aboutsummaryrefslogtreecommitdiff
path: root/src/runtime.js
blob: cd3afb4ba77bcda1ee254e6a8a8555f0313f4aa8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
//"use strict";

// Implementation details for the 'runtime environment' we generate in
// JavaScript. The Runtime object itself is used both during compilation,
// and is available at runtime (dynamic compilation). The RuntimeGenerator
// helps to create the Runtime object (written so that the Runtime object
// itself is as optimized as possible - no unneeded runtime checks).

var RuntimeGenerator = {
  alloc: function(size, type, init, sep, ignoreAlign) {
    sep = sep || ';';
    var ret = type + 'TOP';
    if (init) {
      ret += sep + '_memset(' + type + 'TOP, 0, ' + size + ')';
    }
    ret += sep + type + 'TOP = (' + type + 'TOP + ' + size + ')|0';
    if ({{{ STACK_ALIGN }}} > 1 && !ignoreAlign) {
      ret += sep + RuntimeGenerator.alignMemory(type + 'TOP', {{{ STACK_ALIGN }}});
    }
    return ret;
  },

  // An allocation that lives as long as the current function call
  stackAlloc: function(size, sep) {
    sep = sep || ';';
    var ret = RuntimeGenerator.alloc(size, 'STACK', false, sep, USE_TYPED_ARRAYS != 2 || (isNumber(size) && parseInt(size) % {{{ STACK_ALIGN }}} == 0));
    if (ASSERTIONS) {
      ret += sep + '(assert(' + asmCoercion('(STACKTOP|0) < (STACK_MAX|0)', 'i32') + ')|0)';
    }
    return ret;
  },

  stackEnter: function(initial, force) {
    if (initial === 0 && SKIP_STACK_IN_SMALL && !force) return '';
    var ret = 'var sp=' + (ASM_JS ? '0;sp=' : '') + 'STACKTOP';
    if (initial > 0) ret += ';STACKTOP=(STACKTOP+' + initial + ')|0';
    if (USE_TYPED_ARRAYS == 2) {
      assert(initial % Runtime.STACK_ALIGN == 0);
      if (ASSERTIONS && Runtime.STACK_ALIGN == 4) {
        ret += '; (assert(' + asmCoercion('!(STACKTOP&3)', 'i32') + ')|0)';
      }
    }
    if (ASSERTIONS) {
      ret += '; (assert(' + asmCoercion('(STACKTOP|0) < (STACK_MAX|0)', 'i32') + ')|0)';
    }
    return ret;
  },

  stackExit: function(initial, force) {
    if (initial === 0 && SKIP_STACK_IN_SMALL && !force) return '';
    var ret = '';
    if (SAFE_HEAP) {
      ret += 'var i = sp; while ((i|0) < (STACKTOP|0)) { SAFE_HEAP_CLEAR(i|0); i = (i+1)|0 }';
    }
    return ret += 'STACKTOP=sp';
  },

  // An allocation that cannot normally be free'd (except through sbrk, which once
  // called, takes control of STATICTOP)
  staticAlloc: function(size) {
    if (ASSERTIONS) size = '(assert(!staticSealed),' + size + ')'; // static area must not be sealed
    var ret = RuntimeGenerator.alloc(size, 'STATIC', INIT_HEAP);
    return ret;
  },

  // allocation on the top of memory, adjusted dynamically by sbrk
  dynamicAlloc: function(size) {
    if (ASSERTIONS) size = '(assert(DYNAMICTOP > 0),' + size + ')'; // dynamic area must be ready
    var ret = RuntimeGenerator.alloc(size, 'DYNAMIC', INIT_HEAP);
    if (USE_TYPED_ARRAYS) ret += '; if (DYNAMICTOP >= TOTAL_MEMORY) enlargeMemory();'
    return ret;
  },

  alignMemory: function(target, quantum) {
    if (typeof quantum !== 'number') {
      quantum = '(quantum ? quantum : {{{ STACK_ALIGN }}})';
    }
    return target + ' = ' + Runtime.forceAlign(target, quantum);
  },

