aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/IndVarSimplify.cpp
blob: 20eb3a85215dfb52afcd0fba2bef67628e3e39ea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This transformation analyzes and transforms the induction variables (and
// computations derived from them) into simpler forms suitable for subsequent
// analysis and transformation.
//
// This transformation makes the following changes to each loop with an
// identifiable induction variable:
//   1. All loops are transformed to have a SINGLE canonical induction variable
//      which starts at zero and steps by one.
//   2. The canonical induction variable is guaranteed to be the first PHI node
//      in the loop header block.
//   3. Any pointer arithmetic recurrences are raised to use array subscripts.
//
// If the trip count of a loop is computable, this pass also makes the following
// changes:
//   1. The exit condition for the loop is canonicalized to compare the
//      induction value against the exit value.  This turns loops like:
//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
//   2. Any use outside of the loop of an expression derived from the indvar
//      is changed to compute the derived value outside of the loop, eliminating
//      the dependence on the exit value of the induction variable.  If the only
//      purpose of the loop is to compute the exit value of some derived
//      expression, this transformation will make the loop dead.
//
// This transformation should be followed by strength reduction after all of the
// desired loop transformations have been performed.  Additionally, on targets
// where it is profitable, the loop could be transformed to count down to zero
// (the "do loop" optimization).
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "indvars"
#include "llvm/Transforms/Scalar.h"
#include "llvm/BasicBlock.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Type.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;

STATISTIC(NumRemoved , "Number of aux indvars removed");
STATISTIC(NumPointer , "Number of pointer indvars promoted");
STATISTIC(NumInserted, "Number of canonical indvars added");
STATISTIC(NumReplaced, "Number of exit values replaced");
STATISTIC(NumLFTR    , "Number of loop exit tests replaced");

namespace {
  class VISIBILITY_HIDDEN IndVarSimplify : public LoopPass {
    LoopInfo        *LI;
    ScalarEvolution *SE;
    bool Changed;
  public:

   static char ID; // Pass identification, replacement for typeid
   IndVarSimplify() : LoopPass((intptr_t)&ID) {}

   bool runOnLoop(Loop *L, LPPassManager &LPM);
   bool doInitialization(Loop *L, LPPassManager &LPM);
   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     AU.addRequiredID(LCSSAID);
     AU.addRequiredID(LoopSimplifyID);
     AU.addRequired<ScalarEvolution>();
     AU.addRequired<LoopInfo>();
     AU.addPreservedID(LoopSimplifyID);
     AU.addPreservedID(LCSSAID);
     AU.setPreservesCFG();
   }

  private:

    void EliminatePointerRecurrence(PHINode *PN, BasicBlock *Preheader,
                                    std::set<Instruction*> &DeadInsts);
    Instruction *LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
                                           SCEVExpander &RW);
    void RewriteLoopExitValues(Loop *L);

    void DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts);
  };

  char IndVarSimplify::ID = 0;
  RegisterPass<IndVarSimplify> X("indvars", "Canonicalize Induction Variables");
}

LoopPass *llvm::createIndVarSimplifyPass() {
  return new IndVarSimplify();
}

/// DeleteTriviallyDeadInstructions - If any of the instructions is the
/// specified set are trivially dead, delete them and see if this makes any of
/// their operands subsequently dead.
void IndVarSimplify::
DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts) {
  while (!Insts.empty()) {
    Instruction *I = *Insts.begin();
    Insts.erase(Insts.begin());
    if (isInstructionTriviallyDead(I)) {
      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
        if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
          Insts.insert(U);
      SE->deleteInstructionFromRecords(I);
      DOUT << "INDVARS: Deleting: " << *I;
      I->eraseFromParent();
      Changed = true;
    }
  }
}


