aboutsummaryrefslogtreecommitdiff
path: root/Documentation/filesystems/pohmelfs
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/filesystems/pohmelfs')
-rw-r--r--Documentation/filesystems/pohmelfs/design_notes.txt5
-rw-r--r--Documentation/filesystems/pohmelfs/network_protocol.txt2
2 files changed, 4 insertions, 3 deletions
diff --git a/Documentation/filesystems/pohmelfs/design_notes.txt b/Documentation/filesystems/pohmelfs/design_notes.txt
index dcf83358716..8aef9133570 100644
--- a/Documentation/filesystems/pohmelfs/design_notes.txt
+++ b/Documentation/filesystems/pohmelfs/design_notes.txt
@@ -58,8 +58,9 @@ data transfers.
POHMELFS clients operate with a working set of servers and are capable of balancing read-only
operations (like lookups or directory listings) between them according to IO priorities.
Administrators can add or remove servers from the set at run-time via special commands (described
-in Documentation/pohmelfs/info.txt file). Writes are replicated to all servers, which are connected
-with write permission turned on. IO priority and permissions can be changed in run-time.
+in Documentation/filesystems/pohmelfs/info.txt file). Writes are replicated to all servers, which
+are connected with write permission turned on. IO priority and permissions can be changed in
+run-time.
POHMELFS is capable of full data channel encryption and/or strong crypto hashing.
One can select any kernel supported cipher, encryption mode, hash type and operation mode
diff --git a/Documentation/filesystems/pohmelfs/network_protocol.txt b/Documentation/filesystems/pohmelfs/network_protocol.txt
index 40ea6c295af..c680b4b5353 100644
--- a/Documentation/filesystems/pohmelfs/network_protocol.txt
+++ b/Documentation/filesystems/pohmelfs/network_protocol.txt
@@ -20,7 +20,7 @@ Commands can be embedded into transaction command (which in turn has own command
so one can extend protocol as needed without breaking backward compatibility as long
as old commands are supported. All string lengths include tail 0 byte.
-All commans are transfered over the network in big-endian. CPU endianess is used at the end peers.
+All commands are transferred over the network in big-endian. CPU endianness is used at the end peers.
@cmd - command number, which specifies command to be processed. Following
commands are used currently: