aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/NaCl/ResolvePNaClIntrinsics.cpp
blob: 5331f644f37ef88da1f5bcc48b30cfd23e7e7ea6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
//===- ResolvePNaClIntrinsics.cpp - Resolve calls to PNaCl intrinsics ----====//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass resolves calls to PNaCl stable bitcode intrinsics. It is
// normally run in the PNaCl translator.
//
// Running AddPNaClExternalDeclsPass is a precondition for running this
// pass. They are separate because one is a ModulePass and the other is
// a FunctionPass.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/NaClAtomicIntrinsics.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Transforms/NaCl.h"
#if defined(__pnacl__)
#include "native_client/src/untrusted/nacl/pnacl.h"
#endif

using namespace llvm;

namespace {
class ResolvePNaClIntrinsics : public FunctionPass {
public:
  ResolvePNaClIntrinsics() : FunctionPass(ID) {
    initializeResolvePNaClIntrinsicsPass(*PassRegistry::getPassRegistry());
  }

  static char ID;
  virtual bool runOnFunction(Function &F);

  /// Interface specifying how intrinsic calls should be resolved. Each
  /// intrinsic call handled by the implementor will be visited by the
  /// doResolve method.
  class CallResolver {
  public:
    /// Called once per \p Call to the intrinsic in the module.
    /// Returns true if the Function was changed.
    bool resolve(IntrinsicInst *Call) {
      // To be a well-behaving FunctionPass, don't touch uses in other
      // functions. These will be handled when the pass manager gets to
      // those functions.
      if (Call->getParent()->getParent() == &F)
        return doResolve(Call);
      return false;
    }
    Function *getDeclaration() const { return doGetDeclaration(); }
    std::string getName() { return Intrinsic::getName(IntrinsicID); }

  protected:
    Function &F;
    Module *M;
    Intrinsic::ID IntrinsicID;

    CallResolver(Function &F, Intrinsic::ID IntrinsicID)
        : F(F), M(F.getParent()), IntrinsicID(IntrinsicID) {}
    virtual ~CallResolver() {}

    /// The following pure virtual methods must be defined by
    /// implementors, and will be called once per intrinsic call.
    virtual Function *doGetDeclaration() const = 0;
    /// Returns true if the Function was changed.
    virtual bool doResolve(IntrinsicInst *Call) = 0;

  private:
    CallResolver(const CallResolver &) LLVM_DELETED_FUNCTION;
    CallResolver &operator=(const CallResolver &) LLVM_DELETED_FUNCTION;
  };

private:
  /// Visit all calls matching the \p Resolver's declaration, and invoke
  /// the CallResolver methods on each of them.
  bool visitCalls(CallResolver &Resolver);
};

/// Rewrite intrinsic calls to another function.
class IntrinsicCallToFunctionCall :
    public ResolvePNaClIntrinsics::CallResolver {
public:
  IntrinsicCallToFunctionCall(Function &F, Intrinsic::ID IntrinsicID,
                              const char *TargetFunctionName,
                              ArrayRef<Type *> Tys = None)
      : CallResolver(F, IntrinsicID),
        TargetFunction(M->getFunction(TargetFunctionName)), Tys(Tys) {
    // Expect to find the target function for this intrinsic already
    // declared, even if it is never used.
    if (!TargetFunction)
      report_fatal_error(std::string(
          "Expected to find external declaration of ") + TargetFunctionName);
  }
  virtual ~IntrinsicCallToFunctionCall() {}

private:
  Function *TargetFunction;
  ArrayRef<Type *> Tys;

  virtual Function *doGetDeclaration() const {
    return Intrinsic::getDeclaration(M, IntrinsicID, Tys);
  }

  virtual bool doResolve(IntrinsicInst *Call) {
    Call->setCalledFunction(TargetFunction);
    return true;
  }

  IntrinsicCallToFunctionCall(const IntrinsicCallToFunctionCall &)
      LLVM_DELETED_FUNCTION;
  IntrinsicCallToFunctionCall &operator=(const IntrinsicCallToFunctionCall &)
      LLVM_DELETED_FUNCTION;
};

