aboutsummaryrefslogtreecommitdiff
path: root/Documentation/isdn
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/isdn')
-rw-r--r--Documentation/isdn/00-INDEX51
-rw-r--r--Documentation/isdn/CREDITS8
-rw-r--r--Documentation/isdn/INTERFACE.CAPI355
-rw-r--r--Documentation/isdn/INTERFACE.fax2
-rw-r--r--Documentation/isdn/README4
-rw-r--r--Documentation/isdn/README.HiSax4
-rw-r--r--Documentation/isdn/README.concap2
-rw-r--r--Documentation/isdn/README.gigaset421
-rw-r--r--Documentation/isdn/README.hysdn2
-rw-r--r--Documentation/isdn/README.icn4
-rw-r--r--Documentation/isdn/README.mISDN6
11 files changed, 824 insertions, 35 deletions
diff --git a/Documentation/isdn/00-INDEX b/Documentation/isdn/00-INDEX
index 9fee5f2e5c6..e87e336f590 100644
--- a/Documentation/isdn/00-INDEX
+++ b/Documentation/isdn/00-INDEX
@@ -2,42 +2,49 @@
- this file (info on ISDN implementation for Linux)
CREDITS
- list of the kind folks that brought you this stuff.
+HiSax.cert
+ - information about the ITU approval certification of the HiSax driver.
INTERFACE
- - description of Linklevel and Hardwarelevel ISDN interface.
+ - description of isdn4linux Link Level and Hardware Level interfaces.
+INTERFACE.fax
+ - description of the fax subinterface of isdn4linux.
+INTERFACE.CAPI
+ - description of kernel CAPI Link Level to Hardware Level interface.
README
- general info on what you need and what to do for Linux ISDN.
README.FAQ
- general info for FAQ.
+README.HiSax
+ - info on the HiSax driver which replaces the old teles.
+README.act2000
+ - info on driver for IBM ACT-2000 card.
README.audio
- info for running audio over ISDN.
+README.avmb1
+ - info on driver for AVM-B1 ISDN card.
+README.concap
+ - info on "CONCAP" encapsulation protocol interface used for X.25.
+README.diversion
+ - info on module for isdn diversion services.
README.fax
- info for using Fax over ISDN.
-README.icn
- - info on the ICN-ISDN-card and its driver.
-README.HiSax
- - info on the HiSax driver which replaces the old teles.
+README.gigaset
+ - info on the drivers for Siemens Gigaset ISDN adapters
README.hfc-pci
- info on hfc-pci based cards.
+README.hysdn
+ - info on driver for Hypercope active HYSDN cards
+README.icn
+ - info on the ICN-ISDN-card and its driver.
+README.mISDN
+ - info on the Modular ISDN subsystem (mISDN)
README.pcbit
- info on the PCBIT-D ISDN adapter and driver.
+README.sc
+ - info on driver for Spellcaster cards.
README.syncppp
- info on running Sync PPP over ISDN.
+README.x25
+ - info for running X.25 over ISDN.
syncPPP.FAQ
- frequently asked questions about running PPP over ISDN.
-README.avmb1
- - info on driver for AVM-B1 ISDN card.
-README.act2000
- - info on driver for IBM ACT-2000 card.
-README.eicon
- - info on driver for Eicon active cards.
-README.concap
- - info on "CONCAP" encapsulation protocol interface used for X.25.
-README.diversion
- - info on module for isdn diversion services.
-README.sc
- - info on driver for Spellcaster cards.
-README.x25
- _ info for running X.25 over ISDN.
-README.hysdn
- - info on driver for Hypercope active HYSDN cards
-
diff --git a/Documentation/isdn/CREDITS b/Documentation/isdn/CREDITS
index e1b3023efaa..c1679e913fc 100644
--- a/Documentation/isdn/CREDITS
+++ b/Documentation/isdn/CREDITS
@@ -2,16 +2,16 @@
I want to thank all who contributed to this project and especially to:
(in alphabetical order)
-Thomas Bogendörfer (tsbogend@bigbug.franken.de)
+Thomas Bogendörfer (tsbogend@bigbug.franken.de)
Tester, lots of bugfixes and hints.
-Alan Cox (alan@redhat.com)
+Alan Cox (alan@lxorguk.ukuu.org.uk)
For help getting into standard-kernel.
Henner Eisen (eis@baty.hanse.de)
For X.25 implementation.
-Volker Götz (volker@oops.franken.de)
+Volker Götz (volker@oops.franken.de)
For contribution of man-pages, the imontty-tool and a perfect
maintaining of the mailing-list at hub-wue.
@@ -40,7 +40,7 @@ Andreas Kool (akool@Kool.f.EUnet.de)
Pedro Roque Marques (roque@di.fc.ul.pt)
For lot of new ideas and the pcbit driver.
-Eberhard Moenkeberg (emoenke@gwdg.de)
+Eberhard Mönkeberg (emoenke@gwdg.de)
For testing and help to get into kernel.
Thomas Neumann (tn@ruhr.de)
diff --git a/Documentation/isdn/INTERFACE.CAPI b/Documentation/isdn/INTERFACE.CAPI
new file mode 100644
index 00000000000..1688b5a1fd7
--- /dev/null
+++ b/Documentation/isdn/INTERFACE.CAPI
@@ -0,0 +1,355 @@
+Kernel CAPI Interface to Hardware Drivers
+-----------------------------------------
+
+1. Overview
+
+From the CAPI 2.0 specification:
+COMMON-ISDN-API (CAPI) is an application programming interface standard used
+to access ISDN equipment connected to basic rate interfaces (BRI) and primary
+rate interfaces (PRI).
