aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Utils/InlineFunction.cpp
blob: 791d30cb17928f414d79dd7bdc91dbbe3b50c3e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
//===- InlineFunction.cpp - Code to perform function inlining -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements inlining of a function into a call site, resolving
// parameters and the return value as appropriate.
//
// The code in this file for handling inlines through invoke
// instructions preserves semantics only under some assumptions about
// the behavior of unwinders which correspond to gcc-style libUnwind
// exception personality functions.  Eventually the IR will be
// improved to make this unnecessary, but until then, this code is
// marked [LIBUNWIND].
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Intrinsics.h"
#include "llvm/Attributes.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/DebugInfo.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/IRBuilder.h"
using namespace llvm;

bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI) {
  return InlineFunction(CallSite(CI), IFI);
}
bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI) {
  return InlineFunction(CallSite(II), IFI);
}

/// [LIBUNWIND] Look for an llvm.eh.exception call in the given block.
static EHExceptionInst *findExceptionInBlock(BasicBlock *bb) {
  for (BasicBlock::iterator i = bb->begin(), e = bb->end(); i != e; i++) {
    EHExceptionInst *exn = dyn_cast<EHExceptionInst>(i);
    if (exn) return exn;
  }

  return 0;
}

/// [LIBUNWIND] Look for the 'best' llvm.eh.selector instruction for
/// the given llvm.eh.exception call.
static EHSelectorInst *findSelectorForException(EHExceptionInst *exn) {
  BasicBlock *exnBlock = exn->getParent();

  EHSelectorInst *outOfBlockSelector = 0;
  for (Instruction::use_iterator
         ui = exn->use_begin(), ue = exn->use_end(); ui != ue; ++ui) {
    EHSelectorInst *sel = dyn_cast<EHSelectorInst>(*ui);
    if (!sel) continue;

    // Immediately accept an eh.selector in the same block as the
    // excepton call.
    if (sel->getParent() == exnBlock) return sel;

    // Otherwise, use the first selector we see.
    if (!outOfBlockSelector) outOfBlockSelector = sel;
  }

  return outOfBlockSelector;
}

/// [LIBUNWIND] Find the (possibly absent) call to @llvm.eh.selector
/// in the given landing pad.  In principle, llvm.eh.exception is
/// required to be in the landing pad; in practice, SplitCriticalEdge
/// can break that invariant, and then inlining can break it further.
/// There's a real need for a reliable solution here, but until that
/// happens, we have some fragile workarounds here.
static EHSelectorInst *findSelectorForLandingPad(BasicBlock *lpad) {
  // Look for an exception call in the actual landing pad.
  EHExceptionInst *exn = findExceptionInBlock(lpad);
  if (exn) return findSelectorForException(exn);

  // Okay, if that failed, look for one in an obvious successor.  If
  // we find one, we'll fix the IR by moving things back to the
  // landing pad.

  bool dominates = true; // does the lpad dominate the exn call
  BasicBlock *nonDominated = 0; // if not, the first non-dominated block
  BasicBlock *lastDominated = 0; // and the block which branched to it

  BasicBlock *exnBlock = lpad;

  // We need to protect against lpads that lead into infinite loops.
  SmallPtrSet<BasicBlock*,4> visited;
  visited.insert(exnBlock);

  do {
    // We're not going to apply this hack to anything more complicated
    // than a series of unconditional branches, so if the block
    // doesn't terminate in an unconditional branch, just fail.  More
    // complicated cases can arise when, say, sinking a call into a
    // split unwind edge and then inlining it; but that can do almost
    // *anything* to the CFG, including leaving the selector
    // completely unreachable.  The only way to fix that properly is
    // to (1) prohibit transforms which move the exception or selector
    // values away from the landing pad, e.g. by producing them with
    // instructions that are pinned to an edge like a phi, or
    // producing them with not-really-instructions, and (2) making
    // transforms which split edges deal with that.
    BranchInst *branch = dyn_cast<BranchInst>(&exnBlock->back());
    if (!branch || branch->isConditional()) return 0;

    BasicBlock *successor = branch->getSuccessor(0);

    // Fail if we found an infinite loop.
    if (!visited.insert(successor)) return 0;

    // If the successor isn't dominated by exnBlock:
    if (!successor->getSinglePredecessor()) {
      // We don't want to have to deal with threading the exception
      // through multiple levels of phi, so give up if we've already
      // followed a non-dominating edge.
      if (!dominates) return 0;

      // Otherwise, remember this as a non-dominating edge.
      dominates = false;
      nonDominated = successor;
      lastDominated = exnBlock;
    }

    exnBlock = successor;

    // Can we stop here?
    exn = findExceptionInBlock(exnBlock);
  } while (!exn);

  // Look for a selector call for the exception we found.
  EHSelectorInst *selector = findSelectorForException(exn);
  if (!selector) return 0;

  // The easy case is when the landing pad still dominates the
  // exception call, in which case we can just move both calls back to
  // the landing pad.
  if (dominates) {
    selector->moveBefore(lpad->getFirstNonPHI());
    exn->moveBefore(selector);
    return selector;
  }

