal-laptop
+=============
+List of supported hardware:
+
+by Compal:
+ Compal FL90/IFL90
+ Compal FL91/IFL91
+ Compal FL92/JFL92
+ Compal FT00/IFT00
+
+by Dell:
+ Dell Vostro 1200
+ Dell Mini 9 (Inspiron 910)
+ Dell Mini 10 (Inspiron 1010)
+ Dell Mini 10v (Inspiron 1011)
+ Dell Mini 1012 (Inspiron 1012)
+ Dell Inspiron 11z (Inspiron 1110)
+ Dell Mini 12 (Inspiron 1210)
diff --git a/Documentation/power/00-INDEX b/Documentation/power/00-INDEX
index a4d682f5423..ad04cc8097e 100644
--- a/Documentation/power/00-INDEX
+++ b/Documentation/power/00-INDEX
@@ -4,6 +4,8 @@ apm-acpi.txt
- basic info about the APM and ACPI support.
basic-pm-debugging.txt
- Debugging suspend and resume
+charger-manager.txt
+ - Battery charger management.
devices.txt
- How drivers interact with system-wide power management
drivers-testing.txt
@@ -22,6 +24,8 @@ pm_qos_interface.txt
- info on Linux PM Quality of Service interface
power_supply_class.txt
- Tells userspace about battery, UPS, AC or DC power supply properties
+runtime_pm.txt
+ - Power management framework for I/O devices.
s2ram.txt
- How to get suspend to ram working (and debug it when it isn't)
states.txt
@@ -38,7 +42,5 @@ tricks.txt
- How to trick software suspend (to disk) into working when it isn't
userland-swsusp.txt
- Experimental implementation of software suspend in userspace
-video_extension.txt
- - ACPI video extensions
video.txt
- Video issues during resume from suspend
diff --git a/Documentation/power/basic-pm-debugging.txt b/Documentation/power/basic-pm-debugging.txt
index e9b54de8fdf..edeecd447d2 100644
--- a/Documentation/power/basic-pm-debugging.txt
+++ b/Documentation/power/basic-pm-debugging.txt
@@ -172,7 +172,7 @@ you can boot the kernel with the 'no_console_suspend' parameter and try to log
kernel messages using the serial console. This may provide you with some
information about the reasons of the suspend (resume) failure. Alternatively,
it may be possible to use a FireWire port for debugging with firescope
-(ftp://ftp.firstfloor.org/pub/ak/firescope/). On x86 it is also possible to
+(http://v3.sk/~lkundrak/firescope/). On x86 it is also possible to
use the PM_TRACE mechanism documented in Documentation/power/s2ram.txt .
2. Testing suspend to RAM (STR)
diff --git a/Documentation/power/devices.txt b/Documentation/power/devices.txt
index a66c9821b5c..d172bce0fd4 100644
--- a/Documentation/power/devices.txt
+++ b/Documentation/power/devices.txt
@@ -2,6 +2,7 @@ Device Power Management
Copyright (c) 2010-2011 Rafael J. Wysocki <rjw@sisk.pl>, Novell Inc.
Copyright (c) 2010 Alan Stern <stern@rowland.harvard.edu>
+Copyright (c) 2014 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Most of the code in Linux is device drivers, so most of the Linux power
@@ -326,6 +327,20 @@ the phases are:
driver in some way for the upcoming system power transition, but it
should not put the device into a low-power state.
+ For devices supporting runtime power management, the return value of the
+ prepare callback can be used to indicate to the PM core that it may
+ safely leave the device in runtime suspend (if runtime-suspended
+ already), provided that all of the device's descendants are also left in
+ runtime suspend. Namely, if the prepare callback returns a positive
+ number and that happens for all of the descendants of the device too,
+ and all of them (including the device itself) are runtime-suspended, the
+ PM core will skip the suspend, suspend_late and suspend_noirq suspend
+ phases as well as the resume_noirq, resume_early and resume phases of
+ the following system resume for all of these devices. In that case,
+ the complete callback will be called directly after the prepare callback
+ and is entirely responsible for bringing the device back to the
+ functional state as appropriate.
+
2. The suspend methods should quiesce the device to stop it from performing
I/O. They also may save the device registers and put it into the
appropriate low-power state, depending on the bus type the device is on,
@@ -391,7 +406,7 @@ When resuming from freeze, standby or memory sleep, the phases are:
the resume methods. This generally involves undoing the actions of the
preceding suspend_late phase.
- 3 The resume methods should bring the the device back to its operating
+ 3 The resume methods should bring the device back to its operating
state, so that it can perform normal I/O. This generally involves
undoing the actions of the suspend phase.
@@ -400,12 +415,23 @@ When resuming from freeze, standby or memory sleep, the phases are:
the resume callbacks occur; it's not necessary to wait until the
complete phase.
+ Moreover, if the preceding prepare callback returned a positive number,
+ the device may have been left in runtime suspend throughout the whole
+ system suspend and resume (the suspend, suspend_late, suspend_noirq
+ phases of system suspend and the resume_noirq, resume_early, resume
+ phases of system resume may have been skipped for it). In that case,
+ the complete callback is entirely responsible for bringing the device
+ back to the functional state after system suspend if necessary. [For
+ example, it may need to queue up a runtime resume request for the device
+ for this purpose.] To check if that is the case, the complete callback
+ can consult the device's power.direct_complete flag. Namely, if that
+ flag is set when the complete callback is being run, it has been called
+ directly after the preceding prepare and special action may be required
+ to make the device work correctly afterward.
+
At the end of these phases, drivers should be as functional as they were before
suspending: I/O can be performed using DMA and IRQs, and the relevant clocks are
-gated on. Even if the device was in a low-power state before the system sleep
-because of runtime power management, afterwards it should be back in its
-full-power state. There are multiple reasons why it's best to do this; they are
-discussed in more detail in Documentation/power/runtime_pm.txt.
+gated on.
However, the details here may again be platform-specific. For example,
some systems support multiple "run" states, and the mode in effect at
diff --git a/Documentation/power/opp.txt b/Documentation/power/opp.txt
index 425c51d56ae..a9adad828cd 100644
--- a/Documentation/power/opp.txt
+++ b/Documentation/power/opp.txt
@@ -10,8 +10,7 @@ Contents
3. OPP Search Functions
4. OPP Availability Control Functions
5. OPP Data Retrieval Functions
-6. Cpufreq Table Generation
-7. Data Structures
+6. Data Structures
1. Introduction
===============
@@ -42,7 +41,7 @@ We can represent these as three OPPs as the following {Hz, uV} tuples:
OPP library provides a set of helper functions to organize and query the OPP
information. The library is located in drivers/base/power/opp.c and the header
-is located in include/linux/opp.h. OPP library can be enabled by enabling
+is located in include/linux/pm_opp.h. OPP library can be enabled by enabling
CONFIG_PM_OPP from power management menuconfig menu. OPP library depends on
CONFIG_PM as certain SoCs such as Texas Instrument's OMAP framework allows to
optionally boot at a certain OPP without needing cpufreq.
@@ -71,14 +70,13 @@ operations until that OPP could be re-enabled if possible.
OPP library facilitates this concept in it's implementation. The following
operational functions operate only on available opps:
-opp_find_freq_{ceil, floor}, opp_get_voltage, opp_get_freq, opp_get_opp_count
-and opp_init_cpufreq_table
+opp_find_freq_{ceil, floor}, dev_pm_opp_get_voltage, dev_pm_opp_get_freq, dev_pm_opp_get_opp_count
-opp_find_freq_exact is meant to be used to find the opp pointer which can then
-be used for opp_enable/disable functions to make an opp available as required.
+dev_pm_opp_find_freq_exact is meant to be used to find the opp pointer which can then
+be used for dev_pm_opp_enable/disable functions to make an opp available as required.
WARNING: Users of OPP library should refresh their availability count using
-get_opp_count if opp_enable/disable functions are invoked for a device, the
+get_opp_count if dev_pm_opp_enable/disable functions are invoked for a device, the
exact mechanism to trigger these or the notification mechanism to other
dependent subsystems such as cpufreq are left to the discretion of the SoC
specific framework which uses the OPP library. Similar care needs to be taken
@@ -96,24 +94,23 @@ using RCU read locks. The opp_find_freq_{exact,ceil,floor},
opp_get_{voltage, freq, opp_count} fall into this category.
opp_{add,enable,disable} are updaters which use mutex and implement it's own
-RCU locking mechanisms. opp_init_cpufreq_table acts as an updater and uses
-mutex to implment RCU updater strategy. These functions should *NOT* be called
-under RCU locks and other contexts that prevent blocking functions in RCU or
-mutex operations from working.
+RCU locking mechanisms. These functions should *NOT* be called under RCU locks
+and other contexts that prevent blocking functions in RCU or mutex operations
+from working.
2. Initial OPP List Registration
================================
-The SoC implementation calls opp_add function iteratively to add OPPs per
+The SoC implementation calls dev_pm_opp_add function iteratively to add OPPs per
device. It is expected that the SoC framework will register the OPP entries
optimally- typical numbers range to be less than 5. The list generated by
registering the OPPs is maintained by OPP library throughout the device
operation. The SoC framework can subsequently control the availability of the
-OPPs dynamically using the opp_enable / disable functions.
+OPPs dynamically using the dev_pm_opp_enable / disable functions.
-opp_add - Add a new OPP for a specific domain represented by the device pointer.
+dev_pm_opp_add - Add a new OPP for a specific domain represented by the device pointer.
The OPP is defined using the frequency and voltage. Once added, the OPP
is assumed to be available and control of it's availability can be done
- with the opp_enable/disable functions. OPP library internally stores
+ with the dev_pm_opp_enable/disable functions. OPP library internally stores
and manages this information in the opp struct. This function may be
used by SoC framework to define a optimal list as per the demands of
SoC usage environment.
@@ -124,7 +121,7 @@ opp_add - Add a new OPP for a specific domain represented by the device pointer.
soc_pm_init()
{
/* Do things */
- r = opp_add(mpu_dev, 1000000, 900000);
+ r = dev_pm_opp_add(mpu_dev, 1000000, 900000);
if (!r) {
pr_err("%s: unable to register mpu opp(%d)\n", r);
goto no_cpufreq;
@@ -143,44 +140,44 @@ functions return the matching pointer representing the opp if a match is
found, else returns error. These errors are expected to be handled by standard
error checks such as IS_ERR() and appropriate actions taken by the caller.
-opp_find_freq_exact - Search for an OPP based on an *exact* frequency and
+dev_pm_opp_find_freq_exact - Search for an OPP based on an *exact* frequency and
availability. This function is especially useful to enable an OPP which
is not available by default.
Example: In a case when SoC framework detects a situation where a
higher frequency could be made available, it can use this function to
- find the OPP prior to call the opp_enable to actually make it available.
+ find the OPP prior to call the dev_pm_opp_enable to actually make it available.
rcu_read_lock();
- opp = opp_find_freq_exact(dev, 1000000000, false);
+ opp = dev_pm_opp_find_freq_exact(dev, 1000000000, false);
rcu_read_unlock();
/* dont operate on the pointer.. just do a sanity check.. */
if (IS_ERR(opp)) {
pr_err("frequency not disabled!\n");
/* trigger appropriate actions.. */
} else {
- opp_enable(dev,1000000000);
+ dev_pm_opp_enable(dev,1000000000);
}
NOTE: This is the only search function that operates on OPPs which are
not available.
-opp_find_freq_floor - Search for an available OPP which is *at most* the
+dev_pm_opp_find_freq_floor - Search for an available OPP which is *at most* the
provided frequency. This function is useful while searching for a lesser
match OR operating on OPP information in the order of decreasing
frequency.
Example: To find the highest opp for a device:
freq = ULONG_MAX;
rcu_read_lock();
- opp_find_freq_floor(dev, &freq);
+ dev_pm_opp_find_freq_floor(dev, &freq);
rcu_read_unlock();
-opp_find_freq_ceil - Search for an available OPP which is *at least* the
+dev_pm_opp_find_freq_ceil - Search for an available OPP which is *at least* the
provided frequency. This function is useful while searching for a
higher match OR operating on OPP information in the order of increasing
frequency.
Example 1: To find the lowest opp for a device:
freq = 0;
rcu_read_lock();
- opp_find_freq_ceil(dev, &freq);
+ dev_pm_opp_find_freq_ceil(dev, &freq);
rcu_read_unlock();
Example 2: A simplified implementation of a SoC cpufreq_driver->target:
soc_cpufreq_target(..)
@@ -188,7 +185,7 @@ opp_find_freq_ceil - Search for an available OPP which is *at least* the
/* Do stuff like policy checks etc. */
/* Find the best frequency match for the req */
rcu_read_lock();
- opp = opp_find_freq_ceil(dev, &freq);
+ opp = dev_pm_opp_find_freq_ceil(dev, &freq);
rcu_read_unlock();
if (!IS_ERR(opp))
soc_switch_to_freq_voltage(freq);
@@ -208,34 +205,34 @@ as thermal considerations (e.g. don't use OPPx until the temperature drops).
WARNING: Do not use these functions in interrupt context.
-opp_enable - Make a OPP available for operation.
+dev_pm_opp_enable - Make a OPP available for operation.
Example: Lets say that 1GHz OPP is to be made available only if the
SoC temperature is lower than a certain threshold. The SoC framework
implementation might choose to do something as follows:
if (cur_temp < temp_low_thresh) {
/* Enable 1GHz if it was disabled */
rcu_read_lock();
- opp = opp_find_freq_exact(dev, 1000000000, false);
+ opp = dev_pm_opp_find_freq_exact(dev, 1000000000, false);
rcu_read_unlock();
/* just error check */
if (!IS_ERR(opp))
- ret = opp_enable(dev, 1000000000);
+ ret = dev_pm_opp_enable(dev, 1000000000);
else
goto try_something_else;
}
-opp_disable - Make an OPP to be not available for operation
+dev_pm_opp_disable - Make an OPP to be not available for operation
Example: Lets say that 1GHz OPP is to be disabled if the temperature
exceeds a threshold value. The SoC framework implementation might
choose to do something as follows:
if (cur_temp > temp_high_thresh) {
/* Disable 1GHz if it was enabled */
rcu_read_lock();
- opp = opp_find_freq_exact(dev, 1000000000, true);
+ opp = dev_pm_opp_find_freq_exact(dev, 1000000000, true);
rcu_read_unlock();
/* just error check */
if (!IS_ERR(opp))
- ret = opp_disable(dev, 1000000000);
+ ret = dev_pm_opp_disable(dev, 1000000000);
else
goto try_something_else;
}
@@ -247,7 +244,7 @@ information from the OPP structure is necessary. Once an OPP pointer is
retrieved using the search functions, the following functions can be used by SoC
framework to retrieve the information represented inside the OPP layer.
-opp_get_voltage - Retrieve the voltage represented by the opp pointer.
+dev_pm_opp_get_voltage - Retrieve the voltage represented by the opp pointer.
Example: At a cpufreq transition to a different frequency, SoC
framework requires to set the voltage represented by the OPP using
the regulator framework to the Power Management chip providing the
@@ -256,15 +253,15 @@ opp_get_voltage - Retrieve the voltage represented by the opp pointer.
{
/* do things */
rcu_read_lock();
- opp = opp_find_freq_ceil(dev, &freq);
- v = opp_get_voltage(opp);
+ opp = dev_pm_opp_find_freq_ceil(dev, &freq);
+ v = dev_pm_opp_get_voltage(opp);
rcu_read_unlock();
if (v)
regulator_set_voltage(.., v);
/* do other things */
}
-opp_get_freq - Retrieve the freq represented by the opp pointer.
+dev_pm_opp_get_freq - Retrieve the freq represented by the opp pointer.
Example: Lets say the SoC framework uses a couple of helper functions
we could pass opp pointers instead of doing additional parameters to
handle quiet a bit of data parameters.
@@ -273,8 +270,8 @@ opp_get_freq - Retrieve the freq represented by the opp pointer.
/* do things.. */
max_freq = ULONG_MAX;
rcu_read_lock();
- max_opp = opp_find_freq_floor(dev,&max_freq);
- requested_opp = opp_find_freq_ceil(dev,&freq);
+ max_opp = dev_pm_opp_find_freq_floor(dev,&max_freq);
+ requested_opp = dev_pm_opp_find_freq_ceil(dev,&freq);
if (!IS_ERR(max_opp) && !IS_ERR(requested_opp))
r = soc_test_validity(max_opp, requested_opp);
rcu_read_unlock();
@@ -282,25 +279,25 @@ opp_get_freq - Retrieve the freq represented by the opp pointer.
}
soc_test_validity(..)
{
- if(opp_get_voltage(max_opp) < opp_get_voltage(requested_opp))
+ if(dev_pm_opp_get_voltage(max_opp) < dev_pm_opp_get_voltage(requested_opp))
return -EINVAL;
- if(opp_get_freq(max_opp) < opp_get_freq(requested_opp))
+ if(dev_pm_opp_get_freq(max_opp) < dev_pm_opp_get_freq(requested_opp))
return -EINVAL;
/* do things.. */
}
-opp_get_opp_count - Retrieve the number of available opps for a device
+dev_pm_opp_get_opp_count - Retrieve the number of available opps for a device
Example: Lets say a co-processor in the SoC needs to know the available
frequencies in a table, the main processor can notify as following:
soc_notify_coproc_available_frequencies()
{
/* Do things */
rcu_read_lock();
- num_available = opp_get_opp_count(dev);
+ num_available = dev_pm_opp_get_opp_count(dev);
speeds = kzalloc(sizeof(u32) * num_available, GFP_KERNEL);
/* populate the table in increasing order */
freq = 0;
- while (!IS_ERR(opp = opp_find_freq_ceil(dev, &freq))) {
+ while (!IS_ERR(opp = dev_pm_opp_find_freq_ceil(dev, &freq))) {
speeds[i] = freq;
freq++;
i++;
@@ -311,34 +308,7 @@ opp_get_opp_count - Retrieve the number of available opps for a device
/* Do other things */
}
-6. Cpufreq Table Generation
-===========================
-opp_init_cpufreq_table - cpufreq framework typically is initialized with
- cpufreq_frequency_table_cpuinfo which is provided with the list of
- frequencies that are available for operation. This function provides
- a ready to use conversion routine to translate the OPP layer's internal
- information about the available frequencies into a format readily
- providable to cpufreq.
-
- WARNING: Do not use this function in interrupt context.
-
- Example:
- soc_pm_init()
- {
- /* Do things */
- r = opp_init_cpufreq_table(dev, &freq_table);
- if (!r)
- cpufreq_frequency_table_cpuinfo(policy, freq_table);
- /* Do other things */
- }
-
- NOTE: This function is available only if CONFIG_CPU_FREQ is enabled in
- addition to CONFIG_PM as power management feature is required to
- dynamically scale voltage and frequency in a system.
-
-opp_free_cpufreq_table - Free up the table allocated by opp_init_cpufreq_table
-
-7. Data Structures
+6. Data Structures
==================
Typically an SoC contains multiple voltage domains which are variable. Each
domain is represented by a device pointer. The relationship to OPP can be
@@ -358,16 +328,16 @@ accessed by various functions as described above. However, the structures
representing the actual OPPs and domains are internal to the OPP library itself
to allow for suitable abstraction reusable across systems.
-struct opp - The internal data structure of OPP library which is used to
+struct dev_pm_opp - The internal data structure of OPP library which is used to
represent an OPP. In addition to the freq, voltage, availability
information, it also contains internal book keeping information required
for the OPP library to operate on. Pointer to this structure is
provided back to the users such as SoC framework to be used as a
identifier for OPP in the interactions with OPP layer.
- WARNING: The struct opp pointer should not be parsed or modified by the
- users. The defaults of for an instance is populated by opp_add, but the
- availability of the OPP can be modified by opp_enable/disable functions.
+ WARNING: The struct dev_pm_opp pointer should not be parsed or modified by the
+ users. The defaults of for an instance is populated by dev_pm_opp_add, but the
+ availability of the OPP can be modified by dev_pm_opp_enable/disable functions.
struct device - This is used to identify a domain to the OPP layer. The
nature of the device and it's implementation is left to the user of
@@ -377,19 +347,19 @@ Overall, in a simplistic view, the data structure operations is represented as
following:
Initialization / modification:
- +-----+ /- opp_enable
-opp_add --> | opp | <-------
- | +-----+ \- opp_disable
+ +-----+ /- dev_pm_opp_enable
+dev_pm_opp_add --> | opp | <-------
+ | +-----+ \- dev_pm_opp_disable
\-------> domain_info(device)
Search functions:
- /-- opp_find_freq_ceil ---\ +-----+
-domain_info<---- opp_find_freq_exact -----> | opp |
- \-- opp_find_freq_floor ---/ +-----+
+ /-- dev_pm_opp_find_freq_ceil ---\ +-----+
+domain_info<---- dev_pm_opp_find_freq_exact -----> | opp |
+ \-- dev_pm_opp_find_freq_floor ---/ +-----+
Retrieval functions:
-+-----+ /- opp_get_voltage
++-----+ /- dev_pm_opp_get_voltage
| opp | <---
-+-----+ \- opp_get_freq
++-----+ \- dev_pm_opp_get_freq
-domain_info <- opp_get_opp_count
+domain_info <- dev_pm_opp_get_opp_count
diff --git a/Documentation/power/pm_qos_interface.txt b/Documentation/power/pm_qos_interface.txt
index 48363208778..a5da5c7e712 100644
--- a/Documentation/power/pm_qos_interface.txt
+++ b/Documentation/power/pm_qos_interface.txt
@@ -88,17 +88,19 @@ node.
2. PM QoS per-device latency and flags framework
-For each device, there are two lists of PM QoS requests. One is maintained
-along with the aggregated target of latency value and the other is for PM QoS
-flags. Values are updated in response to changes of the request list.
+For each device, there are three lists of PM QoS requests. Two of them are
+maintained along with the aggregated targets of resume latency and active
+state latency tolerance (in microseconds) and the third one is for PM QoS flags.
+Values are updated in response to changes of the request list.
-Target latency value is simply the minimum of the request values held in the
-parameter list elements. The PM QoS flags aggregate value is a gather (bitwise
-OR) of all list elements' values. Two device PM QoS flags are defined currently:
-PM_QOS_FLAG_NO_POWER_OFF and PM_QOS_FLAG_REMOTE_WAKEUP.
+The target values of resume latency and active state latency tolerance are
+simply the minimum of the request values held in the parameter list elements.
+The PM QoS flags aggregate value is a gather (bitwise OR) of all list elements'
+values. Two device PM QoS flags are defined currently: PM_QOS_FLAG_NO_POWER_OFF
+and PM_QOS_FLAG_REMOTE_WAKEUP.
-Note: the aggregated target value is implemented as an atomic variable so that
-reading the aggregated value does not require any locking mechanism.
+Note: The aggregated target values are implemented in such a way that reading
+the aggregated value does not require any locking mechanism.
From kernel mode the use of this interface is the following:
@@ -132,19 +134,21 @@ The meaning of the return values is as follows:
PM_QOS_FLAGS_UNDEFINED: The device's PM QoS structure has not been
initialized or the list of requests is empty.
-int dev_pm_qos_add_ancestor_request(dev, handle, value)
+int dev_pm_qos_add_ancestor_request(dev, handle, type, value)
Add a PM QoS request for the first direct ancestor of the given device whose
-power.ignore_children flag is unset.
+power.ignore_children flag is unset (for DEV_PM_QOS_RESUME_LATENCY requests)
+or whose power.set_latency_tolerance callback pointer is not NULL (for
+DEV_PM_QOS_LATENCY_TOLERANCE requests).
int dev_pm_qos_expose_latency_limit(device, value)
-Add a request to the device's PM QoS list of latency constraints and create
-a sysfs attribute pm_qos_resume_latency_us under the device's power directory
-allowing user space to manipulate that request.
+Add a request to the device's PM QoS list of resume latency constraints and
+create a sysfs attribute pm_qos_resume_latency_us under the device's power
+directory allowing user space to manipulate that request.
void dev_pm_qos_hide_latency_limit(device)
Drop the request added by dev_pm_qos_expose_latency_limit() from the device's
-PM QoS list of latency constraints and remove sysfs attribute pm_qos_resume_latency_us
-from the device's power directory.
+PM QoS list of resume latency constraints and remove sysfs attribute
+pm_qos_resume_latency_us from the device's power directory.
int dev_pm_qos_expose_flags(device, value)
Add a request to the device's PM QoS list of flags and create sysfs attributes
@@ -163,7 +167,7 @@ a per-device notification tree and a global notification tree.
int dev_pm_qos_add_notifier(device, notifier):
Adds a notification callback function for the device.
The callback is called when the aggregated value of the device constraints list
-is changed.
+is changed (for resume latency device PM QoS only).
int dev_pm_qos_remove_notifier(device, notifier):
Removes the notification callback function for the device.
@@ -171,14 +175,48 @@ Removes the notification callback function for the device.
int dev_pm_qos_add_global_notifier(notifier):
Adds a notification callback function in the global notification tree of the
framework.
-The callback is called when the aggregated value for any device is changed.
+The callback is called when the aggregated value for any device is changed
+(for resume latency device PM QoS only).
int dev_pm_qos_remove_global_notifier(notifier):
Removes the notification callback function from the global notification tree
of the framework.
-From user mode:
-No API for user space access to the per-device latency constraints is provided
-yet - still under discussion.
-
+Active state latency tolerance
+
+This device PM QoS type is used to support systems in which hardware may switch
+to energy-saving operation modes on the fly. In those systems, if the operation
+mode chosen by the hardware attempts to save energy in an overly aggressive way,
+it may cause excess latencies to be visible to software, causing it to miss
+certain protocol requirements or target frame or sample rates etc.
+
+If there is a latency tolerance control mechanism for a given device available
+to software, the .set_latency_tolerance callback in that device's dev_pm_info
+structure should be populated. The routine pointed to by it is should implement
+whatever is necessary to transfer the effective requirement value to the
+hardware.
+
+Whenever the effective latency tolerance changes for the device, its
+.set_latency_tolerance() callback will be executed and the effective value will
+be passed to it. If that value is negative, which means that the list of
+latency tolerance requirements for the device is empty, the callback is expected
+to switch the underlying hardware latency tolerance control mechanism to an
+autonomous mode if available. If that value is PM_QOS_LATENCY_ANY, in turn, and
+the hardware supports a special "no requirement" setting, the callback is
+expected to use it. That allows software to prevent the hardware from
+automatically updating the device's latency tolerance in response to its power
+state changes (e.g. during transitions from D3cold to D0), which generally may
+be done in the autonomous latency tolerance control mode.
+
+If .set_latency_tolerance() is present for the device, sysfs attribute
+pm_qos_latency_tolerance_us will be present in the devivce's power directory.
+Then, user space can use that attribute to specify its latency tolerance
+requirement for the device, if any. Writing "any" to it means "no requirement,
+but do not let the hardware control latency tolerance" and writing "auto" to it
+allows the hardware to be switched to the autonomous mode if there are no other
+requirements from the kernel side in the device's list.
+
+Kernel code can use the functions described above along with the
+DEV_PM_QOS_LATENCY_TOLERANCE device PM QoS type to add, remove and update
+latency tolerance requirements for devices.
diff --git a/Documentation/power/power_supply_class.txt b/Documentation/power/power_supply_class.txt
index 3f10b39b034..89a8816990f 100644
--- a/Documentation/power/power_supply_class.txt
+++ b/Documentation/power/power_supply_class.txt
@@ -135,11 +135,11 @@ CAPACITY_LEVEL - capacity level. This corresponds to
POWER_SUPPLY_CAPACITY_LEVEL_*.
TEMP - temperature of the power supply.
-TEMP_ALERT_MIN - minimum battery temperature alert value in milli centigrade.
-TEMP_ALERT_MAX - maximum battery temperature alert value in milli centigrade.
+TEMP_ALERT_MIN - minimum battery temperature alert.
+TEMP_ALERT_MAX - maximum battery temperature alert.
TEMP_AMBIENT - ambient temperature.
-TEMP_AMBIENT_ALERT_MIN - minimum ambient temperature alert value in milli centigrade.
-TEMP_AMBIENT_ALERT_MAX - maximum ambient temperature alert value in milli centigrade.
+TEMP_AMBIENT_ALERT_MIN - minimum ambient temperature alert.
+TEMP_AMBIENT_ALERT_MAX - maximum ambient temperature alert.
TIME_TO_EMPTY - seconds left for battery to be considered empty (i.e.
while battery powers a load)
diff --git a/Documentation/power/powercap/powercap.txt b/Documentation/power/powercap/powercap.txt
new file mode 100644
index 00000000000..1e6ef164e07
--- /dev/null
+++ b/Documentation/power/powercap/powercap.txt
@@ -0,0 +1,236 @@
+Power Capping Framework
+==================================
+
+The power capping framework provides a consistent interface between the kernel
+and the user space that allows power capping drivers to expose the settings to
+user space in a uniform way.
+
+Terminology
+=========================
+The framework exposes power capping devices to user space via sysfs in the
+form of a tree of objects. The objects at the root level of the tree represent
+'control types', which correspond to different methods of power capping. For
+example, the intel-rapl control type represents the Intel "Running Average
+Power Limit" (RAPL) technology, whereas the 'idle-injection' control type
+corresponds to the use of idle injection for controlling power.
+
+Power zones represent different parts of the system, which can be controlled and
+monitored using the power capping method determined by the control type the
+given zone belongs to. They each contain attributes for monitoring power, as
+well as controls represented in the form of power constraints. If the parts of
+the system represented by different power zones are hierarchical (that is, one
+bigger part consists of multiple smaller parts that each have their own power
+controls), those power zones may also be organized in a hierarchy with one
+parent power zone containing multiple subzones and so on to reflect the power
+control topology of the system. In that case, it is possible to apply power
+capping to a set of devices together using the parent power zone and if more
+fine grained control is required, it can be applied through the subzones.
+
+
+Example sysfs interface tree:
+
+/sys/devices/virtual/powercap
+??? intel-rapl
+ ??? intel-rapl:0
+ ?   ??? constraint_0_name
+ ?   ??? constraint_0_power_limit_uw
+ ?   ??? constraint_0_time_window_us
+ ?   ??? constraint_1_name
+ ?   ??? constraint_1_power_limit_uw
+ ?   ??? constraint_1_time_window_us
+ ?   ??? device -> ../../intel-rapl
+ ?   ??? energy_uj
+ ?   ??? intel-rapl:0:0
+ ?   ?   ??? constraint_0_name
+ ?   ?   ??? constraint_0_power_limit_uw
+ ?   ?   ??? constraint_0_time_window_us
+ ?   ?   ??? constraint_1_name
+ ?   ?   ??? constraint_1_power_limit_uw
+ ?   ?   ??? constraint_1_time_window_us
+ ?   ?   ??? device -> ../../intel-rapl:0
+ ?   ?   ??? energy_uj
+ ?   ?   ??? max_energy_range_uj
+ ?   ?   ??? name
+ ?   ?   ??? enabled
+ ?   ?   ??? power
+ ?   ?   ?   ??? async
+ ?   ?   ?   []
+ ?   ?   ??? subsystem -> ../../../../../../class/power_cap
+ ?   ?   ??? uevent
+ ?   ??? intel-rapl:0:1
+ ?   ?   ??? constraint_0_name
+ ?   ?   ??? constraint_0_power_limit_uw
+ ?   ?   ??? constraint_0_time_window_us
+ ?   ?   ??? constraint_1_name
+ ?   ?   ??? constraint_1_power_limit_uw
+ ?   ?   ??? constraint_1_time_window_us
+ ?   ?   ??? device -> ../../intel-rapl:0
+ ?   ?   ??? energy_uj
+ ?   ?   ??? max_energy_range_uj
+ ?   ?   ??? name
+ ?   ?   ??? enabled
+ ?   ?   ??? power
+ ?   ?   ?   ??? async
+ ?   ?   ?   []
+ ?   ?   ??? subsystem -> ../../../../../../class/power_cap
+ ?   ?   ??? uevent
+ ?   ??? max_energy_range_uj
+ ?   ??? max_power_range_uw
+ ?   ??? name
+ ?   ??? enabled
+ ?   ??? power
+ ?   ?   ??? async
+ ?   ?   []
+ ?   ??? subsystem -> ../../../../../class/power_cap
+ ?   ??? enabled
+ ?   ??? uevent
+ ??? intel-rapl:1
+ ?   ??? constraint_0_name
+ ?   ??? constraint_0_power_limit_uw
+ ?   ??? constraint_0_time_window_us
+ ?   ??? constraint_1_name
+ ?   ??? constraint_1_power_limit_uw
+ ?   ??? constraint_1_time_window_us
+ ?   ??? device -> ../../intel-rapl
+ ?   ??? energy_uj
+ ?   ??? intel-rapl:1:0
+ ?   ?   ??? constraint_0_name
+ ?   ?   ??? constraint_0_power_limit_uw
+ ?   ?   ??? constraint_0_time_window_us
+ ?   ?   ??? constraint_1_name
+ ?   ?   ??? constraint_1_power_limit_uw
+ ?   ?   ??? constraint_1_time_window_us
+ ?   ?   ??? device -> ../../intel-rapl:1
+ ?   ?   ??? energy_uj
+ ?   ?   ??? max_energy_range_uj
+ ?   ?   ??? name
+ ?   ?   ??? enabled
+ ?   ?   ??? power
+ ?   ?   ?   ??? async
+ ?   ?   ?   []
+ ?   ?   ??? subsystem -> ../../../../../../class/power_cap
+ ?   ?   ??? uevent
+ ?   ??? intel-rapl:1:1
+ ?   ?   ??? constraint_0_name
+ ?   ?   ??? constraint_0_power_limit_uw
+ ?   ?   ??? constraint_0_time_window_us
+ ?   ?   ??? constraint_1_name
+ ?   ?   ??? constraint_1_power_limit_uw
+ ?   ?   ??? constraint_1_time_window_us
+ ?   ?   ??? device -> ../../intel-rapl:1
+ ?   ?   ??? energy_uj
+ ?   ?   ??? max_energy_range_uj
+ ?   ?   ??? name
+ ?   ?   ??? enabled
+ ?   ?   ??? power
+ ?   ?   ?   ??? async
+ ?   ?   ?   []
+ ?   ?   ??? subsystem -> ../../../../../../class/power_cap
+ ?   ?   ??? uevent
+ ?   ??? max_energy_range_uj
+ ?   ??? max_power_range_uw
+ ?   ??? name
+ ?   ??? enabled
+ ?   ??? power
+ ?   ?   ??? async
+ ?   ?   []
+ ?   ??? subsystem -> ../../../../../class/power_cap
+ ?   ??? uevent
+ ??? power
+ ?   ??? async
+ ?   []
+ ??? subsystem -> ../../../../class/power_cap
+ ??? enabled
+ ??? uevent
+
+The above example illustrates a case in which the Intel RAPL technology,
+available in Intel® IA-64 and IA-32 Processor Architectures, is used. There is one
+control type called intel-rapl which contains two power zones, intel-rapl:0 and
+intel-rapl:1, representing CPU packages. Each of these power zones contains
+two subzones, intel-rapl:j:0 and intel-rapl:j:1 (j = 0, 1), representing the
+"core" and the "uncore" parts of the given CPU package, respectively. All of
+the zones and subzones contain energy monitoring attributes (energy_uj,
+max_energy_range_uj) and constraint attributes (constraint_*) allowing controls
+to be applied (the constraints in the 'package' power zones apply to the whole
+CPU packages and the subzone constraints only apply to the respective parts of
+the given package individually). Since Intel RAPL doesn't provide instantaneous
+power value, there is no power_uw attribute.
+
+In addition to that, each power zone contains a name attribute, allowing the
+part of the system represented by that zone to be identified.
+For example:
+
+cat /sys/class/power_cap/intel-rapl/intel-rapl:0/name
+package-0
+
+The Intel RAPL technology allows two constraints, short term and long term,
+with two different time windows to be applied to each power zone. Thus for
+each zone there are 2 attributes representing the constraint names, 2 power
+limits and 2 attributes representing the sizes of the time windows. Such that,
+constraint_j_* attributes correspond to the jth constraint (j = 0,1).
+
+For example:
+ constraint_0_name
+ constraint_0_power_limit_uw
+ constraint_0_time_window_us
+ constraint_1_name
+ constraint_1_power_limit_uw
+ constraint_1_time_window_us
+
+Power Zone Attributes
+=================================
+Monitoring attributes
+----------------------
+
+energy_uj (rw): Current energy counter in micro joules. Write "0" to reset.
+If the counter can not be reset, then this attribute is read only.
+
+max_energy_range_uj (ro): Range of the above energy counter in micro-joules.
+
+power_uw (ro): Current power in micro watts.
+
+max_power_range_uw (ro): Range of the above power value in micro-watts.
+
+name (ro): Name of this power zone.
+
+It is possible that some domains have both power ranges and energy counter ranges;
+however, only one is mandatory.
+
+Constraints
+----------------
+constraint_X_power_limit_uw (rw): Power limit in micro watts, which should be
+applicable for the time window specified by "constraint_X_time_window_us".
+
+constraint_X_time_window_us (rw): Time window in micro seconds.
+
+constraint_X_name (ro): An optional name of the constraint
+
+constraint_X_max_power_uw(ro): Maximum allowed power in micro watts.
+
+constraint_X_min_power_uw(ro): Minimum allowed power in micro watts.
+
+constraint_X_max_time_window_us(ro): Maximum allowed time window in micro seconds.
+
+constraint_X_min_time_window_us(ro): Minimum allowed time window in micro seconds.
+
+Except power_limit_uw and time_window_us other fields are optional.
+
+Common zone and control type attributes
+----------------------------------------
+enabled (rw): Enable/Disable controls at zone level or for all zones using
+a control type.
+
+Power Cap Client Driver Interface
+==================================
+The API summary:
+
+Call powercap_register_control_type() to register control type object.
+Call powercap_register_zone() to register a power zone (under a given
+control type), either as a top-level power zone or as a subzone of another
+power zone registered earlier.
+The number of constraints in a power zone and the corresponding callbacks have
+to be defined prior to calling powercap_register_zone() to register that zone.
+
+To Free a power zone call powercap_unregister_zone().
+To free a control type object call powercap_unregister_control_type().
+Detailed API can be generated using kernel-doc on include/linux/powercap.h.
diff --git a/Documentation/power/runtime_pm.txt b/Documentation/power/runtime_pm.txt
index 71d8fe4e75d..f32ce541957 100644
--- a/Documentation/power/runtime_pm.txt
+++ b/Documentation/power/runtime_pm.txt
@@ -2,6 +2,7 @@ Runtime Power Management Framework for I/O Devices
(C) 2009-2011 Rafael J. Wysocki <rjw@sisk.pl>, Novell Inc.
(C) 2010 Alan Stern <stern@rowland.harvard.edu>
+(C) 2014 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>
1. Introduction
@@ -145,11 +146,13 @@ The action performed by the idle callback is totally dependent on the subsystem
if the device can be suspended (i.e. if all of the conditions necessary for
suspending the device are satisfied) and to queue up a suspend request for the
device in that case. If there is no idle callback, or if the callback returns
-0, then the PM core will attempt to carry out a runtime suspend of the device;
-in essence, it will call pm_runtime_suspend() directly. To prevent this (for
-example, if the callback routine has started a delayed suspend), the routine
-should return a non-zero value. Negative error return codes are ignored by the
-PM core.
+0, then the PM core will attempt to carry out a runtime suspend of the device,
+also respecting devices configured for autosuspend. In essence this means a
+call to pm_runtime_autosuspend() (do note that drivers needs to update the
+device last busy mark, pm_runtime_mark_last_busy(), to control the delay under
+this circumstance). To prevent this (for example, if the callback routine has
+started a delayed suspend), the routine must return a non-zero value. Negative
+error return codes are ignored by the PM core.
The helper functions provided by the PM core, described in Section 4, guarantee
that the following constraints are met with respect to runtime PM callbacks for
@@ -230,7 +233,7 @@ defined in include/linux/pm.h:
equal to zero); the initial value of it is 1 (i.e. runtime PM is
initially disabled for all devices)
- unsigned int runtime_error;
+ int runtime_error;
- if set, there was a fatal error (one of the callbacks returned error code
as described in Section 2), so the helper funtions will not work until
this flag is cleared; this is the error code returned by the failing
@@ -308,7 +311,7 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h:
- execute the subsystem-level idle callback for the device; returns an
error code on failure, where -EINPROGRESS means that ->runtime_idle() is
already being executed; if there is no callback or the callback returns 0
- then run pm_runtime_suspend(dev) and return its result
+ then run pm_runtime_autosuspend(dev) and return its result
int pm_runtime_suspend(struct device *dev);
- execute the subsystem-level suspend callback for the device; returns 0 on
@@ -399,11 +402,11 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h:
int pm_runtime_disable(struct device *dev);
- increment the device's 'power.disable_depth' field (if the value of that
field was previously zero, this prevents subsystem-level runtime PM
- callbacks from being run for the device), make sure that all of the pending
- runtime PM operations on the device are either completed or canceled;
- returns 1 if there was a resume request pending and it was necessary to
- execute the subsystem-level resume callback for the device to satisfy that
- request, otherwise 0 is returned
+ callbacks from being run for the device), make sure that all of the
+ pending runtime PM operations on the device are either completed or
+ canceled; returns 1 if there was a resume request pending and it was
+ necessary to execute the subsystem-level resume callback for the device
+ to satisfy that request, otherwise 0 is returned
int pm_runtime_barrier(struct device *dev);
- check if there's a resume request pending for the device and resume it
@@ -442,6 +445,10 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h:
bool pm_runtime_status_suspended(struct device *dev);
- return true if the device's runtime PM status is 'suspended'
+ bool pm_runtime_suspended_if_enabled(struct device *dev);
+ - return true if the device's runtime PM status is 'suspended' and its
+ 'power.disable_depth' field is equal to 1
+
void pm_runtime_allow(struct device *dev);
- set the power.runtime_auto flag for the device and decrease its usage
counter (used by the /sys/devices/.../power/control interface to
@@ -545,13 +552,11 @@ helper functions described in Section 4. In that case, pm_runtime_resume()
should be used. Of course, for this purpose the device's runtime PM has to be
enabled earlier by calling pm_runtime_enable().
-If the device bus type's or driver's ->probe() callback runs
-pm_runtime_suspend() or pm_runtime_idle() or their asynchronous counterparts,
-they will fail returning -EAGAIN, because the device's usage counter is
-incremented by the driver core before executing ->probe(). Still, it may be
-desirable to suspend the device as soon as ->probe() has finished, so the driver
-core uses pm_runtime_put_sync() to invoke the subsystem-level idle callback for
-the device at that time.
+It may be desirable to suspend the device once ->probe() has finished.
+Therefore the driver core uses the asyncronous pm_request_idle() to submit a
+request to execute the subsystem-level idle callback for the device at that
+time. A driver that makes use of the runtime autosuspend feature, may want to
+update the last busy mark before returning from ->probe().
Moreover, the driver core prevents runtime PM callbacks from racing with the bus
notifier callback in __device_release_driver(), which is necessary, because the
@@ -644,19 +649,33 @@ place (in particular, if the system is not waking up from hibernation), it may
be more efficient to leave the devices that had been suspended before the system
suspend began in the suspended state.
+To this end, the PM core provides a mechanism allowing some coordination between
+different levels of device hierarchy. Namely, if a system suspend .prepare()
+callback returns a positive number for a device, that indicates to the PM core
+that the device appears to be runtime-suspended and its state is fine, so it
+may be left in runtime suspend provided that all of its descendants are also
+left in runtime suspend. If that happens, the PM core will not execute any
+system suspend and resume callbacks for all of those devices, except for the
+complete callback, which is then entirely responsible for handling the device
+as appropriate. This only applies to system suspend transitions that are not
+related to hibernation (see Documentation/power/devices.txt for more
+information).
+
The PM core does its best to reduce the probability of race conditions between
the runtime PM and system suspend/resume (and hibernation) callbacks by carrying
out the following operations:
- * During system suspend it calls pm_runtime_get_noresume() and
- pm_runtime_barrier() for every device right before executing the
- subsystem-level .suspend() callback for it. In addition to that it calls
- __pm_runtime_disable() with 'false' as the second argument for every device
- right before executing the subsystem-level .suspend_late() callback for it.
-
- * During system resume it calls pm_runtime_enable() and pm_runtime_put_sync()
- for every device right after executing the subsystem-level .resume_early()
- callback and right after executing the subsystem-level .resume() callback
+ * During system suspend pm_runtime_get_noresume() is called for every device
+ right before executing the subsystem-level .prepare() callback for it and
+ pm_runtime_barrier() is called for every device right before executing the
+ subsystem-level .suspend() callback for it. In addition to that the PM core
+ calls __pm_runtime_disable() with 'false' as the second argument for every
+ device right before executing the subsystem-level .suspend_late() callback
+ for it.
+
+ * During system resume pm_runtime_enable() and pm_runtime_put() are called for
+ every device right after executing the subsystem-level .resume_early()
+ callback and right after executing the subsystem-level .complete() callback
for it, respectively.
7. Generic subsystem callbacks
@@ -667,11 +686,11 @@ driver/base/power/generic_ops.c:
int pm_generic_runtime_suspend(struct device *dev);
- invoke the ->runtime_suspend() callback provided by the driver of this
- device and return its result, or return -EINVAL if not defined
+ device and return its result, or return 0 if not defined
int pm_generic_runtime_resume(struct device *dev);
- invoke the ->runtime_resume() callback provided by the driver of this
- device and return its result, or return -EINVAL if not defined
+ device and return its result, or return 0 if not defined
int pm_generic_suspend(struct device *dev);
- if the device has not been suspended at run time, invoke the ->suspend()
@@ -727,15 +746,12 @@ driver/base/power/generic_ops.c:
int pm_generic_restore_noirq(struct device *dev);
- invoke the ->restore_noirq() callback provided by the device's driver
-These functions can be assigned to the ->runtime_idle(), ->runtime_suspend(),
+These functions are the defaults used by the PM core, if a subsystem doesn't
+provide its own callbacks for ->runtime_idle(), ->runtime_suspend(),
->runtime_resume(), ->suspend(), ->suspend_noirq(), ->resume(),
->resume_noirq(), ->freeze(), ->freeze_noirq(), ->thaw(), ->thaw_noirq(),
-->poweroff(), ->poweroff_noirq(), ->restore(), ->restore_noirq() callback
-pointers in the subsystem-level dev_pm_ops structures.
-
-If a subsystem wishes to use all of them at the same time, it can simply assign
-the GENERIC_SUBSYS_PM_OPS macro, defined in include/linux/pm.h, to its
-dev_pm_ops structure pointer.
+->poweroff(), ->poweroff_noirq(), ->restore(), ->restore_noirq() in the
+subsystem-level dev_pm_ops structure.
Device drivers that wish to use the same function as a system suspend, freeze,
poweroff and runtime suspend callback, and similarly for system resume, thaw,
@@ -873,7 +889,7 @@ Here is a schematic pseudo-code example:
foo->is_suspended = 0;
pm_runtime_mark_last_busy(&foo->dev);
if (foo->num_pending_requests > 0)
- foo_process_requests(foo);
+ foo_process_next_request(foo);
unlock(&foo->private_lock);
return 0;
}
diff --git a/Documentation/power/states.txt b/Documentation/power/states.txt
index 442d43df9b2..50f3ef9177c 100644
--- a/Documentation/power/states.txt
+++ b/Documentation/power/states.txt
@@ -1,62 +1,87 @@
+System Power Management Sleep States
-System Power Management States
+(C) 2014 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>
+The kernel supports up to four system sleep states generically, although three
+of them depend on the platform support code to implement the low-level details
+for each state.
-The kernel supports four power management states generically, though
-one is generic and the other three are dependent on platform support
-code to implement the low-level details for each state.
-This file describes each state, what they are
-commonly called, what ACPI state they map to, and what string to write
-to /sys/power/state to enter that state
+The states are represented by strings that can be read or written to the
+/sys/power/state file. Those strings may be "mem", "standby", "freeze" and
+"disk", where the last one always represents hibernation (Suspend-To-Disk) and
+the meaning of the remaining ones depends on the relative_sleep_states command
+line argument.
-state: Freeze / Low-Power Idle
+For relative_sleep_states=1, the strings "mem", "standby" and "freeze" label the
+available non-hibernation sleep states from the deepest to the shallowest,
+respectively. In that case, "mem" is always present in /sys/power/state,
+because there is at least one non-hibernation sleep state in every system. If
+the given system supports two non-hibernation sleep states, "standby" is present
+in /sys/power/state in addition to "mem". If the system supports three
+non-hibernation sleep states, "freeze" will be present in /sys/power/state in
+addition to "mem" and "standby".
+
+For relative_sleep_states=0, which is the default, the following descriptions
+apply.
+
+state: Suspend-To-Idle
ACPI state: S0
-String: "freeze"
+Label: "freeze"
-This state is a generic, pure software, light-weight, low-power state.
-It allows more energy to be saved relative to idle by freezing user
+This state is a generic, pure software, light-weight, system sleep state.
+It allows more energy to be saved relative to runtime idle by freezing user
space and putting all I/O devices into low-power states (possibly
lower-power than available at run time), such that the processors can
spend more time in their idle states.
-This state can be used for platforms without Standby/Suspend-to-RAM
+
+This state can be used for platforms without Power-On Suspend/Suspend-to-RAM
support, or it can be used in addition to Suspend-to-RAM (memory sleep)
-to provide reduced resume latency.
+to provide reduced resume latency. It is always supported.
State: Standby / Power-On Suspend
ACPI State: S1
-String: "standby"
+Label: "standby"
-This state offers minimal, though real, power savings, while providing
-a very low-latency transition back to a working system. No operating
-state is lost (the CPU retains power), so the system easily starts up
+This state, if supported, offers moderate, though real, power savings, while
+providing a relatively low-latency transition back to a working system. No
+operating state is lost (the CPU retains power), so the system easily starts up
again where it left off.
-We try to put devices in a low-power state equivalent to D1, which
-also offers low power savings, but low resume latency. Not all devices
-support D1, and those that don't are left on.
+In addition to freezing user space and putting all I/O devices into low-power
+states, which is done for Suspend-To-Idle too, nonboot CPUs are taken offline
+and all low-level system functions are suspended during transitions into this
+state. For this reason, it should allow more energy to be saved relative to
+Suspend-To-Idle, but the resume latency will generally be greater than for that
+state.
State: Suspend-to-RAM
ACPI State: S3
-String: "mem"
+Label: "mem"
-This state offers significant power savings as everything in the
-system is put into a low-power state, except for memory, which is
-placed in self-refresh mode to retain its contents.
+This state, if supported, offers significant power savings as everything in the
+system is put into a low-power state, except for memory, which should be placed
+into the self-refresh mode to retain its contents. All of the steps carried out
+when entering Power-On Suspend are also carried out during transitions to STR.
+Additional operations may take place depending on the platform capabilities. In
+particular, on ACPI systems the kernel passes control to the BIOS (platform
+firmware) as the last step during STR transitions and that usually results in
+powering down some more low-level components that aren't directly controlled by
+the kernel.
-System and device state is saved and kept in memory. All devices are
-suspended and put into D3. In many cases, all peripheral buses lose
-power when entering STR, so devices must be able to handle the
-transition back to the On state.
+System and device state is saved and kept in memory. All devices are suspended
+and put into low-power states. In many cases, all peripheral buses lose power
+when entering STR, so devices must be able to handle the transition back to the
+"on" state.
-For at least ACPI, STR requires some minimal boot-strapping code to
-resume the system from STR. This may be true on other platforms.
+For at least ACPI, STR requires some minimal boot-strapping code to resume the
+system from it. This may be the case on other platforms too.
State: Suspend-to-disk
ACPI State: S4
-String: "disk"
+Label: "disk"
This state offers the greatest power savings, and can be used even in
the absence of low-level platform support for power management. This
diff --git a/Documentation/power/suspend-and-cpuhotplug.txt b/Documentation/power/suspend-and-cpuhotplug.txt
index e13dafc8e8f..2850df3bf95 100644
--- a/Documentation/power/suspend-and-cpuhotplug.txt
+++ b/Documentation/power/suspend-and-cpuhotplug.txt
@@ -1,6 +1,6 @@
Interaction of Suspend code (S3) with the CPU hotplug infrastructure
- (C) 2011 Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
+ (C) 2011 - 2014 Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
I. How does the regular CPU hotplug code differ from how the Suspend-to-RAM
diff --git a/Documentation/power/swsusp.txt b/Documentation/power/swsusp.txt
index 079160e22bc..f732a8321e8 100644
--- a/Documentation/power/swsusp.txt
+++ b/Documentation/power/swsusp.txt
@@ -220,7 +220,10 @@ Q: After resuming, system is paging heavily, leading to very bad interactivity.
A: Try running
-cat `cat /proc/[0-9]*/maps | grep / | sed 's:.* /:/:' | sort -u` > /dev/null
+cat /proc/[0-9]*/maps | grep / | sed 's:.* /:/:' | sort -u | while read file
+do
+ test -f "$file" && cat "$file" > /dev/null
+done
after resume. swapoff -a; swapon -a may also be useful.
diff --git a/Documentation/powerpc/cpu_families.txt b/Documentation/powerpc/cpu_families.txt
new file mode 100644
index 00000000000..fc08e22feb1
--- /dev/null
+++ b/Documentation/powerpc/cpu_families.txt
@@ -0,0 +1,221 @@
+CPU Families
+============
+
+This document tries to summarise some of the different cpu families that exist
+and are supported by arch/powerpc.
+
+
+Book3S (aka sPAPR)
+------------------
+
+ - Hash MMU
+ - Mix of 32 & 64 bit
+
+ +--------------+ +----------------+
+ | Old POWER | --------------> | RS64 (threads) |
+ +--------------+ +----------------+
+ |
+ |
+ v
+ +--------------+ +----------------+ +------+
+ | 601 | --------------> | 603 | ---> | e300 |
+ +--------------+ +----------------+ +------+
+ | |
+ | |
+ v v
+ +--------------+ +----------------+ +-------+
+ | 604 | | 750 (G3) | ---> | 750CX |
+ +--------------+ +----------------+ +-------+
+ | | |
+ | | |
+ v v v
+ +--------------+ +----------------+ +-------+
+ | 620 (64 bit) | | 7400 | | 750CL |
+ +--------------+ +----------------+ +-------+
+ | | |
+ | | |
+ v v v
+ +--------------+ +----------------+ +-------+
+ | POWER3/630 | | 7410 | | 750FX |
+ +--------------+ +----------------+ +-------+
+ | |
+ | |
+ v v
+ +--------------+ +----------------+
+ | POWER3+ | | 7450 |
+ +--------------+ +----------------+
+ | |
+ | |
+ v v
+ +--------------+ +----------------+
+ | POWER4 | | 7455 |
+ +--------------+ +----------------+
+ | |
+ | |
+ v v
+ +--------------+ +-------+ +----------------+
+ | POWER4+ | --> | 970 | | 7447 |
+ +--------------+ +-------+ +----------------+
+ | | |
+ | | |
+ v v v
+ +--------------+ +-------+ +----------------+
+ | POWER5 | | 970FX | | 7448 |
+ +--------------+ +-------+ +----------------+
+ | | |
+ | | |
+ v v v
+ +--------------+ +-------+ +----------------+
+ | POWER5+ | | 970MP | | e600 |
+ +--------------+ +-------+ +----------------+
+ |
+ |
+ v
+ +--------------+
+ | POWER5++ |
+ +--------------+
+ |
+ |
+ v
+ +--------------+ +-------+
+ | POWER6 | <-?-> | Cell |
+ +--------------+ +-------+
+ |
+ |
+ v
+ +--------------+
+ | POWER7 |
+ +--------------+
+ |
+ |
+ v
+ +--------------+
+ | POWER7+ |
+ +--------------+
+ |
+ |
+ v
+ +--------------+
+ | POWER8 |
+ +--------------+
+
+
+ +---------------+
+ | PA6T (64 bit) |
+ +---------------+
+
+
+IBM BookE
+---------
+
+ - Software loaded TLB.
+ - All 32 bit
+
+ +--------------+
+ | 401 |
+ +--------------+
+ |
+ |
+ v
+ +--------------+
+ | 403 |
+ +--------------+
+ |
+ |
+ v
+ +--------------+
+ | 405 |
+ +--------------+
+ |
+ |
+ v
+ +--------------+
+ | 440 |
+ +--------------+
+ |
+ |
+ v
+ +--------------+ +----------------+
+ | 450 | --> | BG/P |
+ +--------------+ +----------------+
+ |
+ |
+ v
+ +--------------+
+ | 460 |
+ +--------------+
+ |
+ |
+ v
+ +--------------+
+ | 476 |
+ +--------------+
+
+
+Motorola/Freescale 8xx
+----------------------
+
+ - Software loaded with hardware assist.
+ - All 32 bit
+
+ +-------------+
+ | MPC8xx Core |
+ +-------------+
+
+
+Freescale BookE
+---------------
+
+ - Software loaded TLB.
+ - e6500 adds HW loaded indirect TLB entries.
+ - Mix of 32 & 64 bit
+
+ +--------------+
+ | e200 |
+ +--------------+
+
+
+ +--------------------------------+
+ | e500 |
+ +--------------------------------+
+ |
+ |
+ v
+ +--------------------------------+
+ | e500v2 |
+ +--------------------------------+
+ |
+ |
+ v
+ +--------------------------------+
+ | e500mc (Book3e) |
+ +--------------------------------+
+ |
+ |
+ v
+ +--------------------------------+
+ | e5500 (64 bit) |
+ +--------------------------------+
+ |
+ |
+ v
+ +--------------------------------+
+ | e6500 (HW TLB) (Multithreaded) |
+ +--------------------------------+
+
+
+IBM A2 core
+-----------
+
+ - Book3E, software loaded TLB + HW loaded indirect TLB entries.
+ - 64 bit
+
+ +--------------+ +----------------+
+ | A2 core | --> | WSP |
+ +--------------+ +----------------+
+ |
+ |
+ v
+ +--------------+
+ | BG/Q |
+ +--------------+
diff --git a/Documentation/powerpc/transactional_memory.txt b/Documentation/powerpc/transactional_memory.txt
index dc23e58ae26..9791e98ab49 100644
--- a/Documentation/powerpc/transactional_memory.txt
+++ b/Documentation/powerpc/transactional_memory.txt
@@ -160,7 +160,7 @@ To avoid this, when taking a signal in an active transaction, we need to use
the stack pointer from the checkpointed state, rather than the speculated
state. This ensures that the signal context (written tm suspended) will be
written below the stack required for the rollback. The transaction is aborted
-becuase of the treclaim, so any memory written between the tbegin and the
+because of the treclaim, so any memory written between the tbegin and the
signal will be rolled back anyway.
For signals taken in non-TM or suspended mode, we use the
diff --git a/Documentation/pps/pps.txt b/Documentation/pps/pps.txt
index d35dcdd82ff..c03b1be5eb1 100644
--- a/Documentation/pps/pps.txt
+++ b/Documentation/pps/pps.txt
@@ -66,6 +66,21 @@ In LinuxPPS the PPS sources are simply char devices usually mapped
into files /dev/pps0, /dev/pps1, etc..
+PPS with USB to serial devices
+------------------------------
+
+It is possible to grab the PPS from an USB to serial device. However,
+you should take into account the latencies and jitter introduced by
+the USB stack. Users has reported clock instability around +-1ms when
+synchronized with PPS through USB. This isn't suited for time server
+synchronization.
+
+If your device doesn't report PPS, you can check that the feature is
+supported by its driver. Most of the time, you only need to add a call
+to usb_serial_handle_dcd_change after checking the DCD status (see
+ch341 and pl2303 examples).