+
+Kernel CAPI operates as a dispatching layer between CAPI applications and CAPI
+hardware drivers. Hardware drivers register ISDN devices (controllers, in CAPI
+lingo) with Kernel CAPI to indicate their readiness to provide their service
+to CAPI applications. CAPI applications also register with Kernel CAPI,
+requesting association with a CAPI device. Kernel CAPI then dispatches the
+application registration to an available device, forwarding it to the
+corresponding hardware driver. Kernel CAPI then forwards CAPI messages in both
+directions between the application and the hardware driver.
+
+Format and semantics of CAPI messages are specified in the CAPI 2.0 standard.
+This standard is freely available from http://www.capi.org.
+
+
+2. Driver and Device Registration
+
+CAPI drivers optionally register themselves with Kernel CAPI by calling the
+Kernel CAPI function register_capi_driver() with a pointer to a struct
+capi_driver. This structure must be filled with the name and revision of the
+driver, and optionally a pointer to a callback function, add_card(). The
+registration can be revoked by calling the function unregister_capi_driver()
+with a pointer to the same struct capi_driver.
+
+CAPI drivers must register each of the ISDN devices they control with Kernel
+CAPI by calling the Kernel CAPI function attach_capi_ctr() with a pointer to a
+struct capi_ctr before they can be used. This structure must be filled with
+the names of the driver and controller, and a number of callback function
+pointers which are subsequently used by Kernel CAPI for communicating with the
+driver. The registration can be revoked by calling the function
+detach_capi_ctr() with a pointer to the same struct capi_ctr.
+
+Before the device can be actually used, the driver must fill in the device
+information fields 'manu', 'version', 'profile' and 'serial' in the capi_ctr
+structure of the device, and signal its readiness by calling capi_ctr_ready().
+From then on, Kernel CAPI may call the registered callback functions for the
+device.
+
+If the device becomes unusable for any reason (shutdown, disconnect ...), the
+driver has to call capi_ctr_down(). This will prevent further calls to the
+callback functions by Kernel CAPI.
+
+
+3. Application Registration and Communication
+
+Kernel CAPI forwards registration requests from applications (calls to CAPI
+operation CAPI_REGISTER) to an appropriate hardware driver by calling its
+register_appl() callback function. A unique Application ID (ApplID, u16) is
+allocated by Kernel CAPI and passed to register_appl() along with the
+parameter structure provided by the application. This is analogous to the
+open() operation on regular files or character devices.
+
+After a successful return from register_appl(), CAPI messages from the
+application may be passed to the driver for the device via calls to the
+send_message() callback function. Conversely, the driver may call Kernel
+CAPI's capi_ctr_handle_message() function to pass a received CAPI message to
+Kernel CAPI for forwarding to an application, specifying its ApplID.
+
+Deregistration requests (CAPI operation CAPI_RELEASE) from applications are
+forwarded as calls to the release_appl() callback function, passing the same
+ApplID as with register_appl(). After return from release_appl(), no CAPI
+messages for that application may be passed to or from the device anymore.
+
+
+4. Data Structures
+
+4.1 struct capi_driver
+
+This structure describes a Kernel CAPI driver itself. It is used in the
+register_capi_driver() and unregister_capi_driver() functions, and contains
+the following non-private fields, all to be set by the driver before calling
+register_capi_driver():
+
+char name[32]
+ the name of the driver, as a zero-terminated ASCII string
+char revision[32]
+ the revision number of the driver, as a zero-terminated ASCII string
+int (*add_card)(struct capi_driver *driver, capicardparams *data)
+ a callback function pointer (may be NULL)
+
+
+4.2 struct capi_ctr
+
+This structure describes an ISDN device (controller) handled by a Kernel CAPI
+driver. After registration via the attach_capi_ctr() function it is passed to
+all controller specific lower layer interface and callback functions to
+identify the controller to operate on.
+
+It contains the following non-private fields:
+
+- to be set by the driver before calling attach_capi_ctr():
+
+struct module *owner
+ pointer to the driver module owning the device
+
+void *driverdata
+ an opaque pointer to driver specific data, not touched by Kernel CAPI
+
+char name[32]
+ the name of the controller, as a zero-terminated ASCII string
+
+char *driver_name
+ the name of the driver, as a zero-terminated ASCII string
+
+int (*load_firmware)(struct capi_ctr *ctrlr, capiloaddata *ldata)
+ (optional) pointer to a callback function for sending firmware and
+ configuration data to the device
+ The function may return before the operation has completed.
+ Completion must be signalled by a call to capi_ctr_ready().
+ Return value: 0 on success, error code on error
+ Called in process context.
+
+void (*reset_ctr)(struct capi_ctr *ctrlr)
+ (optional) pointer to a callback function for stopping the device,
+ releasing all registered applications
+ The function may return before the operation has completed.
+ Completion must be signalled by a call to capi_ctr_down().
+ Called in process context.
+
+void (*register_appl)(struct capi_ctr *ctrlr, u16 applid,
+ capi_register_params *rparam)
+void (*release_appl)(struct capi_ctr *ctrlr, u16 applid)
+ pointers to callback functions for registration and deregistration of
+ applications with the device
+ Calls to these functions are serialized by Kernel CAPI so that only
+ one call to any of them is active at any time.