/// EliminatePointerRecurrence - Check to see if this is a trivial GEP pointer
/// recurrence.  If so, change it into an integer recurrence, permitting
/// analysis by the SCEV routines.
void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN,
                                                BasicBlock *Preheader,
                                            std::set<Instruction*> &DeadInsts) {
  assert(PN->getNumIncomingValues() == 2 && "Noncanonicalized loop!");
  unsigned PreheaderIdx = PN->getBasicBlockIndex(Preheader);
  unsigned BackedgeIdx = PreheaderIdx^1;
  if (GetElementPtrInst *GEPI =
          dyn_cast<GetElementPtrInst>(PN->getIncomingValue(BackedgeIdx)))
    if (GEPI->getOperand(0) == PN) {
      assert(GEPI->getNumOperands() == 2 && "GEP types must match!");
      DOUT << "INDVARS: Eliminating pointer recurrence: " << *GEPI;
      
      // Okay, we found a pointer recurrence.  Transform this pointer
      // recurrence into an integer recurrence.  Compute the value that gets
      // added to the pointer at every iteration.
      Value *AddedVal = GEPI->getOperand(1);

      // Insert a new integer PHI node into the top of the block.
      PHINode *NewPhi = new PHINode(AddedVal->getType(),
                                    PN->getName()+".rec", PN);
      NewPhi->addIncoming(Constant::getNullValue(NewPhi->getType()), Preheader);

      // Create the new add instruction.
      Value *NewAdd = BinaryOperator::createAdd(NewPhi, AddedVal,
                                                GEPI->getName()+".rec", GEPI);
      NewPhi->addIncoming(NewAdd, PN->getIncomingBlock(BackedgeIdx));

      // Update the existing GEP to use the recurrence.
      GEPI->setOperand(0, PN->getIncomingValue(PreheaderIdx));

      // Update the GEP to use the new recurrence we just inserted.
      GEPI->setOperand(1, NewAdd);

      // If the incoming value is a constant expr GEP, try peeling out the array
      // 0 index if possible to make things simpler.
      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEPI->getOperand(0)))
        if (CE->getOpcode() == Instruction::GetElementPtr) {
          unsigned NumOps = CE->getNumOperands();
          assert(NumOps > 1 && "CE folding didn't work!");
          if (CE->getOperand(NumOps-1)->isNullValue()) {
            // Check to make sure the last index really is an array index.
            gep_type_iterator GTI = gep_type_begin(CE);
            for (unsigned i = 1, e = CE->getNumOperands()-1;
                 i != e; ++i, ++GTI)
              /*empty*/;
            if (isa<SequentialType>(*GTI)) {
              // Pull the last index out of the constant expr GEP.
              SmallVector<Value*, 8> CEIdxs(CE->op_begin()+1, CE->op_end()-1);
              Constant *NCE = ConstantExpr::getGetElementPtr(CE->getOperand(0),
                                                             &CEIdxs[0],
                                                             CEIdxs.size());
              GetElementPtrInst *NGEPI = new GetElementPtrInst(
                  NCE, Constant::getNullValue(Type::Int32Ty), NewAdd, 
                  GEPI->getName(), GEPI);
              GEPI->replaceAllUsesWith(NGEPI);
              GEPI->eraseFromParent();
              GEPI = NGEPI;
            }
          }
        }


      // Finally, if there are any other users of the PHI node, we must
      // insert a new GEP instruction that uses the pre-incremented version
      // of the induction amount.
      if (!PN->use_empty()) {
        BasicBlock::iterator InsertPos = PN; ++InsertPos;
        while (isa<PHINode>(InsertPos)) ++InsertPos;
        Value *PreInc =
          new GetElementPtrInst(PN->getIncomingValue(PreheaderIdx),
                                NewPhi, "", InsertPos);
        PreInc->takeName(PN);
        PN->replaceAllUsesWith(PreInc);
      }

      // Delete the old PHI for sure, and the GEP if its otherwise unused.
      DeadInsts.insert(PN);

      ++NumPointer;
      Changed = true;
    }
}

/// LinearFunctionTestReplace - This method rewrites the exit condition of the
/// loop to be a canonical != comparison against the incremented loop induction
/// variable.  This pass is able to rewrite the exit tests of any loop where the
/// SCEV analysis can determine a loop-invariant trip count of the loop, which
/// is actually a much broader range than just linear tests.
///
/// This method returns a "potentially dead" instruction whose computation chain
/// should be deleted when convenient.
Instruction *IndVarSimplify::LinearFunctionTestReplace(Loop *L,
                                                       SCEV *IterationCount,
                                                       SCEVExpander &RW) {
  // Find the exit block for the loop.  We can currently only handle loops with
  // a single exit.
  std::vector<BasicBlock*> ExitBlocks;
  L->getExitBlocks(ExitBlocks);
  if (ExitBlocks.size() != 1) return 0;
  BasicBlock *ExitBlock = ExitBlocks[0];

  // Make sure there is only one predecessor block in the loop.
  BasicBlock *ExitingBlock = 0;
  for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
       PI != PE; ++PI)
    if (L->contains(*PI)) {
      if (ExitingBlock == 0)
        ExitingBlock = *PI;
      else
        return 0;  // Multiple exits from loop to this block.
    }
  assert(ExitingBlock && "Loop info is broken");

  if (!isa<BranchInst>(ExitingBlock->getTerminator()))
    return 0;  // Can't rewrite non-branch yet
  BranchInst *BI = cast<BranchInst>(ExitingBlock->getTerminator());
  assert(BI->isConditional() && "Must be conditional to be part of loop!");

  Instruction *PotentiallyDeadInst = dyn_cast<Instruction>(BI->getCondition());
  
  // If the exiting block is not the same as the backedge block, we must compare
  // against the preincremented value, otherwise we prefer to compare against
  // the post-incremented value.
  BasicBlock *Header = L->getHeader();
  pred_iterator HPI = pred_begin(Header);
  assert(HPI != pred_end(Header) && "Loop with zero preds???");
  if (!L->contains(*HPI)) ++HPI;
  assert(HPI != pred_end(Header) && L->contains(*HPI) &&
         "No backedge in loop?");

  SCEVHandle TripCount = IterationCount;
  Value *IndVar;
  if (*HPI == ExitingBlock) {
    // The IterationCount expression contains the number of times that the
    // backedge actually branches to the loop header.  This is one less than the
    // number of times the loop executes, so add one to it.
    Constant *OneC = ConstantInt::get(IterationCount->getType(), 1);
    TripCount = SCEVAddExpr::get(IterationCount, SCEVUnknown::get(OneC));
    IndVar = L->getCanonicalInductionVariableIncrement();
  } else {
    // We have to use the preincremented value...
    IndVar = L->getCanonicalInductionVariable();
  }
  
  DOUT << "INDVARS: LFTR: TripCount = " << *TripCount
       << "  IndVar = " << *IndVar << "\n";

  // Expand the code for the iteration count into the preheader of the loop.
  BasicBlock *Preheader = L->getLoopPreheader();
  Value *ExitCnt = RW.expandCodeFor(TripCount, Preheader->getTerminator(),
                                    IndVar->getType());

  // Insert a new icmp_ne or icmp_eq instruction before the branch.
  ICmpInst::Predicate Opcode;
  if (L->contains(BI->getSuccessor(0)))
    Opcode = ICmpInst::ICMP_NE;
  else
    Opcode = ICmpInst::ICMP_EQ;

  Value *Cond = new ICmpInst(Opcode, IndVar, ExitCnt, "exitcond", BI);
  BI->setCondition(Cond);
  ++NumLFTR;
  Changed = true;
  return PotentiallyDeadInst;
}


/// RewriteLoopExitValues - Check to see if this loop has a computable
/// loop-invariant execution count.  If so, this means that we can compute the
/// final value of any expressions that are recurrent in the loop, and
/// substitute the exit values from the loop into any instructions outside of
/// the loop that use the final values of the current expressions.
void IndVarSimplify::RewriteLoopExitValues(Loop *L) {
  BasicBlock *Preheader = L->getLoopPreheader();