  // Otherwise, we have to split at the first non-dominating block.
  // The CFG looks basically like this:
  //    lpad:
  //      phis_0
  //      insnsAndBranches_1
  //      br label %nonDominated
  //    nonDominated:
  //      phis_2
  //      insns_3
  //      %exn = call i8* @llvm.eh.exception()
  //      insnsAndBranches_4
  //      %selector = call @llvm.eh.selector(i8* %exn, ...
  // We need to turn this into:
  //    lpad:
  //      phis_0
  //      %exn0 = call i8* @llvm.eh.exception()
  //      %selector0 = call @llvm.eh.selector(i8* %exn0, ...
  //      insnsAndBranches_1
  //      br label %split // from lastDominated
  //    nonDominated:
  //      phis_2 (without edge from lastDominated)
  //      %exn1 = call i8* @llvm.eh.exception()
  //      %selector1 = call i8* @llvm.eh.selector(i8* %exn1, ...
  //      br label %split
  //    split:
  //      phis_2 (edge from lastDominated, edge from split)
  //      %exn = phi ...
  //      %selector = phi ...
  //      insns_3
  //      insnsAndBranches_4

  assert(nonDominated);
  assert(lastDominated);

  // First, make clones of the intrinsics to go in lpad.
  EHExceptionInst *lpadExn = cast<EHExceptionInst>(exn->clone());
  EHSelectorInst *lpadSelector = cast<EHSelectorInst>(selector->clone());
  lpadSelector->setArgOperand(0, lpadExn);
  lpadSelector->insertBefore(lpad->getFirstNonPHI());
  lpadExn->insertBefore(lpadSelector);

  // Split the non-dominated block.
  BasicBlock *split =
    nonDominated->splitBasicBlock(nonDominated->getFirstNonPHI(),
                                  nonDominated->getName() + ".lpad-fix");

  // Redirect the last dominated branch there.
  cast<BranchInst>(lastDominated->back()).setSuccessor(0, split);

  // Move the existing intrinsics to the end of the old block.
  selector->moveBefore(&nonDominated->back());
  exn->moveBefore(selector);

  Instruction *splitIP = &split->front();

  // For all the phis in nonDominated, make a new phi in split to join
  // that phi with the edge from lastDominated.
  for (BasicBlock::iterator
         i = nonDominated->begin(), e = nonDominated->end(); i != e; ++i) {
    PHINode *phi = dyn_cast<PHINode>(i);
    if (!phi) break;

    PHINode *splitPhi = PHINode::Create(phi->getType(), 2, phi->getName(),
                                        splitIP);
    phi->replaceAllUsesWith(splitPhi);
    splitPhi->addIncoming(phi, nonDominated);
    splitPhi->addIncoming(phi->removeIncomingValue(lastDominated),
                          lastDominated);
  }

  // Make new phis for the exception and selector.
  PHINode *exnPhi = PHINode::Create(exn->getType(), 2, "", splitIP);
  exn->replaceAllUsesWith(exnPhi);
  selector->setArgOperand(0, exn); // except for this use
  exnPhi->addIncoming(exn, nonDominated);
  exnPhi->addIncoming(lpadExn, lastDominated);

  PHINode *selectorPhi = PHINode::Create(selector->getType(), 2, "", splitIP);
  selector->replaceAllUsesWith(selectorPhi);
  selectorPhi->addIncoming(selector, nonDominated);
  selectorPhi->addIncoming(lpadSelector, lastDominated);

  return lpadSelector;
}

namespace {
  /// A class for recording information about inlining through an invoke.
  class InvokeInliningInfo {
    BasicBlock *OuterUnwindDest;
    EHSelectorInst *OuterSelector;
    BasicBlock *InnerUnwindDest;
    PHINode *InnerExceptionPHI;
    PHINode *InnerSelectorPHI;
    SmallVector<Value*, 8> UnwindDestPHIValues;

  public:
    InvokeInliningInfo(InvokeInst *II) :
      OuterUnwindDest(II->getUnwindDest()), OuterSelector(0),
      InnerUnwindDest(0), InnerExceptionPHI(0), InnerSelectorPHI(0) {

      // If there are PHI nodes in the unwind destination block, we
      // need to keep track of which values came into them from the
      // invoke before removing the edge from this block.
      llvm::BasicBlock *invokeBB = II->getParent();
      for (BasicBlock::iterator I = OuterUnwindDest->begin();
             isa<PHINode>(I); ++I) {
        // Save the value to use for this edge.
        PHINode *phi = cast<PHINode>(I);
        UnwindDestPHIValues.push_back(phi->getIncomingValueForBlock(invokeBB));
      }
    }

    /// The outer unwind destination is the target of unwind edges
    /// introduced for calls within the inlined function.
    BasicBlock *getOuterUnwindDest() const {
      return OuterUnwindDest;
    }

    EHSelectorInst *getOuterSelector() {
      if (!OuterSelector)
        OuterSelector = findSelectorForLandingPad(OuterUnwindDest);
      return OuterSelector;
    }

    BasicBlock *getInnerUnwindDest();

    bool forwardEHResume(CallInst *call, BasicBlock *src);