+
+u16 (*send_message)(struct capi_ctr *ctrlr, struct sk_buff *skb)
+ pointer to a callback function for sending a CAPI message to the
+ device
+ Return value: CAPI error code
+ If the method returns 0 (CAPI_NOERROR) the driver has taken ownership
+ of the skb and the caller may no longer access it. If it returns a
+ non-zero (error) value then ownership of the skb returns to the caller
+ who may reuse or free it.
+ The return value should only be used to signal problems with respect
+ to accepting or queueing the message. Errors occurring during the
+ actual processing of the message should be signaled with an
+ appropriate reply message.
+ May be called in process or interrupt context.
+ Calls to this function are not serialized by Kernel CAPI, ie. it must
+ be prepared to be re-entered.
+
+char *(*procinfo)(struct capi_ctr *ctrlr)
+ pointer to a callback function returning the entry for the device in
+ the CAPI controller info table, /proc/capi/controller
+
+const struct file_operations *proc_fops
+ pointers to callback functions for the device's proc file
+ system entry, /proc/capi/controllers/<n>; pointer to the device's
+ capi_ctr structure is available from struct proc_dir_entry::data
+ which is available from struct inode.
+
+Note: Callback functions except send_message() are never called in interrupt
+context.
+
+- to be filled in before calling capi_ctr_ready():
+
+u8 manu[CAPI_MANUFACTURER_LEN]
+ value to return for CAPI_GET_MANUFACTURER
+
+capi_version version
+ value to return for CAPI_GET_VERSION
+
+capi_profile profile
+ value to return for CAPI_GET_PROFILE
+
+u8 serial[CAPI_SERIAL_LEN]
+ value to return for CAPI_GET_SERIAL
+
+
+4.3 SKBs
+
+CAPI messages are passed between Kernel CAPI and the driver via send_message()
+and capi_ctr_handle_message(), stored in the data portion of a socket buffer
+(skb). Each skb contains a single CAPI message coded according to the CAPI 2.0
+standard.
+
+For the data transfer messages, DATA_B3_REQ and DATA_B3_IND, the actual
+payload data immediately follows the CAPI message itself within the same skb.
+The Data and Data64 parameters are not used for processing. The Data64
+parameter may be omitted by setting the length field of the CAPI message to 22
+instead of 30.
+
+
+4.4 The _cmsg Structure
+
+(declared in <linux/isdn/capiutil.h>)
+
+The _cmsg structure stores the contents of a CAPI 2.0 message in an easily
+accessible form. It contains members for all possible CAPI 2.0 parameters,
+including subparameters of the Additional Info and B Protocol structured
+parameters, with the following exceptions:
+
+* second Calling party number (CONNECT_IND)
+
+* Data64 (DATA_B3_REQ and DATA_B3_IND)
+
+* Sending complete (subparameter of Additional Info, CONNECT_REQ and INFO_REQ)
+
+* Global Configuration (subparameter of B Protocol, CONNECT_REQ, CONNECT_RESP
+ and SELECT_B_PROTOCOL_REQ)
+
+Only those parameters appearing in the message type currently being processed
+are actually used. Unused members should be set to zero.
+
+Members are named after the CAPI 2.0 standard names of the parameters they
+represent. See <linux/isdn/capiutil.h> for the exact spelling. Member data
+types are:
+
+u8 for CAPI parameters of type 'byte'
+
+u16 for CAPI parameters of type 'word'
+
+u32 for CAPI parameters of type 'dword'
+
+_cstruct for CAPI parameters of type 'struct'
+ The member is a pointer to a buffer containing the parameter in
+ CAPI encoding (length + content). It may also be NULL, which will
+ be taken to represent an empty (zero length) parameter.
+ Subparameters are stored in encoded form within the content part.
+
+_cmstruct alternative representation for CAPI parameters of type 'struct'
+ (used only for the 'Additional Info' and 'B Protocol' parameters)
+ The representation is a single byte containing one of the values:
+ CAPI_DEFAULT: The parameter is empty/absent.
+ CAPI_COMPOSE: The parameter is present.
+ Subparameter values are stored individually in the corresponding
+ _cmsg structure members.
+
+Functions capi_cmsg2message() and capi_message2cmsg() are provided to convert
+messages between their transport encoding described in the CAPI 2.0 standard
+and their _cmsg structure representation. Note that capi_cmsg2message() does
+not know or check the size of its destination buffer. The caller must make
+sure it is big enough to accommodate the resulting CAPI message.