/// Rewrite intrinsic calls to a constant whose value is determined by a
/// functor. This functor is called once per Call, and returns a
/// Constant that should replace the Call.
template <class Callable>
class ConstantCallResolver : public ResolvePNaClIntrinsics::CallResolver {
public:
  ConstantCallResolver(Function &F, Intrinsic::ID IntrinsicID, Callable Functor,
                       ArrayRef<Type *> Tys = None)
      : CallResolver(F, IntrinsicID), Functor(Functor) {}
  virtual ~ConstantCallResolver() {}

private:
  Callable Functor;
  ArrayRef<Type *> Tys;

  virtual Function *doGetDeclaration() const {
    return Intrinsic::getDeclaration(M, IntrinsicID, Tys);
  }

  virtual bool doResolve(IntrinsicInst *Call) {
    Constant *C = Functor(Call);
    Call->replaceAllUsesWith(C);
    Call->eraseFromParent();
    return true;
  }

  ConstantCallResolver(const ConstantCallResolver &) LLVM_DELETED_FUNCTION;
  ConstantCallResolver &operator=(const ConstantCallResolver &)
      LLVM_DELETED_FUNCTION;
};

/// Resolve __nacl_atomic_is_lock_free to true/false at translation
/// time. PNaCl's currently supported platforms all support lock-free
/// atomics at byte sizes {1,2,4,8} except for MIPS arch that supports
/// lock-free atomics at byte sizes {1,2,4}, and the alignment of the
/// pointer is always expected to be natural (as guaranteed by C11 and
/// C++11). PNaCl's Module-level ABI verification checks that the byte
/// size is constant and in {1,2,4,8}.
struct IsLockFreeToConstant {
  Constant *operator()(CallInst *Call) {
    uint64_t MaxLockFreeByteSize = 8;
    const APInt &ByteSize =
        cast<Constant>(Call->getOperand(0))->getUniqueInteger();

#   if defined(__pnacl__)
    switch (__builtin_nacl_target_arch()) {
    case PnaclTargetArchitectureX86_32:
    case PnaclTargetArchitectureX86_64:
    case PnaclTargetArchitectureARM_32:
      break;
    case PnaclTargetArchitectureMips_32:
      MaxLockFreeByteSize = 4;
      break;
    default:
      return false;
    }
#   elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) || defined(_M_X64) // XXX Emscripten TODO: Move this fix to PNaCl upstream.
    // Continue.
#   elif defined(__mips__) || defined(_M_IX86) // XXX Emscripten TODO: Move this fix to PNaCl upstream.
    MaxLockFreeByteSize = 4;
#   else
#     error "Unknown architecture"
#   endif

    bool IsLockFree = ByteSize.ule(MaxLockFreeByteSize);
    Constant *C = ConstantInt::get(Call->getType(), IsLockFree);
    return C;
  }
};

/// Rewrite atomic intrinsics to LLVM IR instructions.
class AtomicCallResolver : public ResolvePNaClIntrinsics::CallResolver {
public:
  AtomicCallResolver(Function &F,
                     const NaCl::AtomicIntrinsics::AtomicIntrinsic *I)
      : CallResolver(F, I->ID), I(I) {}
  virtual ~AtomicCallResolver() {}

private:
  const NaCl::AtomicIntrinsics::AtomicIntrinsic *I;

  virtual Function *doGetDeclaration() const { return I->getDeclaration(M); }

  virtual bool doResolve(IntrinsicInst *Call) {
    // Assume the @llvm.nacl.atomic.* intrinsics follow the PNaCl ABI:
    // this should have been checked by the verifier.
    bool isVolatile = false;
    SynchronizationScope SS = CrossThread;
    Instruction *I;

    switch (Call->getIntrinsicID()) {
    default:
      llvm_unreachable("unknown atomic intrinsic");
    case Intrinsic::nacl_atomic_load:
      I = new LoadInst(Call->getArgOperand(0), "", isVolatile,
                       alignmentFromPointer(Call->getArgOperand(0)),
                       thawMemoryOrder(Call->getArgOperand(1)), SS, Call);
      break;
    case Intrinsic::nacl_atomic_store:
      I = new StoreInst(Call->getArgOperand(0), Call->getArgOperand(1),
                        isVolatile,
                        alignmentFromPointer(Call->getArgOperand(1)),
                        thawMemoryOrder(Call->getArgOperand(2)), SS, Call);
      break;
    case Intrinsic::nacl_atomic_rmw:
      if (needsX8632HackFor16BitAtomics(cast<PointerType>(
              Call->getArgOperand(1)->getType())->getElementType())) {
        // TODO(jfb) Remove this hack. See below.
        atomic16BitX8632Hack(Call, false, Call->getArgOperand(1),
                             Call->getArgOperand(2), Call->getArgOperand(0),
                             NULL);
        return true;
      }
      I = new AtomicRMWInst(thawRMWOperation(Call->getArgOperand(0)),
                            Call->getArgOperand(1), Call->getArgOperand(2),
                            thawMemoryOrder(Call->getArgOperand(3)), SS, Call);
      break;
    case Intrinsic::nacl_atomic_cmpxchg:
      if (needsX8632HackFor16BitAtomics(cast<PointerType>(
              Call->getArgOperand(0)->getType())->getElementType())) {
        // TODO(jfb) Remove this hack. See below.
        atomic16BitX8632Hack(Call, true, Call->getArgOperand(0),
                             Call->getArgOperand(2), NULL,
                             Call->getArgOperand(1));
        return true;
      }
      // TODO LLVM currently doesn't support specifying separate memory
      //      orders for compare exchange's success and failure cases:
      //      LLVM IR implicitly drops the Release part of the specified
      //      memory order on failure. It is therefore correct to map
      //      the success memory order onto the LLVM IR and ignore the
      //      failure one.
      I = new AtomicCmpXchgInst(Call->getArgOperand(0), Call->getArgOperand(1),
                                Call->getArgOperand(2),
                                thawMemoryOrder(Call->getArgOperand(3)), SS,
                                Call);
      break;
    case Intrinsic::nacl_atomic_fence:
      I = new FenceInst(M->getContext(),
                        thawMemoryOrder(Call->getArgOperand(0)), SS, Call);
      break;
    case Intrinsic::nacl_atomic_fence_all: {
      FunctionType *FTy =
          FunctionType::get(Type::getVoidTy(M->getContext()), false);
      std::string AsmString; // Empty.
      std::string Constraints("~{memory}");
      bool HasSideEffect = true;
      CallInst *Asm = CallInst::Create(
          InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect), "", Call);
      Asm->setDebugLoc(Call->getDebugLoc());
      I = new FenceInst(M->getContext(), SequentiallyConsistent, SS, Asm);
      Asm = CallInst::Create(
          InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect), "", I);
      Asm->setDebugLoc(Call->getDebugLoc());
    } break;
    }
    I->setName(Call->getName());
    I->setDebugLoc(Call->getDebugLoc());
    Call->replaceAllUsesWith(I);
    Call->eraseFromParent();

    return true;
  }

  unsigned alignmentFromPointer(const Value *Ptr) const {
    const PointerType *PtrType = cast<PointerType>(Ptr->getType());
    unsigned BitWidth = PtrType->getElementType()->getIntegerBitWidth();
    return BitWidth / 8;
  }

  AtomicOrdering thawMemoryOrder(const Value *MemoryOrder) const {
    NaCl::MemoryOrder MO = (NaCl::MemoryOrder)
        cast<Constant>(MemoryOrder)->getUniqueInteger().getLimitedValue();
    switch (MO) {
    // Only valid values should pass validation.
    default: llvm_unreachable("unknown memory order");
    case NaCl::MemoryOrderRelaxed: return Monotonic;
    // TODO Consume is unspecified by LLVM's internal IR.
    case NaCl::MemoryOrderConsume: return SequentiallyConsistent;
    case NaCl::MemoryOrderAcquire: return Acquire;
    case NaCl::MemoryOrderRelease: return Release;
    case NaCl::MemoryOrderAcquireRelease: return AcquireRelease;
    case NaCl::MemoryOrderSequentiallyConsistent: return SequentiallyConsistent;
    }
  }

