aboutsummaryrefslogtreecommitdiff
path: root/tests/libcxx/hash.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'tests/libcxx/hash.cpp')
-rw-r--r--tests/libcxx/hash.cpp559
1 files changed, 0 insertions, 559 deletions
diff --git a/tests/libcxx/hash.cpp b/tests/libcxx/hash.cpp
deleted file mode 100644
index 728b9bd3..00000000
--- a/tests/libcxx/hash.cpp
+++ /dev/null
@@ -1,559 +0,0 @@
-//===-------------------------- hash.cpp ----------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is dual licensed under the MIT and the University of Illinois Open
-// Source Licenses. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#include "__hash_table"
-#include "algorithm"
-#include "stdexcept"
-
-_LIBCPP_BEGIN_NAMESPACE_STD
-
-namespace {
-
-// handle all next_prime(i) for i in [1, 210), special case 0
-const unsigned small_primes[] =
-{
- 0,
- 2,
- 3,
- 5,
- 7,
- 11,
- 13,
- 17,
- 19,
- 23,
- 29,
- 31,
- 37,
- 41,
- 43,
- 47,
- 53,
- 59,
- 61,
- 67,
- 71,
- 73,
- 79,
- 83,
- 89,
- 97,
- 101,
- 103,
- 107,
- 109,
- 113,
- 127,
- 131,
- 137,
- 139,
- 149,
- 151,
- 157,
- 163,
- 167,
- 173,
- 179,
- 181,
- 191,
- 193,
- 197,
- 199,
- 211
-};
-
-// potential primes = 210*k + indices[i], k >= 1
-// these numbers are not divisible by 2, 3, 5 or 7
-// (or any integer 2 <= j <= 10 for that matter).
-const unsigned indices[] =
-{
- 1,
- 11,
- 13,
- 17,
- 19,
- 23,
- 29,
- 31,
- 37,
- 41,
- 43,
- 47,
- 53,
- 59,
- 61,
- 67,
- 71,
- 73,
- 79,
- 83,
- 89,
- 97,
- 101,
- 103,
- 107,
- 109,
- 113,
- 121,
- 127,
- 131,
- 137,
- 139,
- 143,
- 149,
- 151,
- 157,
- 163,
- 167,
- 169,
- 173,
- 179,
- 181,
- 187,
- 191,
- 193,
- 197,
- 199,
- 209
-};
-
-}
-
-// Returns: If n == 0, returns 0. Else returns the lowest prime number that
-// is greater than or equal to n.
-//
-// The algorithm creates a list of small primes, plus an open-ended list of
-// potential primes. All prime numbers are potential prime numbers. However
-// some potential prime numbers are not prime. In an ideal world, all potential
-// prime numbers would be prime. Candiate prime numbers are chosen as the next
-// highest potential prime. Then this number is tested for prime by dividing it
-// by all potential prime numbers less than the sqrt of the candidate.
-//
-// This implementation defines potential primes as those numbers not divisible
-// by 2, 3, 5, and 7. Other (common) implementations define potential primes
-// as those not divisible by 2. A few other implementations define potential
-// primes as those not divisible by 2 or 3. By raising the number of small
-// primes which the potential prime is not divisible by, the set of potential
-// primes more closely approximates the set of prime numbers. And thus there
-// are fewer potential primes to search, and fewer potential primes to divide
-// against.
-
-inline _LIBCPP_INLINE_VISIBILITY
-void
-__check_for_overflow(size_t N, integral_constant<size_t, 32>)
-{
-#ifndef _LIBCPP_NO_EXCEPTIONS
- if (N > 0xFFFFFFFB)
- throw overflow_error("__next_prime overflow");
-#endif
-}
-
-inline _LIBCPP_INLINE_VISIBILITY
-void
-__check_for_overflow(size_t N, integral_constant<size_t, 64>)
-{
-#ifndef _LIBCPP_NO_EXCEPTIONS
- if (N > 0xFFFFFFFFFFFFFFC5ull)
- throw overflow_error("__next_prime overflow");
-#endif
-}
-
-size_t
-__next_prime(size_t n)
-{
- const size_t L = 210;
- const size_t N = sizeof(small_primes) / sizeof(small_primes[0]);
- // If n is small enough, search in small_primes
- if (n <= small_primes[N-1])
- return *std::lower_bound(small_primes, small_primes + N, n);
- // Else n > largest small_primes
- // Check for overflow
- __check_for_overflow(n, integral_constant<size_t,
- sizeof(n) * __CHAR_BIT__>());
- // Start searching list of potential primes: L * k0 + indices[in]
- const size_t M = sizeof(indices) / sizeof(indices[0]);
- // Select first potential prime >= n
- // Known a-priori n >= L
- size_t k0 = n / L;
- size_t in = std::lower_bound(indices, indices + M, n - k0 * L) - indices;
- n = L * k0 + indices[in];
- while (true)
- {
- // Divide n by all primes or potential primes (i) until:
- // 1. The division is even, so try next potential prime.
- // 2. The i > sqrt(n), in which case n is prime.
- // It is known a-priori that n is not divisible by 2, 3, 5 or 7,
- // so don't test those (j == 5 -> divide by 11 first). And the
- // potential primes start with 211, so don't test against the last
- // small prime.
- for (size_t j = 5; j < N - 1; ++j)
- {
- const std::size_t p = small_primes[j];
- const std::size_t q = n / p;
- if (q < p)
- return n;
- if (n == q * p)
- goto next;
- }
- // n wasn't divisible by small primes, try potential primes
- {
- size_t i = 211;
- while (true)
- {
- std::size_t q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 10;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 2;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 4;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 2;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 4;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 6;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 2;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 6;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 4;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 2;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 4;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 6;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 6;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 2;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 6;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 4;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 2;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 6;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 4;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 6;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 8;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 4;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 2;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 4;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 2;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 4;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 8;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 6;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 4;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 6;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 2;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 4;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 6;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 2;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 6;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 6;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 4;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 2;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 4;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 6;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 2;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 6;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 4;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 2;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 4;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 2;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- i += 10;
- q = n / i;
- if (q < i)
- return n;
- if (n == q * i)
- break;
-
- // This will loop i to the next "plane" of potential primes
- i += 2;
- }
- }
-next:
- // n is not prime. Increment n to next potential prime.
- if (++in == M)
- {
- ++k0;
- in = 0;
- }
- n = L * k0 + indices[in];
- }
-}
-
-_LIBCPP_END_NAMESPACE_STD