aboutsummaryrefslogtreecommitdiff
path: root/Documentation/watchdog
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/watchdog')
-rw-r--r--Documentation/watchdog/00-INDEX15
-rw-r--r--Documentation/watchdog/convert_drivers_to_kernel_api.txt218
-rw-r--r--Documentation/watchdog/hpwdt.txt2
-rw-r--r--Documentation/watchdog/src/watchdog-test.c20
-rw-r--r--Documentation/watchdog/watchdog-kernel-api.txt226
-rw-r--r--Documentation/watchdog/watchdog-parameters.txt20
6 files changed, 474 insertions, 27 deletions
diff --git a/Documentation/watchdog/00-INDEX b/Documentation/watchdog/00-INDEX
deleted file mode 100644
index ee994513a9b..00000000000
--- a/Documentation/watchdog/00-INDEX
+++ /dev/null
@@ -1,15 +0,0 @@
-00-INDEX
- - this file.
-hpwdt.txt
- - information on the HP iLO2 NMI watchdog
-pcwd-watchdog.txt
- - documentation for Berkshire Products PC Watchdog ISA cards.
-src/
- - directory holding watchdog related example programs.
-watchdog-api.txt
- - description of the Linux Watchdog driver API.
-watchdog-parameters.txt
- - information on driver parameters (for drivers other than
- the ones that have driver-specific files here)
-wdt.txt
- - description of the Watchdog Timer Interfaces for Linux.
diff --git a/Documentation/watchdog/convert_drivers_to_kernel_api.txt b/Documentation/watchdog/convert_drivers_to_kernel_api.txt
new file mode 100644
index 00000000000..271b8850dde
--- /dev/null
+++ b/Documentation/watchdog/convert_drivers_to_kernel_api.txt
@@ -0,0 +1,218 @@
+Converting old watchdog drivers to the watchdog framework
+by Wolfram Sang <w.sang@pengutronix.de>
+=========================================================
+
+Before the watchdog framework came into the kernel, every driver had to
+implement the API on its own. Now, as the framework factored out the common
+components, those drivers can be lightened making it a user of the framework.
+This document shall guide you for this task. The necessary steps are described
+as well as things to look out for.
+
+
+Remove the file_operations struct
+---------------------------------
+
+Old drivers define their own file_operations for actions like open(), write(),
+etc... These are now handled by the framework and just call the driver when
+needed. So, in general, the 'file_operations' struct and assorted functions can
+go. Only very few driver-specific details have to be moved to other functions.
+Here is a overview of the functions and probably needed actions:
+
+- open: Everything dealing with resource management (file-open checks, magic
+ close preparations) can simply go. Device specific stuff needs to go to the
+ driver specific start-function. Note that for some drivers, the start-function
+ also serves as the ping-function. If that is the case and you need start/stop
+ to be balanced (clocks!), you are better off refactoring a separate start-function.
+
+- close: Same hints as for open apply.
+
+- write: Can simply go, all defined behaviour is taken care of by the framework,
+ i.e. ping on write and magic char ('V') handling.
+
+- ioctl: While the driver is allowed to have extensions to the IOCTL interface,
+ the most common ones are handled by the framework, supported by some assistance
+ from the driver:
+
+ WDIOC_GETSUPPORT:
+ Returns the mandatory watchdog_info struct from the driver
+
+ WDIOC_GETSTATUS:
+ Needs the status-callback defined, otherwise returns 0
+
+ WDIOC_GETBOOTSTATUS:
+ Needs the bootstatus member properly set. Make sure it is 0 if you
+ don't have further support!
+
+ WDIOC_SETOPTIONS:
+ No preparations needed
+
+ WDIOC_KEEPALIVE:
+ If wanted, options in watchdog_info need to have WDIOF_KEEPALIVEPING
+ set
+
+ WDIOC_SETTIMEOUT:
+ Options in watchdog_info need to have WDIOF_SETTIMEOUT set
+ and a set_timeout-callback has to be defined. The core will also
+ do limit-checking, if min_timeout and max_timeout in the watchdog
+ device are set. All is optional.
+
+ WDIOC_GETTIMEOUT:
+ No preparations needed
+
+ WDIOC_GETTIMELEFT:
+ It needs get_timeleft() callback to be defined. Otherwise it
+ will return EOPNOTSUPP
+
+ Other IOCTLs can be served using the ioctl-callback. Note that this is mainly
+ intended for porting old drivers; new drivers should not invent private IOCTLs.