+
+
Coding example
--------------
diff --git a/Documentation/printk-formats.txt b/Documentation/printk-formats.txt
index 445ad743ec8..b4498218c47 100644
--- a/Documentation/printk-formats.txt
+++ b/Documentation/printk-formats.txt
@@ -55,14 +55,21 @@ Struct Resources:
For printing struct resources. The 'R' and 'r' specifiers result in a
printed resource with ('R') or without ('r') a decoded flags member.
-Physical addresses:
+Physical addresses types phys_addr_t:
- %pa 0x01234567 or 0x0123456789abcdef
+ %pa[p] 0x01234567 or 0x0123456789abcdef
For printing a phys_addr_t type (and its derivatives, such as
resource_size_t) which can vary based on build options, regardless of
the width of the CPU data path. Passed by reference.
+DMA addresses types dma_addr_t:
+
+ %pad 0x01234567 or 0x0123456789abcdef
+
+ For printing a dma_addr_t type which can vary based on build options,
+ regardless of the width of the CPU data path. Passed by reference.
+
Raw buffer as a hex string:
%*ph 00 01 02 ... 3f
%*phC 00:01:02: ... :3f
@@ -192,11 +199,11 @@ struct va_format:
Do not use this feature without some mechanism to verify the
correctness of the format string and va_list arguments.
-u64 SHOULD be printed with %llu/%llx, (unsigned long long):
+u64 SHOULD be printed with %llu/%llx:
printk("%llu", u64_var);
-s64 SHOULD be printed with %lld/%llx, (long long):
+s64 SHOULD be printed with %lld/%llx:
printk("%lld", s64_var);
diff --git a/Documentation/ptp/testptp.c b/Documentation/ptp/testptp.c
index f59ded06610..ba1d50200c4 100644
--- a/Documentation/ptp/testptp.c
+++ b/Documentation/ptp/testptp.c
@@ -17,8 +17,10 @@
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
+#define _GNU_SOURCE
#include <errno.h>
#include <fcntl.h>
+#include <inttypes.h>
#include <math.h>
#include <signal.h>
#include <stdio.h>
@@ -45,12 +47,14 @@
#define CLOCK_INVALID -1
#endif
-/* When glibc offers the syscall, this will go away. */
+/* clock_adjtime is not available in GLIBC < 2.14 */
+#if !__GLIBC_PREREQ(2, 14)
#include <sys/syscall.h>
static int clock_adjtime(clockid_t id, struct timex *tx)
{
return syscall(__NR_clock_adjtime, id, tx);
}
+#endif
static clockid_t get_clockid(int fd)
{
@@ -100,6 +104,11 @@ static long ppb_to_scaled_ppm(int ppb)
return (long) (ppb * 65.536);
}
+static int64_t pctns(struct ptp_clock_time *t)
+{
+ return t->sec * 1000000000LL + t->nsec;
+}
+
static void usage(char *progname)
{
fprintf(stderr,
@@ -112,11 +121,22 @@ static void usage(char *progname)
" -f val adjust the ptp clock frequency by 'val' ppb\n"
" -g get the ptp clock time\n"
" -h prints this message\n"
+ " -i val index for event/trigger\n"
+ " -k val measure the time offset between system and phc clock\n"
+ " for 'val' times (Maximum 25)\n"
+ " -l list the current pin configuration\n"
+ " -L pin,val configure pin index 'pin' with function 'val'\n"
+ " the channel index is taken from the '-i' option\n"
+ " 'val' specifies the auxiliary function:\n"
+ " 0 - none\n"
+ " 1 - external time stamp\n"
+ " 2 - periodic output\n"
" -p val enable output with a period of 'val' nanoseconds\n"
" -P val enable or disable (val=1|0) the system clock PPS\n"
" -s set the ptp clock time from the system time\n"
" -S set the system time from the ptp clock time\n"
- " -t val shift the ptp clock time by 'val' seconds\n",
+ " -t val shift the ptp clock time by 'val' seconds\n"
+ " -T val set the ptp clock time to 'val' seconds\n",
progname);
}
@@ -126,6 +146,7 @@ int main(int argc, char *argv[])
struct ptp_extts_event event;
struct ptp_extts_request extts_request;
struct ptp_perout_request perout_request;
+ struct ptp_pin_desc desc;
struct timespec ts;
struct timex tx;
@@ -133,8 +154,12 @@ int main(int argc, char *argv[])
struct itimerspec timeout;
struct sigevent sigevent;
+ struct ptp_clock_time *pct;
+ struct ptp_sys_offset *sysoff;
+
+
char *progname;
- int c, cnt, fd;
+ int i, c, cnt, fd;
char *device = DEVICE;
clockid_t clkid;
@@ -143,15 +168,24 @@ int main(int argc, char *argv[])
int capabilities = 0;
int extts = 0;
int gettime = 0;
+ int index = 0;
+ int list_pins = 0;
int oneshot = 0;
+ int pct_offset = 0;
+ int n_samples = 0;
int periodic = 0;
int perout = -1;
+ int pin_index = -1, pin_func;
int pps = -1;
+ int seconds = 0;
int settime = 0;
+ int64_t t1, t2, tp;
+ int64_t interval, offset;
+
progname = strrchr(argv[0], '/');
progname = progname ? 1+progname : argv[0];
- while (EOF != (c = getopt(argc, argv, "a:A:cd:e:f:ghp:P:sSt:v"))) {
+ while (EOF != (c = getopt(argc, argv, "a:A:cd:e:f:ghi:k:lL:p:P:sSt:T:v"))) {
switch (c) {
case 'a':
oneshot = atoi(optarg);
@@ -174,6 +208,23 @@ int main(int argc, char *argv[])
case 'g':
gettime = 1;
break;
+ case 'i':
+ index = atoi(optarg);
+ break;
+ case 'k':
+ pct_offset = 1;
+ n_samples = atoi(optarg);
+ break;
+ case 'l':
+ list_pins = 1;
+ break;
+ case 'L':
+ cnt = sscanf(optarg, "%d,%d", &pin_index, &pin_func);
+ if (cnt != 2) {
+ usage(progname);
+ return -1;
+ }
+ break;
case 'p':
perout = atoi(optarg);
break;
@@ -189,6 +240,10 @@ int main(int argc, char *argv[])
case 't':
adjtime = atoi(optarg);
break;
+ case 'T':
+ settime = 3;
+ seconds = atoi(optarg);
+ break;
case 'h':
usage(progname);
return 0;
@@ -220,12 +275,14 @@ int main(int argc, char *argv[])
" %d programmable alarms\n"
" %d external time stamp channels\n"
" %d programmable periodic signals\n"
- " %d pulse per second\n",
+ " %d pulse per second\n"
+ " %d programmable pins\n",
caps.max_adj,
caps.n_alarm,
caps.n_ext_ts,
caps.n_per_out,
- caps.pps);
+ caps.pps,
+ caps.n_pins);
}
}
@@ -279,9 +336,19 @@ int main(int argc, char *argv[])
}
}
+ if (settime == 3) {
+ ts.tv_sec = seconds;
+ ts.tv_nsec = 0;
+ if (clock_settime(clkid, &ts)) {
+ perror("clock_settime");
+ } else {
+ puts("set time okay");
+ }
+ }
+
if (extts) {
memset(&extts_request, 0, sizeof(extts_request));
- extts_request.index = 0;
+ extts_request.index = index;
extts_request.flags = PTP_ENABLE_FEATURE;
if (ioctl(fd, PTP_EXTTS_REQUEST, &extts_request)) {
perror("PTP_EXTTS_REQUEST");
@@ -306,6 +373,24 @@ int main(int argc, char *argv[])
}
}
+ if (list_pins) {
+ int n_pins = 0;
+ if (ioctl(fd, PTP_CLOCK_GETCAPS, &caps)) {
+ perror("PTP_CLOCK_GETCAPS");
+ } else {
+ n_pins = caps.n_pins;
+ }
+ for (i = 0; i < n_pins; i++) {
+ desc.index = i;
+ if (ioctl(fd, PTP_PIN_GETFUNC, &desc)) {
+ perror("PTP_PIN_GETFUNC");
+ break;
+ }
+ printf("name %s index %u func %u chan %u\n",
+ desc.name, desc.index, desc.func, desc.chan);
+ }
+ }
+
if (oneshot) {
install_handler(SIGALRM, handle_alarm);
/* Create a timer. */
@@ -355,7 +440,7 @@ int main(int argc, char *argv[])
return -1;
}
memset(&perout_request, 0, sizeof(perout_request));
- perout_request.index = 0;
+ perout_request.index = index;
perout_request.start.sec = ts.tv_sec + 2;
perout_request.start.nsec = 0;
perout_request.period.sec = 0;
@@ -367,6 +452,18 @@ int main(int argc, char *argv[])
}
}
+ if (pin_index >= 0) {
+ memset(&desc, 0, sizeof(desc));
+ desc.index = pin_index;
+ desc.func = pin_func;
+ desc.chan = index;
+ if (ioctl(fd, PTP_PIN_SETFUNC, &desc)) {
+ perror("PTP_PIN_SETFUNC");
+ } else {
+ puts("set pin function okay");
+ }
+ }
+
if (pps != -1) {
int enable = pps ? 1 : 0;
if (ioctl(fd, PTP_ENABLE_PPS, enable)) {
@@ -376,6 +473,47 @@ int main(int argc, char *argv[])
}
}
+ if (pct_offset) {
+ if (n_samples <= 0 || n_samples > 25) {
+ puts("n_samples should be between 1 and 25");
+ usage(progname);
+ return -1;
+ }
+
+ sysoff = calloc(1, sizeof(*sysoff));
+ if (!sysoff) {
+ perror("calloc");
+ return -1;
+ }
+ sysoff->n_samples = n_samples;
+
+ if (ioctl(fd, PTP_SYS_OFFSET, sysoff))
+ perror("PTP_SYS_OFFSET");
+ else
+ puts("system and phc clock time offset request okay");
+
+ pct = &sysoff->ts[0];
+ for (i = 0; i < sysoff->n_samples; i++) {
+ t1 = pctns(pct+2*i);
+ tp = pctns(pct+2*i+1);
+ t2 = pctns(pct+2*i+2);
+ interval = t2 - t1;
+ offset = (t2 + t1) / 2 - tp;
+
+ printf("system time: %" PRId64 ".%u\n",
+ (pct+2*i)->sec, (pct+2*i)->nsec);
+ printf("phc time: %" PRId64 ".%u\n",
+ (pct+2*i+1)->sec, (pct+2*i+1)->nsec);
+ printf("system time: %" PRId64 ".%u\n",
+ (pct+2*i+2)->sec, (pct+2*i+2)->nsec);
+ printf("system/phc clock time offset is %" PRId64 " ns\n"
+ "system clock time delay is %" PRId64 " ns\n",
+ offset, interval);
+ }
+
+ free(sysoff);
+ }
+
close(fd);
return 0;
}
diff --git a/Documentation/pwm.txt b/Documentation/pwm.txt
index 1039b68fe9c..ca895fd211e 100644
--- a/Documentation/pwm.txt
+++ b/Documentation/pwm.txt
@@ -19,7 +19,8 @@ should instead register a static mapping that can be used to match PWM
consumers to providers, as given in the following example:
static struct pwm_lookup board_pwm_lookup[] = {
- PWM_LOOKUP("tegra-pwm", 0, "pwm-backlight", NULL),
+ PWM_LOOKUP("tegra-pwm", 0, "pwm-backlight", NULL,
+ 50000, PWM_POLARITY_NORMAL),
};
static void __init board_init(void)
@@ -39,7 +40,7 @@ New users should use the pwm_get() function and pass to it the consumer
device or a consumer name. pwm_put() is used to free the PWM device. Managed
variants of these functions, devm_pwm_get() and devm_pwm_put(), also exist.
-After being requested a PWM has to be configured using:
+After being requested, a PWM has to be configured using:
int pwm_config(struct pwm_device *pwm, int duty_ns, int period_ns);
@@ -94,9 +95,16 @@ for new drivers to use the generic PWM framework.
A new PWM controller/chip can be added using pwmchip_add() and removed
again with pwmchip_remove(). pwmchip_add() takes a filled in struct
pwm_chip as argument which provides a description of the PWM chip, the
-number of PWM devices provider by the chip and the chip-specific
+number of PWM devices provided by the chip and the chip-specific
implementation of the supported PWM operations to the framework.
+When implementing polarity support in a PWM driver, make sure to respect the
+signal conventions in the PWM framework. By definition, normal polarity
+characterizes a signal starts high for the duration of the duty cycle and
+goes low for the remainder of the period. Conversely, a signal with inversed
+polarity starts low for the duration of the duty cycle and goes high for the
+remainder of the period.
+
Locking
-------
diff --git a/Documentation/rapidio/sysfs.txt b/Documentation/rapidio/sysfs.txt
index 271438c0617..47ce9a5336e 100644
--- a/Documentation/rapidio/sysfs.txt
+++ b/Documentation/rapidio/sysfs.txt
@@ -2,8 +2,8 @@
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-1. Device Subdirectories
-------------------------
+1. RapidIO Device Subdirectories
+--------------------------------
For each RapidIO device, the RapidIO subsystem creates files in an individual
subdirectory with the following name, /sys/bus/rapidio/devices/<device_name>.
@@ -25,8 +25,8 @@ seen by the enumerating host (destID = 1):
NOTE: An enumerating or discovering endpoint does not create a sysfs entry for
itself, this is why an endpoint with destID=1 is not shown in the list.
-2. Attributes Common for All Devices
-------------------------------------
+2. Attributes Common for All RapidIO Devices
+--------------------------------------------
Each device subdirectory contains the following informational read-only files:
@@ -52,16 +52,16 @@ This attribute is similar in behavior to the "config" attribute of PCI devices
and provides an access to the RapidIO device registers using standard file read
and write operations.
-3. Endpoint Device Attributes
------------------------------
+3. RapidIO Endpoint Device Attributes
+-------------------------------------
Currently Linux RapidIO subsystem does not create any endpoint specific sysfs
attributes. It is possible that RapidIO master port drivers and endpoint device
drivers will add their device-specific sysfs attributes but such attributes are
outside the scope of this document.
-4. Switch Device Attributes
----------------------------
+4. RapidIO Switch Device Attributes
+-----------------------------------
RapidIO switches have additional attributes in sysfs. RapidIO subsystem supports
common and device-specific sysfs attributes for switches. Because switches are
@@ -106,3 +106,53 @@ attribute:
for that controller always will be 0.
To initiate RapidIO enumeration/discovery on all available mports
a user must write '-1' (or RIO_MPORT_ANY) into this attribute file.
+
+
+6. RapidIO Bus Controllers/Ports
+--------------------------------
+
+On-chip RapidIO controllers and PCIe-to-RapidIO bridges (referenced as
+"Master Port" or "mport") are presented in sysfs as the special class of
+devices: "rapidio_port".
+
+The /sys/class/rapidio_port subdirectory contains individual subdirectories
+named as "rapidioN" where N = mport ID registered with RapidIO subsystem.
+
+NOTE: An mport ID is not a RapidIO destination ID assigned to a given local
+mport device.
+
+Each mport device subdirectory in addition to standard entries contains the
+following device-specific attributes:
+
+ port_destid - reports RapidIO destination ID assigned to the given RapidIO
+ mport device. If value 0xFFFFFFFF is returned this means that
+ no valid destination ID have been assigned to the mport (yet).
+ Normally, before enumeration/discovery have been executed only
+ fabric enumerating mports have a valid destination ID assigned
+ to them using "hdid=..." rapidio module parameter.
+ sys_size - reports RapidIO common transport system size:
+ 0 = small (8-bit destination ID, max. 256 devices),
+ 1 = large (16-bit destination ID, max. 65536 devices).
+
+After enumeration or discovery was performed for a given mport device,
+the corresponding subdirectory will also contain subdirectories for each
+child RapidIO device connected to the mport. Naming conventions for RapidIO
+devices are described in Section 1 above.
+
+The example below shows mport device subdirectory with several child RapidIO
+devices attached to it.
+
+[rio@rapidio ~]$ ls /sys/class/rapidio_port/rapidio0/ -l
+total 0
+drwxr-xr-x 3 root root 0 Feb 11 15:10 00:e:0001
+drwxr-xr-x 3 root root 0 Feb 11 15:10 00:e:0004
+drwxr-xr-x 3 root root 0 Feb 11 15:10 00:e:0007
+drwxr-xr-x 3 root root 0 Feb 11 15:10 00:s:0002
+drwxr-xr-x 3 root root 0 Feb 11 15:10 00:s:0003
+drwxr-xr-x 3 root root 0 Feb 11 15:10 00:s:0005
+lrwxrwxrwx 1 root root 0 Feb 11 15:11 device -> ../../../0000:01:00.0
+-r--r--r-- 1 root root 4096 Feb 11 15:11 port_destid
+drwxr-xr-x 2 root root 0 Feb 11 15:11 power
+lrwxrwxrwx 1 root root 0 Feb 11 15:04 subsystem -> ../../../../../../class/rapidio_port
+-r--r--r-- 1 root root 4096 Feb 11 15:11 sys_size
+-rw-r--r-- 1 root root 4096 Feb 11 15:04 uevent
diff --git a/Documentation/rbtree.txt b/Documentation/rbtree.txt
index 61b6c48871a..39873ef41bf 100644
--- a/Documentation/rbtree.txt
+++ b/Documentation/rbtree.txt
@@ -255,7 +255,7 @@ However, rbtree can be augmented to store such interval ranges in a structured
way making it possible to do efficient lookup and exact match.
This "extra information" stored in each node is the maximum hi
-(max_hi) value among all the nodes that are its descendents. This
+(max_hi) value among all the nodes that are its descendants. This
information can be maintained at each node just be looking at the node
and its immediate children. And this will be used in O(log n) lookup
for lowest match (lowest start address among all possible matches)
diff --git a/Documentation/rfkill.txt b/Documentation/rfkill.txt
index 03c9d9299c6..427e89712f4 100644
--- a/Documentation/rfkill.txt
+++ b/Documentation/rfkill.txt
@@ -21,7 +21,7 @@ aircraft.
The rfkill subsystem has a concept of "hard" and "soft" block, which
differ little in their meaning (block == transmitters off) but rather in
whether they can be changed or not:
- - hard block: read-only radio block that cannot be overriden by software
+ - hard block: read-only radio block that cannot be overridden by software
- soft block: writable radio block (need not be readable) that is set by
the system software.
@@ -71,7 +71,7 @@ To create an rfkill driver, driver's Kconfig needs to have
depends on RFKILL || !RFKILL
to ensure the driver cannot be built-in when rfkill is modular. The !RFKILL
-case allows the driver to be built when rfkill is not configured, which which
+case allows the driver to be built when rfkill is not configured, which
case all rfkill API can still be used but will be provided by static inlines
which compile to almost nothing.
diff --git a/Documentation/robust-futex-ABI.txt b/Documentation/robust-futex-ABI.txt
index fd1cd8aae4e..16eb314f56c 100644
--- a/Documentation/robust-futex-ABI.txt
+++ b/Documentation/robust-futex-ABI.txt
@@ -146,8 +146,8 @@ On removal:
1) set the 'list_op_pending' word to the address of the 'lock entry'
to be removed,
2) remove the lock entry for this lock from the 'head' list,
- 2) release the futex lock, and
- 2) clear the 'lock_op_pending' word.
+ 3) release the futex lock, and
+ 4) clear the 'lock_op_pending' word.
On exit, the kernel will consider the address stored in
'list_op_pending' and the address of each 'lock word' found by walking
diff --git a/Documentation/robust-futexes.txt b/Documentation/robust-futexes.txt
index 0a9446a53bd..af6fce23e48 100644
--- a/Documentation/robust-futexes.txt
+++ b/Documentation/robust-futexes.txt
@@ -210,7 +210,7 @@ i386 and x86_64 syscalls are wired up at the moment, and Ulrich has
tested the new glibc code (on x86_64 and i386), and it works for his
robust-mutex testcases.
-All other architectures should build just fine too - but they wont have
+All other architectures should build just fine too - but they won't have
the new syscalls yet.
Architectures need to implement the new futex_atomic_cmpxchg_inatomic()
diff --git a/Documentation/rt-mutex-design.txt b/Documentation/rt-mutex-design.txt
index a5bcd7f5c33..8666070d318 100644
--- a/Documentation/rt-mutex-design.txt
+++ b/Documentation/rt-mutex-design.txt
@@ -30,7 +30,7 @@ is something called unbounded priority inversion. That is when the high
priority process is prevented from running by a lower priority process for
an undetermined amount of time.
-The classic example of unbounded priority inversion is were you have three
+The classic example of unbounded priority inversion is where you have three
processes, let's call them processes A, B, and C, where A is the highest
priority process, C is the lowest, and B is in between. A tries to grab a lock
that C owns and must wait and lets C run to release the lock. But in the
diff --git a/Documentation/s390/00-INDEX b/Documentation/s390/00-INDEX
index 3a2b96302ec..10c874ebdfe 100644
--- a/Documentation/s390/00-INDEX
+++ b/Documentation/s390/00-INDEX
@@ -16,11 +16,13 @@ Debugging390.txt
- hints for debugging on s390 systems.
driver-model.txt
- information on s390 devices and the driver model.
+kvm.txt
+ - ioctl calls to /dev/kvm on s390.
monreader.txt
- information on accessing the z/VM monitor stream from Linux.
+qeth.txt
+ - HiperSockets Bridge Port Support.
s390dbf.txt
- information on using the s390 debug feature.
-TAPE
- - information on the driver for channel-attached tapes.
-zfcpdump
+zfcpdump.txt
- information on the s390 SCSI dump tool.
diff --git a/Documentation/s390/monreader.txt b/Documentation/s390/monreader.txt
index beeaa4b2442..d3729585fdb 100644
--- a/Documentation/s390/monreader.txt
+++ b/Documentation/s390/monreader.txt
@@ -10,7 +10,7 @@ Author: Gerald Schaefer (geraldsc@de.ibm.com)
Description
===========
This item delivers a new Linux API in the form of a misc char device that is
-useable from user space and allows read access to the z/VM Monitor Records
+usable from user space and allows read access to the z/VM Monitor Records
collected by the *MONITOR System Service of z/VM.
diff --git a/Documentation/s390/qeth.txt b/Documentation/s390/qeth.txt
new file mode 100644
index 00000000000..74122ada994
--- /dev/null
+++ b/Documentation/s390/qeth.txt
@@ -0,0 +1,50 @@
+IBM s390 QDIO Ethernet Driver
+
+HiperSockets Bridge Port Support
+
+Uevents
+
+To generate the events the device must be assigned a role of either
+a primary or a secondary Bridge Port. For more information, see
+"z/VM Connectivity, SC24-6174".
+
+When run on HiperSockets Bridge Capable Port hardware, and the state
+of some configured Bridge Port device on the channel changes, a udev
+event with ACTION=CHANGE is emitted on behalf of the corresponding
+ccwgroup device. The event has the following attributes:
+
+BRIDGEPORT=statechange - indicates that the Bridge Port device changed
+ its state.
+
+ROLE={primary|secondary|none} - the role assigned to the port.
+
+STATE={active|standby|inactive} - the newly assumed state of the port.
+
+When run on HiperSockets Bridge Capable Port hardware with host address
+notifications enabled, a udev event with ACTION=CHANGE is emitted.
+It is emitted on behalf of the corresponding ccwgroup device when a host
+or a VLAN is registered or unregistered on the network served by the device.
+The event has the following attributes:
+
+BRIDGEDHOST={reset|register|deregister|abort} - host address
+ notifications are started afresh, a new host or VLAN is registered or
+ deregistered on the Bridge Port HiperSockets channel, or address
+ notifications are aborted.
+
+VLAN=numeric-vlan-id - VLAN ID on which the event occurred. Not included
+ if no VLAN is involved in the event.
+
+MAC=xx:xx:xx:xx:xx:xx - MAC address of the host that is being registered
+ or deregistered from the HiperSockets channel. Not reported if the
+ event reports the creation or destruction of a VLAN.
+
+NTOK_BUSID=x.y.zzzz - device bus ID (CSSID, SSID and device number).
+
+NTOK_IID=xx - device IID.
+
+NTOK_CHPID=xx - device CHPID.
+
+NTOK_CHID=xxxx - device channel ID.
+
+Note that the NTOK_* attributes refer to devices other than the one
+connected to the system on which the OS is running.
diff --git a/Documentation/s390/s390dbf.txt b/Documentation/s390/s390dbf.txt
index fcaf0b4efba..3da163383c9 100644
--- a/Documentation/s390/s390dbf.txt
+++ b/Documentation/s390/s390dbf.txt
@@ -158,6 +158,16 @@ Return Value: none
Description: Sets new actual debug level if new_level is valid.
---------------------------------------------------------------------------
+bool debug_level_enabled (debug_info_t * id, int level);
+
+Parameter: id: handle for debug log
+ level: debug level
+
+Return Value: True if level is less or equal to the current debug level.
+
+Description: Returns true if debug events for the specified level would be
+ logged. Otherwise returns false.
+---------------------------------------------------------------------------
void debug_stop_all(void);
Parameter: none
diff --git a/Documentation/s390/zfcpdump.txt b/Documentation/s390/zfcpdump.txt
index cf45d27c460..dc929be9601 100644
--- a/Documentation/s390/zfcpdump.txt
+++ b/Documentation/s390/zfcpdump.txt
@@ -1,15 +1,15 @@
-s390 SCSI dump tool (zfcpdump)
+The s390 SCSI dump tool (zfcpdump)
System z machines (z900 or higher) provide hardware support for creating system
dumps on SCSI disks. The dump process is initiated by booting a dump tool, which
has to create a dump of the current (probably crashed) Linux image. In order to
not overwrite memory of the crashed Linux with data of the dump tool, the
-hardware saves some memory plus the register sets of the boot cpu before the
+hardware saves some memory plus the register sets of the boot CPU before the
dump tool is loaded. There exists an SCLP hardware interface to obtain the saved
memory afterwards. Currently 32 MB are saved.
This zfcpdump implementation consists of a Linux dump kernel together with
-a userspace dump tool, which are loaded together into the saved memory region
+a user space dump tool, which are loaded together into the saved memory region
below 32 MB. zfcpdump is installed on a SCSI disk using zipl (as contained in
the s390-tools package) to make the device bootable. The operator of a Linux
system can then trigger a SCSI dump by booting the SCSI disk, where zfcpdump
@@ -19,68 +19,33 @@ The kernel part of zfcpdump is implemented as a debugfs file under "zcore/mem",
which exports memory and registers of the crashed Linux in an s390
standalone dump format. It can be used in the same way as e.g. /dev/mem. The
dump format defines a 4K header followed by plain uncompressed memory. The
-register sets are stored in the prefix pages of the respective cpus. To build a
+register sets are stored in the prefix pages of the respective CPUs. To build a
dump enabled kernel with the zcore driver, the kernel config option
-CONFIG_ZFCPDUMP has to be set. When reading from "zcore/mem", the part of
+CONFIG_CRASH_DUMP has to be set. When reading from "zcore/mem", the part of
memory, which has been saved by hardware is read by the driver via the SCLP
hardware interface. The second part is just copied from the non overwritten real
memory.
-The userspace application of zfcpdump can reside e.g. in an intitramfs or an
-initrd. It reads from zcore/mem and writes the system dump to a file on a
-SCSI disk.
+Since kernel version 3.12 also the /proc/vmcore file can also be used to access
+the dump.
-To build a zfcpdump kernel use the following settings in your kernel
-configuration:
- * CONFIG_ZFCPDUMP=y
- * Enable ZFCP driver
- * Enable SCSI driver
- * Enable ext2 and ext3 filesystems
- * Disable as many features as possible to keep the kernel small.
- E.g. network support is not needed at all.
+To get a valid zfcpdump kernel configuration use "make zfcpdump_defconfig".
-To use the zfcpdump userspace application in an initramfs you have to do the
-following:
+The s390 zipl tool looks for the zfcpdump kernel and optional initrd/initramfs
+under the following locations:
- * Copy the zfcpdump executable somewhere into your Linux tree.
- E.g. to "arch/s390/boot/zfcpdump. If you do not want to include
- shared libraries, compile the tool with the "-static" gcc option.
- * If you want to include e2fsck, add it to your source tree, too. The zfcpdump
- application attempts to start /sbin/e2fsck from the ramdisk.
- * Use an initramfs config file like the following:
+* kernel: <zfcpdump directory>/zfcpdump.image
+* ramdisk: <zfcpdump directory>/zfcpdump.rd
- dir /dev 755 0 0
- nod /dev/console 644 0 0 c 5 1
- nod /dev/null 644 0 0 c 1 3
- nod /dev/sda1 644 0 0 b 8 1
- nod /dev/sda2 644 0 0 b 8 2
- nod /dev/sda3 644 0 0 b 8 3
- nod /dev/sda4 644 0 0 b 8 4
- nod /dev/sda5 644 0 0 b 8 5
- nod /dev/sda6 644 0 0 b 8 6
- nod /dev/sda7 644 0 0 b 8 7
- nod /dev/sda8 644 0 0 b 8 8
- nod /dev/sda9 644 0 0 b 8 9
- nod /dev/sda10 644 0 0 b 8 10
- nod /dev/sda11 644 0 0 b 8 11
- nod /dev/sda12 644 0 0 b 8 12
- nod /dev/sda13 644 0 0 b 8 13
- nod /dev/sda14 644 0 0 b 8 14
- nod /dev/sda15 644 0 0 b 8 15
- file /init arch/s390/boot/zfcpdump 755 0 0
- file /sbin/e2fsck arch/s390/boot/e2fsck 755 0 0
- dir /proc 755 0 0
- dir /sys 755 0 0
- dir /mnt 755 0 0
- dir /sbin 755 0 0
+The zfcpdump directory is defined in the s390-tools package.
- * Issue "make image" to build the zfcpdump image with initramfs.
+The user space application of zfcpdump can reside in an intitramfs or an
+initrd. It can also be included in a built-in kernel initramfs. The application
+reads from /proc/vmcore or zcore/mem and writes the system dump to a SCSI disk.
-In a Linux distribution the zfcpdump enabled kernel image must be copied to
-/usr/share/zfcpdump/zfcpdump.image, where the s390 zipl tool is looking for the
-dump kernel when preparing a SCSI dump disk.
-
-If you use a ramdisk copy it to "/usr/share/zfcpdump/zfcpdump.rd".
+The s390-tools package version 1.24.0 and above builds an external zfcpdump
+initramfs with a user space application that writes the dump to a SCSI
+partition.
For more information on how to use zfcpdump refer to the s390 'Using the Dump
Tools book', which is available from
diff --git a/Documentation/scheduler/00-INDEX b/Documentation/scheduler/00-INDEX
index d2651c47ae2..eccf7ad2e7f 100644
--- a/Documentation/scheduler/00-INDEX
+++ b/Documentation/scheduler/00-INDEX
@@ -2,6 +2,8 @@
- this file.
sched-arch.txt
- CPU Scheduler implementation hints for architecture specific code.
+sched-bwc.txt
+ - CFS bandwidth control overview.
sched-design-CFS.txt
- goals, design and implementation of the Completely Fair Scheduler.
sched-domains.txt
@@ -10,5 +12,7 @@ sched-nice-design.txt
- How and why the scheduler's nice levels are implemented.
sched-rt-group.txt
- real-time group scheduling.
+sched-deadline.txt
+ - deadline scheduling.
sched-stats.txt
- information on schedstats (Linux Scheduler Statistics).
diff --git a/Documentation/scheduler/sched-arch.txt b/Documentation/scheduler/sched-arch.txt
index b1b8587b86f..a2f27bbf2cb 100644
--- a/Documentation/scheduler/sched-arch.txt
+++ b/Documentation/scheduler/sched-arch.txt
@@ -8,7 +8,7 @@ Context switch
By default, the switch_to arch function is called with the runqueue
locked. This is usually not a problem unless switch_to may need to
take the runqueue lock. This is usually due to a wake up operation in
-the context switch. See arch/ia64/include/asm/system.h for an example.
+the context switch. See arch/ia64/include/asm/switch_to.h for an example.
To request the scheduler call switch_to with the runqueue unlocked,
you must `#define __ARCH_WANT_UNLOCKED_CTXSW` in a header file
@@ -65,11 +65,6 @@ Possible arch/ problems
Possible arch problems I found (and either tried to fix or didn't):
-h8300 - Is such sleeping racy vs interrupts? (See #4a).
- The H8/300 manual I found indicates yes, however disabling IRQs
- over the sleep mean only NMIs can wake it up, so can't fix easily
- without doing spin waiting.
-
ia64 - is safe_halt call racy vs interrupts? (does it sleep?) (See #4a)
sh64 - Is sleeping racy vs interrupts? (See #4a)
diff --git a/Documentation/scheduler/sched-deadline.txt b/Documentation/scheduler/sched-deadline.txt
new file mode 100644
index 00000000000..18adc92a6b3
--- /dev/null
+++ b/Documentation/scheduler/sched-deadline.txt
@@ -0,0 +1,281 @@
+ Deadline Task Scheduling
+ ------------------------
+
+CONTENTS
+========
+
+ 0. WARNING
+ 1. Overview
+ 2. Scheduling algorithm
+ 3. Scheduling Real-Time Tasks
+ 4. Bandwidth management
+ 4.1 System-wide settings
+ 4.2 Task interface
+ 4.3 Default behavior
+ 5. Tasks CPU affinity
+ 5.1 SCHED_DEADLINE and cpusets HOWTO
+ 6. Future plans
+
+
+0. WARNING
+==========
+
+ Fiddling with these settings can result in an unpredictable or even unstable
+ system behavior. As for -rt (group) scheduling, it is assumed that root users
+ know what they're doing.
+
+
+1. Overview
+===========
+
+ The SCHED_DEADLINE policy contained inside the sched_dl scheduling class is
+ basically an implementation of the Earliest Deadline First (EDF) scheduling
+ algorithm, augmented with a mechanism (called Constant Bandwidth Server, CBS)
+ that makes it possible to isolate the behavior of tasks between each other.
+
+
+2. Scheduling algorithm
+==================
+
+ SCHED_DEADLINE uses three parameters, named "runtime", "period", and
+ "deadline" to schedule tasks. A SCHED_DEADLINE task is guaranteed to receive
+ "runtime" microseconds of execution time every "period" microseconds, and
+ these "runtime" microseconds are available within "deadline" microseconds
+ from the beginning of the period. In order to implement this behaviour,
+ every time the task wakes up, the scheduler computes a "scheduling deadline"
+ consistent with the guarantee (using the CBS[2,3] algorithm). Tasks are then
+ scheduled using EDF[1] on these scheduling deadlines (the task with the
+ smallest scheduling deadline is selected for execution). Notice that this
+ guaranteed is respected if a proper "admission control" strategy (see Section
+ "4. Bandwidth management") is used.
+
+ Summing up, the CBS[2,3] algorithms assigns scheduling deadlines to tasks so
+ that each task runs for at most its runtime every period, avoiding any
+ interference between different tasks (bandwidth isolation), while the EDF[1]
+ algorithm selects the task with the smallest scheduling deadline as the one
+ to be executed first. Thanks to this feature, also tasks that do not
+ strictly comply with the "traditional" real-time task model (see Section 3)
+ can effectively use the new policy.
+
+ In more details, the CBS algorithm assigns scheduling deadlines to
+ tasks in the following way:
+
+ - Each SCHED_DEADLINE task is characterised by the "runtime",
+ "deadline", and "period" parameters;
+
+ - The state of the task is described by a "scheduling deadline", and
+ a "current runtime". These two parameters are initially set to 0;
+
+ - When a SCHED_DEADLINE task wakes up (becomes ready for execution),
+ the scheduler checks if
+
+ current runtime runtime
+ ---------------------------------- > ----------------
+ scheduling deadline - current time period
+
+ then, if the scheduling deadline is smaller than the current time, or
+ this condition is verified, the scheduling deadline and the
+ current budget are re-initialised as
+
+ scheduling deadline = current time + deadline
+ current runtime = runtime
+
+ otherwise, the scheduling deadline and the current runtime are
+ left unchanged;
+
+ - When a SCHED_DEADLINE task executes for an amount of time t, its
+ current runtime is decreased as
+
+ current runtime = current runtime - t
+
+ (technically, the runtime is decreased at every tick, or when the
+ task is descheduled / preempted);
+
+ - When the current runtime becomes less or equal than 0, the task is
+ said to be "throttled" (also known as "depleted" in real-time literature)
+ and cannot be scheduled until its scheduling deadline. The "replenishment
+ time" for this task (see next item) is set to be equal to the current
+ value of the scheduling deadline;
+
+ - When the current time is equal to the replenishment time of a
+ throttled task, the scheduling deadline and the current runtime are
+ updated as
+
+ scheduling deadline = scheduling deadline + period
+ current runtime = current runtime + runtime
+
+
+3. Scheduling Real-Time Tasks
+=============================
+
+ * BIG FAT WARNING ******************************************************
+ *
+ * This section contains a (not-thorough) summary on classical deadline
+ * scheduling theory, and how it applies to SCHED_DEADLINE.
+ * The reader can "safely" skip to Section 4 if only interested in seeing
+ * how the scheduling policy can be used. Anyway, we strongly recommend
+ * to come back here and continue reading (once the urge for testing is
+ * satisfied :P) to be sure of fully understanding all technical details.
+ ************************************************************************
+
+ There are no limitations on what kind of task can exploit this new
+ scheduling discipline, even if it must be said that it is particularly
+ suited for periodic or sporadic real-time tasks that need guarantees on their
+ timing behavior, e.g., multimedia, streaming, control applications, etc.
+
+ A typical real-time task is composed of a repetition of computation phases
+ (task instances, or jobs) which are activated on a periodic or sporadic
+ fashion.
+ Each job J_j (where J_j is the j^th job of the task) is characterised by an
+ arrival time r_j (the time when the job starts), an amount of computation
+ time c_j needed to finish the job, and a job absolute deadline d_j, which
+ is the time within which the job should be finished. The maximum execution
+ time max_j{c_j} is called "Worst Case Execution Time" (WCET) for the task.
+ A real-time task can be periodic with period P if r_{j+1} = r_j + P, or
+ sporadic with minimum inter-arrival time P is r_{j+1} >= r_j + P. Finally,
+ d_j = r_j + D, where D is the task's relative deadline.
+
+ SCHED_DEADLINE can be used to schedule real-time tasks guaranteeing that
+ the jobs' deadlines of a task are respected. In order to do this, a task
+ must be scheduled by setting:
+
+ - runtime >= WCET
+ - deadline = D
+ - period <= P
+
+ IOW, if runtime >= WCET and if period is >= P, then the scheduling deadlines
+ and the absolute deadlines (d_j) coincide, so a proper admission control
+ allows to respect the jobs' absolute deadlines for this task (this is what is
+ called "hard schedulability property" and is an extension of Lemma 1 of [2]).
+
+ References:
+ 1 - C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
+ ming in a hard-real-time environment. Journal of the Association for
+ Computing Machinery, 20(1), 1973.
+ 2 - L. Abeni , G. Buttazzo. Integrating Multimedia Applications in Hard
+ Real-Time Systems. Proceedings of the 19th IEEE Real-time Systems
+ Symposium, 1998. http://retis.sssup.it/~giorgio/paps/1998/rtss98-cbs.pdf
+ 3 - L. Abeni. Server Mechanisms for Multimedia Applications. ReTiS Lab
+ Technical Report. http://xoomer.virgilio.it/lucabe72/pubs/tr-98-01.ps
+
+4. Bandwidth management
+=======================
+
+ In order for the -deadline scheduling to be effective and useful, it is
+ important to have some method to keep the allocation of the available CPU
+ bandwidth to the tasks under control.
+ This is usually called "admission control" and if it is not performed at all,
+ no guarantee can be given on the actual scheduling of the -deadline tasks.
+
+ Since when RT-throttling has been introduced each task group has a bandwidth
+ associated, calculated as a certain amount of runtime over a period.
+ Moreover, to make it possible to manipulate such bandwidth, readable/writable
+ controls have been added to both procfs (for system wide settings) and cgroupfs
+ (for per-group settings).
+ Therefore, the same interface is being used for controlling the bandwidth
+ distrubution to -deadline tasks.
+
+ However, more discussion is needed in order to figure out how we want to manage
+ SCHED_DEADLINE bandwidth at the task group level. Therefore, SCHED_DEADLINE
+ uses (for now) a less sophisticated, but actually very sensible, mechanism to
+ ensure that a certain utilization cap is not overcome per each root_domain.
+
+ Another main difference between deadline bandwidth management and RT-throttling
+ is that -deadline tasks have bandwidth on their own (while -rt ones don't!),
+ and thus we don't need an higher level throttling mechanism to enforce the
+ desired bandwidth.
+
+4.1 System wide settings
+------------------------
+
+ The system wide settings are configured under the /proc virtual file system.
+
+ For now the -rt knobs are used for dl admission control and the -deadline
+ runtime is accounted against the -rt runtime. We realise that this isn't
+ entirely desirable; however, it is better to have a small interface for now,
+ and be able to change it easily later. The ideal situation (see 5.) is to run
+ -rt tasks from a -deadline server; in which case the -rt bandwidth is a direct
+ subset of dl_bw.
+
+ This means that, for a root_domain comprising M CPUs, -deadline tasks
+ can be created while the sum of their bandwidths stays below:
+
+ M * (sched_rt_runtime_us / sched_rt_period_us)
+
+ It is also possible to disable this bandwidth management logic, and
+ be thus free of oversubscribing the system up to any arbitrary level.
+ This is done by writing -1 in /proc/sys/kernel/sched_rt_runtime_us.
+
+
+4.2 Task interface
+------------------
+
+ Specifying a periodic/sporadic task that executes for a given amount of
+ runtime at each instance, and that is scheduled according to the urgency of
+ its own timing constraints needs, in general, a way of declaring:
+ - a (maximum/typical) instance execution time,
+ - a minimum interval between consecutive instances,
+ - a time constraint by which each instance must be completed.
+
+ Therefore:
+ * a new struct sched_attr, containing all the necessary fields is
+ provided;
+ * the new scheduling related syscalls that manipulate it, i.e.,
+ sched_setattr() and sched_getattr() are implemented.
+
+
+4.3 Default behavior
+---------------------
+
+ The default value for SCHED_DEADLINE bandwidth is to have rt_runtime equal to
+ 950000. With rt_period equal to 1000000, by default, it means that -deadline
+ tasks can use at most 95%, multiplied by the number of CPUs that compose the
+ root_domain, for each root_domain.
+
+ A -deadline task cannot fork.
+
+5. Tasks CPU affinity
+=====================
+
+ -deadline tasks cannot have an affinity mask smaller that the entire
+ root_domain they are created on. However, affinities can be specified
+ through the cpuset facility (Documentation/cgroups/cpusets.txt).
+
+5.1 SCHED_DEADLINE and cpusets HOWTO
+------------------------------------
+
+ An example of a simple configuration (pin a -deadline task to CPU0)
+ follows (rt-app is used to create a -deadline task).
+
+ mkdir /dev/cpuset
+ mount -t cgroup -o cpuset cpuset /dev/cpuset
+ cd /dev/cpuset
+ mkdir cpu0
+ echo 0 > cpu0/cpuset.cpus
+ echo 0 > cpu0/cpuset.mems
+ echo 1 > cpuset.cpu_exclusive
+ echo 0 > cpuset.sched_load_balance
+ echo 1 > cpu0/cpuset.cpu_exclusive
+ echo 1 > cpu0/cpuset.mem_exclusive
+ echo $$ > cpu0/tasks
+ rt-app -t 100000:10000:d:0 -D5 (it is now actually superfluous to specify
+ task affinity)
+
+6. Future plans
+===============
+
+ Still missing:
+
+ - refinements to deadline inheritance, especially regarding the possibility
+ of retaining bandwidth isolation among non-interacting tasks. This is
+ being studied from both theoretical and practical points of view, and
+ hopefully we should be able to produce some demonstrative code soon;
+ - (c)group based bandwidth management, and maybe scheduling;
+ - access control for non-root users (and related security concerns to
+ address), which is the best way to allow unprivileged use of the mechanisms
+ and how to prevent non-root users "cheat" the system?
+
+ As already discussed, we are planning also to merge this work with the EDF
+ throttling patches [https://lkml.org/lkml/2010/2/23/239] but we still are in
+ the preliminary phases of the merge and we really seek feedback that would
+ help us decide on the direction it should take.
diff --git a/Documentation/scheduler/sched-design-CFS.txt b/Documentation/scheduler/sched-design-CFS.txt
index d529e02d928..f14f4930422 100644
--- a/Documentation/scheduler/sched-design-CFS.txt
+++ b/Documentation/scheduler/sched-design-CFS.txt
@@ -66,9 +66,7 @@ rq->cfs.load value, which is the sum of the weights of the tasks queued on the
runqueue.
CFS maintains a time-ordered rbtree, where all runnable tasks are sorted by the
-p->se.vruntime key (there is a subtraction using rq->cfs.min_vruntime to
-account for possible wraparounds). CFS picks the "leftmost" task from this
-tree and sticks to it.
+p->se.vruntime key. CFS picks the "leftmost" task from this tree and sticks to it.
As the system progresses forwards, the executed tasks are put into the tree
more and more to the right --- slowly but surely giving a chance for every task
to become the "leftmost task" and thus get on the CPU within a deterministic
diff --git a/Documentation/scsi/00-INDEX b/Documentation/scsi/00-INDEX
index 9b0787f965e..c4b978a72f7 100644
--- a/Documentation/scsi/00-INDEX
+++ b/Documentation/scsi/00-INDEX
@@ -36,16 +36,22 @@ NinjaSCSI.txt
- info on WorkBiT NinjaSCSI-32/32Bi driver
aacraid.txt
- Driver supporting Adaptec RAID controllers
+advansys.txt
+ - List of Advansys Host Adapters
aha152x.txt
- info on driver for Adaptec AHA152x based adapters
aic79xx.txt
- Adaptec Ultra320 SCSI host adapters
aic7xxx.txt
- info on driver for Adaptec controllers
-aic7xxx_old.txt
- - info on driver for Adaptec controllers, old generation
arcmsr_spec.txt
- ARECA FIRMWARE SPEC (for IOP331 adapter)
+bfa.txt
+ - Brocade FC/FCOE adapter driver.
+bnx2fc.txt
+ - FCoE hardware offload for Broadcom network interfaces.
+cxgb3i.txt
+ - Chelsio iSCSI Linux Driver
dc395x.txt
- README file for the dc395x SCSI driver
dpti.txt
@@ -54,18 +60,24 @@ dtc3x80.txt
- info on driver for DTC 2x80 based adapters
g_NCR5380.txt
- info on driver for NCR5380 and NCR53c400 based adapters
+hpsa.txt
+ - HP Smart Array Controller SCSI driver.
hptiop.txt
- HIGHPOINT ROCKETRAID 3xxx RAID DRIVER
in2000.txt
- info on in2000 driver
libsas.txt
- Serial Attached SCSI management layer.
+link_power_management_policy.txt
+ - Link power management options.
lpfc.txt
- LPFC driver release notes
megaraid.txt
- Common Management Module, shared code handling ioctls for LSI drivers
ncr53c8xx.txt
- info on driver for NCR53c8xx based adapters
+osd.txt
+ Object-Based Storage Device, command set introduction.
osst.txt
- info on driver for OnStream SC-x0 SCSI tape
ppa.txt
@@ -76,6 +88,8 @@ scsi-changer.txt
- README for the SCSI media changer driver
scsi-generic.txt
- info on the sg driver for generic (non-disk/CD/tape) SCSI devices.
+scsi-parameters.txt
+ - List of SCSI-parameters to pass to the kernel at module load-time.
scsi.txt
- short blurb on using SCSI support as a module.
scsi_mid_low_api.txt
diff --git a/Documentation/scsi/ChangeLog.megaraid_sas b/Documentation/scsi/ChangeLog.megaraid_sas
index 6edaa65b081..91ba58ef02d 100644
--- a/Documentation/scsi/ChangeLog.megaraid_sas
+++ b/Documentation/scsi/ChangeLog.megaraid_sas
@@ -1,3 +1,16 @@
+Release Date : Mon. Mar 10, 2014 17:00:00 PST 2014 -
+ (emaild-id:megaraidlinux@lsi.com)
+ Adam Radford
+ Kashyap Desai
+ Sumit Saxena
+Current Version : 06.803.01.00-rc1
+Old Version : 06.700.06.00-rc1
+ 1. Load correct raid context timeout value for multipathing & clustering.
+ 2. Fix megasas_ioc_init_fusion to use local stack variable.
+ 3. Return leaked MPT frames to MPT command pool.
+ 4. Add Dell PowerEdge VRTX SR-IOV VF device support.
+ 5. Version and Changelog update.
+-------------------------------------------------------------------------------
Release Date : Sat. Aug 31, 2013 17:00:00 PST 2013 -
(emaild-id:megaraidlinux@lsi.com)
Adam Radford
diff --git a/Documentation/scsi/LICENSE.qla2xxx b/Documentation/scsi/LICENSE.qla2xxx
index 5020b7b5a24..52f0b435923 100644
--- a/Documentation/scsi/LICENSE.qla2xxx
+++ b/Documentation/scsi/LICENSE.qla2xxx
@@ -1,4 +1,4 @@
-Copyright (c) 2003-2013 QLogic Corporation
+Copyright (c) 2003-2014 QLogic Corporation
QLogic Linux FC-FCoE Driver
This program includes a device driver for Linux 3.x.
diff --git a/Documentation/scsi/aic7xxx_old.txt b/Documentation/scsi/aic7xxx_old.txt
deleted file mode 100644
index ecfc474f36a..00000000000
--- a/Documentation/scsi/aic7xxx_old.txt
+++ /dev/null
@@ -1,511 +0,0 @@
- AIC7xxx Driver for Linux
-
-Introduction
-----------------------------
-The AIC7xxx SCSI driver adds support for Adaptec (http://www.adaptec.com)
-SCSI controllers and chipsets. Major portions of the driver and driver
-development are shared between both Linux and FreeBSD. Support for the
-AIC-7xxx chipsets have been in the default Linux kernel since approximately
-linux-1.1.x and fairly stable since linux-1.2.x, and are also in FreeBSD
-2.1.0 or later.
-
- Supported cards/chipsets
- ----------------------------
- Adaptec Cards
- ----------------------------
- AHA-274x
- AHA-274xT
- AHA-2842
- AHA-2910B
- AHA-2920C
- AHA-2930
- AHA-2930U
- AHA-2930CU
- AHA-2930U2
- AHA-2940
- AHA-2940W
- AHA-2940U
- AHA-2940UW
- AHA-2940UW-PRO
- AHA-2940AU
- AHA-2940U2W
- AHA-2940U2
- AHA-2940U2B
- AHA-2940U2BOEM
- AHA-2944D
- AHA-2944WD
- AHA-2944UD
- AHA-2944UWD
- AHA-2950U2
- AHA-2950U2W
- AHA-2950U2B
- AHA-29160M
- AHA-3940
- AHA-3940U
- AHA-3940W
- AHA-3940UW
- AHA-3940AUW
- AHA-3940U2W
- AHA-3950U2B
- AHA-3950U2D
- AHA-3960D
- AHA-39160M
- AHA-3985
- AHA-3985U
- AHA-3985W
- AHA-3985UW
-
- Motherboard Chipsets
- ----------------------------
- AIC-777x
- AIC-785x
- AIC-786x
- AIC-787x
- AIC-788x
- AIC-789x
- AIC-3860
-
- Bus Types
- ----------------------------
- W - Wide SCSI, SCSI-3, 16bit bus, 68pin connector, will also support
- SCSI-1/SCSI-2 50pin devices, transfer rates up to 20MB/s.
- U - Ultra SCSI, transfer rates up to 40MB/s.
- U2- Ultra 2 SCSI, transfer rates up to 80MB/s.
- D - Differential SCSI.
- T - Twin Channel SCSI. Up to 14 SCSI devices.
-
- AHA-274x - EISA SCSI controller
- AHA-284x - VLB SCSI controller
- AHA-29xx - PCI SCSI controller
- AHA-394x - PCI controllers with two separate SCSI controllers on-board.
- AHA-398x - PCI RAID controllers with three separate SCSI controllers
- on-board.
-
- Not Supported Devices
- ------------------------------
- Adaptec Cards
- ----------------------------
- AHA-2920 (Only the cards that use the Future Domain chipset are not
- supported, any 2920 cards based on Adaptec AIC chipsets,
- such as the 2920C, are supported)
- AAA-13x Raid Adapters
- AAA-113x Raid Port Card
-
- Motherboard Chipsets
- ----------------------------
- AIC-7810
-
- Bus Types
- ----------------------------
- R - Raid Port busses are not supported.
-
- The hardware RAID devices sold by Adaptec are *NOT* supported by this
- driver (and will people please stop emailing me about them, they are
- a totally separate beast from the bare SCSI controllers and this driver
- cannot be retrofitted in any sane manner to support the hardware RAID
- features on those cards - Doug Ledford).
-
-
- People
- ------------------------------
- Justin T Gibbs gibbs@plutotech.com
- (BSD Driver Author)
- Dan Eischen deischen@iworks.InterWorks.org
- (Original Linux Driver Co-maintainer)
- Dean Gehnert deang@teleport.com
- (Original Linux FTP/patch maintainer)
- Jess Johnson jester@frenzy.com
- (AIC7xxx FAQ author)
- Doug Ledford dledford@redhat.com
- (Current Linux aic7xxx-5.x.x Driver/Patch/FTP maintainer)
-
- Special thanks go to John Aycock (aycock@cpsc.ucalgary.ca), the original
- author of the driver. John has since retired from the project. Thanks
- again for all his work!
-
- Mailing list
- ------------------------------
- There is a mailing list available for users who want to track development
- and converse with other users and developers. This list is for both
- FreeBSD and Linux support of the AIC7xxx chipsets.
-
- To subscribe to the AIC7xxx mailing list send mail to the list server,
- with "subscribe AIC7xxx" in the body (no Subject: required):
- To: majordomo@FreeBSD.ORG
- ---
- subscribe AIC7xxx
-
- To unsubscribe from the list, send mail to the list server with:
- To: majordomo@FreeBSD.ORG
- ---
- unsubscribe AIC7xxx
-
- Send regular messages and replies to: AIC7xxx@FreeBSD.ORG
-
- Boot Command line options
- ------------------------------
- "aic7xxx=no_reset" - Eliminate the SCSI bus reset during startup.
- Some SCSI devices need the initial reset that this option disables
- in order to work. If you have problems at bootup, please make sure
- you aren't using this option.
-
- "aic7xxx=reverse_scan" - Certain PCI motherboards scan for devices at
- bootup by scanning from the highest numbered PCI device to the
- lowest numbered PCI device, others do just the opposite and scan
- from lowest to highest numbered PCI device. There is no reliable
- way to autodetect this ordering. So, we default to the most common
- order, which is lowest to highest. Then, in case your motherboard
- scans from highest to lowest, we have this option. If your BIOS
- finds the drives on controller A before controller B but the linux
- kernel finds your drives on controller B before A, then you should
- use this option.
-
- "aic7xxx=extended" - Force the driver to detect extended drive translation
- on your controller. This helps those people who have cards without
- a SEEPROM make sure that linux and all other operating systems think
- the same way about your hard drives.
-
- "aic7xxx=scbram" - Some cards have external SCB RAM that can be used to
- give the card more hardware SCB slots. This allows the driver to use
- that SCB RAM. Without this option, the driver won't touch the SCB
- RAM because it is known to cause problems on a few cards out there
- (such as 3985 class cards).
-
- "aic7xxx=irq_trigger:x" - Replace x with either 0 or 1 to force the kernel
- to use the correct IRQ type for your card. This only applies to EISA
- based controllers. On these controllers, 0 is for Edge triggered
- interrupts, and 1 is for Level triggered interrupts. If you aren't
- sure or don't know which IRQ trigger type your EISA card uses, then
- let the kernel autodetect the trigger type.
-
- "aic7xxx=verbose" - This option can be used in one of two ways. If you
- simply specify aic7xxx=verbose, then the kernel will automatically
- pick the default set of verbose messages for you to see.
- Alternatively, you can specify the command as
- "aic7xxx=verbose:0xXXXX" where the X entries are replaced with
- hexadecimal digits. This option is a bit field type option. For
- a full listing of the available options, search for the
- #define VERBOSE_xxxxxx lines in the aic7xxx.c file. If you want
- verbose messages, then it is recommended that you simply use the
- aic7xxx=verbose variant of this command.
-
- "aic7xxx=pci_parity:x" - This option controls whether or not the driver
- enables PCI parity error checking on the PCI bus. By default, this
- checking is disabled. To enable the checks, simply specify pci_parity
- with no value afterwords. To reverse the parity from even to odd,
- supply any number other than 0 or 255. In short:
- pci_parity - Even parity checking (even is the normal PCI parity)
- pci_parity:x - Where x > 0, Odd parity checking
- pci_parity:0 - No check (default)
- NOTE: In order to get Even PCI parity checking, you must use the
- version of the option that does not include the : and a number at
- the end (unless you want to enter exactly 2^32 - 1 as the number).
-
- "aic7xxx=no_probe" - This option will disable the probing for any VLB
- based 2842 controllers and any EISA based controllers. This is
- needed on certain newer motherboards where the normal EISA I/O ranges
- have been claimed by other PCI devices. Probing on those machines
- will often result in the machine crashing or spontaneously rebooting
- during startup. Examples of machines that need this are the
- Dell PowerEdge 6300 machines.
-
- "aic7xxx=seltime:2" - This option controls how long the card waits
- during a device selection sequence for the device to respond.
- The original SCSI spec says that this "should be" 256ms. This
- is generally not required with modern devices. However, some
- very old SCSI I devices need the full 256ms. Most modern devices
- can run fine with only 64ms. The default for this option is
- 64ms. If you need to change this option, then use the following
- table to set the proper value in the example above:
- 0 - 256ms
- 1 - 128ms
- 2 - 64ms
- 3 - 32ms
-
- "aic7xxx=panic_on_abort" - This option is for debugging and will cause
- the driver to panic the linux kernel and freeze the system the first
- time the drivers abort or reset routines are called. This is most
- helpful when some problem causes infinite reset loops that scroll too
- fast to see. By using this option, you can write down what the errors
- actually are and send that information to me so it can be fixed.
-
- "aic7xxx=dump_card" - This option will print out the *entire* set of
- configuration registers on the card during the init sequence. This
- is a debugging aid used to see exactly what state the card is in
- when we finally finish our initialization routines. If you don't
- have documentation on the chipsets, this will do you absolutely
- no good unless you are simply trying to write all the information
- down in order to send it to me.
-
- "aic7xxx=dump_sequencer" - This is the same as the above options except
- that instead of dumping the register contents on the card, this
- option dumps the contents of the sequencer program RAM. This gives
- the ability to verify that the instructions downloaded to the
- card's sequencer are indeed what they are supposed to be. Again,
- unless you have documentation to tell you how to interpret these
- numbers, then it is totally useless.
-
- "aic7xxx=override_term:0xffffffff" - This option is used to force the
- termination on your SCSI controllers to a particular setting. This
- is a bit mask variable that applies for up to 8 aic7xxx SCSI channels.
- Each channel gets 4 bits, divided as follows:
- bit 3 2 1 0
- | | | Enable/Disable Single Ended Low Byte Termination
- | | En/Disable Single Ended High Byte Termination
- | En/Disable Low Byte LVD Termination
- En/Disable High Byte LVD Termination
-
- The upper 2 bits that deal with LVD termination only apply to Ultra2
- controllers. Furthermore, due to the current Ultra2 controller
- designs, these bits are tied together such that setting either bit
- enables both low and high byte LVD termination. It is not possible
- to only set high or low byte LVD termination in this manner. This is
- an artifact of the BIOS definition on Ultra2 controllers. For other
- controllers, the only important bits are the two lowest bits. Setting
- the higher bits on non-Ultra2 controllers has no effect. A few
- examples of how to use this option:
-
- Enable low and high byte termination on a non-ultra2 controller that
- is the first aic7xxx controller (the correct bits are 0011),
- aic7xxx=override_term:0x3
-
- Enable all termination on the third aic7xxx controller, high byte
- termination on the second aic7xxx controller, and low and high byte
- SE termination on the first aic7xxx controller
- (bits are 1111 0010 0011),
- aic7xxx=override_term:0xf23
-
- No attempt has been made to make this option non-cryptic. It really
- shouldn't be used except in dire circumstances, and if that happens,
- I'm probably going to be telling you what to set this to anyway :)
-
- "aic7xxx=stpwlev:0xffffffff" - This option is used to control the STPWLEV
- bit in the DEVCONFIG PCI register. Currently, this is one of the
- very few registers that we have absolutely *no* way of detecting
- what the variable should be. It depends entirely on how the chipset
- and external terminators were coupled by the card/motherboard maker.