    /// Add incoming-PHI values to the unwind destination block for
    /// the given basic block, using the values for the original
    /// invoke's source block.
    void addIncomingPHIValuesFor(BasicBlock *BB) const {
      addIncomingPHIValuesForInto(BB, OuterUnwindDest);
    }

    void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
      BasicBlock::iterator I = dest->begin();
      for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
        PHINode *phi = cast<PHINode>(I);
        phi->addIncoming(UnwindDestPHIValues[i], src);
      }
    }
  };
}

/// Get or create a target for the branch out of rewritten calls to
/// llvm.eh.resume.
BasicBlock *InvokeInliningInfo::getInnerUnwindDest() {
  if (InnerUnwindDest) return InnerUnwindDest;

  // Find and hoist the llvm.eh.exception and llvm.eh.selector calls
  // in the outer landing pad to immediately following the phis.
  EHSelectorInst *selector = getOuterSelector();
  if (!selector) return 0;

  // The call to llvm.eh.exception *must* be in the landing pad.
  Instruction *exn = cast<Instruction>(selector->getArgOperand(0));
  assert(exn->getParent() == OuterUnwindDest);

  // TODO: recognize when we've already done this, so that we don't
  // get a linear number of these when inlining calls into lots of
  // invokes with the same landing pad.

  // Do the hoisting.
  Instruction *splitPoint = exn->getParent()->getFirstNonPHI();
  assert(splitPoint != selector && "selector-on-exception dominance broken!");
  if (splitPoint == exn) {
    selector->removeFromParent();
    selector->insertAfter(exn);
    splitPoint = selector->getNextNode();
  } else {
    exn->moveBefore(splitPoint);
    selector->moveBefore(splitPoint);
  }

  // Split the landing pad.
  InnerUnwindDest = OuterUnwindDest->splitBasicBlock(splitPoint,
                                        OuterUnwindDest->getName() + ".body");

  // The number of incoming edges we expect to the inner landing pad.
  const unsigned phiCapacity = 2;

  // Create corresponding new phis for all the phis in the outer landing pad.
  BasicBlock::iterator insertPoint = InnerUnwindDest->begin();
  BasicBlock::iterator I = OuterUnwindDest->begin();
  for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
    PHINode *outerPhi = cast<PHINode>(I);
    PHINode *innerPhi = PHINode::Create(outerPhi->getType(), phiCapacity,
                                        outerPhi->getName() + ".lpad-body",
                                        insertPoint);
    outerPhi->replaceAllUsesWith(innerPhi);
    innerPhi->addIncoming(outerPhi, OuterUnwindDest);
  }

  // Create a phi for the exception value...
  InnerExceptionPHI = PHINode::Create(exn->getType(), phiCapacity,
                                      "exn.lpad-body", insertPoint);
  exn->replaceAllUsesWith(InnerExceptionPHI);
  selector->setArgOperand(0, exn); // restore this use
  InnerExceptionPHI->addIncoming(exn, OuterUnwindDest);

  // ...and the selector.
  InnerSelectorPHI = PHINode::Create(selector->getType(), phiCapacity,
                                     "selector.lpad-body", insertPoint);
  selector->replaceAllUsesWith(InnerSelectorPHI);
  InnerSelectorPHI->addIncoming(selector, OuterUnwindDest);

  // All done.
  return InnerUnwindDest;
}

/// [LIBUNWIND] Try to forward the given call, which logically occurs
/// at the end of the given block, as a branch to the inner unwind
/// block.  Returns true if the call was forwarded.
bool InvokeInliningInfo::forwardEHResume(CallInst *call, BasicBlock *src) {
  // First, check whether this is a call to the intrinsic.
  Function *fn = dyn_cast<Function>(call->getCalledValue());
  if (!fn || fn->getName() != "llvm.eh.resume")
    return false;
  
  // At this point, we need to return true on all paths, because
  // otherwise we'll construct an invoke of the intrinsic, which is
  // not well-formed.

  // Try to find or make an inner unwind dest, which will fail if we
  // can't find a selector call for the outer unwind dest.
  BasicBlock *dest = getInnerUnwindDest();
  bool hasSelector = (dest != 0);

  // If we failed, just use the outer unwind dest, dropping the
  // exception and selector on the floor.
  if (!hasSelector)
    dest = OuterUnwindDest;

  // Make a branch.
  BranchInst::Create(dest, src);

  // Update the phis in the destination.  They were inserted in an
  // order which makes this work.
  addIncomingPHIValuesForInto(src, dest);

  if (hasSelector) {
    InnerExceptionPHI->addIncoming(call->getArgOperand(0), src);
    InnerSelectorPHI->addIncoming(call->getArgOperand(1), src);
  }

  return true;
}

/// [LIBUNWIND] Check whether this selector is "only cleanups":
///   call i32 @llvm.eh.selector(blah, blah, i32 0)
static bool isCleanupOnlySelector(EHSelectorInst *selector) {
  if (selector->getNumArgOperands() != 3) return false;
  ConstantInt *val = dyn_cast<ConstantInt>(selector->getArgOperand(2));
  return (val && val->isZero());
}