  // Given two 32-bit unsigned parts of an emulated 64-bit number, combine them into a JS number (double).
  // Rounding is inevitable if the number is large. This is a particular problem for small negative numbers
  // (-1 will be rounded!), so handle negatives separately and carefully
  makeBigInt: function(low, high, unsigned) {
    var unsignedRet = '(' + asmCoercion(makeSignOp(low, 'i32', 'un', 1, 1), 'double') + '+(' + asmCoercion(makeSignOp(high, 'i32', 'un', 1, 1), 'double') + '*' + asmEnsureFloat(4294967296, 'double') + '))';
    var signedRet = '(' + asmCoercion(makeSignOp(low, 'i32', 'un', 1, 1), 'double') + '+(' + asmCoercion(makeSignOp(high, 'i32', 're', 1, 1), 'double') + '*' + asmEnsureFloat(4294967296, 'double') + '))';
    if (typeof unsigned === 'string') return '(' + unsigned + ' ? ' + unsignedRet + ' : ' + signedRet + ')';
    return unsigned ? unsignedRet : signedRet;
  }
};

function unInline(name_, params) {
  var src = '(function(' + params + ') { var ret = ' + RuntimeGenerator[name_].apply(null, params) + '; return ret; })';
  var ret = eval(src);
  return ret;
}

var Runtime = {
  stackSave: function() {
    return STACKTOP;
  },
  stackRestore: function(stackTop) {
    STACKTOP = stackTop;
  },

  forceAlign: function(target, quantum) {
    quantum = quantum || {{{ QUANTUM_SIZE }}};
    if (quantum == 1) return target;
    if (isNumber(target) && isNumber(quantum)) {
      return Math.ceil(target/quantum)*quantum;
    } else if (isNumber(quantum) && isPowerOfTwo(quantum)) {
      return '(((' +target + ')+' + (quantum-1) + ')&' + -quantum + ')';
    }
    return 'Math.ceil((' + target + ')/' + quantum + ')*' + quantum;
  },

  isNumberType: function(type) {
    return type in Runtime.INT_TYPES || type in Runtime.FLOAT_TYPES;
  },

  isPointerType: isPointerType,
  isStructType: isStructType,

  INT_TYPES: set('i1', 'i8', 'i16', 'i32', 'i64'),
  FLOAT_TYPES: set('float', 'double'),

  // Imprecise bitops utilities
  or64: function(x, y) {
    var l = (x | 0) | (y | 0);
    var h = (Math.round(x / 4294967296) | Math.round(y / 4294967296)) * 4294967296;
    return l + h;
  },
  and64: function(x, y) {
    var l = (x | 0) & (y | 0);
    var h = (Math.round(x / 4294967296) & Math.round(y / 4294967296)) * 4294967296;
    return l + h;
  },
  xor64: function(x, y) {
    var l = (x | 0) ^ (y | 0);
    var h = (Math.round(x / 4294967296) ^ Math.round(y / 4294967296)) * 4294967296;
    return l + h;
  },

  //! Returns the size of a type, as C/C++ would have it (in 32-bit), in bytes.
  //! @param type The type, by name.
  getNativeTypeSize: function(type) {
#if QUANTUM_SIZE == 1
    return 1;
#else
    switch (type) {
      case 'i1': case 'i8': return 1;
      case 'i16': return 2;
      case 'i32': return 4;
      case 'i64': return 8;
      case 'float': return 4;
      case 'double': return 8;
      default: {
        if (type[type.length-1] === '*') {
          return Runtime.QUANTUM_SIZE; // A pointer
        } else if (type[0] === 'i') {
          var bits = parseInt(type.substr(1));
          assert(bits % 8 === 0);
          return bits/8;
        } else {
          return 0;
        }
      }
    }
#endif
  },

