aboutsummaryrefslogtreecommitdiff
path: root/Documentation/atomic_ops.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/atomic_ops.txt')
-rw-r--r--Documentation/atomic_ops.txt120
1 files changed, 101 insertions, 19 deletions
diff --git a/Documentation/atomic_ops.txt b/Documentation/atomic_ops.txt
index 3bd585b4492..68542fe13b8 100644
--- a/Documentation/atomic_ops.txt
+++ b/Documentation/atomic_ops.txt
@@ -84,6 +84,93 @@ compiler optimizes the section accessing atomic_t variables.
*** YOU HAVE BEEN WARNED! ***
+Properly aligned pointers, longs, ints, and chars (and unsigned
+equivalents) may be atomically loaded from and stored to in the same
+sense as described for atomic_read() and atomic_set(). The ACCESS_ONCE()
+macro should be used to prevent the compiler from using optimizations
+that might otherwise optimize accesses out of existence on the one hand,
+or that might create unsolicited accesses on the other.
+
+For example consider the following code:
+
+ while (a > 0)
+ do_something();
+
+If the compiler can prove that do_something() does not store to the
+variable a, then the compiler is within its rights transforming this to
+the following:
+
+ tmp = a;
+ if (a > 0)
+ for (;;)
+ do_something();
+
+If you don't want the compiler to do this (and you probably don't), then
+you should use something like the following:
+
+ while (ACCESS_ONCE(a) < 0)
+ do_something();
+
+Alternatively, you could place a barrier() call in the loop.
+
+For another example, consider the following code:
+
+ tmp_a = a;
+ do_something_with(tmp_a);
+ do_something_else_with(tmp_a);
+
+If the compiler can prove that do_something_with() does not store to the
+variable a, then the compiler is within its rights to manufacture an
+additional load as follows:
+
+ tmp_a = a;
+ do_something_with(tmp_a);
+ tmp_a = a;
+ do_something_else_with(tmp_a);
+
+This could fatally confuse your code if it expected the same value
+to be passed to do_something_with() and do_something_else_with().
+
+The compiler would be likely to manufacture this additional load if
+do_something_with() was an inline function that made very heavy use
+of registers: reloading from variable a could save a flush to the
+stack and later reload. To prevent the compiler from attacking your
+code in this manner, write the following:
+
+ tmp_a = ACCESS_ONCE(a);
+ do_something_with(tmp_a);
+ do_something_else_with(tmp_a);
+
+For a final example, consider the following code, assuming that the
+variable a is set at boot time before the second CPU is brought online
+and never changed later, so that memory barriers are not needed:
+
+ if (a)
+ b = 9;
+ else
+ b = 42;
+
+The compiler is within its rights to manufacture an additional store
+by transforming the above code into the following:
+
+ b = 42;
+ if (a)
+ b = 9;
+
+This could come as a fatal surprise to other code running concurrently
+that expected b to never have the value 42 if a was zero. To prevent
+the compiler from doing this, write something like:
+
+ if (a)
+ ACCESS_ONCE(b) = 9;
+ else
+ ACCESS_ONCE(b) = 42;
+
+Don't even -think- about doing this without proper use of memory barriers,
+locks, or atomic operations if variable a can change at runtime!
+
+*** WARNING: ACCESS_ONCE() DOES NOT IMPLY A BARRIER! ***
+
Now, we move onto the atomic operation interfaces typically implemented with
the help of assembly code.
@@ -166,6 +253,8 @@ This performs an atomic exchange operation on the atomic variable v, setting
the given new value. It returns the old value that the atomic variable v had
just before the operation.
+atomic_xchg requires explicit memory barriers around the operation.
+
int atomic_cmpxchg(atomic_t *v, int old, int new);
This performs an atomic compare exchange operation on the atomic value v,
@@ -196,15 +285,13 @@ If a caller requires memory barrier semantics around an atomic_t
operation which does not return a value, a set of interfaces are
defined which accomplish this:
- void smp_mb__before_atomic_dec(void);
- void smp_mb__after_atomic_dec(void);
- void smp_mb__before_atomic_inc(void);
- void smp_mb__after_atomic_inc(void);
+ void smp_mb__before_atomic(void);
+ void smp_mb__after_atomic(void);
-For example, smp_mb__before_atomic_dec() can be used like so:
+For example, smp_mb__before_atomic() can be used like so:
obj->dead = 1;
- smp_mb__before_atomic_dec();
+ smp_mb__before_atomic();
atomic_dec(&obj->ref_count);
It makes sure that all memory operations preceding the atomic_dec()
@@ -213,15 +300,10 @@ operation. In the above example, it guarantees that the assignment of
"1" to obj->dead will be globally visible to other cpus before the
atomic counter decrement.
-Without the explicit smp_mb__before_atomic_dec() call, the
+Without the explicit smp_mb__before_atomic() call, the
implementation could legally allow the atomic counter update visible
to other cpus before the "obj->dead = 1;" assignment.
-The other three interfaces listed are used to provide explicit
-ordering with respect to memory operations after an atomic_dec() call
-(smp_mb__after_atomic_dec()) and around atomic_inc() calls
-(smp_mb__{before,after}_atomic_inc()).
-
A missing memory barrier in the cases where they are required by the
atomic_t implementation above can have disastrous results. Here is
an example, which follows a pattern occurring frequently in the Linux
@@ -398,12 +480,12 @@ Finally there is the basic operation:
Which returns a boolean indicating if bit "nr" is set in the bitmask
pointed to by "addr".
-If explicit memory barriers are required around clear_bit() (which
-does not return a value, and thus does not need to provide memory
-barrier semantics), two interfaces are provided:
+If explicit memory barriers are required around {set,clear}_bit() (which do
+not return a value, and thus does not need to provide memory barrier
+semantics), two interfaces are provided:
- void smp_mb__before_clear_bit(void);
- void smp_mb__after_clear_bit(void);
+ void smp_mb__before_atomic(void);
+ void smp_mb__after_atomic(void);
They are used as follows, and are akin to their atomic_t operation
brothers:
@@ -411,13 +493,13 @@ brothers:
/* All memory operations before this call will
* be globally visible before the clear_bit().
*/
- smp_mb__before_clear_bit();
+ smp_mb__before_atomic();
clear_bit( ... );
/* The clear_bit() will be visible before all
* subsequent memory operations.
*/
- smp_mb__after_clear_bit();
+ smp_mb__after_atomic();
There are two special bitops with lock barrier semantics (acquire/release,
same as spinlocks). These operate in the same way as their non-_lock/unlock