diff options
Diffstat (limited to 'Documentation/PCI/MSI-HOWTO.txt')
| -rw-r--r-- | Documentation/PCI/MSI-HOWTO.txt | 1055 |
1 files changed, 571 insertions, 484 deletions
diff --git a/Documentation/PCI/MSI-HOWTO.txt b/Documentation/PCI/MSI-HOWTO.txt index 256defd7e17..10a93696e55 100644 --- a/Documentation/PCI/MSI-HOWTO.txt +++ b/Documentation/PCI/MSI-HOWTO.txt @@ -4,506 +4,593 @@ Revised Feb 12, 2004 by Martine Silbermann email: Martine.Silbermann@hp.com Revised Jun 25, 2004 by Tom L Nguyen + Revised Jul 9, 2008 by Matthew Wilcox <willy@linux.intel.com> + Copyright 2003, 2008 Intel Corporation 1. About this guide -This guide describes the basics of Message Signaled Interrupts (MSI), -the advantages of using MSI over traditional interrupt mechanisms, -and how to enable your driver to use MSI or MSI-X. Also included is -a Frequently Asked Questions (FAQ) section. - -1.1 Terminology - -PCI devices can be single-function or multi-function. In either case, -when this text talks about enabling or disabling MSI on a "device -function," it is referring to one specific PCI device and function and -not to all functions on a PCI device (unless the PCI device has only -one function). - -2. Copyright 2003 Intel Corporation - -3. What is MSI/MSI-X? - -Message Signaled Interrupt (MSI), as described in the PCI Local Bus -Specification Revision 2.3 or later, is an optional feature, and a -required feature for PCI Express devices. MSI enables a device function -to request service by sending an Inbound Memory Write on its PCI bus to -the FSB as a Message Signal Interrupt transaction. Because MSI is -generated in the form of a Memory Write, all transaction conditions, -such as a Retry, Master-Abort, Target-Abort or normal completion, are -supported. - -A PCI device that supports MSI must also support pin IRQ assertion -interrupt mechanism to provide backward compatibility for systems that -do not support MSI. In systems which support MSI, the bus driver is -responsible for initializing the message address and message data of -the device function's MSI/MSI-X capability structure during device -initial configuration. - -An MSI capable device function indicates MSI support by implementing -the MSI/MSI-X capability structure in its PCI capability list. The -device function may implement both the MSI capability structure and -the MSI-X capability structure; however, the bus driver should not -enable both. - -The MSI capability structure contains Message Control register, -Message Address register and Message Data register. These registers -provide the bus driver control over MSI. The Message Control register -indicates the MSI capability supported by the device. The Message -Address register specifies the target address and the Message Data -register specifies the characteristics of the message. To request -service, the device function writes the content of the Message Data -register to the target address. The device and its software driver -are prohibited from writing to these registers. - -The MSI-X capability structure is an optional extension to MSI. It -uses an independent and separate capability structure. There are -some key advantages to implementing the MSI-X capability structure -over the MSI capability structure as described below. - - - Support a larger maximum number of vectors per function. - - - Provide the ability for system software to configure - each vector with an independent message address and message - data, specified by a table that resides in Memory Space. - - - MSI and MSI-X both support per-vector masking. Per-vector - masking is an optional extension of MSI but a required - feature for MSI-X. Per-vector masking provides the kernel the - ability to mask/unmask a single MSI while running its - interrupt service routine. If per-vector masking is - not supported, then the device driver should provide the - hardware/software synchronization to ensure that the device - generates MSI when the driver wants it to do so. - -4. Why use MSI? - -As a benefit to the simplification of board design, MSI allows board -designers to remove out-of-band interrupt routing. MSI is another -step towards a legacy-free environment. - -Due to increasing pressure on chipset and processor packages to -reduce pin count, the need for interrupt pins is expected to -diminish over time. Devices, due to pin constraints, may implement -messages to increase performance. - -PCI Express endpoints uses INTx emulation (in-band messages) instead -of IRQ pin assertion. Using INTx emulation requires interrupt -sharing among devices connected to the same node (PCI bridge) while -MSI is unique (non-shared) and does not require BIOS configuration -support. As a result, the PCI Express technology requires MSI -support for better interrupt performance. - -Using MSI enables the device functions to support two or more -vectors, which can be configured to target different CPUs to -increase scalability. - -5. Configuring a driver to use MSI/MSI-X - -By default, the kernel will not enable MSI/MSI-X on all devices that -support this capability. The CONFIG_PCI_MSI kernel option -must be selected to enable MSI/MSI-X support. - -5.1 Including MSI/MSI-X support into the kernel - -To allow MSI/MSI-X capable device drivers to selectively enable -MSI/MSI-X (using pci_enable_msi()/pci_enable_msix() as described -below), the VECTOR based scheme needs to be enabled by setting -CONFIG_PCI_MSI during kernel config. - -Since the target of the inbound message is the local APIC, providing -CONFIG_X86_LOCAL_APIC must be enabled as well as CONFIG_PCI_MSI. - -5.2 Configuring for MSI support - -Due to the non-contiguous fashion in vector assignment of the -existing Linux kernel, this version does not support multiple -messages regardless of a device function is capable