aboutsummaryrefslogtreecommitdiff
path: root/Documentation/hwmon
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/hwmon')
-rw-r--r--Documentation/hwmon/ab850022
-rw-r--r--Documentation/hwmon/abituguru-datasheet2
-rw-r--r--Documentation/hwmon/abx50028
-rw-r--r--Documentation/hwmon/adc128d81847
-rw-r--r--Documentation/hwmon/adm10252
-rw-r--r--Documentation/hwmon/adm10312
-rw-r--r--Documentation/hwmon/adm12752
-rw-r--r--Documentation/hwmon/adm92402
-rw-r--r--Documentation/hwmon/ads10158
-rw-r--r--Documentation/hwmon/adt741050
-rw-r--r--Documentation/hwmon/coretemp9
-rw-r--r--Documentation/hwmon/ds1621146
-rw-r--r--Documentation/hwmon/emc140359
-rw-r--r--Documentation/hwmon/emc6w2012
-rw-r--r--Documentation/hwmon/f71805f2
-rw-r--r--Documentation/hwmon/g76265
-rw-r--r--Documentation/hwmon/gl518sm2
-rw-r--r--Documentation/hwmon/htu2146
-rw-r--r--Documentation/hwmon/hwmon-kernel-api.txt107
-rw-r--r--Documentation/hwmon/ina20993
-rw-r--r--Documentation/hwmon/ina2xx4
-rw-r--r--Documentation/hwmon/it8745
-rw-r--r--Documentation/hwmon/jc4221
-rw-r--r--Documentation/hwmon/k10temp5
-rw-r--r--Documentation/hwmon/lineage-pem2
-rw-r--r--Documentation/hwmon/lm2506656
-rw-r--r--Documentation/hwmon/lm632
-rw-r--r--Documentation/hwmon/lm702
-rw-r--r--Documentation/hwmon/lm7390
-rw-r--r--Documentation/hwmon/lm7517
-rw-r--r--Documentation/hwmon/lm7720
-rw-r--r--Documentation/hwmon/lm782
-rw-r--r--Documentation/hwmon/lm832
-rw-r--r--Documentation/hwmon/lm872
-rw-r--r--Documentation/hwmon/lm908
-rw-r--r--Documentation/hwmon/lm922
-rw-r--r--Documentation/hwmon/lm9523436
-rw-r--r--Documentation/hwmon/lm952458
-rw-r--r--Documentation/hwmon/ltc294584
-rw-r--r--Documentation/hwmon/ltc2978166
-rw-r--r--Documentation/hwmon/ltc426056
-rw-r--r--Documentation/hwmon/ltc42612
-rw-r--r--Documentation/hwmon/max160642
-rw-r--r--Documentation/hwmon/max160652
-rw-r--r--Documentation/hwmon/max16192
-rw-r--r--Documentation/hwmon/max3444018
-rw-r--r--Documentation/hwmon/max669758
-rw-r--r--Documentation/hwmon/max86882
-rw-r--r--Documentation/hwmon/nct668357
-rw-r--r--Documentation/hwmon/nct6775188
-rw-r--r--Documentation/hwmon/ntc_thermistor8
-rw-r--r--Documentation/hwmon/pc873602
-rw-r--r--Documentation/hwmon/pc874272
-rw-r--r--Documentation/hwmon/pcf85912
-rw-r--r--Documentation/hwmon/pmbus2
-rw-r--r--Documentation/hwmon/sht152
-rw-r--r--Documentation/hwmon/shtc143
-rw-r--r--Documentation/hwmon/smm6652
-rw-r--r--Documentation/hwmon/smsc47m12
-rw-r--r--Documentation/hwmon/submitting-patches5
-rw-r--r--Documentation/hwmon/sysfs-interface22
-rw-r--r--Documentation/hwmon/tmp40125
-rw-r--r--Documentation/hwmon/ucd90002
-rw-r--r--Documentation/hwmon/ucd92002
-rw-r--r--Documentation/hwmon/w83627ehf2
-rw-r--r--Documentation/hwmon/w83791d2
-rw-r--r--Documentation/hwmon/w83792d3
-rw-r--r--Documentation/hwmon/w837952
-rw-r--r--Documentation/hwmon/w83l785ts2
-rw-r--r--Documentation/hwmon/zl610028
70 files changed, 1623 insertions, 194 deletions
diff --git a/Documentation/hwmon/ab8500 b/Documentation/hwmon/ab8500
new file mode 100644
index 00000000000..cf169c8ef4e
--- /dev/null
+++ b/Documentation/hwmon/ab8500
@@ -0,0 +1,22 @@
+Kernel driver ab8500
+====================
+
+Supported chips:
+ * ST-Ericsson AB8500
+ Prefix: 'ab8500'
+ Addresses scanned: -
+ Datasheet: http://www.stericsson.com/developers/documentation.jsp
+
+Authors:
+ Martin Persson <martin.persson@stericsson.com>
+ Hongbo Zhang <hongbo.zhang@linaro.org>
+
+Description
+-----------
+
+See also Documentation/hwmon/abx500. This is the ST-Ericsson AB8500 specific
+driver.
+
+Currently only the AB8500 internal sensor and one external sensor for battery
+temperature are monitored. Other GPADC channels can also be monitored if needed
+in future.
diff --git a/Documentation/hwmon/abituguru-datasheet b/Documentation/hwmon/abituguru-datasheet
index 8d2be8a0b1e..86c0b1251c8 100644
--- a/Documentation/hwmon/abituguru-datasheet
+++ b/Documentation/hwmon/abituguru-datasheet
@@ -299,7 +299,7 @@ Byte 1:
min threshold (scale as bank 0x26)
-Warning for the adventerous
+Warning for the adventurous
===========================
A word of caution to those who want to experiment and see if they can figure
diff --git a/Documentation/hwmon/abx500 b/Documentation/hwmon/abx500
new file mode 100644
index 00000000000..319a058cec7
--- /dev/null
+++ b/Documentation/hwmon/abx500
@@ -0,0 +1,28 @@
+Kernel driver abx500
+====================
+
+Supported chips:
+ * ST-Ericsson ABx500 series
+ Prefix: 'abx500'
+ Addresses scanned: -
+ Datasheet: http://www.stericsson.com/developers/documentation.jsp
+
+Authors:
+ Martin Persson <martin.persson@stericsson.com>
+ Hongbo Zhang <hongbo.zhang@linaro.org>
+
+Description
+-----------
+
+Every ST-Ericsson Ux500 SOC consists of both ABx500 and DBx500 physically,
+this is kernel hwmon driver for ABx500.
+
+There are some GPADCs inside ABx500 which are designed for connecting to
+thermal sensors, and there is also a thermal sensor inside ABx500 too, which
+raises interrupt when critical temperature reached.
+
+This abx500 is a common layer which can monitor all of the sensors, every
+specific abx500 chip has its special configurations in its own file, e.g. some
+sensors can be configured invisible if they are not available on that chip, and
+the corresponding gpadc_addr should be set to 0, thus this sensor won't be
+polled.
diff --git a/Documentation/hwmon/adc128d818 b/Documentation/hwmon/adc128d818
new file mode 100644
index 00000000000..39c95004dab
--- /dev/null
+++ b/Documentation/hwmon/adc128d818
@@ -0,0 +1,47 @@
+Kernel driver adc128d818
+========================
+
+Supported chips:
+ * Texas Instruments ADC818D818
+ Prefix: 'adc818d818'
+ Addresses scanned: I2C 0x1d, 0x1e, 0x1f, 0x2d, 0x2e, 0x2f
+ Datasheet: Publicly available at the TI website
+ http://www.ti.com/
+
+Author: Guenter Roeck
+
+Description
+-----------
+
+This driver implements support for the Texas Instruments ADC128D818.
+It is described as 'ADC System Monitor with Temperature Sensor'.
+
+The ADC128D818 implements one temperature sensor and seven voltage sensors.
+
+Temperatures are measured in degrees Celsius. There is one set of limits.
+When the HOT Temperature Limit is crossed, this will cause an alarm that will
+be reasserted until the temperature drops below the HOT Hysteresis.
+Measurements are guaranteed between -55 and +125 degrees. The temperature
+measurement has a resolution of 0.5 degrees; the limits have a resolution
+of 1 degree.
+
+Voltage sensors (also known as IN sensors) report their values in volts.
+An alarm is triggered if the voltage has crossed a programmable minimum
+or maximum limit. Note that minimum in this case always means 'closest to
+zero'; this is important for negative voltage measurements. All voltage
+inputs can measure voltages between 0 and 2.55 volts, with a resolution
+of 0.625 mV.
+
+If an alarm triggers, it will remain triggered until the hardware register
+is read at least once. This means that the cause for the alarm may
+already have disappeared by the time the alarm is read. The driver
+caches the alarm status for each sensor until it is at least reported
+once, to ensure that alarms are reported to user space.
+
+The ADC128D818 only updates its values approximately once per second;
+reading it more often will do no harm, but will return 'old' values.
+
+In addition to the scanned address list, the chip can also be configured for
+addresses 0x35 to 0x37. Those addresses are not scanned. You have to instantiate
+the driver explicitly if the chip is configured for any of those addresses in
+your system.
diff --git a/Documentation/hwmon/adm1025 b/Documentation/hwmon/adm1025
index 39d2b781b5d..99f05049c68 100644
--- a/Documentation/hwmon/adm1025
+++ b/Documentation/hwmon/adm1025
@@ -18,7 +18,7 @@ The NE1619 presents some differences with the original ADM1025:
Authors:
Chen-Yuan Wu <gwu@esoft.com>,
- Jean Delvare <khali@linux-fr.org>
+ Jean Delvare <jdelvare@suse.de>
Description
-----------
diff --git a/Documentation/hwmon/adm1031 b/Documentation/hwmon/adm1031
index be92a77da1d..a143117c99c 100644
--- a/Documentation/hwmon/adm1031
+++ b/Documentation/hwmon/adm1031
@@ -16,7 +16,7 @@ Supported chips:
Authors:
Alexandre d'Alton <alex@alexdalton.org>
- Jean Delvare <khali@linux-fr.org>
+ Jean Delvare <jdelvare@suse.de>
Description
-----------
diff --git a/Documentation/hwmon/adm1275 b/Documentation/hwmon/adm1275
index 2cfa2566712..15b4a20d506 100644
--- a/Documentation/hwmon/adm1275
+++ b/Documentation/hwmon/adm1275
@@ -15,7 +15,7 @@ Supported chips:
Addresses scanned: -
Datasheet: www.analog.com/static/imported-files/data_sheets/ADM1276.pdf
-Author: Guenter Roeck <guenter.roeck@ericsson.com>
+Author: Guenter Roeck <linux@roeck-us.net>
Description
diff --git a/Documentation/hwmon/adm9240 b/Documentation/hwmon/adm9240
index 36e8ec6aa86..9b174fc700c 100644
--- a/Documentation/hwmon/adm9240
+++ b/Documentation/hwmon/adm9240
@@ -25,7 +25,7 @@ Authors:
Philip Edelbrock <phil@netroedge.com>,
Michiel Rook <michiel@grendelproject.nl>,
Grant Coady <gcoady.lk@gmail.com> with guidance
- from Jean Delvare <khali@linux-fr.org>
+ from Jean Delvare <jdelvare@suse.de>
Interface
---------
diff --git a/Documentation/hwmon/ads1015 b/Documentation/hwmon/ads1015
index f6fe9c20373..063b80d857b 100644
--- a/Documentation/hwmon/ads1015
+++ b/Documentation/hwmon/ads1015
@@ -6,6 +6,10 @@ Supported chips:
Prefix: 'ads1015'
Datasheet: Publicly available at the Texas Instruments website :
http://focus.ti.com/lit/ds/symlink/ads1015.pdf
+ * Texas Instruments ADS1115
+ Prefix: 'ads1115'
+ Datasheet: Publicly available at the Texas Instruments website :
+ http://focus.ti.com/lit/ds/symlink/ads1115.pdf
Authors:
Dirk Eibach, Guntermann & Drunck GmbH <eibach@gdsys.de>
@@ -13,9 +17,9 @@ Authors:
Description
-----------
-This driver implements support for the Texas Instruments ADS1015.
+This driver implements support for the Texas Instruments ADS1015/ADS1115.
-This device is a 12-bit A-D converter with 4 inputs.
+This device is a 12/16-bit A-D converter with 4 inputs.
The inputs can be used single ended or in certain differential combinations.
diff --git a/Documentation/hwmon/adt7410 b/Documentation/hwmon/adt7410
index 96004000dc2..9817941e5f1 100644
--- a/Documentation/hwmon/adt7410
+++ b/Documentation/hwmon/adt7410
@@ -4,28 +4,50 @@ Kernel driver adt7410
Supported chips:
* Analog Devices ADT7410
Prefix: 'adt7410'
- Addresses scanned: I2C 0x48 - 0x4B
+ Addresses scanned: None
Datasheet: Publicly available at the Analog Devices website
http://www.analog.com/static/imported-files/data_sheets/ADT7410.pdf
+ * Analog Devices ADT7420
+ Prefix: 'adt7420'
+ Addresses scanned: None
+ Datasheet: Publicly available at the Analog Devices website
+ http://www.analog.com/static/imported-files/data_sheets/ADT7420.pdf
+ * Analog Devices ADT7310
+ Prefix: 'adt7310'
+ Addresses scanned: None
+ Datasheet: Publicly available at the Analog Devices website
+ http://www.analog.com/static/imported-files/data_sheets/ADT7310.pdf
+ * Analog Devices ADT7320
+ Prefix: 'adt7320'
+ Addresses scanned: None
+ Datasheet: Publicly available at the Analog Devices website
+ http://www.analog.com/static/imported-files/data_sheets/ADT7320.pdf
Author: Hartmut Knaack <knaack.h@gmx.de>
Description
-----------
-The ADT7410 is a temperature sensor with rated temperature range of -55°C to
-+150°C. It has a high accuracy of +/-0.5°C and can be operated at a resolution
-of 13 bits (0.0625°C) or 16 bits (0.0078°C). The sensor provides an INT pin to
-indicate that a minimum or maximum temperature set point has been exceeded, as
-well as a critical temperature (CT) pin to indicate that the critical
-temperature set point has been exceeded. Both pins can be set up with a common
-hysteresis of 0°C - 15°C and a fault queue, ranging from 1 to 4 events. Both
-pins can individually set to be active-low or active-high, while the whole
-device can either run in comparator mode or interrupt mode. The ADT7410
-supports continous temperature sampling, as well as sampling one temperature
-value per second or even justget one sample on demand for power saving.
-Besides, it can completely power down its ADC, if power management is
-required.
+The ADT7310/ADT7410 is a temperature sensor with rated temperature range of
+-55°C to +150°C. It has a high accuracy of +/-0.5°C and can be operated at a
+resolution of 13 bits (0.0625°C) or 16 bits (0.0078°C). The sensor provides an
+INT pin to indicate that a minimum or maximum temperature set point has been
+exceeded, as well as a critical temperature (CT) pin to indicate that the
+critical temperature set point has been exceeded. Both pins can be set up with a
+common hysteresis of 0°C - 15°C and a fault queue, ranging from 1 to 4 events.
