aboutsummaryrefslogtreecommitdiff
path: root/lib/VMCore/BasicBlock.cpp
blob: 861aea43c25a87b32d075d7a8f31f618bfccd0fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
//===-- BasicBlock.cpp - Implement BasicBlock related functions --*- C++ -*--=//
//
// This file implements the Method class for the VMCore library.
//
//===----------------------------------------------------------------------===//

#include "llvm/ValueHolderImpl.h"
#include "llvm/BasicBlock.h"
#include "llvm/iTerminators.h"
#include "llvm/Method.h"
#include "llvm/SymbolTable.h"
#include "llvm/Type.h"
#include "llvm/iPHINode.h"
#include "llvm/CodeGen/MachineInstr.h"

// Instantiate Templates - This ugliness is the price we have to pay
// for having a ValueHolderImpl.h file seperate from ValueHolder.h!  :(
//
template class ValueHolder<Instruction, BasicBlock, Method>;

BasicBlock::BasicBlock(const string &name, Method *Parent)
  : Value(Type::LabelTy, Value::BasicBlockVal, name), InstList(this, 0),
    machineInstrVec(new MachineCodeForBasicBlock) {
  if (Parent)
    Parent->getBasicBlocks().push_back(this);
}

BasicBlock::~BasicBlock() {
  dropAllReferences();
  InstList.delete_all();
  delete machineInstrVec;
}

// Specialize setName to take care of symbol table majik
void BasicBlock::setName(const string &name, SymbolTable *ST) {
  Method *P;
  assert((ST == 0 || (!getParent() || ST == getParent()->getSymbolTable())) &&
	 "Invalid symtab argument!");
  if ((P = getParent()) && hasName()) P->getSymbolTable()->remove(this);
  Value::setName(name);
  if (P && hasName()) P->getSymbolTable()->insert(this);
}

void BasicBlock::setParent(Method *parent) { 
  if (getParent() && hasName())
    getParent()->getSymbolTable()->remove(this);

  InstList.setParent(parent);

  if (getParent() && hasName())
    getParent()->getSymbolTableSure()->insert(this);
}

TerminatorInst *BasicBlock::getTerminator() {
  if (InstList.empty()) return 0;
  Instruction *T = InstList.back();
  if (isa<TerminatorInst>(T)) return cast<TerminatorInst>(T);
  return 0;
}

const TerminatorInst *const BasicBlock::getTerminator() const {
  if (InstList.empty()) return 0;
  if (const TerminatorInst *TI = dyn_cast<TerminatorInst>(InstList.back()))
    return TI;
  return 0;
}

void BasicBlock::dropAllReferences() {
  for_each(InstList.begin(), InstList.end(), 
	   std::mem_fun(&Instruction::dropAllReferences));
}

// hasConstantReferences() - This predicate is true if there is a 
// reference to this basic block in the constant pool for this method.  For
// example, if a block is reached through a switch table, that table resides
// in the constant pool, and the basic block is reference from it.
//
bool BasicBlock::hasConstantReferences() const {
  for (use_const_iterator I = use_begin(), E = use_end(); I != E; ++I)
    if (::isa<Constant>(*I))
      return true;

  return false;
}

// removePredecessor - This method is used to notify a BasicBlock that the
// specified Predecessor of the block is no longer able to reach it.  This is
// actually not used to update the Predecessor list, but is actually used to 
// update the PHI nodes that reside in the block.  Note that this should be
// called while the predecessor still refers to this block.
//
void BasicBlock::removePredecessor(BasicBlock *Pred) {
  assert(find(pred_begin(), pred_end(), Pred) != pred_end() &&
	 "removePredecessor: BB is not a predecessor!");
  if (!isa<PHINode>(front())) return;   // Quick exit.

  pred_iterator PI(pred_begin()), EI(pred_end());
  unsigned max_idx;

  // Loop over the rest of the predecessors until we run out, or until we find
  // out that there are more than 2 predecessors.
  for (max_idx = 0; PI != EI && max_idx < 3; ++PI, ++max_idx) /*empty*/;

  // If there are exactly two predecessors, then we want to nuke the PHI nodes
  // altogether.
  assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!");
  if (max_idx <= 2) {                // <= Two predecessors BEFORE I remove one?
    // Yup, loop through and nuke the PHI nodes
    while (PHINode *PN = dyn_cast<PHINode>(front())) {
      PN->removeIncomingValue(Pred); // Remove the predecessor first...
      
      assert(PN->getNumIncomingValues() == max_idx-1 && 
	     "PHI node shouldn't have this many values!!!");

      // If the PHI _HAD_ two uses, replace PHI node with its now *single* value
      if (max_idx == 2)
	PN->replaceAllUsesWith(PN->getOperand(0));
      delete getInstList().remove(begin());  // Remove the PHI node
    }
  } else {
    // Okay, now we know that we need to remove predecessor #pred_idx from all
    // PHI nodes.  Iterate over each PHI node fixing them up
    iterator II(begin());
    for (; isa<PHINode>(*II); ++II)
      cast<PHINode>(*II)->removeIncomingValue(Pred);
  }
}


// splitBasicBlock - This splits a basic block into two at the specified
// instruction.  Note that all instructions BEFORE the specified iterator stay
// as part of the original basic block, an unconditional branch is added to 
// the new BB, and the rest of the instructions in the BB are moved to the new
// BB, including the old terminator.  This invalidates the iterator.
//
// Note that this only works on well formed basic blocks (must have a 
// terminator), and 'I' must not be the end of instruction list (which would
// cause a degenerate basic block to be formed, having a terminator inside of
// the basic block). 
//
BasicBlock *BasicBlock::splitBasicBlock(iterator I) {
  assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
  assert(I != InstList.end() && 
	 "Trying to get me to create degenerate basic block!");

  BasicBlock *New = new BasicBlock("", getParent());

  // Go from the end of the basic block through to the iterator pointer, moving
  // to the new basic block...
  Instruction *Inst = 0;
  do {
    iterator EndIt = end();
    Inst = InstList.remove(--EndIt);                  // Remove from end
    New->InstList.push_front(Inst);                   // Add to front
  } while (Inst != *I);   // Loop until we move the specified instruction.

  // Add a branch instruction to the newly formed basic block.
  InstList.push_back(new BranchInst(New));
  return New;
}