+ Private IOCTLs are processed first. When the callback returns with
+ -ENOIOCTLCMD, the IOCTLs of the framework will be tried, too. Any other error
+ is directly given to the user.
+
+Example conversion:
+
+-static const struct file_operations s3c2410wdt_fops = {
+- .owner = THIS_MODULE,
+- .llseek = no_llseek,
+- .write = s3c2410wdt_write,
+- .unlocked_ioctl = s3c2410wdt_ioctl,
+- .open = s3c2410wdt_open,
+- .release = s3c2410wdt_release,
+-};
+
+Check the functions for device-specific stuff and keep it for later
+refactoring. The rest can go.
+
+
+Remove the miscdevice
+---------------------
+
+Since the file_operations are gone now, you can also remove the 'struct
+miscdevice'. The framework will create it on watchdog_dev_register() called by
+watchdog_register_device().
+
+-static struct miscdevice s3c2410wdt_miscdev = {
+- .minor = WATCHDOG_MINOR,
+- .name = "watchdog",
+- .fops = &s3c2410wdt_fops,
+-};
+
+
+Remove obsolete includes and defines
+------------------------------------
+
+Because of the simplifications, a few defines are probably unused now. Remove
+them. Includes can be removed, too. For example:
+
+- #include <linux/fs.h>
+- #include <linux/miscdevice.h> (if MODULE_ALIAS_MISCDEV is not used)
+- #include <linux/uaccess.h> (if no custom IOCTLs are used)
+
+
+Add the watchdog operations
+---------------------------
+
+All possible callbacks are defined in 'struct watchdog_ops'. You can find it
+explained in 'watchdog-kernel-api.txt' in this directory. start(), stop() and
+owner must be set, the rest are optional. You will easily find corresponding
+functions in the old driver. Note that you will now get a pointer to the
+watchdog_device as a parameter to these functions, so you probably have to
+change the function header. Other changes are most likely not needed, because
+here simply happens the direct hardware access. If you have device-specific
+code left from the above steps, it should be refactored into these callbacks.
+
+Here is a simple example:
+
++static struct watchdog_ops s3c2410wdt_ops = {
++ .owner = THIS_MODULE,
++ .start = s3c2410wdt_start,
++ .stop = s3c2410wdt_stop,
++ .ping = s3c2410wdt_keepalive,
++ .set_timeout = s3c2410wdt_set_heartbeat,
++};
+
+A typical function-header change looks like:
+
+-static void s3c2410wdt_keepalive(void)
++static int s3c2410wdt_keepalive(struct watchdog_device *wdd)
+ {
+...
++
++ return 0;
+ }
+
+...
+
+- s3c2410wdt_keepalive();
++ s3c2410wdt_keepalive(&s3c2410_wdd);
+
+
+Add the watchdog device
+-----------------------
+
+Now we need to create a 'struct watchdog_device' and populate it with the
+necessary information for the framework. The struct is also explained in detail
+in 'watchdog-kernel-api.txt' in this directory. We pass it the mandatory
+watchdog_info struct and the newly created watchdog_ops. Often, old drivers
+have their own record-keeping for things like bootstatus and timeout using
+static variables. Those have to be converted to use the members in
+watchdog_device. Note that the timeout values are unsigned int. Some drivers
+use signed int, so this has to be converted, too.
+
+Here is a simple example for a watchdog device:
+
++static struct watchdog_device s3c2410_wdd = {
++ .info = &s3c2410_wdt_ident,
++ .ops = &s3c2410wdt_ops,
++};
+
+
+Handle the 'nowayout' feature
+-----------------------------
+
+A few drivers use nowayout statically, i.e. there is no module parameter for it
+and only CONFIG_WATCHDOG_NOWAYOUT determines if the feature is going to be
+used. This needs to be converted by initializing the status variable of the
+watchdog_device like this:
+
+ .status = WATCHDOG_NOWAYOUT_INIT_STATUS,
+
+Most drivers, however, also allow runtime configuration of nowayout, usually
+by adding a module parameter. The conversion for this would be something like:
+
+ watchdog_set_nowayout(&s3c2410_wdd, nowayout);
+
+The module parameter itself needs to stay, everything else related to nowayout
+can go, though. This will likely be some code in open(), close() or write().