  // Scan all of the instructions in the loop, looking at those that have
  // extra-loop users and which are recurrences.
  SCEVExpander Rewriter(*SE, *LI);

  // We insert the code into the preheader of the loop if the loop contains
  // multiple exit blocks, or in the exit block if there is exactly one.
  BasicBlock *BlockToInsertInto;
  std::vector<BasicBlock*> ExitBlocks;
  L->getUniqueExitBlocks(ExitBlocks);
  if (ExitBlocks.size() == 1)
    BlockToInsertInto = ExitBlocks[0];
  else
    BlockToInsertInto = Preheader;
  BasicBlock::iterator InsertPt = BlockToInsertInto->begin();
  while (isa<PHINode>(InsertPt)) ++InsertPt;

  bool HasConstantItCount = isa<SCEVConstant>(SE->getIterationCount(L));

  std::set<Instruction*> InstructionsToDelete;
  std::map<Instruction*, Value*> ExitValues;

  // Find all values that are computed inside the loop, but used outside of it.
  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
  // the exit blocks of the loop to find them.
  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
    BasicBlock *ExitBB = ExitBlocks[i];
    
    // If there are no PHI nodes in this exit block, then no values defined
    // inside the loop are used on this path, skip it.
    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
    if (!PN) continue;
    
    unsigned NumPreds = PN->getNumIncomingValues();
    
    // Iterate over all of the PHI nodes.
    BasicBlock::iterator BBI = ExitBB->begin();
    while ((PN = dyn_cast<PHINode>(BBI++))) {
      
      // Iterate over all of the values in all the PHI nodes.
      for (unsigned i = 0; i != NumPreds; ++i) {
        // If the value being merged in is not integer or is not defined
        // in the loop, skip it.
        Value *InVal = PN->getIncomingValue(i);
        if (!isa<Instruction>(InVal) ||
            // SCEV only supports integer expressions for now.
            !isa<IntegerType>(InVal->getType()))
          continue;

        // If this pred is for a subloop, not L itself, skip it.
        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 
          continue; // The Block is in a subloop, skip it.

        // Check that InVal is defined in the loop.
        Instruction *Inst = cast<Instruction>(InVal);
        if (!L->contains(Inst->getParent()))
          continue;
        
        // We require that this value either have a computable evolution or that
        // the loop have a constant iteration count.  In the case where the loop
        // has a constant iteration count, we can sometimes force evaluation of
        // the exit value through brute force.
        SCEVHandle SH = SE->getSCEV(Inst);
        if (!SH->hasComputableLoopEvolution(L) && !HasConstantItCount)
          continue;          // Cannot get exit evolution for the loop value.
        
        // Okay, this instruction has a user outside of the current loop
        // and varies predictably *inside* the loop.  Evaluate the value it
        // contains when the loop exits, if possible.
        SCEVHandle ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
        if (isa<SCEVCouldNotCompute>(ExitValue) ||
            !ExitValue->isLoopInvariant(L))
          continue;

        Changed = true;
        ++NumReplaced;
        
        // See if we already computed the exit value for the instruction, if so,
        // just reuse it.
        Value *&ExitVal = ExitValues[Inst];
        if (!ExitVal)
          ExitVal = Rewriter.expandCodeFor(ExitValue, InsertPt,Inst->getType());
        
        DOUT << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
             << "  LoopVal = " << *Inst << "\n";

        PN->setIncomingValue(i, ExitVal);
        
        // If this instruction is dead now, schedule it to be removed.
        if (Inst->use_empty())
          InstructionsToDelete.insert(Inst);
        
