aboutsummaryrefslogtreecommitdiff
path: root/Documentation/x86
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/x86')
-rw-r--r--Documentation/x86/00-INDEX18
-rw-r--r--Documentation/x86/boot.txt7
-rw-r--r--Documentation/x86/earlyprintk.txt2
-rw-r--r--Documentation/x86/efi-stub.txt65
-rw-r--r--Documentation/x86/i386/IO-APIC.txt2
-rw-r--r--Documentation/x86/x86_64/boot-options.txt23
-rw-r--r--Documentation/x86/x86_64/mm.txt9
7 files changed, 32 insertions, 94 deletions
diff --git a/Documentation/x86/00-INDEX b/Documentation/x86/00-INDEX
index f37b46d3486..692264456f0 100644
--- a/Documentation/x86/00-INDEX
+++ b/Documentation/x86/00-INDEX
@@ -1,6 +1,20 @@
00-INDEX
- this file
-mtrr.txt
- - how to use x86 Memory Type Range Registers to increase performance
+boot.txt
+ - List of boot protocol versions
+early-microcode.txt
+ - How to load microcode from an initrd-CPIO archive early to fix CPU issues.
+earlyprintk.txt
+ - Using earlyprintk with a USB2 debug port key.
+entry_64.txt
+ - Describe (some of the) kernel entry points for x86.
exception-tables.txt
- why and how Linux kernel uses exception tables on x86
+mtrr.txt
+ - how to use x86 Memory Type Range Registers to increase performance
+pat.txt
+ - Page Attribute Table intro and API
+usb-legacy-support.txt
+ - how to fix/avoid quirks when using emulated PS/2 mouse/keyboard.
+zero-page.txt
+ - layout of the first page of memory.
diff --git a/Documentation/x86/boot.txt b/Documentation/x86/boot.txt
index f4f268c2b82..a75e3adaa39 100644
--- a/Documentation/x86/boot.txt
+++ b/Documentation/x86/boot.txt
@@ -182,7 +182,7 @@ Offset Proto Name Meaning
0226/1 2.02+(3 ext_loader_ver Extended boot loader version
0227/1 2.02+(3 ext_loader_type Extended boot loader ID
0228/4 2.02+ cmd_line_ptr 32-bit pointer to the kernel command line
-022C/4 2.03+ ramdisk_max Highest legal initrd address
+022C/4 2.03+ initrd_addr_max Highest legal initrd address
0230/4 2.05+ kernel_alignment Physical addr alignment required for kernel
0234/1 2.05+ relocatable_kernel Whether kernel is relocatable or not
0235/1 2.10+ min_alignment Minimum alignment, as a power of two
@@ -534,7 +534,7 @@ Protocol: 2.02+
zero, the kernel will assume that your boot loader does not support
the 2.02+ protocol.
-Field name: ramdisk_max
+Field name: initrd_addr_max
Type: read
Offset/size: 0x22c/4
Protocol: 2.03+
@@ -608,6 +608,9 @@ Protocol: 2.12+
- If 1, the kernel supports the 64-bit EFI handoff entry point
given at handover_offset + 0x200.
+ Bit 4 (read): XLF_EFI_KEXEC
+ - If 1, the kernel supports kexec EFI boot with EFI runtime support.
+
Field name: cmdline_size
Type: read
Offset/size: 0x238/4
diff --git a/Documentation/x86/earlyprintk.txt b/Documentation/x86/earlyprintk.txt
index f19802c0f48..688e3eeed21 100644
--- a/Documentation/x86/earlyprintk.txt
+++ b/Documentation/x86/earlyprintk.txt
@@ -33,7 +33,7 @@ and two USB cables, connected like this:
...
( If your system does not list a debug port capability then you probably
- wont be able to use the USB debug key. )
+ won't be able to use the USB debug key. )
b.) You also need a Netchip USB debug cable/key:
diff --git a/Documentation/x86/efi-stub.txt b/Documentation/x86/efi-stub.txt
deleted file mode 100644
index 44e6bb6ead1..00000000000
--- a/Documentation/x86/efi-stub.txt
+++ /dev/null
@@ -1,65 +0,0 @@
- The EFI Boot Stub
- ---------------------------
-
-On the x86 platform, a bzImage can masquerade as a PE/COFF image,
-thereby convincing EFI firmware loaders to load it as an EFI
-executable. The code that modifies the bzImage header, along with the
-EFI-specific entry point that the firmware loader jumps to are
-collectively known as the "EFI boot stub", and live in
-arch/x86/boot/header.S and arch/x86/boot/compressed/eboot.c,
-respectively.
-
-By using the EFI boot stub it's possible to boot a Linux kernel
-without the use of a conventional EFI boot loader, such as grub or
-elilo. Since the EFI boot stub performs the jobs of a boot loader, in
-a certain sense it *IS* the boot loader.
-
-The EFI boot stub is enabled with the CONFIG_EFI_STUB kernel option.
-
-
-**** How to install bzImage.efi
-
-The bzImage located in arch/x86/boot/bzImage must be copied to the EFI
-System Partiion (ESP) and renamed with the extension ".efi". Without
-the extension the EFI firmware loader will refuse to execute it. It's
-not possible to execute bzImage.efi from the usual Linux file systems
-because EFI firmware doesn't have support for them.