/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
/// an invoke, we have to turn all of the calls that can throw into
/// invokes.  This function analyze BB to see if there are any calls, and if so,
/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
/// nodes in that block with the values specified in InvokeDestPHIValues.
///
/// Returns true to indicate that the next block should be skipped.
static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
                                                   InvokeInliningInfo &Invoke) {
  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
    Instruction *I = BBI++;
    
    // We only need to check for function calls: inlined invoke
    // instructions require no special handling.
    CallInst *CI = dyn_cast<CallInst>(I);
    if (CI == 0) continue;

    // LIBUNWIND: merge selector instructions.
    if (EHSelectorInst *Inner = dyn_cast<EHSelectorInst>(CI)) {
      EHSelectorInst *Outer = Invoke.getOuterSelector();
      if (!Outer) continue;

      bool innerIsOnlyCleanup = isCleanupOnlySelector(Inner);
      bool outerIsOnlyCleanup = isCleanupOnlySelector(Outer);

      // If both selectors contain only cleanups, we don't need to do
      // anything.  TODO: this is really just a very specific instance
      // of a much more general optimization.
      if (innerIsOnlyCleanup && outerIsOnlyCleanup) continue;

      // Otherwise, we just append the outer selector to the inner selector.
      SmallVector<Value*, 16> NewSelector;
      for (unsigned i = 0, e = Inner->getNumArgOperands(); i != e; ++i)
        NewSelector.push_back(Inner->getArgOperand(i));
      for (unsigned i = 2, e = Outer->getNumArgOperands(); i != e; ++i)
        NewSelector.push_back(Outer->getArgOperand(i));

      CallInst *NewInner =
        IRBuilder<>(Inner).CreateCall(Inner->getCalledValue(),
                                      NewSelector.begin(),
                                      NewSelector.end());
      // No need to copy attributes, calling convention, etc.
      NewInner->takeName(Inner);
      Inner->replaceAllUsesWith(NewInner);
      Inner->eraseFromParent();
      continue;
    }
    
    // If this call cannot unwind, don't convert it to an invoke.
    if (CI->doesNotThrow())
      continue;
    
    // Convert this function call into an invoke instruction.
    // First, split the basic block.
    BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");

    // Delete the unconditional branch inserted by splitBasicBlock
    BB->getInstList().pop_back();

    // LIBUNWIND: If this is a call to @llvm.eh.resume, just branch
    // directly to the new landing pad.
    if (Invoke.forwardEHResume(CI, BB)) {
      // TODO: 'Split' is now unreachable; clean it up.

      // We want to leave the original call intact so that the call
      // graph and other structures won't get misled.  We also have to
      // avoid processing the next block, or we'll iterate here forever.
      return true;
    }

    // Otherwise, create the new invoke instruction.
    ImmutableCallSite CS(CI);
    SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
    InvokeInst *II =
      InvokeInst::Create(CI->getCalledValue(), Split,
                         Invoke.getOuterUnwindDest(),
                         InvokeArgs.begin(), InvokeArgs.end(),
                         CI->getName(), BB);
    II->setCallingConv(CI->getCallingConv());
    II->setAttributes(CI->getAttributes());
    
    // Make sure that anything using the call now uses the invoke!  This also
    // updates the CallGraph if present, because it uses a WeakVH.
    CI->replaceAllUsesWith(II);

    Split->getInstList().pop_front();  // Delete the original call

    // Update any PHI nodes in the exceptional block to indicate that
    // there is now a new entry in them.
    Invoke.addIncomingPHIValuesFor(BB);
    return false;
  }

  return false;
}
  

/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
/// in the body of the inlined function into invokes and turn unwind
/// instructions into branches to the invoke unwind dest.
///
/// II is the invoke instruction being inlined.  FirstNewBlock is the first
/// block of the inlined code (the last block is the end of the function),
/// and InlineCodeInfo is information about the code that got inlined.
static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
                                ClonedCodeInfo &InlinedCodeInfo) {
  BasicBlock *InvokeDest = II->getUnwindDest();

  Function *Caller = FirstNewBlock->getParent();

  // The inlined code is currently at the end of the function, scan from the
  // start of the inlined code to its end, checking for stuff we need to
  // rewrite.  If the code doesn't have calls or unwinds, we know there is
  // nothing to rewrite.
  if (!InlinedCodeInfo.ContainsCalls && !InlinedCodeInfo.ContainsUnwinds) {
    // Now that everything is happy, we have one final detail.  The PHI nodes in
    // the exception destination block still have entries due to the original
    // invoke instruction.  Eliminate these entries (which might even delete the
    // PHI node) now.
    InvokeDest->removePredecessor(II->getParent());
    return;
  }

  InvokeInliningInfo Invoke(II);
  
  for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
    if (InlinedCodeInfo.ContainsCalls)
      if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) {
        // Honor a request to skip the next block.  We don't need to
        // consider UnwindInsts in this case either.
        ++BB;
        continue;
      }

    if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
      // An UnwindInst requires special handling when it gets inlined into an
      // invoke site.  Once this happens, we know that the unwind would cause
      // a control transfer to the invoke exception destination, so we can
      // transform it into a direct branch to the exception destination.
      BranchInst::Create(InvokeDest, UI);