+Both pins can individually set to be active-low or active-high, while the whole
+device can either run in comparator mode or interrupt mode. The ADT7410 supports
+continuous temperature sampling, as well as sampling one temperature value per
+second or even just get one sample on demand for power saving. Besides, it can
+completely power down its ADC, if power management is required.
+
+The ADT7320/ADT7420 is register compatible, the only differences being the
+package, a slightly narrower operating temperature range (-40°C to +150°C), and
+a better accuracy (0.25°C instead of 0.50°C.)
+
+The difference between the ADT7310/ADT7320 and ADT7410/ADT7420 is the control
+interface, the ADT7310 and ADT7320 use SPI while the ADT7410 and ADT7420 use
+I2C.
Configuration Notes
-------------------
diff --git a/Documentation/hwmon/coretemp b/Documentation/hwmon/coretemp
index 3374c085678..fec5a9bf755 100644
--- a/Documentation/hwmon/coretemp
+++ b/Documentation/hwmon/coretemp
@@ -66,6 +66,7 @@ Process Processor TjMax(C)
i5 3470T 91
32nm Core i3/i5/i7 Processors
+ i7 2600 98
i7 660UM/640/620, 640LM/620, 620M, 610E 105
i5 540UM/520/430, 540M/520/450/430 105
i3 330E, 370M/350/330 90 rPGA, 105 BGA
@@ -79,7 +80,10 @@ Process Processor TjMax(C)
P4505/P4500 90
32nm Atom Processors
+ S1260/1220 95
+ S1240 102
Z2460 90
+ Z2760 90
D2700/2550/2500 100
N2850/2800/2650/2600 100
@@ -98,6 +102,7 @@ Process Processor TjMax(C)
45nm Atom Processors
D525/510/425/410 100
+ K525/510/425/410 100
Z670/650 90
Z560/550/540/530P/530/520PT/520/515/510PT/510P 90
Z510/500 90
@@ -107,7 +112,11 @@ Process Processor TjMax(C)
330/230 125
E680/660/640/620 90
E680T/660T/640T/620T 110
+ E665C/645C 90
+ E665CT/645CT 110
CE4170/4150/4110 110
+ CE4200 series unknown
+ CE5300 series unknown
45nm Core2 Processors
Solo ULV SU3500/3300 100
diff --git a/Documentation/hwmon/ds1621 b/Documentation/hwmon/ds1621
index 5e97f333c4d..f775e612f58 100644
--- a/Documentation/hwmon/ds1621
+++ b/Documentation/hwmon/ds1621
@@ -2,22 +2,36 @@ Kernel driver ds1621
====================
Supported chips:
- * Dallas Semiconductor DS1621
+ * Dallas Semiconductor / Maxim Integrated DS1621
Prefix: 'ds1621'
- Addresses scanned: I2C 0x48 - 0x4f
- Datasheet: Publicly available at the Dallas Semiconductor website
- http://www.dalsemi.com/
+ Addresses scanned: none
+ Datasheet: Publicly available from www.maximintegrated.com
+
* Dallas Semiconductor DS1625
- Prefix: 'ds1621'
- Addresses scanned: I2C 0x48 - 0x4f
- Datasheet: Publicly available at the Dallas Semiconductor website
- http://www.dalsemi.com/
+ Prefix: 'ds1625'
+ Addresses scanned: none
+ Datasheet: Publicly available from www.datasheetarchive.com
+
+ * Maxim Integrated DS1631
+ Prefix: 'ds1631'
+ Addresses scanned: none
+ Datasheet: Publicly available from www.maximintegrated.com
+
+ * Maxim Integrated DS1721
+ Prefix: 'ds1721'
+ Addresses scanned: none
+ Datasheet: Publicly available from www.maximintegrated.com
+
+ * Maxim Integrated DS1731
+ Prefix: 'ds1731'
+ Addresses scanned: none
+ Datasheet: Publicly available from www.maximintegrated.com
Authors:
Christian W. Zuckschwerdt <zany@triq.net>
valuable contributions by Jan M. Sendler <sendler@sendler.de>
ported to 2.6 by Aurelien Jarno <aurelien@aurel32.net>
- with the help of Jean Delvare <khali@linux-fr.org>
+ with the help of Jean Delvare <jdelvare@suse.de>
Module Parameters
------------------
@@ -59,5 +73,115 @@ any of the limits have ever been met or exceeded since last power-up or
reset. Be aware: When testing, it showed that the status of Tout can change
with neither of the alarms set.
-Temperature conversion of the DS1621 takes up to 1000ms; internal access to
-non-volatile registers may last for 10ms or below.
+Since there is no version or vendor identification register, there is
+no unique identification for these devices. Therefore, explicit device
+instantiation is required for correct device identification and functionality
+(one device per address in this address range: 0x48..0x4f).
+
+The DS1625 is pin compatible and functionally equivalent with the DS1621,
+but the DS1621 is meant to replace it. The DS1631, DS1721, and DS1731 are
+also pin compatible with the DS1621 and provide multi-resolution support.
+
+Additionally, the DS1721 data sheet says the temperature flags (THF and TLF)
+are used internally, however, these flags do get set and cleared as the actual
+temperature crosses the min or max settings (which by default are set to 75
+and 80 degrees respectively).
+
+Temperature Conversion:
+-----------------------
+DS1621 - 750ms (older devices may take up to 1000ms)
+DS1625 - 500ms
+DS1631 - 93ms..750ms for 9..12 bits resolution, respectively.
+DS1721 - 93ms..750ms for 9..12 bits resolution, respectively.
+DS1731 - 93ms..750ms for 9..12 bits resolution, respectively.
+
+Note:
+On the DS1621, internal access to non-volatile registers may last for 10ms
+or less (unverified on the other devices).
+
+Temperature Accuracy:
+---------------------
+DS1621: +/- 0.5 degree Celsius (from 0 to +70 degrees)
+DS1625: +/- 0.5 degree Celsius (from 0 to +70 degrees)
+DS1631: +/- 0.5 degree Celsius (from 0 to +70 degrees)
+DS1721: +/- 1.0 degree Celsius (from -10 to +85 degrees)
+DS1731: +/- 1.0 degree Celsius (from -10 to +85 degrees)
+
+Note:
+Please refer to the device datasheets for accuracy at other temperatures.
+
+Temperature Resolution:
+-----------------------
+As mentioned above, the DS1631, DS1721, and DS1731 provide multi-resolution
+support, which is achieved via the R0 and R1 config register bits, where:
+
+R0..R1
+------
+ 0 0 => 9 bits, 0.5 degrees Celcius
+ 1 0 => 10 bits, 0.25 degrees Celcius
+ 0 1 => 11 bits, 0.125 degrees Celcius
+ 1 1 => 12 bits, 0.0625 degrees Celcius
+
+Note:
+At initial device power-on, the default resolution is set to 12-bits.
+
+The resolution mode for the DS1631, DS1721, or DS1731 can be changed from
+userspace, via the device 'update_interval' sysfs attribute. This attribute
+will normalize the range of input values to the device maximum resolution
+values defined in the datasheet as follows:
+
+Resolution Conversion Time Input Range
+ (C/LSB) (msec) (msec)
+------------------------------------------------
+0.5 93.75 0....94
+0.25 187.5 95...187
+0.125 375 188..375
+0.0625 750 376..infinity
+------------------------------------------------
+
+The following examples show how the 'update_interval' attribute can be
+used to change the conversion time:
+
+$ cat update_interval
+750
+$ cat temp1_input
+22062
+$
+$ echo 300 > update_interval
+$ cat update_interval
+375
+$ cat temp1_input
+22125
+$
+$ echo 150 > update_interval
+$ cat update_interval
+188
+$ cat temp1_input
+22250
+$
+$ echo 1 > update_interval
+$ cat update_interval
+94
+$ cat temp1_input
+22000
+$
+$ echo 1000 > update_interval
+$ cat update_interval
+750
+$ cat temp1_input
+22062
+$
+
+As shown, the ds1621 driver automatically adjusts the 'update_interval'
+user input, via a step function. Reading back the 'update_interval' value
+after a write operation provides the conversion time used by the device.
+
+Mathematically, the resolution can be derived from the conversion time
+via the following function:
+
+ g(x) = 0.5 * [minimum_conversion_time/x]
+
+where:
+ -> 'x' = the output from 'update_interval'
+ -> 'g(x)' = the resolution in degrees C per LSB.
+ -> 93.75ms = minimum conversion time
diff --git a/Documentation/hwmon/emc1403 b/Documentation/hwmon/emc1403
new file mode 100644
index 00000000000..a869b0ef6a9
--- /dev/null
+++ b/Documentation/hwmon/emc1403
@@ -0,0 +1,59 @@
+Kernel driver emc1403
+=====================
+
+Supported chips:
+ * SMSC / Microchip EMC1402, EMC1412
+ Addresses scanned: I2C 0x18, 0x1c, 0x29, 0x4c, 0x4d, 0x5c
+ Prefix: 'emc1402'
+ Datasheets:
+ http://ww1.microchip.com/downloads/en/DeviceDoc/1412.pdf
+ http://ww1.microchip.com/downloads/en/DeviceDoc/1402.pdf
+ * SMSC / Microchip EMC1403, EMC1404, EMC1413, EMC1414
+ Addresses scanned: I2C 0x18, 0x29, 0x4c, 0x4d
+ Prefix: 'emc1403', 'emc1404'
+ Datasheets:
+ http://ww1.microchip.com/downloads/en/DeviceDoc/1403_1404.pdf
+ http://ww1.microchip.com/downloads/en/DeviceDoc/1413_1414.pdf
+ * SMSC / Microchip EMC1422
+ Addresses scanned: I2C 0x4c
+ Prefix: 'emc1422'
+ Datasheet:
+ http://ww1.microchip.com/downloads/en/DeviceDoc/1422.pdf
+ * SMSC / Microchip EMC1423, EMC1424
+ Addresses scanned: I2C 0x4c
+ Prefix: 'emc1423', 'emc1424'
+ Datasheet:
+ http://ww1.microchip.com/downloads/en/DeviceDoc/1423_1424.pdf
+
+Author:
+ Kalhan Trisal <kalhan.trisal@intel.com
+
+
+Description
+-----------
+
+The Standard Microsystems Corporation (SMSC) / Microchip EMC14xx chips
+contain up to four temperature sensors. EMC14x2 support two sensors
+(one internal, one external). EMC14x3 support three sensors (one internal,
+two external), and EMC14x4 support four sensors (one internal, three
+external).
+
+The chips implement three limits for each sensor: low (tempX_min), high
+(tempX_max) and critical (tempX_crit.) The chips also implement an
+hysteresis mechanism which applies to all limits. The relative difference
+is stored in a single register on the chip, which means that the relative
+difference between the limit and its hysteresis is always the same for
+all three limits.
+
+This implementation detail implies the following:
+* When setting a limit, its hysteresis will automatically follow, the
+ difference staying unchanged. For example, if the old critical limit
+ was 80 degrees C, and the hysteresis was 75 degrees C, and you change
+ the critical limit to 90 degrees C, then the hysteresis will
+ automatically change to 85 degrees C.
+* The hysteresis values can't be set independently. We decided to make
+ only temp1_crit_hyst writable, while all other hysteresis attributes
+ are read-only. Setting temp1_crit_hyst writes the difference between
+ temp1_crit_hyst and temp1_crit into the chip, and the same relative
+ hysteresis applies automatically to all other limits.
+* The limits should be set before the hysteresis.
diff --git a/Documentation/hwmon/emc6w201 b/Documentation/hwmon/emc6w201
index 32f355aaf56..757629b1289 100644
--- a/Documentation/hwmon/emc6w201
+++ b/Documentation/hwmon/emc6w201
@@ -7,7 +7,7 @@ Supported chips:
Addresses scanned: I2C 0x2c, 0x2d, 0x2e
Datasheet: Not public
-Author: Jean Delvare <khali@linux-fr.org>
+Author: Jean Delvare <jdelvare@suse.de>
Description
diff --git a/Documentation/hwmon/f71805f b/Documentation/hwmon/f71805f
index f0d55976740..48a356084bc 100644
--- a/Documentation/hwmon/f71805f
+++ b/Documentation/hwmon/f71805f
@@ -15,7 +15,7 @@ Supported chips:
Addresses scanned: none, address read from Super I/O config space
Datasheet: Available from the Fintek website
-Author: Jean Delvare <khali@linux-fr.org>
+Author: Jean Delvare <jdelvare@suse.de>
Thanks to Denis Kieft from Barracuda Networks for the donation of a
test system (custom Jetway K8M8MS motherboard, with CPU and RAM) and
diff --git a/Documentation/hwmon/g762 b/Documentation/hwmon/g762
new file mode 100644
index 00000000000..923db9c5b5b
--- /dev/null
+++ b/Documentation/hwmon/g762
@@ -0,0 +1,65 @@
+Kernel driver g762
+==================
+
+The GMT G762 Fan Speed PWM Controller is connected directly to a fan
+and performs closed-loop or open-loop control of the fan speed. Two
+modes - PWM or DC - are supported by the device.
+
+For additional information, a detailed datasheet is available at
+http://natisbad.org/NAS/ref/GMT_EDS-762_763-080710-0.2.pdf. sysfs
+bindings are described in Documentation/hwmon/sysfs-interface.
+
+The following entries are available to the user in a subdirectory of
+/sys/bus/i2c/drivers/g762/ to control the operation of the device.
+This can be done manually using the following entries but is usually
+done via a userland daemon like fancontrol.
+
+Note that those entries do not provide ways to setup the specific
+hardware characteristics of the system (reference clock, pulses per
+fan revolution, ...); Those can be modified via devicetree bindings
+documented in Documentation/devicetree/bindings/hwmon/g762.txt or
+using a specific platform_data structure in board initialization
+file (see include/linux/platform_data/g762.h).
+
+ fan1_target: set desired fan speed. This only makes sense in closed-loop
+ fan speed control (i.e. when pwm1_enable is set to 2).
+
+ fan1_input: provide current fan rotation value in RPM as reported by
+ the fan to the device.
+
+ fan1_div: fan clock divisor. Supported value are 1, 2, 4 and 8.
+
+ fan1_pulses: number of pulses per fan revolution. Supported values
+ are 2 and 4.
+
+ fan1_fault: reports fan failure, i.e. no transition on fan gear pin for
+ about 0.7s (if the fan is not voluntarily set off).
+
+ fan1_alarm: in closed-loop control mode, if fan RPM value is 25% out
+ of the programmed value for over 6 seconds 'fan1_alarm' is
+ set to 1.
+
+ pwm1_enable: set current fan speed control mode i.e. 1 for manual fan
+ speed control (open-loop) via pwm1 described below, 2 for
+ automatic fan speed control (closed-loop) via fan1_target
+ above.
+
+ pwm1_mode: set or get fan driving mode: 1 for PWM mode, 0 for DC mode.