+
+
+5. Lower Layer Interface Functions
+
+(declared in <linux/isdn/capilli.h>)
+
+void register_capi_driver(struct capi_driver *drvr)
+void unregister_capi_driver(struct capi_driver *drvr)
+ register/unregister a driver with Kernel CAPI
+
+int attach_capi_ctr(struct capi_ctr *ctrlr)
+int detach_capi_ctr(struct capi_ctr *ctrlr)
+ register/unregister a device (controller) with Kernel CAPI
+
+void capi_ctr_ready(struct capi_ctr *ctrlr)
+void capi_ctr_down(struct capi_ctr *ctrlr)
+ signal controller ready/not ready
+
+void capi_ctr_suspend_output(struct capi_ctr *ctrlr)
+void capi_ctr_resume_output(struct capi_ctr *ctrlr)
+ signal suspend/resume
+
+void capi_ctr_handle_message(struct capi_ctr * ctrlr, u16 applid,
+ struct sk_buff *skb)
+ pass a received CAPI message to Kernel CAPI
+ for forwarding to the specified application
+
+
+6. Helper Functions and Macros
+
+Library functions (from <linux/isdn/capilli.h>):
+
+void capilib_new_ncci(struct list_head *head, u16 applid,
+ u32 ncci, u32 winsize)
+void capilib_free_ncci(struct list_head *head, u16 applid, u32 ncci)
+void capilib_release_appl(struct list_head *head, u16 applid)
+void capilib_release(struct list_head *head)
+void capilib_data_b3_conf(struct list_head *head, u16 applid,
+ u32 ncci, u16 msgid)
+u16 capilib_data_b3_req(struct list_head *head, u16 applid,
+ u32 ncci, u16 msgid)
+
+
+Macros to extract/set element values from/in a CAPI message header
+(from <linux/isdn/capiutil.h>):
+
+Get Macro Set Macro Element (Type)
+
+CAPIMSG_LEN(m) CAPIMSG_SETLEN(m, len) Total Length (u16)
+CAPIMSG_APPID(m) CAPIMSG_SETAPPID(m, applid) ApplID (u16)
+CAPIMSG_COMMAND(m) CAPIMSG_SETCOMMAND(m,cmd) Command (u8)
+CAPIMSG_SUBCOMMAND(m) CAPIMSG_SETSUBCOMMAND(m, cmd) Subcommand (u8)
+CAPIMSG_CMD(m) - Command*256
+ + Subcommand (u16)
+CAPIMSG_MSGID(m) CAPIMSG_SETMSGID(m, msgid) Message Number (u16)
+
+CAPIMSG_CONTROL(m) CAPIMSG_SETCONTROL(m, contr) Controller/PLCI/NCCI
+ (u32)
+CAPIMSG_DATALEN(m) CAPIMSG_SETDATALEN(m, len) Data Length (u16)
+
+
+Library functions for working with _cmsg structures
+(from <linux/isdn/capiutil.h>):
+
+unsigned capi_cmsg2message(_cmsg *cmsg, u8 *msg)
+ Assembles a CAPI 2.0 message from the parameters in *cmsg, storing the
+ result in *msg.
+
+unsigned capi_message2cmsg(_cmsg *cmsg, u8 *msg)
+ Disassembles the CAPI 2.0 message in *msg, storing the parameters in
+ *cmsg.
+
+unsigned capi_cmsg_header(_cmsg *cmsg, u16 ApplId, u8 Command, u8 Subcommand,
+ u16 Messagenumber, u32 Controller)
+ Fills the header part and address field of the _cmsg structure *cmsg
+ with the given values, zeroing the remainder of the structure so only
+ parameters with non-default values need to be changed before sending
+ the message.
+
+void capi_cmsg_answer(_cmsg *cmsg)
+ Sets the low bit of the Subcommand field in *cmsg, thereby converting
+ _REQ to _CONF and _IND to _RESP.
+
+char *capi_cmd2str(u8 Command, u8 Subcommand)
+ Returns the CAPI 2.0 message name corresponding to the given command
+ and subcommand values, as a static ASCII string. The return value may
+ be NULL if the command/subcommand is not one of those defined in the
+ CAPI 2.0 standard.
+
+
+7. Debugging
+
+The module kernelcapi has a module parameter showcapimsgs controlling some
+debugging output produced by the module. It can only be set when the module is
+loaded, via a parameter "showcapimsgs=<n>" to the modprobe command, either on
+the command line or in the configuration file.
+
+If the lowest bit of showcapimsgs is set, kernelcapi logs controller and
+application up and down events.
+
+In addition, every registered CAPI controller has an associated traceflag
+parameter controlling how CAPI messages sent from and to tha controller are
+logged. The traceflag parameter is initialized with the value of the
+showcapimsgs parameter when the controller is registered, but can later be
+changed via the MANUFACTURER_REQ command KCAPI_CMD_TRACE.
+
+If the value of traceflag is non-zero, CAPI messages are logged.
+DATA_B3 messages are only logged if the value of traceflag is > 2.
+
+If the lowest bit of traceflag is set, only the command/subcommand and message
+length are logged. Otherwise, kernelcapi logs a readable representation of
+the entire message.
diff --git a/Documentation/isdn/INTERFACE.fax b/Documentation/isdn/INTERFACE.fax
index 7e5731319e3..9c8c6d914ec 100644
--- a/Documentation/isdn/INTERFACE.fax
+++ b/Documentation/isdn/INTERFACE.fax
@@ -26,7 +26,7 @@ Structure T30_s description:
If the HL-driver receives ISDN_CMD_FAXCMD, all needed information
is in this struct set by the LL.
To signal information to the LL, the HL-driver has to set the
- the parameters and use ISDN_STAT_FAXIND.
+ parameters and use ISDN_STAT_FAXIND.
(Please refer to INTERFACE)
Structure T30_s:
diff --git a/Documentation/isdn/README b/Documentation/isdn/README
index 76159524393..cfb1884342e 100644
--- a/Documentation/isdn/README
+++ b/Documentation/isdn/README
@@ -36,7 +36,7 @@ README for the ISDN-subsystem
http://www.mhessler.de/i4lfaq/
It can be viewed online, or downloaded in sgml/text/html format.
