diff options
Diffstat (limited to 'Documentation/s390')
| -rw-r--r-- | Documentation/s390/00-INDEX | 8 | ||||
| -rw-r--r-- | Documentation/s390/3270.txt | 21 | ||||
| -rw-r--r-- | Documentation/s390/CommonIO | 38 | ||||
| -rw-r--r-- | Documentation/s390/Debugging390.txt | 44 | ||||
| -rw-r--r-- | Documentation/s390/TAPE | 122 | ||||
| -rw-r--r-- | Documentation/s390/cds.txt | 2 | ||||
| -rw-r--r-- | Documentation/s390/driver-model.txt | 6 | ||||
| -rw-r--r-- | Documentation/s390/kvm.txt | 125 | ||||
| -rw-r--r-- | Documentation/s390/monreader.txt | 2 | ||||
| -rw-r--r-- | Documentation/s390/qeth.txt | 50 | ||||
| -rw-r--r-- | Documentation/s390/s390dbf.txt | 43 | ||||
| -rw-r--r-- | Documentation/s390/zfcpdump.txt | 73 |
12 files changed, 280 insertions, 254 deletions
diff --git a/Documentation/s390/00-INDEX b/Documentation/s390/00-INDEX index 3a2b96302ec..10c874ebdfe 100644 --- a/Documentation/s390/00-INDEX +++ b/Documentation/s390/00-INDEX @@ -16,11 +16,13 @@ Debugging390.txt - hints for debugging on s390 systems. driver-model.txt - information on s390 devices and the driver model. +kvm.txt + - ioctl calls to /dev/kvm on s390. monreader.txt - information on accessing the z/VM monitor stream from Linux. +qeth.txt + - HiperSockets Bridge Port Support. s390dbf.txt - information on using the s390 debug feature. -TAPE - - information on the driver for channel-attached tapes. -zfcpdump +zfcpdump.txt - information on the s390 SCSI dump tool. diff --git a/Documentation/s390/3270.txt b/Documentation/s390/3270.txt index 7a5c73a7ed7..7c715de9977 100644 --- a/Documentation/s390/3270.txt +++ b/Documentation/s390/3270.txt @@ -47,9 +47,9 @@ including the console 3270, changes subchannel identifier relative to one another. ReIPL as soon as possible after running the configuration script and the resulting /tmp/mkdev3270. -If you have chosen to make tub3270 a module, you add a line to -/etc/modprobe.conf. If you are working on a VM virtual machine, you -can use DEF GRAF to define virtual 3270 devices. +If you have chosen to make tub3270 a module, you add a line to a +configuration file under /etc/modprobe.d/. If you are working on a VM +virtual machine, you can use DEF GRAF to define virtual 3270 devices. You may generate both 3270 and 3215 console support, or one or the other, or neither. If you generate both, the console type under VM is @@ -60,7 +60,7 @@ at boot time to a 3270 if it is a 3215. In brief, these are the steps: 1. Install the tub3270 patch - 2. (If a module) add a line to /etc/modprobe.conf + 2. (If a module) add a line to a file in /etc/modprobe.d/*.conf 3. (If VM) define devices with DEF GRAF 4. Reboot 5. Configure @@ -84,13 +84,12 @@ Here are the installation steps in detail: make modules_install 2. (Perform this step only if you have configured tub3270 as a - module.) Add a line to /etc/modprobe.conf to automatically - load the driver when it's needed. With this line added, - you will see login prompts appear on your 3270s as soon as - boot is complete (or with emulated 3270s, as soon as you dial - into your vm guest using the command "DIAL <vmguestname>"). - Since the line-mode major number is 227, the line to add to - /etc/modprobe.conf should be: + module.) Add a line to a file /etc/modprobe.d/*.conf to automatically + load the driver when it's needed. With this line added, you will see + login prompts appear on your 3270s as soon as boot is complete (or + with emulated 3270s, as soon as you dial into your vm guest using the + command "DIAL <vmguestname>"). Since the line-mode major number is + 227, the line to add should be: alias char-major-227 tub3270 3. Define graphic devices to your vm guest machine, if you diff --git a/Documentation/s390/CommonIO b/Documentation/s390/CommonIO index 8fbc0a85287..6e0f63f343b 100644 --- a/Documentation/s390/CommonIO +++ b/Documentation/s390/CommonIO @@ -8,20 +8,9 @@ Command line parameters Enable logging of debug information in case of ccw device timeouts. +* cio_ignore = device[,device[,..]] -* cio_msg = yes | no - - Determines whether information on found devices and sensed device - characteristics should be shown during startup or when new devices are - found, i. e. messages of the types "Detected device 0.0.4711 on subchannel - 0.0.0042" and "SenseID: Device 0.0.4711 reports: ...". - - Default is off. - - -* cio_ignore = {all} | - {<device> | <range of devices>} | - {!