  //! Returns the size of a structure field, as C/C++ would have it (in 32-bit,
  //! for now).
  //! @param type The type, by name.
  getNativeFieldSize: function(type) {
    return Math.max(Runtime.getNativeTypeSize(type), Runtime.QUANTUM_SIZE);
  },

  dedup: dedup,

  set: set,

  STACK_ALIGN: {{{ STACK_ALIGN }}},

  // type can be a native type or a struct (or null, for structs we only look at size here)
  getAlignSize: function(type, size, vararg) {
    // we align i64s and doubles on 64-bit boundaries, unlike x86
#if TARGET_LE32 == 1
    if (vararg) return 8;
#endif
#if TARGET_LE32
    if (!vararg && (type == 'i64' || type == 'double')) return 8;
    if (!type) return Math.min(size, 8); // align structures internally to 64 bits
#endif
    return Math.min(size || (type ? Runtime.getNativeFieldSize(type) : 0), Runtime.QUANTUM_SIZE);
  },

  // Calculate aligned size, just like C structs should be. TODO: Consider
  // requesting that compilation be done with #pragma pack(push) /n #pragma pack(1),
  // which would remove much of the complexity here.
  calculateStructAlignment: function calculateStructAlignment(type) {
    type.flatSize = 0;
    type.alignSize = 0;
    var diffs = [];
    var prev = -1;
    var index = 0;
    type.flatIndexes = type.fields.map(function(field) {
      index++;
      var size, alignSize;
      if (Runtime.isNumberType(field) || Runtime.isPointerType(field)) {
        size = Runtime.getNativeTypeSize(field); // pack char; char; in structs, also char[X]s.
        alignSize = Runtime.getAlignSize(field, size);
      } else if (Runtime.isStructType(field)) {
        if (field[1] === '0') {
          // this is [0 x something]. When inside another structure like here, it must be at the end,
          // and it adds no size
          // XXX this happens in java-nbody for example... assert(index === type.fields.length, 'zero-length in the middle!');
          size = 0;
          if (Types.types[field]) {
            alignSize = Runtime.getAlignSize(null, Types.types[field].alignSize);
          } else {
            alignSize = type.alignSize || QUANTUM_SIZE;
          }
        } else {
          size = Types.types[field].flatSize;
          alignSize = Runtime.getAlignSize(null, Types.types[field].alignSize);
        }
      } else if (field[0] == 'b') {
        // bN, large number field, like a [N x i8]
        size = field.substr(1)|0;
        alignSize = 1;
      } else if (field[0] === '<') {
        // vector type
        size = alignSize = Types.types[field].flatSize; // fully aligned
      } else if (field[0] === 'i') {
        // illegal integer field, that could not be legalized because it is an internal structure field
        // it is ok to have such fields, if we just use them as markers of field size and nothing more complex
        size = alignSize = parseInt(field.substr(1))/8;
        assert(size % 1 === 0, 'cannot handle non-byte-size field ' + field);
      } else {
        assert(false, 'invalid type for calculateStructAlignment');
      }
      if (type.packed) alignSize = 1;
      type.alignSize = Math.max(type.alignSize, alignSize);
      var curr = Runtime.alignMemory(type.flatSize, alignSize); // if necessary, place this on aligned memory
      type.flatSize = curr + size;
      if (prev >= 0) {
        diffs.push(curr-prev);
      }
      prev = curr;
      return curr;
    });
    if (type.name_ && type.name_[0] === '[') {
      // arrays have 2 elements, so we get the proper difference. then we scale here. that way we avoid
      // allocating a potentially huge array for [999999 x i8] etc.
      type.flatSize = parseInt(type.name_.substr(1))*type.flatSize/2;
    }
    type.flatSize = Runtime.alignMemory(type.flatSize, type.alignSize);
    if (diffs.length == 0) {
      type.flatFactor = type.flatSize;
    } else if (Runtime.dedup(diffs).length == 1) {
      type.flatFactor = diffs[0];
    }
    type.needsFlattening = (type.flatFactor != 1);
    return type.flatIndexes;
  },

