aboutsummaryrefslogtreecommitdiff
path: root/Documentation/sound/oss
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/sound/oss')
-rw-r--r--Documentation/sound/oss/AD181684
-rw-r--r--Documentation/sound/oss/ALS4
-rw-r--r--Documentation/sound/oss/AWE3276
-rw-r--r--Documentation/sound/oss/AudioExcelDSP1616
-rw-r--r--Documentation/sound/oss/CMI83305
-rw-r--r--Documentation/sound/oss/CMI833885
-rw-r--r--Documentation/sound/oss/CS423223
-rw-r--r--Documentation/sound/oss/INSTALL.awe134
-rw-r--r--Documentation/sound/oss/Introduction14
-rw-r--r--Documentation/sound/oss/MAD1656
-rw-r--r--Documentation/sound/oss/Maestro123
-rw-r--r--Documentation/sound/oss/Maestro392
-rw-r--r--Documentation/sound/oss/NEWS42
-rw-r--r--Documentation/sound/oss/NM256280
-rw-r--r--Documentation/sound/oss/OPL3-SA52
-rw-r--r--Documentation/sound/oss/OPL3-SA2210
-rw-r--r--Documentation/sound/oss/Opti8
-rw-r--r--Documentation/sound/oss/PAS167
-rw-r--r--Documentation/sound/oss/README.OSS7
-rw-r--r--Documentation/sound/oss/README.awe218
-rw-r--r--Documentation/sound/oss/README.modules10
-rw-r--r--Documentation/sound/oss/README.ymfsb2
-rw-r--r--Documentation/sound/oss/VIA-chipset43
-rw-r--r--Documentation/sound/oss/Wavefront339
-rw-r--r--Documentation/sound/oss/cs46xx138
-rw-r--r--Documentation/sound/oss/es137070
-rw-r--r--Documentation/sound/oss/es137164
-rw-r--r--Documentation/sound/oss/mwave2
-rw-r--r--Documentation/sound/oss/oss-parameters.txt51
-rw-r--r--Documentation/sound/oss/rme96xx767
-rw-r--r--Documentation/sound/oss/solo170
-rw-r--r--Documentation/sound/oss/sonicvibes81
-rw-r--r--Documentation/sound/oss/ultrasound2
-rw-r--r--Documentation/sound/oss/vwsnd293
34 files changed, 86 insertions, 3382 deletions
diff --git a/Documentation/sound/oss/AD1816 b/Documentation/sound/oss/AD1816
deleted file mode 100644
index 14bd8f25d52..00000000000
--- a/Documentation/sound/oss/AD1816
+++ /dev/null
@@ -1,84 +0,0 @@
-Documentation for the AD1816(A) sound driver
-============================================
-
-Installation:
--------------
-
-To get your AD1816(A) based sound card work, you'll have to enable support for
-experimental code ("Prompt for development and/or incomplete code/drivers")
-and isapnp ("Plug and Play support", "ISA Plug and Play support"). Enable
-"Sound card support", "OSS modules support" and "Support for AD1816(A) based
-cards (EXPERIMENTAL)" in the sound configuration menu, too. Now build, install
-and reboot the new kernel as usual.
-
-Features:
----------
-
-List of features supported by this driver:
-- full-duplex support
-- supported audio formats: unsigned 8bit, signed 16bit little endian,
- signed 16bit big endian, µ-law, A-law
-- supported channels: mono and stereo
-- supported recording sources: Master, CD, Line, Line1, Line2, Mic
-- supports phat 3d stereo circuit (Line 3)
-
-
-Supported cards:
-----------------
-
-The following cards are known to work with this driver:
-- Terratec Base 1
-- Terratec Base 64
-- HP Kayak
-- Acer FX-3D
-- SY-1816
-- Highscreen Sound-Boostar 32 Wave 3D
-- Highscreen Sound-Boostar 16
-- AVM Apex Pro card
-- (Aztech SC-16 3D)
-- (Newcom SC-16 3D)
-- (Terratec EWS64S)
-
-Cards listed in brackets are not supported reliable. If you have such a card
-you should add the extra parameter:
- options=1
-when loading the ad1816 module via modprobe.
-
-
-Troubleshooting:
-----------------
-
-First of all you should check, if the driver has been loaded
-properly.
-
-If loading of the driver succeeds, but playback/capture fails, check
-if you used the correct values for irq, dma and dma2 when loading the module.
-If one of them is wrong you usually get the following error message:
-
-Nov 6 17:06:13 tek01 kernel: Sound: DMA (output) timed out - IRQ/DRQ config error?
-
-If playback/capture is too fast or to slow, you should have a look at
-the clock chip of your sound card. The AD1816 was designed for a 33MHz
-oscillator, however most sound card manufacturer use slightly
-different oscillators as they are cheaper than 33MHz oscillators. If
-you have such a card you have to adjust the ad1816_clockfreq parameter
-above. For example: For a card using a 32.875MHz oscillator use
-ad1816_clockfreq=32875 instead of ad1816_clockfreq=33000.
-
-
-Updates, bugfixes and bugreports:
---------------------------------
-
-As the driver is still experimental and under development, you should
-watch out for updates. Updates of the driver are available on the
-Internet from one of my home pages:
- http://www.student.informatik.tu-darmstadt.de/~tek/projects/linux.html
-or:
- http://www.tu-darmstadt.de/~tek01/projects/linux.html
-
-Bugreports, bugfixes and related questions should be sent via E-Mail to:
- tek@rbg.informatik.tu-darmstadt.de
-
-Thorsten Knabe <tek@rbg.informatik.tu-darmstadt.de>
-Christoph Hellwig <hch@infradead.org>
- Last modified: 2000/09/20
diff --git a/Documentation/sound/oss/ALS b/Documentation/sound/oss/ALS
index d01ffbfd580..bf10bed4574 100644
--- a/Documentation/sound/oss/ALS
+++ b/Documentation/sound/oss/ALS
@@ -57,10 +57,10 @@ The resulting sound driver will provide the following capabilities:
DSP/PCM/audio out (L&R), FM (L&R) and Mic in (mono).
Jonathan Woithe
-jwoithe@physics.adelaide.edu.au
+jwoithe@just42.net
30 March 1998
Modified 2000-02-26 by Dave Forrest, drf5n@virginia.edu to add ALS100/ALS200
Modified 2000-04-10 by Paul Laufer, pelaufer@csupomona.edu to add ISAPnP info.
-Modified 2000-11-19 by Jonathan Woithe, jwoithe@physics.adelaide.edu.au
+Modified 2000-11-19 by Jonathan Woithe, jwoithe@just42.net
- updated information for kernel 2.4.x.
diff --git a/Documentation/sound/oss/AWE32 b/Documentation/sound/oss/AWE32
deleted file mode 100644
index cb179bfeb52..00000000000
--- a/Documentation/sound/oss/AWE32
+++ /dev/null
@@ -1,76 +0,0 @@
- Installing and using Creative AWE midi sound under Linux.
-
-This documentation is devoted to the Creative Sound Blaster AWE32, AWE64 and
-SB32.
-
-1) Make sure you have an ORIGINAL Creative SB32, AWE32 or AWE64 card. This
- is important, because the driver works only with real Creative cards.
-
-2) The first thing you need to do is re-compile your kernel with support for
- your sound card. Run your favourite tool to configure the kernel and when
- you get to the "Sound" menu you should enable support for the following:
-
- Sound card support,
- OSS sound modules,
- 100% Sound Blaster compatibles (SB16/32/64, ESS, Jazz16) support,
- AWE32 synth
-
- If your card is "Plug and Play" you will also need to enable these two
- options, found under the "Plug and Play configuration" menu:
-
- Plug and Play support
- ISA Plug and Play support
-
- Now compile and install the kernel in normal fashion. If you don't know
- how to do this you can find instructions for this in the README file
- located in the root directory of the kernel source.
-
-3) Before you can start playing midi files you will have to load a sound
- bank file. The utility needed for doing this is called "sfxload", and it
- is one of the utilities found in a package called "awesfx". If this
- package is not available in your distribution you can download the AWE
- snapshot from Creative Labs Open Source website:
-
- http://www.opensource.creative.com/snapshot.html
-
- Once you have unpacked the AWE snapshot you will see a "awesfx"
- directory. Follow the instructions in awesfx/docs/INSTALL to install the
- utilities in this package. After doing this, sfxload should be installed
- as:
-
- /usr/local/bin/sfxload
-
- To enable AWE general midi synthesis you should also get the sound bank
- file for general midi from:
-
- http://members.xoom.com/yar/synthgm.sbk.gz
-
- Copy it to a directory of your choice, and unpack it there.
-
-4) Edit /etc/modprobe.conf, and insert the following lines at the end of the
- file:
-
- alias sound-slot-0 sb
- alias sound-service-0-1 awe_wave
- install awe_wave /sbin/modprobe --first-time -i awe_wave && /usr/local/bin/sfxload PATH_TO_SOUND_BANK_FILE
-
- You will of course have to change "PATH_TO_SOUND_BANK_FILE" to the full
- path of of the sound bank file. That will enable the Sound Blaster and AWE
- wave synthesis. To play midi files you should get one of these programs if
- you don't already have them:
-
- Playmidi: http://playmidi.openprojects.net
-
- AWEMidi Player (drvmidi) Included in the previously mentioned AWE
- snapshot.
-
- You will probably have to pass the "-e" switch to playmidi to have it use
- your midi device. drvmidi should work without switches.
-
- If something goes wrong please e-mail me. All comments and suggestions are
- welcome.
-
- Yaroslav Rosomakho (alons55@dialup.ptt.ru)
- http://www.yar.opennet.ru
-
-Last Updated: Feb 3 2001
diff --git a/Documentation/sound/oss/AudioExcelDSP16 b/Documentation/sound/oss/AudioExcelDSP16
index c0f08922993..ea8549faede 100644
--- a/Documentation/sound/oss/AudioExcelDSP16
+++ b/Documentation/sound/oss/AudioExcelDSP16
@@ -1,10 +1,10 @@
Driver
------
-Informations about Audio Excel DSP 16 driver can be found in the source
+Information about Audio Excel DSP 16 driver can be found in the source
file aedsp16.c
Please, read the head of the source before using it. It contain useful
-informations.
+information.
Configuration
-------------
@@ -41,7 +41,7 @@ mpu_base I/O base address for activate MPU-401 mode
(0x300, 0x310, 0x320 or 0x330)
mpu_irq MPU-401 irq line (5, 7, 9, 10 or 0)
-The /etc/modprobe.conf will have lines like this:
+A configuration file in /etc/modprobe.d/ directory will have lines like this:
options opl3 io=0x388
options ad1848 io=0x530 irq=11 dma=3
@@ -51,11 +51,11 @@ Where the aedsp16 options are the options for this driver while opl3 and
ad1848 are the corresponding options for the MSS and OPL3 modules.
Loading MSS and OPL3 needs to pre load the aedsp16 module to set up correctly
-the sound card. Installation dependencies must be written in the modprobe.conf
-file:
+the sound card. Installation dependencies must be written in configuration
+files under /etc/modprobe.d/ directory:
-install ad1848 /sbin/modprobe aedsp16 && /sbin/modprobe -i ad1848
-install opl3 /sbin/modprobe aedsp16 && /sbin/modprobe -i opl3
+softdep ad1848 pre: aedsp16
+softdep opl3 pre: aedsp16
Then you must load the sound modules stack in this order:
sound -> aedsp16 -> [ ad1848, opl3 ]
@@ -68,7 +68,7 @@ Sound cards supported
This driver supports the SC-6000 and SC-6600 based Gallant's sound card.
It don't support the Audio Excel DSP 16 III (try the SC-6600 code).
I'm working on the III version of the card: if someone have useful
-informations about it, please let me know.
+information about it, please let me know.
For all the non-supported audio cards, you have to boot MS-DOS (or WIN95)
activating the audio card with the MS-DOS device driver, then you have to
<ctrl>-<alt>-<del> and boot Linux.
diff --git a/Documentation/sound/oss/CMI8330 b/Documentation/sound/oss/CMI8330
index 9c439f1a6db..8a5fd1611c6 100644
--- a/Documentation/sound/oss/CMI8330
+++ b/Documentation/sound/oss/CMI8330
@@ -143,11 +143,10 @@ CONFIG_SOUND_MSS=m
-Alma Chao <elysian@ethereal.torsion.org> suggests the following /etc/modprobe.conf:
+Alma Chao <elysian@ethereal.torsion.org> suggests the following in
+a /etc/modprobe.d/*conf file:
alias sound ad1848
alias synth0 opl3
options ad1848 io=0x530 irq=7 dma=0 soundpro=1
options opl3 io=0x388
-
-
diff --git a/Documentation/sound/oss/CMI8338 b/Documentation/sound/oss/CMI8338
deleted file mode 100644
index 387d058c3f9..00000000000
--- a/Documentation/sound/oss/CMI8338
+++ /dev/null
@@ -1,85 +0,0 @@
-Audio driver for CM8338/CM8738 chips by Chen-Li Tien
-
-
-HARDWARE SUPPORTED
-================================================================================
-C-Media CMI8338
-C-Media CMI8738
-On-board C-Media chips
-
-
-STEPS TO BUILD DRIVER
-================================================================================
-
- 1. Backup the Config.in and Makefile in the sound driver directory
- (/usr/src/linux/driver/sound).
- The Configure.help provide help when you config driver in step
- 4, please backup the original one (/usr/src/linux/Document) and
- copy this file.
- The cmpci is document for the driver in detail, please copy it
- to /usr/src/linux/Document/sound so you can refer it. Backup if
- there is already one.
-
- 2. Extract the tar file by 'tar xvzf cmpci-xx.tar.gz' in the above
- directory.
-
- 3. Change directory to /usr/src/linux
-
- 4. Config cm8338 driver by 'make menuconfig', 'make config' or
- 'make xconfig' command.
-
- 5. Please select Sound Card (CONFIG_SOUND=m) support and CMPCI
- driver (CONFIG_SOUND_CMPCI=m) as modules. Resident mode not tested.
- For driver option, please refer 'DRIVER PARAMETER'
-
- 6. Compile the kernel if necessary.
-
- 7. Compile the modules by 'make modules'.
-
- 8. Install the modules by 'make modules_install'
-
-
-INSTALL DRIVER
-================================================================================
-
- 1. Before first time to run the driver, create module dependency by
- 'depmod -a'
-
- 2. To install the driver manually, enter 'modprobe cmpci'.
-
- 3. Driver installation for various distributions:
-
- a. Slackware 4.0
- Add the 'modprobe cmpci' command in your /etc/rc.d/rc.modules
- file.so you can start the driver automatically each time booting.
-
- b. Caldera OpenLinux 2.2
- Use LISA to load the cmpci module.
-
- c. RedHat 6.0 and S.u.S.E. 6.1
- Add following command in /etc/conf.modules:
-
- alias sound cmpci
-
- also visit http://www.cmedia.com.tw for installation instruction.
-
-DRIVER PARAMETER
-================================================================================
-
- Some functions for the cm8738 can be configured in Kernel Configuration
- or modules parameters. Set these parameters to 1 to enable.
-
- mpuio: I/O ports base for MPU-401, 0 if disabled.
- fmio: I/O ports base for OPL-3, 0 if disabled.
- spdif_inverse:Inverse the S/PDIF-in signal, this depends on your
- CD-ROM or DVD-ROM.
- spdif_loop: Enable S/PDIF loop, this route S/PDIF-in to S/PDIF-out
- directly.
- speakers: Number of speakers used.
- use_line_as_rear:Enable this if you want to use line-in as
- rear-out.
- use_line_as_bass:Enable this if you want to use line-in as
- bass-out.
- joystick: Enable joystick. You will need to install Linux joystick
- driver.
-
diff --git a/Documentation/sound/oss/CS4232 b/Documentation/sound/oss/CS4232
deleted file mode 100644
index 7d6af7a5c1c..00000000000
--- a/Documentation/sound/oss/CS4232
+++ /dev/null
@@ -1,23 +0,0 @@
-To configure the Crystal CS423x sound chip and activate its DSP functions,
-modules may be loaded in this order:
-
- modprobe sound
- insmod ad1848
- insmod uart401
- insmod cs4232 io=* irq=* dma=* dma2=*
-
-This is the meaning of the parameters:
-
- io--I/O address of the Windows Sound System (normally 0x534)
- irq--IRQ of this device
- dma and dma2--DMA channels (DMA2 may be 0)
-
-On some cards, the board attempts to do non-PnP setup, and fails. If you
-have problems, use Linux' PnP facilities.
-
-To get MIDI facilities add
-
- insmod opl3 io=*
-
-where "io" is the I/O address of the OPL3 synthesizer. This will be shown
-in /proc/sys/pnp and is normally 0x388.
diff --git a/Documentation/sound/oss/INSTALL.awe b/Documentation/sound/oss/INSTALL.awe
deleted file mode 100644
index 310f42ca1e8..00000000000
--- a/Documentation/sound/oss/INSTALL.awe
+++ /dev/null
@@ -1,134 +0,0 @@
-================================================================
- INSTALLATION OF AWE32 SOUND DRIVER FOR LINUX
- Takashi Iwai <iwai@ww.uni-erlangen.de>
-================================================================
-
-----------------------------------------------------------------
-* Attention to SB-PnP Card Users
-
-If you're using PnP cards, the initialization of PnP is required
-before loading this driver. You have now three options:
- 1. Use isapnptools.
- 2. Use in-kernel isapnp support.
- 3. Initialize PnP on DOS/Windows, then boot linux by loadlin.
-In this document, only the case 1 case is treated.
-
-----------------------------------------------------------------
-* Installation on Red Hat 5.0 Sound Driver
-
-Please use install-rh.sh under RedHat5.0 directory.
-DO NOT USE install.sh below.
-See INSTALL.RH for more details.
-
-----------------------------------------------------------------
-* Installation/Update by Shell Script
-
- 1. Become root
-
- % su
-
- 2. If you have never configured the kernel tree yet, run make config
- once (to make dependencies and symlinks).
-
- # cd /usr/src/linux
- # make xconfig
-
- 3. Run install.sh script
-
- # sh ./install.sh
-
- 4. Configure your kernel
-
- (for Linux 2.[01].x user)
- # cd /usr/src/linux
- # make xconfig (or make menuconfig)
-
- (for Linux 1.2.x user)
- # cd /usr/src/linux
- # make config
-
- Answer YES to both "lowlevel drivers" and "AWE32 wave synth" items
- in Sound menu. ("lowlevel drivers" will appear only in 2.x
- kernel.)
-
- 5. Make your kernel (and modules), and install them as usual.
-
- 5a. make kernel image
- # make zImage
-
- 5b. make modules and install them
- # make modules && make modules_install
-
- 5c. If you're using lilo, copy the kernel image and run lilo.
- Otherwise, copy the kernel image to suitable directory or
- media for your system.