- Further, a chip reset (at power up) always sets this bit to 0. If
- there is no BIOS to run on the chipset/card (such as with a 2910C
- or a motherboard controller with the BIOS totally disabled) then
- the variable may not get set properly. Of course, if the proper
- setting was 0, then that's what it would be after the reset, but if
- the proper setting is actually 1.....you get the picture. Now, since
- we can't detect this at all, I've added this option to force the
- setting. If you have a BIOS on your controller then you should never
- need to use this option. However, if you are having lots of SCSI
- reset problems and can't seem to get them knocked out, this may help.
-
- Here's a test to know for certain if you need this option. Make
- a boot floppy that you can use to boot your computer up and that
- will detect the aic7xxx controller. Next, power down your computer.
- While it's down, unplug all SCSI cables from your Adaptec SCSI
- controller. Boot the system back up to the Adaptec EZ-SCSI BIOS
- and then make sure that termination is enabled on your adapter (if
- you have an Adaptec BIOS of course). Next, boot up the floppy you
- made and wait for it to detect the aic7xxx controller. If the kernel
- finds the controller fine, says scsi : x hosts and then tries to
- detect your devices like normal, up to the point where it fails to
- mount your root file system and panics, then you're fine. If, on
- the other hand, the system goes into an infinite reset loop, then
- you need to use this option and/or the previous option to force the
- proper termination settings on your controller. If this happens,
- then you next need to figure out what your settings should be.
-
- To find the correct settings, power your machine back down, connect
- back up the SCSI cables, and boot back into your machine like normal.
- However, boot with the aic7xxx=verbose:0x39 option. Record the
- initial DEVCONFIG values for each of your aic7xxx controllers as
- they are listed, and also record what the machine is detecting as
- the proper termination on your controllers. NOTE: the order in
- which the initial DEVCONFIG values are printed out is not guaranteed
- to be the same order as the SCSI controllers are registered. The
- above option and this option both work on the order of the SCSI
- controllers as they are registered, so make sure you match the right
- DEVCONFIG values with the right controllers if you have more than
- one aic7xxx controller.
-
- Once you have the detected termination settings and the initial
- DEVCONFIG values for each controller, then figure out what the
- termination on each of the controllers *should* be. Hopefully, that
- part is correct, but it could possibly be wrong if there is
- bogus cable detection logic on your controller or something similar.
- If all the controllers have the correct termination settings, then
- don't set the aic7xxx=override_term variable at all, leave it alone.
- Next, on any controllers that go into an infinite reset loop when
- you unplug all the SCSI cables, get the starting DEVCONFIG value.
- If the initial DEVCONFIG value is divisible by 2, then the correct
- setting for that controller is 0. If it's an odd number, then
- the correct setting for that controller is 1. For any other
- controllers that didn't have an infinite reset problem, then reverse
- the above options. If DEVCONFIG was even, then the correct setting
- is 1, if not then the correct setting is 0.
-
- Now that you know what the correct setting was for each controller,
- we need to encode that into the aic7xxx=stpwlev:0x... variable.
- This variable is a bit field encoded variable. Bit 0 is for the first
- aic7xxx controller, bit 1 for the next, etc. Put all these bits
- together and you get a number. For example, if the third aic7xxx
- needed a 1, but the second and first both needed a 0, then the bits
- would be 100 in binary. This then translates to 0x04. You would
- therefore set aic7xxx=stpwlev:0x04. This is fairly standard binary
- to hexadecimal conversions here. If you aren't up to speed on the
- binary->hex conversion then send an email to the aic7xxx mailing
- list and someone can help you out.
-
- "aic7xxx=tag_info:{{8,8..},{8,8..},..}" - This option is used to disable
- or enable Tagged Command Queueing (TCQ) on specific devices. As of
- driver version 5.1.11, TCQ is now either on or off by default
- according to the setting you choose during the make config process.
- In order to en/disable TCQ for certain devices at boot time, a user
- may use this boot param. The driver will then parse this message out
- and en/disable the specific device entries that are present based upon
- the value given. The param line is parsed in the following manner:
-
- { - first instance indicates the start of this parameter values
- second instance is the start of entries for a particular
- device entry
- } - end the entries for a particular host adapter, or end the entire
- set of parameter entries
- , - move to next entry. Inside of a set of device entries, this
- moves us to the next device on the list. Outside of device
- entries, this moves us to the next host adapter
- . - Same effect as , but is safe to use with insmod.
- x - the number to enter into the array at this position.
- 0 = Enable tagged queueing on this device and use the default
- queue depth
- 1-254 = Enable tagged queueing on this device and use this
- number as the queue depth
- 255 = Disable tagged queueing on this device.
- Note: anything above 32 for an actual queue depth is wasteful
- and not recommended.
-
- A few examples of how this can be used:
-
- tag_info:{{8,12,,0,,255,4}}
- This line will only effect the first aic7xxx card registered. It
- will set scsi id 0 to a queue depth of 8, id 1 to 12, leave id 2
- at the default, set id 3 to tagged queueing enabled and use the
- default queue depth, id 4 default, id 5 disabled, and id 6 to 4.
- Any not specified entries stay at the default value, repeated
- commas with no value specified will simply increment to the next id
- without changing anything for the missing values.
-
- tag_info:{,,,{,,,255}}
- First, second, and third adapters at default values. Fourth
- adapter, id 3 is disabled. Notice that leading commas simply
- increment what the first number effects, and there are no need
- for trailing commas. When you close out an adapter, or the
- entire entry, anything not explicitly set stays at the default
- value.
-
- A final note on this option. The scanner I used for this isn't
- perfect or highly robust. If you mess the line up, the worst that
- should happen is that the line will get ignored. If you don't
- close out the entire entry with the final bracket, then any other
- aic7xxx options after this will get ignored. So, in general, be
- sure of what you are entering, and after you have it right, just
- add it to the lilo.conf file so there won't be any mistakes. As
- a means of checking this parser, the entire tag_info array for
- each card is now printed out in the /proc/scsi/aic7xxx/x file. You
- can use that to verify that your options were parsed correctly.
-
- Boot command line options may be combined to form the proper set of options
- a user might need. For example, the following is valid:
-
- aic7xxx=verbose,extended,irq_trigger:1
-
- The only requirement is that individual options be separated by a comma or
- a period on the command line.
-
- Module Loading command options
- ------------------------------
- When loading the aic7xxx driver as a module, the exact same options are
- available to the user. However, the syntax to specify the options changes
- slightly. For insmod, you need to wrap the aic7xxx= argument in quotes
- and replace all ',' with '.'. So, for example, a valid insmod line
- would be:
-
- insmod aic7xxx aic7xxx='verbose.irq_trigger:1.extended'
-
- This line should result in the *exact* same behaviour as if you typed
- it in at the lilo prompt and the driver was compiled into the kernel
- instead of being a module. The reason for the single quote is so that
- the shell won't try to interpret anything in the line, such as {.
- Insmod assumes any options starting with a letter instead of a number
- is a character string (which is what we want) and by switching all of
- the commas to periods, insmod won't interpret this as more than one
- string and write junk into our binary image. I consider it a bug in
- the insmod program that even if you wrap your string in quotes (quotes
- that pass the shell mind you and that insmod sees) it still treats
- a comma inside of those quotes as starting a new variable, resulting
- in memory scribbles if you don't switch the commas to periods.
-
-
- Kernel Compile options
- ------------------------------
- The various kernel compile time options for this driver are now fairly
- well documented in the file drivers/scsi/Kconfig. In order to
- see this documentation, you need to use one of the advanced configuration
- programs (menuconfig and xconfig). If you are using the "make menuconfig"
- method of configuring your kernel, then you would simply highlight the
- option in question and hit the ? key. If you are using the "make xconfig"
- method of configuring your kernel, then simply click on the help button
- next to the option you have questions about. The help information from
- the Configure.help file will then get automatically displayed.
-
- /proc support
- ------------------------------
- The /proc support for the AIC7xxx can be found in the /proc/scsi/aic7xxx/
- directory. That directory contains a file for each SCSI controller in
- the system. Each file presents the current configuration and transfer
- statistics (enabled with #define in aic7xxx.c) for each controller.
-
- Thanks to Michael Neuffer for his upper-level SCSI help, and
- Matthew Jacob for statistics support.
-
- Debugging the driver
- ------------------------------
- Should you have problems with this driver, and would like some help in
- getting them solved, there are a couple debugging items built into
- the driver to facilitate getting the needed information from the system.
- In general, I need a complete description of the problem, with as many
- logs as possible concerning what happens. To help with this, there is
- a command option aic7xxx=panic_on_abort. This option, when set, forces
- the driver to panic the kernel on the first SCSI abort issued by the
- mid level SCSI code. If your system is going to reset loops and you
- can't read the screen, then this is what you need. Not only will it
- stop the system, but it also prints out a large amount of state
- information in the process. Second, if you specify the option
- "aic7xxx=verbose:0x1ffff", the system will print out *SOOOO* much
- information as it runs that you won't be able to see anything.
- However, this can actually be very useful if your machine simply
- locks up when trying to boot, since it will pin-point what was last
- happening (in regards to the aic7xxx driver) immediately prior to
- the lockup. This is really only useful if your machine simply can
- not boot up successfully. If you can get your machine to run, then
- this will produce far too much information.
-
- FTP sites
- ------------------------------
- ftp://ftp.redhat.com/pub/aic/
- - Out of date. I used to keep stuff here, but too many people
- complained about having a hard time getting into Red Hat's ftp
- server. So use the web site below instead.
- ftp://ftp.pcnet.com/users/eischen/Linux/
- - Dan Eischen's driver distribution area
- ftp://ekf2.vsb.cz/pub/linux/kernel/aic7xxx/ftp.teleport.com/
- - European Linux mirror of Teleport site
-
- Web sites
- ------------------------------
- http://people.redhat.com/dledford/
- - My web site, also the primary aic7xxx site with several related
- pages.
-
-Dean W. Gehnert
-deang@teleport.com
-
-$Revision: 3.0 $
-
-Modified by Doug Ledford 1998-2000
-
diff --git a/Documentation/scsi/scsi_eh.txt b/Documentation/scsi/scsi_eh.txt
index 6ff16b620d8..a0c85110a07 100644
--- a/Documentation/scsi/scsi_eh.txt
+++ b/Documentation/scsi/scsi_eh.txt
@@ -42,20 +42,14 @@ discussion.
Once LLDD gets hold of a scmd, either the LLDD will complete the
command by calling scsi_done callback passed from midlayer when
-invoking hostt->queuecommand() or SCSI midlayer will time it out.
+invoking hostt->queuecommand() or the block layer will time it out.
[1-2-1] Completing a scmd w/ scsi_done
For all non-EH commands, scsi_done() is the completion callback. It
-does the following.
-
- 1. Delete timeout timer. If it fails, it means that timeout timer
- has expired and is going to finish the command. Just return.
-
- 2. Link scmd to per-cpu scsi_done_q using scmd->en_entry
-
- 3. Raise SCSI_SOFTIRQ
+just calls blk_complete_request() to delete the block layer timer and
+raise SCSI_SOFTIRQ
SCSI_SOFTIRQ handler scsi_softirq calls scsi_decide_disposition() to
determine what to do with the command. scsi_decide_disposition()
@@ -64,10 +58,12 @@ with the command.
- SUCCESS
scsi_finish_command() is invoked for the command. The
- function does some maintenance choirs and notify completion by
- calling scmd->done() callback, which, for fs requests, would
- be HLD completion callback - sd:sd_rw_intr, sr:rw_intr,
- st:st_intr.
+ function does some maintenance chores and then calls
+ scsi_io_completion() to finish the I/O.
+ scsi_io_completion() then notifies the block layer on
+ the completed request by calling blk_end_request and
+ friends or figures out what to do with the remainder
+ of the data in case of an error.
- NEEDS_RETRY
- ADD_TO_MLQUEUE
@@ -86,33 +82,45 @@ function
1. invokes optional hostt->eh_timed_out() callback. Return value can
be one of
- - EH_HANDLED
- This indicates that eh_timed_out() dealt with the timeout. The
- scmd is passed to __scsi_done() and thus linked into per-cpu
- scsi_done_q. Normal command completion described in [1-2-1]
- follows.
+ - BLK_EH_HANDLED
+ This indicates that eh_timed_out() dealt with the timeout.
+ The command is passed back to the block layer and completed
+ via __blk_complete_requests().
+
+ *NOTE* After returning BLK_EH_HANDLED the SCSI layer is
+ assumed to be finished with the command, and no other
+ functions from the SCSI layer will be called. So this
+ should typically only be returned if the eh_timed_out()
+ handler raced with normal completion.
- - EH_RESET_TIMER
+ - BLK_EH_RESET_TIMER
This indicates that more time is required to finish the
command. Timer is restarted. This action is counted as a
retry and only allowed scmd->allowed + 1(!) times. Once the
- limit is reached, action for EH_NOT_HANDLED is taken instead.
+ limit is reached, action for BLK_EH_NOT_HANDLED is taken instead.
- *NOTE* This action is racy as the LLDD could finish the scmd
- after the timeout has expired but before it's added back. In
- such cases, scsi_done() would think that timeout has occurred
- and return without doing anything. We lose completion and the
- command will time out again.
-
- - EH_NOT_HANDLED
- This is the same as when eh_timed_out() callback doesn't exist.
+ - BLK_EH_NOT_HANDLED
+ eh_timed_out() callback did not handle the command.
Step #2 is taken.
+ 2. If the host supports asynchronous completion (as indicated by the
+ no_async_abort setting in the host template) scsi_abort_command()
+ is invoked to schedule an asynchrous abort. If that fails
+ Step #3 is taken.
+
2. scsi_eh_scmd_add(scmd, SCSI_EH_CANCEL_CMD) is invoked for the
command. See [1-3] for more information.
+[1-3] Asynchronous command aborts
+
+ After a timeout occurs a command abort is scheduled from
+ scsi_abort_command(). If the abort is successful the command
+ will either be retried (if the number of retries is not exhausted)
+ or terminated with DID_TIME_OUT.
+ Otherwise scsi_eh_scmd_add() is invoked for the command.
+ See [1-4] for more information.
-[1-3] How EH takes over
+[1-4] How EH takes over
scmds enter EH via scsi_eh_scmd_add(), which does the following.
@@ -320,7 +328,8 @@ scmd->allowed.
<<scsi_eh_abort_cmds>>
- This action is taken for each timed out command.
+ This action is taken for each timed out command when
+ no_async_abort is enabled in the host template.
hostt->eh_abort_handler() is invoked for each scmd. The
handler returns SUCCESS if it has succeeded to make LLDD and
all related hardware forget about the scmd.
diff --git a/Documentation/scsi/scsi_mid_low_api.txt b/Documentation/scsi/scsi_mid_low_api.txt
index 2b06aba4fa0..d6a9bdeee7f 100644
--- a/Documentation/scsi/scsi_mid_low_api.txt
+++ b/Documentation/scsi/scsi_mid_low_api.txt
@@ -882,8 +882,11 @@ Details:
*
* Calling context: kernel thread
*
- * Notes: Invoked from scsi_eh thread. No other commands will be
- * queued on current host during eh.
+ * Notes: If 'no_async_abort' is defined this callback
+ * will be invoked from scsi_eh thread. No other commands
+ * will then be queued on current host during eh.
+ * Otherwise it will be called whenever scsi_times_out()
+ * is called due to a command timeout.
*
* Optionally defined in: LLD
**/
@@ -1257,6 +1260,8 @@ of interest:
address space
use_clustering - 1=>SCSI commands in mid level's queue can be merged,
0=>disallow SCSI command merging
+ no_async_abort - 1=>Asynchronous aborts are not supported
+ 0=>Timed-out commands will be aborted asynchronously
hostt - pointer to driver's struct scsi_host_template from which
this struct Scsi_Host instance was spawned
hostt->proc_name - name of LLD. This is the driver name that sysfs uses
diff --git a/Documentation/scsi/scsi_transport_srp/Makefile b/Documentation/scsi/scsi_transport_srp/Makefile
new file mode 100644
index 00000000000..5f6b567e955
--- /dev/null
+++ b/Documentation/scsi/scsi_transport_srp/Makefile
@@ -0,0 +1,7 @@
+all: rport_state_diagram.svg rport_state_diagram.png
+
+rport_state_diagram.svg: rport_state_diagram.dot
+ dot -Tsvg -o $@ $<
+
+rport_state_diagram.png: rport_state_diagram.dot
+ dot -Tpng -o $@ $<
diff --git a/Documentation/scsi/scsi_transport_srp/rport_state_diagram.dot b/Documentation/scsi/scsi_transport_srp/rport_state_diagram.dot
new file mode 100644
index 00000000000..75d610d6411
--- /dev/null
+++ b/Documentation/scsi/scsi_transport_srp/rport_state_diagram.dot
@@ -0,0 +1,26 @@
+digraph srp_initiator {
+ node [shape = doublecircle]; running lost;
+ node [shape = circle];
+
+ {
+ rank = min;
+ running_rta [ label = "running;\nreconnect\ntimer\nactive" ];
+ };
+ running [ label = "running;\nreconnect\ntimer\nstopped" ];
+ blocked;
+ failfast [ label = "fail I/O\nfast" ];
+ lost;
+
+ running -> running_rta [ label = "fast_io_fail_tmo = off and\ndev_loss_tmo = off;\nsrp_start_tl_fail_timers()" ];
+ running_rta -> running [ label = "fast_io_fail_tmo = off and\ndev_loss_tmo = off;\nreconnecting succeeded" ];
+ running -> blocked [ label = "fast_io_fail_tmo >= 0 or\ndev_loss_tmo >= 0;\nsrp_start_tl_fail_timers()" ];
+ running -> failfast [ label = "fast_io_fail_tmo = off and\ndev_loss_tmo = off;\nreconnecting failed\n" ];
+ blocked -> failfast [ label = "fast_io_fail_tmo\nexpired or\nreconnecting\nfailed" ];
+ blocked -> lost [ label = "dev_loss_tmo\nexpired or\nsrp_stop_rport_timers()" ];
+ failfast -> lost [ label = "dev_loss_tmo\nexpired or\nsrp_stop_rport_timers()" ];
+ blocked -> running [ label = "reconnecting\nsucceeded" ];
+ failfast -> failfast [ label = "reconnecting\nfailed" ];
+ failfast -> running [ label = "reconnecting\nsucceeded" ];
+ running -> lost [ label = "srp_stop_rport_timers()" ];
+ running_rta -> lost [ label = "srp_stop_rport_timers()" ];
+}
diff --git a/Documentation/security/00-INDEX b/Documentation/security/00-INDEX
index 414235c1fcf..45c82fd3e9d 100644
--- a/Documentation/security/00-INDEX
+++ b/Documentation/security/00-INDEX
@@ -22,3 +22,5 @@ keys.txt
- description of the kernel key retention service.
tomoyo.txt
- documentation on the TOMOYO Linux Security Module.
+IMA-templates.txt
+ - documentation on the template management mechanism for IMA.
diff --git a/Documentation/security/IMA-templates.txt b/Documentation/security/IMA-templates.txt
new file mode 100644
index 00000000000..a4e102dddfe
--- /dev/null
+++ b/Documentation/security/IMA-templates.txt
@@ -0,0 +1,89 @@
+ IMA Template Management Mechanism
+
+
+==== INTRODUCTION ====
+
+The original 'ima' template is fixed length, containing the filedata hash
+and pathname. The filedata hash is limited to 20 bytes (md5/sha1).
+The pathname is a null terminated string, limited to 255 characters.
+To overcome these limitations and to add additional file metadata, it is
+necessary to extend the current version of IMA by defining additional
+templates. For example, information that could be possibly reported are
+the inode UID/GID or the LSM labels either of the inode and of the process
+that is accessing it.
+
+However, the main problem to introduce this feature is that, each time
+a new template is defined, the functions that generate and display
+the measurements list would include the code for handling a new format
+and, thus, would significantly grow over the time.
+
+The proposed solution solves this problem by separating the template
+management from the remaining IMA code. The core of this solution is the
+definition of two new data structures: a template descriptor, to determine
+which information should be included in the measurement list; a template
+field, to generate and display data of a given type.
+
+Managing templates with these structures is very simple. To support
+a new data type, developers define the field identifier and implement
+two functions, init() and show(), respectively to generate and display
+measurement entries. Defining a new template descriptor requires
+specifying the template format, a string of field identifiers separated
+by the '|' character. While in the current implementation it is possible
+to define new template descriptors only by adding their definition in the
+template specific code (ima_template.c), in a future version it will be
+possible to register a new template on a running kernel by supplying to IMA
+the desired format string. In this version, IMA initializes at boot time
+all defined template descriptors by translating the format into an array
+of template fields structures taken from the set of the supported ones.
+
+After the initialization step, IMA will call ima_alloc_init_template()
+(new function defined within the patches for the new template management
+mechanism) to generate a new measurement entry by using the template
+descriptor chosen through the kernel configuration or through the newly
+introduced 'ima_template=' kernel command line parameter. It is during this
+phase that the advantages of the new architecture are clearly shown:
+the latter function will not contain specific code to handle a given template
+but, instead, it simply calls the init() method of the template fields
+associated to the chosen template descriptor and store the result (pointer
+to allocated data and data length) in the measurement entry structure.
+
+The same mechanism is employed to display measurements entries.
+The functions ima[_ascii]_measurements_show() retrieve, for each entry,
+the template descriptor used to produce that entry and call the show()
+method for each item of the array of template fields structures.
+
+
+
+==== SUPPORTED TEMPLATE FIELDS AND DESCRIPTORS ====
+
+In the following, there is the list of supported template fields
+('<identifier>': description), that can be used to define new template
+descriptors by adding their identifier to the format string
+(support for more data types will be added later):
+
+ - 'd': the digest of the event (i.e. the digest of a measured file),
+ calculated with the SHA1 or MD5 hash algorithm;
+ - 'n': the name of the event (i.e. the file name), with size up to 255 bytes;
+ - 'd-ng': the digest of the event, calculated with an arbitrary hash
+ algorithm (field format: [<hash algo>:]digest, where the digest
+ prefix is shown only if the hash algorithm is not SHA1 or MD5);
+ - 'n-ng': the name of the event, without size limitations;
+ - 'sig': the file signature.
+
+
+Below, there is the list of defined template descriptors:
+ - "ima": its format is 'd|n';
+ - "ima-ng" (default): its format is 'd-ng|n-ng';
+ - "ima-sig": its format is 'd-ng|n-ng|sig'.
+
+
+
+==== USE ====
+
+To specify the template descriptor to be used to generate measurement entries,
+currently the following methods are supported:
+
+ - select a template descriptor among those supported in the kernel
+ configuration ('ima-ng' is the default choice);
+ - specify a template descriptor name from the kernel command line through
+ the 'ima_template=' parameter.
diff --git a/Documentation/security/Smack.txt b/Documentation/security/Smack.txt
index 7a2d30c132e..b6ef7e9dba3 100644
--- a/Documentation/security/Smack.txt
+++ b/Documentation/security/Smack.txt
@@ -3,7 +3,7 @@
"Good for you, you've decided to clean the elevator!"
- The Elevator, from Dark Star
-Smack is the the Simplified Mandatory Access Control Kernel.
+Smack is the Simplified Mandatory Access Control Kernel.
Smack is a kernel based implementation of mandatory access
control that includes simplicity in its primary design goals.
@@ -204,6 +204,16 @@ onlycap
these capabilities are effective at for processes with any
label. The value is set by writing the desired label to the
file or cleared by writing "-" to the file.
+ptrace
+ This is used to define the current ptrace policy
+ 0 - default: this is the policy that relies on smack access rules.
+ For the PTRACE_READ a subject needs to have a read access on
+ object. For the PTRACE_ATTACH a read-write access is required.
+ 1 - exact: this is the policy that limits PTRACE_ATTACH. Attach is
+ only allowed when subject's and object's labels are equal.
+ PTRACE_READ is not affected. Can be overriden with CAP_SYS_PTRACE.
+ 2 - draconian: this policy behaves like the 'exact' above with an
+ exception that it can't be overriden with CAP_SYS_PTRACE.
revoke-subject
Writing a Smack label here sets the access to '-' for all access
rules with that subject label.
diff --git a/Documentation/security/Yama.txt b/Documentation/security/Yama.txt
index dd908cf64ec..227a63f018a 100644
--- a/Documentation/security/Yama.txt
+++ b/Documentation/security/Yama.txt
@@ -37,7 +37,7 @@ still work as root).
In mode 1, software that has defined application-specific relationships
between a debugging process and its inferior (crash handlers, etc),
prctl(PR_SET_PTRACER, pid, ...) can be used. An inferior can declare which
-other process (and its descendents) are allowed to call PTRACE_ATTACH
+other process (and its descendants) are allowed to call PTRACE_ATTACH
against it. Only one such declared debugging process can exists for
each inferior at a time. For example, this is used by KDE, Chromium, and
Firefox's crash handlers, and by Wine for allowing only Wine processes
diff --git a/Documentation/security/keys.txt b/Documentation/security/keys.txt
index 7b4145d0045..a4c33f1a7c6 100644
--- a/Documentation/security/keys.txt
+++ b/Documentation/security/keys.txt
@@ -865,15 +865,14 @@ encountered:
calling processes has a searchable link to the key from one of its
keyrings. There are three functions for dealing with these:
- key_ref_t make_key_ref(const struct key *key,
- unsigned long possession);
+ key_ref_t make_key_ref(const struct key *key, bool possession);
struct key *key_ref_to_ptr(const key_ref_t key_ref);
- unsigned long is_key_possessed(const key_ref_t key_ref);
+ bool is_key_possessed(const key_ref_t key_ref);
The first function constructs a key reference from a key pointer and
- possession information (which must be 0 or 1 and not any other value).
+ possession information (which must be true or false).
The second function retrieves the key pointer from a reference and the
third retrieves the possession flag.
@@ -961,14 +960,17 @@ payload contents" for more information.
the argument will not be parsed.
-(*) Extra references can be made to a key by calling the following function:
+(*) Extra references can be made to a key by calling one of the following
+ functions:
+ struct key *__key_get(struct key *key);
struct key *key_get(struct key *key);
- These need to be disposed of by calling key_put() when they've been
- finished with. The key pointer passed in will be returned. If the pointer
- is NULL or CONFIG_KEYS is not set then the key will not be dereferenced and
- no increment will take place.
+ Keys so references will need to be disposed of by calling key_put() when
+ they've been finished with. The key pointer passed in will be returned.
+
+ In the case of key_get(), if the pointer is NULL or CONFIG_KEYS is not set
+ then the key will not be dereferenced and no increment will take place.
(*) A key's serial number can be obtained by calling:
diff --git a/Documentation/serial/00-INDEX b/Documentation/serial/00-INDEX
index 1f1b22fbd73..8021a9f29fc 100644
--- a/Documentation/serial/00-INDEX
+++ b/Documentation/serial/00-INDEX
@@ -2,21 +2,15 @@
- this file.
README.cycladesZ
- info on Cyclades-Z firmware loading.
-digiepca.txt
- - info on Digi Intl. {PC,PCI,EISA}Xx and Xem series cards.
-hayes-esp.txt
- - info on using the Hayes ESP serial driver.
+driver
+ - intro to the low level serial driver.
moxa-smartio
- file with info on installing/using Moxa multiport serial driver.
-riscom8.txt
- - notes on using the RISCom/8 multi-port serial driver.
+n_gsm.txt
+ - GSM 0710 tty multiplexer howto.
rocket.txt
- info on the Comtrol RocketPort multiport serial driver.
serial-rs485.txt
- info about RS485 structures and support in the kernel.
-specialix.txt
- - info on hardware/driver for specialix IO8+ multiport serial card.
-sx.txt
- - info on the Specialix SX/SI multiport serial driver.
tty.txt
- guide to the locking policies of the tty layer.
diff --git a/Documentation/serial/digiepca.txt b/Documentation/serial/digiepca.txt
deleted file mode 100644
index f2560e22f2c..00000000000
--- a/Documentation/serial/digiepca.txt
+++ /dev/null
@@ -1,98 +0,0 @@
-NOTE: This driver is obsolete. Digi provides a 2.6 driver (dgdm) at
-http://www.digi.com for PCI cards. They no longer maintain this driver,
-and have no 2.6 driver for ISA cards.
-
-This driver requires a number of user-space tools. They can be acquired from
-http://www.digi.com, but only works with 2.4 kernels.
-
-
-The Digi Intl. epca driver.
-----------------------------
-The Digi Intl. epca driver for Linux supports the following boards:
-
-Digi PC/Xem, PC/Xr, PC/Xe, PC/Xi, PC/Xeve
-Digi EISA/Xem, PCI/Xem, PCI/Xr
-
-Limitations:
-------------
-Currently the driver only autoprobes for supported PCI boards.
-
-The Linux MAKEDEV command does not support generating the Digiboard
-Devices. Users executing digiConfig to setup EISA and PC series cards
-will have their device nodes automatically constructed (cud?? for ~CLOCAL,
-and ttyD?? for CLOCAL). Users wishing to boot their board from the LILO
-prompt, or those users booting PCI cards may use buildDIGI to construct
-the necessary nodes.
-
-Notes:
-------
-This driver may be configured via LILO. For users who have already configured
-their driver using digiConfig, configuring from LILO will override previous
-settings. Multiple boards may be configured by issuing multiple LILO command
-lines. For examples see the bottom of this document.
-
-Device names start at 0 and continue up. Beware of this as previous Digi
-drivers started device names with 1.
-
-PCI boards are auto-detected and configured by the driver. PCI boards will
-be allocated device numbers (internally) beginning with the lowest PCI slot
-first. In other words a PCI card in slot 3 will always have higher device
-nodes than a PCI card in slot 1.
-
-LILO config examples:
----------------------
-Using LILO's APPEND command, a string of comma separated identifiers or
-integers can be used to configure supported boards. The six values in order
-are:
-
- Enable/Disable this card or Override,
- Type of card: PC/Xe (AccelePort) (0), PC/Xeve (1), PC/Xem or PC/Xr (2),
- EISA/Xem (3), PC/64Xe (4), PC/Xi (5),
- Enable/Disable alternate pin arrangement,
- Number of ports on this card,
- I/O Port where card is configured (in HEX if using string identifiers),
- Base of memory window (in HEX if using string identifiers),
-
-NOTE : PCI boards are auto-detected and configured. Do not attempt to
-configure PCI boards with the LILO append command. If you wish to override
-previous configuration data (As set by digiConfig), but you do not wish to
-configure any specific card (Example if there are PCI cards in the system)
-the following override command will accomplish this:
--> append="digi=2"
-
-Samples:
- append="digiepca=E,PC/Xe,D,16,200,D0000"
- or
- append="digi=1,0,0,16,512,851968"
-
-Supporting Tools:
------------------
-Supporting tools include digiDload, digiConfig, buildPCI, and ditty. See
-drivers/char/README.epca for more details. Note,
-this driver REQUIRES that digiDload be executed prior to it being used.
-Failure to do this will result in an ENODEV error.
-
-Documentation:
---------------
-Complete documentation for this product may be found in the tool package.
-
-Sources of information and support:
------------------------------------
-Digi Intl. support site for this product:
-
--> http://www.digi.com
-
-Acknowledgments:
-----------------
-Much of this work (And even text) was derived from a similar document
-supporting the original public domain DigiBoard driver Copyright (C)
-1994,1995 Troy De Jongh. Many thanks to Christoph Lameter
-(christoph@lameter.com) and Mike McLagan (mike.mclagan@linux.org) who authored
-and contributed to the original document.
-
-Changelog:
-----------
-10-29-04: Update status of driver, remove dead links in document
- James Nelson <james4765@gmail.com>
-
-2000 (?) Original Document
diff --git a/Documentation/serial/driver b/Documentation/serial/driver
index 067c47d4691..3bba1aeb799 100644
--- a/Documentation/serial/driver
+++ b/Documentation/serial/driver
@@ -264,10 +264,6 @@ hardware.
Locking: none.
Interrupts: caller dependent.
- set_wake(port,state)
- Enable/disable power management wakeup on serial activity. Not
- currently implemented.
-
type(port)
Return a pointer to a string constant describing the specified
port, or return NULL, in which case the string 'unknown' is
@@ -433,3 +429,28 @@ thus:
struct uart_port port;
int my_stuff;
};
+
+Modem control lines via GPIO
+----------------------------
+
+Some helpers are provided in order to set/get modem control lines via GPIO.
+
+mctrl_gpio_init(dev, idx):
+ This will get the {cts,rts,...}-gpios from device tree if they are
+ present and request them, set direction etc, and return an
+ allocated structure. devm_* functions are used, so there's no need
+ to call mctrl_gpio_free().
+
+mctrl_gpio_free(dev, gpios):
+ This will free the requested gpios in mctrl_gpio_init().
+ As devm_* function are used, there's generally no need to call
+ this function.
+
+mctrl_gpio_to_gpiod(gpios, gidx)
+ This returns the gpio structure associated to the modem line index.
+
+mctrl_gpio_set(gpios, mctrl):
+ This will sets the gpios according to the mctrl state.
+
+mctrl_gpio_get(gpios, mctrl):
+ This will update mctrl with the gpios values.
diff --git a/Documentation/serial/riscom8.txt b/Documentation/serial/riscom8.txt
deleted file mode 100644
index 14f61fdad7c..00000000000
--- a/Documentation/serial/riscom8.txt
+++ /dev/null
@@ -1,36 +0,0 @@
-* NOTE - this is an unmaintained driver. The original author cannot be located.
-
-SDL Communications is now SBS Technologies, and does not have any
-information on these ancient ISA cards on their website.
-
-James Nelson <james4765@gmail.com> - 12-12-2004
-
- This is the README for RISCom/8 multi-port serial driver
- (C) 1994-1996 D.Gorodchanin
- See file LICENSE for terms and conditions.
-
-NOTE: English is not my native language.
- I'm sorry for any mistakes in this text.
-
-Misc. notes for RISCom/8 serial driver, in no particular order :)
-
-1) This driver can support up to 4 boards at time.
- Use string "riscom8=0xXXX,0xXXX,0xXXX,0xXXX" at LILO prompt, for
- setting I/O base addresses for boards. If you compile driver
- as module use modprobe options "iobase=0xXXX iobase1=0xXXX iobase2=..."
-
-2) The driver partially supports famous 'setserial' program, you can use almost
- any of its options, excluding port & irq settings.
-
-3) There are some misc. defines at the beginning of riscom8.c, please read the
- comments and try to change some of them in case of problems.
-
-4) I consider the current state of the driver as BETA.
-
-5) SDL Communications WWW page is http://www.sdlcomm.com.
-
-6) You can use the MAKEDEV program to create RISCom/8 /dev/ttyL* entries.
-
-7) Minor numbers for first board are 0-7, for second 8-15, etc.
-
-22 Apr 1996.
diff --git a/Documentation/serial/specialix.txt b/Documentation/serial/specialix.txt
deleted file mode 100644
index 6eb6f3a3331..00000000000
--- a/Documentation/serial/specialix.txt
+++ /dev/null
@@ -1,383 +0,0 @@
-
- specialix.txt -- specialix IO8+ multiport serial driver readme.
-
-
-
- Copyright (C) 1997 Roger Wolff (R.E.Wolff@BitWizard.nl)
-
- Specialix pays for the development and support of this driver.
- Please DO contact io8-linux@specialix.co.uk if you require
- support.
-
- This driver was developed in the BitWizard linux device
- driver service. If you require a linux device driver for your
- product, please contact devices@BitWizard.nl for a quote.
-
- This code is firmly based on the riscom/8 serial driver,
- written by Dmitry Gorodchanin. The specialix IO8+ card
- programming information was obtained from the CL-CD1865 Data
- Book, and Specialix document number 6200059: IO8+ Hardware
- Functional Specification, augmented by document number 6200088:
- Merak Hardware Functional Specification. (IO8+/PCI is also
- called Merak)
-
-
- This program is free software; you can redistribute it and/or
- modify it under the terms of the GNU General Public License as
- published by the Free Software Foundation; either version 2 of
- the License, or (at your option) any later version.
-
- This program is distributed in the hope that it will be
- useful, but WITHOUT ANY WARRANTY; without even the implied
- warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
- PURPOSE. See the GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public
- License along with this program; if not, write to the Free
- Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139,
- USA.
-
-
-Intro
-=====
-
-
-This file contains some random information, that I like to have online
-instead of in a manual that can get lost. Ever misplace your Linux
-kernel sources? And the manual of one of the boards in your computer?
-
-
-Addresses and interrupts
-========================
-
-Address dip switch settings:
-The dip switch sets bits 2-9 of the IO address.
-
- 9 8 7 6 5 4 3 2
- +-----------------+
- 0 | X X X X X X X |
- | | = IoBase = 0x100
- 1 | X |
- +-----------------+ ------ RS232 connectors ---->
-
- | | |
- edge connector
- | | |
- V V V
-
-Base address 0x100 caused a conflict in one of my computers once. I
-haven't the foggiest why. My Specialix card is now at 0x180. My
-other computer runs just fine with the Specialix card at 0x100....
-The card occupies 4 addresses, but actually only two are really used.
-
-The PCI version doesn't have any dip switches. The BIOS assigns
-an IO address.
-
-The driver now still autoprobes at 0x100, 0x180, 0x250 and 0x260. If
-that causes trouble for you, please report that. I'll remove
-autoprobing then.
-
-The driver will tell the card what IRQ to use, so you don't have to
-change any jumpers to change the IRQ. Just use a command line
-argument (irq=xx) to the insmod program to set the interrupt.
-
-The BIOS assigns the IRQ on the PCI version. You have no say in what
-IRQ to use in that case.
-
-If your specialix cards are not at the default locations, you can use
-the kernel command line argument "specialix=io0,irq0,io1,irq1...".
-Here "io0" is the io address for the first card, and "irq0" is the
-irq line that the first card should use. And so on.
-
-Examples.
-
-You use the driver as a module and have three cards at 0x100, 0x250
-and 0x180. And some way or another you want them detected in that
-order. Moreover irq 12 is taken (e.g. by your PS/2 mouse).
-
- insmod specialix.o iobase=0x100,0x250,0x180 irq=9,11,15
-
-The same three cards, but now in the kernel would require you to
-add
-
- specialix=0x100,9,0x250,11,0x180,15
-
-to the command line. This would become
-
- append="specialix=0x100,9,0x250,11,0x180,15"
-
-in your /etc/lilo.conf file if you use lilo.
-
-The Specialix driver is slightly odd: It allows you to have the second
-or third card detected without having a first card. This has
-advantages and disadvantages. A slot that isn't filled by an ISA card,
-might be filled if a PCI card is detected. Thus if you have an ISA
-card at 0x250 and a PCI card, you would get:
-
-sx0: specialix IO8+ Board at 0x100 not found.
-sx1: specialix IO8+ Board at 0x180 not found.
-sx2: specialix IO8+ board detected at 0x250, IRQ 12, CD1865 Rev. B.
-sx3: specialix IO8+ Board at 0x260 not found.
-sx0: specialix IO8+ board detected at 0xd800, IRQ 9, CD1865 Rev. B.
-
-This would happen if you don't give any probe hints to the driver.
-If you would specify:
-
- specialix=0x250,11
-
-you'd get the following messages:
-
-sx0: specialix IO8+ board detected at 0x250, IRQ 11, CD1865 Rev. B.
-sx1: specialix IO8+ board detected at 0xd800, IRQ 9, CD1865 Rev. B.
-
-ISA probing is aborted after the IO address you gave is exhausted, and
-the PCI card is now detected as the second card. The ISA card is now
-also forced to IRQ11....
-
-
-Baud rates
-==========
-
-The rev 1.2 and below boards use a CL-CD1864. These chips can only
-do 64kbit. The rev 1.3 and newer boards use a CL-CD1865. These chips
-are officially capable of 115k2.
-
-The Specialix card uses a 25MHz crystal (in times two mode, which in
-fact is a divided by two mode). This is not enough to reach the rated
-115k2 on all ports at the same time. With this clock rate you can only
-do 37% of this rate. This means that at 115k2 on all ports you are
-going to lose characters (The chip cannot handle that many incoming
-bits at this clock rate.) (Yes, you read that correctly: there is a
-limit to the number of -=bits=- per second that the chip can handle.)
-
-If you near the "limit" you will first start to see a graceful
-degradation in that the chip cannot keep the transmitter busy at all
-times. However with a central clock this slow, you can also get it to
-miss incoming characters. The driver will print a warning message when
-you are outside the official specs. The messages usually show up in
-the file /var/log/messages .
-
-The specialix card cannot reliably do 115k2. If you use it, you have
-to do "extensive testing" (*) to verify if it actually works.
-
-When "mgetty" communicates with my modem at 115k2 it reports:
-got: +++[0d]ATQ0V1H0[0d][0d][8a]O[cb][0d][8a]
- ^^^^ ^^^^ ^^^^
-
-The three characters that have the "^^^" under them have suffered a
-bit error in the highest bit. In conclusion: I've tested it, and found
-that it simply DOESN'T work for me. I also suspect that this is also
-caused by the baud rate being just a little bit out of tune.
-
-I upgraded the crystal to 66Mhz on one of my Specialix cards. Works
-great! Contact me for details. (Voids warranty, requires a steady hand
-and more such restrictions....)
-
-
-(*) Cirrus logic CD1864 databook, page 40.
-
-
-Cables for the Specialix IO8+
-=============================
-
-The pinout of the connectors on the IO8+ is:
-
- pin short direction long name
- name
- Pin 1 DCD input Data Carrier Detect
- Pin 2 RXD input Receive
- Pin 3 DTR/RTS output Data Terminal Ready/Ready To Send
- Pin 4 GND - Ground
- Pin 5 TXD output Transmit
- Pin 6 CTS input Clear To Send
-
-
- -- 6 5 4 3 2 1 --
- | |
- | |
- | |
- | |
- +----- -----+
- |__________|
- clip
-
- Front view of an RJ12 connector. Cable moves "into" the paper.
- (the plug is ready to plug into your mouth this way...)
-
-
- NULL cable. I don't know who is going to use these except for
- testing purposes, but I tested the cards with this cable. (It
- took quite a while to figure out, so I'm not going to delete
- it. So there! :-)
-
-
- This end goes This end needs
- straight into the some twists in
- RJ12 plug. the wiring.
- IO8+ RJ12 IO8+ RJ12
- 1 DCD white -
- - - 1 DCD
- 2 RXD black 5 TXD
- 3 DTR/RTS red 6 CTS
- 4 GND green 4 GND
- 5 TXD yellow 2 RXD
- 6 CTS blue 3 DTR/RTS
-
-
- Same NULL cable, but now sorted on the second column.
-
- 1 DCD white -
- - - 1 DCD
- 5 TXD yellow 2 RXD
- 6 CTS blue 3 DTR/RTS
- 4 GND green 4 GND
- 2 RXD black 5 TXD
- 3 DTR/RTS red 6 CTS
-
-
-
- This is a modem cable usable for hardware handshaking:
- RJ12 DB25 DB9
- 1 DCD white 8 DCD 1 DCD
- 2 RXD black 3 RXD 2 RXD
- 3 DTR/RTS red 4 RTS 7 RTS
- 4 GND green 7 GND 5 GND
- 5 TXD yellow 2 TXD 3 TXD
- 6 CTS blue 5 CTS 8 CTS
- +---- 6 DSR 6 DSR
- +---- 20 DTR 4 DTR
-
- This is a modem cable usable for software handshaking:
- It allows you to reset the modem using the DTR ioctls.
- I (REW) have never tested this, "but xxxxxxxxxxxxx
- says that it works." If you test this, please
- tell me and I'll fill in your name on the xxx's.
-
- RJ12 DB25 DB9
- 1 DCD white 8 DCD 1 DCD
- 2 RXD black 3 RXD 2 RXD
- 3 DTR/RTS red 20 DTR 4 DTR
- 4 GND green 7 GND 5 GND
- 5 TXD yellow 2 TXD 3 TXD
- 6 CTS blue 5 CTS 8 CTS
- +---- 6 DSR 6 DSR
- +---- 4 RTS 7 RTS
-
- I bought a 6 wire flat cable. It was colored as indicated.
- Check that yours is the same before you trust me on this.
-
-
-Hardware handshaking issues.
-============================
-
-The driver can be told to operate in two different ways. The default
-behaviour is specialix.sx_rtscts = 0 where the pin behaves as DTR when
-hardware handshaking is off. It behaves as the RTS hardware
-handshaking signal when hardware handshaking is selected.
-
-When you use this, you have to use the appropriate cable. The
-cable will either be compatible with hardware handshaking or with
-software handshaking. So switching on the fly is not really an
-option.
-
-I actually prefer to use the "specialix.sx_rtscts=1" option.
-This makes the DTR/RTS pin always an RTS pin, and ioctls to
-change DTR are always ignored. I have a cable that is configured
-for this.
-
-
-Ports and devices
-=================
-
-Port 0 is the one furthest from the card-edge connector.
-
-Devices:
-
-You should make the devices as follows:
-
-bash
-cd /dev
-for i in 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 \
- 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
-do
- echo -n "$i "
- mknod /dev/ttyW$i c 75 $i
- mknod /dev/cuw$i c 76 $i
-done
-echo ""
-
-If your system doesn't come with these devices preinstalled, bug your
-linux-vendor about this. They have had ample time to get this
-implemented by now.
-
-You cannot have more than 4 boards in one computer. The card only
-supports 4 different interrupts. If you really want this, contact me
-about this and I'll give you a few tips (requires soldering iron)....
-
-If you have enough PCI slots, you can probably use more than 4 PCI
-versions of the card though....
-
-The PCI version of the card cannot adhere to the mechanical part of
-the PCI spec because the 8 serial connectors are simply too large. If
-it doesn't fit in your computer, bring back the card.
-
-
-------------------------------------------------------------------------
-
-
- Fixed bugs and restrictions:
- - During initialization, interrupts are blindly turned on.
- Having a shadow variable would cause an extra memory
- access on every IO instruction.
- - The interrupt (on the card) should be disabled when we
- don't allocate the Linux end of the interrupt. This allows
- a different driver/card to use it while all ports are not in
- use..... (a la standard serial port)
- == An extra _off variant of the sx_in and sx_out macros are
- now available. They don't set the interrupt enable bit.
- These are used during initialization. Normal operation uses
- the old variant which enables the interrupt line.
- - RTS/DTR issue needs to be implemented according to
- specialix' spec.
- I kind of like the "determinism" of the current
- implementation. Compile time flag?
- == Ok. Compile time flag! Default is how Specialix likes it.
- == Now a config time flag! Gets saved in your config file. Neat!
- - Can you set the IO address from the lilo command line?
- If you need this, bug me about it, I'll make it.
- == Hah! No bugging needed. Fixed! :-)
- - Cirrus logic hasn't gotten back to me yet why the CD1865 can
- and the CD1864 can't do 115k2. I suspect that this is
- because the CD1864 is not rated for 33MHz operation.
- Therefore the CD1864 versions of the card can't do 115k2 on
- all ports just like the CD1865 versions. The driver does
- not block 115k2 on CD1864 cards.
- == I called the Cirrus Logic representative here in Holland.
- The CD1864 databook is identical to the CD1865 databook,
- except for an extra warning at the end. Similar Bit errors
- have been observed in testing at 115k2 on both an 1865 and
- a 1864 chip. I see no reason why I would prohibit 115k2 on
- 1864 chips and not do it on 1865 chips. Actually there is
- reason to prohibit it on BOTH chips. I print a warning.
- If you use 115k2, you're on your own.
- - A spiky CD may send spurious HUPs. Also in CLOCAL???
- -- A fix for this turned out to be counter productive.
- Different fix? Current behaviour is acceptable?
- -- Maybe the current implementation is correct. If anybody
- gets bitten by this, please report, and it will get fixed.
-
- -- Testing revealed that when in CLOCAL, the problem doesn't
- occur. As warned for in the CD1865 manual, the chip may
- send modem intr's on a spike. We could filter those out,
- but that would be a cludge anyway (You'd still risk getting
- a spurious HUP when two spikes occur.).....
-
-
-
- Bugs & restrictions:
- - This is a difficult card to autoprobe.
- You have to WRITE to the address register to even
- read-probe a CD186x register. Disable autodetection?
- -- Specialix: any suggestions?
-
-
diff --git a/Documentation/serial/sx.txt b/Documentation/serial/sx.txt
deleted file mode 100644
index cb4efa0fb5c..00000000000
--- a/Documentation/serial/sx.txt
+++ /dev/null
@@ -1,294 +0,0 @@
-
- sx.txt -- specialix SX/SI multiport serial driver readme.
-
-
-
- Copyright (C) 1997 Roger Wolff (R.E.Wolff@BitWizard.nl)
-
- Specialix pays for the development and support of this driver.
- Please DO contact support@specialix.co.uk if you require
- support.
-
- This driver was developed in the BitWizard linux device
- driver service. If you require a linux device driver for your
- product, please contact devices@BitWizard.nl for a quote.
-
- (History)
- There used to be an SI driver by Simon Allan. This is a complete
- rewrite from scratch. Just a few lines-of-code have been snatched.
-
- (Sources)
- Specialix document number 6210028: SX Host Card and Download Code
- Software Functional Specification.
-
- (Copying)
- This program is free software; you can redistribute it and/or
- modify it under the terms of the GNU General Public License as
- published by the Free Software Foundation; either version 2 of
- the License, or (at your option) any later version.
-
- This program is distributed in the hope that it will be
- useful, but WITHOUT ANY WARRANTY; without even the implied
- warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
- PURPOSE. See the GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public
- License along with this program; if not, write to the Free
- Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139,
- USA.
-
- (Addendum)
- I'd appreciate it that if you have fixes, that you send them
- to me first.
-
-
-Introduction
-============
-
-This file contains some random information, that I like to have online
-instead of in a manual that can get lost. Ever misplace your Linux
-kernel sources? And the manual of one of the boards in your computer?
-
-
-Theory of operation
-===================
-
-An important thing to know is that the driver itself doesn't have the
-firmware for the card. This means that you need the separate package
-"sx_firmware". For now you can get the source at
-
- ftp://ftp.bitwizard.nl/specialix/sx_firmware_<version>.tgz
-
-The firmware load needs a "misc" device, so you'll need to enable the
-"Support for user misc device modules" in your kernel configuration.
-The misc device needs to be called "/dev/specialix_sxctl". It needs
-misc major 10, and minor number 167 (assigned by HPA). The section
-on creating device files below also creates this device.
-
-After loading the sx.o module into your kernel, the driver will report
-the number of cards detected, but because it doesn't have any
-firmware, it will not be able to determine the number of ports. Only
-when you then run "sx_firmware" will the firmware be downloaded and
-the rest of the driver initialized. At that time the sx_firmware
-program will report the number of ports installed.
-
-In contrast with many other multi port serial cards, some of the data
-structures are only allocated when the card knows the number of ports
-that are connected. This means we won't waste memory for 120 port
-descriptor structures when you only have 8 ports. If you experience
-problems due to this, please report them: I haven't seen any.
-
-
-Interrupts
-==========
-
-A multi port serial card, would generate a horrendous amount of
-interrupts if it would interrupt the CPU for every received
-character. Even more than 10 years ago, the trick not to use
-interrupts but to poll the serial cards was invented.
-
-The SX card allow us to do this two ways. First the card limits its
-own interrupt rate to a rate that won't overwhelm the CPU. Secondly,
-we could forget about the cards interrupt completely and use the
-internal timer for this purpose.
-
-Polling the card can take up to a few percent of your CPU. Using the
-interrupts would be better if you have most of the ports idle. Using
-timer-based polling is better if your card almost always has work to
-do. You save the separate interrupt in that case.
-
-In any case, it doesn't really matter all that much.
-
-The most common problem with interrupts is that for ISA cards in a PCI
-system the BIOS has to be told to configure that interrupt as "legacy
-ISA". Otherwise the card can pull on the interrupt line all it wants
-but the CPU won't see this.
-
-If you can't get the interrupt to work, remember that polling mode is
-more efficient (provided you actually use the card intensively).
-
-
-Allowed Configurations
-======================
-
-Some configurations are disallowed. Even though at a glance they might
-seem to work, they are known to lockup the bus between the host card
-and the device concentrators. You should respect the drivers decision
-not to support certain configurations. It's there for a reason.
-
-Warning: Seriously technical stuff ahead. Executive summary: Don't use
-SX cards except configured at a 64k boundary. Skip the next paragraph.
-
-The SX cards can theoretically be placed at a 32k boundary. So for
-instance you can put an SX card at 0xc8000-0xd7fff. This is not a
-"recommended configuration". ISA cards have to tell the bus controller
-how they like their timing. Due to timing issues they have to do this
-based on which 64k window the address falls into. This means that the
-32k window below and above the SX card have to use exactly the same
-timing as the SX card. That reportedly works for other SX cards. But
-you're still left with two useless 32k windows that should not be used
-by anybody else.
-
-
-Configuring the driver
-======================
-
-PCI cards are always detected. The driver auto-probes for ISA cards at
-some sensible addresses. Please report if the auto-probe causes trouble
-in your system, or when a card isn't detected.
-
-I'm afraid I haven't implemented "kernel command line parameters" yet.
-This means that if the default doesn't work for you, you shouldn't use
-the compiled-into-the-kernel version of the driver. Use a module
-instead. If you convince me that you need this, I'll make it for
-you. Deal?
-
-I'm afraid that the module parameters are a bit clumsy. If you have a
-better idea, please tell me.
-
-You can specify several parameters:
-
- sx_poll: number of jiffies between timer-based polls.
-
- Set this to "0" to disable timer based polls.
- Initialization of cards without a working interrupt
- will fail.
-
- Set this to "1" if you want a polling driver.
- (on Intel: 100 polls per second). If you don't use
- fast baud rates, you might consider a value like "5".
- (If you don't know how to do the math, use 1).
-
- sx_slowpoll: Number of jiffies between timer-based polls.
- Set this to "100" to poll once a second.
- This should get the card out of a stall if the driver
- ever misses an interrupt. I've never seen this happen,
- and if it does, that's a bug. Tell me.
-
- sx_maxints: Number of interrupts to request from the card.
- The card normally limits interrupts to about 100 per
- second to offload the host CPU. You can increase this
- number to reduce latency on the card a little.
- Note that if you give a very high number you can overload
- your CPU as well as the CPU on the host card. This setting
- is inaccurate and not recommended for SI cards (But it
- works).
-
- sx_irqmask: The mask of allowable IRQs to use. I suggest you set
- this to 0 (disable IRQs all together) and use polling if
- the assignment of IRQs becomes problematic. This is defined
- as the sum of (1 << irq) 's that you want to allow. So
- sx_irqmask of 8 (1 << 3) specifies that only irq 3 may
- be used by the SX driver. If you want to specify to the
- driver: "Either irq 11 or 12 is ok for you to use", then
- specify (1 << 11) | (1 << 12) = 0x1800 .
-
- sx_debug: You can enable different sorts of debug traces with this.
- At "-1" all debugging traces are active. You'll get several
- times more debugging output than you'll get characters
- transmitted.
-
-
-Baud rates
-==========
-
-Theoretically new SXDCs should be capable of more than 460k
-baud. However the line drivers usually give up before that. Also the
-CPU on the card may not be able to handle 8 channels going at full
-blast at that speed. Moreover, the buffers are not large enough to
-allow operation with 100 interrupts per second. You'll have to realize
-that the card has a 256 byte buffer, so you'll have to increase the
-number of interrupts per second if you have more than 256*100 bytes
-per second to transmit. If you do any performance testing in this
-area, I'd be glad to hear from you...
-
-(Psst Linux users..... I think the Linux driver is more efficient than
-the driver for other OSes. If you can and want to benchmark them
-against each other, be my guest, and report your findings...... :-)
-
-
-Ports and devices
-=================
-
-Port 0 is the top connector on the module closest to the host
-card. Oh, the ports on the SXDCs and TAs are labelled from 1 to 8
-instead of from 0 to 7, as they are numbered by linux. I'm stubborn in
-this: I know for sure that I wouldn't be able to calculate which port
-is which anymore if I would change that....
-
-
-Devices:
-
-You should make the device files as follows:
-
-#!/bin/sh
-# (I recommend that you cut-and-paste this into a file and run that)
-cd /dev
-t=0
-mknod specialix_sxctl c 10 167
-while [ $t -lt 64 ]
- do
- echo -n "$t "
- mknod ttyX$t c 32 $t
- mknod cux$t c 33 $t
- t=`expr $t + 1`
-done
-echo ""
-rm /etc/psdevtab
-ps > /dev/null
-
-
-This creates 64 devices. If you have more, increase the constant on
-the line with "while". The devices start at 0, as is customary on
-Linux. Specialix seems to like starting the numbering at 1.
-
-If your system doesn't come with these devices pre-installed, bug your
-linux-vendor about this. They should have these devices
-"pre-installed" before the new millennium. The "ps" stuff at the end
-is to "tell" ps that the new devices exist.
-
-Officially the maximum number of cards per computer is 4. This driver
-however supports as many cards in one machine as you want. You'll run
-out of interrupts after a few, but you can switch to polled operation
-then. At about 256 ports (More than 8 cards), we run out of minor
-device numbers. Sorry. I suggest you buy a second computer.... (Or
-switch to RIO).
-
-------------------------------------------------------------------------
-
-
- Fixed bugs and restrictions:
- - Hangup processing.
- -- Done.
-
- - the write path in generic_serial (lockup / oops).
- -- Done (Ugly: not the way I want it. Copied from serial.c).
-
- - write buffer isn't flushed at close.
- -- Done. I still seem to lose a few chars at close.
- Sorry. I think that this is a firmware issue. (-> Specialix)
-
- - drain hardware before changing termios
- - Change debug on the fly.
- - ISA free irq -1. (no firmware loaded).
- - adding c8000 as a probe address. Added warning.
- - Add a RAMtest for the RAM on the card.c
- - Crash when opening a port "way" of the number of allowed ports.
- (for example opening port 60 when there are only 24 ports attached)
- - Sometimes the use-count strays a bit. After a few hours of
- testing the use count is sometimes "3". If you are not like
- me and can remember what you did to get it that way, I'd
- appreciate an Email. Possibly fixed. Tell me if anyone still
- sees this.
- - TAs don't work right if you don't connect all the modem control
- signals. SXDCs do. T225 firmware problem -> Specialix.
- (Mostly fixed now, I think. Tell me if you encounter this!)
-
- Bugs & restrictions:
-
- - Arbitrary baud rates. Requires firmware update. (-> Specialix)
-
- - Low latency (mostly firmware, -> Specialix)
-
-
-
diff --git a/Documentation/sgi-visws.txt b/Documentation/sgi-visws.txt
deleted file mode 100644
index 7ff0811ca2b..00000000000
--- a/Documentation/sgi-visws.txt
+++ /dev/null
@@ -1,13 +0,0 @@
-
-The SGI Visual Workstations (models 320 and 540) are based around
-the Cobalt, Lithium, and Arsenic ASICs. The Cobalt ASIC is the
-main system ASIC which interfaces the 1-4 IA32 cpus, the memory
-system, and the I/O system in the Lithium ASIC. The Cobalt ASIC
-also contains the 3D gfx rendering engine which renders to main
-system memory -- part of which is used as the frame buffer which
-is DMA'ed to a video connector using the Arsenic ASIC. A PIIX4
-chip and NS87307 are used to provide legacy device support (IDE,
-serial, floppy, and parallel).
