aboutsummaryrefslogtreecommitdiff
path: root/arch/x86_64/kernel/process.c
diff options
context:
space:
mode:
authorAndi Kleen <ak@suse.de>2006-04-20 02:36:45 +0200
committerLinus Torvalds <torvalds@g5.osdl.org>2006-04-20 07:58:11 -0700
commit18bd057b1408cd110ed23281533430cfc2d52091 (patch)
tree09d8c44ebdb45763173fe54f6962921f4268cf9f /arch/x86_64/kernel/process.c
parent5dc5cf7dd2723430b6df3d91c5b22af49e063622 (diff)
[PATCH] i386/x86-64: Fix x87 information leak between processes
AMD K7/K8 CPUs only save/restore the FOP/FIP/FDP x87 registers in FXSAVE when an exception is pending. This means the value leak through context switches and allow processes to observe some x87 instruction state of other processes. This was actually documented by AMD, but nobody recognized it as being different from Intel before. The fix first adds an optimization: instead of unconditionally calling FNCLEX after each FXSAVE test if ES is pending and skip it when not needed. Then do a x87 load from a kernel variable to clear FOP/FIP/FDP. This means other processes always will only see a constant value defined by the kernel in their FP state. I took some pain to make sure to chose a variable that's already in L1 during context switch to make the overhead of this low. Also alternative() is used to patch away the new code on CPUs who don't need it. Patch for both i386/x86-64. The problem was discovered originally by Jan Beulich. Richard Brunner provided the basic code for the workarounds, with contribution from Jan. This is CVE-2006-1056 Cc: richard.brunner@amd.com Cc: jbeulich@novell.com Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Diffstat (limited to 'arch/x86_64/kernel/process.c')
-rw-r--r--arch/x86_64/kernel/process.c4
1 files changed, 3 insertions, 1 deletions
diff --git a/arch/x86_64/kernel/process.c b/arch/x86_64/kernel/process.c
index 1c44b53cb15..fb903e65e07 100644
--- a/arch/x86_64/kernel/process.c
+++ b/arch/x86_64/kernel/process.c
@@ -575,8 +575,10 @@ __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
prev->userrsp = read_pda(oldrsp);
write_pda(oldrsp, next->userrsp);
write_pda(pcurrent, next_p);
+
/* This must be here to ensure both math_state_restore() and
- kernel_fpu_begin() work consistently. */
+ kernel_fpu_begin() work consistently.
+ And the AMD workaround requires it to be after DS reload. */
unlazy_fpu(prev_p);
write_pda(kernelstack,
task_stack_page(next_p) + THREAD_SIZE - PDA_STACKOFFSET);