+
+
+Register the watchdog device
+----------------------------
+
+Replace misc_register(&miscdev) with watchdog_register_device(&watchdog_dev).
+Make sure the return value gets checked and the error message, if present,
+still fits. Also convert the unregister case.
+
+- ret = misc_register(&s3c2410wdt_miscdev);
++ ret = watchdog_register_device(&s3c2410_wdd);
+
+...
+
+- misc_deregister(&s3c2410wdt_miscdev);
++ watchdog_unregister_device(&s3c2410_wdd);
+
+
+Update the Kconfig-entry
+------------------------
+
+The entry for the driver now needs to select WATCHDOG_CORE:
+
++ select WATCHDOG_CORE
+
+
+Create a patch and send it to upstream
+--------------------------------------
+
+Make sure you understood Documentation/SubmittingPatches and send your patch to
+linux-watchdog@vger.kernel.org. We are looking forward to it :)
+
diff --git a/Documentation/watchdog/hpwdt.txt b/Documentation/watchdog/hpwdt.txt
index 9c24d5ffbb0..9488078900e 100644
--- a/Documentation/watchdog/hpwdt.txt
+++ b/Documentation/watchdog/hpwdt.txt
@@ -8,7 +8,7 @@ Last reviewed: 06/02/2009
The HP iLO2 NMI Watchdog driver is a kernel module that provides basic
watchdog functionality and the added benefit of NMI sourcing. Both the
watchdog functionality and the NMI sourcing capability need to be enabled
- by the user. Remember that the two modes are not dependant on one another.
+ by the user. Remember that the two modes are not dependent on one another.
A user can have the NMI sourcing without the watchdog timer and vice-versa.
Watchdog functionality is enabled like any other common watchdog driver. That
diff --git a/Documentation/watchdog/src/watchdog-test.c b/Documentation/watchdog/src/watchdog-test.c
index 63fdc34ceb9..3da822967ee 100644
--- a/Documentation/watchdog/src/watchdog-test.c
+++ b/Documentation/watchdog/src/watchdog-test.c
@@ -7,6 +7,7 @@
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
+#include <signal.h>
#include <sys/ioctl.h>
#include <linux/types.h>
#include <linux/watchdog.h>
@@ -29,6 +30,14 @@ static void keep_alive(void)
* The main program. Run the program with "-d" to disable the card,
* or "-e" to enable the card.
*/
+
+static void term(int sig)
+{
+ close(fd);
+ fprintf(stderr, "Stopping watchdog ticks...\n");
+ exit(0);
+}
+
int main(int argc, char *argv[])
{
int flags;
@@ -47,26 +56,31 @@ int main(int argc, char *argv[])
ioctl(fd, WDIOC_SETOPTIONS, &flags);
fprintf(stderr, "Watchdog card disabled.\n");
fflush(stderr);
- exit(0);
+ goto end;
} else if (!strncasecmp(argv[1], "-e", 2)) {
flags = WDIOS_ENABLECARD;
ioctl(fd, WDIOC_SETOPTIONS, &flags);
fprintf(stderr, "Watchdog card enabled.\n");
fflush(stderr);
- exit(0);
+ goto end;
} else {
fprintf(stderr, "-d to disable, -e to enable.\n");
fprintf(stderr, "run by itself to tick the card.\n");
fflush(stderr);
- exit(0);
+ goto end;
}
} else {
fprintf(stderr, "Watchdog Ticking Away!\n");
fflush(stderr);
}
+ signal(SIGINT, term);
+
while(1) {
keep_alive();
sleep(1);
}
+end:
+ close(fd);
+ return 0;
}
diff --git a/Documentation/watchdog/watchdog-kernel-api.txt b/Documentation/watchdog/watchdog-kernel-api.txt
new file mode 100644
index 00000000000..a0438f3957c
--- /dev/null
+++ b/Documentation/watchdog/watchdog-kernel-api.txt
@@ -0,0 +1,226 @@
+The Linux WatchDog Timer Driver Core kernel API.
+===============================================
+Last reviewed: 12-Feb-2013
+
+Wim Van Sebroeck <wim@iguana.be>
+
+Introduction
+------------
+This document does not describe what a WatchDog Timer (WDT) Driver or Device is.
+It also does not describe the API which can be used by user space to communicate
+with a WatchDog Timer. If you want to know this then please read the following
+file: Documentation/watchdog/watchdog-api.txt .