-
-The Visual Workstation chipset largely conforms to the PC architecture
-with some notable exceptions such as interrupt handling.
diff --git a/Documentation/sound/alsa/ALSA-Configuration.txt b/Documentation/sound/alsa/ALSA-Configuration.txt
index 95731a08f25..7ccf933bfbe 100644
--- a/Documentation/sound/alsa/ALSA-Configuration.txt
+++ b/Documentation/sound/alsa/ALSA-Configuration.txt
@@ -616,7 +616,7 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
As default, snd-dummy drivers doesn't allocate the real buffers
but either ignores read/write or mmap a single dummy page to all
- buffer pages, in order to save the resouces. If your apps need
+ buffer pages, in order to save the resources. If your apps need
the read/ written buffer data to be consistent, pass fake_buffer=0
option.
@@ -948,7 +948,7 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
avoided as much as possible...
MORE NOTES ON "azx_get_response timeout" PROBLEMS:
- On some hardwares, you may need to add a proper probe_mask option
+ On some hardware, you may need to add a proper probe_mask option
to avoid the "azx_get_response timeout" problem above, instead.
This occurs when the access to non-existing or non-working codec slot
(likely a modem one) causes a stall of the communication via HD-audio
@@ -1124,7 +1124,7 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
buggy_irq - Enable workaround for buggy interrupts on some
motherboards (default yes on nForce chips,
otherwise off)
- buggy_semaphore - Enable workaround for hardwares with buggy
+ buggy_semaphore - Enable workaround for hardware with buggy
semaphores (e.g. on some ASUS laptops)
(default off)
spdif_aclink - Use S/PDIF over AC-link instead of direct connection
diff --git a/Documentation/sound/alsa/Audiophile-Usb.txt b/Documentation/sound/alsa/Audiophile-Usb.txt
index 654dd3b694a..e7a5ed4dcae 100644
--- a/Documentation/sound/alsa/Audiophile-Usb.txt
+++ b/Documentation/sound/alsa/Audiophile-Usb.txt
@@ -232,7 +232,7 @@ The parameter can be given:
# modprobe snd-usb-audio index=1 device_setup=0x09
* Or while configuring the modules options in your modules configuration file
- (tipically a .conf file in /etc/modprobe.d/ directory:
+ (typically a .conf file in /etc/modprobe.d/ directory:
alias snd-card-1 snd-usb-audio
options snd-usb-audio index=1 device_setup=0x09
diff --git a/Documentation/sound/alsa/CMIPCI.txt b/Documentation/sound/alsa/CMIPCI.txt
index 16935c8561f..4e36e6e809c 100644
--- a/Documentation/sound/alsa/CMIPCI.txt
+++ b/Documentation/sound/alsa/CMIPCI.txt
@@ -87,7 +87,7 @@ with 4 channels,
and use the interleaved 4 channel data.
-There are some control switchs affecting to the speaker connections:
+There are some control switches affecting to the speaker connections:
"Line-In Mode" - an enum control to change the behavior of line-in
jack. Either "Line-In", "Rear Output" or "Bass Output" can
diff --git a/Documentation/sound/alsa/HD-Audio-Models.txt b/Documentation/sound/alsa/HD-Audio-Models.txt
index a46ddb85e83..d1ab5e17eb1 100644
--- a/Documentation/sound/alsa/HD-Audio-Models.txt
+++ b/Documentation/sound/alsa/HD-Audio-Models.txt
@@ -28,6 +28,7 @@ ALC269/270/275/276/28x/29x
alc269-dmic Enable ALC269(VA) digital mic workaround
alc271-dmic Enable ALC271X digital mic workaround
inv-dmic Inverted internal mic workaround
+ headset-mic Indicates a combined headset (headphone+mic) jack
lenovo-dock Enables docking station I/O for some Lenovos
dell-headset-multi Headset jack, which can also be used as mic-in
dell-headset-dock Headset jack (without mic-in), and also dock I/O
@@ -285,6 +286,11 @@ STAC92HD83*
hp-inv-led HP with broken BIOS for inverted mute LED
auto BIOS setup (default)
+STAC92HD95
+==========
+ hp-led LED support for HP laptops
+ hp-bass Bass HPF setup for HP Spectre 13
+
STAC9872
========
vaio VAIO laptop without SPDIF
@@ -296,6 +302,12 @@ Cirrus Logic CS4206/4207
imac27 IMac 27 Inch
auto BIOS setup (default)
+Cirrus Logic CS4208
+===================
+ mba6 MacBook Air 6,1 and 6,2
+ gpio0 Enable GPIO 0 amp
+ auto BIOS setup (default)
+
VIA VT17xx/VT18xx/VT20xx
========================
auto BIOS setup (default)
diff --git a/Documentation/sound/alsa/compress_offload.txt b/Documentation/sound/alsa/compress_offload.txt
index fd74ff26376..630c492c3dc 100644
--- a/Documentation/sound/alsa/compress_offload.txt
+++ b/Documentation/sound/alsa/compress_offload.txt
@@ -217,12 +217,12 @@ Not supported:
would be enabled with ALSA kcontrols.
- Audio policy/resource management. This API does not provide any
- hooks to query the utilization of the audio DSP, nor any premption
+ hooks to query the utilization of the audio DSP, nor any preemption
mechanisms.
-- No notion of underun/overrun. Since the bytes written are compressed
+- No notion of underrun/overrun. Since the bytes written are compressed
in nature and data written/read doesn't translate directly to
- rendered output in time, this does not deal with underrun/overun and
+ rendered output in time, this does not deal with underrun/overrun and
maybe dealt in user-library
Credits:
diff --git a/Documentation/sound/alsa/soc/DPCM.txt b/Documentation/sound/alsa/soc/DPCM.txt
new file mode 100644
index 00000000000..0110180b7ac
--- /dev/null
+++ b/Documentation/sound/alsa/soc/DPCM.txt
@@ -0,0 +1,380 @@
+Dynamic PCM
+===========
+
+1. Description
+==============
+
+Dynamic PCM allows an ALSA PCM device to digitally route its PCM audio to
+various digital endpoints during the PCM stream runtime. e.g. PCM0 can route
+digital audio to I2S DAI0, I2S DAI1 or PDM DAI2. This is useful for on SoC DSP
+drivers that expose several ALSA PCMs and can route to multiple DAIs.
+
+The DPCM runtime routing is determined by the ALSA mixer settings in the same
+way as the analog signal is routed in an ASoC codec driver. DPCM uses a DAPM
+graph representing the DSP internal audio paths and uses the mixer settings to
+determine the patch used by each ALSA PCM.
+
+DPCM re-uses all the existing component codec, platform and DAI drivers without
+any modifications.
+
+
+Phone Audio System with SoC based DSP
+-------------------------------------
+
+Consider the following phone audio subsystem. This will be used in this
+document for all examples :-
+
+| Front End PCMs | SoC DSP | Back End DAIs | Audio devices |
+
+ *************
+PCM0 <------------> * * <----DAI0-----> Codec Headset
+ * *
+PCM1 <------------> * * <----DAI1-----> Codec Speakers
+ * DSP *
+PCM2 <------------> * * <----DAI2-----> MODEM
+ * *
+PCM3 <------------> * * <----DAI3-----> BT
+ * *
+ * * <----DAI4-----> DMIC
+ * *
+ * * <----DAI5-----> FM
+ *************
+
+This diagram shows a simple smart phone audio subsystem. It supports Bluetooth,
+FM digital radio, Speakers, Headset Jack, digital microphones and cellular
+modem. This sound card exposes 4 DSP front end (FE) ALSA PCM devices and
+supports 6 back end (BE) DAIs. Each FE PCM can digitally route audio data to any
+of the BE DAIs. The FE PCM devices can also route audio to more than 1 BE DAI.
+
+
+
+Example - DPCM Switching playback from DAI0 to DAI1
+---------------------------------------------------
+
+Audio is being played to the Headset. After a while the user removes the headset
+and audio continues playing on the speakers.
+
+Playback on PCM0 to Headset would look like :-
+
+ *************
+PCM0 <============> * * <====DAI0=====> Codec Headset
+ * *
+PCM1 <------------> * * <----DAI1-----> Codec Speakers
+ * DSP *
+PCM2 <------------> * * <----DAI2-----> MODEM
+ * *
+PCM3 <------------> * * <----DAI3-----> BT
+ * *
+ * * <----DAI4-----> DMIC
+ * *
+ * * <----DAI5-----> FM
+ *************
+
+The headset is removed from the jack by user so the speakers must now be used :-
+
+ *************
+PCM0 <============> * * <----DAI0-----> Codec Headset
+ * *
+PCM1 <------------> * * <====DAI1=====> Codec Speakers
+ * DSP *
+PCM2 <------------> * * <----DAI2-----> MODEM
+ * *
+PCM3 <------------> * * <----DAI3-----> BT
+ * *
+ * * <----DAI4-----> DMIC
+ * *
+ * * <----DAI5-----> FM
+ *************
+
+The audio driver processes this as follows :-
+
+ 1) Machine driver receives Jack removal event.
+
+ 2) Machine driver OR audio HAL disables the Headset path.
+
+ 3) DPCM runs the PCM trigger(stop), hw_free(), shutdown() operations on DAI0
+ for headset since the path is now disabled.
+
+ 4) Machine driver or audio HAL enables the speaker path.
+
+ 5) DPCM runs the PCM ops for startup(), hw_params(), prepapre() and
+ trigger(start) for DAI1 Speakers since the path is enabled.
+
+In this example, the machine driver or userspace audio HAL can alter the routing
+and then DPCM will take care of managing the DAI PCM operations to either bring
+the link up or down. Audio playback does not stop during this transition.
+
+
+
+DPCM machine driver
+===================
+
+The DPCM enabled ASoC machine driver is similar to normal machine drivers
+except that we also have to :-
+
+ 1) Define the FE and BE DAI links.
+
+ 2) Define any FE/BE PCM operations.
+
+ 3) Define widget graph connections.
+
+
+1 FE and BE DAI links
+---------------------
+
+| Front End PCMs | SoC DSP | Back End DAIs | Audio devices |
+
+ *************
+PCM0 <------------> * * <----DAI0-----> Codec Headset
+ * *
+PCM1 <------------> * * <----DAI1-----> Codec Speakers
+ * DSP *
+PCM2 <------------> * * <----DAI2-----> MODEM
+ * *
+PCM3 <------------> * * <----DAI3-----> BT
+ * *
+ * * <----DAI4-----> DMIC
+ * *
+ * * <----DAI5-----> FM
+ *************
+
+For the example above we have to define 4 FE DAI links and 6 BE DAI links. The
+FE DAI links are defined as follows :-
+
+static struct snd_soc_dai_link machine_dais[] = {
+ {
+ .name = "PCM0 System",
+ .stream_name = "System Playback",
+ .cpu_dai_name = "System Pin",
+ .platform_name = "dsp-audio",
+ .codec_name = "snd-soc-dummy",
+ .codec_dai_name = "snd-soc-dummy-dai",
+ .dynamic = 1,
+ .trigger = {SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST},
+ .dpcm_playback = 1,
+ },
+ .....< other FE and BE DAI links here >
+};
+
+This FE DAI link is pretty similar to a regular DAI link except that we also
+set the DAI link to a DPCM FE with the "dynamic = 1". The supported FE stream
+directions should also be set with the "dpcm_playback" and "dpcm_capture"
+flags. There is also an option to specify the ordering of the trigger call for
+each FE. This allows the ASoC core to trigger the DSP before or after the other
+components (as some DSPs have strong requirements for the ordering DAI/DSP
+start and stop sequences).
+
+The FE DAI above sets the codec and code DAIs to dummy devices since the BE is
+dynamic and will change depending on runtime config.
+
+The BE DAIs are configured as follows :-
+
+static struct snd_soc_dai_link machine_dais[] = {
+ .....< FE DAI links here >
+ {
+ .name = "Codec Headset",
+ .cpu_dai_name = "ssp-dai.0",
+ .platform_name = "snd-soc-dummy",
+ .no_pcm = 1,
+ .codec_name = "rt5640.0-001c",
+ .codec_dai_name = "rt5640-aif1",
+ .ignore_suspend = 1,
+ .ignore_pmdown_time = 1,
+ .be_hw_params_fixup = hswult_ssp0_fixup,
+ .ops = &haswell_ops,
+ .dpcm_playback = 1,
+ .dpcm_capture = 1,
+ },
+ .....< other BE DAI links here >
+};
+
+This BE DAI link connects DAI0 to the codec (in this case RT5460 AIF1). It sets
+the "no_pcm" flag to mark it has a BE and sets flags for supported stream
+directions using "dpcm_playback" and "dpcm_capture" above.
+
+The BE has also flags set for ignoring suspend and PM down time. This allows
+the BE to work in a hostless mode where the host CPU is not transferring data
+like a BT phone call :-
+
+ *************
+PCM0 <------------> * * <----DAI0-----> Codec Headset
+ * *
+PCM1 <------------> * * <----DAI1-----> Codec Speakers
+ * DSP *
+PCM2 <------------> * * <====DAI2=====> MODEM
+ * *
+PCM3 <------------> * * <====DAI3=====> BT
+ * *
+ * * <----DAI4-----> DMIC
+ * *
+ * * <----DAI5-----> FM
+ *************
+
+This allows the host CPU to sleep whilst the DSP, MODEM DAI and the BT DAI are
+still in operation.
+
+A BE DAI link can also set the codec to a dummy device if the code is a device
+that is managed externally.
+
+Likewise a BE DAI can also set a dummy cpu DAI if the CPU DAI is managed by the
+DSP firmware.
+
+
+2 FE/BE PCM operations
+----------------------
+
+The BE above also exports some PCM operations and a "fixup" callback. The fixup
+callback is used by the machine driver to (re)configure the DAI based upon the
+FE hw params. i.e. the DSP may perform SRC or ASRC from the FE to BE.
+
+e.g. DSP converts all FE hw params to run at fixed rate of 48k, 16bit, stereo for
+DAI0. This means all FE hw_params have to be fixed in the machine driver for
+DAI0 so that the DAI is running at desired configuration regardless of the FE
+configuration.
+
+static int dai0_fixup(struct snd_soc_pcm_runtime *rtd,
+ struct snd_pcm_hw_params *params)
+{
+ struct snd_interval *rate = hw_param_interval(params,
+ SNDRV_PCM_HW_PARAM_RATE);
+ struct snd_interval *channels = hw_param_interval(params,
+ SNDRV_PCM_HW_PARAM_CHANNELS);
+
+ /* The DSP will covert the FE rate to 48k, stereo */
+ rate->min = rate->max = 48000;
+ channels->min = channels->max = 2;
+
+ /* set DAI0 to 16 bit */
+ snd_mask_set(&params->masks[SNDRV_PCM_HW_PARAM_FORMAT -
+ SNDRV_PCM_HW_PARAM_FIRST_MASK],
+ SNDRV_PCM_FORMAT_S16_LE);
+ return 0;
+}
+
+The other PCM operation are the same as for regular DAI links. Use as necessary.
+
+
+3 Widget graph connections
+--------------------------
+
+The BE DAI links will normally be connected to the graph at initialisation time
+by the ASoC DAPM core. However, if the BE codec or BE DAI is a dummy then this
+has to be set explicitly in the driver :-
+
+/* BE for codec Headset - DAI0 is dummy and managed by DSP FW */
+{"DAI0 CODEC IN", NULL, "AIF1 Capture"},
+{"AIF1 Playback", NULL, "DAI0 CODEC OUT"},
+
+
+Writing a DPCM DSP driver
+=========================
+
+The DPCM DSP driver looks much like a standard platform class ASoC driver
+combined with elements from a codec class driver. A DSP platform driver must
+implement :-
+
+ 1) Front End PCM DAIs - i.e. struct snd_soc_dai_driver.
+
+ 2) DAPM graph showing DSP audio routing from FE DAIs to BEs.
+
+ 3) DAPM widgets from DSP graph.
+
+ 4) Mixers for gains, routing, etc.
+
+ 5) DMA configuration.
+
+ 6) BE AIF widgets.
+
+Items 6 is important for routing the audio outside of the DSP. AIF need to be
+defined for each BE and each stream direction. e.g for BE DAI0 above we would
+have :-
+
+SND_SOC_DAPM_AIF_IN("DAI0 RX", NULL, 0, SND_SOC_NOPM, 0, 0),
+SND_SOC_DAPM_AIF_OUT("DAI0 TX", NULL, 0, SND_SOC_NOPM, 0, 0),
+
+The BE AIF are used to connect the DSP graph to the graphs for the other
+component drivers (e.g. codec graph).
+
+
+Hostless PCM streams
+====================
+
+A hostless PCM stream is a stream that is not routed through the host CPU. An
+example of this would be a phone call from handset to modem.
+
+
+ *************
+PCM0 <------------> * * <----DAI0-----> Codec Headset
+ * *
+PCM1 <------------> * * <====DAI1=====> Codec Speakers/Mic
+ * DSP *
+PCM2 <------------> * * <====DAI2=====> MODEM
+ * *
+PCM3 <------------> * * <----DAI3-----> BT
+ * *
+ * * <----DAI4-----> DMIC
+ * *
+ * * <----DAI5-----> FM
+ *************
+
+In this case the PCM data is routed via the DSP. The host CPU in this use case
+is only used for control and can sleep during the runtime of the stream.
+
+The host can control the hostless link either by :-
+
+ 1) Configuring the link as a CODEC <-> CODEC style link. In this case the link
+ is enabled or disabled by the state of the DAPM graph. This usually means
+ there is a mixer control that can be used to connect or disconnect the path
+ between both DAIs.
+
+ 2) Hostless FE. This FE has a virtual connection to the BE DAI links on the DAPM
+ graph. Control is then carried out by the FE as regular PCM operations.
+ This method gives more control over the DAI links, but requires much more
+ userspace code to control the link. Its recommended to use CODEC<->CODEC
+ unless your HW needs more fine grained sequencing of the PCM ops.
+
+
+CODEC <-> CODEC link
+--------------------
+
+This DAI link is enabled when DAPM detects a valid path within the DAPM graph.
+The machine driver sets some additional parameters to the DAI link i.e.
+
+static const struct snd_soc_pcm_stream dai_params = {
+ .formats = SNDRV_PCM_FMTBIT_S32_LE,
+ .rate_min = 8000,
+ .rate_max = 8000,
+ .channels_min = 2,
+ .channels_max = 2,
+};
+
+static struct snd_soc_dai_link dais[] = {
+ < ... more DAI links above ... >
+ {
+ .name = "MODEM",
+ .stream_name = "MODEM",
+ .cpu_dai_name = "dai2",
+ .codec_dai_name = "modem-aif1",
+ .codec_name = "modem",
+ .dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF
+ | SND_SOC_DAIFMT_CBM_CFM,
+ .params = &dai_params,
+ }
+ < ... more DAI links here ... >
+
+These parameters are used to configure the DAI hw_params() when DAPM detects a
+valid path and then calls the PCM operations to start the link. DAPM will also
+call the appropriate PCM operations to disable the DAI when the path is no
+longer valid.
+
+
+Hostless FE
+-----------
+
+The DAI link(s) are enabled by a FE that does not read or write any PCM data.
+This means creating a new FE that is connected with a virtual path to both
+DAI links. The DAI links will be started when the FE PCM is started and stopped
+when the FE PCM is stopped. Note that the FE PCM cannot read or write data in
+this configuration.
+
+
diff --git a/Documentation/sound/alsa/soc/codec.txt b/Documentation/sound/alsa/soc/codec.txt
index bce23a4a787..db5f9c9ae14 100644
--- a/Documentation/sound/alsa/soc/codec.txt
+++ b/Documentation/sound/alsa/soc/codec.txt
@@ -1,22 +1,23 @@
-ASoC Codec Driver
-=================
+ASoC Codec Class Driver
+=======================
-The codec driver is generic and hardware independent code that configures the
-codec to provide audio capture and playback. It should contain no code that is
-specific to the target platform or machine. All platform and machine specific
-code should be added to the platform and machine drivers respectively.
+The codec class driver is generic and hardware independent code that configures
+the codec, FM, MODEM, BT or external DSP to provide audio capture and playback.
+It should contain no code that is specific to the target platform or machine.
+All platform and machine specific code should be added to the platform and
+machine drivers respectively.
-Each codec driver *must* provide the following features:-
+Each codec class driver *must* provide the following features:-
1) Codec DAI and PCM configuration
- 2) Codec control IO - using I2C, 3 Wire(SPI) or both APIs
+ 2) Codec control IO - using RegMap API
3) Mixers and audio controls
4) Codec audio operations
+ 5) DAPM description.
+ 6) DAPM event handler.
Optionally, codec drivers can also provide:-
- 5) DAPM description.
- 6) DAPM event handler.
7) DAC Digital mute control.
Its probably best to use this guide in conjunction with the existing codec
@@ -64,26 +65,9 @@ struct snd_soc_dai_driver wm8731_dai = {
2 - Codec control IO
--------------------
The codec can usually be controlled via an I2C or SPI style interface
-(AC97 combines control with data in the DAI). The codec drivers provide
-functions to read and write the codec registers along with supplying a
-register cache:-
-
- /* IO control data and register cache */
- void *control_data; /* codec control (i2c/3wire) data */
- void *reg_cache;
-
-Codec read/write should do any data formatting and call the hardware
-read write below to perform the IO. These functions are called by the
-core and ALSA when performing DAPM or changing the mixer:-
-
- unsigned int (*read)(struct snd_soc_codec *, unsigned int);
- int (*write)(struct snd_soc_codec *, unsigned int, unsigned int);
-
-Codec hardware IO functions - usually points to either the I2C, SPI or AC97
-read/write:-
-
- hw_write_t hw_write;
- hw_read_t hw_read;
+(AC97 combines control with data in the DAI). The codec driver should use the
+Regmap API for all codec IO. Please see include/linux/regmap.h and existing
+codec drivers for example regmap usage.
3 - Mixers and audio controls
@@ -127,7 +111,7 @@ Defines a stereo enumerated control
4 - Codec Audio Operations
--------------------------
-The codec driver also supports the following ALSA operations:-
+The codec driver also supports the following ALSA PCM operations:-
/* SoC audio ops */
struct snd_soc_ops {
diff --git a/Documentation/sound/alsa/soc/dapm.txt b/Documentation/sound/alsa/soc/dapm.txt
index 05bf5a0eee4..6faab488000 100644
--- a/Documentation/sound/alsa/soc/dapm.txt
+++ b/Documentation/sound/alsa/soc/dapm.txt
@@ -21,7 +21,7 @@ level power systems.
There are 4 power domains within DAPM
- 1. Codec domain - VREF, VMID (core codec and audio power)
+ 1. Codec bias domain - VREF, VMID (core codec and audio power)
Usually controlled at codec probe/remove and suspend/resume, although
can be set at stream time if power is not needed for sidetone, etc.
@@ -30,7 +30,7 @@ There are 4 power domains within DAPM
machine driver and responds to asynchronous events e.g when HP
are inserted
- 3. Path domain - audio susbsystem signal paths
+ 3. Path domain - audio subsystem signal paths
Automatically set when mixer and mux settings are changed by the user.
e.g. alsamixer, amixer.
@@ -63,14 +63,22 @@ Audio DAPM widgets fall into a number of types:-
o Line - Line Input/Output (and optional Jack)
o Speaker - Speaker
o Supply - Power or clock supply widget used by other widgets.
+ o Regulator - External regulator that supplies power to audio components.
+ o Clock - External clock that supplies clock to audio components.
+ o AIF IN - Audio Interface Input (with TDM slot mask).
+ o AIF OUT - Audio Interface Output (with TDM slot mask).
+ o Siggen - Signal Generator.
+ o DAI IN - Digital Audio Interface Input.
+ o DAI OUT - Digital Audio Interface Output.
+ o DAI Link - DAI Link between two DAI structures */
o Pre - Special PRE widget (exec before all others)
o Post - Special POST widget (exec after all others)
(Widgets are defined in include/sound/soc-dapm.h)
-Widgets are usually added in the codec driver and the machine driver. There are
-convenience macros defined in soc-dapm.h that can be used to quickly build a
-list of widgets of the codecs and machines DAPM widgets.
+Widgets can be added to the sound card by any of the component driver types.
+There are convenience macros defined in soc-dapm.h that can be used to quickly
+build a list of widgets of the codecs and machines DAPM widgets.
Most widgets have a name, register, shift and invert. Some widgets have extra
parameters for stream name and kcontrols.
@@ -80,11 +88,13 @@ parameters for stream name and kcontrols.
-------------------------
Stream Widgets relate to the stream power domain and only consist of ADCs
-(analog to digital converters) and DACs (digital to analog converters).
+(analog to digital converters), DACs (digital to analog converters),
+AIF IN and AIF OUT.
Stream widgets have the following format:-
SND_SOC_DAPM_DAC(name, stream name, reg, shift, invert),
+SND_SOC_DAPM_AIF_IN(name, stream, slot, reg, shift, invert)
NOTE: the stream name must match the corresponding stream name in your codec
snd_soc_codec_dai.
@@ -94,6 +104,11 @@ e.g. stream widgets for HiFi playback and capture
SND_SOC_DAPM_DAC("HiFi DAC", "HiFi Playback", REG, 3, 1),
SND_SOC_DAPM_ADC("HiFi ADC", "HiFi Capture", REG, 2, 1),
+e.g. stream widgets for AIF
+
+SND_SOC_DAPM_AIF_IN("AIF1RX", "AIF1 Playback", 0, SND_SOC_NOPM, 0, 0),
+SND_SOC_DAPM_AIF_OUT("AIF1TX", "AIF1 Capture", 0, SND_SOC_NOPM, 0, 0),
+
2.2 Path Domain Widgets
-----------------------
@@ -121,12 +136,14 @@ If you dont want the mixer elements prefixed with the name of the mixer widget,
you can use SND_SOC_DAPM_MIXER_NAMED_CTL instead. the parameters are the same
as for SND_SOC_DAPM_MIXER.
-2.3 Platform/Machine domain Widgets
------------------------------------
+
+2.3 Machine domain Widgets
+--------------------------
Machine widgets are different from codec widgets in that they don't have a
codec register bit associated with them. A machine widget is assigned to each
-machine audio component (non codec) that can be independently powered. e.g.
+machine audio component (non codec or DSP) that can be independently
+powered. e.g.
o Speaker Amp
o Microphone Bias
@@ -146,12 +163,12 @@ static int spitz_mic_bias(struct snd_soc_dapm_widget* w, int event)
SND_SOC_DAPM_MIC("Mic Jack", spitz_mic_bias),
-2.4 Codec Domain
-----------------
+2.4 Codec (BIAS) Domain
+-----------------------
-The codec power domain has no widgets and is handled by the codecs DAPM event
-handler. This handler is called when the codec powerstate is changed wrt to any
-stream event or by kernel PM events.
+The codec bias power domain has no widgets and is handled by the codecs DAPM
+event handler. This handler is called when the codec powerstate is changed wrt
+to any stream event or by kernel PM events.
2.5 Virtual Widgets
@@ -169,15 +186,16 @@ After all the widgets have been defined, they can then be added to the DAPM
subsystem individually with a call to snd_soc_dapm_new_control().
-3. Codec Widget Interconnections
-================================
+3. Codec/DSP Widget Interconnections
+====================================
-Widgets are connected to each other within the codec and machine by audio paths
-(called interconnections). Each interconnection must be defined in order to
-create a map of all audio paths between widgets.
+Widgets are connected to each other within the codec, platform and machine by
+audio paths (called interconnections). Each interconnection must be defined in
+order to create a map of all audio paths between widgets.
-This is easiest with a diagram of the codec (and schematic of the machine audio
-system), as it requires joining widgets together via their audio signal paths.
+This is easiest with a diagram of the codec or DSP (and schematic of the machine
+audio system), as it requires joining widgets together via their audio signal
+paths.
e.g., from the WM8731 output mixer (wm8731.c)
@@ -247,16 +265,9 @@ machine and includes the codec. e.g.
o Mic Jack
o Codec Pins
-When a codec pin is NC it can be marked as not used with a call to
-
-snd_soc_dapm_set_endpoint(codec, "Widget Name", 0);
-
-The last argument is 0 for inactive and 1 for active. This way the pin and its
-input widget will never be powered up and consume power.
-
-This also applies to machine widgets. e.g. if a headphone is connected to a
-jack then the jack can be marked active. If the headphone is removed, then
-the headphone jack can be marked inactive.
+Endpoints are added to the DAPM graph so that their usage can be determined in
+order to save power. e.g. NC codecs pins will be switched OFF, unconnected
+jacks can also be switched OFF.
5 DAPM Widget Events
diff --git a/Documentation/sound/alsa/soc/machine.txt b/Documentation/sound/alsa/soc/machine.txt
index d50c14df341..74056dba52b 100644
--- a/Documentation/sound/alsa/soc/machine.txt
+++ b/Documentation/sound/alsa/soc/machine.txt
@@ -1,8 +1,10 @@
ASoC Machine Driver
===================
-The ASoC machine (or board) driver is the code that glues together the platform
-and codec drivers.
+The ASoC machine (or board) driver is the code that glues together all the
+component drivers (e.g. codecs, platforms and DAIs). It also describes the
+relationships between each componnent which include audio paths, GPIOs,
+interrupts, clocking, jacks and voltage regulators.
The machine driver can contain codec and platform specific code. It registers
the audio subsystem with the kernel as a platform device and is represented by
diff --git a/Documentation/sound/alsa/soc/overview.txt b/Documentation/sound/alsa/soc/overview.txt
index 138ac88c146..ff88f52eec9 100644
--- a/Documentation/sound/alsa/soc/overview.txt
+++ b/Documentation/sound/alsa/soc/overview.txt
@@ -49,18 +49,23 @@ features :-
* Machine specific controls: Allow machines to add controls to the sound card
(e.g. volume control for speaker amplifier).
-To achieve all this, ASoC basically splits an embedded audio system into 3
-components :-
+To achieve all this, ASoC basically splits an embedded audio system into
+multiple re-usable component drivers :-
- * Codec driver: The codec driver is platform independent and contains audio
- controls, audio interface capabilities, codec DAPM definition and codec IO
- functions.
+ * Codec class drivers: The codec class driver is platform independent and
+ contains audio controls, audio interface capabilities, codec DAPM
+ definition and codec IO functions. This class extends to BT, FM and MODEM
+ ICs if required. Codec class drivers should be generic code that can run
+ on any architecture and machine.
- * Platform driver: The platform driver contains the audio DMA engine and audio
- interface drivers (e.g. I2S, AC97, PCM) for that platform.
+ * Platform class drivers: The platform class driver includes the audio DMA
+ engine driver, digital audio interface (DAI) drivers (e.g. I2S, AC97, PCM)
+ and any audio DSP drivers for that platform.
- * Machine driver: The machine driver handles any machine specific controls and
- audio events (e.g. turning on an amp at start of playback).
+ * Machine class driver: The machine driver class acts as the glue that
+ decribes and binds the other component drivers together to form an ALSA
+ "sound card device". It handles any machine specific controls and
+ machine level audio events (e.g. turning on an amp at start of playback).
Documentation
@@ -84,3 +89,7 @@ machine.txt: Machine driver internals.
pop_clicks.txt: How to minimise audio artifacts.
clocking.txt: ASoC clocking for best power performance.
+
+jack.txt: ASoC jack detection.
+
+DPCM.txt: Dynamic PCM - Describes DPCM with DSP examples.
diff --git a/Documentation/sound/alsa/soc/platform.txt b/Documentation/sound/alsa/soc/platform.txt
index d57efad37e0..3a08a2c9150 100644
--- a/Documentation/sound/alsa/soc/platform.txt
+++ b/Documentation/sound/alsa/soc/platform.txt
@@ -1,9 +1,9 @@
ASoC Platform Driver
====================
-An ASoC platform driver can be divided into audio DMA and SoC DAI configuration
-and control. The platform drivers only target the SoC CPU and must have no board
-specific code.
+An ASoC platform driver class can be divided into audio DMA drivers, SoC DAI
+drivers and DSP drivers. The platform drivers only target the SoC CPU and must
+have no board specific code.
Audio DMA
=========
@@ -64,3 +64,16 @@ Each SoC DAI driver must provide the following features:-
5) Suspend and resume (optional)
Please see codec.txt for a description of items 1 - 4.
+
+
+SoC DSP Drivers
+===============
+
+Each SoC DSP driver usually supplies the following features :-
+
+ 1) DAPM graph
+ 2) Mixer controls
+ 3) DMA IO to/from DSP buffers (if applicable)
+ 4) Definition of DSP front end (FE) PCM devices.
+
+Please see DPCM.txt for a description of item 4.
diff --git a/Documentation/sound/oss/vwsnd b/Documentation/sound/oss/vwsnd
deleted file mode 100644
index 4c6cbdb3c54..00000000000
--- a/Documentation/sound/oss/vwsnd
+++ /dev/null
@@ -1,293 +0,0 @@
-vwsnd - Sound driver for the Silicon Graphics 320 and 540 Visual
-Workstations' onboard audio.
-
-Copyright 1999 Silicon Graphics, Inc. All rights reserved.
-
-
-At the time of this writing, March 1999, there are two models of
-Visual Workstation, the 320 and the 540. This document only describes
-those models. Future Visual Workstation models may have different
-sound capabilities, and this driver will probably not work on those
-boxes.
-
-The Visual Workstation has an Analog Devices AD1843 "SoundComm" audio
-codec chip. The AD1843 is accessed through the Cobalt I/O ASIC, also
-known as Lithium. This driver programs both chips.
-
-==============================================================================
-QUICK CONFIGURATION
-
- # insmod soundcore
- # insmod vwsnd
-
-==============================================================================
-I/O CONNECTIONS
-
-On the Visual Workstation, only three of the AD1843 inputs are hooked
-up. The analog line in jacks are connected to the AD1843's AUX1
-input. The CD audio lines are connected to the AD1843's AUX2 input.
-The microphone jack is connected to the AD1843's MIC input. The mic
-jack is mono, but the signal is delivered to both the left and right
-MIC inputs. You can record in stereo from the mic input, but you will
-get the same signal on both channels (within the limits of A/D
-accuracy). Full scale on the Line input is +/- 2.0 V. Full scale on
-the MIC input is 20 dB less, or +/- 0.2 V.
-
-The AD1843's LOUT1 outputs are connected to the Line Out jacks. The
-AD1843's HPOUT outputs are connected to the speaker/headphone jack.
-LOUT2 is not connected. Line out's maximum level is +/- 2.0 V peak to
-peak. The speaker/headphone out's maximum is +/- 4.0 V peak to peak.
-
-The AD1843's PCM input channel and one of its output channels (DAC1)
-are connected to Lithium. The other output channel (DAC2) is not
-connected.
-
-==============================================================================
-CAPABILITIES
-
-The AD1843 has PCM input and output (Pulse Code Modulation, also known
-as wavetable). PCM input and output can be mono or stereo in any of
-four formats. The formats are 16 bit signed and 8 bit unsigned,
-u-Law, and A-Law format. Any sample rate from 4 KHz to 49 KHz is
-available, in 1 Hz increments.
-
-The AD1843 includes an analog mixer that can mix all three input
-signals (line, mic and CD) into the analog outputs. The mixer has a
-separate gain control and mute switch for each input.
-
-There are two outputs, line out and speaker/headphone out. They
-always produce the same signal, and the speaker always has 3 dB more
-gain than the line out. The speaker/headphone output can be muted,
-but this driver does not export that function.
-
-The hardware can sync audio to the video clock, but this driver does
-not have a way to specify syncing to video.
-
-==============================================================================
-PROGRAMMING
-
-This section explains the API supported by the driver. Also see the
-Open Sound Programming Guide at http://www.opensound.com/pguide/ .
-This section assumes familiarity with that document.
-
-The driver has two interfaces, an I/O interface and a mixer interface.
-There is no MIDI or sequencer capability.
-
-==============================================================================
-PROGRAMMING PCM I/O
-
-The I/O interface is usually accessed as /dev/audio or /dev/dsp.
-Using the standard Open Sound System (OSS) ioctl calls, the sample
-rate, number of channels, and sample format may be set within the
-limitations described above. The driver supports triggering. It also
-supports getting the input and output pointers with one-sample
-accuracy.
-
-The SNDCTL_DSP_GETCAP ioctl returns these capabilities.
-
- DSP_CAP_DUPLEX - driver supports full duplex.
-
- DSP_CAP_TRIGGER - driver supports triggering.
-
- DSP_CAP_REALTIME - values returned by SNDCTL_DSP_GETIPTR
- and SNDCTL_DSP_GETOPTR are accurate to a few samples.
-
-Memory mapping (mmap) is not implemented.
-
-The driver permits subdivided fragment sizes from 64 to 4096 bytes.
-The number of fragments can be anything from 3 fragments to however
-many fragments fit into 124 kilobytes. It is up to the user to
-determine how few/small fragments can be used without introducing
-glitches with a given workload. Linux is not realtime, so we can't
-promise anything. (sigh...)
-
-When this driver is switched into or out of mu-Law or A-Law mode on
-output, it may produce an audible click. This is unavoidable. To
-prevent clicking, use signed 16-bit mode instead, and convert from
-mu-Law or A-Law format in software.
-
-==============================================================================
-PROGRAMMING THE MIXER INTERFACE
-
-The mixer interface is usually accessed as /dev/mixer. It is accessed
-through ioctls. The mixer allows the application to control gain or
-mute several audio signal paths, and also allows selection of the
-recording source.
-
-Each of the constants described here can be read using the
-MIXER_READ(SOUND_MIXER_xxx) ioctl. Those that are not read-only can
-also be written using the MIXER_WRITE(SOUND_MIXER_xxx) ioctl. In most
-cases, <sys/soundcard.h> defines constants SOUND_MIXER_READ_xxx and
-SOUND_MIXER_WRITE_xxx which work just as well.
-
-SOUND_MIXER_CAPS Read-only
-
-This is a mask of optional driver capabilities that are implemented.
-This driver's only capability is SOUND_CAP_EXCL_INPUT, which means
-that only one recording source can be active at a time.
-
-SOUND_MIXER_DEVMASK Read-only
-
-This is a mask of the sound channels. This driver's channels are PCM,
-LINE, MIC, CD, and RECLEV.
-
-SOUND_MIXER_STEREODEVS Read-only
-
-This is a mask of which sound channels are capable of stereo. All
-channels are capable of stereo. (But see caveat on MIC input in I/O
-CONNECTIONS section above).
-
-SOUND_MIXER_OUTMASK Read-only
-
-This is a mask of channels that route inputs through to outputs.
-Those are LINE, MIC, and CD.
-
-SOUND_MIXER_RECMASK Read-only
-
-This is a mask of channels that can be recording sources. Those are
-PCM, LINE, MIC, CD.
-
-SOUND_MIXER_PCM Default: 0x5757 (0 dB)
-
-This is the gain control for PCM output. The left and right channel
-gain are controlled independently. This gain control has 64 levels,
-which range from -82.5 dB to +12.0 dB in 1.5 dB steps. Those 64
-levels are mapped onto 100 levels at the ioctl, see below.
-
-SOUND_MIXER_LINE Default: 0x4a4a (0 dB)
-
-This is the gain control for mixing the Line In source into the
-outputs. The left and right channel gain are controlled
-independently. This gain control has 32 levels, which range from
--34.5 dB to +12.0 dB in 1.5 dB steps. Those 32 levels are mapped onto
-100 levels at the ioctl, see below.
-
-SOUND_MIXER_MIC Default: 0x4a4a (0 dB)
-
-This is the gain control for mixing the MIC source into the outputs.
-The left and right channel gain are controlled independently. This
-gain control has 32 levels, which range from -34.5 dB to +12.0 dB in
-1.5 dB steps. Those 32 levels are mapped onto 100 levels at the
-ioctl, see below.
-
-SOUND_MIXER_CD Default: 0x4a4a (0 dB)
-
-This is the gain control for mixing the CD audio source into the
-outputs. The left and right channel gain are controlled
-independently. This gain control has 32 levels, which range from
--34.5 dB to +12.0 dB in 1.5 dB steps. Those 32 levels are mapped onto
-100 levels at the ioctl, see below.
-
-SOUND_MIXER_RECLEV Default: 0 (0 dB)
-
-This is the gain control for PCM input (RECording LEVel). The left
-and right channel gain are controlled independently. This gain
-control has 16 levels, which range from 0 dB to +22.5 dB in 1.5 dB
-steps. Those 16 levels are mapped onto 100 levels at the ioctl, see
-below.
-
-SOUND_MIXER_RECSRC Default: SOUND_MASK_LINE
-
-This is a mask of currently selected PCM input sources (RECording
-SouRCes). Because the AD1843 can only have a single recording source
-at a time, only one bit at a time can be set in this mask. The
-allowable values are SOUND_MASK_PCM, SOUND_MASK_LINE, SOUND_MASK_MIC,
-or SOUND_MASK_CD. Selecting SOUND_MASK_PCM sets up internal
-resampling which is useful for loopback testing and for hardware
-sample rate conversion. But software sample rate conversion is
-probably faster, so I don't know how useful that is.
-
-SOUND_MIXER_OUTSRC DEFAULT: SOUND_MASK_LINE|SOUND_MASK_MIC|SOUND_MASK_CD
-
-This is a mask of sources that are currently passed through to the
-outputs. Those sources whose bits are not set are muted.
-
-==============================================================================
-GAIN CONTROL
-
-There are five gain controls listed above. Each has 16, 32, or 64
-steps. Each control has 1.5 dB of gain per step. Each control is
-stereo.
-
-The OSS defines the argument to a channel gain ioctl as having two
-components, left and right, each of which ranges from 0 to 100. The
-two components are packed into the same word, with the left side gain
-in the least significant byte, and the right side gain in the second
-least significant byte. In C, we would say this.
-
- #include <assert.h>
-
- ...
-
- assert(leftgain >= 0 && leftgain <= 100);
- assert(rightgain >= 0 && rightgain <= 100);
- arg = leftgain | rightgain << 8;
-
-So each OSS gain control has 101 steps. But the hardware has 16, 32,
-or 64 steps. The hardware steps are spread across the 101 OSS steps
-nearly evenly. The conversion formulas are like this, given N equals
-16, 32, or 64.
-
- int round = N/2 - 1;
- OSS_gain_steps = (hw_gain_steps * 100 + round) / (N - 1);
- hw_gain_steps = (OSS_gain_steps * (N - 1) + round) / 100;
-
-Here is a snippet of C code that will return the left and right gain
-of any channel in dB. Pass it one of the predefined gain_desc_t
-structures to access any of the five channels' gains.
-
- typedef struct gain_desc {
- float min_gain;
- float gain_step;
- int nbits;
- int chan;
- } gain_desc_t;
-
- const gain_desc_t gain_pcm = { -82.5, 1.5, 6, SOUND_MIXER_PCM };
- const gain_desc_t gain_line = { -34.5, 1.5, 5, SOUND_MIXER_LINE };
- const gain_desc_t gain_mic = { -34.5, 1.5, 5, SOUND_MIXER_MIC };
- const gain_desc_t gain_cd = { -34.5, 1.5, 5, SOUND_MIXER_CD };
- const gain_desc_t gain_reclev = { 0.0, 1.5, 4, SOUND_MIXER_RECLEV };
-
- int get_gain_dB(int fd, const gain_desc_t *gp,
- float *left, float *right)
- {
- int word;
- int lg, rg;
- int mask = (1 << gp->nbits) - 1;
-
- if (ioctl(fd, MIXER_READ(gp->chan), &word) != 0)
- return -1; /* fail */
- lg = word & 0xFF;
- rg = word >> 8 & 0xFF;
- lg = (lg * mask + mask / 2) / 100;
- rg = (rg * mask + mask / 2) / 100;
- *left = gp->min_gain + gp->gain_step * lg;
- *right = gp->min_gain + gp->gain_step * rg;
- return 0;
- }
-
-And here is the corresponding routine to set a channel's gain in dB.
-
- int set_gain_dB(int fd, const gain_desc_t *gp, float left, float right)
- {
- float max_gain =
- gp->min_gain + (1 << gp->nbits) * gp->gain_step;
- float round = gp->gain_step / 2;
- int mask = (1 << gp->nbits) - 1;
- int word;
- int lg, rg;
-
- if (left < gp->min_gain || right < gp->min_gain)
- return EINVAL;
- lg = (left - gp->min_gain + round) / gp->gain_step;
- rg = (right - gp->min_gain + round) / gp->gain_step;
- if (lg >= (1 << gp->nbits) || rg >= (1 << gp->nbits))
- return EINVAL;
- lg = (100 * lg + mask / 2) / mask;
- rg = (100 * rg + mask / 2) / mask;
- word = lg | rg << 8;
-
- return ioctl(fd, MIXER_WRITE(gp->chan), &word);
- }
-
diff --git a/Documentation/spi/00-INDEX b/Documentation/spi/00-INDEX
new file mode 100644
index 00000000000..a128fa83551
--- /dev/null
+++ b/Documentation/spi/00-INDEX
@@ -0,0 +1,22 @@
+00-INDEX
+ - this file.
+Makefile
+ - Makefile for the example sourcefiles.
+butterfly
+ - AVR Butterfly SPI driver overview and pin configuration.
+ep93xx_spi
+ - Basic EP93xx SPI driver configuration.
+pxa2xx
+ - PXA2xx SPI master controller build by spi_message fifo wq
+spidev
+ - Intro to the userspace API for spi devices
+spidev_fdx.c
+ - spidev example file
+spi-lm70llp
+ - Connecting an LM70-LLP sensor to the kernel via the SPI subsys.
+spi-sc18is602
+ - NXP SC18IS602/603 I2C-bus to SPI bridge
+spi-summary
+ - (Linux) SPI overview. If unsure about SPI or SPI in Linux, start here.
+spidev_test.c
+ - SPI testing utility.
diff --git a/Documentation/spi/spi-summary b/Documentation/spi/spi-summary
index f21edb98341..7982bcc4d15 100644
--- a/Documentation/spi/spi-summary
+++ b/Documentation/spi/spi-summary
@@ -34,7 +34,7 @@ SPI slave functions are usually not interoperable between vendors
- It may also be used to stream data in either direction (half duplex),
or both of them at the same time (full duplex).
- - Some devices may use eight bit words. Others may different word
+ - Some devices may use eight bit words. Others may use different word
lengths, such as streams of 12-bit or 20-bit digital samples.
- Words are usually sent with their most significant bit (MSB) first,
@@ -121,7 +121,7 @@ active. So the master must set the clock to inactive before selecting
a slave, and the slave can tell the chosen polarity by sampling the
clock level when its select line goes active. That's why many devices
support for example both modes 0 and 3: they don't care about polarity,
-and alway clock data in/out on rising clock edges.
+and always clock data in/out on rising clock edges.
How do these driver programming interfaces work?
@@ -139,7 +139,7 @@ a command and then reading its response.
There are two types of SPI driver, here called:
- Controller drivers ... controllers may be built in to System-On-Chip
+ Controller drivers ... controllers may be built into System-On-Chip
processors, and often support both Master and Slave roles.
These drivers touch hardware registers and may use DMA.
Or they can be PIO bitbangers, needing just GPIO pins.
@@ -543,12 +543,27 @@ SPI MASTER METHODS
queuing transfers that arrive in the meantime. When the driver is
finished with this message, it must call
spi_finalize_current_message() so the subsystem can issue the next
- transfer. This may sleep.
+ message. This may sleep.
+
+ master->transfer_one(struct spi_master *master, struct spi_device *spi,
+ struct spi_transfer *transfer)
+ The subsystem calls the driver to transfer a single transfer while
+ queuing transfers that arrive in the meantime. When the driver is
+ finished with this transfer, it must call
+ spi_finalize_current_transfer() so the subsystem can issue the next
+ transfer. This may sleep. Note: transfer_one and transfer_one_message
+ are mutually exclusive; when both are set, the generic subsystem does
+ not call your transfer_one callback.
+
+ Return values:
+ negative errno: error
+ 0: transfer is finished
+ 1: transfer is still in progress
DEPRECATED METHODS
master->transfer(struct spi_device *spi, struct spi_message *message)
- This must not sleep. Its responsibility is arrange that the
+ This must not sleep. Its responsibility is to arrange that the
transfer happens and its complete() callback is issued. The two
will normally happen later, after other transfers complete, and
if the controller is idle it will need to be kickstarted. This
diff --git a/Documentation/spi/spidev b/Documentation/spi/spidev
index ed2da5e5b28..3d14035b176 100644
--- a/Documentation/spi/spidev
+++ b/Documentation/spi/spidev
@@ -85,6 +85,12 @@ settings for data transfer parameters:
SPI_MODE_0..SPI_MODE_3; or if you prefer you can combine SPI_CPOL
(clock polarity, idle high iff this is set) or SPI_CPHA (clock phase,
sample on trailing edge iff this is set) flags.
+ Note that this request is limited to SPI mode flags that fit in a
+ single byte.
+
+ SPI_IOC_RD_MODE32, SPI_IOC_WR_MODE32 ... pass a pointer to a uin32_t
+ which will return (RD) or assign (WR) the full SPI transfer mode,
+ not limited to the bits that fit in one byte.
SPI_IOC_RD_LSB_FIRST, SPI_IOC_WR_LSB_FIRST ... pass a pointer to a byte
which will return (RD) or assign (WR) the bit justification used to
diff --git a/Documentation/spi/spidev_fdx.c b/Documentation/spi/spidev_fdx.c
index 36ec0774ca0..0ea3e51292f 100644
--- a/Documentation/spi/spidev_fdx.c
+++ b/Documentation/spi/spidev_fdx.c
@@ -78,10 +78,10 @@ static void do_msg(int fd, int len)
static void dumpstat(const char *name, int fd)
{
- __u8 mode, lsb, bits;
- __u32 speed;
+ __u8 lsb, bits;
+ __u32 mode, speed;
- if (ioctl(fd, SPI_IOC_RD_MODE, &mode) < 0) {
+ if (ioctl(fd, SPI_IOC_RD_MODE32, &mode) < 0) {
perror("SPI rd_mode");
return;
}
@@ -98,7 +98,7 @@ static void dumpstat(const char *name, int fd)
return;
}
- printf("%s: spi mode %d, %d bits %sper word, %d Hz max\n",
+ printf("%s: spi mode 0x%x, %d bits %sper word, %d Hz max\n",
name, mode, bits, lsb ? "(lsb first) " : "", speed);
}
diff --git a/Documentation/spi/spidev_test.c b/Documentation/spi/spidev_test.c
index 16feda90146..3a2f9d59eda 100644
--- a/Documentation/spi/spidev_test.c
+++ b/Documentation/spi/spidev_test.c
@@ -30,7 +30,7 @@ static void pabort(const char *s)
}
static const char *device = "/dev/spidev1.1";
-static uint8_t mode;
+static uint32_t mode;
static uint8_t bits = 8;
static uint32_t speed = 500000;
static uint16_t delay;
@@ -57,6 +57,21 @@ static void transfer(int fd)
.bits_per_word = bits,
};
+ if (mode & SPI_TX_QUAD)
+ tr.tx_nbits = 4;
+ else if (mode & SPI_TX_DUAL)
+ tr.tx_nbits = 2;
+ if (mode & SPI_RX_QUAD)
+ tr.rx_nbits = 4;
+ else if (mode & SPI_RX_DUAL)
+ tr.rx_nbits = 2;
+ if (!(mode & SPI_LOOP)) {
+ if (mode & (SPI_TX_QUAD | SPI_TX_DUAL))
+ tr.rx_buf = 0;
+ else if (mode & (SPI_RX_QUAD | SPI_RX_DUAL))
+ tr.tx_buf = 0;
+ }
+
ret = ioctl(fd, SPI_IOC_MESSAGE(1), &tr);
if (ret < 1)
pabort("can't send spi message");
@@ -81,7 +96,11 @@ static void print_usage(const char *prog)
" -O --cpol clock polarity\n"
" -L --lsb least significant bit first\n"
" -C --cs-high chip select active high\n"
- " -3 --3wire SI/SO signals shared\n");
+ " -3 --3wire SI/SO signals shared\n"
+ " -N --no-cs no chip select\n"
+ " -R --ready slave pulls low to pause\n"
+ " -2 --dual dual transfer\n"
+ " -4 --quad quad transfer\n");
exit(1);
}
@@ -101,11 +120,13 @@ static void parse_opts(int argc, char *argv[])
{ "3wire", 0, 0, '3' },
{ "no-cs", 0, 0, 'N' },
{ "ready", 0, 0, 'R' },
+ { "dual", 0, 0, '2' },
+ { "quad", 0, 0, '4' },
{ NULL, 0, 0, 0 },
};
int c;
- c = getopt_long(argc, argv, "D:s:d:b:lHOLC3NR", lopts, NULL);
+ c = getopt_long(argc, argv, "D:s:d:b:lHOLC3NR24", lopts, NULL);
if (c == -1)
break;
@@ -147,11 +168,23 @@ static void parse_opts(int argc, char *argv[])
case 'R':
mode |= SPI_READY;
break;
+ case '2':
+ mode |= SPI_TX_DUAL;
+ break;
+ case '4':
+ mode |= SPI_TX_QUAD;
+ break;
default:
print_usage(argv[0]);
break;
}
}
+ if (mode & SPI_LOOP) {
+ if (mode & SPI_TX_DUAL)
+ mode |= SPI_RX_DUAL;
+ if (mode & SPI_TX_QUAD)
+ mode |= SPI_RX_QUAD;
+ }
}
int main(int argc, char *argv[])
@@ -168,11 +201,11 @@ int main(int argc, char *argv[])
/*
* spi mode
*/
- ret = ioctl(fd, SPI_IOC_WR_MODE, &mode);
+ ret = ioctl(fd, SPI_IOC_WR_MODE32, &mode);
if (ret == -1)
pabort("can't set spi mode");
- ret = ioctl(fd, SPI_IOC_RD_MODE, &mode);
+ ret = ioctl(fd, SPI_IOC_RD_MODE32, &mode);
if (ret == -1)
pabort("can't get spi mode");
@@ -198,7 +231,7 @@ int main(int argc, char *argv[])
if (ret == -1)
pabort("can't get max speed hz");
- printf("spi mode: %d\n", mode);
+ printf("spi mode: 0x%x\n", mode);
printf("bits per word: %d\n", bits);
printf("max speed: %d Hz (%d KHz)\n", speed, speed/1000);
diff --git a/Documentation/stable_kernel_rules.txt b/Documentation/stable_kernel_rules.txt
index b0714d8f678..cbc2f03056b 100644
--- a/Documentation/stable_kernel_rules.txt
+++ b/Documentation/stable_kernel_rules.txt
@@ -39,7 +39,7 @@ Procedure for submitting patches to the -stable tree:
the stable tree without anything else needing to be done by the author
or subsystem maintainer.
- If the patch requires other patches as prerequisites which can be
- cherry-picked than this can be specified in the following format in
+ cherry-picked, then this can be specified in the following format in
the sign-off area:
Cc: <stable@vger.kernel.org> # 3.3.x: a1f84a3: sched: Check for idle
diff --git a/Documentation/static-keys.txt b/Documentation/static-keys.txt
index 9f5263d3152..c4407a41b0f 100644
--- a/Documentation/static-keys.txt
+++ b/Documentation/static-keys.txt
@@ -116,7 +116,7 @@ The branch(es) can then be switched via:
static_key_slow_dec(&key);
Thus, 'static_key_slow_inc()' means 'make the branch true', and
-'static_key_slow_dec()' means 'make the the branch false' with appropriate
+'static_key_slow_dec()' means 'make the branch false' with appropriate
reference counting. For example, if the key is initialized true, a
static_key_slow_dec(), will switch the branch to false. And a subsequent
static_key_slow_inc(), will change the branch back to true. Likewise, if the
@@ -236,7 +236,7 @@ label case adds:
If we then include the padding bytes, the jump label code saves, 16 total bytes
of instruction memory for this small function. In this case the non-jump label
-function is 80 bytes long. Thus, we have have saved 20% of the instruction
+function is 80 bytes long. Thus, we have saved 20% of the instruction
footprint. We can in fact improve this even further, since the 5-byte no-op
really can be a 2-byte no-op since we can reach the branch with a 2-byte jmp.
However, we have not yet implemented optimal no-op sizes (they are currently
diff --git a/Documentation/sysctl/kernel.txt b/Documentation/sysctl/kernel.txt
index 9d4c1d18ad4..c14374e7177 100644
--- a/Documentation/sysctl/kernel.txt
+++ b/Documentation/sysctl/kernel.txt
@@ -33,6 +33,11 @@ show up in /proc/sys/kernel:
- domainname
- hostname
- hotplug
+- hung_task_panic
+- hung_task_check_count
+- hung_task_timeout_secs
+- hung_task_warnings
+- kexec_load_disabled
- kptr_restrict
- kstack_depth_to_print [ X86 only ]
- l2cr [ PPC only ]
@@ -70,8 +75,10 @@ show up in /proc/sys/kernel:
- shmall
- shmmax [ sysv ipc ]
- shmmni
+- softlockup_all_cpu_backtrace
- stop-a [ SPARC only ]
- sysrq ==> Documentation/sysrq.txt
+- sysctl_writes_strict
- tainted
- threads-max
- unknown_nmi_panic
@@ -287,16 +294,79 @@ Default value is "/sbin/hotplug".
==============================================================
+hung_task_panic:
+
+Controls the kernel's behavior when a hung task is detected.
+This file shows up if CONFIG_DETECT_HUNG_TASK is enabled.
+
+0: continue operation. This is the default behavior.
+
+1: panic immediately.
+
+==============================================================
+
+hung_task_check_count:
+
+The upper bound on the number of tasks that are checked.
+This file shows up if CONFIG_DETECT_HUNG_TASK is enabled.
+
+==============================================================
+
+hung_task_timeout_secs:
+
+Check interval. When a task in D state did not get scheduled
+for more than this value report a warning.
+This file shows up if CONFIG_DETECT_HUNG_TASK is enabled.
+
+0: means infinite timeout - no checking done.
+Possible values to set are in range {0..LONG_MAX/HZ}.
+
+==============================================================
+
+hung_task_warnings:
+
+The maximum number of warnings to report. During a check interval
+if a hung task is detected, this value is decreased by 1.
+When this value reaches 0, no more warnings will be reported.
+This file shows up if CONFIG_DETECT_HUNG_TASK is enabled.
+
+-1: report an infinite number of warnings.
+
+==============================================================
+
+kexec_load_disabled:
+
+A toggle indicating if the kexec_load syscall has been disabled. This
+value defaults to 0 (false: kexec_load enabled), but can be set to 1
+(true: kexec_load disabled). Once true, kexec can no longer be used, and
+the toggle cannot be set back to false. This allows a kexec image to be
+loaded before disabling the syscall, allowing a system to set up (and
+later use) an image without it being altered. Generally used together
+with the "modules_disabled" sysctl.
+
+==============================================================
+
kptr_restrict:
This toggle indicates whether restrictions are placed on
-exposing kernel addresses via /proc and other interfaces. When
-kptr_restrict is set to (0), there are no restrictions. When
-kptr_restrict is set to (1), the default, kernel pointers
-printed using the %pK format specifier will be replaced with 0's
-unless the user has CAP_SYSLOG. When kptr_restrict is set to
-(2), kernel pointers printed using %pK will be replaced with 0's
-regardless of privileges.
+exposing kernel addresses via /proc and other interfaces.
+
+When kptr_restrict is set to (0), the default, there are no restrictions.
