diff options
Diffstat (limited to 'Documentation/gpio.txt')
| -rw-r--r-- | Documentation/gpio.txt | 312 |
1 files changed, 0 insertions, 312 deletions
diff --git a/Documentation/gpio.txt b/Documentation/gpio.txt deleted file mode 100644 index 36af58eba13..00000000000 --- a/Documentation/gpio.txt +++ /dev/null @@ -1,312 +0,0 @@ -GPIO Interfaces - -This provides an overview of GPIO access conventions on Linux. - - -What is a GPIO? -=============== -A "General Purpose Input/Output" (GPIO) is a flexible software-controlled -digital signal. They are provided from many kinds of chip, and are familiar -to Linux developers working with embedded and custom hardware. Each GPIO -represents a bit connected to a particular pin, or "ball" on Ball Grid Array -(BGA) packages. Board schematics show which external hardware connects to -which GPIOs. Drivers can be written generically, so that board setup code -passes such pin configuration data to drivers. - -System-on-Chip (SOC) processors heavily rely on GPIOs. In some cases, every -non-dedicated pin can be configured as a GPIO; and most chips have at least -several dozen of them. Programmable logic devices (like FPGAs) can easily -provide GPIOs; multifunction chips like power managers, and audio codecs -often have a few such pins to help with pin scarcity on SOCs; and there are -also "GPIO Expander" chips that connect using the I2C or SPI serial busses. -Most PC southbridges have a few dozen GPIO-capable pins (with only the BIOS -firmware knowing how they're used). - -The exact capabilities of GPIOs vary between systems. Common options: - - - Output values are writable (high=1, low=0). Some chips also have - options about how that value is driven, so that for example only one - value might be driven ... supporting "wire-OR" and similar schemes - for the other value (notably, "open drain" signaling). - - - Input values are likewise readable (1, 0). Some chips support readback - of pins configured as "output", which is very useful in such "wire-OR" - cases (to support bidirectional signaling). GPIO controllers may have - input de-glitch logic, sometimes with software controls. - - - Inputs can often be used as IRQ signals, often edge triggered but - sometimes level triggered. Such IRQs may be configurable as system - wakeup events, to wake the system from a low power state. - - - Usually a GPIO will be configurable as either input or output, as needed - by different product boards; single direction ones exist too. - - - Most GPIOs can be accessed while holding spinlocks, but those accessed - through a serial bus normally can't. Some systems support both types. - -On a given board each GPIO is used for one specific purpose like monitoring -MMC/SD card insertion/removal, detecting card writeprotect status, driving -a LED, configuring a transceiver, bitbanging a serial bus, poking a hardware -watchdog, sensing a switch, and so on. - - -GPIO conventions -================ -Note that this is called a "convention" because you don't need to do it this -way, and it's no crime if you don't. There **are** cases where portability -is not the main issue; GPIOs are often used for the kind of board-specific -glue logic that may even change between board revisions, and can't ever be -used on a board that's wired differently. Only least-common-denominator -functionality can be very portable. Other features are platform-specific, -and that can be critical for glue logic. - -Plus, this doesn't define an implementation framework, just an interface. -One platform might implement it as simple inline functions accessing chip -registers; another might implement it by delegating through abstractions -used for several very different kinds of GPIO controller. - -That said, if the convention is supported on their platform, drivers should -use it when possible. Platforms should declare GENERIC_GPIO support in -Kconfig (boolean true), which multi-platform drivers can depend on when -using the include file: - - #include <asm/gpio.h> - -If you stick to this convention then it'll be easier for other developers to -see what your code is doing, and help maintain it. - - -Identifying GPIOs ------------------ -GPIOs are identified by unsigned integers in the range 0..MAX_INT. That -reserves "negative" numbers for other purposes like marking signals as -"not available on this board", or indicating faults. Code that doesn't -touch the underlying hardware treats these integers as opaque cookies. - -Platforms define how they use those integers, and usually #define symbols -for the GPIO lines so that board-specific setup code directly corresponds -to the relevant schematics. In contrast, drivers should only use GPIO -numbers passed to them from that setup code, using platform_data to hold -board-specific pin configuration data (along with other board specific -data they need). That avoids portability problems. - -So for example one platform uses numbers 32-159 for GPIOs; while another -uses numbers 0..63 with one set of GPIO controllers, 64-79 with another -type of GPIO controller, and on one particular board 