aboutsummaryrefslogtreecommitdiff
path: root/Documentation/filesystems/Locking
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/filesystems/Locking')
-rw-r--r--Documentation/filesystems/Locking97
1 files changed, 65 insertions, 32 deletions
diff --git a/Documentation/filesystems/Locking b/Documentation/filesystems/Locking
index e0cce2a5f82..b18dd177902 100644
--- a/Documentation/filesystems/Locking
+++ b/Documentation/filesystems/Locking
@@ -10,10 +10,9 @@ be able to use diff(1).
--------------------------- dentry_operations --------------------------
prototypes:
int (*d_revalidate)(struct dentry *, unsigned int);
- int (*d_hash)(const struct dentry *, const struct inode *,
- struct qstr *);
- int (*d_compare)(const struct dentry *, const struct inode *,
- const struct dentry *, const struct inode *,
+ int (*d_weak_revalidate)(struct dentry *, unsigned int);
+ int (*d_hash)(const struct dentry *, struct qstr *);
+ int (*d_compare)(const struct dentry *, const struct dentry *,
unsigned int, const char *, const struct qstr *);
int (*d_delete)(struct dentry *);
void (*d_release)(struct dentry *);
@@ -25,6 +24,7 @@ prototypes:
locking rules:
rename_lock ->d_lock may block rcu-walk
d_revalidate: no no yes (ref-walk) maybe
+d_weak_revalidate:no no yes no
d_hash no no no maybe
d_compare: yes no no maybe
d_delete: no yes no no
@@ -47,6 +47,8 @@ prototypes:
int (*mknod) (struct inode *,struct dentry *,umode_t,dev_t);
int (*rename) (struct inode *, struct dentry *,
struct inode *, struct dentry *);
+ int (*rename2) (struct inode *, struct dentry *,
+ struct inode *, struct dentry *, unsigned int);
int (*readlink) (struct dentry *, char __user *,int);
void * (*follow_link) (struct dentry *, struct nameidata *);
void (*put_link) (struct dentry *, struct nameidata *, void *);
@@ -64,6 +66,7 @@ prototypes:
int (*atomic_open)(struct inode *, struct dentry *,
struct file *, unsigned open_flag,
umode_t create_mode, int *opened);
+ int (*tmpfile) (struct inode *, struct dentry *, umode_t);
locking rules:
all may block
@@ -77,10 +80,10 @@ mkdir: yes
unlink: yes (both)
rmdir: yes (both) (see below)
rename: yes (all) (see below)
+rename2: yes (all) (see below)
readlink: no
follow_link: no
put_link: no
-truncate: yes (see below)
setattr: yes
permission: no (may not block if called in rcu-walk mode)
get_acl: no
@@ -92,15 +95,12 @@ removexattr: yes
fiemap: no
update_time: no
atomic_open: yes
+tmpfile: no
Additionally, ->rmdir(), ->unlink() and ->rename() have ->i_mutex on
victim.
- cross-directory ->rename() has (per-superblock) ->s_vfs_rename_sem.
- ->truncate() is never called directly - it's a callback, not a
-method. It's called by vmtruncate() - deprecated library function used by
-->setattr(). Locking information above applies to that call (i.e. is
-inherited from ->setattr() - vmtruncate() is used when ATTR_SIZE had been
-passed).
+ cross-directory ->rename() and rename2() has (per-superblock)
+->s_vfs_rename_sem.
See Documentation/filesystems/directory-locking for more detailed discussion
of the locking scheme for directory operations.
@@ -114,7 +114,6 @@ prototypes:
int (*drop_inode) (struct inode *);
void (*evict_inode) (struct inode *);
void (*put_super) (struct super_block *);
- void (*write_super) (struct super_block *);
int (*sync_fs)(struct super_block *sb, int wait);
int (*freeze_fs) (struct super_block *);
int (*unfreeze_fs) (struct super_block *);
@@ -136,10 +135,9 @@ write_inode:
drop_inode: !!!inode->i_lock!!!
evict_inode:
put_super: write
-write_super: read
sync_fs: read
-freeze_fs: read
-unfreeze_fs: read
+freeze_fs: write
+unfreeze_fs: write
statfs: maybe(read) (see below)
remount_fs: write
umount_begin: no
@@ -195,17 +193,18 @@ prototypes:
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata);
sector_t (*bmap)(struct address_space *, sector_t);
- int (*invalidatepage) (struct page *, unsigned long);
+ void (*invalidatepage) (struct page *, unsigned int, unsigned int);
int (*releasepage) (struct page *, int);
void (*freepage)(struct page *);
- int (*direct_IO)(int, struct kiocb *, const struct iovec *iov,
- loff_t offset, unsigned long nr_segs);
+ int (*direct_IO)(int, struct kiocb *, struct iov_iter *iter, loff_t offset);
int (*get_xip_mem)(struct address_space *, pgoff_t, int, void **,
unsigned long *);
int (*migratepage)(struct address_space *, struct page *, struct page *);
int (*launder_page)(struct page *);
- int (*is_partially_uptodate)(struct page *, read_descriptor_t *, unsigned long);
+ int (*is_partially_uptodate)(struct page *, unsigned long, unsigned long);
int (*error_remove_page)(struct address_space *, struct page *);
+ int (*swap_activate)(struct file *);
+ int (*swap_deactivate)(struct file *);
locking rules:
All except set_page_dirty and freepage may block
@@ -229,6 +228,8 @@ migratepage: yes (both)
launder_page: yes
is_partially_uptodate: yes
error_remove_page: yes
+swap_activate: no
+swap_deactivate: no
->write_begin(), ->write_end(), ->sync_page() and ->readpage()
may be called from the request handler (/dev/loop).