-
- 6. Reboot the kernel if necessary.
- - If you updated only the modules, you don't have to reboot
- the system. Just remove the old sound modules here.
- in
- # rmmod sound.o (linux-2.0 or OSS/Free)
- # rmmod awe_wave.o (linux-2.1)
-
- 7. If your AWE card is a PnP and not initialized yet, you'll have to
- do it by isapnp tools. Otherwise, skip to 8.
-
- This section described only a brief explanation. For more
- details, please see the AWE64-Mini-HOWTO or isapnp tools FAQ.
-
- 7a. If you have no isapnp.conf file, generate it by pnpdump.
- Otherwise, skip to 7d.
- # pnpdump > /etc/isapnp.conf
-
- 7b. Edit isapnp.conf file. Comment out the appropriate
- lines containing desirable I/O ports, DMA and IRQs.
- Don't forget to enable (ACT Y) line.
-
- 7c. Add two i/o ports (0xA20 and 0xE20) in WaveTable part.
- ex)
- (CONFIGURE CTL0048/58128 (LD 2
- # ANSI string -->WaveTable<--
- (IO 0 (BASE 0x0620))
- (IO 1 (BASE 0x0A20))
- (IO 2 (BASE 0x0E20))
- (ACT Y)
- ))
-
- 7d. Load the config file.
- CAUTION: This will reset all PnP cards!
-
- # isapnp /etc/isapnp.conf
-
- 8. Load the sound module (if you configured it as a module):
-
- for 2.0 kernel or OSS/Free monolithic module:
-
- # modprobe sound.o
-
- for 2.1 kernel:
-
- # modprobe sound
- # insmod uart401
- # insmod sb io=0x220 irq=5 dma=1 dma16=5 mpu_io=0x330
- (These values depend on your settings.)
- # insmod awe_wave
- (Be sure to load awe_wave after sb!)
-
- See Documentation/sound/oss/AWE32 for
- more details.
-
- 9. (only for obsolete systems) If you don't have /dev/sequencer
- device file, make it according to Readme.linux file on
- /usr/src/linux/drivers/sound. (Run a shell script included in
- that file). <-- This file no longer exists in the recent kernels!
-
- 10. OK, load your own soundfont file, and enjoy MIDI!
-
- % sfxload synthgm.sbk
- % drvmidi foo.mid
-
- 11. For more advanced use (eg. dynamic loading, virtual bank and
- etc.), please read the awedrv FAQ or the instructions in awesfx
- and awemidi packages.
-
-Good luck!
diff --git a/Documentation/sound/oss/Introduction b/Documentation/sound/oss/Introduction
index 15d4fb975ac..42da2d8fa37 100644
--- a/Documentation/sound/oss/Introduction
+++ b/Documentation/sound/oss/Introduction
@@ -69,7 +69,7 @@ are available, for example IRQ, address, DMA.
Warning, the options for different cards sometime use different names
for the same or a similar feature (dma1= versus dma16=). As a last
-resort, inspect the code (search for MODULE_PARM).
+resort, inspect the code (search for module_param).
Notes:
@@ -80,7 +80,7 @@ Notes:
additional features.
2. The commercial OSS driver may be obtained from the site:
- http://www/opensound.com. This may be used for cards that
+ http://www.opensound.com. This may be used for cards that
are unsupported by the kernel driver, or may be used
by other operating systems.
@@ -167,8 +167,8 @@ in a file such as /root/soundon.sh.
MODPROBE:
=========
-If loading via modprobe, these common files are automatically loaded
-when requested by modprobe. For example, my /etc/modprobe.conf contains:
+If loading via modprobe, these common files are automatically loaded when
+requested by modprobe. For example, my /etc/modprobe.d/oss.conf contains:
alias sound sb
options sb io=0x240 irq=9 dma=3 dma16=5 mpu_io=0x300
@@ -228,7 +228,7 @@ http://www.opensound.com. Before loading the commercial sound
driver, you should do the following:
1. remove sound modules (detailed above)
-2. remove the sound modules from /etc/modprobe.conf
+2. remove the sound modules from /etc/modprobe.d/*.conf
3. move the sound modules from /lib/modules/<kernel>/misc
(for example, I make a /lib/modules/<kernel>/misc/tmp
directory and copy the sound module files to that
@@ -265,7 +265,7 @@ twice, you need to do the following:
sb.o could be copied (or symlinked) to sb1.o for the
second SoundBlaster.
-2. Make a second entry in /etc/modprobe.conf, for example,
+2. Make a second entry in /etc/modprobe.d/*conf, for example,
sound1 or sb1. This second entry should refer to the
new module names for example sb1, and should include
the I/O, etc. for the second sound card.
@@ -369,7 +369,7 @@ There are several ways of configuring your sound:
2) On the command line when using insmod or in a bash script
using command line calls to load sound.
-3) In /etc/modprobe.conf when using modprobe.
+3) In /etc/modprobe.d/*conf when using modprobe.
4) Via Red Hat's GPL'd /usr/sbin/sndconfig program (text based).
diff --git a/Documentation/sound/oss/MAD16 b/Documentation/sound/oss/MAD16
deleted file mode 100644
index 865dbd84874..00000000000
--- a/Documentation/sound/oss/MAD16
+++ /dev/null
@@ -1,56 +0,0 @@
-(This recipe has been edited to update the configuration symbols,
- and change over to modprobe.conf for 2.6)
-
-From: Shaw Carruthers <shaw@shawc.demon.co.uk>
-
-I have been using mad16 sound for some time now with no problems, current
-kernel 2.1.89
-
-lsmod shows:
-
-mad16 5176 0
-sb 22044 0 [mad16]
-uart401 5576 0 [mad16 sb]
-ad1848 14176 1 [mad16]
-sound 61928 0 [mad16 sb uart401 ad1848]
-
-.config has:
-
-CONFIG_SOUND=m
-CONFIG_SOUND_ADLIB=m
-CONFIG_SOUND_MAD16=m
-CONFIG_SOUND_YM3812=m
-
-modprobe.conf has:
-
-alias char-major-14-* mad16
-options sb mad16=1
-options mad16 io=0x530 irq=7 dma=0 dma16=1 && /usr/local/bin/aumix -w 15 -p 20 -m 0 -1 0 -2 0 -3 0 -i 0
-
-
-To get the built in mixer to work this needs to be:
-
-options adlib_card io=0x388 # FM synthesizer
-options sb mad16=1
-options mad16 io=0x530 irq=7 dma=0 dma16=1 mpu_io=816 mpu_irq=5 && /usr/local/bin/aumix -w 15 -p 20 -m 0 -1 0 -2 0 -3 0 -i 0
-
-The addition of the "mpu_io=816 mpu_irq=5" to the mad16 options line is
-
-------------------------------------------------------------------------
-The mad16 module in addition supports the following options:
-
-option: meaning: default:
-joystick=0,1 disabled, enabled disabled
-cdtype=0x00,0x02,0x04, disabled, Sony CDU31A, disabled
- 0x06,0x08,0x0a Mitsumi, Panasonic,
- Secondary IDE, Primary IDE
-cdport=0x340,0x320, 0x340
- 0x330,0x360
-cdirq=0,3,5,7,9,10,11 disabled, IRQ3, ... disabled
-cddma=0,5,6,7 disabled, DMA5, ... DMA5 for Mitsumi or IDE
-cddma=0,1,2,3 disabled, DMA1, ... DMA3 for Sony or Panasonic
-opl4=0,1 OPL3, OPL4 OPL3
-
-for more details see linux/drivers/sound/mad16.c
-
-Rui Sousa
diff --git a/Documentation/sound/oss/Maestro b/Documentation/sound/oss/Maestro
deleted file mode 100644
index 4a80eb3f8e0..00000000000
--- a/Documentation/sound/oss/Maestro
+++ /dev/null
@@ -1,123 +0,0 @@
- An OSS/Lite Driver for the ESS Maestro family of sound cards
-
- Zach Brown, December 1999
-
-Driver Status and Availability
-------------------------------
-
-The most recent version of this driver will hopefully always be available at
- http://www.zabbo.net/maestro/
-
-I will try and maintain the most recent stable version of the driver
-in both the stable and development kernel lines.
-
-ESS Maestro Chip Family
------------------------
-
-There are 3 main variants of the ESS Maestro PCI sound chip. The first
-is the Maestro 1. It was originally produced by Platform Tech as the
-'AGOGO'. It can be recognized by Platform Tech's PCI ID 0x1285 with
-0x0100 as the device ID. It was put on some sound boards and a few laptops.
-ESS bought the design and cleaned it up as the Maestro 2. This starts
-their marking with the ESS vendor ID 0x125D and the 'year' device IDs.
-The Maestro 2 claims 0x1968 while the Maestro 2e has 0x1978.
-
-The various families of Maestro are mostly identical as far as this
-driver is concerned. It doesn't touch the DSP parts that differ (though
-it could for FM synthesis).
-
-Driver OSS Behavior
---------------------
-
-This OSS driver exports /dev/mixer and /dev/dsp to applications, which
-mostly adhere to the OSS spec. This driver doesn't register itself
-with /dev/sndstat, so don't expect information to appear there.
-
-The /dev/dsp device exported behaves almost as expected. Playback is
-supported in all the various lovely formats. 8/16bit stereo/mono from
-8khz to 48khz, and mmap()ing for playback behaves. Capture/recording
-is limited due to oddities with the Maestro hardware. One can only
-record in 16bit stereo. For recording the maestro uses non interleaved
-stereo buffers so that mmap()ing the incoming data does not result in
-a ring buffer of LRLR data. mmap()ing of the read buffers is therefore
-disallowed until this can be cleaned up.
-
-/dev/mixer is an interface to the AC'97 codec on the Maestro. It is
-worth noting that there are a variety of AC'97s that can be wired to
-the Maestro. Which is used is entirely up to the hardware implementor.
-This should only be visible to the user by the presence, or lack, of
-'Bass' and 'Treble' sliders in the mixer. Not all AC'97s have them.
-
-The driver doesn't support MIDI or FM playback at the moment. Typically
-the Maestro is wired to an MPU MIDI chip, but some hardware implementations
-don't. We need to assemble a white list of hardware implementations that
-have MIDI wired properly before we can claim to support it safely.
-
-Compiling and Installing
-------------------------
-
-With the drivers inclusion into the kernel, compiling and installing
-is the same as most OSS/Lite modular sound drivers. Compilation
-of the driver is enabled through the CONFIG_SOUND_MAESTRO variable
-in the config system.
-
-It may be modular or statically linked. If it is modular it should be
-installed with the rest of the modules for the kernel on the system.
-Typically this will be in /lib/modules/ somewhere. 'alias sound maestro'
-should also be added to your module configs (typically /etc/conf.modules)
-if you're using modular OSS/Lite sound and want to default to using a
-maestro chip.
-
-As this is a PCI device, the module does not need to be informed of
-any IO or IRQ resources it should use, it devines these from the
-system. Sometimes, on sucky PCs, the BIOS fails to allocated resources
-for the maestro. This will result in a message like:
- maestro: PCI subsystem reports IRQ 0, this might not be correct.
-from the kernel. Should this happen the sound chip most likely will
-not operate correctly. To solve this one has to dig through their BIOS
-(typically entered by hitting a hot key at boot time) and figure out
-what magic needs to happen so that the BIOS will reward the maestro with
-an IRQ. This operation is incredibly system specific, so you're on your
-own. Sometimes the magic lies in 'PNP Capable Operating System' settings.
-
-There are very few options to the driver. One is 'debug' which will
-tell the driver to print minimal debugging information as it runs. This
-can be collected with 'dmesg' or through the klogd daemon.
-
-The other, more interesting option, is 'dsps_order'. Typically at
-install time the driver will only register one available /dev/dsp device
-for its use. The 'dsps_order' module parameter allows for more devices
-to be allocated, as a power of two. Up to 4 devices can be registered
-( dsps_order=2 ). These devices act as fully distinct units and use
-separate channels in the maestro.
-
-Power Management
-----------------
-
-As of version 0.14, this driver has a minimal understanding of PCI
-Power Management. If it finds a valid power management capability
-on the PCI device it will attempt to use the power management
-functions of the maestro. It will only do this on Maestro 2Es and
-only on machines that are known to function well. You can
-force the use of power management by setting the 'use_pm' module
-option to 1, or can disable it entirely by setting it to 0.
-
-When using power management, the driver does a few things
-differently. It will keep the chip in a lower power mode
-when the module is inserted but /dev/dsp is not open. This
-allows the mixer to function but turns off the clocks
-on other parts of the chip. When /dev/dsp is opened the chip
-is brought into full power mode, and brought back down
-when it is closed. It also powers down the chip entirely
-when the module is removed or the machine is shutdown. This
-can have nonobvious consequences. CD audio may not work
-after a power managing driver is removed. Also, software that
-doesn't understand power management may not be able to talk
-to the powered down chip until the machine goes through a hard
-reboot to bring it back.
-
-.. more details ..
-------------------
-
-drivers/sound/maestro.c contains comments that hopefully explain
-the maestro implementation.
diff --git a/Documentation/sound/oss/Maestro3 b/Documentation/sound/oss/Maestro3
deleted file mode 100644
index a113718e803..00000000000
--- a/Documentation/sound/oss/Maestro3
+++ /dev/null
@@ -1,92 +0,0 @@
- An OSS/Lite Driver for the ESS Maestro3 family of sound chips
-
- Zach Brown, January 2001
-
-Driver Status and Availability
-------------------------------
-
-The most recent version of this driver will hopefully always be available at
- http://www.zabbo.net/maestro3/
-
-I will try and maintain the most recent stable version of the driver
-in both the stable and development kernel lines.
-
-Historically I've sucked pretty hard at actually doing that, however.
-
-ESS Maestro3 Chip Family
------------------------
-
-The 'Maestro3' is much like the Maestro2 chip. The noted improvement
-is the removal of the silicon in the '2' that did PCM mixing. All that
-work is now done through a custom DSP called the ASSP, the Asynchronus
-Specific Signal Processor.
-
-The 'Allegro' is a baby version of the Maestro3. I'm not entirely clear
-on the extent of the differences, but the driver supports them both :)
-
-The 'Allegro' shows up as PCI ID 0x1988 and the Maestro3 as 0x1998,
-both under ESS's vendor ID of 0x125D. The Maestro3 can also show up as
-0x199a when hardware strapping is used.
-
-The chip can also act as a multi function device. The modem IDs follow
-the audio multimedia device IDs. (so the modem part of an Allegro shows
-up as 0x1989)
-
-Driver OSS Behavior
---------------------
-
-This OSS driver exports /dev/mixer and /dev/dsp to applications, which
-mostly adhere to the OSS spec. This driver doesn't register itself
-with /dev/sndstat, so don't expect information to appear there.
-
-The /dev/dsp device exported behaves as expected. Playback is
-supported in all the various lovely formats. 8/16bit stereo/mono from
-8khz to 48khz, with both read()/write(), and mmap().
-
-/dev/mixer is an interface to the AC'97 codec on the Maestro3. It is
-worth noting that there are a variety of AC'97s that can be wired to
-the Maestro3. Which is used is entirely up to the hardware implementor.
-This should only be visible to the user by the presence, or lack, of
-'Bass' and 'Treble' sliders in the mixer. Not all AC'97s have them.
-The Allegro has an onchip AC'97.
-
-The driver doesn't support MIDI or FM playback at the moment.
-
-Compiling and Installing
-------------------------
-
-With the drivers inclusion into the kernel, compiling and installing
-is the same as most OSS/Lite modular sound drivers. Compilation
-of the driver is enabled through the CONFIG_SOUND_MAESTRO3 variable
-in the config system.
-
-It may be modular or statically linked. If it is modular it should be
-installed with the rest of the modules for the kernel on the system.
-Typically this will be in /lib/modules/ somewhere. 'alias sound-slot-0
-maestro3' should also be added to your module configs (typically
-/etc/modprobe.conf) if you're using modular OSS/Lite sound and want to
-default to using a maestro3 chip.
-
-There are very few options to the driver. One is 'debug' which will
-tell the driver to print minimal debugging information as it runs. This
-can be collected with 'dmesg' or through the klogd daemon.
-
-One is 'external_amp', which tells the driver to attempt to enable
-an external amplifier. This defaults to '1', you can tell the driver
-not to bother enabling such an amplifier by setting it to '0'.
-
-And the last is 'gpio_pin', which tells the driver which GPIO pin number
-the external amp uses (0-15), The Allegro uses 8 by default, all others 1.
-If everything loads correctly and seems to be working but you get no sound,
-try tweaking this value.
-
-Systems known to need a different value
- Panasonic ToughBook CF-72: gpio_pin=13
-
-Power Management
-----------------
-
-This driver has a minimal understanding of PCI Power Management. It will
-try and power down the chip when the system is suspended, and power
-it up with it is resumed. It will also try and power down the chip
-when the machine is shut down.
diff --git a/Documentation/sound/oss/NEWS b/Documentation/sound/oss/NEWS
deleted file mode 100644
index a81e0ef72ae..00000000000
--- a/Documentation/sound/oss/NEWS
+++ /dev/null
@@ -1,42 +0,0 @@
-Linux 2.4 Sound Changes
-2000-September-25
-Christoph Hellwig, <hch@infradead.org>
-
-
-
-=== isapnp support
-
-The Linux 2.4 Kernel does have reliable in-kernel isapnp support.
-Some drivers (sb.o, ad1816.o awe_wave.o) do now support automatically
-detecting and configuring isapnp devices.
-If you have a not yet supported isapnp soundcard, mail me the content
-of '/proc/isapnp' on your system and some information about your card
-and its driver(s) so I can try to get isapnp working for it.
-
-
-
-=== soundcard resources on kernel commandline
-
-Before Linux 2.4 you had to specify the resources for sounddrivers
-statically linked into the kernel at compile time
-(in make config/menuconfig/xconfig). In Linux 2.4 the resources are
-now specified at the boot-time kernel commandline (e.g. the lilo
-'append=' line or everything that's after the kernel name in grub).
-Read the Configure.help entry for your card for the parameters.
-
-
-=== softoss is gone
-
-In Linux 2.4 the softoss in-kernel software synthesizer is no more aviable.
-Use a user space software synthesizer like timidity instead.
-
-
-
-=== /dev/sndstat and /proc/sound are gone
-
-In older Linux versions those files exported some information about the
-OSS/Free configuration to userspace. In Linux 2.3 they were removed because
-they did not support the growing number of pci soundcards and there were
-some general problems with this interface.
