1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
|
MSTRINGIFY(
/*#define float3 float4
float dot3(float3 a, float3 b)
{
return a.x*b.x + a.y*b.y + a.z*b.z;
}*/
float3 projectOnAxis( float3 v, float3 a )
{
return (a*dot(v, a));
}
__kernel void
ApplyForcesKernel(
const uint numNodes,
const float solverdt,
const float epsilon,
__global int * g_vertexClothIdentifier,
__global float4 * g_vertexNormal,
__global float * g_vertexArea,
__global float * g_vertexInverseMass,
__global float * g_clothLiftFactor,
__global float * g_clothDragFactor,
__global float4 * g_clothWindVelocity,
__global float4 * g_clothAcceleration,
__global float * g_clothMediumDensity,
__global float4 * g_vertexForceAccumulator,
__global float4 * g_vertexVelocity)
{
unsigned int nodeID = get_global_id(0);
if( nodeID < numNodes )
{
int clothId = g_vertexClothIdentifier[nodeID];
float nodeIM = g_vertexInverseMass[nodeID];
if( nodeIM > 0.0f )
{
float3 nodeV = g_vertexVelocity[nodeID].xyz;
float3 normal = g_vertexNormal[nodeID].xyz;
float area = g_vertexArea[nodeID];
float3 nodeF = g_vertexForceAccumulator[nodeID].xyz;
// Read per-cloth values
float3 clothAcceleration = g_clothAcceleration[clothId].xyz;
float3 clothWindVelocity = g_clothWindVelocity[clothId].xyz;
float liftFactor = g_clothLiftFactor[clothId];
float dragFactor = g_clothDragFactor[clothId];
float mediumDensity = g_clothMediumDensity[clothId];
// Apply the acceleration to the cloth rather than do this via a force
nodeV += (clothAcceleration*solverdt);
g_vertexVelocity[nodeID] = (float4)(nodeV, 0.f);
float3 relativeWindVelocity = nodeV - clothWindVelocity;
float relativeSpeedSquared = dot(relativeWindVelocity, relativeWindVelocity);
if( relativeSpeedSquared > epsilon )
{
// Correct direction of normal relative to wind direction and get dot product
normal = normal * (dot(normal, relativeWindVelocity) < 0 ? -1.f : 1.f);
float dvNormal = dot(normal, relativeWindVelocity);
if( dvNormal > 0 )
{
float3 force = (float3)(0.f, 0.f, 0.f);
float c0 = area * dvNormal * relativeSpeedSquared / 2.f;
float c1 = c0 * mediumDensity;
force += normal * (-c1 * liftFactor);
force += normalize(relativeWindVelocity)*(-c1 * dragFactor);
float dtim = solverdt * nodeIM;
float3 forceDTIM = force * dtim;
float3 nodeFPlusForce = nodeF + force;
// m_nodesf[i] -= ProjectOnAxis(m_nodesv[i], force.normalized())/dtim;
float3 nodeFMinus = nodeF - (projectOnAxis(nodeV, normalize(force))/dtim);
nodeF = nodeFPlusForce;
if( dot(forceDTIM, forceDTIM) > dot(nodeV, nodeV) )
nodeF = nodeFMinus;
g_vertexForceAccumulator[nodeID] = (float4)(nodeF, 0.0f);
}
}
}
}
}
);
|