        // See if this is a single-entry LCSSA PHI node.  If so, we can (and
        // have to) remove
        // the PHI entirely.  This is safe, because the NewVal won't be variant
        // in the loop, so we don't need an LCSSA phi node anymore.
        if (NumPreds == 1) {
          PN->replaceAllUsesWith(ExitVal);
          PN->eraseFromParent();
          break;
        }
      }
    }
  }
  
  DeleteTriviallyDeadInstructions(InstructionsToDelete);
}

bool IndVarSimplify::doInitialization(Loop *L, LPPassManager &LPM) {

  Changed = false;
  // First step.  Check to see if there are any trivial GEP pointer recurrences.
  // If there are, change them into integer recurrences, permitting analysis by
  // the SCEV routines.
  //
  BasicBlock *Header    = L->getHeader();
  BasicBlock *Preheader = L->getLoopPreheader();
  SE = &LPM.getAnalysis<ScalarEvolution>();

  std::set<Instruction*> DeadInsts;
  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
    PHINode *PN = cast<PHINode>(I);
    if (isa<PointerType>(PN->getType()))
      EliminatePointerRecurrence(PN, Preheader, DeadInsts);
  }

  if (!DeadInsts.empty())
    DeleteTriviallyDeadInstructions(DeadInsts);

  return Changed;
}

bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {


  LI = &getAnalysis<LoopInfo>();
  SE = &getAnalysis<ScalarEvolution>();

  Changed = false;
  BasicBlock *Header    = L->getHeader();
  std::set<Instruction*> DeadInsts;
  
  // Verify the input to the pass in already in LCSSA form.
  assert(L->isLCSSAForm());

  // Check to see if this loop has a computable loop-invariant execution count.
  // If so, this means that we can compute the final value of any expressions
  // that are recurrent in the loop, and substitute the exit values from the
  // loop into any instructions outside of the loop that use the final values of
  // the current expressions.
  //
  SCEVHandle IterationCount = SE->getIterationCount(L);
  if (!isa<SCEVCouldNotCompute>(IterationCount))
    RewriteLoopExitValues(L);

  // Next, analyze all of the induction variables in the loop, canonicalizing
  // auxillary induction variables.
  std::vector<std::pair<PHINode*, SCEVHandle> > IndVars;

  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
    PHINode *PN = cast<PHINode>(I);
    if (PN->getType()->isInteger()) { // FIXME: when we have fast-math, enable!
      SCEVHandle SCEV = SE->getSCEV(PN);
      if (SCEV->hasComputableLoopEvolution(L))
        // FIXME: It is an extremely bad idea to indvar substitute anything more
        // complex than affine induction variables.  Doing so will put expensive
        // polynomial evaluations inside of the loop, and the str reduction pass
        // currently can only reduce affine polynomials.  For now just disable
        // indvar subst on anything more complex than an affine addrec.
        if (SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SCEV))
          if (AR->isAffine())
            IndVars.push_back(std::make_pair(PN, SCEV));
    }
  }

  // If there are no induction variables in the loop, there is nothing more to
  // do.
  if (IndVars.empty()) {
    // Actually, if we know how many times the loop iterates, lets insert a
    // canonical induction variable to help subsequent passes.
    if (!isa<SCEVCouldNotCompute>(IterationCount)) {
      SCEVExpander Rewriter(*SE, *LI);
      Rewriter.getOrInsertCanonicalInductionVariable(L,
                                                     IterationCount->getType());
      if (Instruction *I = LinearFunctionTestReplace(L, IterationCount,
                                                     Rewriter)) {
        std::set<Instruction*> InstructionsToDelete;
        InstructionsToDelete.insert(I);
        DeleteTriviallyDeadInstructions(InstructionsToDelete);
      }
    }
    return Changed;
  }

  // Compute the type of the largest recurrence expression.
  //
  const Type *LargestType = IndVars[0].first->getType();
  bool DifferingSizes = false;
  for (unsigned i = 1, e = IndVars.size(); i != e; ++i) {
    const Type *Ty = IndVars[i].first->getType();
    DifferingSizes |= 
      Ty->getPrimitiveSizeInBits() != LargestType->getPrimitiveSizeInBits();
    if (Ty->getPrimitiveSizeInBits() > LargestType->getPrimitiveSizeInBits())
      LargestType = Ty;
  }

