diff options
Diffstat (limited to 'Documentation/RCU/rcubarrier.txt')
| -rw-r--r-- | Documentation/RCU/rcubarrier.txt | 47 |
1 files changed, 32 insertions, 15 deletions
diff --git a/Documentation/RCU/rcubarrier.txt b/Documentation/RCU/rcubarrier.txt index 909602d409b..b10cfe711e6 100644 --- a/Documentation/RCU/rcubarrier.txt +++ b/Documentation/RCU/rcubarrier.txt @@ -70,18 +70,33 @@ in realtime kernels in order to avoid excessive scheduling latencies. rcu_barrier() -We instead need the rcu_barrier() primitive. This primitive is similar -to synchronize_rcu(), but instead of waiting solely for a grace -period to elapse, it also waits for all outstanding RCU callbacks to -complete. Pseudo-code using rcu_barrier() is as follows: +We instead need the rcu_barrier() primitive. Rather than waiting for +a grace period to elapse, rcu_barrier() waits for all outstanding RCU +callbacks to complete. Please note that rcu_barrier() does -not- imply +synchronize_rcu(), in particular, if there are no RCU callbacks queued +anywhere, rcu_barrier() is within its rights to return immediately, +without waiting for a grace period to elapse. + +Pseudo-code using rcu_barrier() is as follows: 1. Prevent any new RCU callbacks from being posted. 2. Execute rcu_barrier(). 3. Allow the module to be unloaded. -Quick Quiz #1: Why is there no srcu_barrier()? +There are also rcu_barrier_bh(), rcu_barrier_sched(), and srcu_barrier() +functions for the other flavors of RCU, and you of course must match +the flavor of rcu_barrier() with that of call_rcu(). If your module +uses multiple flavors of call_rcu(), then it must also use multiple +flavors of rcu_barrier() when unloading that module. For example, if +it uses call_rcu_bh(), call_srcu() on srcu_struct_1, and call_srcu() on +srcu_struct_2(), then the following three lines of code will be required +when unloading: + + 1 rcu_barrier_bh(); + 2 srcu_barrier(&srcu_struct_1); + 3 srcu_barrier(&srcu_struct_2); -The rcutorture module makes use of rcu_barrier in its exit function +The rcutorture module makes use of rcu_barrier() in its exit function as follows: 1 static void @@ -162,7 +177,7 @@ for any pre-existing callbacks to complete. Then lines 55-62 print status and do operation-specific cleanup, and then return, permitting the module-unload operation to be completed. -Quick Quiz #2: Is there any other situation where rcu_barrier() might +Quick Quiz #1: Is there any other situation where rcu_barrier() might be required? Your module might have additional complications. For example, if your @@ -170,6 +185,13 @@ module invokes call_rcu() from timers, you will need to first cancel all the timers, and only then invoke rcu_barrier() to wait for any remaining RCU callbacks to complete. +Of course, if you module uses call_rcu_bh(), you will need to invoke +rcu_barrier_bh() before unloading. Similarly, if your module uses +call_rcu_sched(), you will need to invoke rcu_barrier_sched() before +unloading. If your module uses call_rcu(), call_rcu_bh(), -and- +call_rcu_sched(), then you will need to invoke each of rcu_barrier(), +rcu_barrier_bh(), and rcu_barrier_sched(). + Implementing rcu_barrier() @@ -235,7 +257,7 @@ reaches zero, as follows: 4 complete(&rcu_barrier_completion); 5 } -Quick Quiz #3: What happens if CPU 0's rcu_barrier_func() executes +Quick Quiz #2: What happens if CPU 0's rcu_barrier_func() executes immediately (thus incrementing rcu_barrier_cpu_count to the value one), but the other CPU's rcu_barrier_func() invocations are delayed for a full grace period? Couldn't this result in @@ -252,12 +274,7 @@ so that your module may be safely unloaded. Answers to Quick Quizzes -Quick Quiz #1: Why is there no srcu_barrier()? - -Answer: Since there is no call_srcu(), there can be no outstanding SRCU - callbacks. Therefore, there is no need to wait for them. - -Quick Quiz #2: Is there any other situation where rcu_barrier() might +Quick Quiz #1: Is there any other situation where rcu_barrier() might be required? Answer: Interestingly enough, rcu_barrier() was not originally @@ -271,7 +288,7 @@ Answer: Interestingly enough, rcu_barrier() was not originally implementing rcutorture, and found that rcu_barrier() solves this problem as well. -Quick Quiz #3: What happens if CPU 0's rcu_barrier_func() executes +Quick Quiz #2: What happens if CPU 0's rcu_barrier_func() executes immediately (thus incrementing rcu_barrier_cpu_count to the value one), but the other CPU's rcu_barrier_func() invocations are delayed for a full grace period? Couldn't this result in |