+
+So what does this document describe? It describes the API that can be used by
+WatchDog Timer Drivers that want to use the WatchDog Timer Driver Core
+Framework. This framework provides all interfacing towards user space so that
+the same code does not have to be reproduced each time. This also means that
+a watchdog timer driver then only needs to provide the different routines
+(operations) that control the watchdog timer (WDT).
+
+The API
+-------
+Each watchdog timer driver that wants to use the WatchDog Timer Driver Core
+must #include <linux/watchdog.h> (you would have to do this anyway when
+writing a watchdog device driver). This include file contains following
+register/unregister routines:
+
+extern int watchdog_register_device(struct watchdog_device *);
+extern void watchdog_unregister_device(struct watchdog_device *);
+
+The watchdog_register_device routine registers a watchdog timer device.
+The parameter of this routine is a pointer to a watchdog_device structure.
+This routine returns zero on success and a negative errno code for failure.
+
+The watchdog_unregister_device routine deregisters a registered watchdog timer
+device. The parameter of this routine is the pointer to the registered
+watchdog_device structure.
+
+The watchdog device structure looks like this:
+
+struct watchdog_device {
+ int id;
+ struct cdev cdev;
+ struct device *dev;
+ struct device *parent;
+ const struct watchdog_info *info;
+ const struct watchdog_ops *ops;
+ unsigned int bootstatus;
+ unsigned int timeout;
+ unsigned int min_timeout;
+ unsigned int max_timeout;
+ void *driver_data;
+ struct mutex lock;
+ unsigned long status;
+};
+
+It contains following fields:
+* id: set by watchdog_register_device, id 0 is special. It has both a
+ /dev/watchdog0 cdev (dynamic major, minor 0) as well as the old
+ /dev/watchdog miscdev. The id is set automatically when calling
+ watchdog_register_device.
+* cdev: cdev for the dynamic /dev/watchdog<id> device nodes. This
+ field is also populated by watchdog_register_device.
+* dev: device under the watchdog class (created by watchdog_register_device).
+* parent: set this to the parent device (or NULL) before calling
+ watchdog_register_device.
+* info: a pointer to a watchdog_info structure. This structure gives some
+ additional information about the watchdog timer itself. (Like it's unique name)
+* ops: a pointer to the list of watchdog operations that the watchdog supports.
+* timeout: the watchdog timer's timeout value (in seconds).
+* min_timeout: the watchdog timer's minimum timeout value (in seconds).
+* max_timeout: the watchdog timer's maximum timeout value (in seconds).
+* bootstatus: status of the device after booting (reported with watchdog
+ WDIOF_* status bits).
+* driver_data: a pointer to the drivers private data of a watchdog device.
+ This data should only be accessed via the watchdog_set_drvdata and
+ watchdog_get_drvdata routines.
+* lock: Mutex for WatchDog Timer Driver Core internal use only.
+* status: this field contains a number of status bits that give extra
+ information about the status of the device (Like: is the watchdog timer
+ running/active, is the nowayout bit set, is the device opened via
+ the /dev/watchdog interface or not, ...).
+
+The list of watchdog operations is defined as:
+
+struct watchdog_ops {
+ struct module *owner;
+ /* mandatory operations */
+ int (*start)(struct watchdog_device *);
+ int (*stop)(struct watchdog_device *);
+ /* optional operations */
+ int (*ping)(struct watchdog_device *);
+ unsigned int (*status)(struct watchdog_device *);
+ int (*set_timeout)(struct watchdog_device *, unsigned int);
+ unsigned int (*get_timeleft)(struct watchdog_device *);
+ void (*ref)(struct watchdog_device *);
+ void (*unref)(struct watchdog_device *);
+ long (*ioctl)(struct watchdog_device *, unsigned int, unsigned long);
+};
+
+It is important that you first define the module owner of the watchdog timer
+driver's operations. This module owner will be used to lock the module when
+the watchdog is active. (This to avoid a system crash when you unload the
+module and /dev/watchdog is still open).
+
+If the watchdog_device struct is dynamically allocated, just locking the module
+is not enough and a driver also needs to define the ref and unref operations to
+ensure the structure holding the watchdog_device does not go away.