-
-
-**** Passing kernel parameters from the EFI shell
-
-Arguments to the kernel can be passed after bzImage.efi, e.g.
-
- fs0:> bzImage.efi console=ttyS0 root=/dev/sda4
-
-
-**** The "initrd=" option
-
-Like most boot loaders, the EFI stub allows the user to specify
-multiple initrd files using the "initrd=" option. This is the only EFI
-stub-specific command line parameter, everything else is passed to the
-kernel when it boots.
-
-The path to the initrd file must be an absolute path from the
-beginning of the ESP, relative path names do not work. Also, the path
-is an EFI-style path and directory elements must be separated with
-backslashes (\). For example, given the following directory layout,
-
-fs0:>
- Kernels\
- bzImage.efi
- initrd-large.img
-
- Ramdisks\
- initrd-small.img
- initrd-medium.img
-
-to boot with the initrd-large.img file if the current working
-directory is fs0:\Kernels, the following command must be used,
-
- fs0:\Kernels> bzImage.efi initrd=\Kernels\initrd-large.img
-
-Notice how bzImage.efi can be specified with a relative path. That's
-because the image we're executing is interpreted by the EFI shell,
-which understands relative paths, whereas the rest of the command line
-is passed to bzImage.efi.
diff --git a/Documentation/x86/i386/IO-APIC.txt b/Documentation/x86/i386/IO-APIC.txt
index 30b4c714fbe..15f5baf7e1b 100644
--- a/Documentation/x86/i386/IO-APIC.txt
+++ b/Documentation/x86/i386/IO-APIC.txt
@@ -87,7 +87,7 @@ your PCI configuration:
echo -n pirq=; echo `scanpci | grep T_L | cut -c56-` | sed 's/ /,/g'
-note that this script wont work if you have skipped a few slots or if your
+note that this script won't work if you have skipped a few slots or if your
board does not do default daisy-chaining. (or the IO-APIC has the PIRQ pins
connected in some strange way). E.g. if in the above case you have your SCSI
card (IRQ11) in Slot3, and have Slot1 empty:
diff --git a/Documentation/x86/x86_64/boot-options.txt b/Documentation/x86/x86_64/boot-options.txt
index 1228b22e142..5223479291a 100644
--- a/Documentation/x86/x86_64/boot-options.txt
+++ b/Documentation/x86/x86_64/boot-options.txt
@@ -78,14 +78,6 @@ APICs
no_timer_check Don't check the IO-APIC timer. This can work around
problems with incorrect timer initialization on some boards.
-
- apicmaintimer Run time keeping from the local APIC timer instead
- of using the PIT/HPET interrupt for this. This is useful
- when the PIT/HPET interrupts are unreliable.
-
- noapicmaintimer Don't do time keeping using the APIC timer.
- Useful when this option was auto selected, but doesn't work.
-
apicpmtimer
Do APIC timer calibration using the pmtimer. Implies
apicmaintimer. Useful when your PIT timer is totally
@@ -144,11 +136,6 @@ Non Executable Mappings
on Enable(default)
off Disable
-SMP
-
- additional_cpus=NUM Allow NUM more CPUs for hotplug
- (defaults are specified by the BIOS, see Documentation/x86/x86_64/cpu-hotplug-spec)
-
NUMA
numa=off Only set up a single NUMA node spanning all memory.
@@ -289,16 +276,6 @@ Debugging
kstack=N Print N words from the kernel stack in oops dumps.
- pagefaulttrace Dump all page faults. Only useful for extreme debugging
- and will create a lot of output.
-
- call_trace=[old|both|newfallback|new]
- old: use old inexact backtracer
- new: use new exact dwarf2 unwinder
- both: print entries from both
- newfallback: use new unwinder but fall back to old if it gets
- stuck (default)
-
Miscellaneous
nogbpages
diff --git a/Documentation/x86/x86_64/mm.txt b/Documentation/x86/x86_64/mm.txt
index 881582f75c9..afe68ddbe6a 100644
--- a/Documentation/x86/x86_64/mm.txt
+++ b/Documentation/x86/x86_64/mm.txt
@@ -12,6 +12,8 @@ ffffc90000000000 - ffffe8ffffffffff (=45 bits) vmalloc/ioremap space
ffffe90000000000 - ffffe9ffffffffff (=40 bits) hole
ffffea0000000000 - ffffeaffffffffff (=40 bits) virtual memory map (1TB)
... unused hole ...
+ffffff0000000000 - ffffff7fffffffff (=39 bits) %esp fixup stacks
+... unused hole ...
ffffffff80000000 - ffffffffa0000000 (=512 MB) kernel text mapping, from phys 0
ffffffffa0000000 - ffffffffff5fffff (=1525 MB) module mapping space
ffffffffff600000 - ffffffffffdfffff (=8 MB) vsyscalls
@@ -28,4 +30,11 @@ reference.
Current X86-64 implementations only support 40 bits of address space,
but we support up to 46 bits. This expands into MBZ space in the page tables.
+->trampoline_pgd:
+
+We map EFI runtime services in the aforementioned PGD in the virtual
+range of 64Gb (arbitrarily set, can be raised if needed)
+
+0xffffffef00000000 - 0xffffffff00000000
+
-Andi Kleen, Jul 2004