+
+ pwm1: get or set PWM fan control value in open-loop mode. This is an
+ integer value between 0 and 255. 0 stops the fan, 255 makes
+ it run at full speed.
+
+Both in PWM mode ('pwm1_mode' set to 1) and DC mode ('pwm1_mode' set to 0),
+when current fan speed control mode is open-loop ('pwm1_enable' set to 1),
+the fan speed is programmed by setting a value between 0 and 255 via 'pwm1'
+entry (0 stops the fan, 255 makes it run at full speed). In closed-loop mode
+('pwm1_enable' set to 2), the expected rotation speed in RPM can be passed to
+the chip via 'fan1_target'. In closed-loop mode, the target speed is compared
+with current speed (available via 'fan1_input') by the device and a feedback
+is performed to match that target value. The fan speed value is computed
+based on the parameters associated with the physical characteristics of the
+system: a reference clock source frequency, a number of pulses per fan
+revolution, etc.
+
+Note that the driver will update its values at most once per second.
diff --git a/Documentation/hwmon/gl518sm b/Documentation/hwmon/gl518sm
index 26f9f3c02dc..494bb55b6e7 100644
--- a/Documentation/hwmon/gl518sm
+++ b/Documentation/hwmon/gl518sm
@@ -14,7 +14,7 @@ Authors:
Frodo Looijaard <frodol@dds.nl>,
Kyösti Mälkki <kmalkki@cc.hut.fi>
Hong-Gunn Chew <hglinux@gunnet.org>
- Jean Delvare <khali@linux-fr.org>
+ Jean Delvare <jdelvare@suse.de>
Description
-----------
diff --git a/Documentation/hwmon/htu21 b/Documentation/hwmon/htu21
new file mode 100644
index 00000000000..f39a215fb6a
--- /dev/null
+++ b/Documentation/hwmon/htu21
@@ -0,0 +1,46 @@
+Kernel driver htu21
+===================
+
+Supported chips:
+ * Measurement Specialties HTU21D
+ Prefix: 'htu21'
+ Addresses scanned: none
+ Datasheet: Publicly available at the Measurement Specialties website
+ http://www.meas-spec.com/downloads/HTU21D.pdf
+
+
+Author:
+ William Markezana <william.markezana@meas-spec.com>
+
+Description
+-----------
+
+The HTU21D is a humidity and temperature sensor in a DFN package of
+only 3 x 3 mm footprint and 0.9 mm height.
+
+The devices communicate with the I2C protocol. All sensors are set to the
+same I2C address 0x40, so an entry with I2C_BOARD_INFO("htu21", 0x40) can
+be used in the board setup code.
+
+This driver does not auto-detect devices. You will have to instantiate the
+devices explicitly. Please see Documentation/i2c/instantiating-devices
+for details.
+
+sysfs-Interface
+---------------
+
+temp1_input - temperature input
+humidity1_input - humidity input
+
+Notes
+-----
+
+The driver uses the default resolution settings of 12 bit for humidity and 14
+bit for temperature, which results in typical measurement times of 11 ms for
+humidity and 44 ms for temperature. To keep self heating below 0.1 degree
+Celsius, the device should not be active for more than 10% of the time. For
+this reason, the driver performs no more than two measurements per second and
+reports cached information if polled more frequently.
+
+Different resolutions, the on-chip heater, using the CRC checksum and reading
+the serial number are not supported yet.
diff --git a/Documentation/hwmon/hwmon-kernel-api.txt b/Documentation/hwmon/hwmon-kernel-api.txt
new file mode 100644
index 00000000000..2ecdbfc85ec
--- /dev/null
+++ b/Documentation/hwmon/hwmon-kernel-api.txt
@@ -0,0 +1,107 @@
+The Linux Hardware Monitoring kernel API.
+=========================================
+
+Guenter Roeck
+
+Introduction
+------------
+
+This document describes the API that can be used by hardware monitoring
+drivers that want to use the hardware monitoring framework.
+
+This document does not describe what a hardware monitoring (hwmon) Driver or
+Device is. It also does not describe the API which can be used by user space
+to communicate with a hardware monitoring device. If you want to know this
+then please read the following file: Documentation/hwmon/sysfs-interface.
+
+For additional guidelines on how to write and improve hwmon drivers, please
+also read Documentation/hwmon/submitting-patches.
+
+The API
+-------
+Each hardware monitoring driver must #include <linux/hwmon.h> and, in most
+cases, <linux/hwmon-sysfs.h>. linux/hwmon.h declares the following
+register/unregister functions:
+
+struct device *hwmon_device_register(struct device *dev);
+struct device *
+hwmon_device_register_with_groups(struct device *dev, const char *name,
+ void *drvdata,
+ const struct attribute_group **groups);
+
+struct device *
+devm_hwmon_device_register_with_groups(struct device *dev,
+ const char *name, void *drvdata,
+ const struct attribute_group **groups);
+
+void hwmon_device_unregister(struct device *dev);
+void devm_hwmon_device_unregister(struct device *dev);
+
+hwmon_device_register registers a hardware monitoring device. The parameter
+of this function is a pointer to the parent device.
+This function returns a pointer to the newly created hardware monitoring device
+or PTR_ERR for failure. If this registration function is used, hardware
+monitoring sysfs attributes are expected to have been created and attached to
+the parent device prior to calling hwmon_device_register. A name attribute must
+have been created by the caller.
+
+hwmon_device_register_with_groups is similar to hwmon_device_register. However,
+it has additional parameters. The name parameter is a pointer to the hwmon
+device name. The registration function wil create a name sysfs attribute
+pointing to this name. The drvdata parameter is the pointer to the local
+driver data. hwmon_device_register_with_groups will attach this pointer
+to the newly allocated hwmon device. The pointer can be retrieved by the driver
+using dev_get_drvdata() on the hwmon device pointer. The groups parameter is
+a pointer to a list of sysfs attribute groups. The list must be NULL terminated.
+hwmon_device_register_with_groups creates the hwmon device with name attribute
+as well as all sysfs attributes attached to the hwmon device.
+
+devm_hwmon_device_register_with_groups is similar to
+hwmon_device_register_with_groups. However, it is device managed, meaning the
+hwmon device does not have to be removed explicitly by the removal function.
+
+hwmon_device_unregister deregisters a registered hardware monitoring device.
+The parameter of this function is the pointer to the registered hardware
+monitoring device structure. This function must be called from the driver
+remove function if the hardware monitoring device was registered with
+hwmon_device_register or with hwmon_device_register_with_groups.
+
+devm_hwmon_device_unregister does not normally have to be called. It is only
+needed for error handling, and only needed if the driver probe fails after
+the call to devm_hwmon_device_register_with_groups.
+
+The header file linux/hwmon-sysfs.h provides a number of useful macros to
+declare and use hardware monitoring sysfs attributes.
+
+In many cases, you can use the exsting define DEVICE_ATTR to declare such
+attributes. This is feasible if an attribute has no additional context. However,
+in many cases there will be additional information such as a sensor index which
+will need to be passed to the sysfs attribute handling function.
+
+SENSOR_DEVICE_ATTR and SENSOR_DEVICE_ATTR_2 can be used to define attributes
+which need such additional context information. SENSOR_DEVICE_ATTR requires
+one additional argument, SENSOR_DEVICE_ATTR_2 requires two.
+
+SENSOR_DEVICE_ATTR defines a struct sensor_device_attribute variable.
+This structure has the following fields.
+
+struct sensor_device_attribute {
+ struct device_attribute dev_attr;
+ int index;
+};
+
+You can use to_sensor_dev_attr to get the pointer to this structure from the
+attribute read or write function. Its parameter is the device to which the
+attribute is attached.
+
+SENSOR_DEVICE_ATTR_2 defines a struct sensor_device_attribute_2 variable,
+which is defined as follows.
+
+struct sensor_device_attribute_2 {
+ struct device_attribute dev_attr;
+ u8 index;
+ u8 nr;
+};
+
+Use to_sensor_dev_attr_2 to get the pointer to this structure. Its parameter
+is the device to which the attribute is attached.
diff --git a/Documentation/hwmon/ina209 b/Documentation/hwmon/ina209
new file mode 100644
index 00000000000..672501de450
--- /dev/null
+++ b/Documentation/hwmon/ina209
@@ -0,0 +1,93 @@
+Kernel driver ina209
+=====================
+
+Supported chips:
+ * Burr-Brown / Texas Instruments INA209
+ Prefix: 'ina209'
+ Addresses scanned: -
+ Datasheet:
+ http://www.ti.com/lit/gpn/ina209
+
+Author: Paul Hays <Paul.Hays@cattail.ca>
+Author: Ira W. Snyder <iws@ovro.caltech.edu>
+Author: Guenter Roeck <linux@roeck-us.net>
+
+
+Description
+-----------
+
+The TI / Burr-Brown INA209 monitors voltage, current, and power on the high side
+of a D.C. power supply. It can perform measurements and calculations in the
+background to supply readings at any time. It includes a programmable
+calibration multiplier to scale the displayed current and power values.
+
+
+Sysfs entries
+-------------
+
+The INA209 chip is highly configurable both via hardwiring and via
+the I2C bus. See the datasheet for details.
+
+This tries to expose most monitoring features of the hardware via
+sysfs. It does not support every feature of this chip.
+
+
+in0_input shunt voltage (mV)
+in0_input_highest shunt voltage historical maximum reading (mV)
+in0_input_lowest shunt voltage historical minimum reading (mV)
+in0_reset_history reset shunt voltage history
+in0_max shunt voltage max alarm limit (mV)
+in0_min shunt voltage min alarm limit (mV)
+in0_crit_max shunt voltage crit max alarm limit (mV)
+in0_crit_min shunt voltage crit min alarm limit (mV)
+in0_max_alarm shunt voltage max alarm limit exceeded
+in0_min_alarm shunt voltage min alarm limit exceeded
+in0_crit_max_alarm shunt voltage crit max alarm limit exceeded
+in0_crit_min_alarm shunt voltage crit min alarm limit exceeded
+
+in1_input bus voltage (mV)
+in1_input_highest bus voltage historical maximum reading (mV)
+in1_input_lowest bus voltage historical minimum reading (mV)
+in1_reset_history reset bus voltage history
+in1_max bus voltage max alarm limit (mV)
+in1_min bus voltage min alarm limit (mV)
+in1_crit_max bus voltage crit max alarm limit (mV)
+in1_crit_min bus voltage crit min alarm limit (mV)
+in1_max_alarm bus voltage max alarm limit exceeded
+in1_min_alarm bus voltage min alarm limit exceeded
+in1_crit_max_alarm bus voltage crit max alarm limit exceeded
+in1_crit_min_alarm bus voltage crit min alarm limit exceeded
+
+power1_input power measurement (uW)
+power1_input_highest power historical maximum reading (uW)
+power1_reset_history reset power history
+power1_max power max alarm limit (uW)
+power1_crit power crit alarm limit (uW)
+power1_max_alarm power max alarm limit exceeded
+power1_crit_alarm power crit alarm limit exceeded
+
+curr1_input current measurement (mA)
+
+update_interval data conversion time; affects number of samples used
+ to average results for shunt and bus voltages.
+
+General Remarks
+---------------
+
+The power and current registers in this chip require that the calibration
+register is programmed correctly before they are used. Normally this is expected
+to be done in the BIOS. In the absence of BIOS programming, the shunt resistor
+voltage can be provided using platform data. The driver uses platform data from
+the ina2xx driver for this purpose. If calibration register data is not provided
+via platform data, the driver checks if the calibration register has been
+programmed (ie has a value not equal to zero). If so, this value is retained.
+Otherwise, a default value reflecting a shunt resistor value of 10 mOhm is
+programmed into the calibration register.
+
+
+Output Pins
+-----------
+
+Output pin programming is a board feature which depends on the BIOS. It is
+outside the scope of a hardware monitoring driver to enable or disable output
+pins.
diff --git a/Documentation/hwmon/ina2xx b/Documentation/hwmon/ina2xx
index 03444f9d833..4223c2d3b50 100644
--- a/Documentation/hwmon/ina2xx
+++ b/Documentation/hwmon/ina2xx
@@ -44,4 +44,6 @@ The INA226 monitors both a shunt voltage drop and bus supply voltage.
The INA230 is a high or low side current shunt and power monitor with an I2C
interface. The INA230 monitors both a shunt voltage drop and bus supply voltage.
-The shunt value in micro-ohms can be set via platform data.
+The shunt value in micro-ohms can be set via platform data or device tree.
+Please refer to the Documentation/devicetree/bindings/i2c/ina2xx.txt for bindings
+if the device tree is used.
diff --git a/Documentation/hwmon/it87 b/Documentation/hwmon/it87
index 8386aadc0a8..fe80e9adebf 100644
--- a/Documentation/hwmon/it87
+++ b/Documentation/hwmon/it87
@@ -2,6 +2,10 @@ Kernel driver it87
==================
Supported chips:
+ * IT8603E/IT8623E
+ Prefix: 'it8603'
+ Addresses scanned: from Super I/O config space (8 I/O ports)
+ Datasheet: Not publicly available
* IT8705F
Prefix: 'it87'
Addresses scanned: from Super I/O config space (8 I/O ports)
@@ -30,6 +34,14 @@ Supported chips:
Prefix: 'it8728'
Addresses scanned: from Super I/O config space (8 I/O ports)
Datasheet: Not publicly available
+ * IT8771E
+ Prefix: 'it8771'
+ Addresses scanned: from Super I/O config space (8 I/O ports)
+ Datasheet: Not publicly available
+ * IT8772E
+ Prefix: 'it8772'
+ Addresses scanned: from Super I/O config space (8 I/O ports)
+ Datasheet: Not publicly available
* IT8782F
Prefix: 'it8782'
Addresses scanned: from Super I/O config space (8 I/O ports)
@@ -45,7 +57,7 @@ Supported chips:
Authors:
Christophe Gauthron
- Jean Delvare <khali@linux-fr.org>
+ Jean Delvare <jdelvare@suse.de>
Module Parameters
@@ -82,9 +94,9 @@ motherboard models.
Description
-----------
-This driver implements support for the IT8705F, IT8712F, IT8716F,
-IT8718F, IT8720F, IT8721F, IT8726F, IT8728F, IT8758E, IT8781F, IT8782F,
-IT8783E/F, and SiS950 chips.
+This driver implements support for the IT8603E, IT8623E, IT8705F, IT8712F,
+IT8716F, IT8718F, IT8720F, IT8721F, IT8726F, IT8728F, IT8758E, IT8771E,
+IT8772E, IT8782F, IT8783E/F, and SiS950 chips.
These chips are 'Super I/O chips', supporting floppy disks, infrared ports,
joysticks and other miscellaneous stuff. For hardware monitoring, they
@@ -118,8 +130,12 @@ The IT8726F is just bit enhanced IT8716F with additional hardware
for AMD power sequencing. Therefore the chip will appear as IT8716F
to userspace applications.
-The IT8728F is considered compatible with the IT8721F, until a datasheet
-becomes available (hopefully.)