+
+The simplest (and usually sufficient) implementation of this is to:
+1) Add a kref struct to the same structure which is holding the watchdog_device
+2) Define a release callback for the kref which frees the struct holding both
+3) Call kref_init on this kref *before* calling watchdog_register_device()
+4) Define a ref operation calling kref_get on this kref
+5) Define a unref operation calling kref_put on this kref
+6) When it is time to cleanup:
+ * Do not kfree() the struct holding both, the last kref_put will do this!
+ * *After* calling watchdog_unregister_device() call kref_put on the kref
+
+Some operations are mandatory and some are optional. The mandatory operations
+are:
+* start: this is a pointer to the routine that starts the watchdog timer
+ device.
+ The routine needs a pointer to the watchdog timer device structure as a
+ parameter. It returns zero on success or a negative errno code for failure.
+* stop: with this routine the watchdog timer device is being stopped.
+ The routine needs a pointer to the watchdog timer device structure as a
+ parameter. It returns zero on success or a negative errno code for failure.
+ Some watchdog timer hardware can only be started and not be stopped. The
+ driver supporting this hardware needs to make sure that a start and stop
+ routine is being provided. This can be done by using a timer in the driver
+ that regularly sends a keepalive ping to the watchdog timer hardware.
+
+Not all watchdog timer hardware supports the same functionality. That's why
+all other routines/operations are optional. They only need to be provided if
+they are supported. These optional routines/operations are:
+* ping: this is the routine that sends a keepalive ping to the watchdog timer
+ hardware.
+ The routine needs a pointer to the watchdog timer device structure as a
+ parameter. It returns zero on success or a negative errno code for failure.
+ Most hardware that does not support this as a separate function uses the
+ start function to restart the watchdog timer hardware. And that's also what
+ the watchdog timer driver core does: to send a keepalive ping to the watchdog
+ timer hardware it will either use the ping operation (when available) or the
+ start operation (when the ping operation is not available).
+ (Note: the WDIOC_KEEPALIVE ioctl call will only be active when the
+ WDIOF_KEEPALIVEPING bit has been set in the option field on the watchdog's
+ info structure).
+* status: this routine checks the status of the watchdog timer device. The
+ status of the device is reported with watchdog WDIOF_* status flags/bits.
+* set_timeout: this routine checks and changes the timeout of the watchdog
+ timer device. It returns 0 on success, -EINVAL for "parameter out of range"
+ and -EIO for "could not write value to the watchdog". On success this
+ routine should set the timeout value of the watchdog_device to the
+ achieved timeout value (which may be different from the requested one
+ because the watchdog does not necessarily has a 1 second resolution).
+ (Note: the WDIOF_SETTIMEOUT needs to be set in the options field of the
+ watchdog's info structure).
+* get_timeleft: this routines returns the time that's left before a reset.
+* ref: the operation that calls kref_get on the kref of a dynamically
+ allocated watchdog_device struct.
+* unref: the operation that calls kref_put on the kref of a dynamically
+ allocated watchdog_device struct.
+* ioctl: if this routine is present then it will be called first before we do
+ our own internal ioctl call handling. This routine should return -ENOIOCTLCMD
+ if a command is not supported. The parameters that are passed to the ioctl
+ call are: watchdog_device, cmd and arg.
+
+The status bits should (preferably) be set with the set_bit and clear_bit alike
+bit-operations. The status bits that are defined are:
+* WDOG_ACTIVE: this status bit indicates whether or not a watchdog timer device
+ is active or not. When the watchdog is active after booting, then you should
+ set this status bit (Note: when you register the watchdog timer device with
+ this bit set, then opening /dev/watchdog will skip the start operation)
+* WDOG_DEV_OPEN: this status bit shows whether or not the watchdog device
+ was opened via /dev/watchdog.
+ (This bit should only be used by the WatchDog Timer Driver Core).
+* WDOG_ALLOW_RELEASE: this bit stores whether or not the magic close character
+ has been sent (so that we can support the magic close feature).
+ (This bit should only be used by the WatchDog Timer Driver Core).
+* WDOG_NO_WAY_OUT: this bit stores the nowayout setting for the watchdog.
+ If this bit is set then the watchdog timer will not be able to stop.
