//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass reassociates commutative expressions in an order that is designed
// to promote better constant propagation, GCSE, LICM, PRE...
//
// For example: 4 + (x + 5) -> x + (4 + 5)
//
// In the implementation of this algorithm, constants are assigned rank = 0,
// function arguments are rank = 1, and other values are assigned ranks
// corresponding to the reverse post order traversal of current function
// (starting at 2), which effectively gives values in deep loops higher rank
// than values not in loops.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "reassociate"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/LLVMContext.h"
#include "llvm/Pass.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/Statistic.h"
#include <algorithm>
#include <map>
using namespace llvm;
STATISTIC(NumLinear , "Number of insts linearized");
STATISTIC(NumChanged, "Number of insts reassociated");
STATISTIC(NumAnnihil, "Number of expr tree annihilated");
STATISTIC(NumFactor , "Number of multiplies factored");
namespace {
struct ValueEntry {
unsigned Rank;
Value *Op;
ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
};
inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
}
}
#ifndef NDEBUG
/// PrintOps - Print out the expression identified in the Ops list.
///
static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
Module *M = I->getParent()->getParent()->getParent();
errs() << Instruction::getOpcodeName(I->getOpcode()) << " "
<< *Ops[0].Op->getType();
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
WriteAsOperand(errs() << " ", Ops[i].Op, false, M);
errs() << "," << Ops[i].Rank;
}
}
#endif
namespace {
class Reassociate : public FunctionPass {
std::map<BasicBlock*, unsigned> RankMap;
std::map<AssertingVH<>, unsigned> ValueRankMap;
bool MadeChange;
public:
static char ID; // Pass identification, replacement for typeid
Reassociate() : FunctionPass(&ID) {}
bool runOnFunction(Function &F);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
}
private:
void BuildRankMap(Function &F);
unsigned getRank(Value *V);
void ReassociateExpression(BinaryOperator *I);
void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
unsigned Idx = 0);
Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
void LinearizeExpr(BinaryOperator *I);
Value *RemoveFactorFromExpression(Value *V, Value *Factor);
void ReassociateBB(BasicBlock *BB);
void RemoveDeadBinaryOp(Value *V);
};
}
char Reassociate::ID = 0;
static RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
// Public interface to the Reassociate pass
FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
void Reassociate::RemoveDeadBinaryOp(Value *V) {
Instruction *Op = dyn_cast<Instruction>(V);
if (!Op || !isa<BinaryOperator>(Op) || !isa<CmpInst>(Op) || !Op->use_empty())
return;
Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
RemoveDeadBinaryOp(LHS);
RemoveDeadBinaryOp(RHS);
}
static bool isUnmovableInstruction(Instruction *I) {
if (I->getOpcode() == Instruction::PHI ||
I->getOpcode() == Instruction::Alloca ||
I->getOpcode() == Instruction::Load ||
I->getOpcode() == Instruction::Malloc ||
I->getOpcode() == Instruction::Invoke ||
(I->getOpcode() == Instruction::Call &&
!isa<DbgInfoIntrinsic>(I)) ||
I->getOpcode() == Instruction::UDiv ||
I->getOpcode() == Instruction::SDiv ||
I->getOpcode() == Instruction::FDiv ||
I->getOpcode()