+
+When kptr_restrict is set to (1), kernel pointers printed using the %pK
+format specifier will be replaced with 0's unless the user has CAP_SYSLOG
+and effective user and group ids are equal to the real ids. This is
+because %pK checks are done at read() time rather than open() time, so
+if permissions are elevated between the open() and the read() (e.g via
+a setuid binary) then %pK will not leak kernel pointers to unprivileged
+users. Note, this is a temporary solution only. The correct long-term
+solution is to do the permission checks at open() time. Consider removing
+world read permissions from files that use %pK, and using dmesg_restrict
+to protect against uses of %pK in dmesg(8) if leaking kernel pointer
+values to unprivileged users is a concern.
+
+When kptr_restrict is set to (2), kernel pointers printed using
+%pK will be replaced with 0's regardless of privileges.
==============================================================
@@ -320,7 +390,7 @@ A toggle value indicating if modules are allowed to be loaded
in an otherwise modular kernel. This toggle defaults to off
(0), but can be set true (1). Once true, modules can be
neither loaded nor unloaded, and the toggle cannot be set back
-to false.
+to false. Generally used with the "kexec_load_disabled" toggle.
==============================================================
@@ -355,6 +425,69 @@ utilize.
==============================================================
+numa_balancing
+
+Enables/disables automatic page fault based NUMA memory
+balancing. Memory is moved automatically to nodes
+that access it often.
+
+Enables/disables automatic NUMA memory balancing. On NUMA machines, there
+is a performance penalty if remote memory is accessed by a CPU. When this
+feature is enabled the kernel samples what task thread is accessing memory
+by periodically unmapping pages and later trapping a page fault. At the
+time of the page fault, it is determined if the data being accessed should
+be migrated to a local memory node.
+
+The unmapping of pages and trapping faults incur additional overhead that
+ideally is offset by improved memory locality but there is no universal
+guarantee. If the target workload is already bound to NUMA nodes then this
+feature should be disabled. Otherwise, if the system overhead from the
+feature is too high then the rate the kernel samples for NUMA hinting
+faults may be controlled by the numa_balancing_scan_period_min_ms,
+numa_balancing_scan_delay_ms, numa_balancing_scan_period_max_ms,
+numa_balancing_scan_size_mb, and numa_balancing_settle_count sysctls.
+
+==============================================================
+
+numa_balancing_scan_period_min_ms, numa_balancing_scan_delay_ms,
+numa_balancing_scan_period_max_ms, numa_balancing_scan_size_mb
+
+Automatic NUMA balancing scans tasks address space and unmaps pages to
+detect if pages are properly placed or if the data should be migrated to a
+memory node local to where the task is running. Every "scan delay" the task
+scans the next "scan size" number of pages in its address space. When the
+end of the address space is reached the scanner restarts from the beginning.
+
+In combination, the "scan delay" and "scan size" determine the scan rate.
+When "scan delay" decreases, the scan rate increases. The scan delay and
+hence the scan rate of every task is adaptive and depends on historical
+behaviour. If pages are properly placed then the scan delay increases,
+otherwise the scan delay decreases. The "scan size" is not adaptive but
+the higher the "scan size", the higher the scan rate.
+
+Higher scan rates incur higher system overhead as page faults must be
+trapped and potentially data must be migrated. However, the higher the scan
+rate, the more quickly a tasks memory is migrated to a local node if the
+workload pattern changes and minimises performance impact due to remote
+memory accesses. These sysctls control the thresholds for scan delays and
+the number of pages scanned.
+
+numa_balancing_scan_period_min_ms is the minimum time in milliseconds to
+scan a tasks virtual memory. It effectively controls the maximum scanning
+rate for each task.
+
+numa_balancing_scan_delay_ms is the starting "scan delay" used for a task
+when it initially forks.
+
+numa_balancing_scan_period_max_ms is the maximum time in milliseconds to
+scan a tasks virtual memory. It effectively controls the minimum scanning
+rate for each task.
+
+numa_balancing_scan_size_mb is how many megabytes worth of pages are
+scanned for a given scan.
+
+==============================================================
+
osrelease, ostype & version:
# cat osrelease
@@ -631,6 +764,42 @@ without users and with a dead originative process will be destroyed.
==============================================================
+sysctl_writes_strict:
+
+Control how file position affects the behavior of updating sysctl values
+via the /proc/sys interface:
+
+ -1 - Legacy per-write sysctl value handling, with no printk warnings.
+ Each write syscall must fully contain the sysctl value to be
+ written, and multiple writes on the same sysctl file descriptor
+ will rewrite the sysctl value, regardless of file position.
+ 0 - (default) Same behavior as above, but warn about processes that
+ perform writes to a sysctl file descriptor when the file position
+ is not 0.
+ 1 - Respect file position when writing sysctl strings. Multiple writes
+ will append to the sysctl value buffer. Anything past the max length
+ of the sysctl value buffer will be ignored. Writes to numeric sysctl
+ entries must always be at file position 0 and the value must be
+ fully contained in the buffer sent in the write syscall.
+
+==============================================================
+
+softlockup_all_cpu_backtrace:
+
+This value controls the soft lockup detector thread's behavior
+when a soft lockup condition is detected as to whether or not
+to gather further debug information. If enabled, each cpu will
+be issued an NMI and instructed to capture stack trace.
+
+This feature is only applicable for architectures which support
+NMI.
+
+0: do nothing. This is the default behavior.
+
+1: on detection capture more debug information.
+
+==============================================================
+
tainted:
Non-zero if the kernel has been tainted. Numeric values, which
@@ -655,6 +824,8 @@ can be ORed together:
1024 - A module from drivers/staging was loaded.
2048 - The system is working around a severe firmware bug.
4096 - An out-of-tree module has been loaded.
+8192 - An unsigned module has been loaded in a kernel supporting module
+ signature.
==============================================================
diff --git a/Documentation/sysctl/vm.txt b/Documentation/sysctl/vm.txt
index 79a797eb3e8..4415aa91568 100644
--- a/Documentation/sysctl/vm.txt
+++ b/Documentation/sysctl/vm.txt
@@ -47,6 +47,7 @@ Currently, these files are in /proc/sys/vm:
- numa_zonelist_order
- oom_dump_tasks
- oom_kill_allocating_task
+- overcommit_kbytes
- overcommit_memory
- overcommit_ratio
- page-cluster
@@ -119,8 +120,11 @@ other appears as 0 when read.
dirty_background_ratio
-Contains, as a percentage of total system memory, the number of pages at which
-the background kernel flusher threads will start writing out dirty data.
+Contains, as a percentage of total available memory that contains free pages
+and reclaimable pages, the number of pages at which the background kernel
+flusher threads will start writing out dirty data.
+
+The total avaiable memory is not equal to total system memory.
==============================================================
@@ -151,9 +155,11 @@ interval will be written out next time a flusher thread wakes up.
dirty_ratio
-Contains, as a percentage of total system memory, the number of pages at which
-a process which is generating disk writes will itself start writing out dirty
-data.
+Contains, as a percentage of total available memory that contains free pages
+and reclaimable pages, the number of pages at which a process which is
+generating disk writes will itself start writing out dirty data.
+
+The total avaiable memory is not equal to total system memory.
==============================================================
@@ -169,18 +175,39 @@ Setting this to zero disables periodic writeback altogether.
drop_caches
-Writing to this will cause the kernel to drop clean caches, dentries and
-inodes from memory, causing that memory to become free.
+Writing to this will cause the kernel to drop clean caches, as well as
+reclaimable slab objects like dentries and inodes. Once dropped, their
+memory becomes free.
To free pagecache:
echo 1 > /proc/sys/vm/drop_caches
-To free dentries and inodes:
+To free reclaimable slab objects (includes dentries and inodes):
echo 2 > /proc/sys/vm/drop_caches
-To free pagecache, dentries and inodes:
+To free slab objects and pagecache:
echo 3 > /proc/sys/vm/drop_caches
-As this is a non-destructive operation and dirty objects are not freeable, the
-user should run `sync' first.
+This is a non-destructive operation and will not free any dirty objects.
+To increase the number of objects freed by this operation, the user may run
+`sync' prior to writing to /proc/sys/vm/drop_caches. This will minimize the
+number of dirty objects on the system and create more candidates to be
+dropped.
+
+This file is not a means to control the growth of the various kernel caches
+(inodes, dentries, pagecache, etc...) These objects are automatically
+reclaimed by the kernel when memory is needed elsewhere on the system.
+
+Use of this file can cause performance problems. Since it discards cached
+objects, it may cost a significant amount of I/O and CPU to recreate the
+dropped objects, especially if they were under heavy use. Because of this,
+use outside of a testing or debugging environment is not recommended.
+
+You may see informational messages in your kernel log when this file is
+used:
+
+ cat (1234): drop_caches: 3
+
+These are informational only. They do not mean that anything is wrong
+with your system. To disable them, echo 4 (bit 3) into drop_caches.
==============================================================
@@ -569,6 +596,17 @@ The default value is 0.
==============================================================
+overcommit_kbytes:
+
+When overcommit_memory is set to 2, the committed address space is not
+permitted to exceed swap plus this amount of physical RAM. See below.
+
+Note: overcommit_kbytes is the counterpart of overcommit_ratio. Only one
+of them may be specified at a time. Setting one disables the other (which
+then appears as 0 when read).
+
+==============================================================
+
overcommit_memory:
This value contains a flag that enables memory overcommitment.
@@ -664,7 +702,8 @@ The batch value of each per cpu pagelist is also updated as a result. It is
set to pcp->high/4. The upper limit of batch is (PAGE_SHIFT * 8)
The initial value is zero. Kernel does not use this value at boot time to set
-the high water marks for each per cpu page list.
+the high water marks for each per cpu page list. If the user writes '0' to this
+sysctl, it will revert to this default behavior.
==============================================================
@@ -679,7 +718,9 @@ swappiness
This control is used to define how aggressive the kernel will swap
memory pages. Higher values will increase agressiveness, lower values
-decrease the amount of swap.
+decrease the amount of swap. A value of 0 instructs the kernel not to
+initiate swap until the amount of free and file-backed pages is less
+than the high water mark in a zone.
The default value is 60.
@@ -706,8 +747,8 @@ Changing this takes effect whenever an application requests memory.
vfs_cache_pressure
------------------
-Controls the tendency of the kernel to reclaim the memory which is used for
-caching of directory and inode objects.
+This percentage value controls the tendency of the kernel to reclaim
+the memory which is used for caching of directory and inode objects.
At the default value of vfs_cache_pressure=100 the kernel will attempt to
reclaim dentries and inodes at a "fair" rate with respect to pagecache and
@@ -717,6 +758,11 @@ never reclaim dentries and inodes due to memory pressure and this can easily
lead to out-of-memory conditions. Increasing vfs_cache_pressure beyond 100
causes the kernel to prefer to reclaim dentries and inodes.
+Increasing vfs_cache_pressure significantly beyond 100 may have negative
+performance impact. Reclaim code needs to take various locks to find freeable
+directory and inode objects. With vfs_cache_pressure=1000, it will look for
+ten times more freeable objects than there are.
+
==============================================================
zone_reclaim_mode:
@@ -732,16 +778,17 @@ This is value ORed together of
2 = Zone reclaim writes dirty pages out
4 = Zone reclaim swaps pages
-zone_reclaim_mode is set during bootup to 1 if it is determined that pages
-from remote zones will cause a measurable performance reduction. The
-page allocator will then reclaim easily reusable pages (those page
-cache pages that are currently not used) before allocating off node pages.
-
-It may be beneficial to switch off zone reclaim if the system is
-used for a file server and all of memory should be used for caching files
-from disk. In that case the caching effect is more important than
+zone_reclaim_mode is disabled by default. For file servers or workloads
+that benefit from having their data cached, zone_reclaim_mode should be
+left disabled as the caching effect is likely to be more important than
data locality.
+zone_reclaim may be enabled if it's known that the workload is partitioned
+such that each partition fits within a NUMA node and that accessing remote
+memory would cause a measurable performance reduction. The page allocator
+will then reclaim easily reusable pages (those page cache pages that are
+currently not used) before allocating off node pages.
+
Allowing zone reclaim to write out pages stops processes that are
writing large amounts of data from dirtying pages on other nodes. Zone
reclaim will write out dirty pages if a zone fills up and so effectively
diff --git a/Documentation/sysrq.txt b/Documentation/sysrq.txt
index 8cb4d7842a5..0e307c94809 100644
--- a/Documentation/sysrq.txt
+++ b/Documentation/sysrq.txt
@@ -11,27 +11,29 @@ regardless of whatever else it is doing, unless it is completely locked up.
You need to say "yes" to 'Magic SysRq key (CONFIG_MAGIC_SYSRQ)' when
configuring the kernel. When running a kernel with SysRq compiled in,
/proc/sys/kernel/sysrq controls the functions allowed to be invoked via
-the SysRq key. By default the file contains 1 which means that every
-possible SysRq request is allowed (in older versions SysRq was disabled
-by default, and you were required to specifically enable it at run-time
-but this is not the case any more). Here is the list of possible values
-in /proc/sys/kernel/sysrq:
+the SysRq key. The default value in this file is set by the
+CONFIG_MAGIC_SYSRQ_DEFAULT_ENABLE config symbol, which itself defaults
+to 1. Here is the list of possible values in /proc/sys/kernel/sysrq:
0 - disable sysrq completely
1 - enable all functions of sysrq
>1 - bitmask of allowed sysrq functions (see below for detailed function
description):
- 2 - enable control of console logging level
- 4 - enable control of keyboard (SAK, unraw)
- 8 - enable debugging dumps of processes etc.
- 16 - enable sync command
- 32 - enable remount read-only
- 64 - enable signalling of processes (term, kill, oom-kill)
- 128 - allow reboot/poweroff
- 256 - allow nicing of all RT tasks
+ 2 = 0x2 - enable control of console logging level
+ 4 = 0x4 - enable control of keyboard (SAK, unraw)
+ 8 = 0x8 - enable debugging dumps of processes etc.
+ 16 = 0x10 - enable sync command
+ 32 = 0x20 - enable remount read-only
+ 64 = 0x40 - enable signalling of processes (term, kill, oom-kill)
+ 128 = 0x80 - allow reboot/poweroff
+ 256 = 0x100 - allow nicing of all RT tasks
You can set the value in the file by the following command:
echo "number" >/proc/sys/kernel/sysrq
+The number may be written here either as decimal or as hexadecimal
+with the 0x prefix. CONFIG_MAGIC_SYSRQ_DEFAULT_ENABLE must always be
+written in hexadecimal.
+
Note that the value of /proc/sys/kernel/sysrq influences only the invocation
via a keyboard. Invocation of any operation via /proc/sysrq-trigger is always
allowed (by a user with admin privileges).
diff --git a/Documentation/target/tcm_mod_builder.py b/Documentation/target/tcm_mod_builder.py
index 54d29c1320e..230ce71f4d7 100755
--- a/Documentation/target/tcm_mod_builder.py
+++ b/Documentation/target/tcm_mod_builder.py
@@ -440,15 +440,15 @@ def tcm_mod_build_configfs(proto_ident, fabric_mod_dir_var, fabric_mod_name):
buf += " /*\n"
buf += " * Setup default attribute lists for various fabric->tf_cit_tmpl\n"
buf += " */\n"
- buf += " TF_CIT_TMPL(fabric)->tfc_wwn_cit.ct_attrs = " + fabric_mod_name + "_wwn_attrs;\n"
- buf += " TF_CIT_TMPL(fabric)->tfc_tpg_base_cit.ct_attrs = NULL;\n"
- buf += " TF_CIT_TMPL(fabric)->tfc_tpg_attrib_cit.ct_attrs = NULL;\n"
- buf += " TF_CIT_TMPL(fabric)->tfc_tpg_param_cit.ct_attrs = NULL;\n"
- buf += " TF_CIT_TMPL(fabric)->tfc_tpg_np_base_cit.ct_attrs = NULL;\n"
- buf += " TF_CIT_TMPL(fabric)->tfc_tpg_nacl_base_cit.ct_attrs = NULL;\n"
- buf += " TF_CIT_TMPL(fabric)->tfc_tpg_nacl_attrib_cit.ct_attrs = NULL;\n"
- buf += " TF_CIT_TMPL(fabric)->tfc_tpg_nacl_auth_cit.ct_attrs = NULL;\n"
- buf += " TF_CIT_TMPL(fabric)->tfc_tpg_nacl_param_cit.ct_attrs = NULL;\n"
+ buf += " fabric->tf_cit_tmpl.tfc_wwn_cit.ct_attrs = " + fabric_mod_name + "_wwn_attrs;\n"
+ buf += " fabric->tf_cit_tmpl.tfc_tpg_base_cit.ct_attrs = NULL;\n"
+ buf += " fabric->tf_cit_tmpl.tfc_tpg_attrib_cit.ct_attrs = NULL;\n"
+ buf += " fabric->tf_cit_tmpl.tfc_tpg_param_cit.ct_attrs = NULL;\n"
+ buf += " fabric->tf_cit_tmpl.tfc_tpg_np_base_cit.ct_attrs = NULL;\n"
+ buf += " fabric->tf_cit_tmpl.tfc_tpg_nacl_base_cit.ct_attrs = NULL;\n"
+ buf += " fabric->tf_cit_tmpl.tfc_tpg_nacl_attrib_cit.ct_attrs = NULL;\n"
+ buf += " fabric->tf_cit_tmpl.tfc_tpg_nacl_auth_cit.ct_attrs = NULL;\n"
+ buf += " fabric->tf_cit_tmpl.tfc_tpg_nacl_param_cit.ct_attrs = NULL;\n"
buf += " /*\n"
buf += " * Register the fabric for use within TCM\n"
buf += " */\n"
diff --git a/Documentation/thermal/nouveau_thermal b/Documentation/thermal/nouveau_thermal
index efceb7828f5..60bc29357ac 100644
--- a/Documentation/thermal/nouveau_thermal
+++ b/Documentation/thermal/nouveau_thermal
@@ -4,7 +4,7 @@ Kernel driver nouveau
Supported chips:
* NV43+
-Authors: Martin Peres (mupuf) <martin.peres@labri.fr>
+Authors: Martin Peres (mupuf) <martin.peres@free.fr>
Description
---------
@@ -68,8 +68,9 @@ Your fan can be driven in different modes:
NOTE: Be sure to use the manual mode if you want to drive the fan speed manually
-NOTE2: Not all fan management modes may be supported on all chipsets. We are
-working on it.
+NOTE2: When operating in manual mode outside the vbios-defined
+[PWM_min, PWM_max] range, the reported fan speed (RPM) may not be accurate
+depending on your hardware.
Bug reports
---------
diff --git a/Documentation/timers/00-INDEX b/Documentation/timers/00-INDEX
index a9248da5cdb..6d042dc1cce 100644
--- a/Documentation/timers/00-INDEX
+++ b/Documentation/timers/00-INDEX
@@ -8,5 +8,11 @@ hpet_example.c
- sample hpet timer test program
hrtimers.txt
- subsystem for high-resolution kernel timers
+Makefile
+ - Build and link hpet_example
+NO_HZ.txt
+ - Summary of the different methods for the scheduler clock-interrupts management.
+timers-howto.txt
+ - how to insert delays in the kernel the right (tm) way.
timer_stats.txt
- timer usage statistics
diff --git a/Documentation/timers/timer_stats.txt b/Documentation/timers/timer_stats.txt
index 8abd40b22b7..de835ee9745 100644
--- a/Documentation/timers/timer_stats.txt
+++ b/Documentation/timers/timer_stats.txt
@@ -39,9 +39,9 @@ To stop a sample period issue:
The statistics can be retrieved by:
# cat /proc/timer_stats
-The readout of /proc/timer_stats automatically disables sampling. The sampled
-information is kept until a new sample period is started. This allows multiple
-readouts.
+While sampling is enabled, each readout from /proc/timer_stats will see
+newly updated statistics. Once sampling is disabled, the sampled information
+is kept until a new sample period is started. This allows multiple readouts.
Sample output of /proc/timer_stats:
diff --git a/Documentation/trace/events-power.txt b/Documentation/trace/events-power.txt
index 3bd33b8dc7c..21d514ced21 100644
--- a/Documentation/trace/events-power.txt
+++ b/Documentation/trace/events-power.txt
@@ -92,5 +92,5 @@ dev_pm_qos_remove_request "device=%s type=%s new_value=%d"
The first parameter gives the device name which tries to add/update/remove
QoS requests.
-The second parameter gives the request type (e.g. "DEV_PM_QOS_LATENCY").
+The second parameter gives the request type (e.g. "DEV_PM_QOS_RESUME_LATENCY").
The third parameter is value to be added/updated/removed.
diff --git a/Documentation/trace/events.txt b/Documentation/trace/events.txt
index 37732a220d3..75d25a1d6e4 100644
--- a/Documentation/trace/events.txt
+++ b/Documentation/trace/events.txt
@@ -287,3 +287,210 @@ their old filters):
prev_pid == 0
# cat sched_wakeup/filter
common_pid == 0
+
+6. Event triggers
+=================
+
+Trace events can be made to conditionally invoke trigger 'commands'
+which can take various forms and are described in detail below;
+examples would be enabling or disabling other trace events or invoking
+a stack trace whenever the trace event is hit. Whenever a trace event
+with attached triggers is invoked, the set of trigger commands
+associated with that event is invoked. Any given trigger can
+additionally have an event filter of the same form as described in
+section 5 (Event filtering) associated with it - the command will only
+be invoked if the event being invoked passes the associated filter.
+If no filter is associated with the trigger, it always passes.
+
+Triggers are added to and removed from a particular event by writing
+trigger expressions to the 'trigger' file for the given event.
+
+A given event can have any number of triggers associated with it,
+subject to any restrictions that individual commands may have in that
+regard.
+
+Event triggers are implemented on top of "soft" mode, which means that
+whenever a trace event has one or more triggers associated with it,
+the event is activated even if it isn't actually enabled, but is
+disabled in a "soft" mode. That is, the tracepoint will be called,
+but just will not be traced, unless of course it's actually enabled.
+This scheme allows triggers to be invoked even for events that aren't
+enabled, and also allows the current event filter implementation to be
+used for conditionally invoking triggers.
+
+The syntax for event triggers is roughly based on the syntax for
+set_ftrace_filter 'ftrace filter commands' (see the 'Filter commands'
+section of Documentation/trace/ftrace.txt), but there are major
+differences and the implementation isn't currently tied to it in any
+way, so beware about making generalizations between the two.
+
+6.1 Expression syntax
+---------------------
+
+Triggers are added by echoing the command to the 'trigger' file:
+
+ # echo 'command[:count] [if filter]' > trigger
+
+Triggers are removed by echoing the same command but starting with '!'
+to the 'trigger' file:
+
+ # echo '!command[:count] [if filter]' > trigger
+
+The [if filter] part isn't used in matching commands when removing, so
+leaving that off in a '!' command will accomplish the same thing as
+having it in.
+
+The filter syntax is the same as that described in the 'Event
+filtering' section above.
+
+For ease of use, writing to the trigger file using '>' currently just
+adds or removes a single trigger and there's no explicit '>>' support
+('>' actually behaves like '>>') or truncation support to remove all
+triggers (you have to use '!' for each one added.)
+
+6.2 Supported trigger commands
+------------------------------
+
+The following commands are supported:
+
+- enable_event/disable_event
+
+ These commands can enable or disable another trace event whenever
+ the triggering event is hit. When these commands are registered,
+ the other trace event is activated, but disabled in a "soft" mode.
+ That is, the tracepoint will be called, but just will not be traced.
+ The event tracepoint stays in this mode as long as there's a trigger
+ in effect that can trigger it.
+
+ For example, the following trigger causes kmalloc events to be
+ traced when a read system call is entered, and the :1 at the end
+ specifies that this enablement happens only once:
+
+ # echo 'enable_event:kmem:kmalloc:1' > \
+ /sys/kernel/debug/tracing/events/syscalls/sys_enter_read/trigger
+
+ The following trigger causes kmalloc events to stop being traced
+ when a read system call exits. This disablement happens on every
+ read system call exit:
+
+ # echo 'disable_event:kmem:kmalloc' > \
+ /sys/kernel/debug/tracing/events/syscalls/sys_exit_read/trigger
+
+ The format is:
+
+ enable_event:<system>:<event>[:count]
+ disable_event:<system>:<event>[:count]
+
+ To remove the above commands:
+
+ # echo '!enable_event:kmem:kmalloc:1' > \
+ /sys/kernel/debug/tracing/events/syscalls/sys_enter_read/trigger
+
+ # echo '!disable_event:kmem:kmalloc' > \
+ /sys/kernel/debug/tracing/events/syscalls/sys_exit_read/trigger
+
+ Note that there can be any number of enable/disable_event triggers
+ per triggering event, but there can only be one trigger per
+ triggered event. e.g. sys_enter_read can have triggers enabling both
+ kmem:kmalloc and sched:sched_switch, but can't have two kmem:kmalloc
+ versions such as kmem:kmalloc and kmem:kmalloc:1 or 'kmem:kmalloc if
+ bytes_req == 256' and 'kmem:kmalloc if bytes_alloc == 256' (they
+ could be combined into a single filter on kmem:kmalloc though).
+
+- stacktrace
+
+ This command dumps a stacktrace in the trace buffer whenever the
+ triggering event occurs.
+
+ For example, the following trigger dumps a stacktrace every time the
+ kmalloc tracepoint is hit:
+
+ # echo 'stacktrace' > \
+ /sys/kernel/debug/tracing/events/kmem/kmalloc/trigger
+
+ The following trigger dumps a stacktrace the first 5 times a kmalloc
+ request happens with a size >= 64K
+
+ # echo 'stacktrace:5 if bytes_req >= 65536' > \
+ /sys/kernel/debug/tracing/events/kmem/kmalloc/trigger
+
+ The format is:
+
+ stacktrace[:count]
+
+ To remove the above commands:
+
+ # echo '!stacktrace' > \
+ /sys/kernel/debug/tracing/events/kmem/kmalloc/trigger
+
+ # echo '!stacktrace:5 if bytes_req >= 65536' > \
+ /sys/kernel/debug/tracing/events/kmem/kmalloc/trigger
+
+ The latter can also be removed more simply by the following (without
+ the filter):
+
+ # echo '!stacktrace:5' > \
+ /sys/kernel/debug/tracing/events/kmem/kmalloc/trigger
+
+ Note that there can be only one stacktrace trigger per triggering
+ event.
+
+- snapshot
+
+ This command causes a snapshot to be triggered whenever the
+ triggering event occurs.
+
+ The following command creates a snapshot every time a block request
+ queue is unplugged with a depth > 1. If you were tracing a set of
+ events or functions at the time, the snapshot trace buffer would
+ capture those events when the trigger event occurred:
+
+ # echo 'snapshot if nr_rq > 1' > \
+ /sys/kernel/debug/tracing/events/block/block_unplug/trigger
+
+ To only snapshot once:
+
+ # echo 'snapshot:1 if nr_rq > 1' > \
+ /sys/kernel/debug/tracing/events/block/block_unplug/trigger
+
+ To remove the above commands:
+
+ # echo '!snapshot if nr_rq > 1' > \
+ /sys/kernel/debug/tracing/events/block/block_unplug/trigger
+
+ # echo '!snapshot:1 if nr_rq > 1' > \
+ /sys/kernel/debug/tracing/events/block/block_unplug/trigger
+
+ Note that there can be only one snapshot trigger per triggering
+ event.
+
+- traceon/traceoff
+
+ These commands turn tracing on and off when the specified events are
+ hit. The parameter determines how many times the tracing system is
+ turned on and off. If unspecified, there is no limit.
+
+ The following command turns tracing off the first time a block
+ request queue is unplugged with a depth > 1. If you were tracing a
+ set of events or functions at the time, you could then examine the
+ trace buffer to see the sequence of events that led up to the
+ trigger event:
+
+ # echo 'traceoff:1 if nr_rq > 1' > \
+ /sys/kernel/debug/tracing/events/block/block_unplug/trigger
+
+ To always disable tracing when nr_rq > 1 :
+
+ # echo 'traceoff if nr_rq > 1' > \
+ /sys/kernel/debug/tracing/events/block/block_unplug/trigger
+
+ To remove the above commands:
+
+ # echo '!traceoff:1 if nr_rq > 1' > \
+ /sys/kernel/debug/tracing/events/block/block_unplug/trigger
+
+ # echo '!traceoff if nr_rq > 1' > \
+ /sys/kernel/debug/tracing/events/block/block_unplug/trigger
+
+ Note that there can be only one traceon or traceoff trigger per
+ triggering event.
diff --git a/Documentation/trace/ftrace-design.txt b/Documentation/trace/ftrace-design.txt
index 79fcafc7fd6..3f669b9e885 100644
--- a/Documentation/trace/ftrace-design.txt
+++ b/Documentation/trace/ftrace-design.txt
@@ -358,11 +358,8 @@ Every arch has an init callback function. If you need to do something early on
to initialize some state, this is the time to do that. Otherwise, this simple
function below should be sufficient for most people:
-int __init ftrace_dyn_arch_init(void *data)
+int __init ftrace_dyn_arch_init(void)
{
- /* return value is done indirectly via data */
- *(unsigned long *)data = 0;
-
return 0;
}
diff --git a/Documentation/trace/ftrace.txt b/Documentation/trace/ftrace.txt
index ea2d35d64d2..2479b2a0c77 100644
--- a/Documentation/trace/ftrace.txt
+++ b/Documentation/trace/ftrace.txt
@@ -655,7 +655,11 @@ explains which is which.
read the irq flags variable, an 'X' will always
be printed here.
- need-resched: 'N' task need_resched is set, '.' otherwise.
+ need-resched:
+ 'N' both TIF_NEED_RESCHED and PREEMPT_NEED_RESCHED is set,
+ 'n' only TIF_NEED_RESCHED is set,
+ 'p' only PREEMPT_NEED_RESCHED is set,
+ '.' otherwise.
hardirq/softirq:
'H' - hard irq occurred inside a softirq.
@@ -1999,6 +2003,32 @@ want, depending on your needs.
360.774530 | 1) 0.594 us | __phys_addr();
+The function name is always displayed after the closing bracket
+for a function if the start of that function is not in the
+trace buffer.
+
+Display of the function name after the closing bracket may be
+enabled for functions whose start is in the trace buffer,
+allowing easier searching with grep for function durations.
+It is default disabled.
+
+ hide: echo nofuncgraph-tail > trace_options
+ show: echo funcgraph-tail > trace_options
+
+ Example with nofuncgraph-tail (default):
+ 0) | putname() {
+ 0) | kmem_cache_free() {
+ 0) 0.518 us | __phys_addr();
+ 0) 1.757 us | }
+ 0) 2.861 us | }
+
+ Example with funcgraph-tail:
+ 0) | putname() {
+ 0) | kmem_cache_free() {
+ 0) 0.518 us | __phys_addr();
+ 0) 1.757 us | } /* kmem_cache_free() */
+ 0) 2.861 us | } /* putname() */
+
You can put some comments on specific functions by using
trace_printk() For example, if you want to put a comment inside
the __might_sleep() function, you just have to include
diff --git a/Documentation/trace/postprocess/trace-vmscan-postprocess.pl b/Documentation/trace/postprocess/trace-vmscan-postprocess.pl
index 4a37c4759cd..78c9a7b2b58 100644
--- a/Documentation/trace/postprocess/trace-vmscan-postprocess.pl
+++ b/Documentation/trace/postprocess/trace-vmscan-postprocess.pl
@@ -47,7 +47,6 @@ use constant HIGH_KSWAPD_REWAKEUP => 21;
use constant HIGH_NR_SCANNED => 22;
use constant HIGH_NR_TAKEN => 23;
use constant HIGH_NR_RECLAIMED => 24;
-use constant HIGH_NR_CONTIG_DIRTY => 25;
my %perprocesspid;
my %perprocess;
@@ -105,7 +104,7 @@ my $regex_direct_end_default = 'nr_reclaimed=([0-9]*)';
my $regex_kswapd_wake_default = 'nid=([0-9]*) order=([0-9]*)';
my $regex_kswapd_sleep_default = 'nid=([0-9]*)';
my $regex_wakeup_kswapd_default = 'nid=([0-9]*) zid=([0-9]*) order=([0-9]*)';
-my $regex_lru_isolate_default = 'isolate_mode=([0-9]*) order=([0-9]*) nr_requested=([0-9]*) nr_scanned=([0-9]*) nr_taken=([0-9]*) contig_taken=([0-9]*) contig_dirty=([0-9]*) contig_failed=([0-9]*)';
+my $regex_lru_isolate_default = 'isolate_mode=([0-9]*) order=([0-9]*) nr_requested=([0-9]*) nr_scanned=([0-9]*) nr_taken=([0-9]*) file=([0-9]*)';
my $regex_lru_shrink_inactive_default = 'nid=([0-9]*) zid=([0-9]*) nr_scanned=([0-9]*) nr_reclaimed=([0-9]*) priority=([0-9]*) flags=([A-Z_|]*)';
my $regex_lru_shrink_active_default = 'lru=([A-Z_]*) nr_scanned=([0-9]*) nr_rotated=([0-9]*) priority=([0-9]*)';
my $regex_writepage_default = 'page=([0-9a-f]*) pfn=([0-9]*) flags=([A-Z_|]*)';
@@ -123,7 +122,7 @@ my $regex_writepage;
# Static regex used. Specified like this for readability and for use with /o
# (process_pid) (cpus ) ( time ) (tpoint ) (details)
-my $regex_traceevent = '\s*([a-zA-Z0-9-]*)\s*(\[[0-9]*\])\s*([0-9.]*):\s*([a-zA-Z_]*):\s*(.*)';
+my $regex_traceevent = '\s*([a-zA-Z0-9-]*)\s*(\[[0-9]*\])(\s*[dX.][Nnp.][Hhs.][0-9a-fA-F.]*|)\s*([0-9.]*):\s*([a-zA-Z_]*):\s*(.*)';
my $regex_statname = '[-0-9]*\s\((.*)\).*';
my $regex_statppid = '[-0-9]*\s\(.*\)\s[A-Za-z]\s([0-9]*).*';
@@ -200,7 +199,7 @@ $regex_lru_isolate = generate_traceevent_regex(
$regex_lru_isolate_default,
"isolate_mode", "order",
"nr_requested", "nr_scanned", "nr_taken",
- "contig_taken", "contig_dirty", "contig_failed");
+ "file");
$regex_lru_shrink_inactive = generate_traceevent_regex(
"vmscan/mm_vmscan_lru_shrink_inactive",
$regex_lru_shrink_inactive_default,
@@ -270,8 +269,8 @@ EVENT_PROCESS:
while ($traceevent = <STDIN>) {
if ($traceevent =~ /$regex_traceevent/o) {
$process_pid = $1;
- $timestamp = $3;
- $tracepoint = $4;
+ $timestamp = $4;
+ $tracepoint = $5;
$process_pid =~ /(.*)-([0-9]*)$/;
my $process = $1;
@@ -299,7 +298,7 @@ EVENT_PROCESS:
$perprocesspid{$process_pid}->{MM_VMSCAN_DIRECT_RECLAIM_BEGIN}++;
$perprocesspid{$process_pid}->{STATE_DIRECT_BEGIN} = $timestamp;
- $details = $5;
+ $details = $6;
if ($details !~ /$regex_direct_begin/o) {
print "WARNING: Failed to parse mm_vmscan_direct_reclaim_begin as expected\n";
print " $details\n";
@@ -322,7 +321,7 @@ EVENT_PROCESS:
$perprocesspid{$process_pid}->{HIGH_DIRECT_RECLAIM_LATENCY}[$index] = "$order-$latency";
}
} elsif ($tracepoint eq "mm_vmscan_kswapd_wake") {
- $details = $5;
+ $details = $6;
if ($details !~ /$regex_kswapd_wake/o) {
print "WARNING: Failed to parse mm_vmscan_kswapd_wake as expected\n";
print " $details\n";
@@ -356,7 +355,7 @@ EVENT_PROCESS:
} elsif ($tracepoint eq "mm_vmscan_wakeup_kswapd") {
$perprocesspid{$process_pid}->{MM_VMSCAN_WAKEUP_KSWAPD}++;
- $details = $5;
+ $details = $6;
if ($details !~ /$regex_wakeup_kswapd/o) {
print "WARNING: Failed to parse mm_vmscan_wakeup_kswapd as expected\n";
print " $details\n";
@@ -366,7 +365,7 @@ EVENT_PROCESS:
my $order = $3;
$perprocesspid{$process_pid}->{MM_VMSCAN_WAKEUP_KSWAPD_PERORDER}[$order]++;
} elsif ($tracepoint eq "mm_vmscan_lru_isolate") {
- $details = $5;
+ $details = $6;
if ($details !~ /$regex_lru_isolate/o) {
print "WARNING: Failed to parse mm_vmscan_lru_isolate as expected\n";
print " $details\n";
@@ -375,7 +374,6 @@ EVENT_PROCESS:
}
my $isolate_mode = $1;
my $nr_scanned = $4;
- my $nr_contig_dirty = $7;
# To closer match vmstat scanning statistics, only count isolate_both
# and isolate_inactive as scanning. isolate_active is rotation
@@ -385,9 +383,8 @@ EVENT_PROCESS:
if ($isolate_mode != 2) {
$perprocesspid{$process_pid}->{HIGH_NR_SCANNED} += $nr_scanned;
}
- $perprocesspid{$process_pid}->{HIGH_NR_CONTIG_DIRTY} += $nr_contig_dirty;
} elsif ($tracepoint eq "mm_vmscan_lru_shrink_inactive") {
- $details = $5;
+ $details = $6;
if ($details !~ /$regex_lru_shrink_inactive/o) {
print "WARNING: Failed to parse mm_vmscan_lru_shrink_inactive as expected\n";
print " $details\n";
@@ -397,7 +394,7 @@ EVENT_PROCESS:
my $nr_reclaimed = $4;
$perprocesspid{$process_pid}->{HIGH_NR_RECLAIMED} += $nr_reclaimed;
} elsif ($tracepoint eq "mm_vmscan_writepage") {
- $details = $5;
+ $details = $6;
if ($details !~ /$regex_writepage/o) {
print "WARNING: Failed to parse mm_vmscan_writepage as expected\n";
print " $details\n";
@@ -539,13 +536,6 @@ sub dump_stats {
}
}
}
- if ($stats{$process_pid}->{HIGH_NR_CONTIG_DIRTY}) {
- print " ";
- my $count = $stats{$process_pid}->{HIGH_NR_CONTIG_DIRTY};
- if ($count != 0) {
- print "contig-dirty=$count ";
- }
- }
print "\n";
}
diff --git a/Documentation/trace/ring-buffer-design.txt b/Documentation/trace/ring-buffer-design.txt
index 7d350b49658..ff747b6fa39 100644
--- a/Documentation/trace/ring-buffer-design.txt
+++ b/Documentation/trace/ring-buffer-design.txt
@@ -683,7 +683,7 @@ against nested writers.
cmpxchg(tail_page, temp_page, next_page)
The above will update the tail page if it is still pointing to the expected
-page. If this fails, a nested write pushed it forward, the the current write
+page. If this fails, a nested write pushed it forward, the current write
does not need to push it.
diff --git a/Documentation/trace/tracepoints.txt b/Documentation/trace/tracepoints.txt
index ac4170dd0f2..a3efac621c5 100644
--- a/Documentation/trace/tracepoints.txt
+++ b/Documentation/trace/tracepoints.txt
@@ -114,3 +114,32 @@ core kernel image or in modules.
If the tracepoint has to be used in kernel modules, an
EXPORT_TRACEPOINT_SYMBOL_GPL() or EXPORT_TRACEPOINT_SYMBOL() can be
used to export the defined tracepoints.
+
+If you need to do a bit of work for a tracepoint parameter, and
+that work is only used for the tracepoint, that work can be encapsulated
+within an if statement with the following:
+
+ if (trace_foo_bar_enabled()) {
+ int i;
+ int tot = 0;
+
+ for (i = 0; i < count; i++)
+ tot += calculate_nuggets();
+
+ trace_foo_bar(tot);
+ }
+
+All trace_<tracepoint>() calls have a matching trace_<tracepoint>_enabled()
+function defined that returns true if the tracepoint is enabled and
+false otherwise. The trace_<tracepoint>() should always be within the
+block of the if (trace_<tracepoint>_enabled()) to prevent races between
+the tracepoint being enabled and the check being seen.
+
+The advantage of using the trace_<tracepoint>_enabled() is that it uses
+the static_key of the tracepoint to allow the if statement to be implemented
+with jump labels and avoid conditional branches.
+
+Note: The convenience macro TRACE_EVENT provides an alternative way to
+ define tracepoints. Check http://lwn.net/Articles/379903,
+ http://lwn.net/Articles/381064 and http://lwn.net/Articles/383362
+ for a series of articles with more details.
diff --git a/Documentation/trace/uprobetracer.txt b/Documentation/trace/uprobetracer.txt
index d9c3e682312..f1cf9a34ad9 100644
--- a/Documentation/trace/uprobetracer.txt
+++ b/Documentation/trace/uprobetracer.txt
@@ -19,18 +19,44 @@ user to calculate the offset of the probepoint in the object.
Synopsis of uprobe_tracer
-------------------------
- p[:[GRP/]EVENT] PATH:SYMBOL[+offs] [FETCHARGS] : Set a uprobe
- r[:[GRP/]EVENT] PATH:SYMBOL[+offs] [FETCHARGS] : Set a return uprobe (uretprobe)
- -:[GRP/]EVENT : Clear uprobe or uretprobe event
+ p[:[GRP/]EVENT] PATH:OFFSET [FETCHARGS] : Set a uprobe
+ r[:[GRP/]EVENT] PATH:OFFSET [FETCHARGS] : Set a return uprobe (uretprobe)
+ -:[GRP/]EVENT : Clear uprobe or uretprobe event
GRP : Group name. If omitted, "uprobes" is the default value.
EVENT : Event name. If omitted, the event name is generated based
- on SYMBOL+offs.
+ on PATH+OFFSET.
PATH : Path to an executable or a library.
- SYMBOL[+offs] : Symbol+offset where the probe is inserted.
+ OFFSET : Offset where the probe is inserted.
FETCHARGS : Arguments. Each probe can have up to 128 args.
%REG : Fetch register REG
+ @ADDR : Fetch memory at ADDR (ADDR should be in userspace)
+ @+OFFSET : Fetch memory at OFFSET (OFFSET from same file as PATH)
+ $stackN : Fetch Nth entry of stack (N >= 0)
+ $stack : Fetch stack address.
+ $retval : Fetch return value.(*)
+ +|-offs(FETCHARG) : Fetch memory at FETCHARG +|- offs address.(**)
+ NAME=FETCHARG : Set NAME as the argument name of FETCHARG.
+ FETCHARG:TYPE : Set TYPE as the type of FETCHARG. Currently, basic types
+ (u8/u16/u32/u64/s8/s16/s32/s64), "string" and bitfield
+ are supported.
+
+ (*) only for return probe.
+ (**) this is useful for fetching a field of data structures.
+
+Types
+-----
+Several types are supported for fetch-args. Uprobe tracer will access memory
+by given type. Prefix 's' and 'u' means those types are signed and unsigned
+respectively. Traced arguments are shown in decimal (signed) or hex (unsigned).
+String type is a special type, which fetches a "null-terminated" string from
+user space.
+Bitfield is another special type, which takes 3 parameters, bit-width, bit-
+offset, and container-size (usually 32). The syntax is;
+
+ b<bit-width>@<bit-offset>/<container-size>
+
Event Profiling
---------------
diff --git a/Documentation/unaligned-memory-access.txt b/Documentation/unaligned-memory-access.txt
index f866c72291b..a445da098bc 100644
--- a/Documentation/unaligned-memory-access.txt
+++ b/Documentation/unaligned-memory-access.txt
@@ -137,24 +137,34 @@ Code that causes unaligned access
=================================
With the above in mind, let's move onto a real life example of a function
-that can cause an unaligned memory access. The following function adapted
+that can cause an unaligned memory access. The following function taken
from include/linux/etherdevice.h is an optimized routine to compare two
ethernet MAC addresses for equality.
-unsigned int compare_ether_addr(const u8 *addr1, const u8 *addr2)
+bool ether_addr_equal(const u8 *addr1, const u8 *addr2)
{
- const u16 *a = (const u16 *) addr1;
- const u16 *b = (const u16 *) addr2;
+#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
+ u32 fold = ((*(const u32 *)addr1) ^ (*(const u32 *)addr2)) |
+ ((*(const u16 *)(addr1 + 4)) ^ (*(const u16 *)(addr2 + 4)));
+
+ return fold == 0;
+#else
+ const u16 *a = (const u16 *)addr1;
+ const u16 *b = (const u16 *)addr2;
return ((a[0] ^ b[0]) | (a[1] ^ b[1]) | (a[2] ^ b[2])) != 0;
+#endif
}
-In the above function, the reference to a[0] causes 2 bytes (16 bits) to
-be read from memory starting at address addr1. Think about what would happen
-if addr1 was an odd address such as 0x10003. (Hint: it'd be an unaligned
-access.)
+In the above function, when the hardware has efficient unaligned access
+capability, there is no issue with this code. But when the hardware isn't
+able to access memory on arbitrary boundaries, the reference to a[0] causes
+2 bytes (16 bits) to be read from memory starting at address addr1.
+
+Think about what would happen if addr1 was an odd address such as 0x10003.
+(Hint: it'd be an unaligned access.)
Despite the potential unaligned access problems with the above function, it
-is included in the kernel anyway but is understood to only work on
+is included in the kernel anyway but is understood to only work normally on
16-bit-aligned addresses. It is up to the caller to ensure this alignment or
not use this function at all. This alignment-unsafe function is still useful
as it is a decent optimization for the cases when you can ensure alignment,
diff --git a/Documentation/usb/WUSB-Design-overview.txt b/Documentation/usb/WUSB-Design-overview.txt
index 4c5e3793934..1cd07c017cf 100644
--- a/Documentation/usb/WUSB-Design-overview.txt
+++ b/Documentation/usb/WUSB-Design-overview.txt
@@ -25,7 +25,7 @@ updated content.
* Design-overview.txt-1.8
This code implements a Ultra Wide Band stack for Linux, as well as
-drivers for the the USB based UWB radio controllers defined in the
+drivers for the USB based UWB radio controllers defined in the
Wireless USB 1.0 specification (including Wireless USB host controller
and an Intel WiNET controller).
diff --git a/Documentation/usb/chipidea.txt b/Documentation/usb/chipidea.txt
new file mode 100644
index 00000000000..995c8bca40e
--- /dev/null
+++ b/Documentation/usb/chipidea.txt
@@ -0,0 +1,71 @@
+1. How to test OTG FSM(HNP and SRP)
+-----------------------------------
+To show how to demo OTG HNP and SRP functions via sys input files
+with 2 Freescale i.MX6Q sabre SD boards.
+
+1.1 How to enable OTG FSM in menuconfig
+---------------------------------------
+Select CONFIG_USB_OTG_FSM, rebuild kernel Image and modules.
+If you want to check some internal variables for otg fsm,
+select CONFIG_USB_CHIPIDEA_DEBUG, there are 2 files which
+can show otg fsm variables and some controller registers value:
+cat /sys/kernel/debug/ci_hdrc.0/otg
+cat /sys/kernel/debug/ci_hdrc.0/registers
+
+1.2 Test operations
+-------------------
+1) Power up 2 Freescale i.MX6Q sabre SD boards with gadget class driver loaded
+ (e.g. g_mass_storage).
+
+2) Connect 2 boards with usb cable with one end is micro A plug, the other end
+ is micro B plug.
+
+ The A-device(with micro A plug inserted) should enumrate B-device.
+
+3) Role switch
+ On B-device:
+ echo 1 > /sys/bus/platform/devices/ci_hdrc.0/inputs/b_bus_req
+
+ if HNP polling is not supported, also need:
+ On A-device:
+ echo 0 > /sys/bus/platform/devices/ci_hdrc.0/inputs/a_bus_req
+
+ B-device should take host role and enumrate A-device.
+
+4) A-device switch back to host.
+ On B-device:
+ echo 0 > /sys/bus/platform/devices/ci_hdrc.0/inputs/b_bus_req
+
+ A-device should switch back to host and enumrate B-device.
+
+5) Remove B-device(unplug micro B plug) and insert again in 10 seconds,
+ A-device should enumrate B-device again.
+
+6) Remove B-device(unplug micro B plug) and insert again after 10 seconds,
+ A-device should NOT enumrate B-device.
+
+ if A-device wants to use bus:
+ On A-device:
+ echo 0 > /sys/bus/platform/devices/ci_hdrc.0/inputs/a_bus_drop
+ echo 1 > /sys/bus/platform/devices/ci_hdrc.0/inputs/a_bus_req
+
+ if B-device wants to use bus:
+ On B-device:
+ echo 1 > /sys/bus/platform/devices/ci_hdrc.0/inputs/b_bus_req
+
+7) A-device power down the bus.
+ On A-device:
+ echo 1 > /sys/bus/platform/devices/ci_hdrc.0/inputs/a_bus_drop
+
+ A-device should disconnect with B-device and power down the bus.
+
+8) B-device does data pulse for SRP.
+ On B-device:
+ echo 1 > /sys/bus/platform/devices/ci_hdrc.0/inputs/b_bus_req
+
+ A-device should resume usb bus and enumrate B-device.
+
+1.3 Reference document
+----------------------
+"On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification
+July 27, 2012 Revision 2.0 version 1.1a"
diff --git a/Documentation/usb/gadget_configfs.txt b/Documentation/usb/gadget_configfs.txt
index 8ec2a67c39b..4cf53e40661 100644
--- a/Documentation/usb/gadget_configfs.txt
+++ b/Documentation/usb/gadget_configfs.txt
@@ -26,7 +26,7 @@ Linux provides a number of functions for gadgets to use.
Creating a gadget means deciding what configurations there will be
and which functions each configuration will provide.
-Configfs (please see Documentation/filesystems/configfs/*) lends itslef nicely
+Configfs (please see Documentation/filesystems/configfs/*) lends itself nicely
for the purpose of telling the kernel about the above mentioned decision.
This document is about how to do it.
@@ -99,7 +99,7 @@ directories must be created:
$ mkdir configs/<name>.<number>
where <name> can be any string which is legal in a filesystem and the
-<numebr> is the configuration's number, e.g.:
+<number> is the configuration's number, e.g.:
$ mkdir configs/c.1
@@ -327,7 +327,7 @@ from the buffer to the cs), but it is up to the implementer of the
two functions to decide what they actually do.
typedef struct configured_structure cs;
-typedef struc specific_attribute sa;
+typedef struct specific_attribute sa;
sa
+----------------------------------+
diff --git a/Documentation/usb/gadget_multi.txt b/Documentation/usb/gadget_multi.txt
index 80f4ef0eb75..7d66a8636cb 100644
--- a/Documentation/usb/gadget_multi.txt
+++ b/Documentation/usb/gadget_multi.txt
@@ -14,7 +14,7 @@ A CDC ECM (Ethernet) function may be turned on via a Kconfig option
and RNDIS can be turned off. If they are both enabled the gadget will
have two configurations -- one with RNDIS and another with CDC ECM[3].
-Please not that if you use non-standard configuration (that is enable
+Please note that if you use non-standard configuration (that is enable
CDC ECM) you may need to change vendor and/or product ID.
* Host drivers
diff --git a/Documentation/usb/mass-storage.txt b/Documentation/usb/mass-storage.txt
index 59063ad7a60..e89803a5a96 100644
--- a/Documentation/usb/mass-storage.txt
+++ b/Documentation/usb/mass-storage.txt
@@ -13,7 +13,7 @@
operation.
Note that the driver is slightly non-portable in that it assumes
- a single memory/DMA buffer will be useable for bulk-in and bulk-out
+ a single memory/DMA buffer will be usable for bulk-in and bulk-out
endpoints. With most device controllers this is not an issue, but
there may be some with hardware restrictions that prevent a buffer
from being used by more than one endpoint.
diff --git a/Documentation/vDSO/parse_vdso.c b/Documentation/vDSO/parse_vdso.c
index 85870208edc..1dbb4b87268 100644
--- a/Documentation/vDSO/parse_vdso.c
+++ b/Documentation/vDSO/parse_vdso.c
@@ -1,6 +1,6 @@
/*
* parse_vdso.c: Linux reference vDSO parser
- * Written by Andrew Lutomirski, 2011.
+ * Written by Andrew Lutomirski, 2011-2014.
*
* This code is meant to be linked in to various programs that run on Linux.
* As such, it is available with as few restrictions as possible. This file
@@ -11,13 +11,14 @@
* it starts a program. It works equally well in statically and dynamically
* linked binaries.
*
- * This code is tested on x86_64. In principle it should work on any 64-bit
+ * This code is tested on x86. In principle it should work on any
* architecture that has a vDSO.
*/
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
+#include <limits.h>
#include <elf.h>
/*
@@ -45,11 +46,18 @@ extern void *vdso_sym(const char *version, const char *name);
/* And here's the code. */
-
-#ifndef __x86_64__
-# error Not yet ported to non-x86_64 architectures
+#ifndef ELF_BITS
+# if ULONG_MAX > 0xffffffffUL
+# define ELF_BITS 64
+# else
+# define ELF_BITS 32
+# endif
#endif
+#define ELF_BITS_XFORM2(bits, x) Elf##bits##_##x
+#define ELF_BITS_XFORM(bits, x) ELF_BITS_XFORM2(bits, x)
+#define ELF(x) ELF_BITS_XFORM(ELF_BITS, x)
+
static struct vdso_info
{
bool valid;
@@ -59,14 +67,14 @@ static struct vdso_info
uintptr_t load_offset; /* load_addr - recorded vaddr */
/* Symbol table */
- Elf64_Sym *symtab;
+ ELF(Sym) *symtab;
const char *symstrings;
- Elf64_Word *bucket, *chain;
- Elf64_Word nbucket, nchain;
+ ELF(Word) *bucket, *chain;
+ ELF(Word) nbucket, nchain;
/* Version table */
- Elf64_Versym *versym;
- Elf64_Verdef *verdef;
+ ELF(Versym) *versym;
+ ELF(Verdef) *verdef;
} vdso_info;
/* Straight from the ELF specification. */
@@ -92,9 +100,14 @@ void vdso_init_from_sysinfo_ehdr(uintptr_t base)
vdso_info.load_addr = base;
- Elf64_Ehdr *hdr = (Elf64_Ehdr*)base;
- Elf64_Phdr *pt = (Elf64_Phdr*)(vdso_info.load_addr + hdr->e_phoff);
- Elf64_Dyn *dyn = 0;
+ ELF(Ehdr) *hdr = (ELF(Ehdr)*)base;
+ if (hdr->e_ident[EI_CLASS] !=
+ (ELF_BITS == 32 ? ELFCLASS32 : ELFCLASS64)) {
+ return; /* Wrong ELF class -- check ELF_BITS */
+ }
+
+ ELF(Phdr) *pt = (ELF(Phdr)*)(vdso_info.load_addr + hdr->e_phoff);
+ ELF(Dyn) *dyn = 0;
/*
* We need two things from the segment table: the load offset
@@ -108,7 +121,7 @@ void vdso_init_from_sysinfo_ehdr(uintptr_t base)
+ (uintptr_t)pt[i].p_offset
- (uintptr_t)pt[i].p_vaddr;
} else if (pt[i].p_type == PT_DYNAMIC) {
- dyn = (Elf64_Dyn*)(base + pt[i].p_offset);
+ dyn = (ELF(Dyn)*)(base + pt[i].p_offset);
}
}
@@ -118,7 +131,7 @@ void vdso_init_from_sysinfo_ehdr(uintptr_t base)
/*
* Fish out the useful bits of the dynamic table.
*/
- Elf64_Word *hash = 0;
+ ELF(Word) *hash = 0;
vdso_info.symstrings = 0;
vdso_info.symtab = 0;
vdso_info.versym = 0;
@@ -131,22 +144,22 @@ void vdso_init_from_sysinfo_ehdr(uintptr_t base)
+ vdso_info.load_offset);
break;
case DT_SYMTAB:
- vdso_info.symtab = (Elf64_Sym *)
+ vdso_info.symtab = (ELF(Sym) *)
((uintptr_t)dyn[i].d_un.d_ptr
+ vdso_info.load_offset);
break;
case DT_HASH:
- hash = (Elf64_Word *)
+ hash = (ELF(Word) *)
((uintptr_t)dyn[i].d_un.d_ptr
+ vdso_info.load_offset);
break;
case DT_VERSYM:
- vdso_info.versym = (Elf64_Versym *)
+ vdso_info.versym = (ELF(Versym) *)
((uintptr_t)dyn[i].d_un.d_ptr
+ vdso_info.load_offset);
break;
case DT_VERDEF:
- vdso_info.verdef = (Elf64_Verdef *)
+ vdso_info.verdef = (ELF(Verdef) *)
((uintptr_t)dyn[i].d_un.d_ptr
+ vdso_info.load_offset);
break;
@@ -168,8 +181,8 @@ void vdso_init_from_sysinfo_ehdr(uintptr_t base)
vdso_info.valid = true;
}
-static bool vdso_match_version(Elf64_Versym ver,
- const char *name, Elf64_Word hash)
+static bool vdso_match_version(ELF(Versym) ver,
+ const char *name, ELF(Word) hash)
{
/*
* This is a helper function to check if the version indexed by
@@ -188,7 +201,7 @@ static bool vdso_match_version(Elf64_Versym ver,
/* First step: find the version definition */
ver &= 0x7fff; /* Apparently bit 15 means "hidden" */
- Elf64_Verdef *def = vdso_info.verdef;
+ ELF(Verdef) *def = vdso_info.verdef;
while(true) {
if ((def->vd_flags & VER_FLG_BASE) == 0
&& (def->vd_ndx & 0x7fff) == ver)
@@ -197,11 +210,11 @@ static bool vdso_match_version(Elf64_Versym ver,
if (def->vd_next == 0)
return false; /* No definition. */
- def = (Elf64_Verdef *)((char *)def + def->vd_next);
+ def = (ELF(Verdef) *)((char *)def + def->vd_next);
}
/* Now figure out whether it matches. */
- Elf64_Verdaux *aux = (Elf64_Verdaux*)((char *)def + def->vd_aux);
+ ELF(Verdaux) *aux = (ELF(Verdaux)*)((char *)def + def->vd_aux);
return def->vd_hash == hash
&& !strcmp(name, vdso_info.symstrings + aux->vda_name);
}
@@ -213,10 +226,10 @@ void *vdso_sym(const char *version, const char *name)
return 0;
ver_hash = elf_hash(version);
- Elf64_Word chain = vdso_info.bucket[elf_hash(name) % vdso_info.nbucket];
+ ELF(Word) chain = vdso_info.bucket[elf_hash(name) % vdso_info.nbucket];
for (; chain != STN_UNDEF; chain = vdso_info.chain[chain]) {
- Elf64_Sym *sym = &vdso_info.symtab[chain];
+ ELF(Sym) *sym = &vdso_info.symtab[chain];
/* Check for a defined global or weak function w/ right name. */
if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
@@ -243,7 +256,7 @@ void *vdso_sym(const char *version, const char *name)
void vdso_init_from_auxv(void *auxv)
{
- Elf64_auxv_t *elf_auxv = auxv;
+ ELF(auxv_t) *elf_auxv = auxv;
for (int i = 0; elf_auxv[i].a_type != AT_NULL; i++)
{
if (elf_auxv[i].a_type == AT_SYSINFO_EHDR) {
diff --git a/Documentation/vDSO/vdso_standalone_test_x86.c b/Documentation/vDSO/vdso_standalone_test_x86.c
new file mode 100644
index 00000000000..d46240265c5
--- /dev/null
+++ b/Documentation/vDSO/vdso_standalone_test_x86.c
@@ -0,0 +1,128 @@
+/*
+ * vdso_test.c: Sample code to test parse_vdso.c on x86
+ * Copyright (c) 2011-2014 Andy Lutomirski
+ * Subject to the GNU General Public License, version 2
+ *
+ * You can amuse yourself by compiling with:
+ * gcc -std=gnu99 -nostdlib
+ * -Os -fno-asynchronous-unwind-tables -flto -lgcc_s
+ * vdso_standalone_test_x86.c parse_vdso.c
+ * to generate a small binary. On x86_64, you can omit -lgcc_s
+ * if you want the binary to be completely standalone.