+The IT8728F, IT8771E, and IT8772E are considered compatible with the IT8721F,
+until a datasheet becomes available (hopefully.)
+
+The IT8603E/IT8623E is a custom design, hardware monitoring part is similar to
+IT8728F. It only supports 16-bit fan mode, the full speed mode of the
+fan is not supported (value 0 of pwmX_enable).
Temperatures are measured in degrees Celsius. An alarm is triggered once
when the Overtemperature Shutdown limit is crossed.
@@ -137,13 +153,16 @@ alarm is triggered if the voltage has crossed a programmable minimum or
maximum limit. Note that minimum in this case always means 'closest to
zero'; this is important for negative voltage measurements. All voltage
inputs can measure voltages between 0 and 4.08 volts, with a resolution of
-0.016 volt (except IT8721F/IT8758E and IT8728F: 0.012 volt.) The battery
-voltage in8 does not have limit registers.
-
-On the IT8721F/IT8758E, IT8782F, and IT8783E/F, some voltage inputs are
-internal and scaled inside the chip (in7 (optional for IT8782F and IT8783E/F),
-in8 and optionally in3). The driver handles this transparently so user-space
-doesn't have to care.
+0.016 volt (except IT8603E, IT8721F/IT8758E and IT8728F: 0.012 volt.) The
+battery voltage in8 does not have limit registers.
+
+On the IT8603E, IT8721F/IT8758E, IT8782F, and IT8783E/F, some voltage inputs
+are internal and scaled inside the chip:
+* in3 (optional)
+* in7 (optional for IT8782F and IT8783E/F)
+* in8 (always)
+* in9 (relevant for IT8603E only)
+The driver handles this transparently so user-space doesn't have to care.
The VID lines (IT8712F/IT8716F/IT8718F/IT8720F) encode the core voltage value:
the voltage level your processor should work with. This is hardcoded by
diff --git a/Documentation/hwmon/jc42 b/Documentation/hwmon/jc42
index 66ecb9fc824..f3893f7440d 100644
--- a/Documentation/hwmon/jc42
+++ b/Documentation/hwmon/jc42
@@ -5,9 +5,12 @@ Supported chips:
* Analog Devices ADT7408
Datasheets:
http://www.analog.com/static/imported-files/data_sheets/ADT7408.pdf
- * Atmel AT30TS00
+ * Atmel AT30TS00, AT30TS002A/B, AT30TSE004A
Datasheets:
http://www.atmel.com/Images/doc8585.pdf
+ http://www.atmel.com/Images/doc8711.pdf
+ http://www.atmel.com/Images/Atmel-8852-SEEPROM-AT30TSE002A-Datasheet.pdf
+ http://www.atmel.com/Images/Atmel-8868-DTS-AT30TSE004A-Datasheet.pdf
* IDT TSE2002B3, TSE2002GB2, TS3000B3, TS3000GB2
Datasheets:
http://www.idt.com/sites/default/files/documents/IDT_TSE2002B3C_DST_20100512_120303152056.pdf
@@ -17,12 +20,13 @@ Supported chips:
* Maxim MAX6604
Datasheets:
http://datasheets.maxim-ic.com/en/ds/MAX6604.pdf
- * Microchip MCP9804, MCP9805, MCP98242, MCP98243, MCP9843
+ * Microchip MCP9804, MCP9805, MCP98242, MCP98243, MCP98244, MCP9843
Datasheets:
http://ww1.microchip.com/downloads/en/DeviceDoc/22203C.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/21977b.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/21996a.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/22153c.pdf
+ http://ww1.microchip.com/downloads/en/DeviceDoc/22327A.pdf
* NXP Semiconductors SE97, SE97B, SE98, SE98A
Datasheets:
http://www.nxp.com/documents/data_sheet/SE97.pdf
@@ -33,12 +37,13 @@ Supported chips:
Datasheet:
http://www.onsemi.com/pub_link/Collateral/CAT34TS02-D.PDF
http://www.onsemi.com/pub/Collateral/CAT6095-D.PDF
- * ST Microelectronics STTS424, STTS424E02, STTS2002, STTS3000
+ * ST Microelectronics STTS424, STTS424E02, STTS2002, STTS2004, STTS3000
Datasheets:
- http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/CD00157556.pdf
- http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/CD00157558.pdf
- http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/CD00225278.pdf
- http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATA_BRIEF/CD00270920.pdf
+ http://www.st.com/web/en/resource/technical/document/datasheet/CD00157556.pdf
+ http://www.st.com/web/en/resource/technical/document/datasheet/CD00157558.pdf
+ http://www.st.com/web/en/resource/technical/document/datasheet/CD00266638.pdf
+ http://www.st.com/web/en/resource/technical/document/datasheet/CD00225278.pdf
+ http://www.st.com/web/en/resource/technical/document/datasheet/DM00076709.pdf
* JEDEC JC 42.4 compliant temperature sensor chips
Datasheet:
http://www.jedec.org/sites/default/files/docs/4_01_04R19.pdf
@@ -48,7 +53,7 @@ Supported chips:
Addresses scanned: I2C 0x18 - 0x1f
Author:
- Guenter Roeck <guenter.roeck@ericsson.com>
+ Guenter Roeck <linux@roeck-us.net>
Description
diff --git a/Documentation/hwmon/k10temp b/Documentation/hwmon/k10temp
index 90956b61802..ee6d30ec152 100644
--- a/Documentation/hwmon/k10temp
+++ b/Documentation/hwmon/k10temp
@@ -11,7 +11,8 @@ Supported chips:
Socket S1G2: Athlon (X2), Sempron (X2), Turion X2 (Ultra)
* AMD Family 12h processors: "Llano" (E2/A4/A6/A8-Series)
* AMD Family 14h processors: "Brazos" (C/E/G/Z-Series)
-* AMD Family 15h processors: "Bulldozer" (FX-Series), "Trinity"
+* AMD Family 15h processors: "Bulldozer" (FX-Series), "Trinity", "Kaveri"
+* AMD Family 16h processors: "Kabini", "Mullins"
Prefix: 'k10temp'
Addresses scanned: PCI space
@@ -45,7 +46,7 @@ Description
-----------
This driver permits reading of the internal temperature sensor of AMD
-Family 10h/11h/12h/14h/15h processors.
+Family 10h/11h/12h/14h/15h/16h processors.
All these processors have a sensor, but on those for Socket F or AM2+,
the sensor may return inconsistent values (erratum 319). The driver
diff --git a/Documentation/hwmon/lineage-pem b/Documentation/hwmon/lineage-pem
index 2ba5ed12685..83b2ddc160c 100644
--- a/Documentation/hwmon/lineage-pem
+++ b/Documentation/hwmon/lineage-pem
@@ -8,7 +8,7 @@ Supported devices:
Documentation:
http://www.lineagepower.com/oem/pdf/CPLI2C.pdf
-Author: Guenter Roeck <guenter.roeck@ericsson.com>
+Author: Guenter Roeck <linux@roeck-us.net>
Description
diff --git a/Documentation/hwmon/lm25066 b/Documentation/hwmon/lm25066
index a21db81c459..b34c3de5c1b 100644
--- a/Documentation/hwmon/lm25066
+++ b/Documentation/hwmon/lm25066
@@ -1,7 +1,18 @@
-Kernel driver max8688
+Kernel driver lm25066
=====================
Supported chips:
+ * TI LM25056
+ Prefix: 'lm25056'
+ Addresses scanned: -
+ Datasheets:
+ http://www.ti.com/lit/gpn/lm25056
+ http://www.ti.com/lit/gpn/lm25056a
+ * TI LM25063
+ Prefix: 'lm25063'
+ Addresses scanned: -
+ Datasheet:
+ To be announced
* National Semiconductor LM25066
Prefix: 'lm25066'
Addresses scanned: -
@@ -19,14 +30,15 @@ Supported chips:
Datasheet:
http://www.national.com/pf/LM/LM5066.html
-Author: Guenter Roeck <guenter.roeck@ericsson.com>
+Author: Guenter Roeck <linux@roeck-us.net>
Description
-----------
-This driver supports hardware montoring for National Semiconductor LM25066,
-LM5064, and LM5064 Power Management, Monitoring, Control, and Protection ICs.
+This driver supports hardware montoring for National Semiconductor / TI LM25056,
+LM25063, LM25066, LM5064, and LM5066 Power Management, Monitoring, Control, and
+Protection ICs.
The driver is a client driver to the core PMBus driver. Please see
Documentation/hwmon/pmbus for details on PMBus client drivers.
@@ -57,23 +69,36 @@ in1_input Measured input voltage.
in1_average Average measured input voltage.
in1_min Minimum input voltage.
in1_max Maximum input voltage.
+in1_crit Critical high input voltage (LM25063 only).
+in1_lcrit Critical low input voltage (LM25063 only).
in1_min_alarm Input voltage low alarm.
in1_max_alarm Input voltage high alarm.
-
-in2_label "vout1"
-in2_input Measured output voltage.
-in2_average Average measured output voltage.
-in2_min Minimum output voltage.
-in2_min_alarm Output voltage low alarm.
-
-in3_label "vout2"
-in3_input Measured voltage on vaux pin
+in1_lcrit_alarm Input voltage critical low alarm (LM25063 only).
+in1_crit_alarm Input voltage critical high alarm. (LM25063 only).
+
+in2_label "vmon"
+in2_input Measured voltage on VAUX pin
+in2_min Minimum VAUX voltage (LM25056 only).
+in2_max Maximum VAUX voltage (LM25056 only).
+in2_min_alarm VAUX voltage low alarm (LM25056 only).
+in2_max_alarm VAUX voltage high alarm (LM25056 only).
+
+in3_label "vout1"
+ Not supported on LM25056.
+in3_input Measured output voltage.
+in3_average Average measured output voltage.
+in3_min Minimum output voltage.
+in3_min_alarm Output voltage low alarm.
+in3_highest Historical minimum output voltage (LM25063 only).
+in3_lowest Historical maximum output voltage (LM25063 only).
curr1_label "iin"
curr1_input Measured input current.
curr1_average Average measured input current.
curr1_max Maximum input current.
+curr1_crit Critical input current (LM25063 only).
curr1_max_alarm Input current high alarm.
+curr1_crit_alarm Input current critical high alarm (LM25063 only).
power1_label "pin"
power1_input Measured input power.
@@ -83,6 +108,11 @@ power1_alarm Input power alarm
power1_input_highest Historical maximum power.
power1_reset_history Write any value to reset maximum power history.
+power2_label "pout". LM25063 only.
+power2_input Measured output power.
+power2_max Maximum output power limit.
+power2_crit Critical output power limit.
+
temp1_input Measured temperature.
temp1_max Maximum temperature.
temp1_crit Critical high temperature.
diff --git a/Documentation/hwmon/lm63 b/Documentation/hwmon/lm63
index 4d30d209881..4a00461512a 100644
--- a/Documentation/hwmon/lm63
+++ b/Documentation/hwmon/lm63
@@ -18,7 +18,7 @@ Supported chips:
Datasheet: Publicly available at the National Semiconductor website
http://www.national.com/pf/LM/LM96163.html
-Author: Jean Delvare <khali@linux-fr.org>
+Author: Jean Delvare <jdelvare@suse.de>
Thanks go to Tyan and especially Alex Buckingham for setting up a remote
access to their S4882 test platform for this driver.
diff --git a/Documentation/hwmon/lm70 b/Documentation/hwmon/lm70
index 86d182942c5..1bb2db44067 100644
--- a/Documentation/hwmon/lm70
+++ b/Documentation/hwmon/lm70
@@ -43,5 +43,5 @@ data (0.03125 degrees celsius resolution).
Thanks to
---------
-Jean Delvare <khali@linux-fr.org> for mentoring the hwmon-side driver
+Jean Delvare <jdelvare@suse.de> for mentoring the hwmon-side driver
development.
diff --git a/Documentation/hwmon/lm73 b/Documentation/hwmon/lm73
new file mode 100644
index 00000000000..8af059dcb64
--- /dev/null
+++ b/Documentation/hwmon/lm73
@@ -0,0 +1,90 @@
+Kernel driver lm73
+==================
+
+Supported chips:
+ * Texas Instruments LM73
+ Prefix: 'lm73'
+ Addresses scanned: I2C 0x48, 0x49, 0x4a, 0x4c, 0x4d, and 0x4e
+ Datasheet: Publicly available at the Texas Instruments website
+ http://www.ti.com/product/lm73
+
+Author: Guillaume Ligneul <guillaume.ligneul@gmail.com>
+Documentation: Chris Verges <kg4ysn@gmail.com>
+
+
+Description
+-----------
+
+The LM73 is a digital temperature sensor. All temperature values are
+given in degrees Celsius.
+
+Measurement Resolution Support
+------------------------------
+
+The LM73 supports four resolutions, defined in terms of degrees C per
+LSB: 0.25, 0.125, 0.0625, and 0.3125. Changing the resolution mode
+affects the conversion time of the LM73's analog-to-digital converter.
+From userspace, the desired resolution can be specified as a function of
+conversion time via the 'update_interval' sysfs attribute for the
+device. This attribute will normalize ranges of input values to the
+maximum times defined for the resolution in the datasheet.
+
+ Resolution Conv. Time Input Range
+ (C/LSB) (msec) (msec)
+ --------------------------------------
+ 0.25 14 0..14
+ 0.125 28 15..28
+ 0.0625 56 29..56
+ 0.03125 112 57..infinity
+ --------------------------------------
+
+The following examples show how the 'update_interval' attribute can be
+used to change the conversion time:
+
+ $ echo 0 > update_interval
+ $ cat update_interval
+ 14
+ $ cat temp1_input
+ 24250
+
+ $ echo 22 > update_interval
+ $ cat update_interval
+ 28
+ $ cat temp1_input
+ 24125
+
+ $ echo 56 > update_interval
+ $ cat update_interval
+ 56
+ $ cat temp1_input
+ 24062
+
+ $ echo 85 > update_interval
+ $ cat update_interval
+ 112
+ $ cat temp1_input
+ 24031
+
+As shown here, the lm73 driver automatically adjusts any user input for
+'update_interval' via a step function. Reading back the
+'update_interval' value after a write operation will confirm the
+conversion time actively in use.
+
+Mathematically, the resolution can be derived from the conversion time
+via the following function:
+
+ g(x) = 0.250 * [log(x/14) / log(2)]
+
+where 'x' is the output from 'update_interval' and 'g(x)' is the
+resolution in degrees C per LSB.
+
+Alarm Support
+-------------
+
+The LM73 features a simple over-temperature alarm mechanism. This
+feature is exposed via the sysfs attributes.
