diff options
Diffstat (limited to 'tests/libcxx/hash.cpp')
-rw-r--r-- | tests/libcxx/hash.cpp | 559 |
1 files changed, 559 insertions, 0 deletions
diff --git a/tests/libcxx/hash.cpp b/tests/libcxx/hash.cpp new file mode 100644 index 00000000..728b9bd3 --- /dev/null +++ b/tests/libcxx/hash.cpp @@ -0,0 +1,559 @@ +//===-------------------------- hash.cpp ----------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is dual licensed under the MIT and the University of Illinois Open +// Source Licenses. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#include "__hash_table" +#include "algorithm" +#include "stdexcept" + +_LIBCPP_BEGIN_NAMESPACE_STD + +namespace { + +// handle all next_prime(i) for i in [1, 210), special case 0 +const unsigned small_primes[] = +{ + 0, + 2, + 3, + 5, + 7, + 11, + 13, + 17, + 19, + 23, + 29, + 31, + 37, + 41, + 43, + 47, + 53, + 59, + 61, + 67, + 71, + 73, + 79, + 83, + 89, + 97, + 101, + 103, + 107, + 109, + 113, + 127, + 131, + 137, + 139, + 149, + 151, + 157, + 163, + 167, + 173, + 179, + 181, + 191, + 193, + 197, + 199, + 211 +}; + +// potential primes = 210*k + indices[i], k >= 1 +// these numbers are not divisible by 2, 3, 5 or 7 +// (or any integer 2 <= j <= 10 for that matter). +const unsigned indices[] = +{ + 1, + 11, + 13, + 17, + 19, + 23, + 29, + 31, + 37, + 41, + 43, + 47, + 53, + 59, + 61, + 67, + 71, + 73, + 79, + 83, + 89, + 97, + 101, + 103, + 107, + 109, + 113, + 121, + 127, + 131, + 137, + 139, + 143, + 149, + 151, + 157, + 163, + 167, + 169, + 173, + 179, + 181, + 187, + 191, + 193, + 197, + 199, + 209 +}; + +} + +// Returns: If n == 0, returns 0. Else returns the lowest prime number that +// is greater than or equal to n. +// +// The algorithm creates a list of small primes, plus an open-ended list of +// potential primes. All prime numbers are potential prime numbers. However +// some potential prime numbers are not prime. In an ideal world, all potential +// prime numbers would be prime. Candiate prime numbers are chosen as the next +// highest potential prime. Then this number is tested for prime by dividing it +// by all potential prime numbers less than the sqrt of the candidate. +// +// This implementation defines potential primes as those numbers not divisible +// by 2, 3, 5, and 7. Other (common) implementations define potential primes +// as those not divisible by 2. A few other implementations define potential +// primes as those not divisible by 2 or 3. By raising the number of small +// primes which the potential prime is not divisible by, the set of potential +// primes more closely approximates the set of prime numbers. And thus there +// are fewer potential primes to search, and fewer potential primes to divide +// against. + +inline _LIBCPP_INLINE_VISIBILITY +void +__check_for_overflow(size_t N, integral_constant<size_t, 32>) +{ +#ifndef _LIBCPP_NO_EXCEPTIONS + if (N > 0xFFFFFFFB) + throw overflow_error("__next_prime overflow"); +#endif +} + +inline _LIBCPP_INLINE_VISIBILITY +void +__check_for_overflow(size_t N, integral_constant<size_t, 64>) +{ +#ifndef _LIBCPP_NO_EXCEPTIONS + if (N > 0xFFFFFFFFFFFFFFC5ull) + throw overflow_error("__next_prime overflow"); +#endif +} + +size_t +__next_prime(size_t n) +{ + const size_t L = 210; + const size_t N = sizeof(small_primes) / sizeof(small_primes[0]); + // If n is small enough, search in small_primes + if (n <= small_primes[N-1]) + return *std::lower_bound(small_primes, small_primes + N, n); + // Else n > largest small_primes + // Check for overflow + __check_for_overflow(n, integral_constant<size_t, + sizeof(n) * __CHAR_BIT__>()); + // Start searching list of potential primes: L * k0 + indices[in] + const size_t M = sizeof(indices) / sizeof(indices[0]); + // Select first potential prime >= n + // Known a-priori n >= L + size_t k0 = n / L; + size_t in = std::lower_bound(indices, indices + M, n - k0 * L) - indices; + n = L * k0 + indices[in]; + while (true) + { + // Divide n by all primes or potential primes (i) until: + // 1. The division is even, so try next potential prime. + // 2. The i > sqrt(n), in which case n is prime. + // It is known a-priori that n is not divisible by 2, 3, 5 or 7, + // so don't test those (j == 5 -> divide by 11 first). And the + // potential primes start with 211, so don't test against the last + // small prime. + for (size_t j = 5; j < N - 1; ++j) + { + const std::size_t p = small_primes[j]; + const std::size_t q = n / p; + if (q < p) + return n; + if (n == q * p) + goto next; + } + // n wasn't divisible by small primes, try potential primes + { + size_t i = 211; + while (true) + { + std::size_t q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 10; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 2; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 4; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 2; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 4; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 6; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 2; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 6; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 4; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 2; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 4; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 6; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 6; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 2; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 6; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 4; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 2; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 6; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 4; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 6; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 8; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 4; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 2; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 4; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 2; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 4; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 8; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 6; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 4; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 6; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 2; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 4; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 6; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 2; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 6; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 6; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 4; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 2; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 4; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 6; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 2; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 6; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 4; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 2; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 4; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 2; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + i += 10; + q = n / i; + if (q < i) + return n; + if (n == q * i) + break; + + // This will loop i to the next "plane" of potential primes + i += 2; + } + } +next: + // n is not prime. Increment n to next potential prime. + if (++in == M) + { + ++k0; + in = 0; + } + n = L * k0 + indices[in]; + } +} + +_LIBCPP_END_NAMESPACE_STD |