+ */
+
+#include <sys/syscall.h>
+#include <sys/time.h>
+#include <unistd.h>
+#include <stdint.h>
+
+extern void *vdso_sym(const char *version, const char *name);
+extern void vdso_init_from_sysinfo_ehdr(uintptr_t base);
+extern void vdso_init_from_auxv(void *auxv);
+
+/* We need a libc functions... */
+int strcmp(const char *a, const char *b)
+{
+ /* This implementation is buggy: it never returns -1. */
+ while (*a || *b) {
+ if (*a != *b)
+ return 1;
+ if (*a == 0 || *b == 0)
+ return 1;
+ a++;
+ b++;
+ }
+
+ return 0;
+}
+
+/* ...and two syscalls. This is x86-specific. */
+static inline long x86_syscall3(long nr, long a0, long a1, long a2)
+{
+ long ret;
+#ifdef __x86_64__
+ asm volatile ("syscall" : "=a" (ret) : "a" (nr),
+ "D" (a0), "S" (a1), "d" (a2) :
+ "cc", "memory", "rcx",
+ "r8", "r9", "r10", "r11" );
+#else
+ asm volatile ("int $0x80" : "=a" (ret) : "a" (nr),
+ "b" (a0), "c" (a1), "d" (a2) :
+ "cc", "memory" );
+#endif
+ return ret;
+}
+
+static inline long linux_write(int fd, const void *data, size_t len)
+{
+ return x86_syscall3(__NR_write, fd, (long)data, (long)len);
+}
+
+static inline void linux_exit(int code)
+{
+ x86_syscall3(__NR_exit, code, 0, 0);
+}
+
+void to_base10(char *lastdig, uint64_t n)
+{
+ while (n) {
+ *lastdig = (n % 10) + '0';
+ n /= 10;
+ lastdig--;
+ }
+}
+
+__attribute__((externally_visible)) void c_main(void **stack)
+{
+ /* Parse the stack */
+ long argc = (long)*stack;
+ stack += argc + 2;
+
+ /* Now we're pointing at the environment. Skip it. */
+ while(*stack)
+ stack++;
+ stack++;
+
+ /* Now we're pointing at auxv. Initialize the vDSO parser. */
+ vdso_init_from_auxv((void *)stack);
+
+ /* Find gettimeofday. */
+ typedef long (*gtod_t)(struct timeval *tv, struct timezone *tz);
+ gtod_t gtod = (gtod_t)vdso_sym("LINUX_2.6", "__vdso_gettimeofday");
+
+ if (!gtod)
+ linux_exit(1);
+
+ struct timeval tv;
+ long ret = gtod(&tv, 0);
+
+ if (ret == 0) {
+ char buf[] = "The time is .000000\n";
+ to_base10(buf + 31, tv.tv_sec);
+ to_base10(buf + 38, tv.tv_usec);
+ linux_write(1, buf, sizeof(buf) - 1);
+ } else {
+ linux_exit(ret);
+ }
+
+ linux_exit(0);
+}
+
+/*
+ * This is the real entry point. It passes the initial stack into
+ * the C entry point.
+ */
+asm (
+ ".text\n"
+ ".global _start\n"
+ ".type _start,@function\n"
+ "_start:\n\t"
+#ifdef __x86_64__
+ "mov %rsp,%rdi\n\t"
+ "jmp c_main"
+#else
+ "push %esp\n\t"
+ "call c_main\n\t"
+ "int $3"
+#endif
+ );
diff --git a/Documentation/vDSO/vdso_test.c b/Documentation/vDSO/vdso_test.c
index fff633432df..8daeb7d7032 100644
--- a/Documentation/vDSO/vdso_test.c
+++ b/Documentation/vDSO/vdso_test.c
@@ -1,111 +1,52 @@
/*
- * vdso_test.c: Sample code to test parse_vdso.c on x86_64
- * Copyright (c) 2011 Andy Lutomirski
+ * vdso_test.c: Sample code to test parse_vdso.c
+ * Copyright (c) 2014 Andy Lutomirski
* Subject to the GNU General Public License, version 2
*
- * You can amuse yourself by compiling with:
- * gcc -std=gnu99 -nostdlib
- * -Os -fno-asynchronous-unwind-tables -flto
- * vdso_test.c parse_vdso.c -o vdso_test
- * to generate a small binary with no dependencies at all.
+ * Compile with:
+ * gcc -std=gnu99 vdso_test.c parse_vdso.c
+ *
+ * Tested on x86, 32-bit and 64-bit. It may work on other architectures, too.
*/
-#include <sys/syscall.h>
-#include <sys/time.h>
-#include <unistd.h>
#include <stdint.h>
+#include <elf.h>
+#include <stdio.h>
+#include <sys/auxv.h>
+#include <sys/time.h>
extern void *vdso_sym(const char *version, const char *name);
extern void vdso_init_from_sysinfo_ehdr(uintptr_t base);
extern void vdso_init_from_auxv(void *auxv);
-/* We need a libc functions... */
-int strcmp(const char *a, const char *b)
+int main(int argc, char **argv)
{
- /* This implementation is buggy: it never returns -1. */
- while (*a || *b) {
- if (*a != *b)
- return 1;
- if (*a == 0 || *b == 0)
- return 1;
- a++;
- b++;
+ unsigned long sysinfo_ehdr = getauxval(AT_SYSINFO_EHDR);
+ if (!sysinfo_ehdr) {
+ printf("AT_SYSINFO_EHDR is not present!\n");
+ return 0;
}
- return 0;
-}
-
-/* ...and two syscalls. This is x86_64-specific. */
-static inline long linux_write(int fd, const void *data, size_t len)
-{
-
- long ret;
- asm volatile ("syscall" : "=a" (ret) : "a" (__NR_write),
- "D" (fd), "S" (data), "d" (len) :
- "cc", "memory", "rcx",
- "r8", "r9", "r10", "r11" );
- return ret;
-}
-
-static inline void linux_exit(int code)
-{
- asm volatile ("syscall" : : "a" (__NR_exit), "D" (code));
-}
-
-void to_base10(char *lastdig, uint64_t n)
-{
- while (n) {
- *lastdig = (n % 10) + '0';
- n /= 10;
- lastdig--;
- }
-}
-
-__attribute__((externally_visible)) void c_main(void **stack)
-{
- /* Parse the stack */
- long argc = (long)*stack;
- stack += argc + 2;
-
- /* Now we're pointing at the environment. Skip it. */
- while(*stack)
- stack++;
- stack++;
-
- /* Now we're pointing at auxv. Initialize the vDSO parser. */
- vdso_init_from_auxv((void *)stack);
+ vdso_init_from_sysinfo_ehdr(getauxval(AT_SYSINFO_EHDR));
/* Find gettimeofday. */
typedef long (*gtod_t)(struct timeval *tv, struct timezone *tz);
gtod_t gtod = (gtod_t)vdso_sym("LINUX_2.6", "__vdso_gettimeofday");
- if (!gtod)
- linux_exit(1);
+ if (!gtod) {
+ printf("Could not find __vdso_gettimeofday\n");
+ return 1;
+ }
struct timeval tv;
long ret = gtod(&tv, 0);
if (ret == 0) {
- char buf[] = "The time is .000000\n";
- to_base10(buf + 31, tv.tv_sec);
- to_base10(buf + 38, tv.tv_usec);
- linux_write(1, buf, sizeof(buf) - 1);
+ printf("The time is %lld.%06lld\n",
+ (long long)tv.tv_sec, (long long)tv.tv_usec);
} else {
- linux_exit(ret);
+ printf("__vdso_gettimeofday failed\n");
}
- linux_exit(0);
+ return 0;
}
-
-/*
- * This is the real entry point. It passes the initial stack into
- * the C entry point.
- */
-asm (
- ".text\n"
- ".global _start\n"
- ".type _start,@function\n"
- "_start:\n\t"
- "mov %rsp,%rdi\n\t"
- "jmp c_main"
- );
diff --git a/Documentation/video4linux/CARDLIST.bttv b/Documentation/video4linux/CARDLIST.bttv
index f14475011fe..b092c0a14df 100644
--- a/Documentation/video4linux/CARDLIST.bttv
+++ b/Documentation/video4linux/CARDLIST.bttv
@@ -163,3 +163,5 @@
162 -> Adlink MPG24
163 -> Bt848 Capture 14MHz
164 -> CyberVision CV06 (SV)
+165 -> Kworld V-Stream Xpert TV PVR878
+166 -> PCI-8604PW
diff --git a/Documentation/video4linux/CARDLIST.cx23885 b/Documentation/video4linux/CARDLIST.cx23885
index 9f056d512e3..fc009d0ee7d 100644
--- a/Documentation/video4linux/CARDLIST.cx23885
+++ b/Documentation/video4linux/CARDLIST.cx23885
@@ -31,10 +31,13 @@
30 -> NetUP Dual DVB-T/C-CI RF [1b55:e2e4]
31 -> Leadtek Winfast PxDVR3200 H XC4000 [107d:6f39]
32 -> MPX-885
- 33 -> Mygica X8507 [14f1:8502]
+ 33 -> Mygica X8502/X8507 ISDB-T [14f1:8502]
34 -> TerraTec Cinergy T PCIe Dual [153b:117e]
35 -> TeVii S471 [d471:9022]
36 -> Hauppauge WinTV-HVR1255 [0070:2259]
37 -> Prof Revolution DVB-S2 8000 [8000:3034]
38 -> Hauppauge WinTV-HVR4400 [0070:c108,0070:c138,0070:c12a,0070:c1f8]
39 -> AVerTV Hybrid Express Slim HC81R [1461:d939]
+ 40 -> TurboSight TBS 6981 [6981:8888]
+ 41 -> TurboSight TBS 6980 [6980:8888]
+ 42 -> Leadtek Winfast PxPVR2200 [107d:6f21]
diff --git a/Documentation/video4linux/CARDLIST.em28xx b/Documentation/video4linux/CARDLIST.em28xx
index e8186440510..5a3ddcd340d 100644
--- a/Documentation/video4linux/CARDLIST.em28xx
+++ b/Documentation/video4linux/CARDLIST.em28xx
@@ -57,6 +57,7 @@
56 -> Pinnacle Hybrid Pro (330e) (em2882) [2304:0226]
57 -> Kworld PlusTV HD Hybrid 330 (em2883) [eb1a:a316]
58 -> Compro VideoMate ForYou/Stereo (em2820/em2840) [185b:2041]
+ 59 -> Pinnacle PCTV HD Mini (em2874) [2304:023f]
60 -> Hauppauge WinTV HVR 850 (em2883) [2040:651f]
61 -> Pixelview PlayTV Box 4 USB 2.0 (em2820/em2840)
62 -> Gadmei TVR200 (em2820/em2840)
@@ -86,3 +87,9 @@
86 -> PCTV QuatroStick nano (520e) (em2884) [2013:0251]
87 -> Terratec Cinergy HTC USB XS (em2884) [0ccd:008e,0ccd:00ac]
88 -> C3 Tech Digital Duo HDTV/SDTV USB (em2884) [1b80:e755]
+ 89 -> Delock 61959 (em2874) [1b80:e1cc]
+ 90 -> KWorld USB ATSC TV Stick UB435-Q V2 (em2874) [1b80:e346]
+ 91 -> SpeedLink Vicious And Devine Laplace webcam (em2765) [1ae7:9003,1ae7:9004]
+ 92 -> PCTV DVB-S2 Stick (461e) (em28178)
+ 93 -> KWorld USB ATSC TV Stick UB435-Q V3 (em2874) [1b80:e34c]
+ 94 -> PCTV tripleStick (292e) (em28178)
diff --git a/Documentation/video4linux/fimc.txt b/Documentation/video4linux/fimc.txt
index e51f1b5b732..e0c6b8bc474 100644
--- a/Documentation/video4linux/fimc.txt
+++ b/Documentation/video4linux/fimc.txt
@@ -140,40 +140,9 @@ You can either grep through the kernel log to find relevant information, i.e.
or retrieve the information from /dev/media? with help of the media-ctl tool:
# media-ctl -p
-6. Platform support
-===================
-
-The machine code (arch/arm/plat-samsung and arch/arm/mach-*) must select
-following options:
-
-CONFIG_S5P_DEV_FIMC0 mandatory
-CONFIG_S5P_DEV_FIMC1 \
-CONFIG_S5P_DEV_FIMC2 | optional
-CONFIG_S5P_DEV_FIMC3 |
-CONFIG_S5P_SETUP_FIMC /
-CONFIG_S5P_SETUP_MIPIPHY \
-CONFIG_S5P_DEV_CSIS0 | optional for MIPI-CSI interface
-CONFIG_S5P_DEV_CSIS1 /
-
-Except that, relevant s5p_device_fimc? should be registered in the machine code
-in addition to a "s5p-fimc-md" platform device to which the media device driver
-is bound. The "s5p-fimc-md" device instance is required even if only mem-to-mem
-operation is used.
-
-The description of sensor(s) attached to FIMC/MIPI-CSIS camera inputs should be
-passed as the "s5p-fimc-md" device platform_data. The platform data structure
-is defined in file include/media/s5p_fimc.h.
-
7. Build
========
-This driver depends on following config options:
-PLAT_S5P,
-PM_RUNTIME,
-I2C,
-REGULATOR,
-VIDEO_V4L2_SUBDEV_API,
-
If the driver is built as a loadable kernel module (CONFIG_VIDEO_SAMSUNG_S5P_FIMC=m)
two modules are created (in addition to the core v4l2 modules): s5p-fimc.ko and
optional s5p-csis.ko (MIPI-CSI receiver subdev).
diff --git a/Documentation/video4linux/gspca.txt b/Documentation/video4linux/gspca.txt
index 1e6b6531bbc..d2ba80bb7af 100644
--- a/Documentation/video4linux/gspca.txt
+++ b/Documentation/video4linux/gspca.txt
@@ -55,6 +55,7 @@ zc3xx 0458:700f Genius VideoCam Web V2
sonixj 0458:7025 Genius Eye 311Q
sn9c20x 0458:7029 Genius Look 320s
sonixj 0458:702e Genius Slim 310 NB
+sn9c20x 0458:7045 Genius Look 1320 V2
sn9c20x 0458:704a Genius Slim 1320
sn9c20x 0458:704c Genius i-Look 1321
sn9c20x 045e:00f4 LifeCam VX-6000 (SN9C20x + OV9650)
diff --git a/Documentation/video4linux/omap4_camera.txt b/Documentation/video4linux/omap4_camera.txt
new file mode 100644
index 00000000000..25d9b40a465
--- /dev/null
+++ b/Documentation/video4linux/omap4_camera.txt
@@ -0,0 +1,60 @@
+ OMAP4 ISS Driver
+ ================
+
+Introduction
+------------
+
+The OMAP44XX family of chips contains the Imaging SubSystem (a.k.a. ISS),
+Which contains several components that can be categorized in 3 big groups:
+
+- Interfaces (2 Interfaces: CSI2-A & CSI2-B/CCP2)
+- ISP (Image Signal Processor)
+- SIMCOP (Still Image Coprocessor)
+
+For more information, please look in [1] for latest version of:
+ "OMAP4430 Multimedia Device Silicon Revision 2.x"
+
+As of Revision AB, the ISS is described in detail in section 8.
+
+This driver is supporting _only_ the CSI2-A/B interfaces for now.
+
+It makes use of the Media Controller framework [2], and inherited most of the
+code from OMAP3 ISP driver (found under drivers/media/platform/omap3isp/*),
+except that it doesn't need an IOMMU now for ISS buffers memory mapping.
+
+Supports usage of MMAP buffers only (for now).
+
+Tested platforms
+----------------
+
+- OMAP4430SDP, w/ ES2.1 GP & SEVM4430-CAM-V1-0 (Contains IMX060 & OV5640, in
+ which only the last one is supported, outputting YUV422 frames).
+
+- TI Blaze MDP, w/ OMAP4430 ES2.2 EMU (Contains 1 IMX060 & 2 OV5650 sensors, in
+ which only the OV5650 are supported, outputting RAW10 frames).
+
+- PandaBoard, Rev. A2, w/ OMAP4430 ES2.1 GP & OV adapter board, tested with
+ following sensors:
+ * OV5640
+ * OV5650
+
+- Tested on mainline kernel:
+
+ http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=summary
+
+ Tag: v3.3 (commit c16fa4f2ad19908a47c63d8fa436a1178438c7e7)
+
+File list
+---------
+drivers/staging/media/omap4iss/
+include/media/omap4iss.h
+
+References
+----------
+
+[1] http://focus.ti.com/general/docs/wtbu/wtbudocumentcenter.tsp?navigationId=12037&templateId=6123#62
+[2] http://lwn.net/Articles/420485/
+[3] http://www.spinics.net/lists/linux-media/msg44370.html
+--
+Author: Sergio Aguirre <sergio.a.aguirre@gmail.com>
+Copyright (C) 2012, Texas Instruments
diff --git a/Documentation/video4linux/si476x.txt b/Documentation/video4linux/si476x.txt
index 2f9b4875ab8..616607955aa 100644
--- a/Documentation/video4linux/si476x.txt
+++ b/Documentation/video4linux/si476x.txt
@@ -147,7 +147,7 @@ The drivers exposes following files:
--------------------------------------------------------------------
0x12 | readfreq | Current tuned frequency
--------------------------------------------------------------------
- 0x14 | freqoff | Singed frequency offset in units of
+ 0x14 | freqoff | Signed frequency offset in units of
| | 2ppm
--------------------------------------------------------------------
0x15 | rssi | Signed value of RSSI in dBuV
diff --git a/Documentation/video4linux/sn9c102.txt b/Documentation/video4linux/sn9c102.txt
deleted file mode 100644
index b4f67040403..00000000000
--- a/Documentation/video4linux/sn9c102.txt
+++ /dev/null
@@ -1,592 +0,0 @@
-
- SN9C1xx PC Camera Controllers
- Driver for Linux
- =============================
-
- - Documentation -
-
-
-Index
-=====
-1. Copyright
-2. Disclaimer
-3. License
-4. Overview and features
-5. Module dependencies
-6. Module loading
-7. Module parameters
-8. Optional device control through "sysfs"
-9. Supported devices
-10. Notes for V4L2 application developers
-11. Video frame formats
-12. Contact information
-13. Credits
-
-
-1. Copyright
-============
-Copyright (C) 2004-2007 by Luca Risolia <luca.risolia@studio.unibo.it>
-
-
-2. Disclaimer
-=============
-SONiX is a trademark of SONiX Technology Company Limited, inc.
-This software is not sponsored or developed by SONiX.
-
-
-3. License
-==========
-This program is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2 of the License, or
-(at your option) any later version.
-
-This program is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with this program; if not, write to the Free Software
-Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
-
-
-4. Overview and features
-========================
-This driver attempts to support the video interface of the devices assembling
-the SONiX SN9C101, SN9C102, SN9C103, SN9C105 and SN9C120 PC Camera Controllers
-("SN9C1xx" from now on).
-
-The driver relies on the Video4Linux2 and USB core modules. It has been
-designed to run properly on SMP systems as well.
-
-The latest version of the SN9C1xx driver can be found at the following URL:
-http://www.linux-projects.org/
-
-Some of the features of the driver are:
-
-- full compliance with the Video4Linux2 API (see also "Notes for V4L2
- application developers" paragraph);
-- available mmap or read/poll methods for video streaming through isochronous
- data transfers;
-- automatic detection of image sensor;
-- support for built-in microphone interface;
-- support for any window resolutions and optional panning within the maximum
- pixel area of image sensor;
-- image downscaling with arbitrary scaling factors from 1, 2 and 4 in both
- directions (see "Notes for V4L2 application developers" paragraph);
-- two different video formats for uncompressed or compressed data in low or
- high compression quality (see also "Notes for V4L2 application developers"
- and "Video frame formats" paragraphs);
-- full support for the capabilities of many of the possible image sensors that
- can be connected to the SN9C1xx bridges, including, for instance, red, green,
- blue and global gain adjustments and exposure (see "Supported devices"
- paragraph for details);
-- use of default color settings for sunlight conditions;
-- dynamic I/O interface for both SN9C1xx and image sensor control and
- monitoring (see "Optional device control through 'sysfs'" paragraph);
-- dynamic driver control thanks to various module parameters (see "Module
- parameters" paragraph);
-- up to 64 cameras can be handled at the same time; they can be connected and
- disconnected from the host many times without turning off the computer, if
- the system supports hotplugging;
-- no known bugs.
-
-
-5. Module dependencies
-======================
-For it to work properly, the driver needs kernel support for Video4Linux and
-USB.
-
-The following options of the kernel configuration file must be enabled and
-corresponding modules must be compiled:
-
- # Multimedia devices
- #
- CONFIG_VIDEO_DEV=m
-
-To enable advanced debugging functionality on the device through /sysfs:
-
- # Multimedia devices
- #
- CONFIG_VIDEO_ADV_DEBUG=y
-
- # USB support
- #
- CONFIG_USB=m
-
-In addition, depending on the hardware being used, the modules below are
-necessary:
-
- # USB Host Controller Drivers
- #
- CONFIG_USB_EHCI_HCD=m
- CONFIG_USB_UHCI_HCD=m
- CONFIG_USB_OHCI_HCD=m
-
-The SN9C103, SN9c105 and SN9C120 controllers also provide a built-in microphone
-interface. It is supported by the USB Audio driver thanks to the ALSA API:
-
- # Sound
- #
- CONFIG_SOUND=y
-
- # Advanced Linux Sound Architecture
- #
- CONFIG_SND=m
-
- # USB devices
- #
- CONFIG_SND_USB_AUDIO=m
-
-And finally:
-
- # USB Multimedia devices
- #
- CONFIG_USB_SN9C102=m
-
-
-6. Module loading
-=================
-To use the driver, it is necessary to load the "sn9c102" module into memory
-after every other module required: "videodev", "v4l2_common", "compat_ioctl32",
-"usbcore" and, depending on the USB host controller you have, "ehci-hcd",
-"uhci-hcd" or "ohci-hcd".
-
-Loading can be done as shown below:
-
- [root@localhost home]# modprobe sn9c102
-
-Note that the module is called "sn9c102" for historic reasons, although it
-does not just support the SN9C102.
-
-At this point all the devices supported by the driver and connected to the USB
-ports should be recognized. You can invoke "dmesg" to analyze kernel messages
-and verify that the loading process has gone well:
-
- [user@localhost home]$ dmesg
-
-or, to isolate all the kernel messages generated by the driver:
-
- [user@localhost home]$ dmesg | grep sn9c102
-
-
-7. Module parameters
-====================
-Module parameters are listed below:
--------------------------------------------------------------------------------
-Name: video_nr
-Type: short array (min = 0, max = 64)
-Syntax: <-1|n[,...]>
-Description: Specify V4L2 minor mode number:
- -1 = use next available
- n = use minor number n
- You can specify up to 64 cameras this way.
- For example:
- video_nr=-1,2,-1 would assign minor number 2 to the second
- recognized camera and use auto for the first one and for every
- other camera.
-Default: -1
--------------------------------------------------------------------------------
-Name: force_munmap
-Type: bool array (min = 0, max = 64)
-Syntax: <0|1[,...]>
-Description: Force the application to unmap previously mapped buffer memory
- before calling any VIDIOC_S_CROP or VIDIOC_S_FMT ioctl's. Not
- all the applications support this feature. This parameter is
- specific for each detected camera.
- 0 = do not force memory unmapping
- 1 = force memory unmapping (save memory)
-Default: 0
--------------------------------------------------------------------------------
-Name: frame_timeout
-Type: uint array (min = 0, max = 64)
-Syntax: <0|n[,...]>
-Description: Timeout for a video frame in seconds before returning an I/O
- error; 0 for infinity. This parameter is specific for each
- detected camera and can be changed at runtime thanks to the
- /sys filesystem interface.
-Default: 2
--------------------------------------------------------------------------------
-Name: debug
-Type: ushort
-Syntax: <n>
-Description: Debugging information level, from 0 to 3:
- 0 = none (use carefully)
- 1 = critical errors
- 2 = significant information
- 3 = more verbose messages
- Level 3 is useful for testing only. It also shows some more
- information about the hardware being detected.
- This parameter can be changed at runtime thanks to the /sys
- filesystem interface.
-Default: 2
--------------------------------------------------------------------------------
-
-
-8. Optional device control through "sysfs" [1]
-==========================================
-If the kernel has been compiled with the CONFIG_VIDEO_ADV_DEBUG option enabled,
-it is possible to read and write both the SN9C1xx and the image sensor
-registers by using the "sysfs" filesystem interface.
-
-Every time a supported device is recognized, a write-only file named "green" is
-created in the /sys/class/video4linux/videoX directory. You can set the green
-channel's gain by writing the desired value to it. The value may range from 0
-to 15 for the SN9C101 or SN9C102 bridges, from 0 to 127 for the SN9C103,
-SN9C105 and SN9C120 bridges.
-Similarly, only for the SN9C103, SN9C105 and SN9C120 controllers, blue and red
-gain control files are available in the same directory, for which accepted
-values may range from 0 to 127.
-
-There are other four entries in the directory above for each registered camera:
-"reg", "val", "i2c_reg" and "i2c_val". The first two files control the
-SN9C1xx bridge, while the other two control the sensor chip. "reg" and
-"i2c_reg" hold the values of the current register index where the following
-reading/writing operations are addressed at through "val" and "i2c_val". Their
-use is not intended for end-users. Note that "i2c_reg" and "i2c_val" will not
-be created if the sensor does not actually support the standard I2C protocol or
-its registers are not 8-bit long. Also, remember that you must be logged in as
-root before writing to them.
-
-As an example, suppose we were to want to read the value contained in the
-register number 1 of the sensor register table - which is usually the product
-identifier - of the camera registered as "/dev/video0":
-
- [root@localhost #] cd /sys/class/video4linux/video0
- [root@localhost #] echo 1 > i2c_reg
- [root@localhost #] cat i2c_val
-
-Note that "cat" will fail if sensor registers cannot be read.
-
-Now let's set the green gain's register of the SN9C101 or SN9C102 chips to 2:
-
- [root@localhost #] echo 0x11 > reg
- [root@localhost #] echo 2 > val
-
-Note that the SN9C1xx always returns 0 when some of its registers are read.
-To avoid race conditions, all the I/O accesses to the above files are
-serialized.
-The sysfs interface also provides the "frame_header" entry, which exports the
-frame header of the most recent requested and captured video frame. The header
-is always 18-bytes long and is appended to every video frame by the SN9C1xx
-controllers. As an example, this additional information can be used by the user
-application for implementing auto-exposure features via software.
-
-The following table describes the frame header exported by the SN9C101 and
-SN9C102:
-
-Byte # Value or bits Description
------- ------------- -----------
-0x00 0xFF Frame synchronisation pattern
-0x01 0xFF Frame synchronisation pattern
-0x02 0x00 Frame synchronisation pattern
-0x03 0xC4 Frame synchronisation pattern
-0x04 0xC4 Frame synchronisation pattern
-0x05 0x96 Frame synchronisation pattern
-0x06 [3:0] Read channel gain control = (1+R_GAIN/8)
- [7:4] Blue channel gain control = (1+B_GAIN/8)
-0x07 [ 0 ] Compression mode. 0=No compression, 1=Compression enabled
- [2:1] Maximum scale factor for compression
- [ 3 ] 1 = USB fifo(2K bytes) is full
- [ 4 ] 1 = Digital gain is finish
- [ 5 ] 1 = Exposure is finish
- [7:6] Frame index
-0x08 [7:0] Y sum inside Auto-Exposure area (low-byte)
-0x09 [7:0] Y sum inside Auto-Exposure area (high-byte)
- where Y sum = (R/4 + 5G/16 + B/8) / 32
-0x0A [7:0] Y sum outside Auto-Exposure area (low-byte)
-0x0B [7:0] Y sum outside Auto-Exposure area (high-byte)
- where Y sum = (R/4 + 5G/16 + B/8) / 128
-0x0C 0xXX Not used
-0x0D 0xXX Not used
-0x0E 0xXX Not used
-0x0F 0xXX Not used
-0x10 0xXX Not used
-0x11 0xXX Not used
-
-The following table describes the frame header exported by the SN9C103:
-
-Byte # Value or bits Description
------- ------------- -----------
-0x00 0xFF Frame synchronisation pattern
-0x01 0xFF Frame synchronisation pattern
-0x02 0x00 Frame synchronisation pattern
-0x03 0xC4 Frame synchronisation pattern
-0x04 0xC4 Frame synchronisation pattern
-0x05 0x96 Frame synchronisation pattern
-0x06 [6:0] Read channel gain control = (1/2+R_GAIN/64)
-0x07 [6:0] Blue channel gain control = (1/2+B_GAIN/64)
- [7:4]
-0x08 [ 0 ] Compression mode. 0=No compression, 1=Compression enabled
- [2:1] Maximum scale factor for compression
- [ 3 ] 1 = USB fifo(2K bytes) is full
- [ 4 ] 1 = Digital gain is finish
- [ 5 ] 1 = Exposure is finish
- [7:6] Frame index
-0x09 [7:0] Y sum inside Auto-Exposure area (low-byte)
-0x0A [7:0] Y sum inside Auto-Exposure area (high-byte)
- where Y sum = (R/4 + 5G/16 + B/8) / 32
-0x0B [7:0] Y sum outside Auto-Exposure area (low-byte)
-0x0C [7:0] Y sum outside Auto-Exposure area (high-byte)
- where Y sum = (R/4 + 5G/16 + B/8) / 128
-0x0D [1:0] Audio frame number
- [ 2 ] 1 = Audio is recording
-0x0E [7:0] Audio summation (low-byte)
-0x0F [7:0] Audio summation (high-byte)
-0x10 [7:0] Audio sample count
-0x11 [7:0] Audio peak data in audio frame
-
-The AE area (sx, sy, ex, ey) in the active window can be set by programming the
-registers 0x1c, 0x1d, 0x1e and 0x1f of the SN9C1xx controllers, where one unit
-corresponds to 32 pixels.
-
-[1] The frame headers exported by the SN9C105 and SN9C120 are not described.
-
-
-9. Supported devices
-====================
-None of the names of the companies as well as their products will be mentioned
-here. They have never collaborated with the author, so no advertising.
-
-From the point of view of a driver, what unambiguously identify a device are
-its vendor and product USB identifiers. Below is a list of known identifiers of
-devices assembling the SN9C1xx PC camera controllers:
-
-Vendor ID Product ID
---------- ----------
-0x0458 0x7025
-0x045e 0x00f5
-0x045e 0x00f7
-0x0471 0x0327
-0x0471 0x0328
-0x0c45 0x6001
-0x0c45 0x6005
-0x0c45 0x6007
-0x0c45 0x6009
-0x0c45 0x600d
-0x0c45 0x6011
-0x0c45 0x6019
-0x0c45 0x6024
-0x0c45 0x6025
-0x0c45 0x6028
-0x0c45 0x6029
-0x0c45 0x602a
-0x0c45 0x602b
-0x0c45 0x602c
-0x0c45 0x602d
-0x0c45 0x602e
-0x0c45 0x6030
-0x0c45 0x603f
-0x0c45 0x6080
-0x0c45 0x6082
-0x0c45 0x6083
-0x0c45 0x6088
-0x0c45 0x608a
-0x0c45 0x608b
-0x0c45 0x608c
-0x0c45 0x608e
-0x0c45 0x608f
-0x0c45 0x60a0
-0x0c45 0x60a2
-0x0c45 0x60a3
-0x0c45 0x60a8
-0x0c45 0x60aa
-0x0c45 0x60ab
-0x0c45 0x60ac
-0x0c45 0x60ae
-0x0c45 0x60af
-0x0c45 0x60b0
-0x0c45 0x60b2
-0x0c45 0x60b3
-0x0c45 0x60b8
-0x0c45 0x60ba
-0x0c45 0x60bb
-0x0c45 0x60bc
-0x0c45 0x60be
-0x0c45 0x60c0
-0x0c45 0x60c2
-0x0c45 0x60c8
-0x0c45 0x60cc
-0x0c45 0x60ea
-0x0c45 0x60ec
-0x0c45 0x60ef
-0x0c45 0x60fa
-0x0c45 0x60fb
-0x0c45 0x60fc
-0x0c45 0x60fe
-0x0c45 0x6102
-0x0c45 0x6108
-0x0c45 0x610f
-0x0c45 0x6130
-0x0c45 0x6138
-0x0c45 0x613a
-0x0c45 0x613b
-0x0c45 0x613c
-0x0c45 0x613e
-
-The list above does not imply that all those devices work with this driver: up
-until now only the ones that assemble the following pairs of SN9C1xx bridges
-and image sensors are supported; kernel messages will always tell you whether
-this is the case (see "Module loading" paragraph):
-
-Image sensor / SN9C1xx bridge | SN9C10[12] SN9C103 SN9C105 SN9C120
--------------------------------------------------------------------------------
-HV7131D Hynix Semiconductor | Yes No No No
-HV7131R Hynix Semiconductor | No Yes Yes Yes
-MI-0343 Micron Technology | Yes No No No
-MI-0360 Micron Technology | No Yes Yes Yes
-OV7630 OmniVision Technologies | Yes Yes Yes Yes
-OV7660 OmniVision Technologies | No No Yes Yes
-PAS106B PixArt Imaging | Yes No No No
-PAS202B PixArt Imaging | Yes Yes No No
-TAS5110C1B Taiwan Advanced Sensor | Yes No No No
-TAS5110D Taiwan Advanced Sensor | Yes No No No
-TAS5130D1B Taiwan Advanced Sensor | Yes No No No
-
-"Yes" means that the pair is supported by the driver, while "No" means that the
-pair does not exist or is not supported by the driver.
-
-Only some of the available control settings of each image sensor are supported
-through the V4L2 interface.
-
-Donations of new models for further testing and support would be much
-appreciated. Non-available hardware will not be supported by the author of this
-driver.
-
-
-10. Notes for V4L2 application developers
-=========================================
-This driver follows the V4L2 API specifications. In particular, it enforces two
-rules:
-
-- exactly one I/O method, either "mmap" or "read", is associated with each
-file descriptor. Once it is selected, the application must close and reopen the
-device to switch to the other I/O method;
-
-- although it is not mandatory, previously mapped buffer memory should always
-be unmapped before calling any "VIDIOC_S_CROP" or "VIDIOC_S_FMT" ioctl's.
-The same number of buffers as before will be allocated again to match the size
-of the new video frames, so you have to map the buffers again before any I/O
-attempts on them.
-
-Consistently with the hardware limits, this driver also supports image
-downscaling with arbitrary scaling factors from 1, 2 and 4 in both directions.
-However, the V4L2 API specifications don't correctly define how the scaling
-factor can be chosen arbitrarily by the "negotiation" of the "source" and
-"target" rectangles. To work around this flaw, we have added the convention
-that, during the negotiation, whenever the "VIDIOC_S_CROP" ioctl is issued, the
-scaling factor is restored to 1.
-
-This driver supports two different video formats: the first one is the "8-bit
-Sequential Bayer" format and can be used to obtain uncompressed video data
-from the device through the current I/O method, while the second one provides
-either "raw" compressed video data (without frame headers not related to the
-compressed data) or standard JPEG (with frame headers). The compression quality
-may vary from 0 to 1 and can be selected or queried thanks to the
-VIDIOC_S_JPEGCOMP and VIDIOC_G_JPEGCOMP V4L2 ioctl's. For maximum flexibility,
-both the default active video format and the default compression quality
-depend on how the image sensor being used is initialized.
-
-
-11. Video frame formats [1]
-=======================
-The SN9C1xx PC Camera Controllers can send images in two possible video
-formats over the USB: either native "Sequential RGB Bayer" or compressed.
-The compression is used to achieve high frame rates. With regard to the
-SN9C101, SN9C102 and SN9C103, the compression is based on the Huffman encoding
-algorithm described below, while with regard to the SN9C105 and SN9C120 the
-compression is based on the JPEG standard.
-The current video format may be selected or queried from the user application
-by calling the VIDIOC_S_FMT or VIDIOC_G_FMT ioctl's, as described in the V4L2
-API specifications.
-
-The name "Sequential Bayer" indicates the organization of the red, green and
-blue pixels in one video frame. Each pixel is associated with a 8-bit long
-value and is disposed in memory according to the pattern shown below:
-
-B[0] G[1] B[2] G[3] ... B[m-2] G[m-1]
-G[m] R[m+1] G[m+2] R[m+2] ... G[2m-2] R[2m-1]
-...
-... B[(n-1)(m-2)] G[(n-1)(m-1)]
-... G[n(m-2)] R[n(m-1)]
-
-The above matrix also represents the sequential or progressive read-out mode of
-the (n, m) Bayer color filter array used in many CCD or CMOS image sensors.
-
-The Huffman compressed video frame consists of a bitstream that encodes for
-every R, G, or B pixel the difference between the value of the pixel itself and
-some reference pixel value. Pixels are organised in the Bayer pattern and the
-Bayer sub-pixels are tracked individually and alternatingly. For example, in
-the first line values for the B and G1 pixels are alternatingly encoded, while
-in the second line values for the G2 and R pixels are alternatingly encoded.
-
-The pixel reference value is calculated as follows:
-- the 4 top left pixels are encoded in raw uncompressed 8-bit format;
-- the value in the top two rows is the value of the pixel left of the current
- pixel;
-- the value in the left column is the value of the pixel above the current
- pixel;
-- for all other pixels, the reference value is the average of the value of the
- pixel on the left and the value of the pixel above the current pixel;
-- there is one code in the bitstream that specifies the value of a pixel
- directly (in 4-bit resolution);
-- pixel values need to be clamped inside the range [0..255] for proper
- decoding.
-
-The algorithm purely describes the conversion from compressed Bayer code used
-in the SN9C101, SN9C102 and SN9C103 chips to uncompressed Bayer. Additional
-steps are required to convert this to a color image (i.e. a color interpolation
-algorithm).
-
-The following Huffman codes have been found:
-0: +0 (relative to reference pixel value)
-100: +4
-101: -4?
-1110xxxx: set absolute value to xxxx.0000
-1101: +11
-1111: -11
-11001: +20
-110000: -20
-110001: ??? - these codes are apparently not used
-
-[1] The Huffman compression algorithm has been reverse-engineered and
- documented by Bertrik Sikken.
-
-
-12. Contact information
-=======================
-The author may be contacted by e-mail at <luca.risolia@studio.unibo.it>.
-
-GPG/PGP encrypted e-mail's are accepted. The GPG key ID of the author is
-'FCE635A4'; the public 1024-bit key should be available at any keyserver;
-the fingerprint is: '88E8 F32F 7244 68BA 3958 5D40 99DA 5D2A FCE6 35A4'.
-
-
-13. Credits
-===========
-Many thanks to following persons for their contribute (listed in alphabetical
-order):
-
-- David Anderson for the donation of a webcam;
-- Luca Capello for the donation of a webcam;
-- Philippe Coval for having helped testing the PAS202BCA image sensor;
-- Joao Rodrigo Fuzaro, Joao Limirio, Claudio Filho and Caio Begotti for the
- donation of a webcam;
-- Dennis Heitmann for the donation of a webcam;
-- Jon Hollstrom for the donation of a webcam;
-- Nick McGill for the donation of a webcam;
-- Carlos Eduardo Medaglia Dyonisio, who added the support for the PAS202BCB
- image sensor;
-- Stefano Mozzi, who donated 45 EU;
-- Andrew Pearce for the donation of a webcam;
-- John Pullan for the donation of a webcam;
-- Bertrik Sikken, who reverse-engineered and documented the Huffman compression
- algorithm used in the SN9C101, SN9C102 and SN9C103 controllers and
- implemented the first decoder;
-- Ronny Standke for the donation of a webcam;
-- Mizuno Takafumi for the donation of a webcam;
-- an "anonymous" donator (who didn't want his name to be revealed) for the
- donation of a webcam.
-- an anonymous donator for the donation of four webcams and two boards with ten
- image sensors.
diff --git a/Documentation/video4linux/v4l2-framework.txt b/Documentation/video4linux/v4l2-framework.txt
index 6c4866b49eb..667a4336170 100644
--- a/Documentation/video4linux/v4l2-framework.txt
+++ b/Documentation/video4linux/v4l2-framework.txt
@@ -34,6 +34,10 @@ So this framework sets up the basic building blocks that all drivers
need and this same framework should make it much easier to refactor
common code into utility functions shared by all drivers.
+A good example to look at as a reference is the v4l2-pci-skeleton.c
+source that is available in this directory. It is a skeleton driver for
+a PCI capture card, and demonstrates how to use the V4L2 driver
+framework. It can be used as a template for real PCI video capture driver.
Structure of a driver
---------------------
@@ -768,6 +772,7 @@ types exist:
VFL_TYPE_GRABBER: videoX for video input/output devices
VFL_TYPE_VBI: vbiX for vertical blank data (i.e. closed captions, teletext)
VFL_TYPE_RADIO: radioX for radio tuners
+VFL_TYPE_SDR: swradioX for Software Defined Radio tuners
The last argument gives you a certain amount of control over the device
device node number used (i.e. the X in videoX). Normally you will pass -1
diff --git a/Documentation/video4linux/v4l2-pci-skeleton.c b/Documentation/video4linux/v4l2-pci-skeleton.c
new file mode 100644
index 00000000000..46904fe4960
--- /dev/null
+++ b/Documentation/video4linux/v4l2-pci-skeleton.c
@@ -0,0 +1,929 @@
+/*
+ * This is a V4L2 PCI Skeleton Driver. It gives an initial skeleton source
+ * for use with other PCI drivers.
+ *
+ * This skeleton PCI driver assumes that the card has an S-Video connector as
+ * input 0 and an HDMI connector as input 1.
+ *
+ * Copyright 2014 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
+ *
+ * This program is free software; you may redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; version 2 of the License.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/kmod.h>
+#include <linux/mutex.h>
+#include <linux/pci.h>
+#include <linux/interrupt.h>
+#include <linux/videodev2.h>
+#include <linux/v4l2-dv-timings.h>
+#include <media/v4l2-device.h>
+#include <media/v4l2-dev.h>
+#include <media/v4l2-ioctl.h>
+#include <media/v4l2-dv-timings.h>
+#include <media/v4l2-ctrls.h>
+#include <media/v4l2-event.h>
+#include <media/videobuf2-dma-contig.h>
+
+MODULE_DESCRIPTION("V4L2 PCI Skeleton Driver");
+MODULE_AUTHOR("Hans Verkuil");
+MODULE_LICENSE("GPL v2");
+MODULE_DEVICE_TABLE(pci, skeleton_pci_tbl);
+
+/**
+ * struct skeleton - All internal data for one instance of device
+ * @pdev: PCI device
+ * @v4l2_dev: top-level v4l2 device struct
+ * @vdev: video node structure
+ * @ctrl_handler: control handler structure
+ * @lock: ioctl serialization mutex
+ * @std: current SDTV standard
+ * @timings: current HDTV timings
+ * @format: current pix format
+ * @input: current video input (0 = SDTV, 1 = HDTV)
+ * @queue: vb2 video capture queue
+ * @alloc_ctx: vb2 contiguous DMA context
+ * @qlock: spinlock controlling access to buf_list and sequence
+ * @buf_list: list of buffers queued for DMA
+ * @sequence: frame sequence counter
+ */
+struct skeleton {
+ struct pci_dev *pdev;
+ struct v4l2_device v4l2_dev;
+ struct video_device vdev;
+ struct v4l2_ctrl_handler ctrl_handler;
+ struct mutex lock;
+ v4l2_std_id std;
+ struct v4l2_dv_timings timings;
+ struct v4l2_pix_format format;
+ unsigned input;
+
+ struct vb2_queue queue;
+ struct vb2_alloc_ctx *alloc_ctx;
+
+ spinlock_t qlock;
+ struct list_head buf_list;
+ unsigned field;
+ unsigned sequence;
+};
+
+struct skel_buffer {
+ struct vb2_buffer vb;
+ struct list_head list;
+};
+
+static inline struct skel_buffer *to_skel_buffer(struct vb2_buffer *vb2)
+{
+ return container_of(vb2, struct skel_buffer, vb);
+}
+
+static const struct pci_device_id skeleton_pci_tbl[] = {
+ /* { PCI_DEVICE(PCI_VENDOR_ID_, PCI_DEVICE_ID_) }, */
+ { 0, }
+};
+
+/*
+ * HDTV: this structure has the capabilities of the HDTV receiver.
+ * It is used to constrain the huge list of possible formats based
+ * upon the hardware capabilities.
+ */
+static const struct v4l2_dv_timings_cap skel_timings_cap = {
+ .type = V4L2_DV_BT_656_1120,
+ /* keep this initialization for compatibility with GCC < 4.4.6 */
+ .reserved = { 0 },
+ V4L2_INIT_BT_TIMINGS(
+ 720, 1920, /* min/max width */
+ 480, 1080, /* min/max height */
+ 27000000, 74250000, /* min/max pixelclock*/
+ V4L2_DV_BT_STD_CEA861, /* Supported standards */
+ /* capabilities */
+ V4L2_DV_BT_CAP_INTERLACED | V4L2_DV_BT_CAP_PROGRESSIVE
+ )
+};
+
+/*
+ * Supported SDTV standards. This does the same job as skel_timings_cap, but
+ * for standard TV formats.
+ */
+#define SKEL_TVNORMS V4L2_STD_ALL
+
+/*
+ * Interrupt handler: typically interrupts happen after a new frame has been
+ * captured. It is the job of the handler to remove the new frame from the
+ * internal list and give it back to the vb2 framework, updating the sequence
+ * counter, field and timestamp at the same time.
+ */
+static irqreturn_t skeleton_irq(int irq, void *dev_id)
+{
+#ifdef TODO
+ struct skeleton *skel = dev_id;
+
+ /* handle interrupt */
+
+ /* Once a new frame has been captured, mark it as done like this: */
+ if (captured_new_frame) {
+ ...
+ spin_lock(&skel->qlock);
+ list_del(&new_buf->list);
+ spin_unlock(&skel->qlock);
+ v4l2_get_timestamp(&new_buf->vb.v4l2_buf.timestamp);
+ new_buf->vb.v4l2_buf.sequence = skel->sequence++;
+ new_buf->vb.v4l2_buf.field = skel->field;
+ if (skel->format.field == V4L2_FIELD_ALTERNATE) {
+ if (skel->field == V4L2_FIELD_BOTTOM)
+ skel->field = V4L2_FIELD_TOP;
+ else if (skel->field == V4L2_FIELD_TOP)
+ skel->field = V4L2_FIELD_BOTTOM;
+ }
+ vb2_buffer_done(&new_buf->vb, VB2_BUF_STATE_DONE);
+ }
+#endif
+ return IRQ_HANDLED;
+}
+
+/*
+ * Setup the constraints of the queue: besides setting the number of planes
+ * per buffer and the size and allocation context of each plane, it also
+ * checks if sufficient buffers have been allocated. Usually 3 is a good
+ * minimum number: many DMA engines need a minimum of 2 buffers in the
+ * queue and you need to have another available for userspace processing.
+ */
+static int queue_setup(struct vb2_queue *vq, const struct v4l2_format *fmt,
+ unsigned int *nbuffers, unsigned int *nplanes,
+ unsigned int sizes[], void *alloc_ctxs[])
+{
+ struct skeleton *skel = vb2_get_drv_priv(vq);
+
+ skel->field = skel->format.field;
+ if (skel->field == V4L2_FIELD_ALTERNATE) {
+ /*
+ * You cannot use read() with FIELD_ALTERNATE since the field
+ * information (TOP/BOTTOM) cannot be passed back to the user.
+ */
+ if (vb2_fileio_is_active(vq))
+ return -EINVAL;
+ skel->field = V4L2_FIELD_TOP;
+ }
+
+ if (vq->num_buffers + *nbuffers < 3)
+ *nbuffers = 3 - vq->num_buffers;
+
+ if (fmt && fmt->fmt.pix.sizeimage < skel->format.sizeimage)
+ return -EINVAL;
+ *nplanes = 1;
+ sizes[0] = fmt ? fmt->fmt.pix.sizeimage : skel->format.sizeimage;
+ alloc_ctxs[0] = skel->alloc_ctx;
+ return 0;
+}
+
+/*
+ * Prepare the buffer for queueing to the DMA engine: check and set the
+ * payload size.
+ */
+static int buffer_prepare(struct vb2_buffer *vb)
+{
+ struct skeleton *skel = vb2_get_drv_priv(vb->vb2_queue);
+ unsigned long size = skel->format.sizeimage;
+
+ if (vb2_plane_size(vb, 0) < size) {
+ dev_err(&skel->pdev->dev, "buffer too small (%lu < %lu)\n",
+ vb2_plane_size(vb, 0), size);
+ return -EINVAL;
+ }
+
+ vb2_set_plane_payload(vb, 0, size);
+ return 0;
+}
+
+/*
+ * Queue this buffer to the DMA engine.
+ */
+static void buffer_queue(struct vb2_buffer *vb)
+{
+ struct skeleton *skel = vb2_get_drv_priv(vb->vb2_queue);
+ struct skel_buffer *buf = to_skel_buffer(vb);
+ unsigned long flags;
+
+ spin_lock_irqsave(&skel->qlock, flags);
+ list_add_tail(&buf->list, &skel->buf_list);
+
+ /* TODO: Update any DMA pointers if necessary */
+
+ spin_unlock_irqrestore(&skel->qlock, flags);
+}
+
+static void return_all_buffers(struct skeleton *skel,
+ enum vb2_buffer_state state)
+{
+ struct skel_buffer *buf, *node;
+ unsigned long flags;
+
+ spin_lock_irqsave(&skel->qlock, flags);
+ list_for_each_entry_safe(buf, node, &skel->buf_list, list) {
+ vb2_buffer_done(&buf->vb, state);
+ list_del(&buf->list);
+ }
+ spin_unlock_irqrestore(&skel->qlock, flags);
+}
+
+/*
+ * Start streaming. First check if the minimum number of buffers have been
+ * queued. If not, then return -ENOBUFS and the vb2 framework will call
+ * this function again the next time a buffer has been queued until enough
+ * buffers are available to actually start the DMA engine.
+ */
+static int start_streaming(struct vb2_queue *vq, unsigned int count)
+{
+ struct skeleton *skel = vb2_get_drv_priv(vq);
+ int ret = 0;
+
+ skel->sequence = 0;
+
+ /* TODO: start DMA */
+
+ if (ret) {
+ /*
+ * In case of an error, return all active buffers to the
+ * QUEUED state
+ */
+ return_all_buffers(skel, VB2_BUF_STATE_QUEUED);
+ }
+ return ret;
+}
+
+/*
+ * Stop the DMA engine. Any remaining buffers in the DMA queue are dequeued
+ * and passed on to the vb2 framework marked as STATE_ERROR.
+ */
+static void stop_streaming(struct vb2_queue *vq)
+{
+ struct skeleton *skel = vb2_get_drv_priv(vq);
+
+ /* TODO: stop DMA */
+
+ /* Release all active buffers */
+ return_all_buffers(skel, VB2_BUF_STATE_ERROR);
+}
+
+/*
+ * The vb2 queue ops. Note that since q->lock is set we can use the standard
+ * vb2_ops_wait_prepare/finish helper functions. If q->lock would be NULL,
+ * then this driver would have to provide these ops.
+ */
+static struct vb2_ops skel_qops = {
+ .queue_setup = queue_setup,
+ .buf_prepare = buffer_prepare,
+ .buf_queue = buffer_queue,
+ .start_streaming = start_streaming,
+ .stop_streaming = stop_streaming,
+ .wait_prepare = vb2_ops_wait_prepare,
+ .wait_finish = vb2_ops_wait_finish,
+};
+
+/*
+ * Required ioctl querycap. Note that the version field is prefilled with
+ * the version of the kernel.
+ */
+static int skeleton_querycap(struct file *file, void *priv,
+ struct v4l2_capability *cap)
+{
+ struct skeleton *skel = video_drvdata(file);
+
+ strlcpy(cap->driver, KBUILD_MODNAME, sizeof(cap->driver));
+ strlcpy(cap->card, "V4L2 PCI Skeleton", sizeof(cap->card));
+ snprintf(cap->bus_info, sizeof(cap->bus_info), "PCI:%s",
+ pci_name(skel->pdev));
+ cap->device_caps = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_READWRITE |
+ V4L2_CAP_STREAMING;
+ cap->capabilities = cap->device_caps | V4L2_CAP_DEVICE_CAPS;
+ return 0;
+}
+
+/*
+ * Helper function to check and correct struct v4l2_pix_format. It's used
+ * not only in VIDIOC_TRY/S_FMT, but also elsewhere if changes to the SDTV
+ * standard, HDTV timings or the video input would require updating the
+ * current format.
+ */
+static void skeleton_fill_pix_format(struct skeleton *skel,
+ struct v4l2_pix_format *pix)
+{
+ pix->pixelformat = V4L2_PIX_FMT_YUYV;
+ if (skel->input == 0) {
+ /* S-Video input */
+ pix->width = 720;
+ pix->height = (skel->std & V4L2_STD_525_60) ? 480 : 576;
+ pix->field = V4L2_FIELD_INTERLACED;
+ pix->colorspace = V4L2_COLORSPACE_SMPTE170M;
+ } else {
+ /* HDMI input */
+ pix->width = skel->timings.bt.width;
+ pix->height = skel->timings.bt.height;
+ if (skel->timings.bt.interlaced) {
+ pix->field = V4L2_FIELD_ALTERNATE;
+ pix->height /= 2;
+ } else {
+ pix->field = V4L2_FIELD_NONE;
+ }
+ pix->colorspace = V4L2_COLORSPACE_REC709;
+ }
+
+ /*
+ * The YUYV format is four bytes for every two pixels, so bytesperline
+ * is width * 2.
+ */
+ pix->bytesperline = pix->width * 2;
+ pix->sizeimage = pix->bytesperline * pix->height;
+ pix->priv = 0;
+}
+
+static int skeleton_try_fmt_vid_cap(struct file *file, void *priv,
+ struct v4l2_format *f)
+{
+ struct skeleton *skel = video_drvdata(file);
+ struct v4l2_pix_format *pix = &f->fmt.pix;
+
+ /*
+ * Due to historical reasons providing try_fmt with an unsupported
+ * pixelformat will return -EINVAL for video receivers. Webcam drivers,
+ * however, will silently correct the pixelformat. Some video capture
+ * applications rely on this behavior...
+ */
+ if (pix->pixelformat != V4L2_PIX_FMT_YUYV)
+ return -EINVAL;
+ skeleton_fill_pix_format(skel, pix);
+ return 0;
+}
+
+static int skeleton_s_fmt_vid_cap(struct file *file, void *priv,
+ struct v4l2_format *f)
+{
+ struct skeleton *skel = video_drvdata(file);
+ int ret;
+
+ ret = skeleton_try_fmt_vid_cap(file, priv, f);
+ if (ret)
+ return ret;
+
+ /*
+ * It is not allowed to change the format while buffers for use with
+ * streaming have already been allocated.
+ */
+ if (vb2_is_busy(&skel->queue))
+ return -EBUSY;
+
+ /* TODO: change format */
+ skel->format = f->fmt.pix;
+ return 0;
+}
+
+static int skeleton_g_fmt_vid_cap(struct file *file, void *priv,
+ struct v4l2_format *f)
+{
+ struct skeleton *skel = video_drvdata(file);
+
+ f->fmt.pix = skel->format;
+ return 0;
+}
+
+static int skeleton_enum_fmt_vid_cap(struct file *file, void *priv,
+ struct v4l2_fmtdesc *f)
+{
+ if (f->index != 0)
+ return -EINVAL;
+
+ strlcpy(f->description, "4:2:2, packed, YUYV", sizeof(f->description));
+ f->pixelformat = V4L2_PIX_FMT_YUYV;
+ f->flags = 0;
+ return 0;
+}
+
+static int skeleton_s_std(struct file *file, void *priv, v4l2_std_id std)
+{
+ struct skeleton *skel = video_drvdata(file);
+
+ /* S_STD is not supported on the HDMI input */
+ if (skel->input)
+ return -ENODATA;
+
+ /*
+ * No change, so just return. Some applications call S_STD again after
+ * the buffers for streaming have been set up, so we have to allow for
+ * this behavior.
+ */
+ if (std == skel->std)
+ return 0;
+
+ /*
+ * Changing the standard implies a format change, which is not allowed
+ * while buffers for use with streaming have already been allocated.
+ */
+ if (vb2_is_busy(&skel->queue))
+ return -EBUSY;
+
+ /* TODO: handle changing std */
+
+ skel->std = std;
+
+ /* Update the internal format */
+ skeleton_fill_pix_format(skel, &skel->format);
+ return 0;
+}
+
+static int skeleton_g_std(struct file *file, void *priv, v4l2_std_id *std)
+{
+ struct skeleton *skel = video_drvdata(file);
+
+ /* G_STD is not supported on the HDMI input */
+ if (skel->input)
+ return -ENODATA;
+
+ *std = skel->std;
+ return 0;
+}
+
+/*
+ * Query the current standard as seen by the hardware. This function shall
+ * never actually change the standard, it just detects and reports.
+ * The framework will initially set *std to tvnorms (i.e. the set of
+ * supported standards by this input), and this function should just AND
+ * this value. If there is no signal, then *std should be set to 0.
+ */
+static int skeleton_querystd(struct file *file, void *priv, v4l2_std_id *std)
+{
+ struct skeleton *skel = video_drvdata(file);
+
+ /* QUERY_STD is not supported on the HDMI input */
+ if (skel->input)
+ return -ENODATA;
+
+#ifdef TODO
+ /*
+ * Query currently seen standard. Initial value of *std is
+ * V4L2_STD_ALL. This function should look something like this:
+ */
+ get_signal_info();
+ if (no_signal) {
+ *std = 0;
+ return 0;
+ }
+ /* Use signal information to reduce the number of possible standards */
+ if (signal_has_525_lines)
+ *std &= V4L2_STD_525_60;
+ else
+ *std &= V4L2_STD_625_50;
+#endif
+ return 0;
+}
+
+static int skeleton_s_dv_timings(struct file *file, void *_fh,
+ struct v4l2_dv_timings *timings)
+{
+ struct skeleton *skel = video_drvdata(file);
+
+ /* S_DV_TIMINGS is not supported on the S-Video input */
+ if (skel->input == 0)
+ return -ENODATA;
+
+ /* Quick sanity check */
+ if (!v4l2_valid_dv_timings(timings, &skel_timings_cap, NULL, NULL))
+ return -EINVAL;
+
+ /* Check if the timings are part of the CEA-861 timings. */
+ if (!v4l2_find_dv_timings_cap(timings, &skel_timings_cap,
+ 0, NULL, NULL))
+ return -EINVAL;
+
+ /* Return 0 if the new timings are the same as the current timings. */
+ if (v4l2_match_dv_timings(timings, &skel->timings, 0))
+ return 0;
+
+ /*
+ * Changing the timings implies a format change, which is not allowed
+ * while buffers for use with streaming have already been allocated.