-
-
diff --git a/Documentation/sound/oss/NM256 b/Documentation/sound/oss/NM256
deleted file mode 100644
index b503217488b..00000000000
--- a/Documentation/sound/oss/NM256
+++ /dev/null
@@ -1,280 +0,0 @@
-=======================================================
-Documentation for the NeoMagic 256AV/256ZX sound driver
-=======================================================
-
-You're looking at version 1.1 of the driver. (Woohoo!) It has been
-successfully tested against the following laptop models:
-
- Sony Z505S/Z505SX/Z505DX/Z505RX
- Sony F150, F160, F180, F250, F270, F280, PCG-F26
- Dell Latitude CPi, CPt (various submodels)
-
-There are a few caveats, which is why you should read the entirety of
-this document first.
-
-This driver was developed without any support or assistance from
-NeoMagic. There is no warranty, expressed, implied, or otherwise. It
-is free software in the public domain; feel free to use it, sell it,
-give it to your best friends, even claim that you wrote it (but why?!)
-but don't go whining to me, NeoMagic, Sony, Dell, or anyone else
-when it blows up your computer.
-
-Version 1.1 contains a change to try and detect non-AC97 versions of
-the hardware, and not install itself appropriately. It should also
-reinitialize the hardware on an APM resume event, assuming that APM
-was configured into your kernel.
-
-============
-Installation
-============
-
-Enable the sound drivers, the OSS sound drivers, and then the NM256
-driver. The NM256 driver *must* be configured as a module (it won't
-give you any other choice).
-
-Next, do the usual "make modules" and "make modules_install".
-Finally, insmod the soundcore, sound and nm256 modules.
-
-When the nm256 driver module is loaded, you should see a couple of
-confirmation messages in the kernel logfile indicating that it found
-the device (the device does *not* use any I/O ports or DMA channels).
-Now try playing a wav file, futz with the CD-ROM if you have one, etc.
-
-The NM256 is entirely a PCI-based device, and all the necessary
-information is automatically obtained from the card. It can only be
-configured as a module in a vain attempt to prevent people from
-hurting themselves. It works correctly if it shares an IRQ with
-another device (it normally shares IRQ 9 with the builtin eepro100
-ethernet on the Sony Z505 laptops).
-
-It does not run the card in any sort of compatibility mode. It will
-not work on laptops that have the SB16-compatible, AD1848-compatible
-or CS4232-compatible codec/mixer; you will want to use the appropriate
-compatible OSS driver with these chipsets. I cannot provide any
-assistance with machines using the SB16, AD1848 or CS4232 compatible
-versions. (The driver now attempts to detect the mixer version, and
-will refuse to load if it believes the hardware is not
-AC97-compatible.)
-
-The sound support is very basic, but it does include simultaneous
-playback and record capability. The mixer support is also quite
-simple, although this is in keeping with the rather limited
-functionality of the chipset.
-
-There is no hardware synthesizer available, as the Losedows OPL-3 and
-MIDI support is done via hardware emulation.
-
-Only three recording devices are available on the Sony: the
-microphone, the CD-ROM input, and the volume device (which corresponds
-to the stereo output). (Other devices may be available on other
-models of laptops.) The Z505 series does not have a builtin CD-ROM,
-so of course the CD-ROM input doesn't work. It does work on laptops
-with a builtin CD-ROM drive.
-
-The mixer device does not appear to have any tone controls, at least
-on the Z505 series. The mixer module checks for tone controls in the
-AC97 mixer, and will enable them if they are available.
-
-==============
-Known problems
-==============
-
- * There are known problems with PCMCIA cards and the eepro100 ethernet
- driver on the Z505S/Z505SX/Z505DX. Keep reading.
-
- * There are also potential problems with using a virtual X display, and
- also problems loading the module after the X server has been started.
- Keep reading.
-
- * The volume control isn't anywhere near linear. Sorry. This will be
- fixed eventually, when I get sufficiently annoyed with it. (I doubt
- it will ever be fixed now, since I've never gotten sufficiently
- annoyed with it and nobody else seems to care.)
-
- * There are reports that the CD-ROM volume is very low. Since I do not
- have a CD-ROM equipped laptop, I cannot test this (it's kinda hard to
- do remotely).
-
- * Only 8 fixed-rate speeds are supported. This is mainly a chipset
- limitation. It may be possible to support other speeds in the future.
-
- * There is no support for the telephone mixer/codec. There is support
- for a phonein/phoneout device in the mixer driver; whether or not
- it does anything is anyone's guess. (Reports on this would be
- appreciated. You'll have to figure out how to get the phone to
- go off-hook before it'll work, tho.)
-
- * This driver was not written with any cooperation or support from
- NeoMagic. If you have any questions about this, see their website
- for their official stance on supporting open source drivers.
-
-============
-Video memory
-============
-
-The NeoMagic sound engine uses a portion of the display memory to hold
-the sound buffer. (Crazy, eh?) The NeoMagic video BIOS sets up a
-special pointer at the top of video RAM to indicate where the top of
-the audio buffer should be placed.
-
-At the present time XFree86 is apparently not aware of this. It will
-thus write over either the pointer or the sound buffer with abandon.
-(Accelerated-X seems to do a better job here.)
-
-This implies a few things:
-
- * Sometimes the NM256 driver has to guess at where the buffer
- should be placed, especially if the module is loaded after the
- X server is started. It's usually correct, but it will consistently
- fail on the Sony F250.
-
- * Virtual screens greater than 1024x768x16 under XFree86 are
- problematic on laptops with only 2.5MB of screen RAM. This
- includes all of the 256AV-equipped laptops. (Virtual displays
- may or may not work on the 256ZX, which has at least 4MB of
- video RAM.)
-
-If you start having problems with random noise being output either
-constantly (this is the usual symptom on the F250), or when windows
-are moved around (this is the usual symptom when using a virtual
-screen), the best fix is to
-
- * Don't use a virtual frame buffer.
- * Make sure you load the NM256 module before the X server is
- started.
-
-On the F250, it is possible to force the driver to load properly even
-after the XFree86 server is started by doing:
-
- insmod nm256 buffertop=0x25a800
-
-This forces the audio buffers to the correct offset in screen RAM.
-
-One user has reported a similar problem on the Sony F270, although
-others apparently aren't seeing any problems. His suggested command
-is
-
- insmod nm256 buffertop=0x272800
-
-=================
-Official WWW site
-=================
-
-The official site for the NM256 driver is:
-
- http://www.uglx.org/sony.html
-
-You should always be able to get the latest version of the driver there,
-and the driver will be supported for the foreseeable future.
-
-==============
-Z505RX and IDE
-==============
-
-There appears to be a problem with the IDE chipset on the Z505RX; one
-of the symptoms is that sound playback periodically hangs (when the
-disk is accessed). The user reporting the problem also reported that
-enabling all of the IDE chipset workarounds in the kernel solved the
-problem, tho obviously only one of them should be needed--if someone
-can give me more details I would appreciate it.
-
-==============================
-Z505S/Z505SX on-board Ethernet
-==============================
-
-If you're using the on-board Ethernet Pro/100 ethernet support on the Z505
-series, I strongly encourage you to download the latest eepro100 driver from
-Donald Becker's site:
-
- ftp://cesdis.gsfc.nasa.gov/pub/linux/drivers/test/eepro100.c
-
-There was a reported problem on the Z505SX that if the ethernet
-interface is disabled and reenabled while the sound driver is loaded,
-the machine would lock up. I have included a workaround that is
-working satisfactorily. However, you may occasionally see a message
-about "Releasing interrupts, over 1000 bad interrupts" which indicates
-that the workaround is doing its job.
-
-==================================
-PCMCIA and the Z505S/Z505SX/Z505DX
-==================================
-
-There is also a known problem with the Sony Z505S and Z505SX hanging
-if a PCMCIA card is inserted while the ethernet driver is loaded, or
-in some cases if the laptop is suspended. This is caused by tons of
-spurious IRQ 9s, probably generated from the PCMCIA or ACPI bridges.
-
-There is currently no fix for the problem that works in every case.
-The only known workarounds are to disable the ethernet interface
-before inserting or removing a PCMCIA card, or with some cards
-disabling the PCMCIA card before ejecting it will also help the
-problem with the laptop hanging when the card is ejected.
-
-One user has reported that setting the tcic's cs_irq to some value
-other than 9 (like 11) fixed the problem. This doesn't work on my
-Z505S, however--changing the value causes the cardmgr to stop seeing
-card insertions and removals, cards don't seem to work correctly, and
-I still get hangs if a card is inserted when the kernel is booted.
-
-Using the latest ethernet driver and pcmcia package allows me to
-insert an Adaptec 1480A SlimScsi card without the laptop hanging,
-although I still have to shut down the card before ejecting or
-powering down the laptop. However, similar experiments with a DE-660
-ethernet card still result in hangs when the card is inserted. I am
-beginning to think that the interrupts are CardBus-related, since the
-Adaptec card is a CardBus card, and the DE-660 is not; however, I
-don't have any other CardBus cards to test with.
-
-======
-Thanks
-======
-
-First, I want to thank everyone (except NeoMagic of course) for their
-generous support and encouragement. I'd like to list everyone's name
-here that replied during the development phase, but the list is
-amazingly long.
-
-I will be rather unfair and single out a few people, however:
-
- Justin Maurer, for being the first random net.person to try it,
- and for letting me login to his Z505SX to get it working there
-
- Edi Weitz for trying out several different versions, and giving
- me a lot of useful feedback
-
- Greg Rumple for letting me login remotely to get the driver
- functional on the 256ZX, for his assistance on tracking
- down all sorts of random stuff, and for trying out Accel-X
-
- Zach Brown, for the initial AC97 mixer interface design
-
- Jeff Garzik, for various helpful suggestions on the AC97
- interface
-
- "Mr. Bumpy" for feedback on the Z505RX
-
- Bill Nottingham, for generous assistance in getting the mixer ID
- code working
-
-=================
-Previous versions
-=================
-
-Versions prior to 0.3 (aka `noname') had problems with weird artifacts
-in the output and failed to set the recording rate properly. These
-problems have long since been fixed.
-
-Versions prior to 0.5 had problems with clicks in the output when
-anything other than 16-bit stereo sound was being played, and also had
-periodic clicks when recording.
-
-Version 0.7 first incorporated support for the NM256ZX chipset, which
-is found on some Dell Latitude laptops (the CPt, and apparently
-some CPi models as well). It also included the generic AC97
-mixer module.
-
-Version 0.75 renamed all the functions and files with slightly more
-generic names.
-
-Note that previous versions of this document claimed that recording was
-8-bit only; it actually has been working for 16-bits all along.
diff --git a/Documentation/sound/oss/OPL3-SA b/Documentation/sound/oss/OPL3-SA
deleted file mode 100644
index 66a91835d91..00000000000
--- a/Documentation/sound/oss/OPL3-SA
+++ /dev/null
@@ -1,52 +0,0 @@
-OPL3-SA1 sound driver (opl3sa.o)
-
----
-Note: This howto only describes how to setup the OPL3-SA1 chip; this info
-does not apply to the SA2, SA3, or SA4.
----
-
-The Yamaha OPL3-SA1 sound chip is usually found built into motherboards, and
-it's a decent little chip offering a WSS mode, a SB Pro emulation mode, MPU401
-and OPL3 FM Synth capabilities.
-
-You can enable inclusion of the driver via CONFIG_SOUND_OPL3SA1=m, or
-CONFIG_SOUND_OPL3SA1=y through 'make config/xconfig/menuconfig'.
-
-You'll need to know all of the relevant info (irq, dma, and io port) for the
-chip's WSS mode, since that is the mode the kernel sound driver uses, and of
-course you'll also need to know about where the MPU401 and OPL3 ports and
-IRQs are if you want to use those.
-
-Here's the skinny on how to load it as a module:
-
- modprobe opl3sa io=0x530 irq=11 dma=0 dma2=1 mpu_io=0x330 mpu_irq=5
-
-Module options in detail:
-
- io: This is the WSS's port base.
- irq: This is the WSS's IRQ.
- dma: This is the WSS's DMA line. In my BIOS setup screen this was
- listed as "WSS Play DMA"
- dma2: This is the WSS's secondary DMA line. My BIOS calls it the
- "WSS capture DMA"
-
- mpu_io: This is the MPU401's port base.
- mpu_irq: This is the MPU401's IRQ.
-
-If you'd like to use the OPL3 FM Synthesizer, make sure you enable
-CONFIG_SOUND_YM3812 (in 'make config'). That'll build the opl3.o module.
-
-Then a simple 'insmod opl3 io=0x388', and you now have FM Synth.
-
-You can also use the SoftOSS software synthesizer instead of the builtin OPL3.
-Here's how:
-
-Say 'y' or 'm' to "SoftOSS software wave table engine" in make config.
-
-If you said yes, the software synth is available once you boot your new
-kernel.
-
-If you chose to build it as a module, just insmod the resulting softoss2.o
-
-Questions? Comments?
-<stiker@northlink.com>
diff --git a/Documentation/sound/oss/OPL3-SA2 b/Documentation/sound/oss/OPL3-SA2
deleted file mode 100644
index d8b6d2bbada..00000000000
--- a/Documentation/sound/oss/OPL3-SA2
+++ /dev/null
@@ -1,210 +0,0 @@
-Documentation for the OPL3-SA2, SA3, and SAx driver (opl3sa2.o)
----------------------------------------------------------------
-
-Scott Murray, scott@spiteful.org
-January 7, 2001
-
-NOTE: All trade-marked terms mentioned below are properties of their
- respective owners.
-
-
-Supported Devices
------------------
-
-This driver is for PnP soundcards based on the following Yamaha audio
-controller chipsets:
-
-YMF711 aka OPL3-SA2
-YMF715 and YMF719 aka OPL3-SA3
-
-Up until recently (December 2000), I'd thought the 719 to be a
-different chipset, the OPL3-SAx. After an email exhange with
-Yamaha, however, it turns out that the 719 is just a re-badged
-715, and the chipsets are identical. The chipset detection code
-has been updated to reflect this.
-
-Anyways, all of these chipsets implement the following devices:
-
-OPL3 FM synthesizer
-Soundblaster Pro
-Microsoft/Windows Sound System
-MPU401 MIDI interface
-
-Note that this driver uses the MSS device, and to my knowledge these
-chipsets enforce an either/or situation with the Soundblaster Pro
-device and the MSS device. Since the MSS device has better
-capabilities, I have implemented the driver to use it.
-
-
-Mixer Channels
---------------
-
-Older versions of this driver (pre-December 2000) had two mixers,
-an OPL3-SA2 or SA3 mixer and a MSS mixer. The OPL3-SA[23] mixer
-device contained a superset of mixer channels consisting of its own
-channels and all of the MSS mixer channels. To simplify the driver
-considerably, and to partition functionality better, the OPL3-SA[23]
-mixer device now contains has its own specific mixer channels. They
-are:
-
-Volume - Hardware master volume control
-Bass - SA3 only, now supports left and right channels
-Treble - SA3 only, now supports left and right channels
-Microphone - Hardware microphone input volume control
-Digital1 - Yamaha 3D enhancement "Wide" mixer
-
-All other mixer channels (e.g. "PCM", "CD", etc.) now have to be
-controlled via the "MS Sound System (CS4231)" mixer. To facilitate
-this, the mixer device creation order has been switched so that
-the MSS mixer is created first. This allows accessing the majority
-of the useful mixer channels even via single mixer-aware tools
-such as "aumix".
-
-
-Plug 'n Play
-------------
-
-In previous kernels (2.2.x), some configuration was required to
-get the driver to talk to the card. Being the new millennium and
-all, the 2.4.x kernels now support auto-configuration if ISA PnP
-support is configured in. Theoretically, the driver even supports
-having more than one card in this case.
-
-With the addition of PnP support to the driver, two new parameters
-have been added to control it:
-
-isapnp - set to 0 to disable ISA PnP card detection
-
-multiple - set to 0 to disable multiple PnP card detection
-
-
-Optional Parameters
--------------------
-
-Recent (December 2000) additions to the driver (based on a patch
-provided by Peter Englmaier) are two new parameters:
-
-ymode - Set Yamaha 3D enhancement mode:
- 0 = Desktop/Normal 5-12 cm speakers
- 1 = Notebook PC (1) 3 cm speakers
- 2 = Notebook PC (2) 1.5 cm speakers
- 3 = Hi-Fi 16-38 cm speakers
-
-loopback - Set A/D input source. Useful for echo cancellation:
- 0 = Mic Right channel (default)
- 1 = Mono output loopback
-
-The ymode parameter has been tested and does work. The loopback
-parameter, however, is untested. Any feedback on its usefulness
-would be appreciated.
-
-
-Manual Configuration
---------------------
-
-If for some reason you decide not to compile ISA PnP support into
-your kernel, or disabled the driver's usage of it by setting the
-isapnp parameter as discussed above, then you will need to do some
-manual configuration. There are two ways of doing this. The most
-common is to use the isapnptools package to initialize the card, and
-use the kernel module form of the sound subsystem and sound drivers.
-Alternatively, some BIOS's allow manual configuration of installed
-PnP devices in a BIOS menu, which should allow using the non-modular
-sound drivers, i.e. built into the kernel.
-
-I personally use isapnp and modules, and do not have access to a PnP
-BIOS machine to test. If you have such a beast, configuring the
-driver to be built into the kernel should just work (thanks to work
-done by David Luyer <luyer@ucs.uwa.edu.au>). You will still need
-to specify settings, which can be done by adding:
-
-opl3sa2=<io>,<irq>,<dma>,<dma2>,<mssio>,<mpuio>
-
-to the kernel command line. For example:
-
-opl3sa2=0x370,5,0,1,0x530,0x330
-
-If you are instead using the isapnp tools (as most people have been
-before Linux 2.4.x), follow the directions in their documentation to
-produce a configuration file. Here is the relevant excerpt I used to
-use for my SA3 card from my isapnp.conf:
-
-(CONFIGURE YMH0800/-1 (LD 0
-
-# NOTE: IO 0 is for the unused SoundBlaster part of the chipset.
-(IO 0 (BASE 0x0220))
-(IO 1 (BASE 0x0530))
-(IO 2 (BASE 0x0388))
-(IO 3 (BASE 0x0330))
-(IO 4 (BASE 0x0370))
-(INT 0 (IRQ 5 (MODE +E)))
-(DMA 0 (CHANNEL 0))
-(DMA 1 (CHANNEL 1))
-
-Here, note that:
-
-Port Acceptable Range Purpose
----- ---------------- -------
-IO 0 0x0220 - 0x0280 SB base address, unused.
-IO 1 0x0530 - 0x0F48 MSS base address
-IO 2 0x0388 - 0x03F8 OPL3 base address
-IO 3 0x0300 - 0x0334 MPU base address
-IO 4 0x0100 - 0x0FFE card's own base address for its control I/O ports
-
-The IRQ and DMA values can be any that are considered acceptable for a
-MSS. Assuming you've got isapnp all happy, then you should be able to
-do something like the following (which matches up with the isapnp
-configuration above):
-
-modprobe mpu401
-modprobe ad1848
-modprobe opl3sa2 io=0x370 mss_io=0x530 mpu_io=0x330 irq=5 dma=0 dma2=1
-modprobe opl3 io=0x388
-
-See the section "Automatic Module Loading" below for how to set up
-/etc/modprobe.conf to automate this.