      // Delete the unwind instruction!
      UI->eraseFromParent();

      // Update any PHI nodes in the exceptional block to indicate that
      // there is now a new entry in them.
      Invoke.addIncomingPHIValuesFor(BB);
    }
  }

  // Now that everything is happy, we have one final detail.  The PHI nodes in
  // the exception destination block still have entries due to the original
  // invoke instruction.  Eliminate these entries (which might even delete the
  // PHI node) now.
  InvokeDest->removePredecessor(II->getParent());
}

/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
/// into the caller, update the specified callgraph to reflect the changes we
/// made.  Note that it's possible that not all code was copied over, so only
/// some edges of the callgraph may remain.
static void UpdateCallGraphAfterInlining(CallSite CS,
                                         Function::iterator FirstNewBlock,
                                         ValueToValueMapTy &VMap,
                                         InlineFunctionInfo &IFI) {
  CallGraph &CG = *IFI.CG;
  const Function *Caller = CS.getInstruction()->getParent()->getParent();
  const Function *Callee = CS.getCalledFunction();
  CallGraphNode *CalleeNode = CG[Callee];
  CallGraphNode *CallerNode = CG[Caller];

  // Since we inlined some uninlined call sites in the callee into the caller,
  // add edges from the caller to all of the callees of the callee.
  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();

  // Consider the case where CalleeNode == CallerNode.
  CallGraphNode::CalledFunctionsVector CallCache;
  if (CalleeNode == CallerNode) {
    CallCache.assign(I, E);
    I = CallCache.begin();
    E = CallCache.end();
  }

  for (; I != E; ++I) {
    const Value *OrigCall = I->first;

    ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
    // Only copy the edge if the call was inlined!
    if (VMI == VMap.end() || VMI->second == 0)
      continue;
    
    // If the call was inlined, but then constant folded, there is no edge to
    // add.  Check for this case.
    Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
    if (NewCall == 0) continue;

    // Remember that this call site got inlined for the client of
    // InlineFunction.
    IFI.InlinedCalls.push_back(NewCall);

    // It's possible that inlining the callsite will cause it to go from an
    // indirect to a direct call by resolving a function pointer.  If this
    // happens, set the callee of the new call site to a more precise
    // destination.  This can also happen if the call graph node of the caller
    // was just unnecessarily imprecise.
    if (I->second->getFunction() == 0)
      if (Function *F = CallSite(NewCall).getCalledFunction()) {
        // Indirect call site resolved to direct call.
        CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);

        continue;
      }

    CallerNode->addCalledFunction(CallSite(NewCall), I->second);
  }
  
  // Update the call graph by deleting the edge from Callee to Caller.  We must
  // do this after the loop above in case Caller and Callee are the same.
  CallerNode->removeCallEdgeFor(CS);
}

/// HandleByValArgument - When inlining a call site that has a byval argument,
/// we have to make the implicit memcpy explicit by adding it.
static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
                                  const Function *CalledFunc,
                                  InlineFunctionInfo &IFI,
                                  unsigned ByValAlignment) {
  const Type *AggTy = cast<PointerType>(Arg->getType())->getElementType();

  // If the called function is readonly, then it could not mutate the caller's
  // copy of the byval'd memory.  In this case, it is safe to elide the copy and
  // temporary.
  if (CalledFunc->onlyReadsMemory()) {
    // If the byval argument has a specified alignment that is greater than the
    // passed in pointer, then we either have to round up the input pointer or
    // give up on this transformation.
    if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
      return Arg;

    // If the pointer is already known to be sufficiently aligned, or if we can
    // round it up to a larger alignment, then we don't need a temporary.
    if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
                                   IFI.TD) >= ByValAlignment)
      return Arg;
    
    // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
    // for code quality, but rarely happens and is required for correctness.
  }
  
  LLVMContext &Context = Arg->getContext();

  Type *VoidPtrTy = Type::getInt8PtrTy(Context);
  
  // Create the alloca.  If we have TargetData, use nice alignment.
  unsigned Align = 1;
  if (IFI.TD)
    Align = IFI.TD->getPrefTypeAlignment(AggTy);
  
  // If the byval had an alignment specified, we *must* use at least that
  // alignment, as it is required by the byval argument (and uses of the
  // pointer inside the callee).
  Align = std::max(Align, ByValAlignment);
  
  Function *Caller = TheCall->getParent()->getParent(); 
  
  Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(), 
                                    &*Caller->begin()->begin());
  // Emit a memcpy.
  Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)};
  Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
                                                 Intrinsic::memcpy, 
                                                 Tys, 3);
  Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
  Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall);
  
  Value *Size;
  if (IFI.TD == 0)
    Size = ConstantExpr::getSizeOf(AggTy);
  else
    Size = ConstantInt::get(Type::getInt64Ty(Context),
                            IFI.TD->getTypeStoreSize(AggTy));
  
  // Always generate a memcpy of alignment 1 here because we don't know
  // the alignment of the src pointer.  Other optimizations can infer
  // better alignment.
  Value *CallArgs[] = {
    DestCast, SrcCast, Size,
    ConstantInt::get(Type::getInt32Ty(Context), 1),
    ConstantInt::getFalse(Context) // isVolatile
  };
  IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs, CallArgs+5);
  