+
+The attributes 'temp1_max_alarm' and 'temp1_min_alarm' are flags
+provided by the LM73 that indicate whether the measured temperature has
+passed the 'temp1_max' and 'temp1_min' thresholds, respectively. These
+values _must_ be read to clear the registers on the LM73.
diff --git a/Documentation/hwmon/lm75 b/Documentation/hwmon/lm75
index c91a1d15fa2..2560a9c6d44 100644
--- a/Documentation/hwmon/lm75
+++ b/Documentation/hwmon/lm75
@@ -12,18 +12,18 @@ Supported chips:
Addresses scanned: I2C 0x48 - 0x4f
Datasheet: Publicly available at the National Semiconductor website
http://www.national.com/
- * Dallas Semiconductor DS75, DS1775
- Prefixes: 'ds75', 'ds1775'
+ * Dallas Semiconductor (now Maxim) DS75, DS1775, DS7505
+ Prefixes: 'ds75', 'ds1775', 'ds7505'
Addresses scanned: none
- Datasheet: Publicly available at the Dallas Semiconductor website
- http://www.maxim-ic.com/
+ Datasheet: Publicly available at the Maxim website
+ http://www.maximintegrated.com/
* Maxim MAX6625, MAX6626
Prefixes: 'max6625', 'max6626'
Addresses scanned: none
Datasheet: Publicly available at the Maxim website
http://www.maxim-ic.com/
* Microchip (TelCom) TCN75
- Prefix: 'lm75'
+ Prefix: 'tcn75'
Addresses scanned: none
Datasheet: Publicly available at the Microchip website
http://www.microchip.com/
@@ -67,7 +67,8 @@ the temperature falls below the Hysteresis value.
All temperatures are in degrees Celsius, and are guaranteed within a
range of -55 to +125 degrees.
-The LM75 only updates its values each 1.5 seconds; reading it more often
+The driver caches the values for a period varying between 1 second for the
+slowest chips and 125 ms for the fastest chips; reading it more often
will do no harm, but will return 'old' values.
The original LM75 was typically used in combination with LM78-like chips
@@ -78,8 +79,8 @@ The LM75 is essentially an industry standard; there may be other
LM75 clones not listed here, with or without various enhancements,
that are supported. The clones are not detected by the driver, unless
they reproduce the exact register tricks of the original LM75, and must
-therefore be instantiated explicitly. The specific enhancements (such as
-higher resolution) are not currently supported by the driver.
+therefore be instantiated explicitly. Higher resolution up to 12-bit
+is supported by this driver, other specific enhancements are not.
The LM77 is not supported, contrary to what we pretended for a long time.
Both chips are simply not compatible, value encoding differs.
diff --git a/Documentation/hwmon/lm77 b/Documentation/hwmon/lm77
index 57c3a46d637..bfc915fe363 100644
--- a/Documentation/hwmon/lm77
+++ b/Documentation/hwmon/lm77
@@ -18,5 +18,21 @@ sensor incorporates a band-gap type temperature sensor,
10-bit ADC, and a digital comparator with user-programmable upper
and lower limit values.
-Limits can be set through the Overtemperature Shutdown register and
-Hysteresis register.
+The LM77 implements 3 limits: low (temp1_min), high (temp1_max) and
+critical (temp1_crit.) It also implements an hysteresis mechanism which
+applies to all 3 limits. The relative difference is stored in a single
+register on the chip, which means that the relative difference between
+the limit and its hysteresis is always the same for all 3 limits.
+
+This implementation detail implies the following:
+* When setting a limit, its hysteresis will automatically follow, the
+ difference staying unchanged. For example, if the old critical limit
+ was 80 degrees C, and the hysteresis was 75 degrees C, and you change
+ the critical limit to 90 degrees C, then the hysteresis will
+ automatically change to 85 degrees C.
+* All 3 hysteresis can't be set independently. We decided to make
+ temp1_crit_hyst writable, while temp1_min_hyst and temp1_max_hyst are
+ read-only. Setting temp1_crit_hyst writes the difference between
+ temp1_crit_hyst and temp1_crit into the chip, and the same relative
+ hysteresis applies automatically to the low and high limits.
+* The limits should be set before the hysteresis.
diff --git a/Documentation/hwmon/lm78 b/Documentation/hwmon/lm78
index 2bdc881a0c1..4dd47731789 100644
--- a/Documentation/hwmon/lm78
+++ b/Documentation/hwmon/lm78
@@ -14,7 +14,7 @@ Supported chips:
http://www.national.com/
Authors: Frodo Looijaard <frodol@dds.nl>
- Jean Delvare <khali@linux-fr.org>
+ Jean Delvare <jdelvare@suse.de>
Description
-----------
diff --git a/Documentation/hwmon/lm83 b/Documentation/hwmon/lm83
index a04d1fe9269..50be5cb26de 100644
--- a/Documentation/hwmon/lm83
+++ b/Documentation/hwmon/lm83
@@ -13,7 +13,7 @@ Supported chips:
http://www.national.com/pf/LM/LM82.html
-Author: Jean Delvare <khali@linux-fr.org>
+Author: Jean Delvare <jdelvare@suse.de>
Description
-----------
diff --git a/Documentation/hwmon/lm87 b/Documentation/hwmon/lm87
index 6b47b67fd96..a2339fd9acb 100644
--- a/Documentation/hwmon/lm87
+++ b/Documentation/hwmon/lm87
@@ -17,7 +17,7 @@ Authors:
Mark Studebaker <mdsxyz123@yahoo.com>,
Stephen Rousset <stephen.rousset@rocketlogix.com>,
Dan Eaton <dan.eaton@rocketlogix.com>,
- Jean Delvare <khali@linux-fr.org>,
+ Jean Delvare <jdelvare@suse.de>,
Original 2.6 port Jeff Oliver
Description
diff --git a/Documentation/hwmon/lm90 b/Documentation/hwmon/lm90
index b466974e142..8122675d30f 100644
--- a/Documentation/hwmon/lm90
+++ b/Documentation/hwmon/lm90
@@ -122,8 +122,14 @@ Supported chips:
Prefix: 'g781'
Addresses scanned: I2C 0x4c, 0x4d
Datasheet: Not publicly available from GMT
+ * Texas Instruments TMP451
+ Prefix: 'tmp451'
+ Addresses scanned: I2C 0x4c
+ Datasheet: Publicly available at TI website
+ http://www.ti.com/litv/pdf/sbos686
+
-Author: Jean Delvare <khali@linux-fr.org>
+Author: Jean Delvare <jdelvare@suse.de>
Description
diff --git a/Documentation/hwmon/lm92 b/Documentation/hwmon/lm92
index 7705bfaa070..22f68ad032c 100644
--- a/Documentation/hwmon/lm92
+++ b/Documentation/hwmon/lm92
@@ -19,7 +19,7 @@ Supported chips:
Authors:
Abraham van der Merwe <abraham@2d3d.co.za>
- Jean Delvare <khali@linux-fr.org>
+ Jean Delvare <jdelvare@suse.de>
Description
diff --git a/Documentation/hwmon/lm95234 b/Documentation/hwmon/lm95234
new file mode 100644
index 00000000000..a0e95ddfd37
--- /dev/null
+++ b/Documentation/hwmon/lm95234
@@ -0,0 +1,36 @@
+Kernel driver lm95234
+=====================
+
+Supported chips:
+ * National Semiconductor / Texas Instruments LM95234
+ Addresses scanned: I2C 0x18, 0x4d, 0x4e
+ Datasheet: Publicly available at the Texas Instruments website
+ http://www.ti.com/product/lm95234
+
+
+Author: Guenter Roeck <linux@roeck-us.net>
+
+Description
+-----------
+
+LM95234 is an 11-bit digital temperature sensor with a 2-wire System Management
+Bus (SMBus) interface and TrueTherm technology that can very accurately monitor
+the temperature of four remote diodes as well as its own temperature.
+The four remote diodes can be external devices such as microprocessors,
+graphics processors or diode-connected 2N3904s. The LM95234's TruTherm
+beta compensation technology allows sensing of 90 nm or 65 nm process
+thermal diodes accurately.
+
+All temperature values are given in millidegrees Celsius. Temperature
+is provided within a range of -127 to +255 degrees (+127.875 degrees for
+the internal sensor). Resolution depends on temperature input and range.
+
+Each sensor has its own maximum limit, but the hysteresis is common to all
+channels. The hysteresis is configurable with the tem1_max_hyst attribute and
+affects the hysteresis on all channels. The first two external sensors also
+have a critical limit.
+
+The lm95234 driver can change its update interval to a fixed set of values.
+It will round up to the next selectable interval. See the datasheet for exact
+values. Reading sensor values more often will do no harm, but will return
+'old' values.
diff --git a/Documentation/hwmon/lm95245 b/Documentation/hwmon/lm95245
index cbd8aeab712..77eaf2812d2 100644
--- a/Documentation/hwmon/lm95245
+++ b/Documentation/hwmon/lm95245
@@ -24,8 +24,12 @@ is given within a range of -127 to +127.875 degrees. Remote temperatures are
given within a range of -127 to +255 degrees. Resolution depends on
temperature input and range.
-Each sensor has its own critical limit, but the hysteresis is common to all
-two channels.
+Each sensor has its own critical limit. Additionally, there is a relative
+hysteresis value common to both critical limits. To make life easier to
+user-space applications, two absolute values are exported, one for each
+channel, but these values are of course linked. Only the local hysteresis
+can be set from user-space, and the same delta applies to the remote
+hysteresis.
The lm95245 driver can change its update interval to a fixed set of values.
It will round up to the next selectable interval. See the datasheet for exact
diff --git a/Documentation/hwmon/ltc2945 b/Documentation/hwmon/ltc2945
new file mode 100644
index 00000000000..f8d0f7f19ad
--- /dev/null
+++ b/Documentation/hwmon/ltc2945
@@ -0,0 +1,84 @@
+Kernel driver ltc2945
+=====================
+
+Supported chips:
+ * Linear Technology LTC2945
+ Prefix: 'ltc2945'
+ Addresses scanned: -
+ Datasheet:
+ http://cds.linear.com/docs/en/datasheet/2945fa.pdf
+
+Author: Guenter Roeck <linux@roeck-us.net>
+
+
+Description
+-----------
+
+The LTC2945 is a rail-to-rail system monitor that measures current, voltage,
+and power consumption.
+
+
+Usage Notes
+-----------
+
+This driver does not probe for LTC2945 devices, since there is no register
+which can be safely used to identify the chip. You will have to instantiate
+the devices explicitly.
+
+Example: the following will load the driver for an LTC2945 at address 0x10
+on I2C bus #1:
+$ modprobe ltc2945
+$ echo ltc2945 0x10 > /sys/bus/i2c/devices/i2c-1/new_device
+
+
+Sysfs entries
+-------------
+
+Voltage readings provided by this driver are reported as obtained from the ADC
+registers. If a set of voltage divider resistors is installed, calculate the
+real voltage by multiplying the reported value with (R1+R2)/R2, where R1 is the
+value of the divider resistor against the measured voltage and R2 is the value
+of the divider resistor against Ground.
+
+Current reading provided by this driver is reported as obtained from the ADC
+Current Sense register. The reported value assumes that a 1 mOhm sense resistor
+is installed. If a different sense resistor is installed, calculate the real
+current by dividing the reported value by the sense resistor value in mOhm.
+
+in1_input VIN voltage (mV). Voltage is measured either at
+ SENSE+ or VDD pin depending on chip configuration.
+in1_min Undervoltage threshold
+in1_max Overvoltage threshold
+in1_lowest Lowest measured voltage
+in1_highest Highest measured voltage
+in1_reset_history Write 1 to reset in1 history
+in1_min_alarm Undervoltage alarm
+in1_max_alarm Overvoltage alarm
+
+in2_input ADIN voltage (mV)
+in2_min Undervoltage threshold
+in2_max Overvoltage threshold
+in2_lowest Lowest measured voltage
+in2_highest Highest measured voltage
+in2_reset_history Write 1 to reset in2 history
+in2_min_alarm Undervoltage alarm
+in2_max_alarm Overvoltage alarm
+
+curr1_input SENSE current (mA)
+curr1_min Undercurrent threshold
+curr1_max Overcurrent threshold
+curr1_lowest Lowest measured current
+curr1_highest Highest measured current
+curr1_reset_history Write 1 to reset curr1 history
+curr1_min_alarm Undercurrent alarm
+curr1_max_alarm Overcurrent alarm
+
+power1_input Power (in uW). Power is calculated based on SENSE+/VDD
+ voltage or ADIN voltage depending on chip configuration.
+power1_min Low lower threshold
+power1_max High power threshold
+power1_input_lowest Historical minimum power use
+power1_input_highest Historical maximum power use
+power1_reset_history Write 1 to reset power1 history
+power1_min_alarm Low power alarm
+power1_max_alarm High power alarm
diff --git a/Documentation/hwmon/ltc2978 b/Documentation/hwmon/ltc2978
index c365f9beb5d..686c078bb0e 100644
--- a/Documentation/hwmon/ltc2978
+++ b/Documentation/hwmon/ltc2978
@@ -2,24 +2,43 @@ Kernel driver ltc2978
=====================
Supported chips:
- * Linear Technology LTC2978
+ * Linear Technology LTC2974
+ Prefix: 'ltc2974'
+ Addresses scanned: -
+ Datasheet: http://www.linear.com/product/ltc2974
+ * Linear Technology LTC2977
+ Prefix: 'ltc2977'
+ Addresses scanned: -
+ Datasheet: http://www.linear.com/product/ltc2977
+ * Linear Technology LTC2978, LTC2978A
Prefix: 'ltc2978'
Addresses scanned: -
- Datasheet: http://cds.linear.com/docs/Datasheet/2978fa.pdf
+ Datasheet: http://www.linear.com/product/ltc2978
+ http://www.linear.com/product/ltc2978a
* Linear Technology LTC3880
Prefix: 'ltc3880'
Addresses scanned: -
- Datasheet: http://cds.linear.com/docs/Datasheet/3880f.pdf
+ Datasheet: http://www.linear.com/product/ltc3880
+ * Linear Technology LTC3883
+ Prefix: 'ltc3883'
+ Addresses scanned: -
+ Datasheet: http://www.linear.com/product/ltc3883
+ * Linear Technology LTM4676
+ Prefix: 'ltm4676'
+ Addresses scanned: -
+ Datasheet: http://www.linear.com/product/ltm4676
-Author: Guenter Roeck <guenter.roeck@ericsson.com>
+Author: Guenter Roeck <linux@roeck-us.net>
Description
-----------
-The LTC2978 is an octal power supply monitor, supervisor, sequencer and
-margin controller. The LTC3880 is a dual, PolyPhase DC/DC synchronous
-step-down switching regulator controller.
+LTC2974 is a quad digital power supply manager. LTC2978 is an octal power supply
+monitor. LTC2977 is a pin compatible replacement for LTC2978. LTC3880 is a dual
+output poly-phase step-down DC/DC controller. LTC3883 is a single phase
+step-down DC/DC controller. LTM4676 is a dual 13A or single 26A uModule
+regulator.
Usage Notes
@@ -42,62 +61,97 @@ in1_label "vin"
in1_input Measured input voltage.
in1_min Minimum input voltage.
in1_max Maximum input voltage.
+ LTC2974, LTC2977, and LTC2978 only.
in1_lcrit Critical minimum input voltage.
