diff options
Diffstat (limited to 'Documentation/power/devices.txt')
| -rw-r--r-- | Documentation/power/devices.txt | 51 |
1 files changed, 39 insertions, 12 deletions
diff --git a/Documentation/power/devices.txt b/Documentation/power/devices.txt index 504dfe4d52e..d172bce0fd4 100644 --- a/Documentation/power/devices.txt +++ b/Documentation/power/devices.txt @@ -2,6 +2,7 @@ Device Power Management Copyright (c) 2010-2011 Rafael J. Wysocki <rjw@sisk.pl>, Novell Inc. Copyright (c) 2010 Alan Stern <stern@rowland.harvard.edu> +Copyright (c) 2014 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com> Most of the code in Linux is device drivers, so most of the Linux power @@ -268,7 +269,7 @@ situations. System Power Management Phases ------------------------------ Suspending or resuming the system is done in several phases. Different phases -are used for standby or memory sleep states ("suspend-to-RAM") and the +are used for freeze, standby, and memory sleep states ("suspend-to-RAM") and the hibernation state ("suspend-to-disk"). Each phase involves executing callbacks for every device before the next phase begins. Not all busses or classes support all these callbacks and not all drivers use all the callbacks. The @@ -309,7 +310,8 @@ execute the corresponding method from dev->driver->pm instead if there is one. Entering System Suspend ----------------------- -When the system goes into the standby or memory sleep state, the phases are: +When the system goes into the freeze, standby or memory sleep state, +the phases are: prepare, suspend, suspend_late, suspend_noirq. @@ -325,6 +327,20 @@ When the system goes into the standby or memory sleep state, the phases are: driver in some way for the upcoming system power transition, but it should not put the device into a low-power state. + For devices supporting runtime power management, the return value of the + prepare callback can be used to indicate to the PM core that it may + safely leave the device in runtime suspend (if runtime-suspended + already), provided that all of the device's descendants are also left in + runtime suspend. Namely, if the prepare callback returns a positive + number and that happens for all of the descendants of the device too, + and all of them (including the device itself) are runtime-suspended, the + PM core will skip the suspend, suspend_late and suspend_noirq suspend + phases as well as the resume_noirq, resume_early and resume phases of + the following system resume for all of these devices. In that case, + the complete callback will be called directly after the prepare callback + and is entirely responsible for bringing the device back to the + functional state as appropriate. + 2. The suspend methods should quiesce the device to stop it from performing I/O. They also may save the device registers and put it into the appropriate low-power state, depending on the bus type the device is on, @@ -368,7 +384,7 @@ the devices that were suspended. Leaving System Suspend ---------------------- -When resuming from standby or memory sleep, the phases are: +When resuming from freeze, standby or memory sleep, the phases are: resume_noirq, resume_early, resume, complete. @@ -390,7 +406,7 @@ When resuming from standby or memory sleep, the phases are: the resume methods. This generally involves undoing the actions of the preceding suspend_late phase. - 3 The resume methods should bring the the device back to its operating + 3 The resume methods should bring the device back to its operating state, so that it can perform normal I/O. This generally involves undoing the actions of the suspend phase. @@ -399,12 +415,23 @@ When resuming from standby or memory sleep, the phases are: the resume callbacks occur; it's not necessary to wait until the complete phase. + Moreover, if the preceding prepare callback returned a positive number, + the device may have been left in runtime suspend throughout the whole + system suspend and resume (the suspend, suspend_late, suspend_noirq + phases of system suspend and the resume_noirq, resume_early, resume + phases of system resume may have been skipped for it). In that case, + the complete callback is entirely responsible for bringing the device + back to the functional state after system suspend if necessary. [For + example, it may need to queue up a runtime resume request for the device + for this purpose.] To check if that is the case, the complete callback + can consult the device's power.direct_complete flag. Namely, if that + flag is set when the complete callback is being run, it has been called + directly after the preceding prepare and special action may be required + to make the device work correctly afterward. + At the end of these phases, drivers should be as functional as they were before suspending: I/O can be performed using DMA and IRQs, and the relevant clocks are -gated on. Even if the device was in a low-power state before the system sleep -because of runtime power management, afterwards it should be back in its -full-power state. There are multiple reasons why it's best to do this; they are -discussed in more detail in Documentation/power/runtime_pm.txt. +gated on. However, the details here may again be platform-specific. For example, some systems support multiple "run" states, and the mode in effect at @@ -433,8 +460,8 @@ the system log. Entering Hibernation -------------------- -Hibernating the system is more complicated than putting it into the standby or -memory sleep state, because it involves creating and saving a system image. +Hibernating the system is more complicated than putting it into the other +sleep states, because it involves creating and saving a system image. Therefore there are more phases for hibernation, with a different set of callbacks. These phases always run after tasks have been frozen and memory has been freed. @@ -485,8 +512,8 @@ image forms an atomic snapshot of the system state. At this point the system image is saved, and the devices then need to be prepared for the upcoming system shutdown. This is much like suspending them -before putting the system into the standby or memory sleep state, and the phases -are similar. +before putting the system into the freeze, standby or memory sleep state, +and the phases are similar. 9. The prepare phase is discussed above. |