The FAQ can also be viewed online at
- http://www.isdn4inux.de/faq/
+ http://www.isdn4linux.de/faq/
or downloaded from
ftp://ftp.isdn4linux.de/pub/isdn4linux/FAQ/
@@ -402,7 +402,7 @@ README for the ISDN-subsystem
the script tools/tcltk/isdnmon. You can add actions for line-status
changes. See the comments at the beginning of the script for how to
do that. There are other tty-based tools in the tools-subdirectory
- contributed by Michael Knigge (imon), Volker Götz (imontty) and
+ contributed by Michael Knigge (imon), Volker Götz (imontty) and
Andreas Kool (isdnmon).
l) For initial testing, you can set the verbose-level to 2 (default: 0).
diff --git a/Documentation/isdn/README.HiSax b/Documentation/isdn/README.HiSax
index 031c8d81433..b1a573cf447 100644
--- a/Documentation/isdn/README.HiSax
+++ b/Documentation/isdn/README.HiSax
@@ -486,7 +486,7 @@ Appendix: Teles PCMCIA driver
-----------------------------
See
- http://www.stud.uni-wuppertal.de/~ea0141/pcmcia.html
+ http://www.linux.no/teles_cs.txt
for instructions.
Appendix: Linux and ISDN-leased lines
@@ -506,7 +506,7 @@ to e.g. the Internet:
<ISDN subsystem - ISDN support -- HiSax>
make clean; make zImage; make modules; make modules_install
2. Install the new kernel
- cp /usr/src/linux/arch/i386/boot/zImage /etc/kernel/linux.isdn
+ cp /usr/src/linux/arch/x86/boot/zImage /etc/kernel/linux.isdn
vi /etc/lilo.conf
<add new kernel in the bootable image section>
lilo
diff --git a/Documentation/isdn/README.concap b/Documentation/isdn/README.concap
index 2f114babe4b..a76d74845a4 100644
--- a/Documentation/isdn/README.concap
+++ b/Documentation/isdn/README.concap
@@ -111,7 +111,7 @@ struct concap_proto_ops{
struct concap_proto * (*proto_new) (void);
/* delete encapsulation protocol instance and free all its resources.
- cprot may no loger be referenced after calling this */
+ cprot may no longer be referenced after calling this */
void (*proto_del)(struct concap_proto *cprot);
/* initialize the protocol's data. To be called at interface startup
diff --git a/Documentation/isdn/README.gigaset b/Documentation/isdn/README.gigaset
new file mode 100644
index 00000000000..7534c6039ad
--- /dev/null
+++ b/Documentation/isdn/README.gigaset
@@ -0,0 +1,421 @@
+GigaSet 307x Device Driver
+==========================
+
+1. Requirements
+ ------------
+1.1. Hardware
+ --------
+ This driver supports the connection of the Gigaset 307x/417x family of
+ ISDN DECT bases via Gigaset M101 Data, Gigaset M105 Data or direct USB
+ connection. The following devices are reported to be compatible:
+
+ Bases:
+ Siemens Gigaset 3070/3075 isdn
+ Siemens Gigaset 4170/4175 isdn
+ Siemens Gigaset SX205/255
+ Siemens Gigaset SX353
+ T-Com Sinus 45 [AB] isdn
+ T-Com Sinus 721X[A] [SE]
+ Vox Chicago 390 ISDN (KPN Telecom)
+
+ RS232 data boxes:
+ Siemens Gigaset M101 Data
+ T-Com Sinus 45 Data 1
+
+ USB data boxes:
+ Siemens Gigaset M105 Data
+ Siemens Gigaset USB Adapter DECT
+ T-Com Sinus 45 Data 2
+ T-Com Sinus 721 data
+ Chicago 390 USB (KPN)
+
+ See also http://www.erbze.info/sinus_gigaset.htm and
+ http://gigaset307x.sourceforge.net/
+
+ We had also reports from users of Gigaset M105 who could use the drivers
+ with SX 100 and CX 100 ISDN bases (only in unimodem mode, see section 2.5.)
+ If you have another device that works with our driver, please let us know.
+
+ Chances of getting an USB device to work are good if the output of
+ lsusb
+ at the command line contains one of the following:
+ ID 0681:0001
+ ID 0681:0002
+ ID 0681:0009
+ ID 0681:0021
+ ID 0681:0022
+
+1.2. Software
+ --------
+ The driver works with the Kernel CAPI subsystem as well as the old
+ ISDN4Linux subsystem, so it can be used with any software which is able
+ to use CAPI 2.0 or ISDN4Linux for ISDN connections (voice or data).
+
+ There are some user space tools available at
+ http://sourceforge.net/projects/gigaset307x/
+ which provide access to additional device specific functions like SMS,
+ phonebook or call journal.
+
+
+2. How to use the driver
+ ---------------------
+2.1. Modules
+ -------
+ For the devices to work, the proper kernel modules have to be loaded.
+ This normally happens automatically when the system detects the USB
+ device (base, M105) or when the line discipline is attached (M101). It
+ can also be triggered manually using the modprobe(8) command, for example
+ for troubleshooting or to pass module parameters.
+
+ The module ser_gigaset provides a serial line discipline N_GIGASET_M101
+ which uses the regular serial port driver to access the device, and must
+ therefore be attached to the serial device to which the M101 is connected.