  // Given details about a structure, returns its alignment. For example,
  // generateStructInfo(
  //    [
  //      ['i32', 'field1'],
  //      ['i8', 'field2']
  //    ]
  // ) will return
  //    { field1: 0, field2: 4 } (depending on QUANTUM_SIZE)
  //
  // Instead of [type, name], you can also provide just [name]. In that case
  // it will use type information present in LLVM bitcode. (It is safer to
  // specify the type though, as it will then check the type.) You must then
  // also specify the second parameter to generateStructInfo, which is the
  // LLVM structure name.
  //
  // Note that LLVM optimizations can remove some of the debug info generated
  // by -g.
  //
  // Note that you will need the full %struct.* name here at compile time,
  // but not at runtime. The reason is that during compilation we cannot
  // simplify the type names yet. At runtime, you can provide either the short
  // or the full name.
  //
  // When providing a typeName, you can generate information for nested
  // structs, for example, struct = ['field1', { field2: ['sub1', 'sub2', 'sub3'] }, 'field3']
  // which represents a structure whose 2nd field is another structure.
  generateStructInfo: function(struct, typeName, offset) {
    var type, alignment;
    if (typeName) {
      offset = offset || 0;
      type = (typeof Types === 'undefined' ? Runtime.typeInfo : Types.types)[typeName];
      if (!type) return null;
      if (type.fields.length != struct.length) {
        printErr('Number of named fields must match the type for ' + typeName + ': possibly duplicate struct names. Cannot return structInfo');
        return null;
      }
      alignment = type.flatIndexes;
    } else {
      var type = { fields: struct.map(function(item) { return item[0] }) };
      alignment = Runtime.calculateStructAlignment(type);
    }
    var ret = {
      __size__: type.flatSize
    };
    if (typeName) {
      struct.forEach(function(item, i) {
        if (typeof item === 'string') {
          ret[item] = alignment[i] + offset;
        } else {
          // embedded struct
          var key;
          for (var k in item) key = k;
          ret[key] = Runtime.generateStructInfo(item[key], type.fields[i], alignment[i]);
        }
      });
    } else {
      struct.forEach(function(item, i) {
        ret[item[1]] = alignment[i];
      });
    }
    return ret;
  },

  dynCall: function(sig, ptr, args) {
    if (args && args.length) {
#if ASSERTIONS
      assert(args.length == sig.length-1);
#endif
#if ASM_JS
      if (!args.splice) args = Array.prototype.slice.call(args);
      args.splice(0, 0, ptr);
      return Module['dynCall_' + sig].apply(null, args);
#else
      return FUNCTION_TABLE[ptr].apply(null, args);
#endif
    } else {
#if ASSERTIONS
      assert(sig.length == 1);
#endif
#if ASM_JS
      return Module['dynCall_' + sig].call(null, ptr);
#else
      return FUNCTION_TABLE[ptr]();
#endif
    }
  },

#if ASM_JS
  functionPointers: new Array(RESERVED_FUNCTION_POINTERS),
#endif

  addFunction: function(func) {
#if ASM_JS
    for (var i = 0; i < Runtime.functionPointers.length; i++) {
      if (!Runtime.functionPointers[i]) {
        Runtime.functionPointers[i] = func;
        return {{{ FUNCTION_POINTER_ALIGNMENT }}}*(1 + i);
      }
    }
    throw 'Finished up all reserved function pointers. Use a higher value for RESERVED_FUNCTION_POINTERS.';
#else
    var table = FUNCTION_TABLE;
    var ret = table.length;
    assert(ret % {{{ FUNCTION_POINTER_ALIGNMENT }}} === 0);
    table.push(func);
    for (var i = 0; i < {{{ FUNCTION_POINTER_ALIGNMENT }}}-1; i++) table.push(0);
    return ret;
#endif
  },

  removeFunction: function(index) {
#if ASM_JS
    Runtime.functionPointers[(index-{{{ FUNCTION_POINTER_ALIGNMENT }}})/{{{ FUNCTION_POINTER_ALIGNMENT }}}] = null;
#else
    var table = FUNCTION_TABLE;
    table[index] = null;
#endif
  },