-
-An important thing to remember that the opl3sa2 module's io argument is
-for it's own control port, which handles the card's master mixer for
-volume (on all cards), and bass and treble (on SA3 cards).
-
-
-Troubleshooting
----------------
-
-If all goes well and you see no error messages, you should be able to
-start using the sound capabilities of your system. If you get an
-error message while trying to insert the opl3sa2 module, then make
-sure that the values of the various arguments match what you specified
-in your isapnp configuration file, and that there is no conflict with
-another device for an I/O port or interrupt. Checking the contents of
-/proc/ioports and /proc/interrupts can be useful to see if you're
-butting heads with another device.
-
-If you still cannot get the module to load, look at the contents of
-your system log file, usually /var/log/messages. If you see the
-message "opl3sa2: Unknown Yamaha audio controller version", then you
-have a different chipset version than I've encountered so far. Look
-for all messages in the log file that start with "opl3sa2: " and see
-if they provide any clues. If you do not see the chipset version
-message, and none of the other messages present in the system log are
-helpful, email me some details and I'll try my best to help.
-
-
-Automatic Module Loading
-------------------------
-
-Lastly, if you're using modules and want to set up automatic module
-loading with kmod, the kernel module loader, here is the section I
-currently use in my modprobe.conf file:
-
-# Sound
-alias sound-slot-0 opl3sa2
-options opl3sa2 io=0x370 mss_io=0x530 mpu_io=0x330 irq=7 dma=0 dma2=3
-options opl3 io=0x388
-
-That's all it currently takes to get an OPL3-SA3 card working on my
-system. Once again, if you have any other problems, email me at the
-address listed above.
-
-Scott
diff --git a/Documentation/sound/oss/Opti b/Documentation/sound/oss/Opti
index c15af3c07d4..4cd5d9ab358 100644
--- a/Documentation/sound/oss/Opti
+++ b/Documentation/sound/oss/Opti
@@ -18,7 +18,7 @@ force the card into a mode in which it can be programmed.
If you have another OS installed on your computer it is recommended
that Linux and the other OS use the same resources.
-Also, it is recommended that resources specified in /etc/modprobe.conf
+Also, it is recommended that resources specified in /etc/modprobe.d/*.conf
and resources specified in /etc/isapnp.conf agree.
Compiling the sound driver
@@ -67,11 +67,7 @@ address is hard-coded into the driver.
Using kmod and autoloading the sound driver
-------------------------------------------
-Comment: as of linux-2.1.90 kmod is replacing kerneld.
-The config file '/etc/modprobe.conf' is used as before.
-
-This is the sound part of my /etc/modprobe.conf file.
-Following that I will explain each line.
+Config files in '/etc/modprobe.d/' are used as below:
alias mixer0 mad16
alias audio0 mad16
diff --git a/Documentation/sound/oss/PAS16 b/Documentation/sound/oss/PAS16
index 951b3dce51b..5c27229eec8 100644
--- a/Documentation/sound/oss/PAS16
+++ b/Documentation/sound/oss/PAS16
@@ -60,8 +60,7 @@ With PAS16 you can use two audio device files at the same time. /dev/dsp (and
The new stuff for 2.3.99 and later
============================================================================
-The following configuration options from Documentation/Configure.help
-are relevant to configuring the PAS16:
+The following configuration options are relevant to configuring the PAS16:
Sound card support
CONFIG_SOUND
@@ -129,7 +128,7 @@ CONFIG_SOUND_YM3812
You can then get OPL3 functionality by issuing the command:
insmod opl3
In addition, you must either add the following line to
- /etc/modprobe.conf:
+ /etc/modprobe.d/*.conf:
options opl3 io=0x388
or else add the following line to /etc/lilo.conf:
opl3=0x388
@@ -159,5 +158,5 @@ following line would be appropriate:
append="pas2=0x388,10,3,-1,0,-1,-1,-1 opl3=0x388"
If sound is built totally modular, the above options may be
-specified in /etc/modprobe.conf for pas2, sb and opl3
+specified in /etc/modprobe.d/*.conf for pas2, sb and opl3
respectively.
diff --git a/Documentation/sound/oss/README.OSS b/Documentation/sound/oss/README.OSS
index fd42b05b2f5..4be259428a1 100644
--- a/Documentation/sound/oss/README.OSS
+++ b/Documentation/sound/oss/README.OSS
@@ -36,7 +36,7 @@ with OSS API.
Packages "snd-util-3.8.tar.gz" and "snd-data-0.1.tar.Z"
contain useful utilities to be used with this driver.
-See http://www.opensound.com/ossfree/getting.html for
+See http://www.opensound.com/ossfree/ for
download instructions.
If you are looking for the installation instructions, please
@@ -1352,7 +1352,7 @@ OSS-mixer.
The PCM20 contains a radio tuner, which is also controlled by
ACI. This radio tuner is supported by the ACI driver together with the
miropcm20.o module. Also the 7-band equalizer is integrated
-(limited by the OSS-design). Developement has started and maybe
+(limited by the OSS-design). Development has started and maybe
finished for the RDS decoder on this card, too. You will be able to
read RadioText, the Programme Service name, Programme TYpe and
others. Even the v4l radio module benefits from it with a refined
@@ -1438,7 +1438,7 @@ of this driver (see http://www.4Front-tech.com/oss.html for more info).
There are some common audio chipsets that are not supported yet. For example
Sierra Aria and IBM Mwave. It's possible that these architectures
get some support in future but I can't make any promises. Just look
-at the home page (http://www.opensound.com/ossfree/new_cards.html)
+at the home page (http://www.opensound.com/ossfree/)
for latest info.
Information about unsupported sound cards and chipsets is welcome as well
@@ -1449,7 +1449,6 @@ If you have any corrections and/or comments, please contact me.
Hannu Savolainen
hannu@opensound.com
-Personal home page: http://www.compusonic.fi/~hannu
home page of OSS/Free: http://www.opensound.com/ossfree
home page of commercial OSS
diff --git a/Documentation/sound/oss/README.awe b/Documentation/sound/oss/README.awe
deleted file mode 100644
index 80054cd8fcd..00000000000
--- a/Documentation/sound/oss/README.awe
+++ /dev/null
@@ -1,218 +0,0 @@
-================================================================
- AWE32 Sound Driver for Linux / FreeBSD
- version 0.4.3; Nov. 1, 1998
-
- Takashi Iwai <iwai@ww.uni-erlangen.de>
-================================================================
-
-* GENERAL NOTES
-
-This is a sound driver extension for SoundBlaster AWE32 and other
-compatible cards (AWE32-PnP, SB32, SB32-PnP, AWE64 & etc) to enable
-the wave synth operations. The driver is provided for Linux 1.2.x
-and 2.[012].x kernels, as well as FreeBSD, on Intel x86 and DEC
-Alpha systems.
-
-This driver was written by Takashi Iwai <iwai@ww.uni-erlangen.de>,
-and provided "as is". The original source (awedrv-0.4.3.tar.gz) and
-binary packages are available on the following URL:
- http://bahamut.mm.t.u-tokyo.ac.jp/~iwai/awedrv/
-Note that since the author is apart from this web site, the update is
-not frequent now.
-
-
-* NOTE TO LINUX USERS
-
-To enable this driver on linux-2.[01].x kernels, you need turn on
-"AWE32 synth" options in sound menu when configure your linux kernel
-and modules. The precise installation procedure is described in the
-AWE64-Mini-HOWTO and linux-kernel/Documetation/sound/AWE32.
-
-If you're using PnP cards, the card must be initialized before loading
-the sound driver. There're several options to do this:
- - Initialize the card via ISA PnP tools, and load the sound module.
- - Initialize the card on DOS, and load linux by loadlin.exe
- - Use PnP kernel driver (for Linux-2.x.x)
-The detailed instruction for the solution using isapnp tools is found
-in many documents like above. A brief instruction is also included in
-the installation document of this package.
-For PnP driver project, please refer to the following URL:
- http://www-jcr.lmh.ox.ac.uk/~pnp/
-
-
-* USING THE DRIVER
-
-The awedrv has several different playing modes to realize easy channel
-allocation for MIDI songs. To hear the exact sound quality, you need
-to obtain the extended sequencer program, drvmidi or playmidi-2.5.
-
-For playing MIDI files, you *MUST* load the soundfont file on the
-driver previously by sfxload utility. Otherwise you'll here no sounds
-at all! All the utilities and driver source packages are found in the
-above URL. The sfxload program is included in the package
-awesfx-0.4.3.tgz. Binary packages are available there, too. See the
-instruction in each package for installation.
-
-Loading a soundfont file is very simple. Just execute the command
-
- % sfxload synthgm.sbk
-
-Then, sfxload transfers the file "synthgm.sbk" to the driver.
-Both SF1 and SF2 formats are accepted.
-
-Now you can hear midi musics by a midi player.
-
- % drvmidi foo.mid
-
-If you run MIDI player after MOD player, you need to load soundfont
-files again, since MOD player programs clear the previous loaded
-samples by their own data.
-
-If you have only 512kb on the sound card, I recommend to use dynamic
-sample loading via -L option of drvmidi. 2MB GM/GS soundfont file is
-available in most midi files.
-
- % sfxload synthgm
- % drvmidi -L 2mbgmgs foo.mid
-
-This makes a big difference (believe me)! For more details, please
-refer to the FAQ list which is available on the URL above.
-
-The current chorus, reverb and equalizer status can be changed by
-aweset utility program (included in awesfx package). Note that
-some awedrv-native programs (like drvmidi and xmp) will change the
-current settings by themselves. The aweset program is effective
-only for other programs like playmidi.
-
-Enjoy.
-
-
-* COMPILE FLAGS
-
-Compile conditions are defined in awe_config.h.
-
-[Compatibility Conditions]
-The following flags are defined automatically when using installation
-shell script.
-
-- AWE_MODULE_SUPPORT
- indicates your Linux kernel supports module for each sound card
- (in recent 2.1 or 2.2 kernels and unofficial patched 2.0 kernels
- as distributed in the RH5.0 package).
- This flag is automatically set when you're using 2.1.x kernels.
- You can pass the base address and memory size via the following
- module options,
- io = base I/O port address (eg. 0x620)
- memsize = DRAM size in kilobytes (eg. 512)
- As default, AWE driver probes these values automatically.
-
-
-[Hardware Conditions]
-You DON'T have to define the following two values.
-Define them only when the driver couldn't detect the card properly.
-
-- AWE_DEFAULT_BASE_ADDR (default: not defined)
- specifies the base port address of your AWE32 card.
- 0 means to autodetect the address.
-
-- AWE_DEFAULT_MEM_SIZE (default: not defined)
- specifies the memory size of your AWE32 card in kilobytes.
- -1 means to autodetect its size.
-
-
-[Sample Table Size]
-From ver.0.4.0, sample tables are allocated dynamically (except
-Linux-1.2.x system), so you need NOT to touch these parameters.
-Linux-1.2.x users may need to increase these values to appropriate size
-if the sound card is equipped with more DRAM.
-
-- AWE_MAX_SF_LISTS, AWE_MAX_SAMPLES, AWE_MAX_INFOS
-
-
-[Other Conditions]
-
-- AWE_ALWAYS_INIT_FM (default: not defined)
- indicates the AWE driver always initialize FM passthrough even
- without DRAM on board. Emu8000 chip has a restriction for playing
- samples on DRAM that at least two channels must be occupied as
- passthrough channels.
-
-- AWE_DEBUG_ON (default: defined)
- turns on debugging messages if defined.
-
-- AWE_HAS_GUS_COMPATIBILITY (default: defined)
- Enables GUS compatibility mode if defined, reading GUS patches and
- GUS control commands. Define this option to use GMOD or other
- GUS module players.
-
-- CONFIG_AWE32_MIDIEMU (default: defined)
- Adds a MIDI emulation device by Emu8000 wavetable. The emulation
- device can be accessed as an external MIDI, and sends the MIDI
- control codes directly. XG and GS sysex/NRPN are accepted.
- No MIDI input is supported.
-
-- CONFIG_AWE32_MIXER (default: not defined)
- Adds a mixer device for AWE32 bass/treble equalizer control.
- You can access this device using /dev/mixer?? (usually mixer01).
-
-- AWE_USE_NEW_VOLUME_CALC (default: defined)
- Use the new method to calculate the volume change as compatible
- with DOS/Win drivers. This option can be toggled via aweset
- program, or drvmidi player.
-
-- AWE_CHECK_VTARGET (default: defined)
- Check the current volume target value when searching for an
- empty channel to allocate a new voice. This is experimentally
- implemented in this version. (probably, this option doesn't
- affect the sound quality severely...)
-
-- AWE_ALLOW_SAMPLE_SHARING (default: defined)
- Allow sample sharing for differently loaded patches.
- This function is available only together with awesfx-0.4.3p3.
- Note that this is still an experimental option.
-
-- DEF_FM_CHORUS_DEPTH (default: 0x10)
- The default strength to be sent to the chorus effect engine.
- From 0 to 0xff. Larger numbers may often cause weird sounds.
-
-- DEF_FM_REVERB_DEPTH (default: 0x10)
- The default strength to be sent to the reverb effect engine.
- From 0 to 0xff. Larger numbers may often cause weird sounds.
-
-
-* ACKNOWLEDGMENTS
-
-Thanks to Witold Jachimczyk (witek@xfactor.wpi.edu) for much advice
-on programming of AWE32. Much code is brought from his AWE32-native
-MOD player, ALMP.
-The port of awedrv to FreeBSD is done by Randall Hopper
-(rhh@ct.picker.com).
-The new volume calculation routine was derived from Mark Weaver's
-ADIP compatible routines.
-I also thank linux-awe-ml members for their efforts
-to reboot their system many times :-)
-
-
-* TODO'S
-
-- Complete DOS/Win compatibility
-- DSP-like output
-
-
-* COPYRIGHT
-
-Copyright (C) 1996-1998 Takashi Iwai
-
-This program is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2 of the License, or
-(at your option) any later version.
-
-This program is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with this program; if not, write to the Free Software
-Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
diff --git a/Documentation/sound/oss/README.modules b/Documentation/sound/oss/README.modules
index e691d74e1e5..cdc039421a4 100644
--- a/Documentation/sound/oss/README.modules
+++ b/Documentation/sound/oss/README.modules
@@ -26,7 +26,7 @@ Note that it is no longer necessary or possible to configure sound in the
drivers/sound dir. Now one simply configures and makes one's kernel and
modules in the usual way.
- Then, add to your /etc/modprobe.conf something like:
+ Then, add to your /etc/modprobe.d/oss.conf something like:
alias char-major-14-* sb
install sb /sbin/modprobe -i sb && /sbin/modprobe adlib_card
@@ -36,7 +36,7 @@ options adlib_card io=0x388 # FM synthesizer
Alternatively, if you have compiled in kernel level ISAPnP support:
alias char-major-14 sb
-post-install sb /sbin/modprobe "-k" "adlib_card"
+softdep sb post: adlib_card
options adlib_card io=0x388
The effect of this is that the sound driver and all necessary bits and
@@ -66,12 +66,12 @@ args are expected.
Note that at present there is no way to configure the io, irq and other
parameters for the modular drivers as one does for the wired drivers.. One
needs to pass the modules the necessary parameters as arguments, either
-with /etc/modprobe.conf or with command-line args to modprobe, e.g.
+with /etc/modprobe.d/*.conf or with command-line args to modprobe, e.g.
modprobe sb io=0x220 irq=7 dma=1 dma16=5 mpu_io=0x330
modprobe adlib_card io=0x388
- recommend using /etc/modprobe.conf.
+ recommend using /etc/modprobe.d/*.conf.
Persistent DMA Buffers:
@@ -89,7 +89,7 @@ wasteful of RAM, but it guarantees that sound always works.
To make the sound driver use persistent DMA buffers we need to pass the
sound.o module a "dmabuf=1" command-line argument. This is normally done
-in /etc/modprobe.conf like so:
+in /etc/modprobe.d/*.conf files like so:
options sound dmabuf=1
diff --git a/Documentation/sound/oss/README.ymfsb b/Documentation/sound/oss/README.ymfsb
index af8a7d3a4e8..b6b77906b58 100644
--- a/Documentation/sound/oss/README.ymfsb
+++ b/Documentation/sound/oss/README.ymfsb
@@ -5,7 +5,7 @@ FIRST OF ALL
============
This code references YAMAHA's sample codes and data sheets.
- I respect and thank for all people they made open the informations
+ I respect and thank for all people they made open the information
about YMF7xx cards.
And this codes heavily based on Jeff Garzik <jgarzik@pobox.com>'s
diff --git a/Documentation/sound/oss/VIA-chipset b/Documentation/sound/oss/VIA-chipset
deleted file mode 100644
index 37865234e54..00000000000
--- a/Documentation/sound/oss/VIA-chipset
+++ /dev/null
@@ -1,43 +0,0 @@
-Running sound cards on VIA chipsets
-
-o There are problems with VIA chipsets and sound cards that appear to
- lock the hardware solidly. Test programs under DOS have verified the
- problem exists on at least some (but apparently not all) VIA boards
-
-o VIA have so far failed to bother to answer support mail on the subject
- so if you are a VIA engineer feeling aggrieved as you read this
- document go chase your own people. If there is a workaround please
- let us know so we can implement it.
-
-
-Certain patterns of ISA DMA access used for most PC sound cards cause the
-VIA chipsets to lock up. From the collected reports this appears to cover a
-wide range of boards. Some also lock up with sound cards under Win* as well.
-
-Linux implements a workaround providing your chipset is PCI and you compiled
-with PCI Quirks enabled. If so you will see a message
- "Activating ISA DMA bug workarounds"
-
-during booting. If you have a VIA PCI chipset that hangs when you use the
-sound and is not generating this message even with PCI quirks enabled
-please report the information to the linux-kernel list (see REPORTING-BUGS).
-
-If you are one of the tiny number of unfortunates with a 486 ISA/VLB VIA
-chipset board you need to do the following to build a special kernel for
-your board
-
- edit linux/include/asm-i386/dma.h
-
-change
-
-#define isa_dma_bridge_buggy (0)
-
-to
-
-#define isa_dma_bridge_buggy (1)
-
-and rebuild a kernel without PCI quirk support.