<device> | !<range of devices>} + device := {all | [!]ipldev | [!]condev | [!]<devno> | [!]<devno>-<devno>} The given devices will be ignored by the common I/O-layer; no detection and device sensing will be done on any of those devices. The subchannel to @@ -35,8 +24,10 @@ Command line parameters device numbers (0xabcd or abcd, for 2.4 backward compatibility). If you give a device number 0xabcd, it will be interpreted as 0.0.abcd. - You can use the 'all' keyword to ignore all devices. - The '!' operator will cause the I/O-layer to _not_ ignore a device. + You can use the 'all' keyword to ignore all devices. The 'ipldev' and 'condev' + keywords can be used to refer to the CCW based boot device and CCW console + device respectively (these are probably useful only when combined with the '!' + operator). The '!' operator will cause the I/O-layer to _not_ ignore a device. The command line is parsed from left to right. For example, @@ -81,17 +72,29 @@ Command line parameters Note: While already known devices can be added to the list of devices to be ignored, there will be no effect on then. However, if such a device - disappears and then reappears, it will then be ignored. + disappears and then reappears, it will then be ignored. To make + known devices go away, you need the "purge" command (see below). For example, "echo add 0.0.a000-0.0.accc, 0.0.af00-0.0.afff > /proc/cio_ignore" will add 0.0.a000-0.0.accc and 0.0.af00-0.0.afff to the list of ignored devices. + You can remove already known but now ignored devices via + "echo purge > /proc/cio_ignore" + All devices ignored but still registered and not online (= not in use) + will be deregistered and thus removed from the system. + The devices can be specified either by bus id (0.x.abcd) or, for 2.4 backward compatibility, by the device number in hexadecimal (0xabcd or abcd). Device numbers given as 0xabcd will be interpreted as 0.0.abcd. +* /proc/cio_settle + + A write request to this file is blocked until all queued cio actions are + handled. This will allow userspace to wait for pending work affecting + device availability after changing cio_ignore or the hardware configuration. + * For some of the information present in the /proc filesystem in 2.4 (namely, /proc/subchannels and /proc/chpids), see driver-model.txt. Information formerly in /proc/irq_count is now in /proc/interrupts. @@ -109,8 +112,7 @@ debugfs entries handling). - /sys/kernel/debug/s390dbf/cio_msg/sprintf - Various debug messages from the common I/O-layer, including messages - printed when cio_msg=yes. + Various debug messages from the common I/O-layer. - /sys/kernel/debug/s390dbf/cio_trace/hex_ascii Logs the calling of functions in the common I/O-layer and, if applicable, diff --git a/Documentation/s390/Debugging390.txt b/Documentation/s390/Debugging390.txt index d30a281c570..462321c1aee 100644 --- a/Documentation/s390/Debugging390.txt +++ b/Documentation/s390/Debugging390.txt @@ -41,7 +41,6 @@ ldd Debugging modules The proc file system Starting points for debugging scripting languages etc. -Dumptool & Lcrash SysRq References Special Thanks @@ -1402,7 +1401,7 @@ Syscalls are implemented on Linux for S390 by the Supervisor call instruction (S possibilities of these as the instruction is made up of a 0xA opcode & the second byte being the syscall number. They are traced using the simple command. TR SVC <Optional value or range> -the syscalls are defined in linux/include/asm-s390/unistd.h +the syscalls are defined in linux/arch/s390/include/asm/unistd.h e.g. to trace all file opens just do TR SVC 5 ( as this is the syscall number of open ) @@ -1984,7 +1983,7 @@ break *$pc break *0x400618 -heres a really useful one for large programs +Here's a really useful one for large programs rbr Set a breakpoint for all functions matching REGEXP e.g. @@ -2211,7 +2210,7 @@ Breakpoint 2 at 0x4d87a4: file top.c, line 2609. #5 0x51692c in readline_internal () at readline.c:521 #6 0x5164fe in readline (prompt=0x7ffff810 "\177ÿøx\177ÿ÷Ø\177ÿøxÀ") at readline.c:349 -#7 0x4d7a8a in command_line_input (prrompt=0x564420 "(gdb) ", repeat=1, +#7 0x4d7a8a in command_line_input (prompt=0x564420 "(gdb) ", repeat=1, annotation_suffix=0x4d6b44 "prompt") at top.c:2091 #8 0x4d6cf0 in command_loop () at top.c:1345 #9 0x4e25bc in main (argc=1, argv=0x7ffffdf4) at main.c:635 @@ -2273,7 +2272,7 @@ IP forwarding is on. There is a lot of useful info in here best found by going in & having a look around, so I'll take you through some entries I consider important. -All the processes running on the machine have there own entry defined by +All the processes running on the machine have their own entry defined by /proc/<pid> So lets have a look at the init process cd /proc/1 @@ -2455,39 +2454,6 @@ jdb <filename> another fully interactive gdb style debugger. -Dumptool & Lcrash ( lkcd ) -========================== -Michael Holzheu & others here at IBM have a fairly mature port of -SGI's lcrash tool which allows one to look at kernel structures in a -running kernel. - -It also complements a tool called dumptool which dumps all the kernel's -memory pages & registers to either a tape or a disk. -This can be used by tech support or an ambitious end user do -post mortem debugging of a machine like gdb core dumps. - -Going into how to use this tool in detail will be explained -in other documentation supplied by IBM with the patches & the -lcrash homepage http://oss.sgi.com/projects/lkcd/ & the lcrash manpage. - -How they work -------------- -Lcrash is a perfectly normal program,however, it requires 2 -additional files, Kerntypes which is built using a patch to the -linux kernel sources in the linux root directory & the System.map. - -Kerntypes is an objectfile whose sole purpose in life -is to provide stabs debug info to lcrash, to do this -Kerntypes is built from kerntypes.c which just includes the most commonly -referenced header files used when debugging, lcrash can then read the -.stabs section of this file. - -Debugging a live system it uses /dev/mem -alternatively for post mortem debugging it uses the data -collected by dumptool. - - - SysRq ===== This is now supported by linux for s/390 & z/Architecture. @@ -2531,5 +2497,5 @@ Special Thanks ============== Special thanks to Neale Ferguson who maintains a much prettier HTML version of this page at -http://penguinvm.princeton.edu/notes.html#Debug390 +http://linuxvm.org/penguinvm/ Bob Grainger Stefan Bader & others for reporting bugs diff --git a/Documentation/s390/TAPE b/Documentation/s390/TAPE deleted file mode 100644 index c639aa5603f..00000000000 --- a/Documentation/s390/TAPE +++ /dev/null @@ -1,122 +0,0 @@ -Channel attached Tape device driver - ------------------------------WARNING----------------------------------------- -This driver is considered to be EXPERIMENTAL. Do NOT use it in -production environments. Feel free to test it and report problems back to us. ------------------------------------------------------------------------------ - -The LINUX for zSeries tape device driver manages channel attached tape drives -which are compatible to IBM 3480 or IBM 3490 magnetic tape subsystems. This -includes various models of these devices (for example the 3490E). - - -Tape driver features - -The device driver supports a maximum of 128 tape devices. -No official LINUX device major number is assigned to the zSeries tape device -driver. It allocates major numbers dynamically and reports them on system -startup. -Typically it will get major number 254 for both the character device front-end -and the block device front-end. - -The tape device driver needs no kernel parameters. All supported devices -present are detected on driver initialization at system startup or module load. -The devices detected are ordered by their subchannel numbers. The device with -the lowest subchannel number becomes device 0, the next one will be device 1 -and so on. - - -Tape character device front-end - -The usual way to read or write to the tape device is through the character -device front-end. The zSeries tape device driver provides two character devices -for each physical device -- the first of these will rewind automatically when -it is closed, the second will not rewind automatically. - -The character device nodes are named /dev/rtibm0 (rewinding) and /dev/ntibm0 -(non-rewinding) for the first device, /dev/rtibm1 and /dev/ntibm1 for the -second, and so on. - -The character device front-end can be used as any other LINUX tape