+ LTC2974, LTC2977, and LTC2978 only.
in1_crit Critical maximum input voltage.
in1_min_alarm Input voltage low alarm.
in1_max_alarm Input voltage high alarm.
+ LTC2974, LTC2977, and LTC2978 only.
in1_lcrit_alarm Input voltage critical low alarm.
+ LTC2974, LTC2977, and LTC2978 only.
in1_crit_alarm Input voltage critical high alarm.
-in1_lowest Lowest input voltage. LTC2978 only.
+in1_lowest Lowest input voltage.
+ LTC2974, LTC2977, and LTC2978 only.
in1_highest Highest input voltage.
-in1_reset_history Reset history. Writing into this attribute will reset
- history for all attributes.
-
-in[2-9]_label "vout[1-8]". Channels 3 to 9 on LTC2978 only.
-in[2-9]_input Measured output voltage.
-in[2-9]_min Minimum output voltage.
-in[2-9]_max Maximum output voltage.
-in[2-9]_lcrit Critical minimum output voltage.
-in[2-9]_crit Critical maximum output voltage.
-in[2-9]_min_alarm Output voltage low alarm.
-in[2-9]_max_alarm Output voltage high alarm.
-in[2-9]_lcrit_alarm Output voltage critical low alarm.
-in[2-9]_crit_alarm Output voltage critical high alarm.
-in[2-9]_lowest Lowest output voltage. LTC2978 only.
-in[2-9]_highest Lowest output voltage.
-in[2-9]_reset_history Reset history. Writing into this attribute will reset
- history for all attributes.
-
-temp[1-3]_input Measured temperature.
- On LTC2978, only one temperature measurement is
- supported and reflects the internal temperature.
- On LTC3880, temp1 and temp2 report external
- temperatures, and temp3 reports the internal
- temperature.
-temp[1-3]_min Mimimum temperature.
-temp[1-3]_max Maximum temperature.
-temp[1-3]_lcrit Critical low temperature.
-temp[1-3]_crit Critical high temperature.
-temp[1-3]_min_alarm Chip temperature low alarm.
-temp[1-3]_max_alarm Chip temperature high alarm.
-temp[1-3]_lcrit_alarm Chip temperature critical low alarm.
-temp[1-3]_crit_alarm Chip temperature critical high alarm.
-temp[1-3]_lowest Lowest measured temperature. LTC2978 only.
-temp[1-3]_highest Highest measured temperature.
-temp[1-3]_reset_history Reset history. Writing into this attribute will reset
- history for all attributes.
-
-power[1-2]_label "pout[1-2]". LTC3880 only.
-power[1-2]_input Measured power.
-
-curr1_label "iin". LTC3880 only.
+in1_reset_history Reset input voltage history.
+
+in[N]_label "vout[1-8]".
+ LTC2974: N=2-5
+ LTC2977: N=2-9
+ LTC2978: N=2-9
+ LTC3880, LTM4676: N=2-3
+ LTC3883: N=2
+in[N]_input Measured output voltage.
+in[N]_min Minimum output voltage.
+in[N]_max Maximum output voltage.
+in[N]_lcrit Critical minimum output voltage.
+in[N]_crit Critical maximum output voltage.
+in[N]_min_alarm Output voltage low alarm.
+in[N]_max_alarm Output voltage high alarm.
+in[N]_lcrit_alarm Output voltage critical low alarm.
+in[N]_crit_alarm Output voltage critical high alarm.
+in[N]_lowest Lowest output voltage. LTC2974 and LTC2978 only.
+in[N]_highest Highest output voltage.
+in[N]_reset_history Reset output voltage history.
+
+temp[N]_input Measured temperature.
+ On LTC2974, temp[1-4] report external temperatures,
+ and temp5 reports the chip temperature.
+ On LTC2977 and LTC2978, only one temperature measurement
+ is supported and reports the chip temperature.
+ On LTC3880 and LTM4676, temp1 and temp2 report external
+ temperatures, and temp3 reports the chip temperature.
+ On LTC3883, temp1 reports an external temperature,
+ and temp2 reports the chip temperature.
+temp[N]_min Mimimum temperature. LTC2974, LCT2977, and LTC2978 only.
+temp[N]_max Maximum temperature.
+temp[N]_lcrit Critical low temperature.
+temp[N]_crit Critical high temperature.
+temp[N]_min_alarm Temperature low alarm.
+ LTC2974, LTC2977, and LTC2978 only.
+temp[N]_max_alarm Temperature high alarm.
+temp[N]_lcrit_alarm Temperature critical low alarm.
+temp[N]_crit_alarm Temperature critical high alarm.
+temp[N]_lowest Lowest measured temperature.
+ LTC2974, LTC2977, and LTC2978 only.
+ Not supported for chip temperature sensor on LTC2974.
+temp[N]_highest Highest measured temperature. Not supported for chip
+ temperature sensor on LTC2974.
+temp[N]_reset_history Reset temperature history. Not supported for chip
+ temperature sensor on LTC2974.
+
+power1_label "pin". LTC3883 only.
+power1_input Measured input power.
+
+power[N]_label "pout[1-4]".
+ LTC2974: N=1-4
+ LTC2977: Not supported
+ LTC2978: Not supported
+ LTC3880, LTM4676: N=1-2
+ LTC3883: N=2
+power[N]_input Measured output power.
+
+curr1_label "iin". LTC3880, LTC3883, and LTM4676 only.
curr1_input Measured input current.
curr1_max Maximum input current.
curr1_max_alarm Input current high alarm.
-
-curr[2-3]_label "iout[1-2]". LTC3880 only.
-curr[2-3]_input Measured input current.
-curr[2-3]_max Maximum input current.
-curr[2-3]_crit Critical input current.
-curr[2-3]_max_alarm Input current high alarm.
-curr[2-3]_crit_alarm Input current critical high alarm.
+curr1_highest Highest input current. LTC3883 only.
+curr1_reset_history Reset input current history. LTC3883 only.
+
+curr[N]_label "iout[1-4]".
+ LTC2974: N=1-4
+ LTC2977: not supported
+ LTC2978: not supported
+ LTC3880, LTM4676: N=2-3
+ LTC3883: N=2
+curr[N]_input Measured output current.
+curr[N]_max Maximum output current.
+curr[N]_crit Critical high output current.
+curr[N]_lcrit Critical low output current. LTC2974 only.
+curr[N]_max_alarm Output current high alarm.
+curr[N]_crit_alarm Output current critical high alarm.
+curr[N]_lcrit_alarm Output current critical low alarm. LTC2974 only.
+curr[N]_lowest Lowest output current. LTC2974 only.
+curr[N]_highest Highest output current.
+curr[N]_reset_history Reset output current history.
diff --git a/Documentation/hwmon/ltc4260 b/Documentation/hwmon/ltc4260
new file mode 100644
index 00000000000..c4ff4ad998b
--- /dev/null
+++ b/Documentation/hwmon/ltc4260
@@ -0,0 +1,56 @@
+Kernel driver ltc4260
+=====================
+
+Supported chips:
+ * Linear Technology LTC4260
+ Prefix: 'ltc4260'
+ Addresses scanned: -
+ Datasheet:
+ http://cds.linear.com/docs/en/datasheet/4260fc.pdf
+
+Author: Guenter Roeck <linux@roeck-us.net>
+
+
+Description
+-----------
+
+The LTC4260 Hot Swap controller allows a board to be safely inserted
+and removed from a live backplane.
+
+
+Usage Notes
+-----------
+
+This driver does not probe for LTC4260 devices, since there is no register
+which can be safely used to identify the chip. You will have to instantiate
+the devices explicitly.
+
+Example: the following will load the driver for an LTC4260 at address 0x10
+on I2C bus #1:
+$ modprobe ltc4260
+$ echo ltc4260 0x10 > /sys/bus/i2c/devices/i2c-1/new_device
+
+
+Sysfs entries
+-------------
+
+Voltage readings provided by this driver are reported as obtained from the ADC
+registers. If a set of voltage divider resistors is installed, calculate the
+real voltage by multiplying the reported value with (R1+R2)/R2, where R1 is the
+value of the divider resistor against the measured voltage and R2 is the value
+of the divider resistor against Ground.
+
+Current reading provided by this driver is reported as obtained from the ADC
+Current Sense register. The reported value assumes that a 1 mOhm sense resistor
+is installed. If a different sense resistor is installed, calculate the real
+current by dividing the reported value by the sense resistor value in mOhm.
+
+in1_input SOURCE voltage (mV)
+in1_min_alarm Undervoltage alarm
+in1_max_alarm Overvoltage alarm
+
+in2_input ADIN voltage (mV)
+in2_alarm Power bad alarm
+
+curr1_input SENSE current (mA)
+curr1_alarm SENSE overcurrent alarm
diff --git a/Documentation/hwmon/ltc4261 b/Documentation/hwmon/ltc4261
index eba2e2c4b94..9378a75c613 100644
--- a/Documentation/hwmon/ltc4261
+++ b/Documentation/hwmon/ltc4261
@@ -8,7 +8,7 @@ Supported chips:
Datasheet:
http://cds.linear.com/docs/Datasheet/42612fb.pdf
-Author: Guenter Roeck <guenter.roeck@ericsson.com>
+Author: Guenter Roeck <linux@roeck-us.net>
Description
diff --git a/Documentation/hwmon/max16064 b/Documentation/hwmon/max16064
index f8b478076f6..d59cc7829be 100644
--- a/Documentation/hwmon/max16064
+++ b/Documentation/hwmon/max16064
@@ -7,7 +7,7 @@ Supported chips:
Addresses scanned: -
Datasheet: http://datasheets.maxim-ic.com/en/ds/MAX16064.pdf
-Author: Guenter Roeck <guenter.roeck@ericsson.com>
+Author: Guenter Roeck <linux@roeck-us.net>
Description
diff --git a/Documentation/hwmon/max16065 b/Documentation/hwmon/max16065
index c11f64a1f2a..208a29e4301 100644
--- a/Documentation/hwmon/max16065
+++ b/Documentation/hwmon/max16065
@@ -24,7 +24,7 @@ Supported chips:
http://datasheets.maxim-ic.com/en/ds/MAX16070-MAX16071.pdf
-Author: Guenter Roeck <guenter.roeck@ericsson.com>
+Author: Guenter Roeck <linux@roeck-us.net>
Description
diff --git a/Documentation/hwmon/max1619 b/Documentation/hwmon/max1619
index e6d87398cc8..518bae3a80c 100644
--- a/Documentation/hwmon/max1619
+++ b/Documentation/hwmon/max1619
@@ -10,7 +10,7 @@ Supported chips:
Authors:
Oleksij Rempel <bug-track@fisher-privat.net>,
- Jean Delvare <khali@linux-fr.org>
+ Jean Delvare <jdelvare@suse.de>
Description
-----------
diff --git a/Documentation/hwmon/max34440 b/Documentation/hwmon/max34440
index 04482226db2..37cbf472a19 100644
--- a/Documentation/hwmon/max34440
+++ b/Documentation/hwmon/max34440
@@ -16,8 +16,18 @@ Supported chips:
Prefixes: 'max34446'
Addresses scanned: -
Datasheet: http://datasheets.maxim-ic.com/en/ds/MAX34446.pdf
+ * Maxim MAX34460
+ PMBus 12-Channel Voltage Monitor & Sequencer
+ Prefix: 'max34460'
+ Addresses scanned: -
+ Datasheet: http://datasheets.maximintegrated.com/en/ds/MAX34460.pdf
+ * Maxim MAX34461
+ PMBus 16-Channel Voltage Monitor & Sequencer
+ Prefix: 'max34461'
+ Addresses scanned: -
+ Datasheet: http://datasheets.maximintegrated.com/en/ds/MAX34461.pdf
-Author: Guenter Roeck <guenter.roeck@ericsson.com>
+Author: Guenter Roeck <linux@roeck-us.net>
Description
@@ -26,6 +36,9 @@ Description
This driver supports hardware montoring for Maxim MAX34440 PMBus 6-Channel
Power-Supply Manager, MAX34441 PMBus 5-Channel Power-Supply Manager
and Intelligent Fan Controller, and MAX34446 PMBus Power-Supply Data Logger.
+It also supports the MAX34460 and MAX34461 PMBus Voltage Monitor & Sequencers.
+The MAX34460 supports 12 voltage channels, and the MAX34461 supports 16 voltage
+channels.
The driver is a client driver to the core PMBus driver. Please see
Documentation/hwmon/pmbus for details on PMBus client drivers.
@@ -109,3 +122,6 @@ temp[1-8]_reset_history Write any value to reset history.
temp7 and temp8 attributes only exist for MAX34440.
MAX34446 only supports temp[1-3].
+
+MAX34460 supports attribute groups in[1-12] and temp[1-5].
+MAX34461 supports attribute groups in[1-16] and temp[1-5].
diff --git a/Documentation/hwmon/max6697 b/Documentation/hwmon/max6697
new file mode 100644
index 00000000000..6594177eded
--- /dev/null
+++ b/Documentation/hwmon/max6697
@@ -0,0 +1,58 @@
+Kernel driver max6697
+=====================
+
+Supported chips:
+ * Maxim MAX6581
+ Prefix: 'max6581'
+ Datasheet: http://datasheets.maximintegrated.com/en/ds/MAX6581.pdf
+ * Maxim MAX6602
+ Prefix: 'max6602'
+ Datasheet: http://datasheets.maximintegrated.com/en/ds/MAX6602.pdf
+ * Maxim MAX6622
+ Prefix: 'max6622'
+ Datasheet: http://datasheets.maximintegrated.com/en/ds/MAX6622.pdf
+ * Maxim MAX6636
+ Prefix: 'max6636'
+ Datasheet: http://datasheets.maximintegrated.com/en/ds/MAX6636.pdf
+ * Maxim MAX6689
+ Prefix: 'max6689'
+ Datasheet: http://datasheets.maximintegrated.com/en/ds/MAX6689.pdf
+ * Maxim MAX6693
+ Prefix: 'max6693'
+ Datasheet: http://datasheets.maximintegrated.com/en/ds/MAX6693.pdf
+ * Maxim MAX6694
+ Prefix: 'max6694'
+ Datasheet: http://datasheets.maximintegrated.com/en/ds/MAX6694.pdf
+ * Maxim MAX6697
+ Prefix: 'max6697'
+ Datasheet: http://datasheets.maximintegrated.com/en/ds/MAX6697.pdf
+ * Maxim MAX6698
+ Prefix: 'max6698'
+ Datasheet: http://datasheets.maximintegrated.com/en/ds/MAX6698.pdf
+ * Maxim MAX6699
+ Prefix: 'max6699'
+ Datasheet: http://datasheets.maximintegrated.com/en/ds/MAX6699.pdf
+
+Author:
+ Guenter Roeck <linux@roeck-us.net>
+
+Description
+-----------
+
+This driver implements support for several MAX6697 compatible temperature sensor
+chips. The chips support one local temperature sensor plus four, six, or seven
+remote temperature sensors. Remote temperature sensors are diode-connected
+thermal transitors, except for MAX6698 which supports three diode-connected
+thermal transistors plus three thermistors in addition to the local temperature
+sensor.