+ The ldattach(8) command (included in util-linux-ng release 2.14 or later)
+ can be used for that purpose, for example:
+ ldattach GIGASET_M101 /dev/ttyS1
+ This will open the device file, attach the line discipline to it, and
+ then sleep in the background, keeping the device open so that the line
+ discipline remains active. To deactivate it, kill the daemon, for example
+ with
+ killall ldattach
+ before disconnecting the device. To have this happen automatically at
+ system startup/shutdown on an LSB compatible system, create and activate
+ an appropriate LSB startup script /etc/init.d/gigaset. (The init name
+ 'gigaset' is officially assigned to this project by LANANA.)
+ Alternatively, just add the 'ldattach' command line to /etc/rc.local.
+
+ The modules accept the following parameters:
+
+ Module Parameter Meaning
+
+ gigaset debug debug level (see section 3.2.)
+
+ startmode initial operation mode (see section 2.5.):
+ bas_gigaset ) 1=ISDN4linux/CAPI (default), 0=Unimodem
+ ser_gigaset )
+ usb_gigaset ) cidmode initial Call-ID mode setting (see section
+ 2.5.): 1=on (default), 0=off
+
+ Depending on your distribution you may want to create a separate module
+ configuration file like /etc/modprobe.d/gigaset.conf for these.
+
+2.2. Device nodes for user space programs
+ ------------------------------------
+ The device can be accessed from user space (eg. by the user space tools
+ mentioned in 1.2.) through the device nodes:
+
+ - /dev/ttyGS0 for M101 (RS232 data boxes)
+ - /dev/ttyGU0 for M105 (USB data boxes)
+ - /dev/ttyGB0 for the base driver (direct USB connection)
+
+ If you connect more than one device of a type, they will get consecutive
+ device nodes, eg. /dev/ttyGU1 for a second M105.
+
+ You can also set a "default device" for the user space tools to use when
+ no device node is given as parameter, by creating a symlink /dev/ttyG to
+ one of them, eg.:
+
+ ln -s /dev/ttyGB0 /dev/ttyG
+
+ The devices accept the following device specific ioctl calls
+ (defined in gigaset_dev.h):
+
+ ioctl(int fd, GIGASET_REDIR, int *cmd);
+ If cmd==1, the device is set to be controlled exclusively through the
+ character device node; access from the ISDN subsystem is blocked.
+ If cmd==0, the device is set to be used from the ISDN subsystem and does
+ not communicate through the character device node.
+
+ ioctl(int fd, GIGASET_CONFIG, int *cmd);
+ (ser_gigaset and usb_gigaset only)
+ If cmd==1, the device is set to adapter configuration mode where commands
+ are interpreted by the M10x DECT adapter itself instead of being
+ forwarded to the base station. In this mode, the device accepts the
+ commands described in Siemens document "AT-Kommando Alignment M10x Data"
+ for setting the operation mode, associating with a base station and
+ querying parameters like field strengh and signal quality.
+ Note that there is no ioctl command for leaving adapter configuration
+ mode and returning to regular operation. In order to leave adapter
+ configuration mode, write the command ATO to the device.
+
+ ioctl(int fd, GIGASET_BRKCHARS, unsigned char brkchars[6]);
+ (usb_gigaset only)
+ Set the break characters on an M105's internal serial adapter to the six
+ bytes stored in brkchars[]. Unused bytes should be set to zero.
+
+ ioctl(int fd, GIGASET_VERSION, unsigned version[4]);
+ Retrieve version information from the driver. version[0] must be set to
+ one of:
+ - GIGVER_DRIVER: retrieve driver version
+ - GIGVER_COMPAT: retrieve interface compatibility version
+ - GIGVER_FWBASE: retrieve the firmware version of the base
+ Upon return, version[] is filled with the requested version information.
+
+2.3. CAPI
+ ----
+ If the driver is compiled with CAPI support (kernel configuration option
+ GIGASET_CAPI) the devices will show up as CAPI controllers as soon as the
+ corresponding driver module is loaded, and can then be used with CAPI 2.0
+ kernel and user space applications. For user space access, the module
+ capi.ko must be loaded.
+
+ Legacy ISDN4Linux applications are supported via the capidrv
+ compatibility driver. The kernel module capidrv.ko must be loaded
+ explicitly with the command
+ modprobe capidrv
+ if needed, and cannot be unloaded again without unloading the driver
+ first. (These are limitations of capidrv.)
+
+ Most distributions handle loading and unloading of the various CAPI
+ modules automatically via the command capiinit(1) from the capi4k-utils
+ package or a similar mechanism. Note that capiinit(1) cannot unload the
+ Gigaset drivers because it doesn't support more than one module per
+ driver.
+
+2.4. ISDN4Linux
+ ----------
+ If the driver is compiled without CAPI support (native ISDN4Linux
+ variant), it registers the device with the legacy ISDN4Linux subsystem
+ after loading the module. It can then be used with ISDN4Linux
+ applications only. Most distributions provide some configuration utility
+ for setting up that subsystem. Otherwise you can use some HOWTOs like
+ http://www.linuxhaven.de/dlhp/HOWTO/DE-ISDN-HOWTO-5.html
+
+
+2.5. Unimodem mode
+ -------------
+ In this mode the device works like a modem connected to a serial port
+ (the /dev/ttyGU0, ... mentioned above) which understands the commands
+
+ ATZ init, reset
+ => OK or ERROR
+ ATD
+ ATDT dial
+ => OK, CONNECT,
+ BUSY,
+ NO DIAL TONE,
+ NO CARRIER,
+ NO ANSWER
+ <pause>+++<pause> change to command mode when connected
+ ATH hangup
+
+ You can use some configuration tool of your distribution to configure this
+ "modem" or configure pppd/wvdial manually. There are some example ppp
+ configuration files and chat scripts in the gigaset-VERSION/ppp directory
+ in the driver packages from http://sourceforge.net/projects/gigaset307x/.