@@ -312,8 +313,8 @@ filesystems and by the swapper. The latter will eventually go away. Please,
keep it that way and don't breed new callers.
->invalidatepage() is called when the filesystem must attempt to drop
-some or all of the buffers from the page when it is being truncated. It
-returns zero on success. If ->invalidatepage is zero, the kernel uses
+some or all of the buffers from the page when it is being truncated. It
+returns zero on success. If ->invalidatepage is zero, the kernel uses
block_invalidatepage() instead.
->releasepage() is called when the kernel is about to try to drop the
@@ -330,6 +331,15 @@ cleaned, or an error value if not. Note that in order to prevent the page
getting mapped back in and redirtied, it needs to be kept locked
across the entire operation.
+ ->swap_activate will be called with a non-zero argument on
+files backing (non block device backed) swapfiles. A return value
+of zero indicates success, in which case this file can be used for
+backing swapspace. The swapspace operations will be proxied to the
+address space operations.
+
+ ->swap_deactivate() will be called in the sys_swapoff()
+path after ->swap_activate() returned success.
+
----------------------- file_lock_operations ------------------------------
prototypes:
void (*fl_copy_lock)(struct file_lock *, struct file_lock *);
@@ -337,27 +347,38 @@ prototypes:
locking rules:
- file_lock_lock may block
+ inode->i_lock may block
fl_copy_lock: yes no
fl_release_private: maybe no
----------------------- lock_manager_operations ---------------------------
prototypes:
int (*lm_compare_owner)(struct file_lock *, struct file_lock *);
+ unsigned long (*lm_owner_key)(struct file_lock *);
void (*lm_notify)(struct file_lock *); /* unblock callback */
int (*lm_grant)(struct file_lock *, struct file_lock *, int);
- void (*lm_release_private)(struct file_lock *);
void (*lm_break)(struct file_lock *); /* break_lease callback */
int (*lm_change)(struct file_lock **, int);
locking rules:
- file_lock_lock may block
-lm_compare_owner: yes no
-lm_notify: yes no
-lm_grant: no no
-lm_release_private: maybe no
-lm_break: yes no
-lm_change yes no
+
+ inode->i_lock blocked_lock_lock may block
+lm_compare_owner: yes[1] maybe no
+lm_owner_key yes[1] yes no
+lm_notify: yes yes no
+lm_grant: no no no
+lm_break: yes no no
+lm_change yes no no
+
+[1]: ->lm_compare_owner and ->lm_owner_key are generally called with
+*an* inode->i_lock held. It may not be the i_lock of the inode
+associated with either file_lock argument! This is the case with deadlock
+detection, since the code has to chase down the owners of locks that may
+be entirely unrelated to the one on which the lock is being acquired.
+For deadlock detection however, the blocked_lock_lock is also held. The
+fact that these locks are held ensures that the file_locks do not
+disappear out from under you while doing the comparison or generating an
+owner key.
--------------------------- buffer_head -----------------------------------
prototypes:
@@ -409,7 +430,9 @@ prototypes:
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
ssize_t (*aio_read) (struct kiocb *, const struct iovec *, unsigned long, loff_t);
ssize_t (*aio_write) (struct kiocb *, const struct iovec *, unsigned long, loff_t);
- int (*readdir) (struct file *, void *, filldir_t);
+ ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
+ ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
+ int (*iterate) (struct file *, struct dir_context *);
unsigned int (*poll) (struct file *, struct poll_table_struct *);
long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
@@ -507,6 +530,7 @@ locking rules:
open: yes
close: yes
fault: yes can return with page locked
+map_pages: yes
page_mkwrite: yes can return with page locked
access: yes
@@ -518,6 +542,15 @@ the page, then ensure it is not already truncated (the page lock will block
subsequent truncate), and then return with VM_FAULT_LOCKED, and the page
locked. The VM will unlock the page.
+ ->map_pages() is called when VM asks to map easy accessible pages.
+Filesystem should find and map pages associated with offsets from "pgoff"
+till "max_pgoff". ->map_pages() is called with page table locked and must
+not block. If it's not possible to reach a page without blocking,
+filesystem should skip it. Filesystem should use do_set_pte() to setup
+page table entry. Pointer to entry associated with offset "pgoff" is
+passed in "pte" field in vm_fault structure. Pointers to entries for other
+offsets should be calculated relative to "pte".
+
->page_mkwrite() is called when a previously read-only pte is
about to become writeable. The filesystem again must ensure that there are
no truncate/invalidate races, and then return with the page locked. If
@@ -526,7 +559,7 @@ like the ->fault() handler, but simply return with VM_FAULT_NOPAGE, which
will cause the VM to retry the fault.
->access() is called when get_user_pages() fails in
-acces_process_vm(), typically used to debug a process through
+access_process_vm(), typically used to debug a process through
/proc/pid/mem or ptrace. This function is needed only for
VM_IO | VM_PFNMAP VMAs.