-
-
-Other than this particular glitch the VIA [M]VP* chipsets appear to work
-perfectly with Linux.
diff --git a/Documentation/sound/oss/Wavefront b/Documentation/sound/oss/Wavefront
deleted file mode 100644
index 16f57ea4305..00000000000
--- a/Documentation/sound/oss/Wavefront
+++ /dev/null
@@ -1,339 +0,0 @@
- An OSS/Free Driver for WaveFront soundcards
- (Turtle Beach Maui, Tropez, Tropez Plus)
-
- Paul Barton-Davis, July 1998
-
- VERSION 0.2.5
-
-Driver Status
--------------
-
-Requires: Kernel 2.1.106 or later (the driver is included with kernels
-2.1.109 and above)
-
-As of 7/22/1998, this driver is currently in *BETA* state. This means
-that it compiles and runs, and that I use it on my system (Linux
-2.1.106) with some reasonably demanding applications and uses. I
-believe the code is approaching an initial "finished" state that
-provides bug-free support for the Tropez Plus.
-
-Please note that to date, the driver has ONLY been tested on a Tropez
-Plus. I would very much like to hear (and help out) people with Tropez
-and Maui cards, since I think the driver can support those cards as
-well.
-
-Finally, the driver has not been tested (or even compiled) as a static
-(non-modular) part of the kernel. Alan Cox's good work in modularizing
-OSS/Free for Linux makes this rather unnecessary.
-
-Some Questions
---------------
-
-**********************************************************************
-0) What does this driver do that the maui driver did not ?
-**********************************************************************
-
-* can fully initialize a WaveFront card from cold boot - no DOS
- utilities needed
-* working patch/sample/program loading and unloading (the maui
- driver didn't document how to make this work, and assumed
- user-level preparation of the patch data for writing
- to the board. ick.)
-* full user-level access to all WaveFront commands
-* for the Tropez Plus, (primitive) control of the YSS225 FX processor
-* Virtual MIDI mode supported - 2 MIDI devices accessible via the
- WaveFront's MPU401/UART emulation. One
- accesses the WaveFront synth, the other accesses the
- external MIDI connector. Full MIDI read/write semantics
- for both devices.
-* OSS-compliant /dev/sequencer interface for the WaveFront synth,
- including native and GUS-format patch downloading.
-* semi-intelligent patch management (prototypical at this point)
-
-**********************************************************************
-1) What to do about MIDI interfaces ?
-**********************************************************************
-
-The Tropez Plus (and perhaps other WF cards) can in theory support up
-to 2 physical MIDI interfaces. One of these is connected to the
-ICS2115 chip (the WaveFront synth itself) and is controlled by
-MPU/UART-401 emulation code running as part of the WaveFront OS. The
-other is controlled by the CS4232 chip present on the board. However,
-physical access to the CS4232 connector is difficult, and it is
-unlikely (though not impossible) that you will want to use it.
-
-An older version of this driver introduced an additional kernel config
-variable which controlled whether or not the CS4232 MIDI interface was
-configured. Because of Alan Cox's work on modularizing the sound
-drivers, and now backporting them to 2.0.34 kernels, there seems to be
-little reason to support "static" configuration variables, and so this
-has been abandoned in favor of *only* module parameters. Specifying
-"mpuio" and "mpuirq" for the cs4232 parameter will result in the
-CS4232 MIDI interface being configured; leaving them unspecified will
-leave it unconfigured (and thus unusable).
-
-BTW, I have heard from one Tropez+ user that the CS4232 interface is
-more reliable than the ICS2115 one. I have had no problems with the
-latter, and I don't have the right cable to test the former one
-out. Reports welcome.
-
-**********************************************************************
-2) Why does line XXX of the code look like this .... ?
-**********************************************************************
-
-Either because it's not finished yet, or because you're a better coder
-than I am, or because you don't understand some aspect of how the card
-or the code works.
-
-I absolutely welcome comments, criticisms and suggestions about the
-design and implementation of the driver.
-
-**********************************************************************
-3) What files are included ?
-**********************************************************************
-
- drivers/sound/README.wavefront -- this file
-
- drivers/sound/wavefront.patch -- patches for the 2.1.106 sound drivers
- needed to make the rest of this work
- DO NOT USE IF YOU'VE APPLIED THEM
- BEFORE, OR HAVE 2.1.109 OR ABOVE
-
- drivers/sound/wavfront.c -- the driver
- drivers/sound/ys225.h -- data declarations for FX config
- drivers/sound/ys225.c -- data definitions for FX config
- drivers/sound/wf_midi.c -- the "uart401" driver
- to support virtual MIDI mode.
- include/wavefront.h -- the header file
- Documentation/sound/oss/Tropez+ -- short docs on configuration
-
-**********************************************************************
-4) How do I compile/install/use it ?
-**********************************************************************
-
-PART ONE: install the source code into your sound driver directory
-
- cd <top-of-your-2.1.106-code-base-e.g.-/usr/src/linux>
- tar -zxvf <where-you-put/wavefront.tar.gz>
-
-PART TWO: apply the patches
-
- DO THIS ONLY IF YOU HAVE A KERNEL VERSION BELOW 2.1.109
- AND HAVE NOT ALREADY INSTALLED THE PATCH(ES).
-
- cd drivers/sound
- patch < wavefront.patch
-
-PART THREE: configure your kernel
-
- cd <top of your kernel tree>
- make xconfig (or whichever config option you use)
-
- - choose YES for Sound Support
- - choose MODULE (M) for OSS Sound Modules
- - choose MODULE(M) to YM3812/OPL3 support
- - choose MODULE(M) for WaveFront support
- - choose MODULE(M) for CS4232 support
-
- - choose "N" for everything else (unless you have other
- soundcards you want support for)
-
-
- make boot
- .
- .
- .
- <whatever you normally do for a kernel install>
- make modules
- .
- .
- .
- make modules_install
-
-Here's my autoconf.h SOUND section:
-
-/*
- * Sound
- */
-#define CONFIG_SOUND 1
-#undef CONFIG_SOUND_OSS
-#define CONFIG_SOUND_OSS_MODULE 1
-#undef CONFIG_SOUND_PAS
-#undef CONFIG_SOUND_SB
-#undef CONFIG_SOUND_ADLIB
-#undef CONFIG_SOUND_GUS
-#undef CONFIG_SOUND_MPU401
-#undef CONFIG_SOUND_PSS
-#undef CONFIG_SOUND_MSS
-#undef CONFIG_SOUND_SSCAPE
-#undef CONFIG_SOUND_TRIX
-#undef CONFIG_SOUND_MAD16
-#undef CONFIG_SOUND_WAVEFRONT
-#define CONFIG_SOUND_WAVEFRONT_MODULE 1
-#undef CONFIG_SOUND_CS4232
-#define CONFIG_SOUND_CS4232_MODULE 1
-#undef CONFIG_SOUND_MAUI
-#undef CONFIG_SOUND_SGALAXY
-#undef CONFIG_SOUND_OPL3SA1
-#undef CONFIG_SOUND_SOFTOSS
-#undef CONFIG_SOUND_YM3812
-#define CONFIG_SOUND_YM3812_MODULE 1
-#undef CONFIG_SOUND_VMIDI
-#undef CONFIG_SOUND_UART6850
-/*
- * Additional low level sound drivers
- */
-#undef CONFIG_LOWLEVEL_SOUND
-
-************************************************************
-6) How do I configure my card ?
-************************************************************
-
-You need to edit /etc/modprobe.conf. Here's mine (edited to show the
-relevant details):
-
- # Sound system
- alias char-major-14-* wavefront
- alias synth0 wavefront
- alias mixer0 cs4232
- alias audio0 cs4232
- install wavefront /sbin/modprobe cs4232 && /sbin/modprobe -i wavefront && /sbin/modprobe opl3
- options wavefront io=0x200 irq=9
- options cs4232 synthirq=9 synthio=0x200 io=0x530 irq=5 dma=1 dma2=0
- options opl3 io=0x388
-
-Things to note:
-
- the wavefront options "io" and "irq" ***MUST*** match the "synthio"
- and "synthirq" cs4232 options.
-
- you can do without the opl3 module if you don't
- want to use the OPL/[34] FM synth on the soundcard
-
- the opl3 io parameter is conventionally not adjustable.
- In theory, any not-in-use IO port address would work, but
- just use 0x388 and stick with the crowd.
-
-**********************************************************************
-7) What about firmware ?
-**********************************************************************
-
-Turtle Beach have not given me permission to distribute their firmware
-for the ICS2115. However, if you have a WaveFront card, then you
-almost certainly have the firmware, and if not, its freely available
-on their website, at:
-
- http://www.tbeach.com/tbs/downloads/scardsdown.htm#tropezplus
-
-The file is called WFOS2001.MOT (for the Tropez+).
-
-This driver, however, doesn't use the pure firmware as distributed,
-but instead relies on a somewhat processed form of it. You can
-generate this very easily. Following an idea from Andrew Veliath's
-Pinnacle driver, the following flex program will generate the
-processed version:
-
----- cut here -------------------------
-%option main
-%%
-^S[28].*\r$ printf ("%c%.*s", yyleng-1,yyleng-1,yytext);
-<<EOF>> { fputc ('\0', stdout); return; }
-\n {}
-. {}
----- cut here -------------------------
-
-To use it, put the above in file (say, ws.l) compile it like this:
-
- shell> flex -ows.c ws.l
- shell> cc -o ws ws.c
-
-and then use it like this:
-
- ws < my-copy-of-the-oswf.mot-file > /etc/sound/wavefront.os
-
-If you put it somewhere else, you'll always have to use the wf_ospath
-module parameter (see below) or alter the source code.
-
-**********************************************************************
-7) How do I get it working ?
-**********************************************************************
-
-Optionally, you can reboot with the "new" kernel (even though the only
-changes have really been made to a module).
-
-Then, as root do:
-
- modprobe wavefront
-
-You should get something like this in /var/log/messages:
-
- WaveFront: firmware 1.20 already loaded.
-
-or
-
- WaveFront: no response to firmware probe, assume raw.
-
-then:
-
- WaveFront: waiting for memory configuration ...
- WaveFront: hardware version 1.64
- WaveFront: available DRAM 8191k
- WaveFront: 332 samples used (266 real, 13 aliases, 53 multi), 180 empty
- WaveFront: 128 programs slots in use
- WaveFront: 256 patch slots filled, 142 in use
-
-The whole process takes about 16 seconds, the longest waits being
-after reporting the hardware version (during the firmware download),
-and after reporting program status (during patch status inquiry). Its
-shorter (about 10 secs) if the firmware is already loaded (i.e. only
-warm reboots since the last firmware load).
-
-The "available DRAM" line will vary depending on how much added RAM
-your card has. Mine has 8MB.
-
-To check basically functionality, use play(1) or splay(1) to send a
-.WAV or other audio file through the audio portion. Then use playmidi
-to play a General MIDI file. Try the "-D 0" to hear the
-difference between sending MIDI to the WaveFront and using the OPL/3,
-which is the default (I think ...). If you have an external synth(s)
-hooked to the soundcard, you can use "-e" to route to the
-external synth(s) (in theory, -D 1 should work as well, but I think
-there is a bug in playmidi which prevents this from doing what it
-should).
-
-**********************************************************************
-8) What are the module parameters ?
-**********************************************************************
-
-Its best to read wavefront.c for this, but here is a summary:
-
-integers:
- wf_raw - if set, ignore apparent presence of firmware
- loaded onto the ICS2115, reset the whole
- board, and initialize it from scratch. (default = 0)
-
- fx_raw - if set, always initialize the YSS225 processor
- on the Tropez plus. (default = 1)
-
- < The next 4 are basically for kernel hackers to allow
- tweaking the driver for testing purposes. >
-
- wait_usecs - loop timer used when waiting for
- status conditions on the board.
- The default is 150.
-
- debug_default - debugging flags. See sound/wavefront.h
- for WF_DEBUG_* values. Default is zero.
- Setting this allows you to debug the
- driver during module installation.
-strings:
- ospath - path to get to the pre-processed OS firmware.
- (default: /etc/sound/wavefront.os)
-
-**********************************************************************
-9) Who should I contact if I have problems?
-**********************************************************************
-
-Just me: Paul Barton-Davis <pbd@op.net>
-
-
diff --git a/Documentation/sound/oss/cs46xx b/Documentation/sound/oss/cs46xx
deleted file mode 100644
index 88d6cf8b39f..00000000000
--- a/Documentation/sound/oss/cs46xx
+++ /dev/null
@@ -1,138 +0,0 @@
-
-Documentation for the Cirrus Logic/Crystal SoundFusion cs46xx/cs4280 audio
-controller chips (2001/05/11)
-
-The cs46xx audio driver supports the DSP line of Cirrus controllers.
-Specifically, the cs4610, cs4612, cs4614, cs4622, cs4624, cs4630 and the cs4280
-products. This driver uses the generic ac97_codec driver for AC97 codec
-support.
-
-
-Features:
-
-Full Duplex Playback/Capture supported from 8k-48k.
-16Bit Signed LE & 8Bit Unsigned, with Mono or Stereo supported.
-
-APM/PM - 2.2.x PM is enabled and functional. APM can also
-be enabled for 2.4.x by modifying the CS46XX_ACPI_SUPPORT macro
-definition.
-
-DMA playback buffer size is configurable from 16k (defaultorder=2) up to 2Meg
-(defaultorder=11). DMA capture buffer size is fixed at a single 4k page as
-two 2k fragments.
-
-MMAP seems to work well with QuakeIII, and test XMMS plugin.
-
-Myth2 works, but the polling logic is not fully correct, but is functional.
-
-The 2.4.4-ac6 gameport code in the cs461x joystick driver has been tested
-with a Microsoft Sidewinder joystick (cs461x.o and sidewinder.o). This
-audio driver must be loaded prior to the joystick driver to enable the
-DSP task image supporting the joystick device.
-
-
-Limitations:
-
-SPDIF is currently not supported.
-
-Primary codec support only. No secondary codec support is implemented.
-
-
-
-NOTES:
-
-Hercules Game Theatre XP - the EGPIO2 pin controls the external Amp,
-and has been tested.
-Module parameter hercules_egpio_disable set to 1, will force a 0 to EGPIODR
-to disable the external amplifier.
-
-VTB Santa Cruz - the GPIO7/GPIO8 on the Secondary Codec control
-the external amplifier for the "back" speakers, since we do not
-support the secondary codec then this external amp is not
-turned on. The primary codec external amplifier is supported but
-note that the AC97 EAPD bit is inverted logic (amp_voyetra()).
-
-DMA buffer size - there are issues with many of the Linux applications
-concerning the optimal buffer size. Several applications request a
-certain fragment size and number and then do not verify that the driver
-has the ability to support the requested configuration.
-SNDCTL_DSP_SETFRAGMENT ioctl is used to request a fragment size and
-number of fragments. Some applications exit if an error is returned
-on this particular ioctl. Therefore, in alignment with the other OSS audio
-drivers, no error is returned when a SETFRAGs IOCTL is received, but the
-values passed from the app are not used in any buffer calculation
-(ossfragshift/ossmaxfrags are not used).
-Use the "defaultorder=N" module parameter to change the buffer size if
-you have an application that requires a specific number of fragments
-or a specific buffer size (see below).
-
-Debug Interface
----------------
-There is an ioctl debug interface to allow runtime modification of the
-debug print levels. This debug interface code can be disabled from the
-compilation process with commenting the following define:
-#define CSDEBUG_INTERFACE 1
-There is also a debug print methodolgy to select printf statements from
-different areas of the driver. A debug print level is also used to allow
-additional printfs to be active. Comment out the following line in the
-driver to disable compilation of the CS_DBGOUT print statements:
-#define CSDEBUG 1
-
-Please see the definitions for cs_debuglevel and cs_debugmask for additional
-information on the debug levels and sections.
-
-There is also a csdbg executable to allow runtime manipulation of these
-parameters. for a copy email: twoller@crystal.cirrus.com
-
-
-
-MODULE_PARMS definitions
-------------------------
-MODULE_PARM(defaultorder, "i");
-defaultorder=N
-where N is a value from 1 to 12
-The buffer order determines the size of the dma buffer for the driver.
-under Linux, a smaller buffer allows more responsiveness from many of the
-applications (e.g. games). A larger buffer allows some of the apps (esound)
-to not underrun the dma buffer as easily. As default, use 32k (order=3)
-rather than 64k as some of the games work more responsively.
-(2^N) * PAGE_SIZE = allocated buffer size
-
-MODULE_PARM(cs_debuglevel, "i");
-MODULE_PARM(cs_debugmask, "i");
-cs_debuglevel=N
-cs_debugmask=0xMMMMMMMM
-where N is a value from 0 (no debug printfs), to 9 (maximum)
-0xMMMMMMMM is a debug mask corresponding to the CS_xxx bits (see driver source).
-
-MODULE_PARM(hercules_egpio_disable, "i");
-hercules_egpio_disable=N
-where N is a 0 (enable egpio), or a 1 (disable egpio support)
-
-MODULE_PARM(initdelay, "i");
-initdelay=N
-This value is used to determine the millescond delay during the initialization
-code prior to powering up the PLL. On laptops this value can be used to
-assist with errors on resume, mostly with IBM laptops. Basically, if the
-system is booted under battery power then the mdelay()/udelay() functions fail to
-properly delay the required time. Also, if the system is booted under AC power
-and then the power removed, the mdelay()/udelay() functions will not delay properly.
-
-MODULE_PARM(powerdown, "i");
-powerdown=N
-where N is 0 (disable any powerdown of the internal blocks) or 1 (enable powerdown)
-
-
-MODULE_PARM(external_amp, "i");
-external_amp=1
-if N is set to 1, then force enabling the EAPD support in the primary AC97 codec.
-override the detection logic and force the external amp bit in the AC97 0x26 register
-to be reset (0). EAPD should be 0 for powerup, and 1 for powerdown. The VTB Santa Cruz
-card has inverted logic, so there is a special function for these cards.
-
-MODULE_PARM(thinkpad, "i");
-thinkpad=1
-if N is set to 1, then force enabling the clkrun functionality.
-Currently, when the part is being used, then clkrun is disabled for the entire system,
-but re-enabled when the driver is released or there is no outstanding open count.
-
diff --git a/Documentation/sound/oss/es1370 b/Documentation/sound/oss/es1370
deleted file mode 100644
index 7b38b1a096a..00000000000
--- a/Documentation/sound/oss/es1370
+++ /dev/null
@@ -1,70 +0,0 @@
-/proc/sound, /dev/sndstat
--------------------------
-
-/proc/sound and /dev/sndstat is not supported by the
-driver. To find out whether the driver succeeded loading,
-check the kernel log (dmesg).
-
-
-ALaw/uLaw sample formats
-------------------------
-
-This driver does not support the ALaw/uLaw sample formats.
-ALaw is the default mode when opening a sound device
-using OSS/Free. The reason for the lack of support is
-that the hardware does not support these formats, and adding
-conversion routines to the kernel would lead to very ugly
-code in the presence of the mmap interface to the driver.
-And since xquake uses mmap, mmap is considered important :-)
-and no sane application uses ALaw/uLaw these days anyway.