+ */
+ if (vb2_is_busy(&skel->queue))
+ return -EBUSY;
+
+ /* TODO: Configure new timings */
+
+ /* Save timings */
+ skel->timings = *timings;
+
+ /* Update the internal format */
+ skeleton_fill_pix_format(skel, &skel->format);
+ return 0;
+}
+
+static int skeleton_g_dv_timings(struct file *file, void *_fh,
+ struct v4l2_dv_timings *timings)
+{
+ struct skeleton *skel = video_drvdata(file);
+
+ /* G_DV_TIMINGS is not supported on the S-Video input */
+ if (skel->input == 0)
+ return -ENODATA;
+
+ *timings = skel->timings;
+ return 0;
+}
+
+static int skeleton_enum_dv_timings(struct file *file, void *_fh,
+ struct v4l2_enum_dv_timings *timings)
+{
+ struct skeleton *skel = video_drvdata(file);
+
+ /* ENUM_DV_TIMINGS is not supported on the S-Video input */
+ if (skel->input == 0)
+ return -ENODATA;
+
+ return v4l2_enum_dv_timings_cap(timings, &skel_timings_cap,
+ NULL, NULL);
+}
+
+/*
+ * Query the current timings as seen by the hardware. This function shall
+ * never actually change the timings, it just detects and reports.
+ * If no signal is detected, then return -ENOLINK. If the hardware cannot
+ * lock to the signal, then return -ENOLCK. If the signal is out of range
+ * of the capabilities of the system (e.g., it is possible that the receiver
+ * can lock but that the DMA engine it is connected to cannot handle
+ * pixelclocks above a certain frequency), then -ERANGE is returned.
+ */
+static int skeleton_query_dv_timings(struct file *file, void *_fh,
+ struct v4l2_dv_timings *timings)
+{
+ struct skeleton *skel = video_drvdata(file);
+
+ /* QUERY_DV_TIMINGS is not supported on the S-Video input */
+ if (skel->input == 0)
+ return -ENODATA;
+
+#ifdef TODO
+ /*
+ * Query currently seen timings. This function should look
+ * something like this:
+ */
+ detect_timings();
+ if (no_signal)
+ return -ENOLINK;
+ if (cannot_lock_to_signal)
+ return -ENOLCK;
+ if (signal_out_of_range_of_capabilities)
+ return -ERANGE;
+
+ /* Useful for debugging */
+ v4l2_print_dv_timings(skel->v4l2_dev.name, "query_dv_timings:",
+ timings, true);
+#endif
+ return 0;
+}
+
+static int skeleton_dv_timings_cap(struct file *file, void *fh,
+ struct v4l2_dv_timings_cap *cap)
+{
+ struct skeleton *skel = video_drvdata(file);
+
+ /* DV_TIMINGS_CAP is not supported on the S-Video input */
+ if (skel->input == 0)
+ return -ENODATA;
+ *cap = skel_timings_cap;
+ return 0;
+}
+
+static int skeleton_enum_input(struct file *file, void *priv,
+ struct v4l2_input *i)
+{
+ if (i->index > 1)
+ return -EINVAL;
+
+ i->type = V4L2_INPUT_TYPE_CAMERA;
+ if (i->index == 0) {
+ i->std = SKEL_TVNORMS;
+ strlcpy(i->name, "S-Video", sizeof(i->name));
+ i->capabilities = V4L2_IN_CAP_STD;
+ } else {
+ i->std = 0;
+ strlcpy(i->name, "HDMI", sizeof(i->name));
+ i->capabilities = V4L2_IN_CAP_DV_TIMINGS;
+ }
+ return 0;
+}
+
+static int skeleton_s_input(struct file *file, void *priv, unsigned int i)
+{
+ struct skeleton *skel = video_drvdata(file);
+
+ if (i > 1)
+ return -EINVAL;
+
+ /*
+ * Changing the input implies a format change, which is not allowed
+ * while buffers for use with streaming have already been allocated.
+ */
+ if (vb2_is_busy(&skel->queue))
+ return -EBUSY;
+
+ skel->input = i;
+ /*
+ * Update tvnorms. The tvnorms value is used by the core to implement
+ * VIDIOC_ENUMSTD so it has to be correct. If tvnorms == 0, then
+ * ENUMSTD will return -ENODATA.
+ */
+ skel->vdev.tvnorms = i ? 0 : SKEL_TVNORMS;
+
+ /* Update the internal format */
+ skeleton_fill_pix_format(skel, &skel->format);
+ return 0;
+}
+
+static int skeleton_g_input(struct file *file, void *priv, unsigned int *i)
+{
+ struct skeleton *skel = video_drvdata(file);
+
+ *i = skel->input;
+ return 0;
+}
+
+/* The control handler. */
+static int skeleton_s_ctrl(struct v4l2_ctrl *ctrl)
+{
+ /*struct skeleton *skel =
+ container_of(ctrl->handler, struct skeleton, ctrl_handler);*/
+
+ switch (ctrl->id) {
+ case V4L2_CID_BRIGHTNESS:
+ /* TODO: set brightness to ctrl->val */
+ break;
+ case V4L2_CID_CONTRAST:
+ /* TODO: set contrast to ctrl->val */
+ break;
+ case V4L2_CID_SATURATION:
+ /* TODO: set saturation to ctrl->val */
+ break;
+ case V4L2_CID_HUE:
+ /* TODO: set hue to ctrl->val */
+ break;
+ default:
+ return -EINVAL;
+ }
+ return 0;
+}
+
+/* ------------------------------------------------------------------
+ File operations for the device
+ ------------------------------------------------------------------*/
+
+static const struct v4l2_ctrl_ops skel_ctrl_ops = {
+ .s_ctrl = skeleton_s_ctrl,
+};
+
+/*
+ * The set of all supported ioctls. Note that all the streaming ioctls
+ * use the vb2 helper functions that take care of all the locking and
+ * that also do ownership tracking (i.e. only the filehandle that requested
+ * the buffers can call the streaming ioctls, all other filehandles will
+ * receive -EBUSY if they attempt to call the same streaming ioctls).
+ *
+ * The last three ioctls also use standard helper functions: these implement
+ * standard behavior for drivers with controls.
+ */
+static const struct v4l2_ioctl_ops skel_ioctl_ops = {
+ .vidioc_querycap = skeleton_querycap,
+ .vidioc_try_fmt_vid_cap = skeleton_try_fmt_vid_cap,
+ .vidioc_s_fmt_vid_cap = skeleton_s_fmt_vid_cap,
+ .vidioc_g_fmt_vid_cap = skeleton_g_fmt_vid_cap,
+ .vidioc_enum_fmt_vid_cap = skeleton_enum_fmt_vid_cap,
+
+ .vidioc_g_std = skeleton_g_std,
+ .vidioc_s_std = skeleton_s_std,
+ .vidioc_querystd = skeleton_querystd,
+
+ .vidioc_s_dv_timings = skeleton_s_dv_timings,
+ .vidioc_g_dv_timings = skeleton_g_dv_timings,
+ .vidioc_enum_dv_timings = skeleton_enum_dv_timings,
+ .vidioc_query_dv_timings = skeleton_query_dv_timings,
+ .vidioc_dv_timings_cap = skeleton_dv_timings_cap,
+
+ .vidioc_enum_input = skeleton_enum_input,
+ .vidioc_g_input = skeleton_g_input,
+ .vidioc_s_input = skeleton_s_input,
+
+ .vidioc_reqbufs = vb2_ioctl_reqbufs,
+ .vidioc_create_bufs = vb2_ioctl_create_bufs,
+ .vidioc_querybuf = vb2_ioctl_querybuf,
+ .vidioc_qbuf = vb2_ioctl_qbuf,
+ .vidioc_dqbuf = vb2_ioctl_dqbuf,
+ .vidioc_expbuf = vb2_ioctl_expbuf,
+ .vidioc_streamon = vb2_ioctl_streamon,
+ .vidioc_streamoff = vb2_ioctl_streamoff,
+
+ .vidioc_log_status = v4l2_ctrl_log_status,
+ .vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
+ .vidioc_unsubscribe_event = v4l2_event_unsubscribe,
+};
+
+/*
+ * The set of file operations. Note that all these ops are standard core
+ * helper functions.
+ */
+static const struct v4l2_file_operations skel_fops = {
+ .owner = THIS_MODULE,
+ .open = v4l2_fh_open,
+ .release = vb2_fop_release,
+ .unlocked_ioctl = video_ioctl2,
+ .read = vb2_fop_read,
+ .mmap = vb2_fop_mmap,
+ .poll = vb2_fop_poll,
+};
+
+/*
+ * The initial setup of this device instance. Note that the initial state of
+ * the driver should be complete. So the initial format, standard, timings
+ * and video input should all be initialized to some reasonable value.
+ */
+static int skeleton_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
+{
+ /* The initial timings are chosen to be 720p60. */
+ static const struct v4l2_dv_timings timings_def =
+ V4L2_DV_BT_CEA_1280X720P60;
+ struct skeleton *skel;
+ struct video_device *vdev;
+ struct v4l2_ctrl_handler *hdl;
+ struct vb2_queue *q;
+ int ret;
+
+ /* Enable PCI */
+ ret = pci_enable_device(pdev);
+ if (ret)
+ return ret;
+ ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
+ if (ret) {
+ dev_err(&pdev->dev, "no suitable DMA available.\n");
+ goto disable_pci;
+ }
+
+ /* Allocate a new instance */
+ skel = devm_kzalloc(&pdev->dev, sizeof(struct skeleton), GFP_KERNEL);
+ if (!skel)
+ return -ENOMEM;
+
+ /* Allocate the interrupt */
+ ret = devm_request_irq(&pdev->dev, pdev->irq,
+ skeleton_irq, 0, KBUILD_MODNAME, skel);
+ if (ret) {
+ dev_err(&pdev->dev, "request_irq failed\n");
+ goto disable_pci;
+ }
+ skel->pdev = pdev;
+
+ /* Fill in the initial format-related settings */
+ skel->timings = timings_def;
+ skel->std = V4L2_STD_625_50;
+ skeleton_fill_pix_format(skel, &skel->format);
+
+ /* Initialize the top-level structure */
+ ret = v4l2_device_register(&pdev->dev, &skel->v4l2_dev);
+ if (ret)
+ goto disable_pci;
+
+ mutex_init(&skel->lock);
+
+ /* Add the controls */
+ hdl = &skel->ctrl_handler;
+ v4l2_ctrl_handler_init(hdl, 4);
+ v4l2_ctrl_new_std(hdl, &skel_ctrl_ops,
+ V4L2_CID_BRIGHTNESS, 0, 255, 1, 127);
+ v4l2_ctrl_new_std(hdl, &skel_ctrl_ops,
+ V4L2_CID_CONTRAST, 0, 255, 1, 16);
+ v4l2_ctrl_new_std(hdl, &skel_ctrl_ops,
+ V4L2_CID_SATURATION, 0, 255, 1, 127);
+ v4l2_ctrl_new_std(hdl, &skel_ctrl_ops,
+ V4L2_CID_HUE, -128, 127, 1, 0);
+ if (hdl->error) {
+ ret = hdl->error;
+ goto free_hdl;
+ }
+ skel->v4l2_dev.ctrl_handler = hdl;
+
+ /* Initialize the vb2 queue */
+ q = &skel->queue;
+ q->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
+ q->io_modes = VB2_MMAP | VB2_DMABUF | VB2_READ;
+ q->drv_priv = skel;
+ q->buf_struct_size = sizeof(struct skel_buffer);
+ q->ops = &skel_qops;
+ q->mem_ops = &vb2_dma_contig_memops;
+ q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
+ /*
+ * Assume that this DMA engine needs to have at least two buffers
+ * available before it can be started. The start_streaming() op
+ * won't be called until at least this many buffers are queued up.
+ */
+ q->min_buffers_needed = 2;
+ /*
+ * The serialization lock for the streaming ioctls. This is the same
+ * as the main serialization lock, but if some of the non-streaming
+ * ioctls could take a long time to execute, then you might want to
+ * have a different lock here to prevent VIDIOC_DQBUF from being
+ * blocked while waiting for another action to finish. This is
+ * generally not needed for PCI devices, but USB devices usually do
+ * want a separate lock here.
+ */
+ q->lock = &skel->lock;
+ /*
+ * Since this driver can only do 32-bit DMA we must make sure that
+ * the vb2 core will allocate the buffers in 32-bit DMA memory.
+ */
+ q->gfp_flags = GFP_DMA32;
+ ret = vb2_queue_init(q);
+ if (ret)
+ goto free_hdl;
+
+ skel->alloc_ctx = vb2_dma_contig_init_ctx(&pdev->dev);
+ if (IS_ERR(skel->alloc_ctx)) {
+ dev_err(&pdev->dev, "Can't allocate buffer context");
+ ret = PTR_ERR(skel->alloc_ctx);
+ goto free_hdl;
+ }
+ INIT_LIST_HEAD(&skel->buf_list);
+ spin_lock_init(&skel->qlock);
+
+ /* Initialize the video_device structure */
+ vdev = &skel->vdev;
+ strlcpy(vdev->name, KBUILD_MODNAME, sizeof(vdev->name));
+ /*
+ * There is nothing to clean up, so release is set to an empty release
+ * function. The release callback must be non-NULL.
+ */
+ vdev->release = video_device_release_empty;
+ vdev->fops = &skel_fops,
+ vdev->ioctl_ops = &skel_ioctl_ops,
+ /*
+ * The main serialization lock. All ioctls are serialized by this
+ * lock. Exception: if q->lock is set, then the streaming ioctls
+ * are serialized by that separate lock.
+ */
+ vdev->lock = &skel->lock;
+ vdev->queue = q;
+ vdev->v4l2_dev = &skel->v4l2_dev;
+ /* Supported SDTV standards, if any */
+ vdev->tvnorms = SKEL_TVNORMS;
+ /* If this bit is set, then the v4l2 core will provide the support
+ * for the VIDIOC_G/S_PRIORITY ioctls. This flag will eventually
+ * go away once all drivers have been converted to use struct v4l2_fh.
+ */
+ set_bit(V4L2_FL_USE_FH_PRIO, &vdev->flags);
+ video_set_drvdata(vdev, skel);
+
+ ret = video_register_device(vdev, VFL_TYPE_GRABBER, -1);
+ if (ret)
+ goto free_ctx;
+
+ dev_info(&pdev->dev, "V4L2 PCI Skeleton Driver loaded\n");
+ return 0;
+
+free_ctx:
+ vb2_dma_contig_cleanup_ctx(skel->alloc_ctx);
+free_hdl:
+ v4l2_ctrl_handler_free(&skel->ctrl_handler);
+ v4l2_device_unregister(&skel->v4l2_dev);
+disable_pci:
+ pci_disable_device(pdev);
+ return ret;
+}
+
+static void skeleton_remove(struct pci_dev *pdev)
+{
+ struct v4l2_device *v4l2_dev = pci_get_drvdata(pdev);
+ struct skeleton *skel = container_of(v4l2_dev, struct skeleton, v4l2_dev);
+
+ video_unregister_device(&skel->vdev);
+ v4l2_ctrl_handler_free(&skel->ctrl_handler);
+ vb2_dma_contig_cleanup_ctx(skel->alloc_ctx);
+ v4l2_device_unregister(&skel->v4l2_dev);
+ pci_disable_device(skel->pdev);
+}
+
+static struct pci_driver skeleton_driver = {
+ .name = KBUILD_MODNAME,
+ .probe = skeleton_probe,
+ .remove = skeleton_remove,
+ .id_table = skeleton_pci_tbl,
+};
+
+module_pci_driver(skeleton_driver);
diff --git a/Documentation/virtual/kvm/00-INDEX b/Documentation/virtual/kvm/00-INDEX
new file mode 100644
index 00000000000..fee9f2bf9c6
--- /dev/null
+++ b/Documentation/virtual/kvm/00-INDEX
@@ -0,0 +1,26 @@
+00-INDEX
+ - this file.
+api.txt
+ - KVM userspace API.
+cpuid.txt
+ - KVM-specific cpuid leaves (x86).
+devices/
+ - KVM_CAP_DEVICE_CTRL userspace API.
+hypercalls.txt
+ - KVM hypercalls.
+locking.txt
+ - notes on KVM locks.
+mmu.txt
+ - the x86 kvm shadow mmu.
+msr.txt
+ - KVM-specific MSRs (x86).
+nested-vmx.txt
+ - notes on nested virtualization for Intel x86 processors.
+ppc-pv.txt
+ - the paravirtualization interface on PowerPC.
+review-checklist.txt
+ - review checklist for KVM patches.
+s390-diag.txt
+ - Diagnose hypercall description (for IBM S/390)
+timekeeping.txt
+ - timekeeping virtualization for x86-based architectures.
diff --git a/Documentation/virtual/kvm/api.txt b/Documentation/virtual/kvm/api.txt
index 858aecf21db..0fe36497642 100644
--- a/Documentation/virtual/kvm/api.txt
+++ b/Documentation/virtual/kvm/api.txt
@@ -586,8 +586,8 @@ struct kvm_fpu {
4.24 KVM_CREATE_IRQCHIP
-Capability: KVM_CAP_IRQCHIP
-Architectures: x86, ia64, ARM, arm64
+Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQCHIP (s390)
+Architectures: x86, ia64, ARM, arm64, s390
Type: vm ioctl
Parameters: none
Returns: 0 on success, -1 on error
@@ -596,7 +596,10 @@ Creates an interrupt controller model in the kernel. On x86, creates a virtual
ioapic, a virtual PIC (two PICs, nested), and sets up future vcpus to have a
local APIC. IRQ routing for GSIs 0-15 is set to both PIC and IOAPIC; GSI 16-23
only go to the IOAPIC. On ia64, a IOSAPIC is created. On ARM/arm64, a GIC is
-created.
+created. On s390, a dummy irq routing table is created.
+
+Note that on s390 the KVM_CAP_S390_IRQCHIP vm capability needs to be enabled
+before KVM_CREATE_IRQCHIP can be used.
4.25 KVM_IRQ_LINE
@@ -612,6 +615,20 @@ On some architectures it is required that an interrupt controller model has
been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered
interrupts require the level to be set to 1 and then back to 0.
+On real hardware, interrupt pins can be active-low or active-high. This
+does not matter for the level field of struct kvm_irq_level: 1 always
+means active (asserted), 0 means inactive (deasserted).
+
+x86 allows the operating system to program the interrupt polarity
+(active-low/active-high) for level-triggered interrupts, and KVM used
+to consider the polarity. However, due to bitrot in the handling of
+active-low interrupts, the above convention is now valid on x86 too.
+This is signaled by KVM_CAP_X86_IOAPIC_POLARITY_IGNORED. Userspace
+should not present interrupts to the guest as active-low unless this
+capability is present (or unless it is not using the in-kernel irqchip,
+of course).
+
+
ARM/arm64 can signal an interrupt either at the CPU level, or at the
in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to
use PPIs designated for specific cpus. The irq field is interpreted
@@ -628,7 +645,7 @@ The irq_type field has the following values:
(The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs)
-In both cases, level is used to raise/lower the line.
+In both cases, level is used to assert/deassert the line.
struct kvm_irq_level {
union {
@@ -918,9 +935,9 @@ documentation when it pops into existence).
4.37 KVM_ENABLE_CAP
-Capability: KVM_CAP_ENABLE_CAP
+Capability: KVM_CAP_ENABLE_CAP, KVM_CAP_ENABLE_CAP_VM
Architectures: ppc, s390
-Type: vcpu ioctl
+Type: vcpu ioctl, vm ioctl (with KVM_CAP_ENABLE_CAP_VM)
Parameters: struct kvm_enable_cap (in)
Returns: 0 on success; -1 on error
@@ -951,6 +968,8 @@ function properly, this is the place to put them.
__u8 pad[64];
};
+The vcpu ioctl should be used for vcpu-specific capabilities, the vm ioctl
+for vm-wide capabilities.
4.38 KVM_GET_MP_STATE
@@ -1122,9 +1141,9 @@ struct kvm_cpuid2 {
struct kvm_cpuid_entry2 entries[0];
};
-#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX 1
-#define KVM_CPUID_FLAG_STATEFUL_FUNC 2
-#define KVM_CPUID_FLAG_STATE_READ_NEXT 4
+#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
+#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
+#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
struct kvm_cpuid_entry2 {
__u32 function;
@@ -1320,7 +1339,7 @@ KVM_ASSIGN_DEV_IRQ. Partial deassignment of host or guest IRQ is allowed.
4.52 KVM_SET_GSI_ROUTING
Capability: KVM_CAP_IRQ_ROUTING
-Architectures: x86 ia64
+Architectures: x86 ia64 s390
Type: vm ioctl
Parameters: struct kvm_irq_routing (in)
Returns: 0 on success, -1 on error
@@ -1343,6 +1362,7 @@ struct kvm_irq_routing_entry {
union {
struct kvm_irq_routing_irqchip irqchip;
struct kvm_irq_routing_msi msi;
+ struct kvm_irq_routing_s390_adapter adapter;
__u32 pad[8];
} u;
};
@@ -1350,6 +1370,7 @@ struct kvm_irq_routing_entry {
/* gsi routing entry types */
#define KVM_IRQ_ROUTING_IRQCHIP 1
#define KVM_IRQ_ROUTING_MSI 2
+#define KVM_IRQ_ROUTING_S390_ADAPTER 3
No flags are specified so far, the corresponding field must be set to zero.
@@ -1365,6 +1386,14 @@ struct kvm_irq_routing_msi {
__u32 pad;
};
+struct kvm_irq_routing_s390_adapter {
+ __u64 ind_addr;
+ __u64 summary_addr;
+ __u64 ind_offset;
+ __u32 summary_offset;
+ __u32 adapter_id;
+};
+
4.53 KVM_ASSIGN_SET_MSIX_NR
@@ -1462,7 +1491,7 @@ struct kvm_lapic_state {
char regs[KVM_APIC_REG_SIZE];
};
-Copies the input argument into the the Local APIC registers. The data format
+Copies the input argument into the Local APIC registers. The data format
and layout are the same as documented in the architecture manual.
@@ -1765,6 +1794,11 @@ registers, find a list below:
PPC | KVM_REG_PPC_MMCR0 | 64
PPC | KVM_REG_PPC_MMCR1 | 64
PPC | KVM_REG_PPC_MMCRA | 64
+ PPC | KVM_REG_PPC_MMCR2 | 64
+ PPC | KVM_REG_PPC_MMCRS | 64
+ PPC | KVM_REG_PPC_SIAR | 64
+ PPC | KVM_REG_PPC_SDAR | 64
+ PPC | KVM_REG_PPC_SIER | 64
PPC | KVM_REG_PPC_PMC1 | 32
PPC | KVM_REG_PPC_PMC2 | 32
PPC | KVM_REG_PPC_PMC3 | 32
@@ -1810,6 +1844,52 @@ registers, find a list below:
PPC | KVM_REG_PPC_TLB3PS | 32
PPC | KVM_REG_PPC_EPTCFG | 32
PPC | KVM_REG_PPC_ICP_STATE | 64
+ PPC | KVM_REG_PPC_TB_OFFSET | 64
+ PPC | KVM_REG_PPC_SPMC1 | 32
+ PPC | KVM_REG_PPC_SPMC2 | 32
+ PPC | KVM_REG_PPC_IAMR | 64
+ PPC | KVM_REG_PPC_TFHAR | 64
+ PPC | KVM_REG_PPC_TFIAR | 64
+ PPC | KVM_REG_PPC_TEXASR | 64
+ PPC | KVM_REG_PPC_FSCR | 64
+ PPC | KVM_REG_PPC_PSPB | 32
+ PPC | KVM_REG_PPC_EBBHR | 64
+ PPC | KVM_REG_PPC_EBBRR | 64
+ PPC | KVM_REG_PPC_BESCR | 64
+ PPC | KVM_REG_PPC_TAR | 64
+ PPC | KVM_REG_PPC_DPDES | 64
+ PPC | KVM_REG_PPC_DAWR | 64
+ PPC | KVM_REG_PPC_DAWRX | 64
+ PPC | KVM_REG_PPC_CIABR | 64
+ PPC | KVM_REG_PPC_IC | 64
+ PPC | KVM_REG_PPC_VTB | 64
+ PPC | KVM_REG_PPC_CSIGR | 64
+ PPC | KVM_REG_PPC_TACR | 64
+ PPC | KVM_REG_PPC_TCSCR | 64
+ PPC | KVM_REG_PPC_PID | 64
+ PPC | KVM_REG_PPC_ACOP | 64
+ PPC | KVM_REG_PPC_VRSAVE | 32
+ PPC | KVM_REG_PPC_LPCR | 64
+ PPC | KVM_REG_PPC_PPR | 64
+ PPC | KVM_REG_PPC_ARCH_COMPAT 32
+ PPC | KVM_REG_PPC_DABRX | 32
+ PPC | KVM_REG_PPC_WORT | 64
+ PPC | KVM_REG_PPC_TM_GPR0 | 64
+ ...
+ PPC | KVM_REG_PPC_TM_GPR31 | 64
+ PPC | KVM_REG_PPC_TM_VSR0 | 128
+ ...
+ PPC | KVM_REG_PPC_TM_VSR63 | 128
+ PPC | KVM_REG_PPC_TM_CR | 64
+ PPC | KVM_REG_PPC_TM_LR | 64
+ PPC | KVM_REG_PPC_TM_CTR | 64
+ PPC | KVM_REG_PPC_TM_FPSCR | 64
+ PPC | KVM_REG_PPC_TM_AMR | 64
+ PPC | KVM_REG_PPC_TM_PPR | 64
+ PPC | KVM_REG_PPC_TM_VRSAVE | 64
+ PPC | KVM_REG_PPC_TM_VSCR | 32
+ PPC | KVM_REG_PPC_TM_DSCR | 64
+ PPC | KVM_REG_PPC_TM_TAR | 64
ARM registers are mapped using the lower 32 bits. The upper 16 of that
is the register group type, or coprocessor number:
@@ -1992,7 +2072,7 @@ the "Server" class MMU emulation supported by KVM.
This can in turn be used by userspace to generate the appropriate
device-tree properties for the guest operating system.
-The structure contains some global informations, followed by an
+The structure contains some global information, followed by an
array of supported segment page sizes:
struct kvm_ppc_smmu_info {
@@ -2052,7 +2132,7 @@ into the hash PTE second double word).
4.75 KVM_IRQFD
Capability: KVM_CAP_IRQFD
-Architectures: x86
+Architectures: x86 s390
Type: vm ioctl
Parameters: struct kvm_irqfd (in)
Returns: 0 on success, -1 on error
@@ -2060,7 +2140,7 @@ Returns: 0 on success, -1 on error
Allows setting an eventfd to directly trigger a guest interrupt.
kvm_irqfd.fd specifies the file descriptor to use as the eventfd and
kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When
-an event is tiggered on the eventfd, an interrupt is injected into
+an event is triggered on the eventfd, an interrupt is injected into
the guest using the specified gsi pin. The irqfd is removed using
the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd
and kvm_irqfd.gsi.
@@ -2071,7 +2151,7 @@ interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an
additional eventfd in the kvm_irqfd.resamplefd field. When operating
in resample mode, posting of an interrupt through kvm_irq.fd asserts
the specified gsi in the irqchip. When the irqchip is resampled, such
-as from an EOI, the gsi is de-asserted and the user is notifed via
+as from an EOI, the gsi is de-asserted and the user is notified via
kvm_irqfd.resamplefd. It is the user's responsibility to re-queue
the interrupt if the device making use of it still requires service.
Note that closing the resamplefd is not sufficient to disable the
@@ -2137,6 +2217,8 @@ KVM_S390_SIGP_STOP (vcpu) - sigp restart
KVM_S390_PROGRAM_INT (vcpu) - program check; code in parm
KVM_S390_SIGP_SET_PREFIX (vcpu) - sigp set prefix; prefix address in parm
KVM_S390_RESTART (vcpu) - restart
+KVM_S390_INT_CLOCK_COMP (vcpu) - clock comparator interrupt
+KVM_S390_INT_CPU_TIMER (vcpu) - CPU timer interrupt
KVM_S390_INT_VIRTIO (vm) - virtio external interrupt; external interrupt
parameters in parm and parm64
KVM_S390_INT_SERVICE (vm) - sclp external interrupt; sclp parameter in parm
@@ -2240,8 +2322,8 @@ struct kvm_create_device {
4.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR
-Capability: KVM_CAP_DEVICE_CTRL
-Type: device ioctl
+Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device
+Type: device ioctl, vm ioctl
Parameters: struct kvm_device_attr
Returns: 0 on success, -1 on error
Errors:
@@ -2266,8 +2348,8 @@ struct kvm_device_attr {
4.81 KVM_HAS_DEVICE_ATTR
-Capability: KVM_CAP_DEVICE_CTRL
-Type: device ioctl
+Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device
+Type: device ioctl, vm ioctl
Parameters: struct kvm_device_attr
Returns: 0 on success, -1 on error
Errors:
@@ -2283,7 +2365,7 @@ current state. "addr" is ignored.
Capability: basic
Architectures: arm, arm64
Type: vcpu ioctl
-Parameters: struct struct kvm_vcpu_init (in)
+Parameters: struct kvm_vcpu_init (in)
Returns: 0 on success; -1 on error
Errors:
 EINVAL:    the target is unknown, or the combination of features is invalid.
@@ -2302,9 +2384,35 @@ Possible features:
Depends on KVM_CAP_ARM_PSCI.
- KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode.
Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only).
+ - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI v0.2 for the CPU.
+ Depends on KVM_CAP_ARM_PSCI_0_2.
-4.83 KVM_GET_REG_LIST
+4.83 KVM_ARM_PREFERRED_TARGET
+
+Capability: basic
+Architectures: arm, arm64
+Type: vm ioctl
+Parameters: struct struct kvm_vcpu_init (out)
+Returns: 0 on success; -1 on error
+Errors:
+ ENODEV: no preferred target available for the host
+
+This queries KVM for preferred CPU target type which can be emulated
+by KVM on underlying host.
+
+The ioctl returns struct kvm_vcpu_init instance containing information
+about preferred CPU target type and recommended features for it. The
+kvm_vcpu_init->features bitmap returned will have feature bits set if
+the preferred target recommends setting these features, but this is
+not mandatory.
+
+The information returned by this ioctl can be used to prepare an instance
+of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT ioctl which will result in
+in VCPU matching underlying host.
+
+
+4.84 KVM_GET_REG_LIST
Capability: basic
Architectures: arm, arm64
@@ -2324,7 +2432,7 @@ This ioctl returns the guest registers that are supported for the
KVM_GET_ONE_REG/KVM_SET_ONE_REG calls.
-4.84 KVM_ARM_SET_DEVICE_ADDR
+4.85 KVM_ARM_SET_DEVICE_ADDR (deprecated)
Capability: KVM_CAP_ARM_SET_DEVICE_ADDR
Architectures: arm, arm64
@@ -2362,7 +2470,11 @@ must be called after calling KVM_CREATE_IRQCHIP, but before calling
KVM_RUN on any of the VCPUs. Calling this ioctl twice for any of the
base addresses will return -EEXIST.
-4.85 KVM_PPC_RTAS_DEFINE_TOKEN
+Note, this IOCTL is deprecated and the more flexible SET/GET_DEVICE_ATTR API
+should be used instead.
+
+
+4.86 KVM_PPC_RTAS_DEFINE_TOKEN
Capability: KVM_CAP_PPC_RTAS
Architectures: ppc
@@ -2493,6 +2605,10 @@ executed a memory-mapped I/O instruction which could not be satisfied
by kvm. The 'data' member contains the written data if 'is_write' is
true, and should be filled by application code otherwise.
+The 'data' member contains, in its first 'len' bytes, the value as it would
+appear if the VCPU performed a load or store of the appropriate width directly
+to the byte array.
+
NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_DCR,
KVM_EXIT_PAPR and KVM_EXIT_EPR the corresponding
operations are complete (and guest state is consistent) only after userspace
@@ -2632,6 +2748,21 @@ It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an
external interrupt has just been delivered into the guest. User space
should put the acknowledged interrupt vector into the 'epr' field.
+ /* KVM_EXIT_SYSTEM_EVENT */
+ struct {
+#define KVM_SYSTEM_EVENT_SHUTDOWN 1
+#define KVM_SYSTEM_EVENT_RESET 2
+ __u32 type;
+ __u64 flags;
+ } system_event;
+
+If exit_reason is KVM_EXIT_SYSTEM_EVENT then the vcpu has triggered
+a system-level event using some architecture specific mechanism (hypercall
+or some special instruction). In case of ARM/ARM64, this is triggered using
+HVC instruction based PSCI call from the vcpu. The 'type' field describes
+the system-level event type. The 'flags' field describes architecture
+specific flags for the system-level event.
+
/* Fix the size of the union. */
char padding[256];
};
@@ -2661,6 +2792,77 @@ and usually define the validity of a groups of registers. (e.g. one bit
};
+4.81 KVM_GET_EMULATED_CPUID
+
+Capability: KVM_CAP_EXT_EMUL_CPUID
+Architectures: x86
+Type: system ioctl
+Parameters: struct kvm_cpuid2 (in/out)
+Returns: 0 on success, -1 on error
+
+struct kvm_cpuid2 {
+ __u32 nent;
+ __u32 flags;
+ struct kvm_cpuid_entry2 entries[0];
+};
+
+The member 'flags' is used for passing flags from userspace.
+
+#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
+#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
+#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
+
+struct kvm_cpuid_entry2 {
+ __u32 function;
+ __u32 index;
+ __u32 flags;
+ __u32 eax;
+ __u32 ebx;
+ __u32 ecx;
+ __u32 edx;
+ __u32 padding[3];
+};
+
+This ioctl returns x86 cpuid features which are emulated by
+kvm.Userspace can use the information returned by this ioctl to query
+which features are emulated by kvm instead of being present natively.
+
+Userspace invokes KVM_GET_EMULATED_CPUID by passing a kvm_cpuid2
+structure with the 'nent' field indicating the number of entries in
+the variable-size array 'entries'. If the number of entries is too low
+to describe the cpu capabilities, an error (E2BIG) is returned. If the
+number is too high, the 'nent' field is adjusted and an error (ENOMEM)
+is returned. If the number is just right, the 'nent' field is adjusted
+to the number of valid entries in the 'entries' array, which is then
+filled.
+
+The entries returned are the set CPUID bits of the respective features
+which kvm emulates, as returned by the CPUID instruction, with unknown
+or unsupported feature bits cleared.
+
+Features like x2apic, for example, may not be present in the host cpu
+but are exposed by kvm in KVM_GET_SUPPORTED_CPUID because they can be
+emulated efficiently and thus not included here.
+
+The fields in each entry are defined as follows:
+
+ function: the eax value used to obtain the entry
+ index: the ecx value used to obtain the entry (for entries that are
+ affected by ecx)
+ flags: an OR of zero or more of the following:
+ KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
+ if the index field is valid
+ KVM_CPUID_FLAG_STATEFUL_FUNC:
+ if cpuid for this function returns different values for successive
+ invocations; there will be several entries with the same function,
+ all with this flag set
+ KVM_CPUID_FLAG_STATE_READ_NEXT:
+ for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
+ the first entry to be read by a cpu
+ eax, ebx, ecx, edx: the values returned by the cpuid instruction for
+ this function/index combination
+
+
6. Capabilities that can be enabled
-----------------------------------
diff --git a/Documentation/virtual/kvm/cpuid.txt b/Documentation/virtual/kvm/cpuid.txt
index 22ff659bc0f..3c65feb8301 100644
--- a/Documentation/virtual/kvm/cpuid.txt
+++ b/Documentation/virtual/kvm/cpuid.txt
@@ -43,6 +43,13 @@ KVM_FEATURE_CLOCKSOURCE2 || 3 || kvmclock available at msrs
KVM_FEATURE_ASYNC_PF || 4 || async pf can be enabled by
|| || writing to msr 0x4b564d02
------------------------------------------------------------------------------
+KVM_FEATURE_STEAL_TIME || 5 || steal time can be enabled by
+ || || writing to msr 0x4b564d03.
+------------------------------------------------------------------------------
+KVM_FEATURE_PV_EOI || 6 || paravirtualized end of interrupt
+ || || handler can be enabled by writing
+ || || to msr 0x4b564d04.
+------------------------------------------------------------------------------
KVM_FEATURE_PV_UNHALT || 7 || guest checks this feature bit
|| || before enabling paravirtualized
|| || spinlock support.
diff --git a/Documentation/virtual/kvm/devices/arm-vgic.txt b/Documentation/virtual/kvm/devices/arm-vgic.txt
new file mode 100644
index 00000000000..7f4e91b1316
--- /dev/null
+++ b/Documentation/virtual/kvm/devices/arm-vgic.txt
@@ -0,0 +1,73 @@
+ARM Virtual Generic Interrupt Controller (VGIC)
+===============================================
+
+Device types supported:
+ KVM_DEV_TYPE_ARM_VGIC_V2 ARM Generic Interrupt Controller v2.0
+
+Only one VGIC instance may be instantiated through either this API or the
+legacy KVM_CREATE_IRQCHIP api. The created VGIC will act as the VM interrupt
+controller, requiring emulated user-space devices to inject interrupts to the
+VGIC instead of directly to CPUs.
+
+Groups:
+ KVM_DEV_ARM_VGIC_GRP_ADDR
+ Attributes:
+ KVM_VGIC_V2_ADDR_TYPE_DIST (rw, 64-bit)
+ Base address in the guest physical address space of the GIC distributor
+ register mappings.
+
+ KVM_VGIC_V2_ADDR_TYPE_CPU (rw, 64-bit)
+ Base address in the guest physical address space of the GIC virtual cpu
+ interface register mappings.
+
+ KVM_DEV_ARM_VGIC_GRP_DIST_REGS
+ Attributes:
+ The attr field of kvm_device_attr encodes two values:
+ bits: | 63 .... 40 | 39 .. 32 | 31 .... 0 |
+ values: | reserved | cpu id | offset |
+
+ All distributor regs are (rw, 32-bit)
+
+ The offset is relative to the "Distributor base address" as defined in the
+ GICv2 specs. Getting or setting such a register has the same effect as
+ reading or writing the register on the actual hardware from the cpu
+ specified with cpu id field. Note that most distributor fields are not
+ banked, but return the same value regardless of the cpu id used to access
+ the register.
+ Limitations:
+ - Priorities are not implemented, and registers are RAZ/WI
+ Errors:
+ -ENODEV: Getting or setting this register is not yet supported
+ -EBUSY: One or more VCPUs are running
+
+ KVM_DEV_ARM_VGIC_GRP_CPU_REGS
+ Attributes:
+ The attr field of kvm_device_attr encodes two values:
+ bits: | 63 .... 40 | 39 .. 32 | 31 .... 0 |
+ values: | reserved | cpu id | offset |
+
+ All CPU interface regs are (rw, 32-bit)
+
+ The offset specifies the offset from the "CPU interface base address" as
+ defined in the GICv2 specs. Getting or setting such a register has the
+ same effect as reading or writing the register on the actual hardware.
+
+ The Active Priorities Registers APRn are implementation defined, so we set a
+ fixed format for our implementation that fits with the model of a "GICv2
+ implementation without the security extensions" which we present to the
+ guest. This interface always exposes four register APR[0-3] describing the
+ maximum possible 128 preemption levels. The semantics of the register
+ indicate if any interrupts in a given preemption level are in the active
+ state by setting the corresponding bit.
+
+ Thus, preemption level X has one or more active interrupts if and only if:
+
+ APRn[X mod 32] == 0b1, where n = X / 32
+
+ Bits for undefined preemption levels are RAZ/WI.
+
+ Limitations:
+ - Priorities are not implemented, and registers are RAZ/WI
+ Errors:
+ -ENODEV: Getting or setting this register is not yet supported
+ -EBUSY: One or more VCPUs are running
diff --git a/Documentation/virtual/kvm/devices/s390_flic.txt b/Documentation/virtual/kvm/devices/s390_flic.txt
new file mode 100644
index 00000000000..4ceef53164b
--- /dev/null
+++ b/Documentation/virtual/kvm/devices/s390_flic.txt
@@ -0,0 +1,91 @@
+FLIC (floating interrupt controller)
+====================================
+
+FLIC handles floating (non per-cpu) interrupts, i.e. I/O, service and some
+machine check interruptions. All interrupts are stored in a per-vm list of
+pending interrupts. FLIC performs operations on this list.
+
+Only one FLIC instance may be instantiated.
+
+FLIC provides support to
+- add interrupts (KVM_DEV_FLIC_ENQUEUE)
+- inspect currently pending interrupts (KVM_FLIC_GET_ALL_IRQS)
+- purge all pending floating interrupts (KVM_DEV_FLIC_CLEAR_IRQS)
+- enable/disable for the guest transparent async page faults
+- register and modify adapter interrupt sources (KVM_DEV_FLIC_ADAPTER_*)
+
+Groups:
+ KVM_DEV_FLIC_ENQUEUE
+ Passes a buffer and length into the kernel which are then injected into
+ the list of pending interrupts.
+ attr->addr contains the pointer to the buffer and attr->attr contains
+ the length of the buffer.
+ The format of the data structure kvm_s390_irq as it is copied from userspace
+ is defined in usr/include/linux/kvm.h.
+
+ KVM_DEV_FLIC_GET_ALL_IRQS
+ Copies all floating interrupts into a buffer provided by userspace.
+ When the buffer is too small it returns -ENOMEM, which is the indication
+ for userspace to try again with a bigger buffer.
+ All interrupts remain pending, i.e. are not deleted from the list of
+ currently pending interrupts.
+ attr->addr contains the userspace address of the buffer into which all
+ interrupt data will be copied.
+ attr->attr contains the size of the buffer in bytes.
+
+ KVM_DEV_FLIC_CLEAR_IRQS
+ Simply deletes all elements from the list of currently pending floating
+ interrupts. No interrupts are injected into the guest.
+
+ KVM_DEV_FLIC_APF_ENABLE
+ Enables async page faults for the guest. So in case of a major page fault
+ the host is allowed to handle this async and continues the guest.
+
+ KVM_DEV_FLIC_APF_DISABLE_WAIT
+ Disables async page faults for the guest and waits until already pending
+ async page faults are done. This is necessary to trigger a completion interrupt
+ for every init interrupt before migrating the interrupt list.
+
+ KVM_DEV_FLIC_ADAPTER_REGISTER
+ Register an I/O adapter interrupt source. Takes a kvm_s390_io_adapter
+ describing the adapter to register:
+
+struct kvm_s390_io_adapter {
+ __u32 id;
+ __u8 isc;
+ __u8 maskable;
+ __u8 swap;
+ __u8 pad;
+};
+
+ id contains the unique id for the adapter, isc the I/O interruption subclass
+ to use, maskable whether this adapter may be masked (interrupts turned off)
+ and swap whether the indicators need to be byte swapped.
+
+
+ KVM_DEV_FLIC_ADAPTER_MODIFY
+ Modifies attributes of an existing I/O adapter interrupt source. Takes
+ a kvm_s390_io_adapter_req specifiying the adapter and the operation:
+
+struct kvm_s390_io_adapter_req {
+ __u32 id;
+ __u8 type;
+ __u8 mask;
+ __u16 pad0;
+ __u64 addr;
+};
+
+ id specifies the adapter and type the operation. The supported operations
+ are:
+
+ KVM_S390_IO_ADAPTER_MASK
+ mask or unmask the adapter, as specified in mask
+
+ KVM_S390_IO_ADAPTER_MAP
+ perform a gmap translation for the guest address provided in addr,
+ pin a userspace page for the translated address and add it to the
+ list of mappings
+
+ KVM_S390_IO_ADAPTER_UNMAP
+ release a userspace page for the translated address specified in addr
+ from the list of mappings
diff --git a/Documentation/virtual/kvm/devices/vfio.txt b/Documentation/virtual/kvm/devices/vfio.txt
new file mode 100644
index 00000000000..ef51740c67c
--- /dev/null
+++ b/Documentation/virtual/kvm/devices/vfio.txt
@@ -0,0 +1,22 @@
+VFIO virtual device
+===================
+
+Device types supported:
+ KVM_DEV_TYPE_VFIO
+
+Only one VFIO instance may be created per VM. The created device
+tracks VFIO groups in use by the VM and features of those groups
+important to the correctness and acceleration of the VM. As groups
+are enabled and disabled for use by the VM, KVM should be updated
+about their presence. When registered with KVM, a reference to the
+VFIO-group is held by KVM.
+
+Groups:
+ KVM_DEV_VFIO_GROUP
+
+KVM_DEV_VFIO_GROUP attributes:
+ KVM_DEV_VFIO_GROUP_ADD: Add a VFIO group to VFIO-KVM device tracking
+ KVM_DEV_VFIO_GROUP_DEL: Remove a VFIO group from VFIO-KVM device tracking
+
+For each, kvm_device_attr.addr points to an int32_t file descriptor
+for the VFIO group.
diff --git a/Documentation/virtual/kvm/devices/vm.txt b/Documentation/virtual/kvm/devices/vm.txt
new file mode 100644
index 00000000000..0d16f96c0ea
--- /dev/null
+++ b/Documentation/virtual/kvm/devices/vm.txt
@@ -0,0 +1,26 @@
+Generic vm interface
+====================================
+
+The virtual machine "device" also accepts the ioctls KVM_SET_DEVICE_ATTR,
+KVM_GET_DEVICE_ATTR, and KVM_HAS_DEVICE_ATTR. The interface uses the same
+struct kvm_device_attr as other devices, but targets VM-wide settings
+and controls.
+
+The groups and attributes per virtual machine, if any, are architecture
+specific.
+
+1. GROUP: KVM_S390_VM_MEM_CTRL
+Architectures: s390
+
+1.1. ATTRIBUTE: KVM_S390_VM_MEM_CTRL
+Parameters: none
+Returns: -EBUSY if already a vcpus is defined, otherwise 0
+
+Enables CMMA for the virtual machine
+
+1.2. ATTRIBUTE: KVM_S390_VM_CLR_CMMA
+Parameteres: none
+Returns: 0
+
+Clear the CMMA status for all guest pages, so any pages the guest marked
+as unused are again used any may not be reclaimed by the host.
diff --git a/Documentation/virtual/kvm/hypercalls.txt b/Documentation/virtual/kvm/hypercalls.txt
index 022198e389d..c8d040e2704 100644
--- a/Documentation/virtual/kvm/hypercalls.txt
+++ b/Documentation/virtual/kvm/hypercalls.txt
@@ -17,6 +17,9 @@ S390:
S390 uses diagnose instruction as hypercall (0x500) along with hypercall
number in R1.
+ For further information on the S390 diagnose call as supported by KVM,
+ refer to Documentation/virtual/kvm/s390-diag.txt.
+
PowerPC:
It uses R3-R10 and hypercall number in R11. R4-R11 are used as output registers.
Return value is placed in R3.
@@ -74,7 +77,7 @@ Usage example : A vcpu of a paravirtualized guest that is busywaiting in guest
kernel mode for an event to occur (ex: a spinlock to become available) can
execute HLT instruction once it has busy-waited for more than a threshold
time-interval. Execution of HLT instruction would cause the hypervisor to put
-the vcpu to sleep until occurence of an appropriate event. Another vcpu of the
+the vcpu to sleep until occurrence of an appropriate event. Another vcpu of the
same guest can wakeup the sleeping vcpu by issuing KVM_HC_KICK_CPU hypercall,
specifying APIC ID (a1) of the vcpu to be woken up. An additional argument (a0)
is used in the hypercall for future use.
diff --git a/Documentation/virtual/kvm/locking.txt b/Documentation/virtual/kvm/locking.txt
index 41b7ac9884b..d68af4dc300 100644
--- a/Documentation/virtual/kvm/locking.txt
+++ b/Documentation/virtual/kvm/locking.txt
@@ -112,7 +112,7 @@ The Dirty bit is lost in this case.
In order to avoid this kind of issue, we always treat the spte as "volatile"
if it can be updated out of mmu-lock, see spte_has_volatile_bits(), it means,
-the spte is always atomicly updated in this case.
+the spte is always atomically updated in this case.
3): flush tlbs due to spte updated
If the spte is updated from writable to readonly, we should flush all TLBs,
@@ -125,17 +125,21 @@ be flushed caused by this reason in mmu_spte_update() since this is a common
function to update spte (present -> present).
Since the spte is "volatile" if it can be updated out of mmu-lock, we always
-atomicly update the spte, the race caused by fast page fault can be avoided,
+atomically update the spte, the race caused by fast page fault can be avoided,
See the comments in spte_has_volatile_bits() and mmu_spte_update().
3. Reference
------------
Name: kvm_lock
-Type: raw_spinlock
+Type: spinlock_t
Arch: any
Protects: - vm_list
- - hardware virtualization enable/disable
+
+Name: kvm_count_lock
+Type: raw_spinlock_t
+Arch: any
+Protects: - hardware virtualization enable/disable
Comment: 'raw' because hardware enabling/disabling must be atomic /wrt
migration.
@@ -151,3 +155,14 @@ Type: spinlock_t
Arch: any
Protects: -shadow page/shadow tlb entry
Comment: it is a spinlock since it is used in mmu notifier.
+
+Name: kvm->srcu
+Type: srcu lock
+Arch: any
+Protects: - kvm->memslots
+ - kvm->buses
+Comment: The srcu read lock must be held while accessing memslots (e.g.
+ when using gfn_to_* functions) and while accessing in-kernel
+ MMIO/PIO address->device structure mapping (kvm->buses).
+ The srcu index can be stored in kvm_vcpu->srcu_idx per vcpu
+ if it is needed by multiple functions.
diff --git a/Documentation/virtual/kvm/ppc-pv.txt b/Documentation/virtual/kvm/ppc-pv.txt
index 4cd076febb0..319560646f3 100644
--- a/Documentation/virtual/kvm/ppc-pv.txt
+++ b/Documentation/virtual/kvm/ppc-pv.txt
@@ -94,10 +94,24 @@ a bitmap of available features inside the magic page.
The following enhancements to the magic page are currently available:
KVM_MAGIC_FEAT_SR Maps SR registers r/w in the magic page
+ KVM_MAGIC_FEAT_MAS0_TO_SPRG7 Maps MASn, ESR, PIR and high SPRGs
For enhanced features in the magic page, please check for the existence of the
feature before using them!
+Magic page flags
+================
+
+In addition to features that indicate whether a host is capable of a particular
+feature we also have a channel for a guest to tell the guest whether it's capable
+of something. This is what we call "flags".
+
+Flags are passed to the host in the low 12 bits of the Effective Address.
+
+The following flags are currently available for a guest to expose:
+
+ MAGIC_PAGE_FLAG_NOT_MAPPED_NX Guest handles NX bits correclty wrt magic page
+
MSR bits
========
@@ -115,7 +129,7 @@ If any other bit changes in the MSR, please still use mtmsr(d).
Patched instructions
====================
-The "ld" and "std" instructions are transormed to "lwz" and "stw" instructions
+The "ld" and "std" instructions are transformed to "lwz" and "stw" instructions
respectively on 32 bit systems with an added offset of 4 to accommodate for big
endianness.
diff --git a/Documentation/virtual/kvm/s390-diag.txt b/Documentation/virtual/kvm/s390-diag.txt
new file mode 100644
index 00000000000..48c4921794e
--- /dev/null
+++ b/Documentation/virtual/kvm/s390-diag.txt
@@ -0,0 +1,82 @@
+The s390 DIAGNOSE call on KVM
+=============================
+
+KVM on s390 supports the DIAGNOSE call for making hypercalls, both for
+native hypercalls and for selected hypercalls found on other s390
+hypervisors.
+
+Note that bits are numbered as by the usual s390 convention (most significant
+bit on the left).
+
+
+General remarks
+---------------
+
+DIAGNOSE calls by the guest cause a mandatory intercept. This implies
+all supported DIAGNOSE calls need to be handled by either KVM or its
+userspace.
+
+All DIAGNOSE calls supported by KVM use the RS-a format:
+
+--------------------------------------
+| '83' | R1 | R3 | B2 | D2 |
+--------------------------------------
+0 8 12 16 20 31
+
+The second-operand address (obtained by the base/displacement calculation)
+is not used to address data. Instead, bits 48-63 of this address specify
+the function code, and bits 0-47 are ignored.
+
+The supported DIAGNOSE function codes vary by the userspace used. For
+DIAGNOSE function codes not specific to KVM, please refer to the
+documentation for the s390 hypervisors defining them.
+
+
+DIAGNOSE function code 'X'500' - KVM virtio functions
+-----------------------------------------------------
+
+If the function code specifies 0x500, various virtio-related functions
+are performed.
+
+General register 1 contains the virtio subfunction code. Supported
+virtio subfunctions depend on KVM's userspace. Generally, userspace
+provides either s390-virtio (subcodes 0-2) or virtio-ccw (subcode 3).
+
+Upon completion of the DIAGNOSE instruction, general register 2 contains
+the function's return code, which is either a return code or a subcode
+specific value.
+
+Subcode 0 - s390-virtio notification and early console printk
+ Handled by userspace.
+
+Subcode 1 - s390-virtio reset
+ Handled by userspace.
+
+Subcode 2 - s390-virtio set status
+ Handled by userspace.
+
+Subcode 3 - virtio-ccw notification
+ Handled by either userspace or KVM (ioeventfd case).
+
+ General register 2 contains a subchannel-identification word denoting
+ the subchannel of the virtio-ccw proxy device to be notified.
+
+ General register 3 contains the number of the virtqueue to be notified.
+
+ General register 4 contains a 64bit identifier for KVM usage (the
+ kvm_io_bus cookie). If general register 4 does not contain a valid
+ identifier, it is ignored.
+
+ After completion of the DIAGNOSE call, general register 2 may contain
+ a 64bit identifier (in the kvm_io_bus cookie case).
+
+ See also the virtio standard for a discussion of this hypercall.
+
+
+DIAGNOSE function code 'X'501 - KVM breakpoint
+----------------------------------------------
+
+If the function code specifies 0x501, breakpoint functions may be performed.
+This function code is handled by userspace.
+
+This diagnose function code has no subfunctions and uses no parameters.
diff --git a/Documentation/virtual/kvm/timekeeping.txt b/Documentation/virtual/kvm/timekeeping.txt
index df8946377cb..76808a17ad8 100644
--- a/Documentation/virtual/kvm/timekeeping.txt
+++ b/Documentation/virtual/kvm/timekeeping.txt
@@ -467,7 +467,7 @@ at any time. This causes problems as the passage of real time, the injection
of machine interrupts and the associated clock sources are no longer completely
synchronized with real time.
-This same problem can occur on native harware to a degree, as SMM mode may
+This same problem can occur on native hardware to a degree, as SMM mode may
steal cycles from the naturally on X86 systems when SMM mode is used by the
BIOS, but not in such an extreme fashion. However, the fact that SMM mode may
cause similar problems to virtualization makes it a good justification for
diff --git a/Documentation/vm/00-INDEX b/Documentation/vm/00-INDEX
index 5481c8ba341..081c49777ab 100644
--- a/Documentation/vm/00-INDEX
+++ b/Documentation/vm/00-INDEX
@@ -4,33 +4,37 @@ active_mm.txt
- An explanation from Linus about tsk->active_mm vs tsk->mm.
balance
- various information on memory balancing.
-hugepage-mmap.c
- - Example app using huge page memory with the mmap system call.
-hugepage-shm.c
- - Example app using huge page memory with Sys V shared memory system calls.
+cleancache.txt
+ - Intro to cleancache and page-granularity victim cache.
+frontswap.txt
+ - Outline frontswap, part of the transcendent memory frontend.
+highmem.txt
+ - Outline of highmem and common issues.
hugetlbpage.txt
- a brief summary of hugetlbpage support in the Linux kernel.
hwpoison.txt
- explains what hwpoison is
ksm.txt
- how to use the Kernel Samepage Merging feature.
-locking
- - info on how locking and synchronization is done in the Linux vm code.
-map_hugetlb.c
- - an example program that uses the MAP_HUGETLB mmap flag.
numa
- information about NUMA specific code in the Linux vm.
numa_memory_policy.txt
- documentation of concepts and APIs of the 2.6 memory policy support.
overcommit-accounting
- description of the Linux kernels overcommit handling modes.
-page-types.c
- - Tool for querying page flags
page_migration
- description of page migration in NUMA systems.
pagemap.txt
- pagemap, from the userspace perspective
slub.txt
- a short users guide for SLUB.
+soft-dirty.txt
+ - short explanation for soft-dirty PTEs
+split_page_table_lock
+ - Separate per-table lock to improve scalability of the old page_table_lock.
+transhuge.txt
+ - Transparent Hugepage Support, alternative way of using hugepages.
unevictable-lru.txt
- Unevictable LRU infrastructure
+zswap.txt
+ - Intro to compressed cache for swap pages
diff --git a/Documentation/vm/hwpoison.txt b/Documentation/vm/hwpoison.txt
index 55006846660..6ae89a9edf2 100644
--- a/Documentation/vm/hwpoison.txt
+++ b/Documentation/vm/hwpoison.txt
@@ -84,6 +84,11 @@ PR_MCE_KILL
PR_MCE_KILL_EARLY: Early kill
PR_MCE_KILL_LATE: Late kill
PR_MCE_KILL_DEFAULT: Use system global default
+ Note that if you want to have a dedicated thread which handles
+ the SIGBUS(BUS_MCEERR_AO) on behalf of the process, you should
+ call prctl(PR_MCE_KILL_EARLY) on the designated thread. Otherwise,
+ the SIGBUS is sent to the main thread.
+
PR_MCE_KILL_GET
return current mode
diff --git a/Documentation/vm/locking b/Documentation/vm/locking
deleted file mode 100644
index f61228bd639..00000000000
--- a/Documentation/vm/locking
+++ /dev/null
@@ -1,130 +0,0 @@
-Started Oct 1999 by Kanoj Sarcar <kanojsarcar@yahoo.com>
-
-The intent of this file is to have an uptodate, running commentary
-from different people about how locking and synchronization is done
-in the Linux vm code.
-
-page_table_lock & mmap_sem
---------------------------------------
-
-Page stealers pick processes out of the process pool and scan for
-the best process to steal pages from. To guarantee the existence
-of the victim mm, a mm_count inc and a mmdrop are done in swap_out().
-Page stealers hold kernel_lock to protect against a bunch of races.
-The vma list of the victim mm is also scanned by the stealer,
-and the page_table_lock is used to preserve list sanity against the
-process adding/deleting to the list. This also guarantees existence
-of the vma. Vma existence is not guaranteed once try_to_swap_out()
-drops the page_table_lock. To guarantee the existence of the underlying
-file structure, a get_file is done before the swapout() method is
-invoked. The page passed into swapout() is guaranteed not to be reused
-for a different purpose because the page reference count due to being
-present in the user's pte is not released till after swapout() returns.
-
-Any code that modifies the vmlist, or the vm_start/vm_end/
-vm_flags:VM_LOCKED/vm_next of any vma *in the list* must prevent
-kswapd from looking at the chain.
-
-The rules are:
-1. To scan the vmlist (look but don't touch) you must hold the
- mmap_sem with read bias, i.e. down_read(&mm->mmap_sem)
-2. To modify the vmlist you need to hold the mmap_sem with
- read&write bias, i.e. down_write(&mm->mmap_sem) *AND*
- you need to take the page_table_lock.
-3. The swapper takes _just_ the page_table_lock, this is done
- because the mmap_sem can be an extremely long lived lock
- and the swapper just cannot sleep on that.
-4. The exception to this rule is expand_stack, which just
- takes the read lock and the page_table_lock, this is ok
- because it doesn't really modify fields anybody relies on.
-5. You must be able to guarantee that while holding page_table_lock
- or page_table_lock of mm A, you will not try to get either lock
- for mm B.
-
-The caveats are:
-1. find_vma() makes use of, and updates, the mmap_cache pointer hint.
-The update of mmap_cache is racy (page stealer can race with other code
-that invokes find_vma with mmap_sem held), but that is okay, since it
-is a hint. This can be fixed, if desired, by having find_vma grab the
-page_table_lock.
-
-
-Code that add/delete elements from the vmlist chain are
-1. callers of insert_vm_struct
-2. callers of merge_segments
-3. callers of avl_remove
-
-Code that changes vm_start/vm_end/vm_flags:VM_LOCKED of vma's on
-the list:
-1. expand_stack
-2. mprotect
-3. mlock
-4. mremap
-
-It is advisable that changes to vm_start/vm_end be protected, although
-in some cases it is not really needed. Eg, vm_start is modified by
-expand_stack(), it is hard to come up with a destructive scenario without
-having the vmlist protection in this case.