  AtomicRMWInst::BinOp thawRMWOperation(const Value *Operation) const {
    NaCl::AtomicRMWOperation Op = (NaCl::AtomicRMWOperation)
        cast<Constant>(Operation)->getUniqueInteger().getLimitedValue();
    switch (Op) {
    // Only valid values should pass validation.
    default: llvm_unreachable("unknown atomic RMW operation");
    case NaCl::AtomicAdd: return AtomicRMWInst::Add;
    case NaCl::AtomicSub: return AtomicRMWInst::Sub;
    case NaCl::AtomicOr:  return AtomicRMWInst::Or;
    case NaCl::AtomicAnd: return AtomicRMWInst::And;
    case NaCl::AtomicXor: return AtomicRMWInst::Xor;
    case NaCl::AtomicExchange: return AtomicRMWInst::Xchg;
    }
  }

  // TODO(jfb) Remove the following hacks once NaCl's x86-32 validator
  // supports 16-bit atomic intrisics. See:
  //   https://code.google.com/p/nativeclient/issues/detail?id=3579
  //   https://code.google.com/p/nativeclient/issues/detail?id=2981
  // ===========================================================================
  bool needsX8632HackFor16BitAtomics(Type *OverloadedType) const {
    return Triple(M->getTargetTriple()).getArch() == Triple::x86 &&
        OverloadedType == Type::getInt16Ty(M->getContext());
  }

  /// Expand the 16-bit Intrinsic into an equivalent 32-bit
  /// compare-exchange loop.
  void atomic16BitX8632Hack(IntrinsicInst *Call, bool IsCmpXChg,
                            Value *Ptr16, Value *RHS, Value *RMWOp,
                            Value *CmpXChgOldVal) const {
    assert((IsCmpXChg ? CmpXChgOldVal : RMWOp) &&
           "cmpxchg expects an old value, whereas RMW expects an operation");
    Type *I16 = Type::getInt16Ty(M->getContext());
    Type *I32 = Type::getInt32Ty(M->getContext());
    Type *I32Ptr = Type::getInt32PtrTy(M->getContext());

    // Precede this with a compiler fence.
    FunctionType *FTy =
        FunctionType::get(Type::getVoidTy(M->getContext()), false);
    std::string AsmString; // Empty.
    std::string Constraints("~{memory}");
    bool HasSideEffect = true;
    CallInst::Create(InlineAsm::get(
        FTy, AsmString, Constraints, HasSideEffect), "", Call);

    BasicBlock *CurrentBB = Call->getParent();
    IRBuilder<> IRB(CurrentBB, Call);
    BasicBlock *Aligned32BB =
        BasicBlock::Create(IRB.getContext(), "atomic16aligned32",
                           CurrentBB->getParent());
    BasicBlock *Aligned16BB =
        BasicBlock::Create(IRB.getContext(), "atomic16aligned16",
                           CurrentBB->getParent());

    // Setup.
    // Align the 16-bit pointer to 32-bits, and figure out if the 16-bit
    // operation is to be carried on the top or bottom half of the
    // 32-bit aligned value.
    Value *IPtr = IRB.CreatePtrToInt(Ptr16, I32, "uintptr");
    Value *IPtrAlign = IRB.CreateAnd(IPtr, IRB.getInt32(~3u), "aligneduintptr");
    Value *Aligned32 = IRB.CreateAnd(IPtr, IRB.getInt32(3u), "aligned32");
    Value *Ptr32 = IRB.CreateIntToPtr(IPtrAlign, I32Ptr, "ptr32");
    Value *IsAligned32 = IRB.CreateICmpEQ(Aligned32, IRB.getInt32(0),
                                          "isaligned32");
    IRB.CreateCondBr(IsAligned32, Aligned32BB, Aligned16BB);

    // Create a diamond after the setup. The rest of the basic block
    // that the Call was in is separated into the successor block.
    BasicBlock *Successor =
        CurrentBB->splitBasicBlock(IRB.GetInsertPoint(), "atomic16successor");
    // Remove the extra unconditional branch that the split added.
    CurrentBB->getTerminator()->eraseFromParent();