-In short, playing a Sun .au file as follows:
-
-cat my_file.au > /dev/dsp
-
-does not work. Instead, you may use the play script from
-Chris Bagwell's sox-12.14 package (available from the URL
-below) to play many different audio file formats.
-The script automatically determines the audio format
-and does do audio conversions if necessary.
-http://home.sprynet.com/sprynet/cbagwell/projects.html
-
-
-Blocking vs. nonblocking IO
----------------------------
-
-Unlike OSS/Free this driver honours the O_NONBLOCK file flag
-not only during open, but also during read and write.
-This is an effort to make the sound driver interface more
-regular. Timidity has problems with this; a patch
-is available from http://www.ife.ee.ethz.ch/~sailer/linux/pciaudio.html.
-(Timidity patched will also run on OSS/Free).
-
-
-MIDI UART
----------
-
-The driver supports a simple MIDI UART interface, with
-no ioctl's supported.
-
-
-MIDI synthesizer
-----------------
-
-This soundcard does not have any hardware MIDI synthesizer;
-MIDI synthesis has to be done in software. To allow this
-the driver/soundcard supports two PCM (/dev/dsp) interfaces.
-The second one goes to the mixer "synth" setting and supports
-only a limited set of sampling rates (44100, 22050, 11025, 5512).
-By setting lineout to 1 on the driver command line
-(eg. insmod es1370 lineout=1) it is even possible on some
-cards to convert the LINEIN jack into a second LINEOUT jack, thus
-making it possible to output four independent audio channels!
-
-There is a freely available software package that allows
-MIDI file playback on this soundcard called Timidity.
-See http://www.cgs.fi/~tt/timidity/.
-
-
-
-Thomas Sailer
-t.sailer@alumni.ethz.ch
diff --git a/Documentation/sound/oss/es1371 b/Documentation/sound/oss/es1371
deleted file mode 100644
index c3151266771..00000000000
--- a/Documentation/sound/oss/es1371
+++ /dev/null
@@ -1,64 +0,0 @@
-/proc/sound, /dev/sndstat
--------------------------
-
-/proc/sound and /dev/sndstat is not supported by the
-driver. To find out whether the driver succeeded loading,
-check the kernel log (dmesg).
-
-
-ALaw/uLaw sample formats
-------------------------
-
-This driver does not support the ALaw/uLaw sample formats.
-ALaw is the default mode when opening a sound device
-using OSS/Free. The reason for the lack of support is
-that the hardware does not support these formats, and adding
-conversion routines to the kernel would lead to very ugly
-code in the presence of the mmap interface to the driver.
-And since xquake uses mmap, mmap is considered important :-)
-and no sane application uses ALaw/uLaw these days anyway.
-In short, playing a Sun .au file as follows:
-
-cat my_file.au > /dev/dsp
-
-does not work. Instead, you may use the play script from
-Chris Bagwell's sox-12.14 package (available from the URL
-below) to play many different audio file formats.
-The script automatically determines the audio format
-and does do audio conversions if necessary.
-http://home.sprynet.com/sprynet/cbagwell/projects.html
-
-
-Blocking vs. nonblocking IO
----------------------------
-
-Unlike OSS/Free this driver honours the O_NONBLOCK file flag
-not only during open, but also during read and write.
-This is an effort to make the sound driver interface more
-regular. Timidity has problems with this; a patch
-is available from http://www.ife.ee.ethz.ch/~sailer/linux/pciaudio.html.
-(Timidity patched will also run on OSS/Free).
-
-
-MIDI UART
----------
-
-The driver supports a simple MIDI UART interface, with
-no ioctl's supported.
-
-
-MIDI synthesizer
-----------------
-
-This soundcard does not have any hardware MIDI synthesizer;
-MIDI synthesis has to be done in software. To allow this
-the driver/soundcard supports two PCM (/dev/dsp) interfaces.
-
-There is a freely available software package that allows
-MIDI file playback on this soundcard called Timidity.
-See http://www.cgs.fi/~tt/timidity/.
-
-
-
-Thomas Sailer
-t.sailer@alumni.ethz.ch
diff --git a/Documentation/sound/oss/mwave b/Documentation/sound/oss/mwave
index 858334bb46b..5fbcb160927 100644
--- a/Documentation/sound/oss/mwave
+++ b/Documentation/sound/oss/mwave
@@ -163,7 +163,7 @@ OR the Default= line COULD be
Default=SBPRO
Reboot to Windows 95 and choose Linux. When booted, use sndconfig to configure
-the sound modules and voilà - ThinkPad sound with Linux.
+the sound modules and voilà - ThinkPad sound with Linux.
Now the gotchas - you can either have CD sound OR Mixers but not both. That's a
problem with the SB1.5 (CD sound) or SBPRO (Mixers) settings. No one knows why
diff --git a/Documentation/sound/oss/oss-parameters.txt b/Documentation/sound/oss/oss-parameters.txt
new file mode 100644
index 00000000000..3ab391e7c29
--- /dev/null
+++ b/Documentation/sound/oss/oss-parameters.txt
@@ -0,0 +1,51 @@
+ OSS Kernel Parameters
+ ~~~~~~~~~~~~~~~~~~~~~
+
+See Documentation/kernel-parameters.txt for general information on
+specifying module parameters.
+
+This document may not be entirely up to date and comprehensive. The command
+"modinfo -p ${modulename}" shows a current list of all parameters of a loadable
+module. Loadable modules, after being loaded into the running kernel, also
+reveal their parameters in /sys/module/${modulename}/parameters/. Some of these
+parameters may be changed at runtime by the command
+"echo -n ${value} > /sys/module/${modulename}/parameters/${parm}".
+
+
+ ad1848= [HW,OSS]
+ Format: <io>,<irq>,<dma>,<dma2>,<type>
+
+ aedsp16= [HW,OSS] Audio Excel DSP 16
+ Format: <io>,<irq>,<dma>,<mss_io>,<mpu_io>,<mpu_irq>
+ See also header of sound/oss/aedsp16.c.
+
+ dmasound= [HW,OSS] Sound subsystem buffers
+
+ mpu401= [HW,OSS]
+ Format: <io>,<irq>
+
+ opl3= [HW,OSS]
+ Format: <io>
+
+ pas2= [HW,OSS] Format:
+ <io>,<irq>,<dma>,<dma16>,<sb_io>,<sb_irq>,<sb_dma>,<sb_dma16>
+
+ pss= [HW,OSS] Personal Sound System (ECHO ESC614)
+ Format:
+ <io>,<mss_io>,<mss_irq>,<mss_dma>,<mpu_io>,<mpu_irq>
+
+ sscape= [HW,OSS]
+ Format: <io>,<irq>,<dma>,<mpu_io>,<mpu_irq>
+
+ trix= [HW,OSS] MediaTrix AudioTrix Pro
+ Format:
+ <io>,<irq>,<dma>,<dma2>,<sb_io>,<sb_irq>,<sb_dma>,<mpu_io>,<mpu_irq>
+
+ uart401= [HW,OSS]
+ Format: <io>,<irq>
+
+ uart6850= [HW,OSS]
+ Format: <io>,<irq>
+
+ waveartist= [HW,OSS]
+ Format: <io>,<irq>,<dma>,<dma2>
diff --git a/Documentation/sound/oss/rme96xx b/Documentation/sound/oss/rme96xx
deleted file mode 100644
index 87d7b7b65fa..00000000000
--- a/Documentation/sound/oss/rme96xx
+++ /dev/null
@@ -1,767 +0,0 @@
-Beta release of the rme96xx (driver for RME 96XX cards like the
-"Hammerfall" and the "Hammerfall light")
-
-Important: The driver module has to be installed on a freshly rebooted system,
-otherwise the driver might not be able to acquire its buffers.
-
-features:
-
- - OSS programming interface (i.e. runs with standard OSS soundsoftware)
- - OSS/Multichannel interface (OSS multichannel is done by just aquiring
- more than 2 channels). The driver does not use more than one device
- ( yet .. this feature may be implemented later )
- - more than one RME card supported
-
-The driver uses a specific multichannel interface, which I will document
-when the driver gets stable. (take a look at the defines in rme96xx.h,
-which adds blocked multichannel formats i.e instead of
-lrlrlrlr --> llllrrrr etc.
-
-Use the "rmectrl" programm to look at the status of the card ..
-or use xrmectrl, a GUI interface for the ctrl program.
-
-What you can do with the rmectrl program is to set the stereo device for
-OSS emulation (e.g. if you use SPDIF out).
-
-You do:
-
-./ctrl offset 24 24
-
-which makes the stereo device use channels 25 and 26.
-
-Guenter Geiger <geiger@epy.co.at>
-
-copy the first part of the attached source code into rmectrl.c
-and the second part into xrmectrl (or get the program from
-http://gige.xdv.org/pages/soft/pages/rme)
-
-to compile: gcc -o rmectrl rmectrl.c
------------------------------- snip ------------------------------------
-
-#include <stdio.h>
-#include <sys/types.h>
-#include <sys/stat.h>
-#include <sys/ioctl.h>
-#include <fcntl.h>
-#include <linux/soundcard.h>
-#include <math.h>
-#include <unistd.h>
-#include <stdlib.h>
-#include "rme96xx.h"
-
-/*
- remctrl.c
- (C) 2000 Guenter Geiger <geiger@debian.org>
- HP20020201 - Heiko Purnhagen <purnhage@tnt.uni-hannover.de>
-*/
-
-/* # define DEVICE_NAME "/dev/mixer" */
-# define DEVICE_NAME "/dev/mixer1"
-
-
-void usage(void)
-{
- fprintf(stderr,"usage: rmectrl [/dev/mixer<n>] [command [options]]\n\n");
- fprintf(stderr,"where command is one of:\n");
- fprintf(stderr," help show this help\n");
- fprintf(stderr," status show status bits\n");
- fprintf(stderr," control show control bits\n");
- fprintf(stderr," mix show mixer/offset status\n");
- fprintf(stderr," master <n> set sync master\n");
- fprintf(stderr," pro <n> set spdif out pro\n");
- fprintf(stderr," emphasis <n> set spdif out emphasis\n");
- fprintf(stderr," dolby <n> set spdif out no audio\n");
- fprintf(stderr," optout <n> set spdif out optical\n");
- fprintf(stderr," wordclock <n> set sync wordclock\n");
- fprintf(stderr," spdifin <n> set spdif in (0=optical,1=coax,2=intern)\n");
- fprintf(stderr," syncref <n> set sync source (0=ADAT1,1=ADAT2,2=ADAT3,3=SPDIF)\n");
- fprintf(stderr," adat1cd <n> set ADAT1 on internal CD\n");
- fprintf(stderr," offset <devnr> <in> <out> set dev (0..3) offset (0..25)\n");
- exit(-1);
-}
-
-
-int main(int argc, char* argv[])
-{
- int cards;
- int ret;
- int i;
- double ft;
- int fd, fdwr;
- int param,orig;
- rme_status_t stat;
- rme_ctrl_t ctrl;
- char *device;
- int argidx;
-
- if (argc < 2)
- usage();
-
- if (*argv[1]=='/') {
- device = argv[1];
- argidx = 2;
- }
- else {
- device = DEVICE_NAME;
- argidx = 1;
- }
-
- fprintf(stdout,"mixer device %s\n",device);
- if ((fd = open(device,O_RDONLY)) < 0) {
- fprintf(stdout,"opening device failed\n");
- exit(-1);
- }
-
- if ((fdwr = open(device,O_WRONLY)) < 0) {
- fprintf(stdout,"opening device failed\n");
- exit(-1);
- }
-
- if (argc < argidx+1)
- usage();
-
- if (!strcmp(argv[argidx],"help"))
- usage();
- if (!strcmp(argv[argidx],"-h"))
- usage();
- if (!strcmp(argv[argidx],"--help"))
- usage();
-
- if (!strcmp(argv[argidx],"status")) {
- ioctl(fd,SOUND_MIXER_PRIVATE2,&stat);
- fprintf(stdout,"stat.irq %d\n",stat.irq);
- fprintf(stdout,"stat.lockmask %d\n",stat.lockmask);
- fprintf(stdout,"stat.sr48 %d\n",stat.sr48);
- fprintf(stdout,"stat.wclock %d\n",stat.wclock);
- fprintf(stdout,"stat.bufpoint %d\n",stat.bufpoint);
- fprintf(stdout,"stat.syncmask %d\n",stat.syncmask);
- fprintf(stdout,"stat.doublespeed %d\n",stat.doublespeed);
- fprintf(stdout,"stat.tc_busy %d\n",stat.tc_busy);
- fprintf(stdout,"stat.tc_out %d\n",stat.tc_out);
- fprintf(stdout,"stat.crystalrate %d (0=64k 3=96k 4=88.2k 5=48k 6=44.1k 7=32k)\n",stat.crystalrate);
- fprintf(stdout,"stat.spdif_error %d\n",stat.spdif_error);
- fprintf(stdout,"stat.bufid %d\n",stat.bufid);
- fprintf(stdout,"stat.tc_valid %d\n",stat.tc_valid);
- exit (0);
- }
-
- if (!strcmp(argv[argidx],"control")) {
- ioctl(fd,SOUND_MIXER_PRIVATE3,&ctrl);
- fprintf(stdout,"ctrl.start %d\n",ctrl.start);
- fprintf(stdout,"ctrl.latency %d (0=64 .. 7=8192)\n",ctrl.latency);
- fprintf(stdout,"ctrl.master %d\n",ctrl.master);
- fprintf(stdout,"ctrl.ie %d\n",ctrl.ie);
- fprintf(stdout,"ctrl.sr48 %d\n",ctrl.sr48);
- fprintf(stdout,"ctrl.spare %d\n",ctrl.spare);
- fprintf(stdout,"ctrl.doublespeed %d\n",ctrl.doublespeed);
- fprintf(stdout,"ctrl.pro %d\n",ctrl.pro);
- fprintf(stdout,"ctrl.emphasis %d\n",ctrl.emphasis);
- fprintf(stdout,"ctrl.dolby %d\n",ctrl.dolby);
- fprintf(stdout,"ctrl.opt_out %d\n",ctrl.opt_out);
- fprintf(stdout,"ctrl.wordclock %d\n",ctrl.wordclock);
- fprintf(stdout,"ctrl.spdif_in %d (0=optical,1=coax,2=intern)\n",ctrl.spdif_in);
- fprintf(stdout,"ctrl.sync_ref %d (0=ADAT1,1=ADAT2,2=ADAT3,3=SPDIF)\n",ctrl.sync_ref);
- fprintf(stdout,"ctrl.spdif_reset %d\n",ctrl.spdif_reset);
- fprintf(stdout,"ctrl.spdif_select %d\n",ctrl.spdif_select);
- fprintf(stdout,"ctrl.spdif_clock %d\n",ctrl.spdif_clock);
- fprintf(stdout,"ctrl.spdif_write %d\n",ctrl.spdif_write);
- fprintf(stdout,"ctrl.adat1_cd %d\n",ctrl.adat1_cd);
- exit (0);
- }
-
- if (!strcmp(argv[argidx],"mix")) {
- rme_mixer mix;
- int i;
-
- for (i=0; i<4; i++) {
- mix.devnr = i;
- ioctl(fd,SOUND_MIXER_PRIVATE1,&mix);
- if (mix.devnr == i) {
- fprintf(stdout,"devnr %d\n",mix.devnr);
- fprintf(stdout,"mix.i_offset %2d (0-25)\n",mix.i_offset);
- fprintf(stdout,"mix.o_offset %2d (0-25)\n",mix.o_offset);
- }
- }
- exit (0);
- }
-
-/* the control flags */
-
- if (argc < argidx+2)
- usage();
-
- if (!strcmp(argv[argidx],"master")) {
- int val = atoi(argv[argidx+1]);
- ioctl(fd,SOUND_MIXER_PRIVATE3,&ctrl);
- printf("master = %d\n",val);
- ctrl.master = val;
- ioctl(fdwr,SOUND_MIXER_PRIVATE3,&ctrl);
- exit (0);
- }
-
- if (!strcmp(argv[argidx],"pro")) {
- int val = atoi(argv[argidx+1]);
- ioctl(fd,SOUND_MIXER_PRIVATE3,&ctrl);
- printf("pro = %d\n",val);
- ctrl.pro = val;
- ioctl(fdwr,SOUND_MIXER_PRIVATE3,&ctrl);
- exit (0);
- }
-
- if (!strcmp(argv[argidx],"emphasis")) {
- int val = atoi(argv[argidx+1]);
- ioctl(fd,SOUND_MIXER_PRIVATE3,&ctrl);
- printf("emphasis = %d\n",val);
- ctrl.emphasis = val;
- ioctl(fdwr,SOUND_MIXER_PRIVATE3,&ctrl);
- exit (0);
- }
-
- if (!strcmp(argv[argidx],"dolby")) {
- int val = atoi(argv[argidx+1]);
- ioctl(fd,SOUND_MIXER_PRIVATE3,&ctrl);
- printf("dolby = %d\n",val);
- ctrl.dolby = val;
- ioctl(fdwr,SOUND_MIXER_PRIVATE3,&ctrl);
- exit (0);
- }
-
- if (!strcmp(argv[argidx],"optout")) {
- int val = atoi(argv[argidx+1]);
- ioctl(fd,SOUND_MIXER_PRIVATE3,&ctrl);
- printf("optout = %d\n",val);
- ctrl.opt_out = val;
- ioctl(fdwr,SOUND_MIXER_PRIVATE3,&ctrl);
- exit (0);
- }
-
- if (!strcmp(argv[argidx],"wordclock")) {
- int val = atoi(argv[argidx+1]);
- ioctl(fd,SOUND_MIXER_PRIVATE3,&ctrl);
- printf("wordclock = %d\n",val);
- ctrl.wordclock = val;
- ioctl(fdwr,SOUND_MIXER_PRIVATE3,&ctrl);
- exit (0);
- }
-
- if (!strcmp(argv[argidx],"spdifin")) {
- int val = atoi(argv[argidx+1]);
- ioctl(fd,SOUND_MIXER_PRIVATE3,&ctrl);
- printf("spdifin = %d\n",val);
- ctrl.spdif_in = val;
- ioctl(fdwr,SOUND_MIXER_PRIVATE3,&ctrl);
- exit (0);
- }
-
- if (!strcmp(argv[argidx],"syncref")) {
- int val = atoi(argv[argidx+1]);
- ioctl(fd,SOUND_MIXER_PRIVATE3,&ctrl);
- printf("syncref = %d\n",val);
- ctrl.sync_ref = val;
- ioctl(fdwr,SOUND_MIXER_PRIVATE3,&ctrl);
- exit (0);
- }
-
- if (!strcmp(argv[argidx],"adat1cd")) {
- int val = atoi(argv[argidx+1]);
- ioctl(fd,SOUND_MIXER_PRIVATE3,&ctrl);
- printf("adat1cd = %d\n",val);
- ctrl.adat1_cd = val;
- ioctl(fdwr,SOUND_MIXER_PRIVATE3,&ctrl);
- exit (0);
- }
-
-/* setting offset */
-
- if (argc < argidx+4)
- usage();
-
- if (!strcmp(argv[argidx],"offset")) {
- rme_mixer mix;
-
- mix.devnr = atoi(argv[argidx+1]);
-
- mix.i_offset = atoi(argv[argidx+2]);
- mix.o_offset = atoi(argv[argidx+3]);
- ioctl(fdwr,SOUND_MIXER_PRIVATE1,&mix);
- fprintf(stdout,"devnr %d\n",mix.devnr);
- fprintf(stdout,"mix.i_offset to %d\n",mix.i_offset);
- fprintf(stdout,"mix.o_offset to %d\n",mix.o_offset);
- exit (0);
- }
-
- usage();
- exit (0); /* to avoid warning */
-}
-
-
----------------------------- <snip> --------------------------------
-#!/usr/bin/wish
-
-# xrmectrl
-# (C) 2000 Guenter Geiger <geiger@debian.org>
-# HP20020201 - Heiko Purnhagen <purnhage@tnt.uni-hannover.de>
-
-#set defaults "-relief ridged"
-set CTRLPROG "./rmectrl"
-if {$argc} {
- set CTRLPROG "$CTRLPROG $argv"
-}
-puts "CTRLPROG $CTRLPROG"
-
-frame .butts
-button .butts.exit -text "Exit" -command "exit" -relief ridge