of supporting -more than one vector. To enable MSI on a device function's MSI -capability structure requires a device driver to call the function -pci_enable_msi() explicitly. - -5.2.1 API pci_enable_msi +This guide describes the basics of Message Signaled Interrupts (MSIs), +the advantages of using MSI over traditional interrupt mechanisms, how +to change your driver to use MSI or MSI-X and some basic diagnostics to +try if a device doesn't support MSIs. + + +2. What are MSIs? + +A Message Signaled Interrupt is a write from the device to a special +address which causes an interrupt to be received by the CPU. + +The MSI capability was first specified in PCI 2.2 and was later enhanced +in PCI 3.0 to allow each interrupt to be masked individually. The MSI-X +capability was also introduced with PCI 3.0. It supports more interrupts +per device than MSI and allows interrupts to be independently configured. + +Devices may support both MSI and MSI-X, but only one can be enabled at +a time. + + +3. Why use MSIs? + +There are three reasons why using MSIs can give an advantage over +traditional pin-based interrupts. + +Pin-based PCI interrupts are often shared amongst several devices. +To support this, the kernel must call each interrupt handler associated +with an interrupt, which leads to reduced performance for the system as +a whole. MSIs are never shared, so this problem cannot arise. + +When a device writes data to memory, then raises a pin-based interrupt, +it is possible that the interrupt may arrive before all the data has +arrived in memory (this becomes more likely with devices behind PCI-PCI +bridges). In order to ensure that all the data has arrived in memory, +the interrupt handler must read a register on the device which raised +the interrupt. PCI transaction ordering rules require that all the data +arrive in memory before the value may be returned from the register. +Using MSIs avoids this problem as the interrupt-generating write cannot +pass the data writes, so by the time the interrupt is raised, the driver +knows that all the data has arrived in memory. + +PCI devices can only support a single pin-based interrupt per function. +Often drivers have to query the device to find out what event has +occurred, slowing down interrupt handling for the common case. With +MSIs, a device can support more interrupts, allowing each interrupt +to be specialised to a different purpose. One possible design gives +infrequent conditions (such as errors) their own interrupt which allows +the driver to handle the normal interrupt handling path more efficiently. +Other possible designs include giving one interrupt to each packet queue +in a network card or each port in a storage controller. + + +4. How to use MSIs + +PCI devices are initialised to use pin-based interrupts. The device +driver has to set up the device to use MSI or MSI-X. Not all machines +support MSIs correctly, and for those machines, the APIs described below +will simply fail and the device will continue to use pin-based interrupts. + +4.1 Include kernel support for MSIs + +To support MSI or MSI-X, the kernel must be built with the CONFIG_PCI_MSI +option enabled. This option is only available on some architectures, +and it may depend on some other options also being set. For example, +on x86, you must also enable X86_UP_APIC or SMP in order to see the +CONFIG_PCI_MSI option. + +4.2 Using MSI + +Most of the hard work is done for the driver in the PCI layer. It simply +has to request that the PCI layer set up the MSI capability for this +device. + +4.2.1 pci_enable_msi int pci_enable_msi(struct pci_dev *dev) -With this new API, a device driver that wants to have MSI -enabled on its device function must call this API to enable MSI. -A successful call will initialize the MSI capability structure -with ONE vector, regardless of whether a device function is -capable of supporting multiple messages. This vector replaces the -pre-assigned dev->irq with a new MSI vector. To avoid a conflict -of the new assigned vector with existing pre-assigned vector requires -a device driver to call this API before calling request_irq(). +A successful call allocates ONE interrupt to the device, regardless +of how many MSIs the device supports. The device is switched from +pin-based interrupt mode to MSI mode. The dev->irq number is changed +to a new number which represents the message signaled interrupt; +consequently, this function should be called before the driver calls +request_irq(), because an MSI is delivered via a vector that is +different from the vector of a pin-based interrupt. + +4.2.2 pci_enable_msi_range + +int pci_enable_msi_range(struct pci_dev *dev, int minvec, int maxvec) + +This function allows a device driver to request any number of MSI +interrupts within specified range from 'minvec' to 'maxvec'. + +If this function returns a positive number it indicates the number of +MSI interrupts that have been successfully allocated. In this case +the device is switched from pin-based interrupt mode to MSI mode and +updates dev->irq to be the lowest of the new interrupts assigned to it. +The other interrupts assigned to the device are in the range dev->irq +to dev->irq + returned value - 1. Device driver can use the returned +number of successfully allocated MSI interrupts to further allocate +and initialize device resources. + +If this function returns a negative number, it indicates an error and +the driver should not attempt to request any more MSI interrupts for +this device. + +This function should be called before the driver calls request_irq(), +because MSI interrupts are delivered via vectors that are different +from the vector of a pin-based interrupt. + +It is ideal if drivers can cope with a variable number of MSI interrupts; +there are many