+
+The driver provides the following sysfs attributes. temp1 is the local (chip)
+temperature, temp[2..n] are remote temperatures. The actually supported
+per-channel attributes are chip type and channel dependent.
+
+tempX_input RO temperature
+tempX_max RW temperature maximum threshold
+tempX_max_alarm RO temperature maximum threshold alarm
+tempX_crit RW temperature critical threshold
+tempX_crit_alarm RO temperature critical threshold alarm
+tempX_fault RO temperature diode fault (remote sensors only)
diff --git a/Documentation/hwmon/max8688 b/Documentation/hwmon/max8688
index fe849871df3..e78078638b9 100644
--- a/Documentation/hwmon/max8688
+++ b/Documentation/hwmon/max8688
@@ -7,7 +7,7 @@ Supported chips:
Addresses scanned: -
Datasheet: http://datasheets.maxim-ic.com/en/ds/MAX8688.pdf
-Author: Guenter Roeck <guenter.roeck@ericsson.com>
+Author: Guenter Roeck <linux@roeck-us.net>
Description
diff --git a/Documentation/hwmon/nct6683 b/Documentation/hwmon/nct6683
new file mode 100644
index 00000000000..c1301d4300c
--- /dev/null
+++ b/Documentation/hwmon/nct6683
@@ -0,0 +1,57 @@
+Kernel driver nct6683
+=====================
+
+Supported chips:
+ * Nuvoton NCT6683D
+ Prefix: 'nct6683'
+ Addresses scanned: ISA address retrieved from Super I/O registers
+ Datasheet: Available from Nuvoton upon request
+
+Authors:
+ Guenter Roeck <linux@roeck-us.net>
+
+Description
+-----------
+
+This driver implements support for the Nuvoton NCT6683D eSIO chip.
+
+The chips implement up to shared 32 temperature and voltage sensors.
+It supports up to 16 fan rotation sensors and up to 8 fan control engines.
+
+Temperatures are measured in degrees Celsius. Measurement resolution is
+0.5 degrees C.
+
+Voltage sensors (also known as IN sensors) report their values in millivolts.
+
+Fan rotation speeds are reported in RPM (rotations per minute).
+
+Usage Note
+----------
+
+Limit register locations on Intel boards with EC firmware version 1.0
+build date 04/03/13 do not match the register locations in the Nuvoton
+datasheet. Nuvoton confirms that Intel uses a special firmware version
+with different register addresses. The specification describing the Intel
+firmware is held under NDA by Nuvoton and Intel and not available
+to the public.
+
+Some of the register locations can be reverse engineered; others are too
+well hidden. Given this, writing any values from the operating system is
+considered too risky with this firmware and has been disabled. All limits
+must all be written from the BIOS.
+
+The driver has only been tested with the Intel firmware, and by default
+only instantiates on Intel boards. To enable it on non-Intel boards,
+set the 'force' module parameter to 1.
+
+Tested Boards and Firmware Versions
+-----------------------------------
+
+The driver has been reported to work with the following boards and
+firmware versions.
+
+Board Firmware version
+---------------------------------------------------------------
+Intel DH87RL NCT6683D EC firmware version 1.0 build 04/03/13
+Intel DH87MC NCT6683D EC firmware version 1.0 build 04/03/13
+Intel DB85FL NCT6683D EC firmware version 1.0 build 04/03/13
diff --git a/Documentation/hwmon/nct6775 b/Documentation/hwmon/nct6775
new file mode 100644
index 00000000000..4e9ef60e8c6
--- /dev/null
+++ b/Documentation/hwmon/nct6775
@@ -0,0 +1,188 @@
+Note
+====
+
+This driver supersedes the NCT6775F and NCT6776F support in the W83627EHF
+driver.
+
+Kernel driver NCT6775
+=====================
+
+Supported chips:
+ * Nuvoton NCT5572D/NCT6771F/NCT6772F/NCT6775F/W83677HG-I
+ Prefix: 'nct6775'
+ Addresses scanned: ISA address retrieved from Super I/O registers
+ Datasheet: Available from Nuvoton upon request
+ * Nuvoton NCT5577D/NCT6776D/NCT6776F
+ Prefix: 'nct6776'
+ Addresses scanned: ISA address retrieved from Super I/O registers
+ Datasheet: Available from Nuvoton upon request
+ * Nuvoton NCT5532D/NCT6779D
+ Prefix: 'nct6779'
+ Addresses scanned: ISA address retrieved from Super I/O registers
+ Datasheet: Available from Nuvoton upon request
+
+Authors:
+ Guenter Roeck <linux@roeck-us.net>
+
+Description
+-----------
+
+This driver implements support for the Nuvoton NCT6775F, NCT6776F, and NCT6779D
+and compatible super I/O chips.
+
+The chips support up to 25 temperature monitoring sources. Up to 6 of those are
+direct temperature sensor inputs, the others are special sources such as PECI,
+PCH, and SMBUS. Depending on the chip type, 2 to 6 of the temperature sources
+can be monitored and compared against minimum, maximum, and critical
+temperatures. The driver reports up to 10 of the temperatures to the user.
+There are 4 to 5 fan rotation speed sensors, 8 to 15 analog voltage sensors,
+one VID, alarms with beep warnings (control unimplemented), and some automatic
+fan regulation strategies (plus manual fan control mode).
+
+The temperature sensor sources on all chips are configurable. The configured
+source for each of the temperature sensors is provided in tempX_label.
+
+Temperatures are measured in degrees Celsius and measurement resolution is
+either 1 degC or 0.5 degC, depending on the temperature source and
+configuration. An alarm is triggered when the temperature gets higher than
+the high limit; it stays on until the temperature falls below the hysteresis
+value. Alarms are only supported for temp1 to temp6, depending on the chip type.
+
+Fan rotation speeds are reported in RPM (rotations per minute). An alarm is
+triggered if the rotation speed has dropped below a programmable limit. On
+NCT6775F, fan readings can be divided by a programmable divider (1, 2, 4, 8,
+16, 32, 64 or 128) to give the readings more range or accuracy; the other chips
+do not have a fan speed divider. The driver sets the most suitable fan divisor
+itself; specifically, it increases the divider value each time a fan speed
+reading returns an invalid value, and it reduces it if the fan speed reading
+is lower than optimal. Some fans might not be present because they share pins
+with other functions.
+
+Voltage sensors (also known as IN sensors) report their values in millivolts.
+An alarm is triggered if the voltage has crossed a programmable minimum
+or maximum limit.
+
+The driver supports automatic fan control mode known as Thermal Cruise.
+In this mode, the chip attempts to keep the measured temperature in a
+predefined temperature range. If the temperature goes out of range, fan
+is driven slower/faster to reach the predefined range again.
+
+The mode works for fan1-fan5.
+
+sysfs attributes
+----------------
+
+pwm[1-5] - this file stores PWM duty cycle or DC value (fan speed) in range:
+ 0 (lowest speed) to 255 (full)
+
+pwm[1-5]_enable - this file controls mode of fan/temperature control:
+ * 0 Fan control disabled (fans set to maximum speed)
+ * 1 Manual mode, write to pwm[0-5] any value 0-255
+ * 2 "Thermal Cruise" mode
+ * 3 "Fan Speed Cruise" mode
+ * 4 "Smart Fan III" mode (NCT6775F only)
+ * 5 "Smart Fan IV" mode
+
+pwm[1-5]_mode - controls if output is PWM or DC level
+ * 0 DC output
+ * 1 PWM output
+
+Common fan control attributes
+-----------------------------
+
+pwm[1-5]_temp_sel Temperature source. Value is temperature sensor index.
+ For example, select '1' for temp1_input.
+pwm[1-5]_weight_temp_sel
+ Secondary temperature source. Value is temperature
+ sensor index. For example, select '1' for temp1_input.
+ Set to 0 to disable secondary temperature control.
+
+If secondary temperature functionality is enabled, it is controlled with the
+following attributes.
+
+pwm[1-5]_weight_duty_step
+ Duty step size.
+pwm[1-5]_weight_temp_step
+ Temperature step size. With each step over
+ temp_step_base, the value of weight_duty_step is added
+ to the current pwm value.
+pwm[1-5]_weight_temp_step_base
+ Temperature at which secondary temperature control kicks
+ in.
+pwm[1-5]_weight_temp_step_tol
+ Temperature step tolerance.
+
+Thermal Cruise mode (2)
+-----------------------
+
+If the temperature is in the range defined by:
+
+pwm[1-5]_target_temp Target temperature, unit millidegree Celsius
+ (range 0 - 127000)
+pwm[1-5]_temp_tolerance
+ Target temperature tolerance, unit millidegree Celsius
+
+there are no changes to fan speed. Once the temperature leaves the interval, fan
+speed increases (if temperature is higher that desired) or decreases (if
+temperature is lower than desired), using the following limits and time
+intervals.
+
+pwm[1-5]_start fan pwm start value (range 1 - 255), to start fan
+ when the temperature is above defined range.
+pwm[1-5]_floor lowest fan pwm (range 0 - 255) if temperature is below
+ the defined range. If set to 0, the fan is expected to
+ stop if the temperature is below the defined range.
+pwm[1-5]_step_up_time milliseconds before fan speed is increased
+pwm[1-5]_step_down_time milliseconds before fan speed is decreased
+pwm[1-5]_stop_time how many milliseconds must elapse to switch
+ corresponding fan off (when the temperature was below
+ defined range).
+
+Speed Cruise mode (3)
+---------------------
+
+This modes tries to keep the fan speed constant.
+
+fan[1-5]_target Target fan speed
+fan[1-5]_tolerance
+ Target speed tolerance
+
+
+Untested; use at your own risk.
+
+Smart Fan IV mode (5)
+---------------------
+
+This mode offers multiple slopes to control the fan speed. The slopes can be
+controlled by setting the pwm and temperature attributes. When the temperature
+rises, the chip will calculate the DC/PWM output based on the current slope.
+There are up to seven data points depending on the chip type. Subsequent data
+points should be set to higher temperatures and higher pwm values to achieve
+higher fan speeds with increasing temperature. The last data point reflects
+critical temperature mode, in which the fans should run at full speed.
+
+pwm[1-5]_auto_point[1-7]_pwm
+ pwm value to be set if temperature reaches matching
+ temperature range.
+pwm[1-5]_auto_point[1-7]_temp
+ Temperature over which the matching pwm is enabled.
+pwm[1-5]_temp_tolerance
+ Temperature tolerance, unit millidegree Celsius
+pwm[1-5]_crit_temp_tolerance
+ Temperature tolerance for critical temperature,
+ unit millidegree Celsius
+
+pwm[1-5]_step_up_time milliseconds before fan speed is increased
+pwm[1-5]_step_down_time milliseconds before fan speed is decreased
+
+Usage Notes
+-----------
+
+On various ASUS boards with NCT6776F, it appears that CPUTIN is not really
+connected to anything and floats, or that it is connected to some non-standard
+temperature measurement device. As a result, the temperature reported on CPUTIN
+will not reflect a usable value. It often reports unreasonably high
+temperatures, and in some cases the reported temperature declines if the actual
+temperature increases (similar to the raw PECI temperature value - see PECI
+specification for details). CPUTIN should therefore be be ignored on ASUS
+boards. The CPU temperature on ASUS boards is reported from PECI 0.
diff --git a/Documentation/hwmon/ntc_thermistor b/Documentation/hwmon/ntc_thermistor
index 3bfda94096f..057b77029f2 100644
--- a/Documentation/hwmon/ntc_thermistor
+++ b/Documentation/hwmon/ntc_thermistor
@@ -1,7 +1,7 @@
Kernel driver ntc_thermistor
=================
-Supported thermistors:
+Supported thermistors from Murata:
* Murata NTC Thermistors NCP15WB473, NCP18WB473, NCP21WB473, NCP03WB473, NCP15WL333
Prefixes: 'ncp15wb473', 'ncp18wb473', 'ncp21wb473', 'ncp03wb473', 'ncp15wl333'
Datasheet: Publicly available at Murata
@@ -15,9 +15,9 @@ Authors:
Description
-----------
-The NTC thermistor is a simple thermistor that requires users to provide the
-resistance and lookup the corresponding compensation table to get the
-temperature input.
+The NTC (Negative Temperature Coefficient) thermistor is a simple thermistor
+that requires users to provide the resistance and lookup the corresponding
+compensation table to get the temperature input.
The NTC driver provides lookup tables with a linear approximation function
and four circuit models with an option not to use any of the four models.
diff --git a/Documentation/hwmon/pc87360 b/Documentation/hwmon/pc87360
index cbac32b59c8..d5f5cf16ce5 100644
--- a/Documentation/hwmon/pc87360
+++ b/Documentation/hwmon/pc87360
@@ -7,7 +7,7 @@ Supported chips:
Addresses scanned: none, address read from Super I/O config space
Datasheets: No longer available
-Authors: Jean Delvare <khali@linux-fr.org>
+Authors: Jean Delvare <jdelvare@suse.de>
Thanks to Sandeep Mehta, Tonko de Rooy and Daniel Ceregatti for testing.
Thanks to Rudolf Marek for helping me investigate conversion issues.
diff --git a/Documentation/hwmon/pc87427 b/Documentation/hwmon/pc87427
index 8fdd08c9e48..c313eb66e08 100644
--- a/Documentation/hwmon/pc87427
+++ b/Documentation/hwmon/pc87427
@@ -7,7 +7,7 @@ Supported chips:
Addresses scanned: none, address read from Super I/O config space
Datasheet: No longer available
-Author: Jean Delvare <khali@linux-fr.org>
+Author: Jean Delvare <jdelvare@suse.de>
Thanks to Amir Habibi at Candelis for setting up a test system, and to
Michael Kress for testing several iterations of this driver.
diff --git a/Documentation/hwmon/pcf8591 b/Documentation/hwmon/pcf8591
index ac020b3bb7b..447c0702c0e 100644
--- a/Documentation/hwmon/pcf8591
+++ b/Documentation/hwmon/pcf8591
@@ -11,7 +11,7 @@ Supported chips:
Authors:
Aurelien Jarno <aurelien@aurel32.net>
valuable contributions by Jan M. Sendler <sendler@sendler.de>,
- Jean Delvare <khali@linux-fr.org>
+ Jean Delvare <jdelvare@suse.de>
Description
diff --git a/Documentation/hwmon/pmbus b/Documentation/hwmon/pmbus
index 3d3a0f97f96..cf756ed48ff 100644
--- a/Documentation/hwmon/pmbus
+++ b/Documentation/hwmon/pmbus
@@ -34,7 +34,7 @@ Supported chips:
Addresses scanned: -
Datasheet: n.a.
-Author: Guenter Roeck <guenter.roeck@ericsson.com>
+Author: Guenter Roeck <linux@roeck-us.net>
Description
diff --git a/Documentation/hwmon/sht15 b/Documentation/hwmon/sht15
index 02850bdfac1..778987d1856 100644
--- a/Documentation/hwmon/sht15
+++ b/Documentation/hwmon/sht15
@@ -40,7 +40,7 @@ bits for humidity, or 12 bits for temperature and 8 bits for humidity.