device. You -can write to it and read from it using LINUX facilities such as GNU tar. The -tool mt can be used to perform control operations, such as rewinding the tape -or skipping a file. - -Most LINUX tape software should work with either tape character device. - - -Tape block device front-end - -The tape device may also be accessed as a block device in read-only mode. -This could be used for software installation in the same way as it is used with -other operation systems on the zSeries platform (and most LINUX -distributions are shipped on compact disk using ISO9660 filesystems). - -One block device node is provided for each physical device. These are named -/dev/btibm0 for the first device, /dev/btibm1 for the second and so on. -You should only use the ISO9660 filesystem on LINUX for zSeries tapes because -the physical tape devices cannot perform fast seeks and the ISO9660 system is -optimized for this situation. - - -Tape block device example - -In this example a tape with an ISO9660 filesystem is created using the first -tape device. ISO9660 filesystem support must be built into your system kernel -for this. -The mt command is used to issue tape commands and the mkisofs command to -create an ISO9660 filesystem: - -- create a LINUX directory (somedir) with the contents of the filesystem - mkdir somedir - cp contents somedir - -- insert a tape - -- ensure the tape is at the beginning - mt -f /dev/ntibm0 rewind - -- set the blocksize of the character driver. The blocksize 2048 bytes - is commonly used on ISO9660 CD-Roms - mt -f /dev/ntibm0 setblk 2048 - -- write the filesystem to the character device driver - mkisofs -o /dev/ntibm0 somedir - -- rewind the tape again - mt -f /dev/ntibm0 rewind - -- Now you can mount your new filesystem as a block device: - mount -t iso9660 -o ro,block=2048 /dev/btibm0 /mnt - -TODO List - - - Driver has to be stabilized still - -BUGS - -This driver is considered BETA, which means some weaknesses may still -be in it. -If an error occurs which cannot be handled by the code you will get a -sense-data dump.In that case please do the following: - -1. set the tape driver debug level to maximum: - echo 6 >/proc/s390dbf/tape/level - -2. re-perform the actions which produced the bug. (Hopefully the bug will - reappear.) - -3. get a snapshot from the debug-feature: - cat /proc/s390dbf/tape/hex_ascii >somefile - -4. Now put the snapshot together with a detailed description of the situation - that led to the bug: - - Which tool did you use? - - Which hardware do you have? - - Was your tape unit online? - - Is it a shared tape unit? - -5. Send an email with your bug report to: - mailto:Linux390@de.ibm.com - - diff --git a/Documentation/s390/cds.txt b/Documentation/s390/cds.txt index c4b7b2bd369..480a78ef5a1 100644 --- a/Documentation/s390/cds.txt +++ b/Documentation/s390/cds.txt @@ -98,7 +98,7 @@ platform. Some of the interface routines are specific to Linux/390 and some of them can be found on other Linux platforms implementations too. Miscellaneous function prototypes, data declarations, and macro definitions can be found in the architecture specific C header file -linux/include/asm-s390/irq.h. +linux/arch/s390/include/asm/irq.h. Overview of CDS interface concepts diff --git a/Documentation/s390/driver-model.txt b/Documentation/s390/driver-model.txt index e938c442277..ed265cf54cd 100644 --- a/Documentation/s390/driver-model.txt +++ b/Documentation/s390/driver-model.txt @@ -25,7 +25,7 @@ device 4711 via subchannel 1 in subchannel set 0, and subchannel 2 is a non-I/O subchannel. Device 1234 is accessed via subchannel 0 in subchannel set 1. The subchannel named 'defunct' does not represent any real subchannel on the -system; it is a pseudo subchannel where disconnnected ccw devices are moved to +system; it is a pseudo subchannel where disconnected ccw devices are moved to if they are displaced by another ccw device becoming operational on their former subchannel. The ccw devices will be moved again to a proper subchannel if they become operational again on that subchannel. @@ -223,8 +223,8 @@ touched by the driver - it should use the ccwgroup device's driver_data for its private data. To implement a ccwgroup driver, please refer to include/asm/ccwgroup.h. Keep in -mind that most drivers will need to implement both a ccwgroup and a ccw driver -(unless you have a meta ccw driver, like cu3088 for lcs and ctc). +mind that most drivers will need to implement both a ccwgroup and a ccw +driver. 