  getAsmConst: function(code, numArgs) {
    // code is a constant string on the heap, so we can cache these
    if (!Runtime.asmConstCache) Runtime.asmConstCache = {};
    var func = Runtime.asmConstCache[code];
    if (func) return func;
    var args = [];
    for (var i = 0; i < numArgs; i++) {
      args.push(String.fromCharCode(36) + i); // $0, $1 etc
    }
    return Runtime.asmConstCache[code] = eval('(function(' + args.join(',') + '){ ' + Pointer_stringify(code) + ' })'); // new Function does not allow upvars in node
  },

  warnOnce: function(text) {
    if (!Runtime.warnOnce.shown) Runtime.warnOnce.shown = {};
    if (!Runtime.warnOnce.shown[text]) {
      Runtime.warnOnce.shown[text] = 1;
      Module.printErr(text);
    }
  },

  funcWrappers: {},

  getFuncWrapper: function(func, sig) {
    assert(sig);
    if (!Runtime.funcWrappers[func]) {
      Runtime.funcWrappers[func] = function dynCall_wrapper() {
        return Runtime.dynCall(sig, func, arguments);
      };
    }
    return Runtime.funcWrappers[func];
  },

  // Returns a processor of UTF.
  // processCChar() receives characters from a C-like UTF representation and returns JS string fragments.
  // See RFC3629 for details, the bytes are assumed to be valid UTF-8
  // processJSString() receives a JS string and returns a C-like UTF representation in an array
  UTF8Processor: function() {
    var buffer = [];
    var needed = 0;
    this.processCChar = function (code) {
      code = code & 0xFF;

      if (buffer.length == 0) {
        if ((code & 0x80) == 0x00) {        // 0xxxxxxx
          return String.fromCharCode(code);
        }
        buffer.push(code);
        if ((code & 0xE0) == 0xC0) {        // 110xxxxx
          needed = 1;
        } else if ((code & 0xF0) == 0xE0) { // 1110xxxx
          needed = 2;
        } else {                            // 11110xxx
          needed = 3;
        }
        return '';
      }

      if (needed) {
        buffer.push(code);
        needed--;
        if (needed > 0) return '';
      }

      var c1 = buffer[0];
      var c2 = buffer[1];
      var c3 = buffer[2];
      var c4 = buffer[3];
      var ret;
      if (buffer.length == 2) {
        ret = String.fromCharCode(((c1 & 0x1F) << 6)  | (c2 & 0x3F));
      } else if (buffer.length == 3) {
        ret = String.fromCharCode(((c1 & 0x0F) << 12) | ((c2 & 0x3F) << 6)  | (c3 & 0x3F));
      } else {
        // http://mathiasbynens.be/notes/javascript-encoding#surrogate-formulae
        var codePoint = ((c1 & 0x07) << 18) | ((c2 & 0x3F) << 12) |
                        ((c3 & 0x3F) << 6)  | (c4 & 0x3F);
        ret = String.fromCharCode(
          Math.floor((codePoint - 0x10000) / 0x400) + 0xD800,
          (codePoint - 0x10000) % 0x400 + 0xDC00);
      }
      buffer.length = 0;
      return ret;
    }
    this.processJSString = function processJSString(string) {
      string = unescape(encodeURIComponent(string));
      var ret = [];
      for (var i = 0; i < string.length; i++) {
        ret.push(string.charCodeAt(i));
      }
      return ret;
    }
  },

#if RUNTIME_DEBUG
  debug: true, // Switch to false at runtime to disable logging at the right times