reasons why the platform may not be able to provide the +exact number that a driver asks for. + +There could be devices that can not operate with just any number of MSI +interrupts within a range. See chapter 4.3.1.3 to get the idea how to +handle such devices for MSI-X - the same logic applies to MSI. -5.2.2 API pci_disable_msi +4.2.1.1 Maximum possible number of MSI interrupts + +The typical usage of MSI interrupts is to allocate as many vectors as +possible, likely up to the limit returned by pci_msi_vec_count() function: + +static int foo_driver_enable_msi(struct pci_dev *pdev, int nvec) +{ + return pci_enable_msi_range(pdev, 1, nvec); +} + +Note the value of 'minvec' parameter is 1. As 'minvec' is inclusive, +the value of 0 would be meaningless and could result in error. + +Some devices have a minimal limit on number of MSI interrupts. +In this case the function could look like this: + +static int foo_driver_enable_msi(struct pci_dev *pdev, int nvec) +{ + return pci_enable_msi_range(pdev, FOO_DRIVER_MINIMUM_NVEC, nvec); +} + +4.2.1.2 Exact number of MSI interrupts + +If a driver is unable or unwilling to deal with a variable number of MSI +interrupts it could request a particular number of interrupts by passing +that number to pci_enable_msi_range() function as both 'minvec' and 'maxvec' +parameters: + +static int foo_driver_enable_msi(struct pci_dev *pdev, int nvec) +{ + return pci_enable_msi_range(pdev, nvec, nvec); +} + +Note, unlike pci_enable_msi_exact() function, which could be also used to +enable a particular number of MSI-X interrupts, pci_enable_msi_range() +returns either a negative errno or 'nvec' (not negative errno or 0 - as +pci_enable_msi_exact() does). + +4.2.1.3 Single MSI mode + +The most notorious example of the request type described above is +enabling the single MSI mode for a device. It could be done by passing +two 1s as 'minvec' and 'maxvec': + +static int foo_driver_enable_single_msi(struct pci_dev *pdev) +{ + return pci_enable_msi_range(pdev, 1, 1); +} + +Note, unlike pci_enable_msi() function, which could be also used to +enable the single MSI mode, pci_enable_msi_range() returns either a +negative errno or 1 (not negative errno or 0 - as pci_enable_msi() +does). + +4.2.3 pci_enable_msi_exact + +int pci_enable_msi_exact(struct pci_dev *dev, int nvec) + +This variation on pci_enable_msi_range() call allows a device driver to +request exactly 'nvec' MSIs. + +If this function returns a negative number, it indicates an error and +the driver should not attempt to request any more MSI interrupts for +this device. + +By contrast with pci_enable_msi_range() function, pci_enable_msi_exact() +returns zero in case of success, which indicates MSI interrupts have been +successfully allocated. + +4.2.4 pci_disable_msi void pci_disable_msi(struct pci_dev *dev) -This API should always be used to undo the effect of pci_enable_msi() -when a device driver is unloading. This API restores dev->irq with -the pre-assigned IOAPIC vector and switches a device's interrupt -mode to PCI pin-irq assertion/INTx emulation mode. - -Note that a device driver should always call free_irq() on the MSI vector -that it has done request_irq() on before calling this API. Failure to do -so results in a BUG_ON() and a device will be left with MSI enabled and -leaks its vector. - -5.2.3 MSI mode vs. legacy mode diagram - -The below diagram shows the events which switch the interrupt -mode on the MSI-capable device function between MSI mode and -PIN-IRQ assertion mode. - - ------------ pci_enable_msi ------------------------ - | | <=============== | | - | MSI MODE | | PIN-IRQ ASSERTION MODE | - | | ===============> | | - ------------ pci_disable_msi ------------------------ - - -Figure 1. MSI Mode vs. Legacy Mode - -In Figure 1, a device operates by default in legacy mode. Legacy -in this context means PCI pin-irq assertion or PCI-Express INTx -emulation. A successful MSI request (using pci_enable_msi()) switches -a device's interrupt mode to MSI mode. A pre-assigned IOAPIC vector -stored in dev->irq will be saved by the PCI subsystem and a new -assigned MSI vector will replace dev->irq. - -To return back to its default mode, a device driver should always call -pci_disable_msi() to undo the effect of pci_enable_msi(). Note that a -device driver should always call free_irq() on the MSI vector it has -done request_irq() on before calling pci_disable_msi(). Failure to do -so results in a BUG_ON() and a device will be left with MSI enabled and -leaks its vector. Otherwise, the PCI subsystem restores a device's -dev->irq with a pre-assigned IOAPIC vector and marks the released -MSI vector as unused. - -Once being marked as unused, there is no guarantee that the PCI -subsystem will reserve this MSI vector for a device. Depending on -the availability of current PCI vector resources and the number of -MSI/MSI-X requests from other drivers, this MSI may be re-assigned. - -For the case where the PCI subsystem re-assigns this MSI vector to -another driver, a request to switch back to MSI mode may result -in being assigned a different MSI vector or a failure if no more -vectors are available. - -5.3 Configuring for MSI-X support - -Due to the ability of the system software to configure each vector of -the MSI-X capability structure with an independent message address -and message data, the non-contiguous fashion in vector assignment of -the existing Linux kernel has no impact on supporting multiple -messages on an MSI-X capable device functions. To enable MSI-X on -a device function's MSI-X capability structure requires its device -driver to call the function pci_enable_msix() explicitly. - -The function pci_enable_msix(), once invoked, enables either -all or nothing, depending on the current availability of PCI vector -resources. If the PCI vector resources are available for the number -of vectors requested by a device driver, this function will configure -the MSI-X table of the MSI-X capability structure of a device with -requested messages. To emphasize this reason, for example, a device -may be capable for supporting the maximum of 32 vectors while its -software driver usually may request 4 vectors. It is recommended -that the device driver should call this function once during the -initialization phase of the device driver. - -Unlike the function pci_enable_msi(), the function pci_enable_msix() -does not replace the pre-assigned IOAPIC dev->irq with a new MSI -vector because the PCI subsystem writes the 1:1 vector-to-entry mapping -into the field vector of each element contained in a second argument. -Note that the pre-assigned IOAPIC dev->irq is valid only if the device -operates in PIN-IRQ assertion mode. In MSI-X mode, any attempt at -using dev->irq by the device driver to request for interrupt service -may result in unpredictable behavior. - -For each MSI-X vector granted, a device driver is responsible for calling -other functions like request_irq(), enable_irq(), etc. to enable -this vector with its corresponding interrupt service handler. It is -a device driver's choice to assign all vectors with the same -interrupt service handler or each vector with a unique interrupt -service handler. - -5.3.1 Handling MMIO address space of MSI-X Table - -The PCI 3.0 specification has implementation notes that MMIO address -space for a device's MSI-X structure should be isolated so that the -software system can set different pages for controlling accesses to the -MSI-X structure. The implementation of MSI support requires the PCI -subsystem, not a device driver, to maintain full control of the MSI-X -table/MSI-X PBA (Pending Bit Array) and MMIO address space of the MSI-X -table/MSI-X PBA. A device driver should not access the MMIO address -space of the MSI-X table/MSI-X PBA. - -5.3.2 API pci_enable_msix - -int pci_enable_msix(struct pci_dev *dev, struct msix_entry *entries, int nvec) - -This API enables a device driver to request the PCI subsystem -to enable MSI-X messages on its hardware device. Depending on -the availability of PCI vectors resources, the PCI subsystem enables -either all or none of the requested vectors. - -Argument 'dev' points to the device (pci_dev) structure. - -Argument 'entries' is a pointer to an array of msix_entry structs. -The number of entries is indicated in argument 'nvec'. -struct msix_entry is defined in /driver/pci/msi.h: +This function should be used to undo the effect of pci_enable_msi_range(). +Calling it restores dev->irq to the pin-based interrupt number and frees +the previously allocated MSIs. The interrupts may subsequently be assigned +to another device, so drivers should not cache the value of dev->irq. + +Before calling this function, a device driver must always call free_irq() +on any interrupt for which it previously called request_irq(). +Failure to do so results in a BUG_ON(), leaving the device with +MSI enabled and thus leaking its vector. + +4.2.4 pci_msi_vec_count + +int pci_msi_vec_count(struct pci_dev *dev) + +This function could be used to retrieve the number of MSI vectors the +device requested (via the Multiple Message Capable register). The MSI +specification only allows the returned value to be a power of two, +up to a maximum of 2^5 (32). + +If this function returns a negative number, it indicates the device is +not capable of sending MSIs. + +If this function returns a positive number, it indicates the maximum +number of MSI interrupt vectors that could be allocated. + +4.3 Using MSI-X + +The MSI-X capability is much more flexible than the MSI capability. +It supports up to 2048 interrupts, each of which can be controlled +independently. To support this flexibility, drivers must use an array of +`struct msix_entry': struct msix_entry { u16 vector; /* kernel uses to write alloc vector */ u16 entry; /* driver uses to specify entry */ }; -A device driver is responsible for initializing the field 'entry' of -each element with a unique entry supported by MSI-X table. Otherwise, --EINVAL will be returned as a result. A successful return of zero -indicates the PCI subsystem completed initializing each of the requested -entries of the MSI-X table with message address and message data. -Last but not least, the PCI subsystem will write the 1:1 -vector-to-entry mapping into the field 'vector' of each element. A -device driver is responsible for keeping track of allocated MSI-X -vectors in its internal data structure. - -A return of zero indicates that the number of MSI-X vectors was -successfully allocated. A return of greater than zero indicates -MSI-X vector shortage. Or a return of less than zero indicates -a failure. This failure may be a result of duplicate entries -specified in second argument, or a result of no available vector, -or a result of failing to initialize MSI-X table entries. - -5.3.3 API pci_disable_msix +This allows for the device to use these interrupts in a sparse fashion; +for example, it could use interrupts 3 and 1027 and yet allocate only a +two-element array. The driver is expected to fill in the 'entry' value +in each element of the array to indicate for which entries the kernel +should assign interrupts; it is invalid to fill in two entries with the +same number. + +4.3.1 pci_enable_msix_range + +int pci_enable_msix_range(struct pci_dev *dev, struct msix_entry *entries, + int minvec, int maxvec) + +Calling this function asks the PCI subsystem to allocate any number of +MSI-X interrupts within specified range from 'minvec' to 'maxvec'. +The 'entries' argument is a pointer to an array of msix_entry structs +which should be at least 