diff options
Diffstat (limited to 'Documentation/x86')
| -rw-r--r-- | Documentation/x86/00-INDEX | 18 | ||||
| -rw-r--r-- | Documentation/x86/boot.txt | 16 | ||||
| -rw-r--r-- | Documentation/x86/early-microcode.txt | 11 | ||||
| -rw-r--r-- | Documentation/x86/earlyprintk.txt | 2 | ||||
| -rw-r--r-- | Documentation/x86/efi-stub.txt | 65 | ||||
| -rw-r--r-- | Documentation/x86/i386/IO-APIC.txt | 2 | ||||
| -rw-r--r-- | Documentation/x86/x86_64/boot-options.txt | 42 | ||||
| -rw-r--r-- | Documentation/x86/x86_64/mm.txt | 13 |
8 files changed, 50 insertions, 119 deletions
diff --git a/Documentation/x86/00-INDEX b/Documentation/x86/00-INDEX index f37b46d3486..692264456f0 100644 --- a/Documentation/x86/00-INDEX +++ b/Documentation/x86/00-INDEX @@ -1,6 +1,20 @@ 00-INDEX - this file -mtrr.txt - - how to use x86 Memory Type Range Registers to increase performance +boot.txt + - List of boot protocol versions +early-microcode.txt + - How to load microcode from an initrd-CPIO archive early to fix CPU issues. +earlyprintk.txt + - Using earlyprintk with a USB2 debug port key. +entry_64.txt + - Describe (some of the) kernel entry points for x86. exception-tables.txt - why and how Linux kernel uses exception tables on x86 +mtrr.txt + - how to use x86 Memory Type Range Registers to increase performance +pat.txt + - Page Attribute Table intro and API +usb-legacy-support.txt + - how to fix/avoid quirks when using emulated PS/2 mouse/keyboard. +zero-page.txt + - layout of the first page of memory. diff --git a/Documentation/x86/boot.txt b/Documentation/x86/boot.txt index 3840b6f28af..a75e3adaa39 100644 --- a/Documentation/x86/boot.txt +++ b/Documentation/x86/boot.txt @@ -58,7 +58,7 @@ Protocol 2.11: (Kernel 3.6) Added a field for offset of EFI handover protocol entry point. Protocol 2.12: (Kernel 3.8) Added the xloadflags field and extension fields - to struct boot_params for for loading bzImage and ramdisk + to struct boot_params for loading bzImage and ramdisk above 4G in 64bit. **** MEMORY LAYOUT @@ -182,7 +182,7 @@ Offset Proto Name Meaning 0226/1 2.02+(3 ext_loader_ver Extended boot loader version 0227/1 2.02+(3 ext_loader_type Extended boot loader ID 0228/4 2.02+ cmd_line_ptr 32-bit pointer to the kernel command line -022C/4 2.03+ ramdisk_max Highest legal initrd address +022C/4 2.03+ initrd_addr_max Highest legal initrd address 0230/4 2.05+ kernel_alignment Physical addr alignment required for kernel 0234/1 2.05+ relocatable_kernel Whether kernel is relocatable or not 0235/1 2.10+ min_alignment Minimum alignment, as a power of two @@ -534,7 +534,7 @@ Protocol: 2.02+ zero, the kernel will assume that your boot loader does not support the 2.02+ protocol. -Field name: ramdisk_max +Field name: initrd_addr_max Type: read Offset/size: 0x22c/4 Protocol: 2.03+ @@ -608,6 +608,9 @@ Protocol: 2.12+ - If 1, the kernel supports the 64-bit EFI handoff entry point given at handover_offset + 0x200. + Bit 4 (read): XLF_EFI_KEXEC + - If 1, the kernel supports kexec EFI boot with EFI runtime support. + Field name: cmdline_size Type: read Offset/size: 0x238/4 @@ -657,9 +660,10 @@ Protocol: 2.08+ uncompressed data should be determined using the standard magic numbers. The currently supported compression formats are gzip (magic numbers 1F 8B or 1F 9E), bzip2 (magic number 42 5A), LZMA - (magic number 5D 00), and XZ (magic number FD 37). The uncompressed - payload is currently always ELF (magic number 7F 45 4C 46). - + (magic number 5D 00), XZ (magic number FD 37), and LZ4 (magic number + 02 21). The uncompressed payload is currently always ELF (magic + number 7F 45 4C 46). + Field name: payload_length Type: read Offset/size: 0x24c/4 diff --git a/Documentation/x86/early-microcode.txt b/Documentation/x86/early-microcode.txt index 4aaf0dfb0cb..d62bea6796d 100644 --- a/Documentation/x86/early-microcode.txt +++ b/Documentation/x86/early-microcode.txt @@ -11,7 +11,8 @@ file and loaded to CPUs during boot time. The format of the combined initrd image is microcode in cpio format followed by the initrd image (maybe compressed). Kernel parses the combined initrd image during boot time. The microcode file in cpio name space is: -kernel/x86/microcode/GenuineIntel.bin +on Intel: kernel/x86/microcode/GenuineIntel.bin +on AMD : kernel/x86/microcode/AuthenticAMD.bin During BSP boot (before SMP starts), if the kernel finds the microcode file in the initrd file, it parses the microcode and saves matching microcode in memory. @@ -34,10 +35,8 @@ original initrd image /boot/initrd-3.5.0.img. mkdir initrd cd initrd -mkdir kernel -mkdir kernel/x86 -mkdir kernel/x86/microcode -cp ../microcode.bin kernel/x86/microcode/GenuineIntel.bin -find .