2. Channel paths diff --git a/Documentation/s390/kvm.txt b/Documentation/s390/kvm.txt new file mode 100644 index 00000000000..85f3280d7ef --- /dev/null +++ b/Documentation/s390/kvm.txt @@ -0,0 +1,125 @@ +*** BIG FAT WARNING *** +The kvm module is currently in EXPERIMENTAL state for s390. This means that +the interface to the module is not yet considered to remain stable. Thus, be +prepared that we keep breaking your userspace application and guest +compatibility over and over again until we feel happy with the result. Make sure +your guest kernel, your host kernel, and your userspace launcher are in a +consistent state. + +This Documentation describes the unique ioctl calls to /dev/kvm, the resulting +kvm-vm file descriptors, and the kvm-vcpu file descriptors that differ from x86. + +1. ioctl calls to /dev/kvm +KVM does support the following ioctls on s390 that are common with other +architectures and do behave the same: +KVM_GET_API_VERSION +KVM_CREATE_VM (*) see note +KVM_CHECK_EXTENSION +KVM_GET_VCPU_MMAP_SIZE + +Notes: +* KVM_CREATE_VM may fail on s390, if the calling process has multiple +threads and has not called KVM_S390_ENABLE_SIE before. + +In addition, on s390 the following architecture specific ioctls are supported: +ioctl: KVM_S390_ENABLE_SIE +args: none +see also: include/linux/kvm.h +This call causes the kernel to switch on PGSTE in the user page table. This +operation is needed in order to run a virtual machine, and it requires the +calling process to be single-threaded. Note that the first call to KVM_CREATE_VM +will implicitly try to switch on PGSTE if the user process has not called +KVM_S390_ENABLE_SIE before. User processes that want to launch multiple threads +before creating a virtual machine have to call KVM_S390_ENABLE_SIE, or will +observe an error calling KVM_CREATE_VM. Switching on PGSTE is a one-time +operation, is not reversible, and will persist over the entire lifetime of +the calling process. It does not have any user-visible effect other than a small +performance penalty. + +2. ioctl calls to the kvm-vm file descriptor +KVM does support the following ioctls on s390 that are common with other +architectures and do behave the same: +KVM_CREATE_VCPU +KVM_SET_USER_MEMORY_REGION (*) see note +KVM_GET_DIRTY_LOG (**) see note + +Notes: +* kvm does only allow exactly one memory slot on s390, which has to start + at guest absolute address zero and at a user address that is aligned on any + page boundary. This hardware "limitation" allows us to have a few unique + optimizations. The memory slot doesn't have to be filled + with memory actually, it may contain sparse holes. That said, with different + user memory layout this does still allow a large flexibility when + doing the guest memory setup. +** KVM_GET_DIRTY_LOG doesn't work properly yet. The user will receive an empty +log. This ioctl call is only needed for guest migration, and we intend to +implement this one in the future. + +In addition, on s390 the following architecture specific ioctls for the kvm-vm +file descriptor are supported: +ioctl: KVM_S390_INTERRUPT +args: struct kvm_s390_interrupt * +see also: include/linux/kvm.h +This ioctl is used to submit a floating interrupt for a virtual machine. +Floating interrupts may be delivered to any virtual cpu in the configuration. +Only some interrupt types defined in include/linux/kvm.h make sense when +submitted as floating interrupts. The following interrupts are not considered +to be useful as floating interrupts, and a call to inject them will result in +-EINVAL error code: program interrupts and interprocessor signals. Valid +floating interrupts are: +KVM_S390_INT_VIRTIO +KVM_S390_INT_SERVICE + +3. ioctl calls to the kvm-vcpu file descriptor +KVM does support the following ioctls on s390 that are common with other +architectures and do behave the same: +KVM_RUN +KVM_GET_REGS +KVM_SET_REGS +KVM_GET_SREGS +KVM_SET_SREGS +KVM_GET_FPU +KVM_SET_FPU + +In addition, on s390 the following architecture specific ioctls for the +kvm-vcpu file descriptor are supported: +ioctl: KVM_S390_INTERRUPT +args: struct kvm_s390_interrupt * +see also: include/linux/kvm.h +This ioctl is used to submit an interrupt for a specific virtual cpu. +Only some interrupt types defined in include/linux/kvm.h make sense when +submitted for a specific cpu. The following interrupts are not considered +to be useful, and a call to inject them will result in -EINVAL error code: +service processor calls and virtio interrupts. Valid interrupt types are: +KVM_S390_PROGRAM_INT +KVM_S390_SIGP_STOP +KVM_S390_RESTART +KVM_S390_SIGP_SET_PREFIX +KVM_S390_INT_EMERGENCY + +ioctl: KVM_S390_STORE_STATUS +args: unsigned long +see also: include/linux/kvm.h +This ioctl stores the state of the cpu at the guest real address given as +argument, unless one of the following values defined in include/linux/kvm.h +is given as argument: +KVM_S390_STORE_STATUS_NOADDR - the CPU stores its status to the save area in +absolute lowcore as defined by the principles of operation +KVM_S390_STORE_STATUS_PREFIXED - the CPU stores its status to the save area in +its prefix page just like the dump tool that comes with zipl. This is useful +to create a system dump for use with lkcdutils or crash. + +ioctl: KVM_S390_SET_INITIAL_PSW +args: struct kvm_s390_psw * +see also: include/linux/kvm.h +This ioctl can be used to set the processor status word (psw) of a stopped cpu +prior to running it with KVM_RUN. Note that this call is not required to modify +the psw during sie intercepts that fall back to userspace because struct kvm_run +does contain the psw, and this value is evaluated during reentry of KVM_RUN +after the intercept exit was recognized. + +ioctl: KVM_S390_INITIAL_RESET +args: none +see also: include/linux/kvm.h +This ioctl can be used to perform an initial cpu reset as defined by the +principles of operation. The target cpu has to be in stopped state. diff --git a/Documentation/s390/monreader.txt b/Documentation/s390/monreader.txt index beeaa4b2442..d3729585fdb 100644 --- a/Documentation/s390/monreader.txt +++ b/Documentation/s390/monreader.txt @@ -10,7 +10,7 @@ Author: Gerald Schaefer (geraldsc@de.ibm.com) Description =========== This item delivers a new Linux API in the form of a misc char device that is -useable from user space and allows read access to the z/VM Monitor Records +usable from user space and allows read access to the z/VM Monitor Records collected by the *MONITOR System Service of z/VM. diff --git a/Documentation/s390/qeth.txt b/Documentation/s390/qeth.txt new file mode 100644 index 00000000000..74122ada994 --- /dev/null +++ b/Documentation/s390/qeth.txt @@ -0,0 +1,50 @@ +IBM s390 QDIO Ethernet Driver + +HiperSockets Bridge Port Support + +Uevents + +To generate the events the device must be assigned a role of either +a primary or a secondary Bridge Port. For more information, see +"z/VM Connectivity, SC24-6174". + +When run on HiperSockets Bridge Capable Port hardware, and the state +of some configured Bridge Port device on the channel changes, a udev +event with ACTION=CHANGE is emitted on behalf of the corresponding +ccwgroup device. The event has the following attributes: + +BRIDGEPORT=statechange - indicates that the Bridge Port device changed + its state. + +ROLE={primary|secondary|none} - the role assigned to the port. + +STATE={active|standby|inactive} - the newly assumed state of the port. + +When run on HiperSockets Bridge Capable Port hardware with host address +notifications enabled, a udev event with ACTION=CHANGE is emitted. +It is emitted on behalf of the corresponding ccwgroup device when a host +or a VLAN is registered or unregistered on the network served by the device. +The event has the following attributes: + +BRIDGEDHOST={reset|register|deregister|abort} - host address + notifications are started afresh, a new host or VLAN is registered or + deregistered on the Bridge Port HiperSockets channel, or address + notifications are aborted. + +VLAN=numeric-vlan-id - VLAN ID on which the event occurred. Not included + if no VLAN is involved in the event. + +MAC=xx:xx:xx:xx:xx:xx - MAC address of the host that is being registered + or deregistered from the HiperSockets channel. Not reported if the + event reports the creation or destruction of a VLAN. + +NTOK_BUSID=x.y.zzzz - device bus ID (CSSID, SSID and device number). + +NTOK_IID=xx - device IID. + +NTOK_CHPID=xx - device CHPID. + +NTOK_CHID=xxxx - device channel ID. + +Note that the NTOK_* attributes refer to devices other than the one +connected to the system on which the OS is running. diff --git a/Documentation/s390/s390dbf.txt b/Documentation/s390/s390dbf.txt index 0eb7c58916d..3da163383c9 100644 --- a/Documentation/s390/s390dbf.txt +++ b/Documentation/s390/s390dbf.txt @@ -2,7 +2,7 @@ S390 Debug Feature ================== files: arch/s390/kernel/debug.c - include/asm-s390/debug.h + arch/s390/include/asm/debug.h Description: ------------ @@ -115,6 +115,27 @@ Return Value: Handle for generated debug area Description: Allocates memory for a debug log Must not be called within an interrupt handler +---------------------------------------------------------------------------- +debug_info_t *debug_register_mode(char *name, int pages, int nr_areas, + int buf_size, mode_t mode, uid_t uid, + gid_t gid); + +Parameter: name: Name of debug log (e.g. used for debugfs entry) + pages: Number of pages, which will be allocated per area + nr_areas: Number of debug areas + buf_size: Size of data area in each debug entry + mode: File mode for debugfs files. E.g. S_IRWXUGO + uid: User ID for debugfs files. Currently only 0 is + supported. + gid: Group ID for debugfs files. Currently only 0 is + supported. + +Return Value: Handle for generated debug area + NULL if register failed + +Description: Allocates memory for a debug log + Must not be called within an interrupt handler + --------------------------------------------------------------------------- void debug_unregister (debug_info_t * id); @@ -122,7 +143,8 @@ Parameter: id: handle for debug log Return Value: none -Description: frees memory for a debug log +Description: frees memory for a debug log and removes all registered debug + views. Must not be called within an interrupt handler --------------------------------------------------------------------------- @@ -136,6 +158,16 @@ Return Value: none Description: Sets new actual debug level if new_level is valid. --------------------------------------------------------------------------- +bool debug_level_enabled (debug_info_t * id, int level); + +Parameter: id: handle for debug log + level: debug level + +Return Value: True if level is less or equal to the current debug level. + +Description: Returns true if debug events for the specified level would be + logged. Otherwise returns false. +--------------------------------------------------------------------------- void debug_stop_all(void); Parameter: none @@ -474,6 +506,13 @@ and for each vararg a long value. So e.g. for a debug entry with a format string plus two varargs one would need to allocate a (3 * sizeof(long)) byte data area in the debug_register() function. +IMPORTANT: Using "%s" in sprintf event functions is dangerous. You can only +use "%s" in the sprintf event functions, if the memory for the passed string is +available as long as the debug feature exists. The reason behind this is that +due to performance considerations only a pointer to the string is stored in +the debug feature. If you log a string that is freed afterwards, you will get +an OOPS when inspecting the debug feature, because then the debug feature will +access the already freed memory. NOTE: If using the sprintf view do NOT use other event/exception functions than the sprintf-event and -exception functions. diff --git a/Documentation/s390/zfcpdump.txt b/Documentation/s390/zfcpdump.txt index cf45d27c460..dc929be9601 100644 --- a/Documentation/s390/zfcpdump.txt +++ b/Documentation/s390/zfcpdump.txt @@ -1,15 +1,15 @@ -s390 SCSI dump tool (zfcpdump) +The s390 SCSI dump tool (zfcpdump) System z machines (z900 or higher) provide hardware support for creating system dumps on SCSI disks. The dump process is initiated by booting a dump tool, which has to create a dump of the current (probably crashed) Linux image. In order to not overwrite memory of the crashed Linux with data of the dump tool, the -hardware saves some memory plus the register sets of the boot cpu before the +hardware saves some memory plus the register sets of the boot CPU before the dump tool is loaded. There exists an SCLP hardware interface to obtain the saved memory afterwards. Currently 32 MB are saved. This