  // Uses of the argument in the function should use our new alloca
  // instead.
  return NewAlloca;
}

// isUsedByLifetimeMarker - Check whether this Value is used by a lifetime
// intrinsic.
static bool isUsedByLifetimeMarker(Value *V) {
  for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;
       ++UI) {
    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) {
      switch (II->getIntrinsicID()) {
      default: break;
      case Intrinsic::lifetime_start:
      case Intrinsic::lifetime_end:
        return true;
      }
    }
  }
  return false;
}

// hasLifetimeMarkers - Check whether the given alloca already has
// lifetime.start or lifetime.end intrinsics.
static bool hasLifetimeMarkers(AllocaInst *AI) {
  const Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext());
  if (AI->getType() == Int8PtrTy)
    return isUsedByLifetimeMarker(AI);

  // Do a scan to find all the casts to i8*.
  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E;
       ++I) {
    if (I->getType() != Int8PtrTy) continue;
    if (I->stripPointerCasts() != AI) continue;
    if (isUsedByLifetimeMarker(*I))
      return true;
  }
  return false;
}

/// updateInlinedAtInfo - Helper function used by fixupLineNumbers to recursively
/// update InlinedAtEntry of a DebugLoc.
static DebugLoc updateInlinedAtInfo(const DebugLoc &DL, 
                                    const DebugLoc &InlinedAtDL,
                                    LLVMContext &Ctx) {
  if (MDNode *IA = DL.getInlinedAt(Ctx)) {
    DebugLoc NewInlinedAtDL 
      = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx);
    return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
                         NewInlinedAtDL.getAsMDNode(Ctx));
  }
                                             
  return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
                       InlinedAtDL.getAsMDNode(Ctx));
}


/// fixupLineNumbers - Update inlined instructions' line numbers to 
/// to encode location where these instructions are inlined.
static void fixupLineNumbers(Function *Fn, Function::iterator FI,
                              Instruction *TheCall) {
  DebugLoc TheCallDL = TheCall->getDebugLoc();
  if (TheCallDL.isUnknown())
    return;

  for (; FI != Fn->end(); ++FI) {
    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
         BI != BE; ++BI) {
      DebugLoc DL = BI->getDebugLoc();
      if (!DL.isUnknown())
        BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext()));
    }
  }
}

// InlineFunction - This function inlines the called function into the basic
// block of the caller.  This returns false if it is not possible to inline this
// call.  The program is still in a well defined state if this occurs though.
//
// Note that this only does one level of inlining.  For example, if the
// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
// exists in the instruction stream.  Similarly this will inline a recursive
// function by one level.
//
bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) {
  Instruction *TheCall = CS.getInstruction();
  LLVMContext &Context = TheCall->getContext();
  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
         "Instruction not in function!");

  // If IFI has any state in it, zap it before we fill it in.
  IFI.reset();
  
  const Function *CalledFunc = CS.getCalledFunction();
  if (CalledFunc == 0 ||          // Can't inline external function or indirect
      CalledFunc->isDeclaration() || // call, or call to a vararg function!
      CalledFunc->getFunctionType()->isVarArg()) return false;

  // If the call to the callee is not a tail call, we must clear the 'tail'
  // flags on any calls that we inline.
  bool MustClearTailCallFlags =
    !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());

  // If the call to the callee cannot throw, set the 'nounwind' flag on any
  // calls that we inline.
  bool MarkNoUnwind = CS.doesNotThrow();

  BasicBlock *OrigBB = TheCall->getParent();
  Function *Caller = OrigBB->getParent();

  // GC poses two hazards to inlining, which only occur when the callee has GC:
  //  1. If the caller has no GC, then the callee's GC must be propagated to the
  //     caller.
  //  2. If the caller has a differing GC, it is invalid to inline.
  if (CalledFunc->hasGC()) {
    if (!Caller->hasGC())
      Caller->setGC(CalledFunc->getGC());
    else if (CalledFunc->getGC() != Caller->getGC())
      return false;
  }

  // Get an iterator to the last basic block in the function, which will have
  // the new function inlined after it.
  //
  Function::iterator LastBlock = &Caller->back();

  // Make sure to capture all of the return instructions from the cloned
  // function.
  SmallVector<ReturnInst*, 8> Returns;
  ClonedCodeInfo InlinedFunctionInfo;
  Function::iterator FirstNewBlock;

  { // Scope to destroy VMap after cloning.
    ValueToValueMapTy VMap;

    assert(CalledFunc->arg_size() == CS.arg_size() &&
           "No varargs calls can be inlined!");

    // Calculate the vector of arguments to pass into the function cloner, which
    // matches up the formal to the actual argument values.
    CallSite::arg_iterator AI = CS.arg_begin();
    unsigned ArgNo = 0;
    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
      Value *ActualArg = *AI;