80-95 with an FPGA. -The numbers need not be contiguous; either of those platforms could also -use numbers 2000-2063 to identify GPIOs in a bank of I2C GPIO expanders. - -Whether a platform supports multiple GPIO controllers is currently a -platform-specific implementation issue. - - -Using GPIOs ------------ -One of the first things to do with a GPIO, often in board setup code when -setting up a platform_device using the GPIO, is mark its direction: - - /* set as input or output, returning 0 or negative errno */ - int gpio_direction_input(unsigned gpio); - int gpio_direction_output(unsigned gpio, int value); - -The return value is zero for success, else a negative errno. It should -be checked, since the get/set calls don't have error returns and since -misconfiguration is possible. You should normally issue these calls from -a task context. However, for spinlock-safe GPIOs it's OK to use them -before tasking is enabled, as part of early board setup. - -For output GPIOs, the value provided becomes the initial output value. -This helps avoid signal glitching during system startup. - -Setting the direction can fail if the GPIO number is invalid, or when -that particular GPIO can't be used in that mode. It's generally a bad -idea to rely on boot firmware to have set the direction correctly, since -it probably wasn't validated to do more than boot Linux. (Similarly, -that board setup code probably needs to multiplex that pin as a GPIO, -and configure pullups/pulldowns appropriately.) - - -Spinlock-Safe GPIO access -------------------------- -Most GPIO controllers can be accessed with memory read/write instructions. -That doesn't need to sleep, and can safely be done from inside IRQ handlers. - -Use these calls to access such GPIOs: - - /* GPIO INPUT: return zero or nonzero */ - int gpio_get_value(unsigned gpio); - - /* GPIO OUTPUT */ - void gpio_set_value(unsigned gpio, int value); - -The values are boolean, zero for low, nonzero for high. When reading the -value of an output pin, the value returned should be what's seen on the -pin ... that won't always match the specified output value, because of -issues including wire-OR and output latencies. - -The get/set calls have no error returns because "invalid GPIO" should have -been reported earlier in gpio_set_direction(). However, note that not all -platforms can read the value of output pins; those that can't should always -return zero. Also, using these calls for GPIOs that can't safely be accessed -without sleeping (see below) is an error. - -Platform-specific implementations are encouraged to optimize the two -calls to access the GPIO value in cases where the GPIO number (and for -output, value) are constant. It's normal for them to need only a couple -of instructions in such cases (reading or writing a hardware register), -and not to need spinlocks. Such optimized calls can make bitbanging -applications a lot more efficient (in both space and time) than spending -dozens of instructions on subroutine calls. - - -GPIO access that may sleep --------------------------- -Some GPIO controllers must be accessed using message based busses like I2C -or SPI. Commands to read or write those GPIO values require waiting to -get to the head of a queue to transmit a command and get its response. -This requires sleeping, which can't be done from inside IRQ handlers. - -Platforms that support this type of GPIO distinguish them from other GPIOs -by returning nonzero from this call: - - int gpio_cansleep(unsigned gpio); - -To access such GPIOs, a different set of accessors is defined: - - /* GPIO INPUT: return zero or nonzero, might sleep */ - int gpio_get_value_cansleep(unsigned gpio); - - /* GPIO OUTPUT, might sleep */ - void gpio_set_value_cansleep(unsigned gpio, int value); - -Other than the fact that these calls might sleep, and will not be ignored -for GPIOs that can't be accessed from IRQ handlers, these calls act the -same as the spinlock-safe calls. - - -Claiming and Releasing GPIOs (OPTIONAL) ---------------------------------------- -To help catch system configuration errors, two calls are defined. -However, many platforms don't currently support this mechanism. - - /* request GPIO, returning 0 or negative errno. - * non-null labels may be useful for diagnostics. - */ - int gpio_request(unsigned gpio, const char *label); - - /* release previously-claimed GPIO */ - void gpio_free(unsigned gpio); - -Passing invalid GPIO numbers to gpio_request() will fail, as will requesting -GPIOs that have already been claimed with that call. The return value of -gpio_request() must be checked. You should normally issue these calls from -a task context. However, for spinlock-safe GPIOs it's OK to request GPIOs -before tasking is enabled, as part of early board setup. - -These calls serve two basic purposes. One is marking the signals which -are actually in use as GPIOs, for better diagnostics; systems may have -several hundred potential GPIOs, but often only a dozen are used on any -given board. Another is to catch conflicts between drivers, reporting -errors when drivers