-
-The page_table_lock nests with the inode i_mmap_mutex and the kmem cache
-c_spinlock spinlocks. This is okay, since the kmem code asks for pages after
-dropping c_spinlock. The page_table_lock also nests with pagecache_lock and
-pagemap_lru_lock spinlocks, and no code asks for memory with these locks
-held.
-
-The page_table_lock is grabbed while holding the kernel_lock spinning monitor.
-
-The page_table_lock is a spin lock.
-
-Note: PTL can also be used to guarantee that no new clones using the
-mm start up ... this is a loose form of stability on mm_users. For
-example, it is used in copy_mm to protect against a racing tlb_gather_mmu
-single address space optimization, so that the zap_page_range (from
-truncate) does not lose sending ipi's to cloned threads that might
-be spawned underneath it and go to user mode to drag in pte's into tlbs.
-
-swap_lock
---------------
-The swap devices are chained in priority order from the "swap_list" header.
-The "swap_list" is used for the round-robin swaphandle allocation strategy.
-The #free swaphandles is maintained in "nr_swap_pages". These two together
-are protected by the swap_lock.
-
-The swap_lock also protects all the device reference counts on the
-corresponding swaphandles, maintained in the "swap_map" array, and the
-"highest_bit" and "lowest_bit" fields.
-
-The swap_lock is a spinlock, and is never acquired from intr level.
-
-To prevent races between swap space deletion or async readahead swapins
-deciding whether a swap handle is being used, ie worthy of being read in
-from disk, and an unmap -> swap_free making the handle unused, the swap
-delete and readahead code grabs a temp reference on the swaphandle to
-prevent warning messages from swap_duplicate <- read_swap_cache_async.
-
-Swap cache locking
-------------------
-Pages are added into the swap cache with kernel_lock held, to make sure
-that multiple pages are not being added (and hence lost) by associating
-all of them with the same swaphandle.
-
-Pages are guaranteed not to be removed from the scache if the page is
-"shared": ie, other processes hold reference on the page or the associated
-swap handle. The only code that does not follow this rule is shrink_mmap,
-which deletes pages from the swap cache if no process has a reference on
-the page (multiple processes might have references on the corresponding
-swap handle though). lookup_swap_cache() races with shrink_mmap, when
-establishing a reference on a scache page, so, it must check whether the
-page it located is still in the swapcache, or shrink_mmap deleted it.
-(This race is due to the fact that shrink_mmap looks at the page ref
-count with pagecache_lock, but then drops pagecache_lock before deleting
-the page from the scache).
-
-do_wp_page and do_swap_page have MP races in them while trying to figure
-out whether a page is "shared", by looking at the page_count + swap_count.
-To preserve the sum of the counts, the page lock _must_ be acquired before
-calling is_page_shared (else processes might switch their swap_count refs
-to the page count refs, after the page count ref has been snapshotted).
-
-Swap device deletion code currently breaks all the scache assumptions,
-since it grabs neither mmap_sem nor page_table_lock.
diff --git a/Documentation/vm/numa_memory_policy.txt b/Documentation/vm/numa_memory_policy.txt
index 4e7da654342..badb0507608 100644
--- a/Documentation/vm/numa_memory_policy.txt
+++ b/Documentation/vm/numa_memory_policy.txt
@@ -174,7 +174,6 @@ Components of Memory Policies
allocation fails, the kernel will search other nodes, in order of
increasing distance from the preferred node based on information
provided by the platform firmware.
- containing the cpu where the allocation takes place.
Internally, the Preferred policy uses a single node--the
preferred_node member of struct mempolicy. When the internal
@@ -275,9 +274,9 @@ Components of Memory Policies
For example, consider a task that is attached to a cpuset with
mems 2-5 that sets an Interleave policy over the same set with
MPOL_F_RELATIVE_NODES. If the cpuset's mems change to 3-7, the
- interleave now occurs over nodes 3,5-6. If the cpuset's mems
+ interleave now occurs over nodes 3,5-7. If the cpuset's mems
then change to 0,2-3,5, then the interleave occurs over nodes
- 0,3,5.
+ 0,2-3,5.
Thanks to the consistent remapping, applications preparing
nodemasks to specify memory policies using this flag should
diff --git a/Documentation/vm/overcommit-accounting b/Documentation/vm/overcommit-accounting
index 8eaa2fc4b8f..cbfaaa67411 100644
--- a/Documentation/vm/overcommit-accounting
+++ b/Documentation/vm/overcommit-accounting
@@ -14,8 +14,8 @@ The Linux kernel supports the following overcommit handling modes
2 - Don't overcommit. The total address space commit
for the system is not permitted to exceed swap + a
- configurable percentage (default is 50) of physical RAM.
- Depending on the percentage you use, in most situations
+ configurable amount (default is 50%) of physical RAM.
+ Depending on the amount you use, in most situations
this means a process will not be killed while accessing
pages but will receive errors on memory allocation as
appropriate.
@@ -26,7 +26,8 @@ The Linux kernel supports the following overcommit handling modes
The overcommit policy is set via the sysctl `vm.overcommit_memory'.
-The overcommit percentage is set via `vm.overcommit_ratio'.
+The overcommit amount can be set via `vm.overcommit_ratio' (percentage)
+or `vm.overcommit_kbytes' (absolute value).
The current overcommit limit and amount committed are viewable in
/proc/meminfo as CommitLimit and Committed_AS respectively.
diff --git a/Documentation/vm/remap_file_pages.txt b/Documentation/vm/remap_file_pages.txt
new file mode 100644
index 00000000000..560e4363a55
--- /dev/null
+++ b/Documentation/vm/remap_file_pages.txt
@@ -0,0 +1,28 @@
+The remap_file_pages() system call is used to create a nonlinear mapping,
+that is, a mapping in which the pages of the file are mapped into a
+nonsequential order in memory. The advantage of using remap_file_pages()
+over using repeated calls to mmap(2) is that the former approach does not
+require the kernel to create additional VMA (Virtual Memory Area) data
+structures.
+
+Supporting of nonlinear mapping requires significant amount of non-trivial
+code in kernel virtual memory subsystem including hot paths. Also to get
+nonlinear mapping work kernel need a way to distinguish normal page table
+entries from entries with file offset (pte_file). Kernel reserves flag in
+PTE for this purpose. PTE flags are scarce resource especially on some CPU
+architectures. It would be nice to free up the flag for other usage.
+
+Fortunately, there are not many users of remap_file_pages() in the wild.
+It's only known that one enterprise RDBMS implementation uses the syscall
+on 32-bit systems to map files bigger than can linearly fit into 32-bit
+virtual address space. This use-case is not critical anymore since 64-bit
+systems are widely available.
+
+The plan is to deprecate the syscall and replace it with an emulation.
+The emulation will create new VMAs instead of nonlinear mappings. It's
+going to work slower for rare users of remap_file_pages() but ABI is
+preserved.
+
+One side effect of emulation (apart from performance) is that user can hit
+vm.max_map_count limit more easily due to additional VMAs. See comment for
+DEFAULT_MAX_MAP_COUNT for more details on the limit.
diff --git a/Documentation/vm/split_page_table_lock b/Documentation/vm/split_page_table_lock
new file mode 100644
index 00000000000..6dea4fd5c96
--- /dev/null
+++ b/Documentation/vm/split_page_table_lock
@@ -0,0 +1,94 @@
+Split page table lock
+=====================
+
+Originally, mm->page_table_lock spinlock protected all page tables of the
+mm_struct. But this approach leads to poor page fault scalability of
+multi-threaded applications due high contention on the lock. To improve
+scalability, split page table lock was introduced.
+
+With split page table lock we have separate per-table lock to serialize
+access to the table. At the moment we use split lock for PTE and PMD
+tables. Access to higher level tables protected by mm->page_table_lock.
+
+There are helpers to lock/unlock a table and other accessor functions:
+ - pte_offset_map_lock()
+ maps pte and takes PTE table lock, returns pointer to the taken
+ lock;
+ - pte_unmap_unlock()
+ unlocks and unmaps PTE table;
+ - pte_alloc_map_lock()
+ allocates PTE table if needed and take the lock, returns pointer
+ to taken lock or NULL if allocation failed;
+ - pte_lockptr()
+ returns pointer to PTE table lock;
+ - pmd_lock()
+ takes PMD table lock, returns pointer to taken lock;
+ - pmd_lockptr()
+ returns pointer to PMD table lock;
+
+Split page table lock for PTE tables is enabled compile-time if
+CONFIG_SPLIT_PTLOCK_CPUS (usually 4) is less or equal to NR_CPUS.
+If split lock is disabled, all tables guaded by mm->page_table_lock.
+
+Split page table lock for PMD tables is enabled, if it's enabled for PTE
+tables and the architecture supports it (see below).
+
+Hugetlb and split page table lock
+---------------------------------
+
+Hugetlb can support several page sizes. We use split lock only for PMD
+level, but not for PUD.
+
+Hugetlb-specific helpers:
+ - huge_pte_lock()
+ takes pmd split lock for PMD_SIZE page, mm->page_table_lock
+ otherwise;
+ - huge_pte_lockptr()
+ returns pointer to table lock;
+
+Support of split page table lock by an architecture
+---------------------------------------------------
+
+There's no need in special enabling of PTE split page table lock:
+everything required is done by pgtable_page_ctor() and pgtable_page_dtor(),
+which must be called on PTE table allocation / freeing.
+
+Make sure the architecture doesn't use slab allocator for page table
+allocation: slab uses page->slab_cache and page->first_page for its pages.
+These fields share storage with page->ptl.
+
+PMD split lock only makes sense if you have more than two page table
+levels.
+
+PMD split lock enabling requires pgtable_pmd_page_ctor() call on PMD table
+allocation and pgtable_pmd_page_dtor() on freeing.
+
+Allocation usually happens in pmd_alloc_one(), freeing in pmd_free() and
+pmd_free_tlb(), but make sure you cover all PMD table allocation / freeing
+paths: i.e X86_PAE preallocate few PMDs on pgd_alloc().
+
+With everything in place you can set CONFIG_ARCH_ENABLE_SPLIT_PMD_PTLOCK.
+
+NOTE: pgtable_page_ctor() and pgtable_pmd_page_ctor() can fail -- it must
+be handled properly.
+
+page->ptl
+---------
+
+page->ptl is used to access split page table lock, where 'page' is struct
+page of page containing the table. It shares storage with page->private
+(and few other fields in union).
+
+To avoid increasing size of struct page and have best performance, we use a
+trick:
+ - if spinlock_t fits into long, we use page->ptr as spinlock, so we
+ can avoid indirect access and save a cache line.
+ - if size of spinlock_t is bigger then size of long, we use page->ptl as
+ pointer to spinlock_t and allocate it dynamically. This allows to use
+ split lock with enabled DEBUG_SPINLOCK or DEBUG_LOCK_ALLOC, but costs
+ one more cache line for indirect access;
+
+The spinlock_t allocated in pgtable_page_ctor() for PTE table and in
+pgtable_pmd_page_ctor() for PMD table.
+
+Please, never access page->ptl directly -- use appropriate helper.
diff --git a/Documentation/vm/transhuge.txt b/Documentation/vm/transhuge.txt
index 4a63953a41f..6b31cfbe2a9 100644
--- a/Documentation/vm/transhuge.txt
+++ b/Documentation/vm/transhuge.txt
@@ -360,13 +360,13 @@ on any tail page, would mean having to split all hugepages upfront in
get_user_pages which is unacceptable as too many gup users are
performance critical and they must work natively on hugepages like
they work natively on hugetlbfs already (hugetlbfs is simpler because
-hugetlbfs pages cannot be splitted so there wouldn't be requirement of
+hugetlbfs pages cannot be split so there wouldn't be requirement of
accounting the pins on the tail pages for hugetlbfs). If we wouldn't
account the gup refcounts on the tail pages during gup, we won't know
anymore which tail page is pinned by gup and which is not while we run
split_huge_page. But we still have to add the gup pin to the head page
too, to know when we can free the compound page in case it's never
-splitted during its lifetime. That requires changing not just
+split during its lifetime. That requires changing not just
get_page, but put_page as well so that when put_page runs on a tail
page (and only on a tail page) it will find its respective head page,
and then it will decrease the head page refcount in addition to the
diff --git a/Documentation/vm/unevictable-lru.txt b/Documentation/vm/unevictable-lru.txt
index a68db7692ee..744f82f86c5 100644
--- a/Documentation/vm/unevictable-lru.txt
+++ b/Documentation/vm/unevictable-lru.txt
@@ -453,7 +453,7 @@ putback_lru_page() function to add migrated pages back to the LRU.
mmap(MAP_LOCKED) SYSTEM CALL HANDLING
-------------------------------------
-In addition the the mlock()/mlockall() system calls, an application can request
+In addition the mlock()/mlockall() system calls, an application can request
that a region of memory be mlocked supplying the MAP_LOCKED flag to the mmap()
call. Furthermore, any mmap() call or brk() call that expands the heap by a
task that has previously called mlockall() with the MCL_FUTURE flag will result
diff --git a/Documentation/vm/zswap.txt b/Documentation/vm/zswap.txt
index 7e492d8aaea..00c3d31e797 100644
--- a/Documentation/vm/zswap.txt
+++ b/Documentation/vm/zswap.txt
@@ -8,7 +8,7 @@ significant performance improvement if reads from the compressed cache are
faster than reads from a swap device.
NOTE: Zswap is a new feature as of v3.11 and interacts heavily with memory
-reclaim. This interaction has not be fully explored on the large set of
+reclaim. This interaction has not been fully explored on the large set of
potential configurations and workloads that exist. For this reason, zswap
is a work in progress and should be considered experimental.
@@ -23,7 +23,7 @@ Some potential benefits:
    drastically reducing life-shortening writes.
Zswap evicts pages from compressed cache on an LRU basis to the backing swap
-device when the compressed pool reaches it size limit. This requirement had
+device when the compressed pool reaches its size limit. This requirement had
been identified in prior community discussions.
To enabled zswap, the "enabled" attribute must be set to 1 at boot time. e.g.
@@ -37,7 +37,7 @@ the backing swap device in the case that the compressed pool is full.
Zswap makes use of zbud for the managing the compressed memory pool. Each
allocation in zbud is not directly accessible by address. Rather, a handle is
-return by the allocation routine and that handle must be mapped before being
+returned by the allocation routine and that handle must be mapped before being
accessed. The compressed memory pool grows on demand and shrinks as compressed
pages are freed. The pool is not preallocated.
@@ -56,7 +56,7 @@ in the swap_map goes to 0) the swap code calls the zswap invalidate function,
via frontswap, to free the compressed entry.
Zswap seeks to be simple in its policies. Sysfs attributes allow for one user
-controlled policies:
+controlled policy:
* max_pool_percent - The maximum percentage of memory that the compressed
pool can occupy.
diff --git a/Documentation/vme_api.txt b/Documentation/vme_api.txt
index 856efa35f6e..ffe6e22a2cc 100644
--- a/Documentation/vme_api.txt
+++ b/Documentation/vme_api.txt
@@ -393,4 +393,14 @@ Slot Detection
This function returns the slot ID of the provided bridge.
- int vme_slot_get(struct vme_dev *dev);
+ int vme_slot_num(struct vme_dev *dev);
+
+
+Bus Detection
+=============
+
+This function returns the bus ID of the provided bridge.
+
+ int vme_bus_num(struct vme_dev *dev);
+
+
diff --git a/Documentation/w1/masters/00-INDEX b/Documentation/w1/masters/00-INDEX
index d63fa024ac0..8330cf9325f 100644
--- a/Documentation/w1/masters/00-INDEX
+++ b/Documentation/w1/masters/00-INDEX
@@ -4,7 +4,9 @@ ds2482
- The Maxim/Dallas Semiconductor DS2482 provides 1-wire busses.
ds2490
- The Maxim/Dallas Semiconductor DS2490 builds USB <-> W1 bridges.
-mxc_w1
+mxc-w1
- W1 master controller driver found on Freescale MX2/MX3 SoCs
+omap-hdq
+ - HDQ/1-wire module of TI OMAP 2430/3430.
w1-gpio
- GPIO 1-wire bus master driver.
diff --git a/Documentation/w1/masters/ds2490 b/Documentation/w1/masters/ds2490
index 28176def3d6..3e091151dd8 100644
--- a/Documentation/w1/masters/ds2490
+++ b/Documentation/w1/masters/ds2490
@@ -21,8 +21,6 @@ Notes and limitations.
- The weak pullup current is a minimum of 0.9mA and maximum of 6.0mA.
- The 5V strong pullup is supported with a minimum of 5.9mA and a
maximum of 30.4 mA. (From DS2490.pdf)
-- While the ds2490 supports a hardware search the code doesn't take
- advantage of it (in tested case it only returned first device).
- The hardware will detect when devices are attached to the bus on the
next bus (reset?) operation, however only a message is printed as
the core w1 code doesn't make use of the information. Connecting
diff --git a/Documentation/w1/slaves/00-INDEX b/Documentation/w1/slaves/00-INDEX
index 75613c9ac4d..6e18c70c347 100644
--- a/Documentation/w1/slaves/00-INDEX
+++ b/Documentation/w1/slaves/00-INDEX
@@ -4,3 +4,5 @@ w1_therm
- The Maxim/Dallas Semiconductor ds18*20 temperature sensor.
w1_ds2423
- The Maxim/Dallas Semiconductor ds2423 counter device.
+w1_ds28e04
+ - The Maxim/Dallas Semiconductor ds28e04 eeprom.
diff --git a/Documentation/w1/w1.generic b/Documentation/w1/w1.generic
index a31c5a24297..b2033c64c7d 100644
--- a/Documentation/w1/w1.generic
+++ b/Documentation/w1/w1.generic
@@ -82,7 +82,7 @@ driver - (standard) symlink to the w1 driver
w1_master_add - Manually register a slave device
w1_master_attempts - the number of times a search was attempted
w1_master_max_slave_count
- - the maximum slaves that may be attached to a master
+ - maximum number of slaves to search for at a time
w1_master_name - the name of the device (w1_bus_masterX)
w1_master_pullup - 5V strong pullup 0 enabled, 1 disabled
w1_master_remove - Manually remove a slave device
diff --git a/Documentation/w1/w1.netlink b/Documentation/w1/w1.netlink
index f59a31965d5..ef2727192d6 100644
--- a/Documentation/w1/w1.netlink
+++ b/Documentation/w1/w1.netlink
@@ -5,8 +5,8 @@ Message types.
=============
There are three types of messages between w1 core and userspace:
-1. Events. They are generated each time new master or slave device
- found either due to automatic or requested search.
+1. Events. They are generated each time a new master or slave device
+ is found either due to automatic or requested search.
2. Userspace commands.
3. Replies to userspace commands.
@@ -30,7 +30,7 @@ Protocol.
W1_SLAVE_CMD
userspace command for slave device
(read/write/touch)
- __u8 res - reserved
+ __u8 status - error indication from kernel
__u16 len - size of data attached to this header data
union {
__u8 id[8]; - slave unique device id
@@ -44,10 +44,14 @@ Protocol.
__u8 cmd - command opcode.
W1_CMD_READ - read command
W1_CMD_WRITE - write command
- W1_CMD_TOUCH - touch command
- (write and sample data back to userspace)
W1_CMD_SEARCH - search command
W1_CMD_ALARM_SEARCH - alarm search command
+ W1_CMD_TOUCH - touch command
+ (write and sample data back to userspace)
+ W1_CMD_RESET - send bus reset
+ W1_CMD_SLAVE_ADD - add slave to kernel list
+ W1_CMD_SLAVE_REMOVE - remove slave from kernel list
+ W1_CMD_LIST_SLAVES - get slaves list from kernel
__u8 res - reserved
__u16 len - length of data for this command
For read command data must be allocated like for write command
@@ -87,8 +91,7 @@ format:
id0 ... idN
Each message is at most 4k in size, so if number of master devices
- exceeds this, it will be split into several messages,
- cn.seq will be increased for each one.
+ exceeds this, it will be split into several messages.
W1 search and alarm search commands.
request:
@@ -131,7 +134,7 @@ of the w1_netlink_cmd structure and cn_msg.len will be equal to the sum
of the sizeof(struct w1_netlink_msg) and sizeof(struct w1_netlink_cmd).
If reply is generated for master or root command (which do not have
w1_netlink_cmd attached), reply will contain only cn_msg and w1_netlink_msg
-structires.
+structures.
w1_netlink_msg.status field will carry positive error value
(EINVAL for example) or zero in case of success.
@@ -160,7 +163,7 @@ procedure is started to select given device.
Then all requested in w1_netlink_msg operations are performed one by one.
If command requires reply (like read command) it is sent on command completion.
-When all commands (w1_netlink_cmd) are processed muster device is unlocked
+When all commands (w1_netlink_cmd) are processed master device is unlocked
and next w1_netlink_msg header processing started.
diff --git a/Documentation/watchdog/watchdog-parameters.txt b/Documentation/watchdog/watchdog-parameters.txt
index f9492fed410..692791cc674 100644
--- a/Documentation/watchdog/watchdog-parameters.txt
+++ b/Documentation/watchdog/watchdog-parameters.txt
@@ -150,6 +150,8 @@ nowayout: Disable watchdog shutdown on close
-------------------------------------------------
it87_wdt:
nogameport: Forbid the activation of game port, default=0
+nocir: Forbid the use of CIR (workaround for some buggy setups); set to 1 if
+system resets despite watchdog daemon running, default=0
exclusive: Watchdog exclusive device open, default=1
timeout: Watchdog timeout in seconds, default=60
testmode: Watchdog test mode (1 = no reboot), default=0
@@ -325,6 +327,11 @@ soft_noboot: Softdog action, set to 1 to ignore reboots, 0 to reboot
stmp3xxx_wdt:
heartbeat: Watchdog heartbeat period in seconds from 1 to 4194304, default 19
-------------------------------------------------
+tegra_wdt:
+heartbeat: Watchdog heartbeats in seconds. (default = 120)
+nowayout: Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+-------------------------------------------------
ts72xx_wdt:
timeout: Watchdog timeout in seconds. (1 <= timeout <= 8, default=8)
nowayout: Disable watchdog shutdown on close
diff --git a/Documentation/x86/00-INDEX b/Documentation/x86/00-INDEX
index f37b46d3486..692264456f0 100644
--- a/Documentation/x86/00-INDEX
+++ b/Documentation/x86/00-INDEX
@@ -1,6 +1,20 @@
00-INDEX
- this file
-mtrr.txt
- - how to use x86 Memory Type Range Registers to increase performance
+boot.txt
+ - List of boot protocol versions
+early-microcode.txt
+ - How to load microcode from an initrd-CPIO archive early to fix CPU issues.
+earlyprintk.txt
+ - Using earlyprintk with a USB2 debug port key.
+entry_64.txt
+ - Describe (some of the) kernel entry points for x86.
exception-tables.txt
- why and how Linux kernel uses exception tables on x86
+mtrr.txt
+ - how to use x86 Memory Type Range Registers to increase performance
+pat.txt
+ - Page Attribute Table intro and API
+usb-legacy-support.txt
+ - how to fix/avoid quirks when using emulated PS/2 mouse/keyboard.
+zero-page.txt
+ - layout of the first page of memory.
diff --git a/Documentation/x86/boot.txt b/Documentation/x86/boot.txt
index f4f268c2b82..a75e3adaa39 100644
--- a/Documentation/x86/boot.txt
+++ b/Documentation/x86/boot.txt
@@ -182,7 +182,7 @@ Offset Proto Name Meaning
0226/1 2.02+(3 ext_loader_ver Extended boot loader version
0227/1 2.02+(3 ext_loader_type Extended boot loader ID
0228/4 2.02+ cmd_line_ptr 32-bit pointer to the kernel command line
-022C/4 2.03+ ramdisk_max Highest legal initrd address
+022C/4 2.03+ initrd_addr_max Highest legal initrd address
0230/4 2.05+ kernel_alignment Physical addr alignment required for kernel
0234/1 2.05+ relocatable_kernel Whether kernel is relocatable or not
0235/1 2.10+ min_alignment Minimum alignment, as a power of two
@@ -534,7 +534,7 @@ Protocol: 2.02+
zero, the kernel will assume that your boot loader does not support
the 2.02+ protocol.
-Field name: ramdisk_max
+Field name: initrd_addr_max
Type: read
Offset/size: 0x22c/4
Protocol: 2.03+
@@ -608,6 +608,9 @@ Protocol: 2.12+
- If 1, the kernel supports the 64-bit EFI handoff entry point
given at handover_offset + 0x200.
+ Bit 4 (read): XLF_EFI_KEXEC
+ - If 1, the kernel supports kexec EFI boot with EFI runtime support.
+
Field name: cmdline_size
Type: read
Offset/size: 0x238/4
diff --git a/Documentation/x86/earlyprintk.txt b/Documentation/x86/earlyprintk.txt
index f19802c0f48..688e3eeed21 100644
--- a/Documentation/x86/earlyprintk.txt
+++ b/Documentation/x86/earlyprintk.txt
@@ -33,7 +33,7 @@ and two USB cables, connected like this:
...
( If your system does not list a debug port capability then you probably
- wont be able to use the USB debug key. )
+ won't be able to use the USB debug key. )
b.) You also need a Netchip USB debug cable/key:
diff --git a/Documentation/x86/i386/IO-APIC.txt b/Documentation/x86/i386/IO-APIC.txt
index 30b4c714fbe..15f5baf7e1b 100644
--- a/Documentation/x86/i386/IO-APIC.txt
+++ b/Documentation/x86/i386/IO-APIC.txt
@@ -87,7 +87,7 @@ your PCI configuration:
echo -n pirq=; echo `scanpci | grep T_L | cut -c56-` | sed 's/ /,/g'
-note that this script wont work if you have skipped a few slots or if your
+note that this script won't work if you have skipped a few slots or if your
board does not do default daisy-chaining. (or the IO-APIC has the PIRQ pins
connected in some strange way). E.g. if in the above case you have your SCSI
card (IRQ11) in Slot3, and have Slot1 empty:
diff --git a/Documentation/x86/x86_64/boot-options.txt b/Documentation/x86/x86_64/boot-options.txt
index 1228b22e142..5223479291a 100644
--- a/Documentation/x86/x86_64/boot-options.txt
+++ b/Documentation/x86/x86_64/boot-options.txt
@@ -78,14 +78,6 @@ APICs
no_timer_check Don't check the IO-APIC timer. This can work around
problems with incorrect timer initialization on some boards.
-
- apicmaintimer Run time keeping from the local APIC timer instead
- of using the PIT/HPET interrupt for this. This is useful
- when the PIT/HPET interrupts are unreliable.
-
- noapicmaintimer Don't do time keeping using the APIC timer.
- Useful when this option was auto selected, but doesn't work.
-
apicpmtimer
Do APIC timer calibration using the pmtimer. Implies
apicmaintimer. Useful when your PIT timer is totally
@@ -144,11 +136,6 @@ Non Executable Mappings
on Enable(default)
off Disable
-SMP
-
- additional_cpus=NUM Allow NUM more CPUs for hotplug
- (defaults are specified by the BIOS, see Documentation/x86/x86_64/cpu-hotplug-spec)
-
NUMA
numa=off Only set up a single NUMA node spanning all memory.
@@ -289,16 +276,6 @@ Debugging
kstack=N Print N words from the kernel stack in oops dumps.
- pagefaulttrace Dump all page faults. Only useful for extreme debugging
- and will create a lot of output.
-
- call_trace=[old|both|newfallback|new]
- old: use old inexact backtracer
- new: use new exact dwarf2 unwinder
- both: print entries from both
- newfallback: use new unwinder but fall back to old if it gets
- stuck (default)
-
Miscellaneous
nogbpages
diff --git a/Documentation/x86/x86_64/mm.txt b/Documentation/x86/x86_64/mm.txt
index 881582f75c9..afe68ddbe6a 100644
--- a/Documentation/x86/x86_64/mm.txt
+++ b/Documentation/x86/x86_64/mm.txt
@@ -12,6 +12,8 @@ ffffc90000000000 - ffffe8ffffffffff (=45 bits) vmalloc/ioremap space
ffffe90000000000 - ffffe9ffffffffff (=40 bits) hole
ffffea0000000000 - ffffeaffffffffff (=40 bits) virtual memory map (1TB)
... unused hole ...
+ffffff0000000000 - ffffff7fffffffff (=39 bits) %esp fixup stacks
+... unused hole ...
ffffffff80000000 - ffffffffa0000000 (=512 MB) kernel text mapping, from phys 0
ffffffffa0000000 - ffffffffff5fffff (=1525 MB) module mapping space
ffffffffff600000 - ffffffffffdfffff (=8 MB) vsyscalls
@@ -28,4 +30,11 @@ reference.
Current X86-64 implementations only support 40 bits of address space,
but we support up to 46 bits. This expands into MBZ space in the page tables.
+->trampoline_pgd:
+
+We map EFI runtime services in the aforementioned PGD in the virtual
+range of 64Gb (arbitrarily set, can be raised if needed)
+
+0xffffffef00000000 - 0xffffffff00000000
+
-Andi Kleen, Jul 2004
diff --git a/Documentation/xtensa/atomctl.txt b/Documentation/xtensa/atomctl.txt
index 10a8d1ff35e..1da783ac200 100644
--- a/Documentation/xtensa/atomctl.txt
+++ b/Documentation/xtensa/atomctl.txt
@@ -40,5 +40,5 @@ See Section 4.3.12.4 of ISA; Bits:
--------- --------------- ----------------- ----------------
0 Exception Exception Exception
1 RCW Transaction RCW Transaction RCW Transaction
- 2 Internal Operation Exception Reserved
+ 2 Internal Operation Internal Operation Reserved
3 Reserved Reserved Reserved
diff --git a/Documentation/xtensa/mmu.txt b/Documentation/xtensa/mmu.txt
index 2b1af7606d5..0312fe66475 100644
--- a/Documentation/xtensa/mmu.txt
+++ b/Documentation/xtensa/mmu.txt
@@ -44,3 +44,21 @@ After step 4, we jump to intended (linked) address of this code.
40..5F -> 40 40..5F -> pc -> pc 40..5F -> pc
20..3F -> 20 -> 20 20..3F -> 20
00..1F -> 00 -> 00 00..1F -> 00
+
+The default location of IO peripherals is above 0xf0000000. This may change
+using a "ranges" property in a device tree simple-bus node. See ePAPR 1.1, §6.5
+for details on the syntax and semantic of simple-bus nodes. The following
+limitations apply:
+
+1. Only top level simple-bus nodes are considered
+
+2. Only one (first) simple-bus node is considered
+
+3. Empty "ranges" properties are not supported
+
+4. Only the first triplet in the "ranges" property is considered
+
+5. The parent-bus-address value is rounded down to the nearest 256MB boundary
+
+6. The IO area covers the entire 256MB segment of parent-bus-address; the
+ "ranges" triplet length field is ignored
diff --git a/Documentation/zh_CN/HOWTO b/Documentation/zh_CN/HOWTO
index 7fba5aab9ef..54ea24ff63c 100644
--- a/Documentation/zh_CN/HOWTO
+++ b/Documentation/zh_CN/HOWTO
@@ -112,7 +112,7 @@ Linux内核代码中包含有大量的文档。这些文档对于学习如何与
其他关于如何正确地生成补丁的优秀文档包括:
"The Perfect Patch"
- http://userweb.kernel.org/~akpm/stuff/tpp.txt
+ http://www.ozlabs.org/~akpm/stuff/tpp.txt
"Linux kernel patch submission format"
http://linux.yyz.us/patch-format.html
@@ -237,7 +237,7 @@ kernel.org网站的pub/linux/kernel/v2.6/目录下找到它。它的开发遵循
如果没有2.6.x.y版本内核存在,那么最新的2.6.x版本内核就相当于是当前的稳定
版内核。
-2.6.x.y版本由“稳定版”小组(邮件地址<stable@kernel.org>)维护,一般隔周发
+2.6.x.y版本由“稳定版”小组(邮件地址<stable@vger.kernel.org>)维护,一般隔周发
布新版本。
内核源码中的Documentation/stable_kernel_rules.txt文件具体描述了可被稳定
@@ -515,7 +515,7 @@ Linux内核社区并不喜欢一下接收大段的代码。修改需要被恰当
想了解它具体应该看起来像什么,请查阅以下文档中的“ChangeLog”章节:
“The Perfect Patch”
- http://userweb.kernel.org/~akpm/stuff/tpp.txt
+ http://www.ozlabs.org/~akpm/stuff/tpp.txt
这些事情有时候做起来很难。要在任何方面都做到完美可能需要好几年时间。这是
diff --git a/Documentation/zh_CN/SubmittingPatches b/Documentation/zh_CN/SubmittingPatches
index be0bd472506..1d3a10f8746 100644
--- a/Documentation/zh_CN/SubmittingPatches
+++ b/Documentation/zh_CN/SubmittingPatches
@@ -82,10 +82,6 @@ Documentation/SubmittingDrivers 。
Quilt:
http://savannah.nongnu.org/projects/quilt
-Andrew Morton 的补丁脚本:
-http://userweb.kernel.org/~akpm/stuff/patch-scripts.tar.gz
-作为这些脚本的替代,quilt 是值得推荐的补丁管理工具(看上面的链接)。
-
2)描述你的改动。
描述你的改动包含的技术细节。
@@ -394,7 +390,7 @@ Static inline 函数相比宏来说,是好得多的选择。Static inline 函
----------------
Andrew Morton, "The perfect patch" (tpp).
- <http://userweb.kernel.org/~akpm/stuff/tpp.txt>
+ <http://www.ozlabs.org/~akpm/stuff/tpp.txt>
Jeff Garzik, "Linux kernel patch submission format".
<http://linux.yyz.us/patch-format.html>
@@ -406,7 +402,7 @@ Greg Kroah-Hartman, "How to piss off a kernel subsystem maintainer".
<http://www.kroah.com/log/2006/01/11/>
NO!!!! No more huge patch bombs to linux-kernel@vger.kernel.org people!
- <http://marc.theaimsgroup.com/?l=linux-kernel&m=112112749912944&w=2>
+ <https://lkml.org/lkml/2005/7/11/336>
Kernel Documentation/CodingStyle:
<http://sosdg.org/~coywolf/lxr/source/Documentation/CodingStyle>
diff --git a/Documentation/zh_CN/arm64/booting.txt b/Documentation/zh_CN/arm64/booting.txt
index 28fa325b746..6f6d956ac1c 100644
--- a/Documentation/zh_CN/arm64/booting.txt
+++ b/Documentation/zh_CN/arm64/booting.txt
@@ -7,7 +7,7 @@ help. Contact the Chinese maintainer if this translation is outdated
or if there is a problem with the translation.
Maintainer: Will Deacon <will.deacon@arm.com>
-Chinese maintainer: Fu Wei <tekkamanninja@gmail.com>
+Chinese maintainer: Fu Wei <wefu@redhat.com>
---------------------------------------------------------------------
Documentation/arm64/booting.txt 的中文翻译
@@ -16,9 +16,9 @@ Documentation/arm64/booting.txt 的中文翻译
译存在问题,请联系中文版维护者。
英文版维护者: Will Deacon <will.deacon@arm.com>
-中文版维护者: 傅炜 Fu Wei <tekkamanninja@gmail.com>
-中文版翻译者: 傅炜 Fu Wei <tekkamanninja@gmail.com>
-中文版校译者: 傅炜 Fu Wei <tekkamanninja@gmail.com>
+中文版维护者: 傅炜 Fu Wei <wefu@redhat.com>
+中文版翻译者: 傅炜 Fu Wei <wefu@redhat.com>
+中文版校译者: 傅炜 Fu Wei <wefu@redhat.com>
以下为正文
---------------------------------------------------------------------
@@ -64,8 +64,8 @@ RAM,或可能使用对这个设备已知的 RAM 信息,还可能使用任何
必要性: 强制
-设备树数据块(dtb)大小必须不大于 2 MB,且位于从内核映像起始算起第一个
-512MB 内的 2MB 边界上。这使得内核可以通过初始页表中的单个节描述符来
+设备树数据块(dtb)必须 8 字节对齐,并位于从内核映像起始算起第一个 512MB
+内,且不得跨越 2MB 对齐边界。这使得内核可以通过初始页表中的单个节描述符来
映射此数据块。
@@ -84,13 +84,23 @@ AArch64 内核当前没有提供自解压代码,因此如果使用了压缩内
必要性: 强制
-已解压的内核映像包含一个 32 字节的头,内容如下:
+已解压的内核映像包含一个 64 字节的头,内容如下:
- u32 magic = 0x14000008; /* 跳转到 stext, 小端 */
- u32 res0 = 0; /* 保留 */
+ u32 code0; /* 可执行代码 */
+ u32 code1; /* 可执行代码 */
u64 text_offset; /* 映像装载偏移 */
+ u64 res0 = 0; /* 保留 */
u64 res1 = 0; /* 保留 */
u64 res2 = 0; /* 保留 */
+ u64 res3 = 0; /* 保留 */
+ u64 res4 = 0; /* 保留 */
+ u32 magic = 0x644d5241; /* 魔数, 小端, "ARM\x64" */
+ u32 res5 = 0; /* 保留 */
+
+
+映像头注释:
+
+- code0/code1 负责跳转到 stext.
映像必须位于系统 RAM 起始处的特定偏移(当前是 0x80000)。系统 RAM
的起始地址必须是以 2MB 对齐的。
@@ -118,9 +128,9 @@ AArch64 内核当前没有提供自解压代码,因此如果使用了压缩内
外部高速缓存(如果存在)必须配置并禁用。
- 架构计时器
- CNTFRQ 必须设定为计时器的频率。
- 如果在 EL1 模式下进入内核,则 CNTHCTL_EL2 中的 EL1PCTEN (bit 0)
- 必须置位。
+ CNTFRQ 必须设定为计时器的频率,且 CNTVOFF 必须设定为对所有 CPU
+ 都一致的值。如果在 EL1 模式下进入内核,则 CNTHCTL_EL2 中的
+ EL1PCTEN (bit 0) 必须置位。
- 一致性
通过内核启动的所有 CPU 在内核入口地址上必须处于相同的一致性域中。
@@ -131,23 +141,40 @@ AArch64 内核当前没有提供自解压代码,因此如果使用了压缩内
在进入内核映像的异常级中,所有构架中可写的系统寄存器必须通过软件
在一个更高的异常级别下初始化,以防止在 未知 状态下运行。
+以上对于 CPU 模式、高速缓存、MMU、架构计时器、一致性、系统寄存器的
+必要条件描述适用于所有 CPU。所有 CPU 必须在同一异常级别跳入内核。
+
引导装载程序必须在每个 CPU 处于以下状态时跳入内核入口:
- 主 CPU 必须直接跳入内核映像的第一条指令。通过此 CPU 传递的设备树
- 数据块必须在每个 CPU 节点中包含以下内容:
-
- 1、‘enable-method’属性。目前,此字段支持的值仅为字符串“spin-table”。
-
- 2、‘cpu-release-addr’标识一个 64-bit、初始化为零的内存位置。
+ 数据块必须在每个 CPU 节点中包含一个 ‘enable-method’ 属性,所
+ 支持的 enable-method 请见下文。
引导装载程序必须生成这些设备树属性,并在跳入内核入口之前将其插入
数据块。
-- 任何辅助 CPU 必须在内存保留区(通过设备树中的 /memreserve/ 域传递
+- enable-method 为 “spin-table” 的 CPU 必须在它们的 CPU
+ 节点中包含一个 ‘cpu-release-addr’ 属性。这个属性标识了一个
+ 64 位自然对齐且初始化为零的内存位置。
+
+ 这些 CPU 必须在内存保留区(通过设备树中的 /memreserve/ 域传递
给内核)中自旋于内核之外,轮询它们的 cpu-release-addr 位置(必须
包含在保留区中)。可通过插入 wfe 指令来降低忙循环开销,而主 CPU 将
发出 sev 指令。当对 cpu-release-addr 所指位置的读取操作返回非零值
- 时,CPU 必须直接跳入此值所指向的地址。
+ 时,CPU 必须跳入此值所指向的地址。此值为一个单独的 64 位小端值,
+ 因此 CPU 须在跳转前将所读取的值转换为其本身的端模式。
+
+- enable-method 为 “psci” 的 CPU 保持在内核外(比如,在
+ memory 节点中描述为内核空间的内存区外,或在通过设备树 /memreserve/
+ 域中描述为内核保留区的空间中)。内核将会发起在 ARM 文档(编号
+ ARM DEN 0022A:用于 ARM 上的电源状态协调接口系统软件)中描述的
+ CPU_ON 调用来将 CPU 带入内核。
+
+ *译者注:到文档翻译时,此文档已更新为 ARM DEN 0022B。
+
+ 设备树必须包含一个 ‘psci’ 节点,请参考以下文档:
+ Documentation/devicetree/bindings/arm/psci.txt
+
- 辅助 CPU 通用寄存器设置
x0 = 0 (保留,将来可能使用)
diff --git a/Documentation/zh_CN/arm64/memory.txt b/Documentation/zh_CN/arm64/memory.txt
index a5f6283829f..a782704c1cb 100644
--- a/Documentation/zh_CN/arm64/memory.txt
+++ b/Documentation/zh_CN/arm64/memory.txt
@@ -7,7 +7,7 @@ help. Contact the Chinese maintainer if this translation is outdated
or if there is a problem with the translation.
Maintainer: Catalin Marinas <catalin.marinas@arm.com>
-Chinese maintainer: Fu Wei <tekkamanninja@gmail.com>
+Chinese maintainer: Fu Wei <wefu@redhat.com>
---------------------------------------------------------------------
Documentation/arm64/memory.txt 的中文翻译
@@ -16,9 +16,9 @@ Documentation/arm64/memory.txt 的中文翻译
译存在问题,请联系中文版维护者。
英文版维护者: Catalin Marinas <catalin.marinas@arm.com>
-中文版维护者: 傅炜 Fu Wei <tekkamanninja@gmail.com>
-中文版翻译者: 傅炜 Fu Wei <tekkamanninja@gmail.com>
-中文版校译者: 傅炜 Fu Wei <tekkamanninja@gmail.com>
+中文版维护者: 傅炜 Fu Wei <wefu@redhat.com>
+中文版翻译者: 傅炜 Fu Wei <wefu@redhat.com>
+中文版校译者: 傅炜 Fu Wei <wefu@redhat.com>
以下为正文
---------------------------------------------------------------------
@@ -41,7 +41,7 @@ AArch64 Linux 使用页大小为 4KB 的 3 级转换表配置,对于用户和
TTBR1 中,且从不写入 TTBR0。
-AArch64 Linux 内存布局:
+AArch64 Linux 在页大小为 4KB 时的内存布局:
起始地址 结束地址 大小 用途
-----------------------------------------------------------------------
@@ -55,15 +55,42 @@ ffffffbc00000000 ffffffbdffffffff 8GB vmemmap
ffffffbe00000000 ffffffbffbbfffff ~8GB [防护页,未来用于 vmmemap]
+ffffffbffbc00000 ffffffbffbdfffff 2MB earlyprintk 设备
+
ffffffbffbe00000 ffffffbffbe0ffff 64KB PCI I/O 空间
-ffffffbbffff0000 ffffffbcffffffff ~2MB [防护页]
+ffffffbffbe10000 ffffffbcffffffff ~2MB [防护页]
ffffffbffc000000 ffffffbfffffffff 64MB 模块
ffffffc000000000 ffffffffffffffff 256GB 内核逻辑内存映射
+AArch64 Linux 在页大小为 64KB 时的内存布局:
+
+起始地址 结束地址 大小 用途
+-----------------------------------------------------------------------
+0000000000000000 000003ffffffffff 4TB 用户空间
+
+fffffc0000000000 fffffdfbfffeffff ~2TB vmalloc
+
+fffffdfbffff0000 fffffdfbffffffff 64KB [防护页]
+
+fffffdfc00000000 fffffdfdffffffff 8GB vmemmap
+
+fffffdfe00000000 fffffdfffbbfffff ~8GB [防护页,未来用于 vmmemap]
+
+fffffdfffbc00000 fffffdfffbdfffff 2MB earlyprintk 设备
+
+fffffdfffbe00000 fffffdfffbe0ffff 64KB PCI I/O 空间
+
+fffffdfffbe10000 fffffdfffbffffff ~2MB [防护页]
+
+fffffdfffc000000 fffffdffffffffff 64MB 模块
+
+fffffe0000000000 ffffffffffffffff 2TB 内核逻辑内存映射
+
+
4KB 页大小的转换表查找:
+--------+--------+--------+--------+--------+--------+--------+--------+
@@ -91,3 +118,10 @@ ffffffc000000000 ffffffffffffffff 256GB 内核逻辑内存映射
| | +--------------------------> [41:29] L2 索引 (仅使用 38:29 )
| +-------------------------------> [47:42] L1 索引 (未使用)
+-------------------------------------------------> [63] TTBR0/1
+
+当使用 KVM 时, 管理程序(hypervisor)在 EL2 中通过相对内核虚拟地址的
+一个固定偏移来映射内核页(内核虚拟地址的高 24 位设为零):
+
+起始地址 结束地址 大小 用途
+-----------------------------------------------------------------------
+0000004000000000 0000007fffffffff 256GB 在 HYP 中映射的内核对象
diff --git a/Documentation/zh_CN/arm64/tagged-pointers.txt b/Documentation/zh_CN/arm64/tagged-pointers.txt
new file mode 100644
index 00000000000..2664d1bd5a1
--- /dev/null
+++ b/Documentation/zh_CN/arm64/tagged-pointers.txt
@@ -0,0 +1,52 @@
+Chinese translated version of Documentation/arm64/tagged-pointers.txt
+
+If you have any comment or update to the content, please contact the
+original document maintainer directly. However, if you have a problem
+communicating in English you can also ask the Chinese maintainer for
+help. Contact the Chinese maintainer if this translation is outdated
+or if there is a problem with the translation.
+
+Maintainer: Will Deacon <will.deacon@arm.com>
+Chinese maintainer: Fu Wei <wefu@redhat.com>
+---------------------------------------------------------------------
+Documentation/arm64/tagged-pointers.txt 的中文翻译
+
+如果想评论或更新本文的内容,请直接联系原文档的维护者。如果你使用英文
+交流有困难的话,也可以向中文版维护者求助。如果本翻译更新不及时或者翻
+译存在问题,请联系中文版维护者。
+
+英文版维护者: Will Deacon <will.deacon@arm.com>
+中文版维护者: 傅炜 Fu Wei <wefu@redhat.com>
+中文版翻译者: 傅炜 Fu Wei <wefu@redhat.com>
+中文版校译者: 傅炜 Fu Wei <wefu@redhat.com>
+
+以下为正文
+---------------------------------------------------------------------
+ Linux 在 AArch64 中带标记的虚拟地址
+ =================================
+
+作者: Will Deacon <will.deacon@arm.com>
+日期: 2013 年 06 月 12 日
+
+本文档简述了在 AArch64 地址转换系统中提供的带标记的虚拟地址及其在
+AArch64 Linux 中的潜在用途。
+
+内核提供的地址转换表配置使通过 TTBR0 完成的虚拟地址转换(即用户空间
+映射),其虚拟地址的最高 8 位(63:56)会被转换硬件所忽略。这种机制
+让这些位可供应用程序自由使用,其注意事项如下:
+
+ (1) 内核要求所有传递到 EL1 的用户空间地址带有 0x00 标记。
+ 这意味着任何携带用户空间虚拟地址的系统调用(syscall)
+ 参数 *必须* 在陷入内核前使它们的最高字节被清零。
+
+ (2) 非零标记在传递信号时不被保存。这意味着在应用程序中利用了
+ 标记的信号处理函数无法依赖 siginfo_t 的用户空间虚拟
+ 地址所携带的包含其内部域信息的标记。此规则的一个例外是
+ 当信号是在调试观察点的异常处理程序中产生的,此时标记的
+ 信息将被保存。
+
+ (3) 当使用带标记的指针时需特别留心,因为仅对两个虚拟地址
+ 的高字节,C 编译器很可能无法判断它们是不同的。
+
+此构架会阻止对带标记的 PC 指针的利用,因此在异常返回时,其高字节
+将被设置成一个为 “55” 的扩展符。
diff --git a/Documentation/zh_CN/io_ordering.txt b/Documentation/zh_CN/io_ordering.txt
new file mode 100644
index 00000000000..e592daf4e01
--- /dev/null
+++ b/Documentation/zh_CN/io_ordering.txt
@@ -0,0 +1,67 @@
+Chinese translated version of Documentation/io_orderings.txt
+
+If you have any comment or update to the content, please contact the
+original document maintainer directly. However, if you have a problem
+communicating in English you can also ask the Chinese maintainer for
+help. Contact the Chinese maintainer if this translation is outdated
+or if there is a problem with the translation.
+
+Chinese maintainer: Lin Yongting <linyongting@gmail.com>
+---------------------------------------------------------------------
+Documentation/io_ordering.txt 的中文翻译
+
+如果想评论或更新本文的内容,请直接联系原文档的维护者。如果你使用英文
+交流有困难的话,也可以向中文版维护者求助。如果本翻译更新不及时或者翻
+译存在问题,请联系中文版维护者。
+
+中文版维护者: 林永听 Lin Yongting <linyongting@gmail.com>
+中文版翻译者: 林永听 Lin Yongting <linyongting@gmail.com>
+中文版校译者: 林永听 Lin Yongting <linyongting@gmail.com>
+
+
+以下为正文
+---------------------------------------------------------------------
+
+在某些平台上,所谓的内存映射I/O是弱顺序。在这些平台上,驱动开发者有责任
+保证I/O内存映射地址的写操作按程序图意的顺序达到设备。通常读取一个“安全”
+设备寄存器或桥寄存器,触发IO芯片清刷未处理的写操作到达设备后才处理读操作,
+而达到保证目的。驱动程序通常在spinlock保护的临界区退出之前使用这种技术。
+这也可以保证后面的写操作只在前面的写操作之后到达设备(这非常类似于内存
+屏障操作,mb(),不过仅适用于I/O)。
+
+假设一个设备驱动程的具体例子:
+
+ ...
+CPU A: spin_lock_irqsave(&dev_lock, flags)
+CPU A: val = readl(my_status);
+CPU A: ...
+CPU A: writel(newval, ring_ptr);
+CPU A: spin_unlock_irqrestore(&dev_lock, flags)
+ ...
+CPU B: spin_lock_irqsave(&dev_lock, flags)
+CPU B: val = readl(my_status);
+CPU B: ...
+CPU B: writel(newval2, ring_ptr);
+CPU B: spin_unlock_irqrestore(&dev_lock, flags)
+ ...
+
+上述例子中,设备可能会先接收到newval2的值,然后接收到newval的值,问题就
+发生了。不过很容易通过下面方法来修复:
+
+ ...
+CPU A: spin_lock_irqsave(&dev_lock, flags)
+CPU A: val = readl(my_status);
+CPU A: ...
+CPU A: writel(newval, ring_ptr);
+CPU A: (void)readl(safe_register); /* 配置寄存器?*/
+CPU A: spin_unlock_irqrestore(&dev_lock, flags)
+ ...
+CPU B: spin_lock_irqsave(&dev_lock, flags)
+CPU B: val = readl(my_status);
+CPU B: ...
+CPU B: writel(newval2, ring_ptr);
+CPU B: (void)readl(safe_register); /* 配置寄存器?*/
+CPU B: spin_unlock_irqrestore(&dev_lock, flags)
+
+在解决方案中,读取safe_register寄存器,触发IO芯片清刷未处理的写操作,
+再处理后面的读操作,防止引发数据不一致问题。
diff --git a/Documentation/zh_CN/magic-number.txt b/Documentation/zh_CN/magic-number.txt
index 2ebe539f545..dfb72a5c63e 100644
--- a/Documentation/zh_CN/magic-number.txt
+++ b/Documentation/zh_CN/magic-number.txt
@@ -63,8 +63,6 @@ struct tty_ldisc {
PG_MAGIC 'P' pg_{read,write}_hdr include/linux/pg.h
CMAGIC 0x0111 user include/linux/a.out.h
MKISS_DRIVER_MAGIC 0x04bf mkiss_channel drivers/net/mkiss.h
-RISCOM8_MAGIC 0x0907 riscom_port drivers/char/riscom8.h
-SPECIALIX_MAGIC 0x0907 specialix_port drivers/char/specialix_io8.h
HDLC_MAGIC 0x239e n_hdlc drivers/char/n_hdlc.c
APM_BIOS_MAGIC 0x4101 apm_user arch/x86/kernel/apm_32.c
CYCLADES_MAGIC 0x4359 cyclades_port include/linux/cyclades.h
@@ -82,7 +80,6 @@ STRIP_MAGIC 0x5303 strip drivers/net/strip.c
X25_ASY_MAGIC 0x5303 x25_asy drivers/net/x25_asy.h
SIXPACK_MAGIC 0x5304 sixpack drivers/net/hamradio/6pack.h
AX25_MAGIC 0x5316 ax_disp drivers/net/mkiss.h
-ESP_MAGIC 0x53ee esp_struct drivers/char/esp.h
TTY_MAGIC 0x5401 tty_struct include/linux/tty.h
MGSL_MAGIC 0x5401 mgsl_info drivers/char/synclink.c
TTY_DRIVER_MAGIC 0x5402 tty_driver include/linux/tty_driver.h
@@ -94,13 +91,10 @@ USB_BLUETOOTH_MAGIC 0x6d02 usb_bluetooth drivers/usb/class/bluetty.c
RFCOMM_TTY_MAGIC 0x6d02 net/bluetooth/rfcomm/tty.c
USB_SERIAL_PORT_MAGIC 0x7301 usb_serial_port drivers/usb/serial/usb-serial.h
CG_MAGIC 0x00090255 ufs_cylinder_group include/linux/ufs_fs.h
-A2232_MAGIC 0x000a2232 gs_port drivers/char/ser_a2232.h
RPORT_MAGIC 0x00525001 r_port drivers/char/rocket_int.h
LSEMAGIC 0x05091998 lse drivers/fc4/fc.c
GDTIOCTL_MAGIC 0x06030f07 gdth_iowr_str drivers/scsi/gdth_ioctl.h
RIEBL_MAGIC 0x09051990 drivers/net/atarilance.c
-RIO_MAGIC 0x12345678 gs_port drivers/char/rio/rio_linux.c
-SX_MAGIC 0x12345678 gs_port drivers/char/sx.h
NBD_REQUEST_MAGIC 0x12560953 nbd_request include/linux/nbd.h
RED_MAGIC2 0x170fc2a5 (any) mm/slab.c
BAYCOM_MAGIC 0x19730510 baycom_state drivers/net/baycom_epp.c
@@ -116,7 +110,6 @@ ISDN_ASYNC_MAGIC 0x49344C01 modem_info include/linux/isdn.h
CTC_ASYNC_MAGIC 0x49344C01 ctc_tty_info drivers/s390/net/ctctty.c
ISDN_NET_MAGIC 0x49344C02 isdn_net_local_s drivers/isdn/i4l/isdn_net_lib.h
SAVEKMSG_MAGIC2 0x4B4D5347 savekmsg arch/*/amiga/config.c
-STLI_BOARDMAGIC 0x4bc6c825 stlibrd include/linux/istallion.h
CS_STATE_MAGIC 0x4c4f4749 cs_state sound/oss/cs46xx.c
SLAB_C_MAGIC 0x4f17a36d kmem_cache mm/slab.c
COW_MAGIC 0x4f4f4f4d cow_header_v1 arch/um/drivers/ubd_user.c
@@ -127,10 +120,8 @@ SCC_MAGIC 0x52696368 gs_port drivers/char/scc.h
SAVEKMSG_MAGIC1 0x53415645 savekmsg arch/*/amiga/config.c
GDA_MAGIC 0x58464552 gda arch/mips/include/asm/sn/gda.h
RED_MAGIC1 0x5a2cf071 (any) mm/slab.c
-STL_PORTMAGIC 0x5a7182c9 stlport include/linux/stallion.h
EEPROM_MAGIC_VALUE 0x5ab478d2 lanai_dev drivers/atm/lanai.c
HDLCDRV_MAGIC 0x5ac6e778 hdlcdrv_state include/linux/hdlcdrv.h
-EPCA_MAGIC 0x5c6df104 channel include/linux/epca.h
PCXX_MAGIC 0x5c6df104 channel drivers/char/pcxx.h
KV_MAGIC 0x5f4b565f kernel_vars_s arch/mips/include/asm/sn/klkernvars.h
I810_STATE_MAGIC 0x63657373 i810_state sound/oss/i810_audio.c
@@ -142,17 +133,14 @@ SLOT_MAGIC 0x67267322 slot drivers/hotplug/acpiphp.h
LO_MAGIC 0x68797548 nbd_device include/linux/nbd.h
OPROFILE_MAGIC 0x6f70726f super_block drivers/oprofile/oprofilefs.h
M3_STATE_MAGIC 0x734d724d m3_state sound/oss/maestro3.c
-STL_PANELMAGIC 0x7ef621a1 stlpanel include/linux/stallion.h
VMALLOC_MAGIC 0x87654320 snd_alloc_track sound/core/memory.c
KMALLOC_MAGIC 0x87654321 snd_alloc_track sound/core/memory.c
PWC_MAGIC 0x89DC10AB pwc_device drivers/usb/media/pwc.h
NBD_REPLY_MAGIC 0x96744668 nbd_reply include/linux/nbd.h
-STL_BOARDMAGIC 0xa2267f52 stlbrd include/linux/stallion.h
ENI155_MAGIC 0xa54b872d midway_eprom drivers/atm/eni.h
SCI_MAGIC 0xbabeface gs_port drivers/char/sh-sci.h
CODA_MAGIC 0xC0DAC0DA coda_file_info include/linux/coda_fs_i.h
DPMEM_MAGIC 0xc0ffee11 gdt_pci_sram drivers/scsi/gdth.h
-STLI_PORTMAGIC 0xe671c7a1 stliport include/linux/istallion.h
YAM_MAGIC 0xF10A7654 yam_port drivers/net/hamradio/yam.c
CCB_MAGIC 0xf2691ad2 ccb drivers/scsi/ncr53c8xx.c
QUEUE_MAGIC_FREE 0xf7e1c9a3 queue_entry drivers/scsi/arm/queue.c
diff --git a/Documentation/zh_CN/stable_kernel_rules.txt b/Documentation/zh_CN/stable_kernel_rules.txt
index b5b9b0ab02f..26ea5ed7cd9 100644
--- a/Documentation/zh_CN/stable_kernel_rules.txt
+++ b/Documentation/zh_CN/stable_kernel_rules.txt
@@ -42,7 +42,7 @@ Documentation/stable_kernel_rules.txt 的中文翻译
向稳定版代码树提交补丁的过程:
- - 在确认了补丁符合以上的规则后,将补丁发送到stable@kernel.org。
+ - 在确认了补丁符合以上的规则后,将补丁发送到stable@vger.kernel.org。
- 如果补丁被接受到队列里,发送者会收到一个ACK回复,如果没有被接受,收
到的是NAK回复。回复需要几天的时间,这取决于开发者的时间安排。
- 被接受的补丁会被加到稳定版本队列里,等待其他开发者的审查。
diff --git a/Documentation/zorro.txt b/Documentation/zorro.txt
index d5829d14774..90a64d52bea 100644
--- a/Documentation/zorro.txt
+++ b/Documentation/zorro.txt
@@ -95,8 +95,9 @@ The treatment of these regions depends on the type of Zorro space:
-------------
linux/include/linux/zorro.h
-linux/include/asm-{m68k,ppc}/zorro.h
-linux/include/linux/zorro_ids.h
+linux/include/uapi/linux/zorro.h
+linux/include/uapi/linux/zorro_ids.h
+linux/arch/m68k/include/asm/zorro.h
linux/drivers/zorro
/proc/bus/zorro