'maxvec' entries in size. + +On success, the device is switched into MSI-X mode and the function +returns the number of MSI-X interrupts that have been successfully +allocated. In this case the 'vector' member in entries numbered from +0 to the returned value - 1 is populated with the interrupt number; +the driver should then call request_irq() for each 'vector' that it +decides to use. The device driver is responsible for keeping track of the +interrupts assigned to the MSI-X vectors so it can free them again later. +Device driver can use the returned number of successfully allocated MSI-X +interrupts to further allocate and initialize device resources. + +If this function returns a negative number, it indicates an error and +the driver should not attempt to allocate any more MSI-X interrupts for +this device. + +This function, in contrast with pci_enable_msi_range(), does not adjust +dev->irq. The device will not generate interrupts for this interrupt +number once MSI-X is enabled. + +Device drivers should normally call this function once per device +during the initialization phase. + +It is ideal if drivers can cope with a variable number of MSI-X interrupts; +there are many reasons why the platform may not be able to provide the +exact number that a driver asks for. + +There could be devices that can not operate with just any number of MSI-X +interrupts within a range. E.g., an network adapter might need let's say +four vectors per each queue it provides. Therefore, a number of MSI-X +interrupts allocated should be a multiple of four. In this case interface +pci_enable_msix_range() can not be used alone to request MSI-X interrupts +(since it can allocate any number within the range, without any notion of +the multiple of four) and the device driver should master a custom logic +to request the required number of MSI-X interrupts. + +4.3.1.1 Maximum possible number of MSI-X interrupts + +The typical usage of MSI-X interrupts is to allocate as many vectors as +possible, likely up to the limit returned by pci_msix_vec_count() function: + +static int foo_driver_enable_msix(struct foo_adapter *adapter, int nvec) +{ + return pci_enable_msix_range(adapter->pdev, adapter->msix_entries, + 1, nvec); +} + +Note the value of 'minvec' parameter is 1. As 'minvec' is inclusive, +the value of 0 would be meaningless and could result in error. + +Some devices have a minimal limit on number of MSI-X interrupts. +In this case the function could look like this: + +static int foo_driver_enable_msix(struct foo_adapter *adapter, int nvec) +{ + return pci_enable_msix_range(adapter->pdev, adapter->msix_entries, + FOO_DRIVER_MINIMUM_NVEC, nvec); +} + +4.3.1.2 Exact number of MSI-X interrupts + +If a driver is unable or unwilling to deal with a variable number of MSI-X +interrupts it could request a particular number of interrupts by passing +that number to pci_enable_msix_range() function as both 'minvec' and 'maxvec' +parameters: + +static int foo_driver_enable_msix(struct foo_adapter *adapter, int nvec) +{ + return pci_enable_msix_range(adapter->pdev, adapter->msix_entries, + nvec, nvec); +} + +Note, unlike pci_enable_msix_exact() function, which could be also used to +enable a particular number of MSI-X interrupts, pci_enable_msix_range() +returns either a negative errno or 'nvec' (not negative errno or 0 - as +pci_enable_msix_exact() does). + +4.3.1.3 Specific requirements to the number of MSI-X interrupts + +As noted above, there could be devices that can not operate with just any +number of MSI-X interrupts within a range. E.g., let's assume a device that +is only capable sending the number of MSI-X interrupts which is a power of +two. A routine that enables MSI-X mode for such device might look like this: + +/* + * Assume 'minvec' and 'maxvec' are non-zero + */ +static int foo_driver_enable_msix(struct foo_adapter *adapter, + int minvec, int maxvec) +{ + int rc; + + minvec = roundup_pow_of_two(minvec); + maxvec = rounddown_pow_of_two(maxvec); + + if (minvec > maxvec) + return -ERANGE; + +retry: + rc = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, + maxvec, maxvec); + /* + * -ENOSPC is the only error code allowed to be analized + */ + if (rc == -ENOSPC) { + if (maxvec == 1) + return -ENOSPC; + + maxvec /= 2; + + if (minvec > maxvec) + return -ENOSPC; + + goto retry; + } + + return rc; +} + +Note how pci_enable_msix_range() return value is analized for a fallback - +any error code other than -ENOSPC indicates a fatal error and should not +be retried. + +4.3.2 pci_enable_msix_exact + +int pci_enable_msix_exact(struct pci_dev *dev, + struct msix_entry *entries, int nvec) + +This variation on pci_enable_msix_range() call allows a device driver to +request exactly 'nvec' MSI-Xs. + +If this function returns a negative number, it indicates an error and +the driver should not attempt to allocate any more MSI-X interrupts for +this device. + +By contrast with pci_enable_msix_range() function, pci_enable_msix_exact() +returns zero in case of success, which indicates MSI-X interrupts have been +successfully allocated. + +Another version of a routine that enables MSI-X mode for a device with +specific requirements described in chapter 4.3.1.3 might look like this: + +/* + * Assume 'minvec' and 'maxvec' are non-zero + */ +static int foo_driver_enable_msix(struct foo_adapter *adapter, + int minvec, int maxvec) +{ + int rc; + + minvec = roundup_pow_of_two(minvec); + maxvec = rounddown_pow_of_two(maxvec); + + if (minvec > maxvec) + return -ERANGE; + +retry: + rc = pci_enable_msix_exact(adapter->pdev, + adapter->msix_entries, maxvec); + + /* + * -ENOSPC is the only error code allowed to be analyzed + */ + if (rc == -ENOSPC) { + if (maxvec == 1) + return -ENOSPC; + + maxvec /= 2; + + if (minvec > maxvec) + return -ENOSPC; + + goto