diff options
Diffstat (limited to 'Documentation/usb/URB.txt')
| -rw-r--r-- | Documentation/usb/URB.txt | 43 |
1 files changed, 32 insertions, 11 deletions
diff --git a/Documentation/usb/URB.txt b/Documentation/usb/URB.txt index 8ffce746d49..50da0d45544 100644 --- a/Documentation/usb/URB.txt +++ b/Documentation/usb/URB.txt @@ -168,18 +168,39 @@ that if the completion handler or anyone else tries to resubmit it they will get a -EPERM error. Thus you can be sure that when usb_kill_urb() returns, the URB is totally idle. +There is a lifetime issue to consider. An URB may complete at any +time, and the completion handler may free the URB. If this happens +while usb_unlink_urb or usb_kill_urb is running, it will cause a +memory-access violation. The driver is responsible for avoiding this, +which often means some sort of lock will be needed to prevent the URB +from being deallocated while it is still in use. + +On the other hand, since usb_unlink_urb may end up calling the +completion handler, the handler must not take any lock that is held +when usb_unlink_urb is invoked. The general solution to this problem +is to increment the URB's reference count while holding the lock, then +drop the lock and call usb_unlink_urb or usb_kill_urb, and then +decrement the URB's reference count. You increment the reference +count by calling + + struct urb *usb_get_urb(struct urb *urb) + +(ignore the return value; it is the same as the argument) and +decrement the reference count by calling usb_free_urb. Of course, +none of this is necessary if there's no danger of the URB being freed +by the completion handler. + 1.7. What about the completion handler? The handler is of the following type: - typedef void (*usb_complete_t)(struct urb *, struct pt_regs *) + typedef void (*usb_complete_t)(struct urb *) -I.e., it gets the URB that caused the completion call, plus the -register values at the time of the corresponding interrupt (if any). -In the completion handler, you should have a look at urb->status to -detect any USB errors. Since the context parameter is included in the URB, -you can pass information to the completion handler. +I.e., it gets the URB that caused the completion call. In the completion +handler, you should have a look at urb->status to detect any USB errors. +Since the context parameter is included in the URB, you can pass +information to the completion handler. Note that even when an error (or unlink) is reported, data may have been transferred. That's because USB transfers are packetized; it might take @@ -188,12 +209,12 @@ have transferred successfully before the completion was called. NOTE: ***** WARNING ***** -NEVER SLEEP IN A COMPLETION HANDLER. These are normally called -during hardware interrupt processing. If you can, defer substantial -work to a tasklet (bottom half) to keep system latencies low. You'll -probably need to use spinlocks to protect data structures you manipulate -in completion handlers. +NEVER SLEEP IN A COMPLETION HANDLER. These are often called in atomic +context. +In the current kernel, completion handlers run with local interrupts +disabled, but in the future this will be changed, so don't assume that +local IRQs are always disabled inside completion handlers. 1.8. How to do isochronous (ISO) transfers? |