    // Aligned 32 block.
    // The 16-bit value was aligned to 32-bits:
    //  - Atomically load the full 32-bit value.
    //  - Get the 16-bit value from its bottom.
    //  - Perform the 16-bit operation.
    //  - Truncate and merge the result back with the top half of the
    //    loaded value.
    //  - Try to compare-exchange this new 32-bit result. This will
    //    succeed if the value at the 32-bit location is still what was
    //    just loaded. If not, try the entire thing again.
    //  - Return the 16-bit value before the operation was performed.
    Value *Ret32;
    {
      IRB.SetInsertPoint(Aligned32BB);
      LoadInst *Loaded = IRB.CreateAlignedLoad(Ptr32, 4, "loaded");
      Loaded->setAtomic(SequentiallyConsistent);
      Value *TruncVal = IRB.CreateTrunc(Loaded, I16, "truncval");
      Ret32 = TruncVal;
      Value *Res;
      if (IsCmpXChg) {
        Res = RHS;
      } else {
        switch (thawRMWOperation(RMWOp)) {
        default: llvm_unreachable("unknown atomic RMW operation");
        case AtomicRMWInst::Add:
          Res = IRB.CreateAdd(TruncVal, RHS, "res"); break;
        case AtomicRMWInst::Sub:
          Res = IRB.CreateSub(TruncVal, RHS, "res"); break;
        case AtomicRMWInst::Or:
          Res = IRB.CreateOr(TruncVal, RHS, "res"); break;
        case AtomicRMWInst::And:
          Res = IRB.CreateAnd(TruncVal, RHS, "res"); break;
        case AtomicRMWInst::Xor:
          Res = IRB.CreateXor(TruncVal, RHS, "res"); break;
        case AtomicRMWInst::Xchg:
          Res = RHS; break;
        }
      }
      Value *MergeRes = IRB.CreateZExt(Res, I32, "mergeres");
      Value *MaskedLoaded = IRB.CreateAnd(Loaded, IRB.getInt32(0xFFFF0000u),
                                          "maskedloaded");
      Value *FinalRes = IRB.CreateOr(MergeRes, MaskedLoaded, "finalres");
      Value *Expected = IsCmpXChg ?
          IRB.CreateOr(MaskedLoaded, IRB.CreateZExt(CmpXChgOldVal, I32, "zext"),
                       "expected") :
          Loaded;
      Value *OldVal = IRB.CreateAtomicCmpXchg(Ptr32, Expected, FinalRes,
                                              SequentiallyConsistent);
      OldVal->setName("oldval");
      // Test that the entire 32-bit value didn't change during the operation.
      Value *Success = IRB.CreateICmpEQ(OldVal, Loaded, "success");
      IRB.CreateCondBr(Success, Successor, Aligned32BB);
    }

    // Aligned 16 block.
    // Similar to the above aligned 32 block, but the 16-bit value is in
    // the top half of the 32-bit value. It needs to be shifted down,
    // and shifted back up before being merged in.
    Value *Ret16;
    {
      IRB.SetInsertPoint(Aligned16BB);
      LoadInst *Loaded = IRB.CreateAlignedLoad(Ptr32, 4, "loaded");
      Loaded->setAtomic(SequentiallyConsistent);
      Value *ShVal = IRB.CreateTrunc(IRB.CreateLShr(Loaded, 16, "lshr"), I16,
                                     "shval");
      Ret16 = ShVal;
      Value *Res;
      if (IsCmpXChg) {
        Res = RHS;
      } else {
        switch (thawRMWOperation(RMWOp)) {
        default: llvm_unreachable("unknown atomic RMW operation");
        case AtomicRMWInst::Add:
          Res = IRB.CreateAdd(ShVal, RHS, "res"); break;
        case AtomicRMWInst::Sub:
          Res = IRB.CreateSub(ShVal, RHS, "res"); break;
        case AtomicRMWInst::Or:
          Res = IRB.CreateOr(ShVal, RHS, "res"); break;
        case AtomicRMWInst::And:
          Res = IRB.CreateAnd(ShVal, RHS, "res"); break;
        case AtomicRMWInst::Xor:
          Res = IRB.CreateXor(ShVal, RHS, "res"); break;
        case AtomicRMWInst::Xchg:
          Res = RHS; break;
        }
      }
      Value *MergeRes = IRB.CreateShl(IRB.CreateZExt(Res, I32, "zext"), 16,
                                      "mergeres");
      Value *MaskedLoaded = IRB.CreateAnd(Loaded, IRB.getInt32(0xFFFF),
                                          "maskedloaded");
      Value *FinalRes = IRB.CreateOr(MergeRes, MaskedLoaded, "finalres");
      Value *Expected = IsCmpXChg ?
          IRB.CreateOr(MaskedLoaded, IRB.CreateShl(
              IRB.CreateZExt(CmpXChgOldVal, I32, "zext"), 16, "shl"),
                       "expected") :
          Loaded;
      Value *OldVal = IRB.CreateAtomicCmpXchg(Ptr32, Expected, FinalRes,
                                              SequentiallyConsistent);
      OldVal->setName("oldval");
      // Test that the entire 32-bit value didn't change during the operation.
      Value *Success = IRB.CreateICmpEQ(OldVal, Loaded, "success");
      IRB.CreateCondBr(Success, Successor, Aligned16BB);
    }