+* WDOG_UNREGISTERED: this bit gets set by the WatchDog Timer Driver Core
+ after calling watchdog_unregister_device, and then checked before calling
+ any watchdog_ops, so that you can be sure that no operations (other then
+ unref) will get called after unregister, even if userspace still holds a
+ reference to /dev/watchdog
+
+ To set the WDOG_NO_WAY_OUT status bit (before registering your watchdog
+ timer device) you can either:
+ * set it statically in your watchdog_device struct with
+ .status = WATCHDOG_NOWAYOUT_INIT_STATUS,
+ (this will set the value the same as CONFIG_WATCHDOG_NOWAYOUT) or
+ * use the following helper function:
+ static inline void watchdog_set_nowayout(struct watchdog_device *wdd, int nowayout)
+
+Note: The WatchDog Timer Driver Core supports the magic close feature and
+the nowayout feature. To use the magic close feature you must set the
+WDIOF_MAGICCLOSE bit in the options field of the watchdog's info structure.
+The nowayout feature will overrule the magic close feature.
+
+To get or set driver specific data the following two helper functions should be
+used:
+
+static inline void watchdog_set_drvdata(struct watchdog_device *wdd, void *data)
+static inline void *watchdog_get_drvdata(struct watchdog_device *wdd)
+
+The watchdog_set_drvdata function allows you to add driver specific data. The
+arguments of this function are the watchdog device where you want to add the
+driver specific data to and a pointer to the data itself.
+
+The watchdog_get_drvdata function allows you to retrieve driver specific data.
+The argument of this function is the watchdog device where you want to retrieve
+data from. The function returns the pointer to the driver specific data.
+
+To initialize the timeout field, the following function can be used:
+
+extern int watchdog_init_timeout(struct watchdog_device *wdd,
+ unsigned int timeout_parm, struct device *dev);
+
+The watchdog_init_timeout function allows you to initialize the timeout field
+using the module timeout parameter or by retrieving the timeout-sec property from
+the device tree (if the module timeout parameter is invalid). Best practice is
+to set the default timeout value as timeout value in the watchdog_device and
+then use this function to set the user "preferred" timeout value.
+This routine returns zero on success and a negative errno code for failure.
diff --git a/Documentation/watchdog/watchdog-parameters.txt b/Documentation/watchdog/watchdog-parameters.txt
index 17ddd822b45..692791cc674 100644
--- a/Documentation/watchdog/watchdog-parameters.txt
+++ b/Documentation/watchdog/watchdog-parameters.txt
@@ -78,6 +78,11 @@ wd0_timeout: Default watchdog0 timeout in 1/10secs
wd1_timeout: Default watchdog1 timeout in 1/10secs
wd2_timeout: Default watchdog2 timeout in 1/10secs
-------------------------------------------------
+da9052wdt:
+timeout: Watchdog timeout in seconds. 2<= timeout <=131, default=2.048s
+nowayout: Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+-------------------------------------------------
davinci_wdt:
heartbeat: Watchdog heartbeat period in seconds from 1 to 600, default 60
-------------------------------------------------
@@ -145,6 +150,8 @@ nowayout: Disable watchdog shutdown on close
-------------------------------------------------
it87_wdt:
nogameport: Forbid the activation of game port, default=0
+nocir: Forbid the use of CIR (workaround for some buggy setups); set to 1 if
+system resets despite watchdog daemon running, default=0
exclusive: Watchdog exclusive device open, default=1
timeout: Watchdog timeout in seconds, default=60
testmode: Watchdog test mode (1 = no reboot), default=0
@@ -189,14 +196,6 @@ reset: Watchdog Interrupt/Reset Mode. 0 = interrupt, 1 = reset
nowayout: Watchdog cannot be stopped once started
(default=kernel config parameter)
-------------------------------------------------
-mpcore_wdt:
-mpcore_margin: MPcore timer margin in seconds.
- (0 < mpcore_margin < 65536, default=60)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
-mpcore_noboot: MPcore watchdog action, set to 1 to ignore reboots,
- 0 to reboot (default=0
--------------------------------------------------
mv64x60_wdt:
nowayout: Watchdog cannot be stopped once started
(default=kernel config parameter)
@@ -328,6 +327,11 @@ soft_noboot: Softdog action, set to 1 to ignore reboots, 0 to reboot
stmp3xxx_wdt:
heartbeat: Watchdog heartbeat period in seconds from 1 to 4194304, default 19
-------------------------------------------------
+tegra_wdt:
+heartbeat: Watchdog heartbeats in seconds. (default = 120)
+nowayout: Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+-------------------------------------------------
ts72xx_wdt:
timeout: Watchdog timeout in seconds. (1 <= timeout <= 8, default=8)
nowayout: Disable watchdog shutdown on close