zfcpdump implementation consists of a Linux dump kernel together with -a userspace dump tool, which are loaded together into the saved memory region +a user space dump tool, which are loaded together into the saved memory region below 32 MB. zfcpdump is installed on a SCSI disk using zipl (as contained in the s390-tools package) to make the device bootable. The operator of a Linux system can then trigger a SCSI dump by booting the SCSI disk, where zfcpdump @@ -19,68 +19,33 @@ The kernel part of zfcpdump is implemented as a debugfs file under "zcore/mem", which exports memory and registers of the crashed Linux in an s390 standalone dump format. It can be used in the same way as e.g. /dev/mem. The dump format defines a 4K header followed by plain uncompressed memory. The -register sets are stored in the prefix pages of the respective cpus. To build a +register sets are stored in the prefix pages of the respective CPUs. To build a dump enabled kernel with the zcore driver, the kernel config option -CONFIG_ZFCPDUMP has to be set. When reading from "zcore/mem", the part of +CONFIG_CRASH_DUMP has to be set. When reading from "zcore/mem", the part of memory, which has been saved by hardware is read by the driver via the SCLP hardware interface. The second part is just copied from the non overwritten real memory. -The userspace application of zfcpdump can reside e.g. in an intitramfs or an -initrd. It reads from zcore/mem and writes the system dump to a file on a -SCSI disk. +Since kernel version 3.12 also the /proc/vmcore file can also be used to access +the dump. -To build a zfcpdump kernel use the following settings in your kernel -configuration: - * CONFIG_ZFCPDUMP=y - * Enable ZFCP driver - * Enable SCSI driver - * Enable ext2 and ext3 filesystems - * Disable as many features as possible to keep the kernel small. - E.g. network support is not needed at all. +To get a valid zfcpdump kernel configuration use "make zfcpdump_defconfig". -To use the zfcpdump userspace application in an initramfs you have to do the -following: +The s390 zipl tool looks for the zfcpdump kernel and optional initrd/initramfs +under the following locations: - * Copy the zfcpdump executable somewhere into your Linux tree. - E.g. to "arch/s390/boot/zfcpdump. If you do not want to include - shared libraries, compile the tool with the "-static" gcc option. - * If you want to include e2fsck, add it to your source tree, too. The zfcpdump - application attempts to start /sbin/e2fsck from the ramdisk. - * Use an initramfs config file like the following: +* kernel: <zfcpdump directory>/zfcpdump.image +* ramdisk: <zfcpdump directory>/zfcpdump.rd - dir /dev 755 0 0 - nod /dev/console 644 0 0 c 5 1 - nod /dev/null 644 0 0 c 1 3 - nod /dev/sda1 644 0 0 b 8 1 - nod /dev/sda2 644 0 0 b 8 2 - nod /dev/sda3 644 0 0 b 8 3 - nod /dev/sda4 644 0 0 b 8 4 - nod /dev/sda5 644 0 0 b 8 5 - nod /dev/sda6 644 0 0 b 8 6 - nod /dev/sda7 644 0 0 b 8 7 - nod /dev/sda8 644 0 0 b 8 8 - nod /dev/sda9 644 0 0 b 8 9 - nod /dev/sda10 644 0 0 b 8 10 - nod /dev/sda11 644 0 0 b 8 11 - nod /dev/sda12 644 0 0 b 8 12 - nod /dev/sda13 644 0 0 b 8 13 - nod /dev/sda14 644 0 0 b 8 14 - nod /dev/sda15 644 0 0 b 8 15 - file /init arch/s390/boot/zfcpdump 755 0 0 - file /sbin/e2fsck arch/s390/boot/e2fsck 755 0 0 - dir /proc 755 0 0 - dir /sys 755 0 0 - dir /mnt 755 0 0 - dir /sbin 755 0 0 +The zfcpdump directory is defined in the s390-tools package. - * Issue "make image" to build the zfcpdump image with initramfs. +The user space application of zfcpdump can reside in an intitramfs or an +initrd. It can also be included in a built-in kernel initramfs. The application +reads from /proc/vmcore or zcore/mem and writes the system dump to a SCSI disk. -In a Linux distribution the zfcpdump enabled kernel image must be copied to -/usr/share/zfcpdump/zfcpdump.image, where the s390 zipl tool is looking for the -dump kernel when preparing a SCSI dump disk. - -If you use a ramdisk copy it to "/usr/share/zfcpdump/zfcpdump.rd". +The s390-tools package version 1.24.0 and above builds an external zfcpdump +initramfs with a user space application that writes the dump to a SCSI +partition. For more information on how to use zfcpdump refer to the s390 'Using the Dump Tools book', which is available from |