+ Please note that the USB drivers are not able to change the state of the
+ control lines. This means you must use "Stupid Mode" if you are using
+ wvdial or you should use the nocrtscts option of pppd.
+ You must also assure that the ppp_async module is loaded with the parameter
+ flag_time=0. You can do this e.g. by adding a line like
+
+ options ppp_async flag_time=0
+
+ to an appropriate module configuration file, like
+ /etc/modprobe.d/gigaset.conf.
+
+ Unimodem mode is needed for making some devices [e.g. SX100] work which
+ do not support the regular Gigaset command set. If debug output (see
+ section 3.2.) shows something like this when dialing:
+ CMD Received: ERROR
+ Available Params: 0
+ Connection State: 0, Response: -1
+ gigaset_process_response: resp_code -1 in ConState 0 !
+ Timeout occurred
+ then switching to unimodem mode may help.
+
+ If you have installed the command line tool gigacontr, you can enter
+ unimodem mode using
+ gigacontr --mode unimodem
+ You can switch back using
+ gigacontr --mode isdn
+
+ You can also put the driver directly into Unimodem mode when it's loaded,
+ by passing the module parameter startmode=0 to the hardware specific
+ module, e.g.
+ modprobe usb_gigaset startmode=0
+ or by adding a line like
+ options usb_gigaset startmode=0
+ to an appropriate module configuration file, like
+ /etc/modprobe.d/gigaset.conf
+
+2.6. Call-ID (CID) mode
+ ------------------
+ Call-IDs are numbers used to tag commands to, and responses from, the
+ Gigaset base in order to support the simultaneous handling of multiple
+ ISDN calls. Their use can be enabled ("CID mode") or disabled ("Unimodem
+ mode"). Without Call-IDs (in Unimodem mode), only a very limited set of
+ functions is available. It allows outgoing data connections only, but
+ does not signal incoming calls or other base events.
+
+ DECT cordless data devices (M10x) permanently occupy the cordless
+ connection to the base while Call-IDs are activated. As the Gigaset
+ bases only support one DECT data connection at a time, this prevents
+ other DECT cordless data devices from accessing the base.
+
+ During active operation, the driver switches to the necessary mode
+ automatically. However, for the reasons above, the mode chosen when
+ the device is not in use (idle) can be selected by the user.
+ - If you want to receive incoming calls, you can use the default
+ settings (CID mode).
+ - If you have several DECT data devices (M10x) which you want to use
+ in turn, select Unimodem mode by passing the parameter "cidmode=0" to
+ the appropriate driver module (ser_gigaset or usb_gigaset).
+
+ If you want both of these at once, you are out of luck.
+
+ You can also use the tty class parameter "cidmode" of the device to
+ change its CID mode while the driver is loaded, eg.
+ echo 0 > /sys/class/tty/ttyGU0/cidmode
+
+2.7. Dialing Numbers
+ ---------------
+ The called party number provided by an application for dialing out must
+ be a public network number according to the local dialing plan, without
+ any dial prefix for getting an outside line.
+
+ Internal calls can be made by providing an internal extension number
+ prefixed with "**" (two asterisks) as the called party number. So to dial
+ eg. the first registered DECT handset, give "**11" as the called party
+ number. Dialing "***" (three asterisks) calls all extensions
+ simultaneously (global call).
+
+ This holds for both CAPI 2.0 and ISDN4Linux applications. Unimodem mode
+ does not support internal calls.
+
+2.8. Unregistered Wireless Devices (M101/M105)
+ -----------------------------------------
+ The main purpose of the ser_gigaset and usb_gigaset drivers is to allow
+ the M101 and M105 wireless devices to be used as ISDN devices for ISDN
+ connections through a Gigaset base. Therefore they assume that the device
+ is registered to a DECT base.
+
+ If the M101/M105 device is not registered to a base, initialization of
+ the device fails, and a corresponding error message is logged by the
+ driver. In that situation, a restricted set of functions is available
+ which includes, in particular, those necessary for registering the device
+ to a base or for switching it between Fixed Part and Portable Part
+ modes. See the gigacontr(8) manpage for details.
+
+3. Troubleshooting
+ ---------------
+3.1. Solutions to frequently reported problems
+ -----------------------------------------
+ Problem:
+ You have a slow provider and isdn4linux gives up dialing too early.
+ Solution:
+ Load the isdn module using the dialtimeout option. You can do this e.g.
+ by adding a line like
+
+ options isdn dialtimeout=15
+
+ to /etc/modprobe.d/gigaset.conf or a similar file.
+
+ Problem:
+ The isdnlog program emits error messages or just doesn't work.
+ Solution:
+ Isdnlog supports only the HiSax driver. Do not attempt to use it with
+ other drivers such as Gigaset.
+
+ Problem:
+ You have two or more DECT data adapters (M101/M105) and only the
+ first one you turn on works.
+ Solution:
+ Select Unimodem mode for all DECT data adapters. (see section 2.5.)