retry; + } else if (rc < 0) { + return rc; + } + + return maxvec; +} + +4.3.3 pci_disable_msix void pci_disable_msix(struct pci_dev *dev) -This API should always be used to undo the effect of pci_enable_msix() -when a device driver is unloading. Note that a device driver should -always call free_irq() on all MSI-X vectors it has done request_irq() -on before calling this API. Failure to do so results in a BUG_ON() and -a device will be left with MSI-X enabled and leaks its vectors. - -5.3.4 MSI-X mode vs. legacy mode diagram - -The below diagram shows the events which switch the interrupt -mode on the MSI-X capable device function between MSI-X mode and -PIN-IRQ assertion mode (legacy). - - ------------ pci_enable_msix(,,n) ------------------------ - | | <=============== | | - | MSI-X MODE | | PIN-IRQ ASSERTION MODE | - | | ===============> | | - ------------ pci_disable_msix ------------------------ - -Figure 2. MSI-X Mode vs. Legacy Mode - -In Figure 2, a device operates by default in legacy mode. A -successful MSI-X request (using pci_enable_msix()) switches a -device's interrupt mode to MSI-X mode. A pre-assigned IOAPIC vector -stored in dev->irq will be saved by the PCI subsystem; however, -unlike MSI mode, the PCI subsystem will not replace dev->irq with -assigned MSI-X vector because the PCI subsystem already writes the 1:1 -vector-to-entry mapping into the field 'vector' of each element -specified in second argument. - -To return back to its default mode, a device driver should always call -pci_disable_msix() to undo the effect of pci_enable_msix(). Note that -a device driver should always call free_irq() on all MSI-X vectors it -has done request_irq() on before calling pci_disable_msix(). Failure -to do so results in a BUG_ON() and a device will be left with MSI-X -enabled and leaks its vectors. Otherwise, the PCI subsystem switches a -device function's interrupt mode from MSI-X mode to legacy mode and -marks all allocated MSI-X vectors as unused. - -Once being marked as unused, there is no guarantee that the PCI -subsystem will reserve these MSI-X vectors for a device. Depending on -the availability of current PCI vector resources and the number of -MSI/MSI-X requests from other drivers, these MSI-X vectors may be -re-assigned. - -For the case where the PCI subsystem re-assigned these MSI-X vectors -to other drivers, a request to switch back to MSI-X mode may result -being assigned with another set of MSI-X vectors or a failure if no -more vectors are available. - -5.4 Handling function implementing both MSI and MSI-X capabilities - -For the case where a function implements both MSI and MSI-X -capabilities, the PCI subsystem enables a device to run either in MSI -mode or MSI-X mode but not both. A device driver determines whether it -wants MSI or MSI-X enabled on its hardware device. Once a device -driver requests for MSI, for example, it is prohibited from requesting -MSI-X; in other words, a device driver is not permitted to ping-pong -between MSI mod MSI-X mode during a run-time. - -5.5 Hardware requirements for MSI/MSI-X support - -MSI/MSI-X support requires support from both system hardware and -individual hardware device functions. - -5.5.1 Required x86 hardware support - -Since the target of MSI address is the local APIC CPU, enabling -MSI/MSI-X support in the Linux kernel is dependent on whether existing -system hardware supports local APIC. Users should verify that their -system supports local APIC operation by testing that it runs when -CONFIG_X86_LOCAL_APIC=y. - -In SMP environment, CONFIG_X86_LOCAL_APIC is automatically set; -however, in UP environment, users must manually set -CONFIG_X86_LOCAL_APIC. Once CONFIG_X86_LOCAL_APIC=y, setting -CONFIG_PCI_MSI enables the VECTOR based scheme and the option for -MSI-capable device drivers to selectively enable MSI/MSI-X. - -Note that CONFIG_X86_IO_APIC setting is irrelevant because MSI/MSI-X -vector is allocated new during runtime and MSI/MSI-X support does not -depend on BIOS support. This key independency enables MSI/MSI-X -support on future IOxAPIC free platforms. - -5.5.2 Device hardware support - -The hardware device function supports MSI by indicating the -MSI/MSI-X capability structure on its PCI capability list. By -default, this capability structure will not be initialized by -the kernel to enable MSI during the system boot. In other words, -the device function is running on its default pin assertion mode. -Note that in many cases the hardware supporting MSI have bugs, -which may result in system hangs. The software driver of specific -MSI-capable hardware is responsible for deciding whether to call -pci_enable_msi or not. A return of zero indicates the kernel -successfully initialized the MSI/MSI-X capability structure of the -device function. The device function is now running on MSI/MSI-X mode. - -5.6 How to tell whether MSI/MSI-X is enabled on device function - -At the driver level, a return of zero from the function call of -pci_enable_msi()/pci_enable_msix() indicates to a device driver that -its device function is initialized successfully and ready to run in -MSI/MSI-X mode. - -At the user level, users can use the command 'cat /proc/interrupts' -to display the vectors allocated for devices and their interrupt -MSI/MSI-X modes ("PCI-MSI"/"PCI-MSI-X"). Below shows MSI mode is -enabled on a SCSI Adaptec 39320D Ultra320 controller. - - CPU0 CPU1 - 0: 324639 0 IO-APIC-edge timer - 1: 1186 0 IO-APIC-edge i8042 - 2: 0 0 XT-PIC cascade - 12: 2797 0 IO-APIC-edge i8042 - 14: 6543 0 IO-APIC-edge ide0 - 15: 1 0 IO-APIC-edge ide1 -169: 0 0 IO-APIC-level uhci-hcd -185: 0 0 IO-APIC-level uhci-hcd -193: 138 10 PCI-MSI aic79xx -201: 30 0 PCI-MSI aic79xx -225: 30 0 IO-APIC-level aic7xxx -233: 30 0 IO-APIC-level aic7xxx -NMI: 0 0 -LOC: 