The humidity calibration coefficients are programmed into an OTP memory on the
chip. These coefficients are used to internally calibrate the signals from the
sensors. Disabling the reload of those coefficients allows saving 10ms for each
-measurement and decrease power consumption, while loosing on precision.
+measurement and decrease power consumption, while losing on precision.
Some options may be set directly in the sht15_platform_data structure
or via sysfs attributes.
diff --git a/Documentation/hwmon/shtc1 b/Documentation/hwmon/shtc1
new file mode 100644
index 00000000000..6b1e05458f0
--- /dev/null
+++ b/Documentation/hwmon/shtc1
@@ -0,0 +1,43 @@
+Kernel driver shtc1
+===================
+
+Supported chips:
+ * Sensirion SHTC1
+ Prefix: 'shtc1'
+ Addresses scanned: none
+ Datasheet: http://www.sensirion.com/file/datasheet_shtc1
+
+ * Sensirion SHTW1
+ Prefix: 'shtw1'
+ Addresses scanned: none
+ Datasheet: Not publicly available
+
+Author:
+ Johannes Winkelmann <johannes.winkelmann@sensirion.com>
+
+Description
+-----------
+
+This driver implements support for the Sensirion SHTC1 chip, a humidity and
+temperature sensor. Temperature is measured in degrees celsius, relative
+humidity is expressed as a percentage. Driver can be used as well for SHTW1
+chip, which has the same electrical interface.
+
+The device communicates with the I2C protocol. All sensors are set to I2C
+address 0x70. See Documentation/i2c/instantiating-devices for methods to
+instantiate the device.
+
+There are two options configurable by means of shtc1_platform_data:
+1. blocking (pull the I2C clock line down while performing the measurement) or
+ non-blocking mode. Blocking mode will guarantee the fastest result but
+ the I2C bus will be busy during that time. By default, non-blocking mode
+ is used. Make sure clock-stretching works properly on your device if you
+ want to use blocking mode.
+2. high or low accuracy. High accuracy is used by default and using it is
+ strongly recommended.
+
+sysfs-Interface
+---------------
+
+temp1_input - temperature input
+humidity1_input - humidity input
diff --git a/Documentation/hwmon/smm665 b/Documentation/hwmon/smm665
index 59e31614054..a341eeedab7 100644
--- a/Documentation/hwmon/smm665
+++ b/Documentation/hwmon/smm665
@@ -29,7 +29,7 @@ Supported chips:
http://www.summitmicro.com/prod_select/summary/SMM766/SMM766_2086.pdf
http://www.summitmicro.com/prod_select/summary/SMM766B/SMM766B_2122.pdf
-Author: Guenter Roeck <guenter.roeck@ericsson.com>
+Author: Guenter Roeck <linux@roeck-us.net>
Module Parameters
diff --git a/Documentation/hwmon/smsc47m1 b/Documentation/hwmon/smsc47m1
index 2a13378dcf2..10a24b42068 100644
--- a/Documentation/hwmon/smsc47m1
+++ b/Documentation/hwmon/smsc47m1
@@ -25,7 +25,7 @@ Authors:
With assistance from Bruce Allen <ballen@uwm.edu>, and his
fan.c program: http://www.lsc-group.phys.uwm.edu/%7Eballen/driver/
Gabriele Gorla <gorlik@yahoo.com>,
- Jean Delvare <khali@linux-fr.org>
+ Jean Delvare <jdelvare@suse.de>
Description
-----------
diff --git a/Documentation/hwmon/submitting-patches b/Documentation/hwmon/submitting-patches
index 843751c41fe..3d1bac399a2 100644
--- a/Documentation/hwmon/submitting-patches
+++ b/Documentation/hwmon/submitting-patches
@@ -1,7 +1,7 @@
How to Get Your Patch Accepted Into the Hwmon Subsystem
-------------------------------------------------------
-This text is is a collection of suggestions for people writing patches or
+This text is a collection of suggestions for people writing patches or
drivers for the hwmon subsystem. Following these suggestions will greatly
increase the chances of your change being accepted.
@@ -27,8 +27,7 @@ increase the chances of your change being accepted.
explicitly below the patch header.
* If your patch (or the driver) is affected by configuration options such as
- CONFIG_SMP or CONFIG_HOTPLUG, make sure it compiles for all configuration
- variants.
+ CONFIG_SMP, make sure it compiles for all configuration variants.
2. Adding functionality to existing drivers
diff --git a/Documentation/hwmon/sysfs-interface b/Documentation/hwmon/sysfs-interface
index 1f4dd855a29..2cc95ad4660 100644
--- a/Documentation/hwmon/sysfs-interface
+++ b/Documentation/hwmon/sysfs-interface
@@ -327,6 +327,13 @@ temp[1-*]_max_hyst
from the max value.
RW
+temp[1-*]_min_hyst
+ Temperature hysteresis value for min limit.
+ Unit: millidegree Celsius
+ Must be reported as an absolute temperature, NOT a delta
+ from the min value.
+ RW
+
temp[1-*]_input Temperature input value.
Unit: millidegree Celsius
RO
@@ -362,6 +369,13 @@ temp[1-*]_lcrit Temperature critical min value, typically lower than
Unit: millidegree Celsius
RW
+temp[1-*]_lcrit_hyst
+ Temperature hysteresis value for critical min limit.
+ Unit: millidegree Celsius
+ Must be reported as an absolute temperature, NOT a delta
+ from the critical min value.
+ RW
+
temp[1-*]_offset
Temperature offset which is added to the temperature reading
by the chip.
@@ -722,14 +736,14 @@ add/subtract if it has been divided before the add/subtract.
What to do if a value is found to be invalid, depends on the type of the
sysfs attribute that is being set. If it is a continuous setting like a
tempX_max or inX_max attribute, then the value should be clamped to its
-limits using SENSORS_LIMIT(value, min_limit, max_limit). If it is not
-continuous like for example a tempX_type, then when an invalid value is
-written, -EINVAL should be returned.
+limits using clamp_val(value, min_limit, max_limit). If it is not continuous
+like for example a tempX_type, then when an invalid value is written,
+-EINVAL should be returned.
Example1, temp1_max, register is a signed 8 bit value (-128 - 127 degrees):
long v = simple_strtol(buf, NULL, 10) / 1000;
- v = SENSORS_LIMIT(v, -128, 127);
+ v = clamp_val(v, -128, 127);
/* write v to register */
Example2, fan divider setting, valid values 2, 4 and 8:
diff --git a/Documentation/hwmon/tmp401 b/Documentation/hwmon/tmp401
index 9fc44724921..f91e3fa7e5e 100644
--- a/Documentation/hwmon/tmp401
+++ b/Documentation/hwmon/tmp401
@@ -8,8 +8,16 @@ Supported chips:
Datasheet: http://focus.ti.com/docs/prod/folders/print/tmp401.html
* Texas Instruments TMP411
Prefix: 'tmp411'
- Addresses scanned: I2C 0x4c
+ Addresses scanned: I2C 0x4c, 0x4d, 0x4e
Datasheet: http://focus.ti.com/docs/prod/folders/print/tmp411.html
+ * Texas Instruments TMP431
+ Prefix: 'tmp431'
+ Addresses scanned: I2C 0x4c, 0x4d
+ Datasheet: http://focus.ti.com/docs/prod/folders/print/tmp431.html
+ * Texas Instruments TMP432
+ Prefix: 'tmp432'
+ Addresses scanned: I2C 0x4c, 0x4d
+ Datasheet: http://focus.ti.com/docs/prod/folders/print/tmp432.html
Authors:
Hans de Goede <hdegoede@redhat.com>
@@ -18,19 +26,19 @@ Authors:
Description
-----------
-This driver implements support for Texas Instruments TMP401 and
-TMP411 chips. These chips implements one remote and one local
-temperature sensor. Temperature is measured in degrees
+This driver implements support for Texas Instruments TMP401, TMP411,
+TMP431, and TMP432 chips. These chips implement one or two remote and
+one local temperature sensors. Temperature is measured in degrees
Celsius. Resolution of the remote sensor is 0.0625 degree. Local
sensor resolution can be set to 0.5, 0.25, 0.125 or 0.0625 degree (not
supported by the driver so far, so using the default resolution of 0.5
degree).
The driver provides the common sysfs-interface for temperatures (see
-/Documentation/hwmon/sysfs-interface under Temperatures).
+Documentation/hwmon/sysfs-interface under Temperatures).
-The TMP411 chip is compatible with TMP401. It provides some additional
-features.
+The TMP411 and TMP431 chips are compatible with TMP401. TMP411 provides
+some additional features.
* Minimum and Maximum temperature measured since power-on, chip-reset
@@ -40,3 +48,6 @@ features.
Exported via sysfs attribute temp_reset_history. Writing 1 to this
file triggers a reset.
+
+TMP432 is compatible with TMP401 and TMP431. It supports two external
+temperature sensors.
diff --git a/Documentation/hwmon/ucd9000 b/Documentation/hwmon/ucd9000
index 0df5f276505..805e33edb97 100644
--- a/Documentation/hwmon/ucd9000
+++ b/Documentation/hwmon/ucd9000
@@ -11,7 +11,7 @@ Supported chips:
http://focus.ti.com/lit/ds/symlink/ucd9090.pdf
http://focus.ti.com/lit/ds/symlink/ucd90910.pdf
-Author: Guenter Roeck <guenter.roeck@ericsson.com>
+Author: Guenter Roeck <linux@roeck-us.net>
Description
diff --git a/Documentation/hwmon/ucd9200 b/Documentation/hwmon/ucd9200
index fd7d07b1908..1e8060e631b 100644
--- a/Documentation/hwmon/ucd9200
+++ b/Documentation/hwmon/ucd9200
@@ -15,7 +15,7 @@ Supported chips:
http://focus.ti.com/lit/ds/symlink/ucd9246.pdf
http://focus.ti.com/lit/ds/symlink/ucd9248.pdf
-Author: Guenter Roeck <guenter.roeck@ericsson.com>
+Author: Guenter Roeck <linux@roeck-us.net>
Description
diff --git a/Documentation/hwmon/w83627ehf b/Documentation/hwmon/w83627ehf
index ceaf6f652b0..735c42a85ea 100644
--- a/Documentation/hwmon/w83627ehf
+++ b/Documentation/hwmon/w83627ehf
@@ -36,7 +36,7 @@ Supported chips:
Datasheet: Available from Nuvoton upon request
Authors:
- Jean Delvare <khali@linux-fr.org>
+ Jean Delvare <jdelvare@suse.de>
Yuan Mu (Winbond)
Rudolf Marek <r.marek@assembler.cz>
David Hubbard <david.c.hubbard@gmail.com>
diff --git a/Documentation/hwmon/w83791d b/Documentation/hwmon/w83791d
index 90387c3540f..f4021a28546 100644
--- a/Documentation/hwmon/w83791d
+++ b/Documentation/hwmon/w83791d
@@ -17,7 +17,7 @@ Credits:
Philip Edelbrock <phil@netroedge.com>,
and Mark Studebaker <mdsxyz123@yahoo.com>
w83792d.c:
- Chunhao Huang <DZShen@Winbond.com.tw>,
+ Shane Huang (Winbond),
Rudolf Marek <r.marek@assembler.cz>
Additional contributors:
diff --git a/Documentation/hwmon/w83792d b/Documentation/hwmon/w83792d
index 8a023ce0b72..53f7b6866fe 100644
--- a/Documentation/hwmon/w83792d
+++ b/Documentation/hwmon/w83792d
@@ -7,8 +7,7 @@ Supported chips:
Addresses scanned: I2C 0x2c - 0x2f
Datasheet: http://www.winbond.com.tw
-Author: Chunhao Huang
-Contact: DZShen <DZShen@Winbond.com.tw>
+Author: Shane Huang (Winbond)
Module Parameters
diff --git a/Documentation/hwmon/w83795 b/Documentation/hwmon/w83795
index 9f160371f46..d3e678216b9 100644
--- a/Documentation/hwmon/w83795
+++ b/Documentation/hwmon/w83795
@@ -13,7 +13,7 @@ Supported chips:
Authors:
Wei Song (Nuvoton)
- Jean Delvare <khali@linux-fr.org>
+ Jean Delvare <jdelvare@suse.de>
Pin mapping
diff --git a/Documentation/hwmon/w83l785ts b/Documentation/hwmon/w83l785ts
index bd1fa9d4468..c8978478871 100644
--- a/Documentation/hwmon/w83l785ts
+++ b/Documentation/hwmon/w83l785ts
@@ -9,7 +9,7 @@ Supported chips:
http://www.winbond-usa.com/products/winbond_products/pdfs/PCIC/W83L785TS-S.pdf
Authors:
- Jean Delvare <khali@linux-fr.org>
+ Jean Delvare <jdelvare@suse.de>
Description
-----------
diff --git a/Documentation/hwmon/zl6100 b/Documentation/hwmon/zl6100
index a995b41724f..33908a4d68f 100644
--- a/Documentation/hwmon/zl6100
+++ b/Documentation/hwmon/zl6100
@@ -54,7 +54,7 @@ http://archive.ericsson.net/service/internet/picov/get?DocNo=28701-EN/LZT146401
http://archive.ericsson.net/service/internet/picov/get?DocNo=28701-EN/LZT146256
-Author: Guenter Roeck <guenter.roeck@ericsson.com>
+Author: Guenter Roeck <linux@roeck-us.net>
Description
@@ -121,12 +121,26 @@ in1_max_alarm Input voltage high alarm.
in1_lcrit_alarm Input voltage critical low alarm.
in1_crit_alarm Input voltage critical high alarm.
-in2_label "vout1"
-in2_input Measured output voltage.
-in2_lcrit Critical minimum output Voltage.
-in2_crit Critical maximum output voltage.
-in2_lcrit_alarm Critical output voltage critical low alarm.
-in2_crit_alarm Critical output voltage critical high alarm.
+in2_label "vmon"
+in2_input Measured voltage on VMON (ZL2004) or VDRV (ZL9101M,
+ ZL9117M) pin. Reported voltage is 16x the voltage on the
+ pin (adjusted internally by the chip).
+in2_lcrit Critical minimum VMON/VDRV Voltage.
+in2_crit Critical maximum VMON/VDRV voltage.
+in2_lcrit_alarm VMON/VDRV voltage critical low alarm.
+in2_crit_alarm VMON/VDRV voltage critical high alarm.
+
+ vmon attributes are supported on ZL2004, ZL9101M,
+ and ZL9117M only.
+
+inX_label "vout1"
+inX_input Measured output voltage.
+inX_lcrit Critical minimum output Voltage.
+inX_crit Critical maximum output voltage.
+inX_lcrit_alarm Critical output voltage critical low alarm.
+inX_crit_alarm Critical output voltage critical high alarm.
+
+ X is 3 for ZL2004, ZL9101M, and ZL9117M, 2 otherwise.
curr1_label "iout1"
curr1_input Measured output current.