    // Merge the value, and remove the original intrinsic Call.
    IRB.SetInsertPoint(Successor->getFirstInsertionPt());
    PHINode *PHI = IRB.CreatePHI(I16, 2);
    PHI->addIncoming(Ret32, Aligned32BB);
    PHI->addIncoming(Ret16, Aligned16BB);
    Call->replaceAllUsesWith(PHI);
    Call->eraseFromParent();

    // Finish everything with another compiler fence.
    CallInst::Create(InlineAsm::get(
        FTy, AsmString, Constraints, HasSideEffect), "",
                     Successor->getFirstInsertionPt());
  }
  // ===========================================================================
  // End hacks.

  AtomicCallResolver(const AtomicCallResolver &);
  AtomicCallResolver &operator=(const AtomicCallResolver &);
};
}

bool ResolvePNaClIntrinsics::visitCalls(
    ResolvePNaClIntrinsics::CallResolver &Resolver) {
  bool Changed = false;
  Function *IntrinsicFunction = Resolver.getDeclaration();
  if (!IntrinsicFunction)
    return false;

  for (Value::use_iterator UI = IntrinsicFunction->use_begin(),
                           UE = IntrinsicFunction->use_end();
       UI != UE;) {
    // At this point, the only uses of the intrinsic can be calls, since
    // we assume this pass runs on bitcode that passed ABI verification.
    IntrinsicInst *Call = dyn_cast<IntrinsicInst>(*UI++);
    if (!Call)
      report_fatal_error("Expected use of intrinsic to be a call: " +
                         Resolver.getName());

    Changed |= Resolver.resolve(Call);
  }

  return Changed;
}

bool ResolvePNaClIntrinsics::runOnFunction(Function &F) {
  LLVMContext &C = F.getParent()->getContext();
  bool Changed = false;

  IntrinsicCallToFunctionCall SetJmpResolver(F, Intrinsic::nacl_setjmp,
                                             "setjmp");
  IntrinsicCallToFunctionCall LongJmpResolver(F, Intrinsic::nacl_longjmp,
                                              "longjmp");
  Changed |= visitCalls(SetJmpResolver);
  Changed |= visitCalls(LongJmpResolver);

  NaCl::AtomicIntrinsics AI(C);
  NaCl::AtomicIntrinsics::View V = AI.allIntrinsicsAndOverloads();
  for (NaCl::AtomicIntrinsics::View::iterator I = V.begin(), E = V.end();
       I != E; ++I) {
    AtomicCallResolver AtomicResolver(F, I);
    Changed |= visitCalls(AtomicResolver);
  }

  ConstantCallResolver<IsLockFreeToConstant> IsLockFreeResolver(
      F, Intrinsic::nacl_atomic_is_lock_free, IsLockFreeToConstant());
  Changed |= visitCalls(IsLockFreeResolver);

  return Changed;
}

char ResolvePNaClIntrinsics::ID = 0;
INITIALIZE_PASS(ResolvePNaClIntrinsics, "resolve-pnacl-intrinsics",
                "Resolve PNaCl intrinsic calls", false, false)

FunctionPass *llvm::createResolvePNaClIntrinsicsPass() {
  return new ResolvePNaClIntrinsics();
}