324553 325068 -ERR: 0 -MIS: 0 - -6. MSI quirks - -Several PCI chipsets or devices are known to not support MSI. -The PCI stack provides 3 possible levels of MSI disabling: -* on a single device -* on all devices behind a specific bridge -* globally - -6.1. Disabling MSI on a single device - -Under some circumstances it might be required to disable MSI on a -single device. This may be achieved by either not calling pci_enable_msi() -or all, or setting the pci_dev->no_msi flag before (most of the time -in a quirk). - -6.2. Disabling MSI below a bridge - -The vast majority of MSI quirks are required by PCI bridges not -being able to route MSI between busses. In this case, MSI have to be -disabled on all devices behind this bridge. It is achieves by setting -the PCI_BUS_FLAGS_NO_MSI flag in the pci_bus->bus_flags of the bridge -subordinate bus. There is no need to set the same flag on bridges that -are below the broken bridge. When pci_enable_msi() is called to enable -MSI on a device, pci_msi_supported() takes care of checking the NO_MSI -flag in all parent busses of the device. - -Some bridges actually support dynamic MSI support enabling/disabling -by changing some bits in their PCI configuration space (especially -the Hypertransport chipsets such as the nVidia nForce and Serverworks -HT2000). It may then be required to update the NO_MSI flag on the -corresponding devices in the sysfs hierarchy. To enable MSI support -on device "0000:00:0e", do: - - echo 1 > /sys/bus/pci/devices/0000:00:0e/msi_bus - -To disable MSI support, echo 0 instead of 1. Note that it should be -used with caution since changing this value might break interrupts. - -6.3. Disabling MSI globally - -Some extreme cases may require to disable MSI globally on the system. -For now, the only known case is a Serverworks PCI-X chipsets (MSI are -not supported on several busses that are not all connected to the -chipset in the Linux PCI hierarchy). In the vast majority of other -cases, disabling only behind a specific bridge is enough. - -For debugging purpose, the user may also pass pci=nomsi on the kernel -command-line to explicitly disable MSI globally. But, once the appro- -priate quirks are added to the kernel, this option should not be -required anymore. - -6.4. Finding why MSI cannot be enabled on a device - -Assuming that MSI are not enabled on a device, you should look at -dmesg to find messages that quirks may output when disabling MSI -on some devices, some bridges or even globally. -Then, lspci -t gives the list of bridges above a device. Reading -/sys/bus/pci/devices/0000:00:0e/msi_bus will tell you whether MSI -are enabled (1) or disabled (0). In 0 is found in a single bridge -msi_bus file above the device, MSI cannot be enabled. - -7. FAQ - -Q1. Are there any limitations on using the MSI? - -A1. If the PCI device supports MSI and conforms to the -specification and the platform supports the APIC local bus, -then using MSI should work. - -Q2. Will it work on all the Pentium processors (P3, P4, Xeon, -AMD processors)? In P3 IPI's are transmitted on the APIC local -bus and in P4 and Xeon they are transmitted on the system -bus. Are there any implications with this? - -A2. MSI support enables a PCI device sending an inbound -memory write (0xfeexxxxx as target address) on its PCI bus -directly to the FSB. Since the message address has a -redirection hint bit cleared, it should work. - -Q3. The target address 0xfeexxxxx will be translated by the -Host Bridge into an interrupt message. Are there any -limitations on the chipsets such as Intel 8xx, Intel e7xxx, -or VIA? - -A3. If these chipsets support an inbound memory write with -target address set as 0xfeexxxxx, as conformed to PCI -specification 2.3 or latest, then it should work. - -Q4. From the driver point of view, if the MSI is lost because -of errors occurring during inbound memory write, then it may -wait forever. Is there a mechanism for it to recover? - -A4. Since the target of the transaction is an inbound memory -write, all transaction termination conditions (Retry, -Master-Abort, Target-Abort, or normal completion) are -supported. A device sending an MSI must abide by all the PCI -rules and conditions regarding that inbound memory write. So, -if a retry is signaled it must retry, etc... We believe that -the recommendation for Abort is also a retry (refer to PCI -specification 2.3 or latest). +This function should be used to undo the effect of pci_enable_msix_range(). +It frees the previously allocated MSI-X interrupts. The interrupts may +subsequently be assigned to another device, so drivers should not cache +the value of the 'vector' elements over a call to pci_disable_msix(). + +Before calling this function, a device driver must always call free_irq() +on any interrupt for which it previously called request_irq(). +Failure to do so results in a BUG_ON(), leaving the device with +MSI-X enabled and thus leaking its vector. + +4.3.3 The MSI-X Table + +The MSI-X capability specifies a BAR and offset within that BAR for the +MSI-X Table. This address is mapped by the PCI subsystem, and should not +be accessed directly by the device driver. If the driver wishes to +mask or unmask an interrupt, it should call disable_irq() / enable_irq(). + +4.3.4 pci_msix_vec_count + +int pci_msix_vec_count(struct pci_dev *dev) + +This function could be used to retrieve number of entries in the device +MSI-X table. + +If this function returns a negative number, it indicates the device is +not capable of sending MSI-Xs. + +If this function returns a positive number, it indicates the maximum +number of MSI-X interrupt vectors that could be allocated. + +4.4 Handling devices implementing both MSI and MSI-X capabilities + +If a device implements both MSI and MSI-X capabilities, it can +run in