-#button .butts.state -text "State" -command "get_all"
-
-pack .butts.exit -side left
-pack .butts -side bottom
-
-
-#
-# STATUS
-#
-
-frame .status
-
-# Sampling Rate
-
-frame .status.sr
-label .status.sr.text -text "Sampling Rate" -justify left
-radiobutton .status.sr.441 -selectcolor red -text "44.1 kHz" -width 10 -anchor nw -variable srate -value 44100 -font times
-radiobutton .status.sr.480 -selectcolor red -text "48 kHz" -width 10 -anchor nw -variable srate -value 48000 -font times
-radiobutton .status.sr.882 -selectcolor red -text "88.2 kHz" -width 10 -anchor nw -variable srate -value 88200 -font times
-radiobutton .status.sr.960 -selectcolor red -text "96 kHz" -width 10 -anchor nw -variable srate -value 96000 -font times
-
-pack .status.sr.text .status.sr.441 .status.sr.480 .status.sr.882 .status.sr.960 -side top -padx 3
-
-# Lock
-
-frame .status.lock
-label .status.lock.text -text "Lock" -justify left
-checkbutton .status.lock.adat1 -selectcolor red -text "ADAT1" -anchor nw -width 10 -variable adatlock1 -font times
-checkbutton .status.lock.adat2 -selectcolor red -text "ADAT2" -anchor nw -width 10 -variable adatlock2 -font times
-checkbutton .status.lock.adat3 -selectcolor red -text "ADAT3" -anchor nw -width 10 -variable adatlock3 -font times
-
-pack .status.lock.text .status.lock.adat1 .status.lock.adat2 .status.lock.adat3 -side top -padx 3
-
-# Sync
-
-frame .status.sync
-label .status.sync.text -text "Sync" -justify left
-checkbutton .status.sync.adat1 -selectcolor red -text "ADAT1" -anchor nw -width 10 -variable adatsync1 -font times
-checkbutton .status.sync.adat2 -selectcolor red -text "ADAT2" -anchor nw -width 10 -variable adatsync2 -font times
-checkbutton .status.sync.adat3 -selectcolor red -text "ADAT3" -anchor nw -width 10 -variable adatsync3 -font times
-
-pack .status.sync.text .status.sync.adat1 .status.sync.adat2 .status.sync.adat3 -side top -padx 3
-
-# Timecode
-
-frame .status.tc
-label .status.tc.text -text "Timecode" -justify left
-checkbutton .status.tc.busy -selectcolor red -text "busy" -anchor nw -width 10 -variable tcbusy -font times
-checkbutton .status.tc.out -selectcolor red -text "out" -anchor nw -width 10 -variable tcout -font times
-checkbutton .status.tc.valid -selectcolor red -text "valid" -anchor nw -width 10 -variable tcvalid -font times
-
-pack .status.tc.text .status.tc.busy .status.tc.out .status.tc.valid -side top -padx 3
-
-# SPDIF In
-
-frame .status.spdif
-label .status.spdif.text -text "SPDIF In" -justify left
-label .status.spdif.sr -text "--.- kHz" -anchor n -width 10 -font times
-checkbutton .status.spdif.error -selectcolor red -text "Input Lock" -anchor nw -width 10 -variable spdiferr -font times
-
-pack .status.spdif.text .status.spdif.sr .status.spdif.error -side top -padx 3
-
-pack .status.sr .status.lock .status.sync .status.tc .status.spdif -side left -fill x -anchor n -expand 1
-
-
-#
-# CONTROL
-#
-
-proc setprof {} {
- global CTRLPROG
- global spprof
- exec $CTRLPROG pro $spprof
-}
-
-proc setemph {} {
- global CTRLPROG
- global spemph
- exec $CTRLPROG emphasis $spemph
-}
-
-proc setnoaud {} {
- global CTRLPROG
- global spnoaud
- exec $CTRLPROG dolby $spnoaud
-}
-
-proc setoptical {} {
- global CTRLPROG
- global spoptical
- exec $CTRLPROG optout $spoptical
-}
-
-proc setspdifin {} {
- global CTRLPROG
- global spdifin
- exec $CTRLPROG spdifin [expr $spdifin - 1]
-}
-
-proc setsyncsource {} {
- global CTRLPROG
- global syncsource
- exec $CTRLPROG syncref [expr $syncsource -1]
-}
-
-
-proc setmaster {} {
- global CTRLPROG
- global master
- exec $CTRLPROG master $master
-}
-
-proc setwordclock {} {
- global CTRLPROG
- global wordclock
- exec $CTRLPROG wordclock $wordclock
-}
-
-proc setadat1cd {} {
- global CTRLPROG
- global adat1cd
- exec $CTRLPROG adat1cd $adat1cd
-}
-
-
-frame .control
-
-# SPDIF In & SPDIF Out
-
-
-frame .control.spdif
-
-frame .control.spdif.in
-label .control.spdif.in.text -text "SPDIF In" -justify left
-radiobutton .control.spdif.in.input1 -text "Optical" -anchor nw -width 13 -variable spdifin -value 1 -command setspdifin -selectcolor blue -font times
-radiobutton .control.spdif.in.input2 -text "Coaxial" -anchor nw -width 13 -variable spdifin -value 2 -command setspdifin -selectcolor blue -font times
-radiobutton .control.spdif.in.input3 -text "Intern " -anchor nw -width 13 -variable spdifin -command setspdifin -value 3 -selectcolor blue -font times
-
-checkbutton .control.spdif.in.adat1cd -text "ADAT1 Intern" -anchor nw -width 13 -variable adat1cd -command setadat1cd -selectcolor blue -font times
-
-pack .control.spdif.in.text .control.spdif.in.input1 .control.spdif.in.input2 .control.spdif.in.input3 .control.spdif.in.adat1cd
-
-label .control.spdif.space
-
-frame .control.spdif.out
-label .control.spdif.out.text -text "SPDIF Out" -justify left
-checkbutton .control.spdif.out.pro -text "Professional" -anchor nw -width 13 -variable spprof -command setprof -selectcolor blue -font times
-checkbutton .control.spdif.out.emphasis -text "Emphasis" -anchor nw -width 13 -variable spemph -command setemph -selectcolor blue -font times
-checkbutton .control.spdif.out.dolby -text "NoAudio" -anchor nw -width 13 -variable spnoaud -command setnoaud -selectcolor blue -font times
-checkbutton .control.spdif.out.optout -text "Optical Out" -anchor nw -width 13 -variable spoptical -command setoptical -selectcolor blue -font times
-
-pack .control.spdif.out.optout .control.spdif.out.dolby .control.spdif.out.emphasis .control.spdif.out.pro .control.spdif.out.text -side bottom
-
-pack .control.spdif.in .control.spdif.space .control.spdif.out -side top -fill y -padx 3 -expand 1
-
-# Sync Mode & Sync Source
-
-frame .control.sync
-frame .control.sync.mode
-label .control.sync.mode.text -text "Sync Mode" -justify left
-checkbutton .control.sync.mode.master -text "Master" -anchor nw -width 13 -variable master -command setmaster -selectcolor blue -font times
-checkbutton .control.sync.mode.wc -text "Wordclock" -anchor nw -width 13 -variable wordclock -command setwordclock -selectcolor blue -font times
-
-pack .control.sync.mode.text .control.sync.mode.master .control.sync.mode.wc
-
-label .control.sync.space
-
-frame .control.sync.src
-label .control.sync.src.text -text "Sync Source" -justify left
-radiobutton .control.sync.src.input1 -text "ADAT1" -anchor nw -width 13 -variable syncsource -value 1 -command setsyncsource -selectcolor blue -font times
-radiobutton .control.sync.src.input2 -text "ADAT2" -anchor nw -width 13 -variable syncsource -value 2 -command setsyncsource -selectcolor blue -font times
-radiobutton .control.sync.src.input3 -text "ADAT3" -anchor nw -width 13 -variable syncsource -command setsyncsource -value 3 -selectcolor blue -font times
-radiobutton .control.sync.src.input4 -text "SPDIF" -anchor nw -width 13 -variable syncsource -command setsyncsource -value 4 -selectcolor blue -font times
-
-pack .control.sync.src.input4 .control.sync.src.input3 .control.sync.src.input2 .control.sync.src.input1 .control.sync.src.text -side bottom
-
-pack .control.sync.mode .control.sync.space .control.sync.src -side top -fill y -padx 3 -expand 1
-
-label .control.space -text "" -width 10
-
-# Buffer Size
-
-frame .control.buf
-label .control.buf.text -text "Buffer Size (Latency)" -justify left
-radiobutton .control.buf.b1 -selectcolor red -text "64 (1.5 ms)" -width 13 -anchor nw -variable ssrate -value 1 -font times
-radiobutton .control.buf.b2 -selectcolor red -text "128 (3 ms)" -width 13 -anchor nw -variable ssrate -value 2 -font times
-radiobutton .control.buf.b3 -selectcolor red -text "256 (6 ms)" -width 13 -anchor nw -variable ssrate -value 3 -font times
-radiobutton .control.buf.b4 -selectcolor red -text "512 (12 ms)" -width 13 -anchor nw -variable ssrate -value 4 -font times
-radiobutton .control.buf.b5 -selectcolor red -text "1024 (23 ms)" -width 13 -anchor nw -variable ssrate -value 5 -font times
-radiobutton .control.buf.b6 -selectcolor red -text "2048 (46 ms)" -width 13 -anchor nw -variable ssrate -value 6 -font times
-radiobutton .control.buf.b7 -selectcolor red -text "4096 (93 ms)" -width 13 -anchor nw -variable ssrate -value 7 -font times
-radiobutton .control.buf.b8 -selectcolor red -text "8192 (186 ms)" -width 13 -anchor nw -variable ssrate -value 8 -font times
-
-pack .control.buf.text .control.buf.b1 .control.buf.b2 .control.buf.b3 .control.buf.b4 .control.buf.b5 .control.buf.b6 .control.buf.b7 .control.buf.b8 -side top -padx 3
-
-# Offset
-
-frame .control.offset
-
-frame .control.offset.in
-label .control.offset.in.text -text "Offset In" -justify left
-label .control.offset.in.off0 -text "dev\#0: -" -anchor nw -width 10 -font times
-label .control.offset.in.off1 -text "dev\#1: -" -anchor nw -width 10 -font times
-label .control.offset.in.off2 -text "dev\#2: -" -anchor nw -width 10 -font times
-label .control.offset.in.off3 -text "dev\#3: -" -anchor nw -width 10 -font times
-
-pack .control.offset.in.text .control.offset.in.off0 .control.offset.in.off1 .control.offset.in.off2 .control.offset.in.off3
-
-label .control.offset.space
-
-frame .control.offset.out
-label .control.offset.out.text -text "Offset Out" -justify left
-label .control.offset.out.off0 -text "dev\#0: -" -anchor nw -width 10 -font times
-label .control.offset.out.off1 -text "dev\#1: -" -anchor nw -width 10 -font times
-label .control.offset.out.off2 -text "dev\#2: -" -anchor nw -width 10 -font times
-label .control.offset.out.off3 -text "dev\#3: -" -anchor nw -width 10 -font times
-
-pack .control.offset.out.off3 .control.offset.out.off2 .control.offset.out.off1 .control.offset.out.off0 .control.offset.out.text -side bottom
-
-pack .control.offset.in .control.offset.space .control.offset.out -side top -fill y -padx 3 -expand 1
-
-
-pack .control.spdif .control.sync .control.space .control.buf .control.offset -side left -fill both -anchor n -expand 1
-
-
-label .statustext -text Status -justify center -relief ridge
-label .controltext -text Control -justify center -relief ridge
-
-label .statusspace
-label .controlspace
-
-pack .statustext .status .statusspace .controltext .control .controlspace -side top -anchor nw -fill both -expand 1
-
-
-proc get_bit {output sstr} {
- set idx1 [string last [concat $sstr 1] $output]
- set idx1 [expr $idx1 != -1]
- return $idx1
-}
-
-proc get_val {output sstr} {
- set val [string wordend $output [string last $sstr $output]]
- set val [string range $output $val [expr $val+1]]
- return $val
-}
-
-proc get_val2 {output sstr} {
- set val [string wordend $output [string first $sstr $output]]
- set val [string range $output $val [expr $val+2]]
- return $val
-}
-
-proc get_control {} {
- global spprof
- global spemph
- global spnoaud
- global spoptical
- global spdifin
- global ssrate
- global master
- global wordclock
- global syncsource
- global CTRLPROG
-
- set f [open "| $CTRLPROG control" r+]
- set ooo [read $f 1000]
- close $f
-# puts $ooo
-
- set spprof [ get_bit $ooo "pro"]
- set spemph [ get_bit $ooo "emphasis"]
- set spnoaud [ get_bit $ooo "dolby"]
- set spoptical [ get_bit $ooo "opt_out"]
- set spdifin [ expr [ get_val $ooo "spdif_in"] + 1]
- set ssrate [ expr [ get_val $ooo "latency"] + 1]
- set master [ expr [ get_val $ooo "master"]]
- set wordclock [ expr [ get_val $ooo "wordclock"]]
- set syncsource [ expr [ get_val $ooo "sync_ref"] + 1]
-}
-
-proc get_status {} {
- global srate
- global ctrlcom
-
- global adatlock1
- global adatlock2
- global adatlock3
-
- global adatsync1
- global adatsync2
- global adatsync3
-
- global tcbusy
- global tcout
- global tcvalid
-
- global spdiferr
- global crystal
- global .status.spdif.text
- global CTRLPROG
-
-
- set f [open "| $CTRLPROG status" r+]
- set ooo [read $f 1000]
- close $f
-# puts $ooo
-
-# samplerate
-
- set idx1 [string last "sr48 1" $ooo]
- set idx2 [string last "doublespeed 1" $ooo]
- if {$idx1 >= 0} {
- set fact1 48000
- } else {
- set fact1 44100
- }
-
- if {$idx2 >= 0} {
- set fact2 2
- } else {
- set fact2 1
- }
- set srate [expr $fact1 * $fact2]
-# ADAT lock
-
- set val [get_val $ooo lockmask]
- set adatlock1 0
- set adatlock2 0
- set adatlock3 0
- if {[expr $val & 1]} {
- set adatlock3 1
- }
- if {[expr $val & 2]} {
- set adatlock2 1
- }
- if {[expr $val & 4]} {
- set adatlock1 1
- }
-
-# ADAT sync
- set val [get_val $ooo syncmask]
- set adatsync1 0
- set adatsync2 0
- set adatsync3 0
-
- if {[expr $val & 1]} {
- set adatsync3 1
- }
- if {[expr $val & 2]} {
- set adatsync2 1
- }
- if {[expr $val & 4]} {
- set adatsync1 1
- }
-
-# TC busy
-
- set tcbusy [get_bit $ooo "busy"]
- set tcout [get_bit $ooo "out"]
- set tcvalid [get_bit $ooo "valid"]
- set spdiferr [expr [get_bit $ooo "spdif_error"] == 0]
-
-# 000=64kHz, 100=88.2kHz, 011=96kHz
-# 111=32kHz, 110=44.1kHz, 101=48kHz
-
- set val [get_val $ooo crystalrate]
-
- set crystal "--.- kHz"
- if {$val == 0} {
- set crystal "64 kHz"
- }
- if {$val == 4} {
- set crystal "88.2 kHz"
- }
- if {$val == 3} {
- set crystal "96 kHz"
- }
- if {$val == 7} {
- set crystal "32 kHz"
- }
- if {$val == 6} {
- set crystal "44.1 kHz"
- }
- if {$val == 5} {
- set crystal "48 kHz"
- }
- .status.spdif.sr configure -text $crystal
-}
-
-proc get_offset {} {
- global inoffset
- global outoffset
- global CTRLPROG
-
- set f [open "| $CTRLPROG mix" r+]
- set ooo [read $f 1000]
- close $f
-# puts $ooo
-
- if { [string match "*devnr*" $ooo] } {
- set ooo [string range $ooo [string wordend $ooo [string first devnr $ooo]] end]
- set val [get_val2 $ooo i_offset]
- .control.offset.in.off0 configure -text "dev\#0: $val"
- set val [get_val2 $ooo o_offset]
- .control.offset.out.off0 configure -text "dev\#0: $val"
- } else {
- .control.offset.in.off0 configure -text "dev\#0: -"
- .control.offset.out.off0 configure -text "dev\#0: -"
- }
- if { [string match "*devnr*" $ooo] } {
- set ooo [string range $ooo [string wordend $ooo [string first devnr $ooo]] end]
- set val [get_val2 $ooo i_offset]
- .control.offset.in.off1 configure -text "dev\#1: $val"
- set val [get_val2 $ooo o_offset]
- .control.offset.out.off1 configure -text "dev\#1: $val"
- } else {
- .control.offset.in.off1 configure -text "dev\#1: -"
- .control.offset.out.off1 configure -text "dev\#1: -"
- }
- if { [string match "*devnr*" $ooo] } {
- set ooo [string range $ooo [string wordend $ooo [string first devnr $ooo]] end]
- set val [get_val2 $ooo i_offset]
- .control.offset.in.off2 configure -text "dev\#2: $val"
- set val [get_val2 $ooo o_offset]
- .control.offset.out.off2 configure -text "dev\#2: $val"
- } else {
- .control.offset.in.off2 configure -text "dev\#2: -"
- .control.offset.out.off2 configure -text "dev\#2: -"
- }
- if { [string match "*devnr*" $ooo] } {
- set ooo [string range $ooo [string wordend $ooo [string first devnr $ooo]] end]
- set val [get_val2 $ooo i_offset]
- .control.offset.in.off3 configure -text "dev\#3: $val"
- set val [get_val2 $ooo o_offset]
- .control.offset.out.off3 configure -text "dev\#3: $val"
- } else {
- .control.offset.in.off3 configure -text "dev\#3: -"
- .control.offset.out.off3 configure -text "dev\#3: -"
- }
-}
-
-
-proc get_all {} {
-get_status
-get_control
-get_offset
-}
-
-# main
-while {1} {
- after 200
- get_all
- update
-}
diff --git a/Documentation/sound/oss/solo1 b/Documentation/sound/oss/solo1
deleted file mode 100644
index 6f53d407d02..00000000000
--- a/Documentation/sound/oss/solo1
+++ /dev/null
@@ -1,70 +0,0 @@
-Recording
----------
-
-Recording does not work on the author's card, but there
-is at least one report of it working on later silicon.