  // Create a rewriter object which we'll use to transform the code with.
  SCEVExpander Rewriter(*SE, *LI);

  // Now that we know the largest of of the induction variables in this loop,
  // insert a canonical induction variable of the largest size.
  Value *IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType);
  ++NumInserted;
  Changed = true;
  DOUT << "INDVARS: New CanIV: " << *IndVar;

  if (!isa<SCEVCouldNotCompute>(IterationCount))
    if (Instruction *DI = LinearFunctionTestReplace(L, IterationCount,Rewriter))
      DeadInsts.insert(DI);

  // Now that we have a canonical induction variable, we can rewrite any
  // recurrences in terms of the induction variable.  Start with the auxillary
  // induction variables, and recursively rewrite any of their uses.
  BasicBlock::iterator InsertPt = Header->begin();
  while (isa<PHINode>(InsertPt)) ++InsertPt;

  // If there were induction variables of other sizes, cast the primary
  // induction variable to the right size for them, avoiding the need for the
  // code evaluation methods to insert induction variables of different sizes.
  if (DifferingSizes) {
    SmallVector<unsigned,4> InsertedSizes;
    InsertedSizes.push_back(LargestType->getPrimitiveSizeInBits());
    for (unsigned i = 0, e = IndVars.size(); i != e; ++i) {
      unsigned ithSize = IndVars[i].first->getType()->getPrimitiveSizeInBits();
      if (std::find(InsertedSizes.begin(), InsertedSizes.end(), ithSize)
          == InsertedSizes.end()) {
        PHINode *PN = IndVars[i].first;
        InsertedSizes.push_back(ithSize);
        Instruction *New = new TruncInst(IndVar, PN->getType(), "indvar",
                                         InsertPt);
        Rewriter.addInsertedValue(New, SE->getSCEV(New));
        DOUT << "INDVARS: Made trunc IV for " << *PN
             << "   NewVal = " << *New << "\n";
      }
    }
  }

  // Rewrite all induction variables in terms of the canonical induction
  // variable.
  std::map<unsigned, Value*> InsertedSizes;
  while (!IndVars.empty()) {
    PHINode *PN = IndVars.back().first;
    Value *NewVal = Rewriter.expandCodeFor(IndVars.back().second, InsertPt,
                                           PN->getType());
    DOUT << "INDVARS: Rewrote IV '" << *IndVars.back().second << "' " << *PN
         << "   into = " << *NewVal << "\n";
    NewVal->takeName(PN);

    // Replace the old PHI Node with the inserted computation.
    PN->replaceAllUsesWith(NewVal);
    DeadInsts.insert(PN);
    IndVars.pop_back();
    ++NumRemoved;
    Changed = true;
  }

#if 0
  // Now replace all derived expressions in the loop body with simpler
  // expressions.
  for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
    if (LI->getLoopFor(L->getBlocks()[i]) == L) {  // Not in a subloop...
      BasicBlock *BB = L->getBlocks()[i];
      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
        if (I->getType()->isInteger() &&      // Is an integer instruction
            !I->use_empty() &&
            !Rewriter.isInsertedInstruction(I)) {
          SCEVHandle SH = SE->getSCEV(I);
          Value *V = Rewriter.expandCodeFor(SH, I, I->getType());
          if (V != I) {
            if (isa<Instruction>(V))
              V->takeName(I);
            I->replaceAllUsesWith(V);
            DeadInsts.insert(I);
            ++NumRemoved;
            Changed = true;
          }
        }
    }
#endif

  DeleteTriviallyDeadInstructions(DeadInsts);
  
  assert(L->isLCSSAForm());
  return Changed;
}