either MSI mode or MSI-X mode, but not both simultaneously. +This is a requirement of the PCI spec, and it is enforced by the +PCI layer. Calling pci_enable_msi_range() when MSI-X is already +enabled or pci_enable_msix_range() when MSI is already enabled +results in an error. If a device driver wishes to switch between MSI +and MSI-X at runtime, it must first quiesce the device, then switch +it back to pin-interrupt mode, before calling pci_enable_msi_range() +or pci_enable_msix_range() and resuming operation. This is not expected +to be a common operation but may be useful for debugging or testing +during development. + +4.5 Considerations when using MSIs + +4.5.1 Choosing between MSI-X and MSI + +If your device supports both MSI-X and MSI capabilities, you should use +the MSI-X facilities in preference to the MSI facilities. As mentioned +above, MSI-X supports any number of interrupts between 1 and 2048. +In constrast, MSI is restricted to a maximum of 32 interrupts (and +must be a power of two). In addition, the MSI interrupt vectors must +be allocated consecutively, so the system might not be able to allocate +as many vectors for MSI as it could for MSI-X. On some platforms, MSI +interrupts must all be targeted at the same set of CPUs whereas MSI-X +interrupts can all be targeted at different CPUs. + +4.5.2 Spinlocks + +Most device drivers have a per-device spinlock which is taken in the +interrupt handler. With pin-based interrupts or a single MSI, it is not +necessary to disable interrupts (Linux guarantees the same interrupt will +not be re-entered). If a device uses multiple interrupts, the driver +must disable interrupts while the lock is held. If the device sends +a different interrupt, the driver will deadlock trying to recursively +acquire the spinlock. + +There are two solutions. The first is to take the lock with +spin_lock_irqsave() or spin_lock_irq() (see +Documentation/DocBook/kernel-locking). The second is to specify +IRQF_DISABLED to request_irq() so that the kernel runs the entire +interrupt routine with interrupts disabled. + +If your MSI interrupt routine does not hold the lock for the whole time +it is running, the first solution may be best. The second solution is +normally preferred as it avoids making two transitions from interrupt +disabled to enabled and back again. + +4.6 How to tell whether MSI/MSI-X is enabled on a device + +Using 'lspci -v' (as root) may show some devices with "MSI", "Message +Signalled Interrupts" or "MSI-X" capabilities. Each of these capabilities +has an 'Enable' flag which is followed with either "+" (enabled) +or "-" (disabled). + + +5. MSI quirks + +Several PCI chipsets or devices are known not to support MSIs. +The PCI stack provides three ways to disable MSIs: + +1. globally +2. on all devices behind a specific bridge +3. on a single device + +5.1. Disabling MSIs globally + +Some host chipsets simply don't support MSIs properly. If we're +lucky, the manufacturer knows this and has indicated it in the ACPI +FADT table. In this case, Linux automatically disables MSIs. +Some boards don't include this information in the table and so we have +to detect them ourselves. The complete list of these is found near the +quirk_disable_all_msi() function in drivers/pci/quirks.c. + +If you have a board which has problems with MSIs, you can pass pci=nomsi +on the kernel command line to disable MSIs on all devices. It would be +in your best interests to report the problem to linux-pci@vger.kernel.org +including a full 'lspci -v' so we can add the quirks to the kernel. + +5.2. Disabling MSIs below a bridge + +Some PCI bridges are not able to route MSIs between busses properly. +In this case, MSIs must be disabled on all devices behind the bridge. + +Some bridges allow you to enable MSIs by changing some bits in their +PCI configuration space (especially the Hypertransport chipsets such +as the nVidia nForce and Serverworks HT2000). As with host chipsets, +Linux mostly knows about them and automatically enables MSIs if it can. +If you have a bridge unknown to Linux, you can enable +MSIs in configuration space using whatever method you know works, then +enable MSIs on that bridge by doing: + + echo 1 > /sys/bus/pci/devices/$bridge/msi_bus + +where $bridge is the PCI address of the bridge you've enabled (eg +0000:00:0e.0). + +To disable MSIs, echo 0 instead of 1. Changing this value should be +done with caution as it could break interrupt handling for all devices +below this bridge. + +Again, please notify linux-pci@vger.kernel.org of any bridges that need +special handling. + +5.3. Disabling MSIs on a single device + +Some devices are known to have faulty MSI implementations. Usually this +is handled in the individual device driver, but occasionally it's necessary +to handle this with a quirk. Some drivers have an option to disable use +of MSI. While this is a convenient workaround for the driver author, +it is not good practise, and should not be emulated. + +5.4. Finding why MSIs are disabled on a device + +From the above three sections, you can see that there are many reasons +why MSIs may not be enabled for a given device. Your first step should +be to examine your dmesg carefully to determine whether MSIs are enabled +for your machine. You should also check your .config to be sure you +have enabled CONFIG_PCI_MSI. + +Then, 'lspci -t' gives the list of bridges above a device. Reading +/sys/bus/pci/devices/*/msi_bus will tell you whether MSIs are enabled (1) +or disabled (0). If 0 is found in any of the msi_bus files belonging +to bridges between the PCI root and the device, MSIs are disabled. + +It is also worth checking the device driver to see whether it supports MSIs. +For example, it may contain calls to pci_enable_msi_range() or +pci_enable_msix_range(). |