-The chip behaves differently than described in the data sheet,
-likely due to a chip bug. Working around this would require
-the help of ESS (for example by publishing an errata sheet),
-but ESS has not done so so far.
-
-Also, the chip only supports 24 bit addresses for recording,
-which means it cannot work on some Alpha mainboards.
-
-
-/proc/sound, /dev/sndstat
--------------------------
-
-/proc/sound and /dev/sndstat is not supported by the
-driver. To find out whether the driver succeeded loading,
-check the kernel log (dmesg).
-
-
-ALaw/uLaw sample formats
-------------------------
-
-This driver does not support the ALaw/uLaw sample formats.
-ALaw is the default mode when opening a sound device
-using OSS/Free. The reason for the lack of support is
-that the hardware does not support these formats, and adding
-conversion routines to the kernel would lead to very ugly
-code in the presence of the mmap interface to the driver.
-And since xquake uses mmap, mmap is considered important :-)
-and no sane application uses ALaw/uLaw these days anyway.
-In short, playing a Sun .au file as follows:
-
-cat my_file.au > /dev/dsp
-
-does not work. Instead, you may use the play script from
-Chris Bagwell's sox-12.14 package (or later, available from the URL
-below) to play many different audio file formats.
-The script automatically determines the audio format
-and does do audio conversions if necessary.
-http://home.sprynet.com/sprynet/cbagwell/projects.html
-
-
-Blocking vs. nonblocking IO
----------------------------
-
-Unlike OSS/Free this driver honours the O_NONBLOCK file flag
-not only during open, but also during read and write.
-This is an effort to make the sound driver interface more
-regular. Timidity has problems with this; a patch
-is available from http://www.ife.ee.ethz.ch/~sailer/linux/pciaudio.html.
-(Timidity patched will also run on OSS/Free).
-
-
-MIDI UART
----------
-
-The driver supports a simple MIDI UART interface, with
-no ioctl's supported.
-
-
-MIDI synthesizer
-----------------
-
-The card has an OPL compatible FM synthesizer.
-
-Thomas Sailer
-t.sailer@alumni.ethz.ch
diff --git a/Documentation/sound/oss/sonicvibes b/Documentation/sound/oss/sonicvibes
deleted file mode 100644
index 84dee2e0b37..00000000000
--- a/Documentation/sound/oss/sonicvibes
+++ /dev/null
@@ -1,81 +0,0 @@
-/proc/sound, /dev/sndstat
--------------------------
-
-/proc/sound and /dev/sndstat is not supported by the
-driver. To find out whether the driver succeeded loading,
-check the kernel log (dmesg).
-
-
-ALaw/uLaw sample formats
-------------------------
-
-This driver does not support the ALaw/uLaw sample formats.
-ALaw is the default mode when opening a sound device
-using OSS/Free. The reason for the lack of support is
-that the hardware does not support these formats, and adding
-conversion routines to the kernel would lead to very ugly
-code in the presence of the mmap interface to the driver.
-And since xquake uses mmap, mmap is considered important :-)
-and no sane application uses ALaw/uLaw these days anyway.
-In short, playing a Sun .au file as follows:
-
-cat my_file.au > /dev/dsp
-
-does not work. Instead, you may use the play script from
-Chris Bagwell's sox-12.14 package (available from the URL
-below) to play many different audio file formats.
-The script automatically determines the audio format
-and does do audio conversions if necessary.
-http://home.sprynet.com/sprynet/cbagwell/projects.html
-
-
-Blocking vs. nonblocking IO
----------------------------
-
-Unlike OSS/Free this driver honours the O_NONBLOCK file flag
-not only during open, but also during read and write.
-This is an effort to make the sound driver interface more
-regular. Timidity has problems with this; a patch
-is available from http://www.ife.ee.ethz.ch/~sailer/linux/pciaudio.html.
-(Timidity patched will also run on OSS/Free).
-
-
-MIDI UART
----------
-
-The driver supports a simple MIDI UART interface, with
-no ioctl's supported.
-
-
-MIDI synthesizer
-----------------
-
-The card both has an OPL compatible FM synthesizer as well as
-a wavetable synthesizer.
-
-I haven't managed so far to get the OPL synth running.
-
-Using the wavetable synthesizer requires allocating
-1-4MB of physically contiguous memory, which isn't possible
-currently on Linux without ugly hacks like the bigphysarea
-patch. Therefore, the driver doesn't support wavetable
-synthesis.
-
-
-No support from S3
-------------------
-
-I do not get any support from S3. Therefore, the driver
-still has many problems. For example, although the manual
-states that the chip should be able to access the sample
-buffer anywhere in 32bit address space, I haven't managed to
-get it working with buffers above 16M. Therefore, the card
-has the same disadvantages as ISA soundcards.
-
-Given that the card is also very noisy, and if you haven't
-already bought it, you should strongly opt for one of the
-comparatively priced Ensoniq products.
-
-
-Thomas Sailer
-t.sailer@alumni.ethz.ch
diff --git a/Documentation/sound/oss/ultrasound b/Documentation/sound/oss/ultrasound
index 32cd50478b3..eed331c738a 100644
--- a/Documentation/sound/oss/ultrasound
+++ b/Documentation/sound/oss/ultrasound
@@ -19,7 +19,7 @@ db16 ???
no_wave_dma option
This option defaults to a value of 0, which allows the Ultrasound wavetable
-DSP to use DMA for for playback and downloading samples. This is the same
+DSP to use DMA for playback and downloading samples. This is the same
as the old behaviour. If set to 1, no DMA is needed for downloading samples,
and allows owners of a GUS MAX to make use of simultaneous digital audio
(/dev/dsp), MIDI, and wavetable playback.
diff --git a/Documentation/sound/oss/vwsnd b/Documentation/sound/oss/vwsnd
deleted file mode 100644
index a6ea0a1df9e..00000000000
--- a/Documentation/sound/oss/vwsnd
+++ /dev/null
@@ -1,293 +0,0 @@
-vwsnd - Sound driver for the Silicon Graphics 320 and 540 Visual
-Workstations' onboard audio.
-
-Copyright 1999 Silicon Graphics, Inc. All rights reserved.
-
-
-At the time of this writing, March 1999, there are two models of
-Visual Workstation, the 320 and the 540. This document only describes
-those models. Future Visual Workstation models may have different
-sound capabilities, and this driver will probably not work on those
-boxes.
-
-The Visual Workstation has an Analog Devices AD1843 "SoundComm" audio
-codec chip. The AD1843 is accessed through the Cobalt I/O ASIC, also
-known as Lithium. This driver programs both both chips.
-
-==============================================================================
-QUICK CONFIGURATION
-
- # insmod soundcore
- # insmod vwsnd
-
-==============================================================================
-I/O CONNECTIONS
-
-On the Visual Workstation, only three of the AD1843 inputs are hooked
-up. The analog line in jacks are connected to the AD1843's AUX1
-input. The CD audio lines are connected to the AD1843's AUX2 input.
-The microphone jack is connected to the AD1843's MIC input. The mic
-jack is mono, but the signal is delivered to both the left and right
-MIC inputs. You can record in stereo from the mic input, but you will
-get the same signal on both channels (within the limits of A/D
-accuracy). Full scale on the Line input is +/- 2.0 V. Full scale on
-the MIC input is 20 dB less, or +/- 0.2 V.
-
-The AD1843's LOUT1 outputs are connected to the Line Out jacks. The
-AD1843's HPOUT outputs are connected to the speaker/headphone jack.
-LOUT2 is not connected. Line out's maximum level is +/- 2.0 V peak to
-peak. The speaker/headphone out's maximum is +/- 4.0 V peak to peak.
-
-The AD1843's PCM input channel and one of its output channels (DAC1)
-are connected to Lithium. The other output channel (DAC2) is not
-connected.
-
-==============================================================================
-CAPABILITIES
-
-The AD1843 has PCM input and output (Pulse Code Modulation, also known
-as wavetable). PCM input and output can be mono or stereo in any of
-four formats. The formats are 16 bit signed and 8 bit unsigned,
-u-Law, and A-Law format. Any sample rate from 4 KHz to 49 KHz is
-available, in 1 Hz increments.
-
-The AD1843 includes an analog mixer that can mix all three input
-signals (line, mic and CD) into the analog outputs. The mixer has a
-separate gain control and mute switch for each input.
-
-There are two outputs, line out and speaker/headphone out. They
-always produce the same signal, and the speaker always has 3 dB more
-gain than the line out. The speaker/headphone output can be muted,
-but this driver does not export that function.
-
-The hardware can sync audio to the video clock, but this driver does
-not have a way to specify syncing to video.
-
-==============================================================================
-PROGRAMMING
-
-This section explains the API supported by the driver. Also see the
-Open Sound Programming Guide at http://www.opensound.com/pguide/ .
-This section assumes familiarity with that document.
-
-The driver has two interfaces, an I/O interface and a mixer interface.
-There is no MIDI or sequencer capability.
-
-==============================================================================
-PROGRAMMING PCM I/O
-
-The I/O interface is usually accessed as /dev/audio or /dev/dsp.
-Using the standard Open Sound System (OSS) ioctl calls, the sample
-rate, number of channels, and sample format may be set within the
-limitations described above. The driver supports triggering. It also
-supports getting the input and output pointers with one-sample
-accuracy.
-
-The SNDCTL_DSP_GETCAP ioctl returns these capabilities.
-
- DSP_CAP_DUPLEX - driver supports full duplex.
-
- DSP_CAP_TRIGGER - driver supports triggering.
-
- DSP_CAP_REALTIME - values returned by SNDCTL_DSP_GETIPTR
- and SNDCTL_DSP_GETOPTR are accurate to a few samples.
-
-Memory mapping (mmap) is not implemented.
-
-The driver permits subdivided fragment sizes from 64 to 4096 bytes.
-The number of fragments can be anything from 3 fragments to however
-many fragments fit into 124 kilobytes. It is up to the user to
-determine how few/small fragments can be used without introducing
-glitches with a given workload. Linux is not realtime, so we can't
-promise anything. (sigh...)
-
-When this driver is switched into or out of mu-Law or A-Law mode on
-output, it may produce an audible click. This is unavoidable. To
-prevent clicking, use signed 16-bit mode instead, and convert from
-mu-Law or A-Law format in software.
-
-==============================================================================
-PROGRAMMING THE MIXER INTERFACE
-
-The mixer interface is usually accessed as /dev/mixer. It is accessed
-through ioctls. The mixer allows the application to control gain or
-mute several audio signal paths, and also allows selection of the
-recording source.
-
-Each of the constants described here can be read using the
-MIXER_READ(SOUND_MIXER_xxx) ioctl. Those that are not read-only can
-also be written using the MIXER_WRITE(SOUND_MIXER_xxx) ioctl. In most
-cases, <sys/soundcard.h> defines constants SOUND_MIXER_READ_xxx and
-SOUND_MIXER_WRITE_xxx which work just as well.
-
-SOUND_MIXER_CAPS Read-only
-
-This is a mask of optional driver capabilities that are implemented.
-This driver's only capability is SOUND_CAP_EXCL_INPUT, which means
-that only one recording source can be active at a time.
-
-SOUND_MIXER_DEVMASK Read-only
-
-This is a mask of the sound channels. This driver's channels are PCM,
-LINE, MIC, CD, and RECLEV.
-
-SOUND_MIXER_STEREODEVS Read-only
-
-This is a mask of which sound channels are capable of stereo. All
-channels are capable of stereo. (But see caveat on MIC input in I/O
-CONNECTIONS section above).
-
-SOUND_MIXER_OUTMASK Read-only
-
-This is a mask of channels that route inputs through to outputs.
-Those are LINE, MIC, and CD.
-
-SOUND_MIXER_RECMASK Read-only
-
-This is a mask of channels that can be recording sources. Those are
-PCM, LINE, MIC, CD.
-
-SOUND_MIXER_PCM Default: 0x5757 (0 dB)
-
-This is the gain control for PCM output. The left and right channel
-gain are controlled independently. This gain control has 64 levels,
-which range from -82.5 dB to +12.0 dB in 1.5 dB steps. Those 64
-levels are mapped onto 100 levels at the ioctl, see below.
-
-SOUND_MIXER_LINE Default: 0x4a4a (0 dB)
-
-This is the gain control for mixing the Line In source into the
-outputs. The left and right channel gain are controlled
-independently. This gain control has 32 levels, which range from
--34.5 dB to +12.0 dB in 1.5 dB steps. Those 32 levels are mapped onto
-100 levels at the ioctl, see below.
-
-SOUND_MIXER_MIC Default: 0x4a4a (0 dB)
-
-This is the gain control for mixing the MIC source into the outputs.
-The left and right channel gain are controlled independently. This
-gain control has 32 levels, which range from -34.5 dB to +12.0 dB in
-1.5 dB steps. Those 32 levels are mapped onto 100 levels at the
-ioctl, see below.
-
-SOUND_MIXER_CD Default: 0x4a4a (0 dB)
-
-This is the gain control for mixing the CD audio source into the
-outputs. The left and right channel gain are controlled
-independently. This gain control has 32 levels, which range from
--34.5 dB to +12.0 dB in 1.5 dB steps. Those 32 levels are mapped onto
-100 levels at the ioctl, see below.
-
-SOUND_MIXER_RECLEV Default: 0 (0 dB)
-
-This is the gain control for PCM input (RECording LEVel). The left
-and right channel gain are controlled independently. This gain
-control has 16 levels, which range from 0 dB to +22.5 dB in 1.5 dB
-steps. Those 16 levels are mapped onto 100 levels at the ioctl, see
-below.
-
-SOUND_MIXER_RECSRC Default: SOUND_MASK_LINE
-
-This is a mask of currently selected PCM input sources (RECording
-SouRCes). Because the AD1843 can only have a single recording source
-at a time, only one bit at a time can be set in this mask. The
-allowable values are SOUND_MASK_PCM, SOUND_MASK_LINE, SOUND_MASK_MIC,
-or SOUND_MASK_CD. Selecting SOUND_MASK_PCM sets up internal
-resampling which is useful for loopback testing and for hardware
-sample rate conversion. But software sample rate conversion is
-probably faster, so I don't know how useful that is.
-
-SOUND_MIXER_OUTSRC DEFAULT: SOUND_MASK_LINE|SOUND_MASK_MIC|SOUND_MASK_CD
-
-This is a mask of sources that are currently passed through to the
-outputs. Those sources whose bits are not set are muted.
-
-==============================================================================
-GAIN CONTROL
-
-There are five gain controls listed above. Each has 16, 32, or 64
-steps. Each control has 1.5 dB of gain per step. Each control is
-stereo.
-
-The OSS defines the argument to a channel gain ioctl as having two
-components, left and right, each of which ranges from 0 to 100. The
-two components are packed into the same word, with the left side gain
-in the least significant byte, and the right side gain in the second
-least significant byte. In C, we would say this.
-
- #include <assert.h>
-
- ...
-
- assert(leftgain >= 0 && leftgain <= 100);
- assert(rightgain >= 0 && rightgain <= 100);
- arg = leftgain | rightgain << 8;
-
-So each OSS gain control has 101 steps. But the hardware has 16, 32,
-or 64 steps. The hardware steps are spread across the 101 OSS steps
-nearly evenly. The conversion formulas are like this, given N equals
-16, 32, or 64.
-
- int round = N/2 - 1;
- OSS_gain_steps = (hw_gain_steps * 100 + round) / (N - 1);
- hw_gain_steps = (OSS_gain_steps * (N - 1) + round) / 100;
-
-Here is a snippet of C code that will return the left and right gain
-of any channel in dB. Pass it one of the predefined gain_desc_t
-structures to access any of the five channels' gains.
-
- typedef struct gain_desc {
- float min_gain;
- float gain_step;
- int nbits;
- int chan;
- } gain_desc_t;
-
- const gain_desc_t gain_pcm = { -82.5, 1.5, 6, SOUND_MIXER_PCM };
- const gain_desc_t gain_line = { -34.5, 1.5, 5, SOUND_MIXER_LINE };
- const gain_desc_t gain_mic = { -34.5, 1.5, 5, SOUND_MIXER_MIC };
- const gain_desc_t gain_cd = { -34.5, 1.5, 5, SOUND_MIXER_CD };
- const gain_desc_t gain_reclev = { 0.0, 1.5, 4, SOUND_MIXER_RECLEV };
-
- int get_gain_dB(int fd, const gain_desc_t *gp,
- float *left, float *right)
- {
- int word;
- int lg, rg;
- int mask = (1 << gp->nbits) - 1;
-
- if (ioctl(fd, MIXER_READ(gp->chan), &word) != 0)
- return -1; /* fail */
- lg = word & 0xFF;
- rg = word >> 8 & 0xFF;
- lg = (lg * mask + mask / 2) / 100;
- rg = (rg * mask + mask / 2) / 100;
- *left = gp->min_gain + gp->gain_step * lg;
- *right = gp->min_gain + gp->gain_step * rg;
- return 0;
- }
-
-And here is the corresponding routine to set a channel's gain in dB.
-
- int set_gain_dB(int fd, const gain_desc_t *gp, float left, float right)
- {
- float max_gain =
- gp->min_gain + (1 << gp->nbits) * gp->gain_step;
- float round = gp->gain_step / 2;
- int mask = (1 << gp->nbits) - 1;
- int word;
- int lg, rg;
-
- if (left < gp->min_gain || right < gp->min_gain)
- return EINVAL;
- lg = (left - gp->min_gain + round) / gp->gain_step;
- rg = (right - gp->min_gain + round) / gp->gain_step;
- if (lg >= (1 << gp->nbits) || rg >= (1 << gp->nbits))
- return EINVAL;
- lg = (100 * lg + mask / 2) / mask;
- rg = (100 * rg + mask / 2) / mask;
- word = lg | rg << 8;
-
- return ioctl(fd, MIXER_WRITE(gp->chan), &word);
- }
-