  printObjectList: [],

  prettyPrint: function(arg) {
    if (typeof arg == 'undefined') return '!UNDEFINED!';
    if (typeof arg == 'boolean') arg = arg + 0;
    if (!arg) return arg;
    var index = Runtime.printObjectList.indexOf(arg);
    if (index >= 0) return '<' + arg + '|' + index + '>';
    if (arg.toString() == '[object HTMLImageElement]') {
      return arg + '\n\n';
    }
    if (arg.byteLength) {
      return '{' + Array.prototype.slice.call(arg, 0, Math.min(arg.length, 400)) + '}'; // Useful for correct arrays, less so for compiled arrays, see the code below for that
      var buf = new ArrayBuffer(32);
      var i8buf = new Int8Array(buf);
      var i16buf = new Int16Array(buf);
      var f32buf = new Float32Array(buf);
      switch(arg.toString()) {
        case '[object Uint8Array]':
          i8buf.set(arg.subarray(0, 32));
          break;
        case '[object Float32Array]':
          f32buf.set(arg.subarray(0, 5));
          break;
        case '[object Uint16Array]':
          i16buf.set(arg.subarray(0, 16));
          break;
        default:
          alert('unknown array for debugging: ' + arg);
          throw 'see alert';
      }
      var ret = '{' + arg.byteLength + ':\n';
      var arr = Array.prototype.slice.call(i8buf);
      ret += 'i8:' + arr.toString().replace(/,/g, ',') + '\n';
      arr = Array.prototype.slice.call(f32buf, 0, 8);
      ret += 'f32:' + arr.toString().replace(/,/g, ',') + '}';
      return ret;
    }
    if (typeof arg == 'object') {
      Runtime.printObjectList.push(arg);
      return '<' + arg + '|' + (Runtime.printObjectList.length-1) + '>';
    }
    if (typeof arg == 'number') {
      if (arg > 0) return '0x' + arg.toString(16) + ' (' + arg + ')';
    }
    return arg;
  }
#endif
};

Runtime.stackAlloc = unInline('stackAlloc', ['size']);
Runtime.staticAlloc = unInline('staticAlloc', ['size']);
Runtime.dynamicAlloc = unInline('dynamicAlloc', ['size']);
Runtime.alignMemory = unInline('alignMemory', ['size', 'quantum']);
Runtime.makeBigInt = unInline('makeBigInt', ['low', 'high', 'unsigned']);

function getRuntime() {
  var ret = 'var Runtime = {\n';
  for (i in Runtime) {
    var item = Runtime[i];
    ret += '  ' + i + ': ';
    if (typeof item === 'function') {
      ret += item.toString();
    } else {
      ret += JSON.stringify(item);
    }
    ret += ',\n';
  }
  return ret + '  __dummy__: 0\n}\n';
}

// Additional runtime elements, that need preprocessing

// Converts a value we have as signed, into an unsigned value. For
// example, -1 in int32 would be a very large number as unsigned.
function unSign(value, bits, ignore, sig) {
  if (value >= 0) {
    return value;
  }
#if CHECK_SIGNS
  if (!ignore) throw 'UnSign';
#endif
  return bits <= 32 ? 2*Math.abs(1 << (bits-1)) + value // Need some trickery, since if bits == 32, we are right at the limit of the bits JS uses in bitshifts
                    : Math.pow(2, bits)         + value;
}

// Converts a value we have as unsigned, into a signed value. For
// example, 200 in a uint8 would be a negative number.
function reSign(value, bits, ignore, sig) {
  if (value <= 0) {
    return value;
  }
  var half = bits <= 32 ? Math.abs(1 << (bits-1)) // abs is needed if bits == 32
                        : Math.pow(2, bits-1);
#if CHECK_SIGNS
  var noted = false;
#endif
  if (value >= half && (bits <= 32 || value > half)) { // for huge values, we can hit the precision limit and always get true here. so don't do that
                                                       // but, in general there is no perfect solution here. With 64-bit ints, we get rounding and errors
                                                       // TODO: In i64 mode 1, resign the two parts separately and safely
#if CHECK_SIGNS
    if (!ignore) throw 'ReSign';
#endif
    value = -2*half + value; // Cannot bitshift half, as it may be at the limit of the bits JS uses in bitshifts
  }
#if CHECK_SIGNS
  // If this is a 32-bit value, then it should be corrected at this point. And,
  // without CHECK_SIGNS, we would just do the |0 shortcut, so check that that
  // would indeed give the exact same result.
  if (bits === 32 && (value|0) !== value && typeof value !== 'boolean') {
    if (!ignore) throw 'ReSign';
  }
#endif
  return value;
}

// The address globals begin at. Very low in memory, for code size and optimization opportunities.
// Above 0 is static memory, starting with globals.
// Then the stack.
// Then 'dynamic' memory for sbrk.
Runtime.GLOBAL_BASE = Runtime.alignMemory(1);