|cpio -oc >../ucode.cpio +mkdir -p kernel/x86/microcode +cp ../microcode.bin kernel/x86/microcode/GenuineIntel.bin (or AuthenticAMD.bin) +find . | cpio -o -H newc >../ucode.cpio cd .. cat ucode.cpio /boot/initrd-3.5.0.img >/boot/initrd-3.5.0.ucode.img diff --git a/Documentation/x86/earlyprintk.txt b/Documentation/x86/earlyprintk.txt index f19802c0f48..688e3eeed21 100644 --- a/Documentation/x86/earlyprintk.txt +++ b/Documentation/x86/earlyprintk.txt @@ -33,7 +33,7 @@ and two USB cables, connected like this: ... ( If your system does not list a debug port capability then you probably - wont be able to use the USB debug key. ) + won't be able to use the USB debug key. ) b.) You also need a Netchip USB debug cable/key: diff --git a/Documentation/x86/efi-stub.txt b/Documentation/x86/efi-stub.txt deleted file mode 100644 index 44e6bb6ead1..00000000000 --- a/Documentation/x86/efi-stub.txt +++ /dev/null @@ -1,65 +0,0 @@ - The EFI Boot Stub - --------------------------- - -On the x86 platform, a bzImage can masquerade as a PE/COFF image, -thereby convincing EFI firmware loaders to load it as an EFI -executable. The code that modifies the bzImage header, along with the -EFI-specific entry point that the firmware loader jumps to are -collectively known as the "EFI boot stub", and live in -arch/x86/boot/header.S and arch/x86/boot/compressed/eboot.c, -respectively. - -By using the EFI boot stub it's possible to boot a Linux kernel -without the use of a conventional EFI boot loader, such as grub or -elilo. Since the EFI boot stub performs the jobs of a boot loader, in -a certain sense it *IS* the boot loader. - -The EFI boot stub is enabled with the CONFIG_EFI_STUB kernel option. - - -**** How to install bzImage.efi - -The bzImage located in arch/x86/boot/bzImage must be copied to the EFI -System Partiion (ESP) and renamed with the extension ".efi". Without -the extension the EFI firmware loader will refuse to execute it. It's -not possible to execute bzImage.efi from the usual Linux file systems -because EFI firmware doesn't have support for them. - - -**** Passing kernel parameters from the EFI shell - -Arguments to the kernel can be passed after bzImage.efi, e.g. - - fs0:> bzImage.efi console=ttyS0 root=/dev/sda4 - - -**** The "initrd=" option - -Like most boot loaders, the EFI stub allows the user to specify -multiple initrd files using the "initrd=" option. This is the only EFI -stub-specific command line parameter, everything else is passed to the -kernel when it boots. - -The path to the initrd file must be an absolute path from the -beginning of the ESP, relative path names do not work. Also, the path -is an EFI-style path and directory elements must be separated with -backslashes (\). For example, given the following directory layout, - -fs0:> - Kernels\ - bzImage.efi - initrd-large.img - - Ramdisks\ - initrd-small.img - initrd-medium.img - -to boot with the initrd-large.img file if the current working -directory is fs0:\Kernels, the following command must be used, - - fs0:\Kernels> bzImage.efi initrd=\Kernels\initrd-large.img - -Notice how bzImage.efi can be specified with a relative path. That's -because the image we're executing is interpreted by the EFI shell, -which understands relative paths, whereas the rest of the command line -is passed to bzImage.efi. diff --git a/Documentation/x86/i386/IO-APIC.txt b/Documentation/x86/i386/IO-APIC.txt index 30b4c714fbe..15f5baf7e1b 100644 --- a/Documentation/x86/i386/IO-APIC.txt +++ b/Documentation/x86/i386/IO-APIC.txt @@ -87,7 +87,7 @@ your PCI configuration: echo -n pirq=; echo `scanpci | grep T_L | cut -c56-` | sed 's/ /,/g' -note that this script wont work if you have skipped a few slots or if your +note that this script won't work if you have skipped a few slots or if your board does not do default daisy-chaining. (or the IO-APIC has the PIRQ pins connected in some strange way). E.g. if in the above case you have your SCSI card (IRQ11) in Slot3, and have Slot1 empty: diff --git a/Documentation/x86/x86_64/boot-options.txt b/Documentation/x86/x86_64/boot-options.txt index e015a83c399..5223479291a 100644 --- a/Documentation/x86/x86_64/boot-options.txt +++ b/Documentation/x86/x86_64/boot-options.txt @@ -78,33 +78,11 @@ APICs no_timer_check Don't check the IO-APIC timer. This can work around problems with incorrect timer initialization on some boards. - - apicmaintimer Run time keeping from the local APIC timer instead - of using the PIT/HPET interrupt for this. This is useful - when the PIT/HPET interrupts are unreliable. - - noapicmaintimer Don't do time keeping using the APIC timer. - Useful when this option was auto selected, but doesn't work. - apicpmtimer Do APIC timer calibration using the pmtimer. Implies apicmaintimer. Useful when your PIT timer is totally broken. -Early Console - - syntax: earlyprintk=vga - earlyprintk=serial[,ttySn[,baudrate]] - - The early console is useful when the kernel crashes before the - normal console is initialized. It is not enabled by - default because it has some cosmetic problems. - Append ,keep to not disable it when the real console takes over. - Only vga or serial at a time, not both. - Currently only ttyS0 and ttyS1 are supported. - Interaction with the standard serial driver is not very good. - The VGA output is eventually overwritten by the real console. - Timing notsc @@ -158,11 +136,6 @@ Non Executable Mappings on Enable(default) off Disable -SMP - - additional_cpus=NUM Allow NUM more CPUs for hotplug - (defaults are specified by the BIOS, see Documentation/x86/x86_64/cpu-hotplug-spec) - NUMA numa=off Only set up a single NUMA node spanning all memory. @@ -190,6 +163,11 @@ ACPI acpi=noirq Don't route interrupts + acpi=nocmcff Disable firmware first mode for corrected errors. This + disables parsing the HEST CMC error source to check if + firmware has set the FF flag. This may result in + duplicate corrected error reports. + PCI pci=off Don't use PCI @@ -298,16 +276,6 @@ Debugging kstack=N Print N words from the kernel stack in oops dumps. - pagefaulttrace Dump all page faults. Only useful for extreme debugging - and will create a lot of output. - - call_trace=[old|both|newfallback|new] - old: use old inexact backtracer - new: use new exact dwarf2 unwinder - both: print entries from both - newfallback: use new unwinder but fall back to old if it gets - stuck (default) - Miscellaneous nogbpages diff --git a/Documentation/x86/x86_64/mm.txt b/Documentation/x86/x86_64/mm.txt index d6498e3cd71..afe68ddbe6a 100644 --- a/Documentation/x86/x86_64/mm.txt +++ b/Documentation/x86/x86_64/mm.txt @@ -12,8 +12,12 @@ ffffc90000000000 - ffffe8ffffffffff (=45 bits) vmalloc/ioremap space ffffe90000000000 - ffffe9ffffffffff (=40 bits) hole ffffea0000000000 - ffffeaffffffffff (=40 bits) virtual memory map (1TB) ... unused hole ... +ffffff0000000000 - ffffff7fffffffff (=39 bits) %esp fixup stacks +... unused hole ... ffffffff80000000 - ffffffffa0000000 (=512 MB) kernel text mapping, from phys 0 -ffffffffa0000000 - fffffffffff00000 (=1536 MB) module mapping space +ffffffffa0000000 - ffffffffff5fffff (=1525 MB) module mapping space +ffffffffff600000 - ffffffffffdfffff (=8 MB) vsyscalls +ffffffffffe00000 - ffffffffffffffff (=2 MB) unused hole The direct mapping covers all memory in the system up to the highest memory address (this means in some cases it can also include PCI memory @@ -26,4 +30,11 @@ reference. Current X86-64 implementations only support 40 bits of address space, but we support up to 46 bits. This expands into MBZ space in the page tables. +->trampoline_pgd: + +We map EFI runtime services in the aforementioned PGD in the virtual +range of 64Gb (arbitrarily set, can be raised if needed) + +0xffffffef00000000 - 0xffffffff00000000 + -Andi Kleen, Jul 2004 |