+
+ Problem:
+ Messages like this:
+ usb_gigaset 3-2:1.0: Could not initialize the device.
+ appear in your syslog.
+ Solution:
+ Check whether your M10x wireless device is correctly registered to the
+ Gigaset base. (see section 2.7.)
+
+3.2. Telling the driver to provide more information
+ ----------------------------------------------
+ Building the driver with the "Gigaset debugging" kernel configuration
+ option (CONFIG_GIGASET_DEBUG) gives it the ability to produce additional
+ information useful for debugging.
+
+ You can control the amount of debugging information the driver produces by
+ writing an appropriate value to /sys/module/gigaset/parameters/debug, e.g.
+ echo 0 > /sys/module/gigaset/parameters/debug
+ switches off debugging output completely,
+ echo 0x302020 > /sys/module/gigaset/parameters/debug
+ enables a reasonable set of debugging output messages. These values are
+ bit patterns where every bit controls a certain type of debugging output.
+ See the constants DEBUG_* in the source file gigaset.h for details.
+
+ The initial value can be set using the debug parameter when loading the
+ module "gigaset", e.g. by adding a line
+ options gigaset debug=0
+ to your module configuration file, eg. /etc/modprobe.d/gigaset.conf
+
+ Generated debugging information can be found
+ - as output of the command
+ dmesg
+ - in system log files written by your syslog daemon, usually
+ in /var/log/, e.g. /var/log/messages.
+
+3.3. Reporting problems and bugs
+ ---------------------------
+ If you can't solve problems with the driver on your own, feel free to
+ use one of the forums, bug trackers, or mailing lists on
+ http://sourceforge.net/projects/gigaset307x
+ or write an electronic mail to the maintainers.
+
+ Try to provide as much information as possible, such as
+ - distribution
+ - kernel version (uname -r)
+ - gcc version (gcc --version)
+ - hardware architecture (uname -m, ...)
+ - type and firmware version of your device (base and wireless module,
+ if any)
+ - output of "lsusb -v" (if using an USB device)
+ - error messages
+ - relevant system log messages (it would help if you activate debug
+ output as described in 3.2.)
+
+ For help with general configuration problems not specific to our driver,
+ such as isdn4linux and network configuration issues, please refer to the
+ appropriate forums and newsgroups.
+
+3.4. Reporting problem solutions
+ ---------------------------
+ If you solved a problem with our drivers, wrote startup scripts for your
+ distribution, ... feel free to contact us (using one of the places
+ mentioned in 3.3.). We'd like to add scripts, hints, documentation
+ to the driver and/or the project web page.
+
+
+4. Links, other software
+ ---------------------
+ - Sourceforge project developing this driver and associated tools
+ http://sourceforge.net/projects/gigaset307x
+ - Yahoo! Group on the Siemens Gigaset family of devices
+ http://de.groups.yahoo.com/group/Siemens-Gigaset
+ - Siemens Gigaset/T-Sinus compatibility table
+ http://www.erbze.info/sinus_gigaset.htm
+
+
+5. Credits
+ -------
+ Thanks to
+
+ Karsten Keil
+ for his help with isdn4linux
+ Deti Fliegl
+ for his base driver code
+ Dennis Dietrich
+ for his kernel 2.6 patches
+ Andreas Rummel
+ for his work and logs to get unimodem mode working
+ Andreas Degert
+ for his logs and patches to get cx 100 working
+ Dietrich Feist
+ for his generous donation of one M105 and two M101 cordless adapters
+ Christoph Schweers
+ for his generous donation of a M34 device
+
+ and all the other people who sent logs and other information.
+
diff --git a/Documentation/isdn/README.hysdn b/Documentation/isdn/README.hysdn
index 56cc59df1fb..eeca11f00cc 100644
--- a/Documentation/isdn/README.hysdn
+++ b/Documentation/isdn/README.hysdn
@@ -1,6 +1,6 @@
$Id: README.hysdn,v 1.3.6.1 2001/02/10 14:41:19 kai Exp $
The hysdn driver has been written by
-by Werner Cornelius (werner@isdn4linux.de or werner@titro.de)
+Werner Cornelius (werner@isdn4linux.de or werner@titro.de)
for Hypercope GmbH Aachen Germany. Hypercope agreed to publish this driver
under the GNU General Public License.
diff --git a/Documentation/isdn/README.icn b/Documentation/isdn/README.icn
index a5f55eadb3c..13f833d4e91 100644
--- a/Documentation/isdn/README.icn
+++ b/Documentation/isdn/README.icn
@@ -3,8 +3,8 @@ $Id: README.icn,v 1.7 2000/08/06 09:22:51 armin Exp $
You can get the ICN-ISDN-card from:
Thinking Objects Software GmbH
-Versbacher Röthe 159
-97078 Würzburg
+Versbacher Röthe 159
+97078 Würzburg
Tel: +49 931 2877950
Fax: +49 931 2877951
diff --git a/Documentation/isdn/README.mISDN b/Documentation/isdn/README.mISDN
new file mode 100644
index 00000000000..cd8bf920e77
--- /dev/null
+++ b/Documentation/isdn/README.mISDN
@@ -0,0 +1,6 @@
+mISDN is a new modular ISDN driver, in the long term it should replace
+the old I4L driver architecture for passiv ISDN cards.
+It was designed to allow a broad range of applications and interfaces
+but only have the basic function in kernel, the interface to the user
+space is based on sockets with a own address family AF_ISDN.
+