wrongly think they have exclusive use of that signal. - -These two calls are optional because not not all current Linux platforms -offer such functionality in their GPIO support; a valid implementation -could return success for all gpio_request() calls. Unlike the other calls, -the state they represent doesn't normally match anything from a hardware -register; it's just a software bitmap which clearly is not necessary for -correct operation of hardware or (bug free) drivers. - -Note that requesting a GPIO does NOT cause it to be configured in any -way; it just marks that GPIO as in use. Separate code must handle any -pin setup (e.g. controlling which pin the GPIO uses, pullup/pulldown). - - -GPIOs mapped to IRQs --------------------- -GPIO numbers are unsigned integers; so are IRQ numbers. These make up -two logically distinct namespaces (GPIO 0 need not use IRQ 0). You can -map between them using calls like: - - /* map GPIO numbers to IRQ numbers */ - int gpio_to_irq(unsigned gpio); - - /* map IRQ numbers to GPIO numbers */ - int irq_to_gpio(unsigned irq); - -Those return either the corresponding number in the other namespace, or -else a negative errno code if the mapping can't be done. (For example, -some GPIOs can't used as IRQs.) It is an unchecked error to use a GPIO -number that hasn't been marked as an input using gpio_set_direction(), or -to use an IRQ number that didn't originally come from gpio_to_irq(). - -These two mapping calls are expected to cost on the order of a single -addition or subtraction. They're not allowed to sleep. - -Non-error values returned from gpio_to_irq() can be passed to request_irq() -or free_irq(). They will often be stored into IRQ resources for platform -devices, by the board-specific initialization code. Note that IRQ trigger -options are part of the IRQ interface, e.g. IRQF_TRIGGER_FALLING, as are -system wakeup capabilities. - -Non-error values returned from irq_to_gpio() would most commonly be used -with gpio_get_value(), for example to initialize or update driver state -when the IRQ is edge-triggered. - - -Emulating Open Drain Signals ----------------------------- -Sometimes shared signals need to use "open drain" signaling, where only the -low signal level is actually driven. (That term applies to CMOS transistors; -"open collector" is used for TTL.) A pullup resistor causes the high signal -level. This is sometimes called a "wire-AND"; or more practically, from the -negative logic (low=true) perspective this is a "wire-OR". - -One common example of an open drain signal is a shared active-low IRQ line. -Also, bidirectional data bus signals sometimes use open drain signals. - -Some GPIO controllers directly support open drain outputs; many don't. When -you need open drain signaling but your hardware doesn't directly support it, -there's a common idiom you can use to emulate it with any GPIO pin that can -be used as either an input or an output: - - LOW: gpio_direction_output(gpio, 0) ... this drives the signal - and overrides the pullup. - - HIGH: gpio_direction_input(gpio) ... this turns off the output, - so the pullup (or some other device) controls the signal. - -If you are "driving" the signal high but gpio_get_value(gpio) reports a low -value (after the appropriate rise time passes), you know some other component -is driving the shared signal low. That's not necessarily an error. As one -common example, that's how I2C clocks are stretched: a slave that needs a -slower clock delays the rising edge of SCK, and the I2C master adjusts its -signaling rate accordingly. - - -What do these conventions omit? -=============================== -One of the biggest things these conventions omit is pin multiplexing, since -this is highly chip-specific and nonportable. One platform might not need -explicit multiplexing; another might have just two options for use of any -given pin; another might have eight options per pin; another might be able -to route a given GPIO to any one of several pins. (Yes, those examples all -come from systems that run Linux today.) - -Related to multiplexing is configuration and enabling of the pullups or -pulldowns integrated on some platforms. Not all platforms support them, -or support them in the same way; and any given board might use external -pullups (or pulldowns) so that the on-chip ones should not be used. - -There are other system-specific mechanisms that are not specified here, -like the aforementioned options for input de-glitching and wire-OR output. -Hardware may support reading or writing GPIOs in gangs, but that's usually -configuration dependent: for GPIOs sharing the same bank. (GPIOs are -commonly grouped in banks of 16 or 32, with a given SOC having several such -banks.) Some systems can trigger IRQs from output GPIOs. Code relying on -such mechanisms will necessarily be nonportable. - -Dynamic definition of GPIOs is not currently supported; for example, as -a side effect of configuring an add-on board with some GPIO expanders. - -These calls are purely for kernel space, but a userspace API could be built -on top of it. |