      // When byval arguments actually inlined, we need to make the copy implied
      // by them explicit.  However, we don't do this if the callee is readonly
      // or readnone, because the copy would be unneeded: the callee doesn't
      // modify the struct.
      if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal)) {
        ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
                                        CalledFunc->getParamAlignment(ArgNo+1));
 
        // Calls that we inline may use the new alloca, so we need to clear
        // their 'tail' flags if HandleByValArgument introduced a new alloca and
        // the callee has calls.
        MustClearTailCallFlags |= ActualArg != *AI;
      }

      VMap[I] = ActualArg;
    }

    // We want the inliner to prune the code as it copies.  We would LOVE to
    // have no dead or constant instructions leftover after inlining occurs
    // (which can happen, e.g., because an argument was constant), but we'll be
    // happy with whatever the cloner can do.
    CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 
                              /*ModuleLevelChanges=*/false, Returns, ".i",
                              &InlinedFunctionInfo, IFI.TD, TheCall);

    // Remember the first block that is newly cloned over.
    FirstNewBlock = LastBlock; ++FirstNewBlock;

    // Update the callgraph if requested.
    if (IFI.CG)
      UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);

    // Update inlined instructions' line number information.
    fixupLineNumbers(Caller, FirstNewBlock, TheCall);
  }

  // If there are any alloca instructions in the block that used to be the entry
  // block for the callee, move them to the entry block of the caller.  First
  // calculate which instruction they should be inserted before.  We insert the
  // instructions at the end of the current alloca list.
  //
  {
    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
    for (BasicBlock::iterator I = FirstNewBlock->begin(),
         E = FirstNewBlock->end(); I != E; ) {
      AllocaInst *AI = dyn_cast<AllocaInst>(I++);
      if (AI == 0) continue;
      
      // If the alloca is now dead, remove it.  This often occurs due to code
      // specialization.
      if (AI->use_empty()) {
        AI->eraseFromParent();
        continue;
      }

      if (!isa<Constant>(AI->getArraySize()))
        continue;
      
      // Keep track of the static allocas that we inline into the caller.
      IFI.StaticAllocas.push_back(AI);
      
      // Scan for the block of allocas that we can move over, and move them
      // all at once.
      while (isa<AllocaInst>(I) &&
             isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
        IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
        ++I;
      }

      // Transfer all of the allocas over in a block.  Using splice means
      // that the instructions aren't removed from the symbol table, then
      // reinserted.
      Caller->getEntryBlock().getInstList().splice(InsertPoint,
                                                   FirstNewBlock->getInstList(),
                                                   AI, I);
    }
  }

  // Leave lifetime markers for the static alloca's, scoping them to the
  // function we just inlined.
  if (!IFI.StaticAllocas.empty()) {
    IRBuilder<> builder(FirstNewBlock->begin());
    for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
      AllocaInst *AI = IFI.StaticAllocas[ai];

      // If the alloca is already scoped to something smaller than the whole
      // function then there's no need to add redundant, less accurate markers.
      if (hasLifetimeMarkers(AI))
        continue;

      builder.CreateLifetimeStart(AI);
      for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) {
        IRBuilder<> builder(Returns[ri]);
        builder.CreateLifetimeEnd(AI);
      }
    }
  }

  // If the inlined code contained dynamic alloca instructions, wrap the inlined
  // code with llvm.stacksave/llvm.stackrestore intrinsics.
  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
    Module *M = Caller->getParent();
    // Get the two intrinsics we care about.
    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);

    // Insert the llvm.stacksave.
    CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin())
      .CreateCall(StackSave, "savedstack");

    // Insert a call to llvm.stackrestore before any return instructions in the
    // inlined function.
    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
      IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr);
    }

    // Count the number of StackRestore calls we insert.
    unsigned NumStackRestores = Returns.size();

    // If we are inlining an invoke instruction, insert restores before each
    // unwind.  These unwinds will be rewritten into branches later.
    if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
      for (Function::iterator BB = FirstNewBlock, E = Caller->end();
           BB != E; ++BB)
        if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
          IRBuilder<>(UI).CreateCall(StackRestore, SavedPtr);
          ++NumStackRestores;
        }
    }
  }

  // If we are inlining tail call instruction through a call site that isn't
  // marked 'tail', we must remove the tail marker for any calls in the inlined
  // code.  Also, calls inlined through a 'nounwind' call site should be marked
  // 'nounwind'.
  if (InlinedFunctionInfo.ContainsCalls &&
      (MustClearTailCallFlags || MarkNoUnwind)) {
    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
         BB != E; ++BB)
      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
        if (CallInst *CI = dyn_cast<CallInst>(I)) {
          if (MustClearTailCallFlags)
            CI->setTailCall(false);
          if (MarkNoUnwind)
            CI->setDoesNotThrow();
        }
  }

  // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
  // instructions are unreachable.
  if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
         BB != E; ++BB) {
      TerminatorInst *Term = BB->getTerminator();
      if (isa<UnwindInst>(Term)) {
        new UnreachableInst(Context, Term);
        BB->getInstList().erase(Term);
      }
    }

  // If we are inlining for an invoke instruction, we must make sure to rewrite
  // any inlined 'unwind' instructions into branches to the invoke exception
  // destination, and call instructions into invoke instructions.
  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);

  // If we cloned in _exactly one_ basic block, and if that block ends in a
  // return instruction, we splice the body of the inlined callee directly into
  // the calling basic block.
  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
    // Move all of the instructions right before the call.
    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
                                 FirstNewBlock->begin(), FirstNewBlock->end());
    // Remove the cloned basic block.
    Caller->getBasicBlockList().pop_back();

    // If the call site was an invoke instruction, add a branch to the normal
    // destination.
    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
      BranchInst::Create(II->getNormalDest(), TheCall);

    // If the return instruction returned a value, replace uses of the call with
    // uses of the returned value.
    if (!TheCall->use_empty()) {
      ReturnInst *R = Returns[0];
      if (TheCall == R->getReturnValue())
        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
      else
        TheCall->replaceAllUsesWith(R->getReturnValue());
    }
    // Since we are now done with the Call/Invoke, we can delete it.
    TheCall->eraseFromParent();

    // Since we are now done with the return instruction, delete it also.
    Returns[0]->eraseFromParent();

    // We are now done with the inlining.
    return true;
  }

  // Otherwise, we have the normal case, of more than one block to inline or
  // multiple return sites.

  // We want to clone the entire callee function into the hole between the
  // "starter" and "ender" blocks.  How we accomplish this depends on whether
  // this is an invoke instruction or a call instruction.
  BasicBlock *AfterCallBB;
  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {

    // Add an unconditional branch to make this look like the CallInst case...
    BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);

    // Split the basic block.  This guarantees that no PHI nodes will have to be
    // updated due to new incoming edges, and make the invoke case more
    // symmetric to the call case.
    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
                                          CalledFunc->getName()+".exit");

  } else {  // It's a call
    // If this is a call instruction, we need to split the basic block that
    // the call lives in.
    //
    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
                                          CalledFunc->getName()+".exit");
  }

  // Change the branch that used to go to AfterCallBB to branch to the first
  // basic block of the inlined function.
  //
  TerminatorInst *Br = OrigBB->getTerminator();
  assert(Br && Br->getOpcode() == Instruction::Br &&
         "splitBasicBlock broken!");
  Br->setOperand(0, FirstNewBlock);


  // Now that the function is correct, make it a little bit nicer.  In
  // particular, move the basic blocks inserted from the end of the function
  // into the space made by splitting the source basic block.
  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
                                     FirstNewBlock, Caller->end());

  // Handle all of the return instructions that we just cloned in, and eliminate
  // any users of the original call/invoke instruction.
  const Type *RTy = CalledFunc->getReturnType();

  PHINode *PHI = 0;
  if (Returns.size() > 1) {
    // The PHI node should go at the front of the new basic block to merge all
    // possible incoming values.
    if (!TheCall->use_empty()) {
      PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
                            AfterCallBB->begin());
      // Anything that used the result of the function call should now use the
      // PHI node as their operand.
      TheCall->replaceAllUsesWith(PHI);
    }

    // Loop over all of the return instructions adding entries to the PHI node
    // as appropriate.
    if (PHI) {
      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
        ReturnInst *RI = Returns[i];
        assert(RI->getReturnValue()->getType() == PHI->getType() &&
               "Ret value not consistent in function!");
        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
      }
    }


    // Add a branch to the merge points and remove return instructions.
    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
      ReturnInst *RI = Returns[i];
      BranchInst::Create(AfterCallBB, RI);
      RI->eraseFromParent();
    }
  } else if (!Returns.empty()) {
    // Otherwise, if there is exactly one return value, just replace anything
    // using the return value of the call with the computed value.
    if (!TheCall->use_empty()) {
      if (TheCall == Returns[0]->getReturnValue())
        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
      else
        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
    }

    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
    BasicBlock *ReturnBB = Returns[0]->getParent();
    ReturnBB->replaceAllUsesWith(AfterCallBB);

    // Splice the code from the return block into the block that it will return
    // to, which contains the code that was after the call.
    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
                                      ReturnBB->getInstList());

    // Delete the return instruction now and empty ReturnBB now.
    Returns[0]->eraseFromParent();
    ReturnBB->eraseFromParent();
  } else if (!TheCall->use_empty()) {
    // No returns, but something is using the return value of the call.  Just
    // nuke the result.
    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
  }

  // Since we are now done with the Call/Invoke, we can delete it.
  TheCall->eraseFromParent();

  // We should always be able to fold the entry block of the function into the
  // single predecessor of the block...
  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);

  // Splice the code entry block into calling block, right before the
  // unconditional branch.
  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());

  // Remove the unconditional branch.
  OrigBB->getInstList().erase(Br);

  // Now we can remove the CalleeEntry block, which is now empty.
  Caller->getBasicBlockList().erase(CalleeEntry);

  // If we inserted a phi node, check to see if it has a single value (e.g. all
  // the entries are the same or undef).  If so, remove the PHI so it doesn't
  // block other optimizations.
  if (PHI)
    if (Value *V = SimplifyInstruction(PHI, IFI.TD)) {
      PHI->replaceAllUsesWith(V);
      PHI->eraseFromParent();
    }

  return true;
}