1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
|
//===- PromoteIntegers.cpp - Promote illegal integers for PNaCl ABI -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
// A limited set of transformations to promote illegal-sized int types.
//
//===----------------------------------------------------------------------===//
//
// Legal sizes are currently 1, 8, 16, 32, 64 (and higher, see note below)
// Operations on illegal integers and int pointers are be changed to operate
// on the next-higher legal size.
// It maintains no invariants about the upper bits (above the size of the
// original type); therefore before operations which can be affected by the
// value of these bits (e.g. cmp, select, lshr), the upper bits of the operands
// are cleared.
//
// Limitations:
// 1) It can't change function signatures or global variables
// 2) It won't promote (and can't expand) types larger than i64
// 3) Doesn't support div operators
// 4) Doesn't handle arrays or structs (or GEPs) with illegal types
// 5) Doesn't handle constant expressions (it also doesn't produce them, so it
// can run after ExpandConstantExpr)
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/Pass.h"
#include "llvm/Support/IntegersSubset.h"
#include "llvm/Support/IntegersSubsetMapping.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/NaCl.h"
using namespace llvm;
namespace {
class ConversionState;
class PromoteIntegers : public FunctionPass {
DataLayout *DL;
Value *splitLoad(LoadInst *Inst, ConversionState &State);
Value *splitStore(StoreInst *Inst, ConversionState &State);
void convertInstruction(Instruction *Inst, ConversionState &State);
public:
static char ID;
PromoteIntegers() : FunctionPass(ID) {
initializePromoteIntegersPass(*PassRegistry::getPassRegistry());
}
virtual bool runOnFunction(Function &F);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<DataLayout>();
return FunctionPass::getAnalysisUsage(AU);
}
};
}
char PromoteIntegers::ID = 0;
INITIALIZE_PASS(PromoteIntegers, "nacl-promote-ints",
"Promote integer types which are illegal in PNaCl",
false, false)
// Legal sizes are currently 1, 8, 16, 32, and 64.
// We can't yet expand types above 64 bit, so don't try to touch them for now.
// TODO(dschuff): expand >64bit types or disallow >64bit packed bitfields.
// There are currently none in our tests that use the ABI checker.
// See https://code.google.com/p/nativeclient/issues/detail?id=3360
static bool isLegalSize(unsigned Size) {
#if 0 // XXX EMSCRIPTEN: Generalize this code to work on any bit width.
if (Size > 64) return true;
return Size == 1 || Size == 8 || Size == 16 || Size == 32 || Size == 64;
#else
return Size == 1 || (Size >= 8 && isPowerOf2_32(Size));
#endif
}
static Type *getPromotedIntType(IntegerType *Ty) {
unsigned Width = Ty->getBitWidth();
#if 0 // XXX EMSCRIPTEN: We support promoting these types to power-of-2 sizes.
assert(Width <= 64 && "Don't know how to legalize >64 bit types yet");
#endif
if (isLegalSize(Width))
return Ty;
return IntegerType::get(Ty->getContext(),
Width < 8 ? 8 : NextPowerOf2(Width));
}
// Return a legal integer or pointer-to-integer type, promoting to a larger
// size if necessary.
static Type *getPromotedType(Type *Ty) {
assert((isa<IntegerType>(Ty) ||
(isa<PointerType>(Ty) && isa<IntegerType>(Ty->getContainedType(0))))
&& "Trying to convert a non-integer type");
if (isa<PointerType>(Ty))
return getPromotedIntType(
cast<IntegerType>(Ty->getContainedType(0)))->getPointerTo();
return getPromotedIntType(cast<IntegerType>(Ty));
}
// Return true if Val is an int or pointer-to-int which should be converted.
static bool shouldConvert(Value *Val) {
Type *Ty = Val->getType();
#if 0 // XXX EMSCRIPTEN: We don't need to convert pointers.
if (PointerType *Pty = dyn_cast<PointerType>(Ty))
Ty = Pty->getContainedType(0);
#endif
if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) {
if (!isLegalSize(ITy->getBitWidth())) {
return true;
}
}
return false;
}
// Return a constant which has been promoted to a legal size.
static Value *convertConstant(Constant *C, bool SignExt=false) {
assert(shouldConvert(C));
if (isa<UndefValue>(C)) {
return UndefValue::get(getPromotedType(C->getType()));
} else if (ConstantInt *CInt = dyn_cast<ConstantInt>(C)) {
#if 0 // XXX EMSCRIPTEN: Generalize this code to work on any bit width.
return ConstantInt::get(
getPromotedType(C->getType()),
SignExt ? CInt->getSExtValue() : CInt->getZExtValue(),
/*isSigned=*/SignExt);
#else
unsigned BitWidth = getPromotedType(C->getType())->getIntegerBitWidth();
const APInt &Value = CInt->getValue();
return ConstantInt::get(C->getContext(),
SignExt ? Value.sext(BitWidth) : Value.zext(BitWidth));
#endif
} else {
errs() << "Value: " << *C << "\n";
report_fatal_error("Unexpected constant value");
}
}
namespace {
// Holds the state for converting/replacing values. Conversion is done in one
// pass, with each value requiring conversion possibly having two stages. When
// an instruction needs to be replaced (i.e. it has illegal operands or result)
// a new instruction is created, and the pass calls getConverted to get its
// operands. If the original operand has already been converted, the new value
// is returned. Otherwise, a placeholder is created and used in the new
// instruction. After a new instruction is created to replace an illegal one,
// recordConverted is called to register the replacement. All users are updated,
// and if there is a placeholder, its users are also updated.
// recordConverted also queues the old value for deletion.
// This strategy avoids the need for recursion or worklists for conversion.
class ConversionState {
public:
// Return the promoted value for Val. If Val has not yet been converted,
// return a placeholder, which will be converted later.
Value *getConverted(Value *Val) {
if (!shouldConvert(Val))
return Val;
if (isa<GlobalVariable>(Val))
report_fatal_error("Can't convert illegal GlobalVariables");
if (RewrittenMap.count(Val))
return RewrittenMap[Val];
Value *P;
// Directly convert constants.
if (Constant *C = dyn_cast<Constant>(Val)) {
return convertConstant(C, /*SignExt=*/false);
} else {
// No converted value available yet, so create a placeholder.
P = new Argument(getPromotedType(Val->getType()));
}
RewrittenMap[Val] = P;
Placeholders[Val] = P;
return P;
}
// Replace the uses of From with To, replace the uses of any
// placeholders for From, and optionally give From's name to To.
// Also mark To for deletion.
void recordConverted(Instruction *From, Value *To, bool TakeName=true) {
ToErase.push_back(From);
if (!shouldConvert(From)) {
// From does not produce an illegal value, update its users in place.
From->replaceAllUsesWith(To);
} else {
// From produces an illegal value, so its users will be replaced. When
// replacements are created they will use values returned by getConverted.
if (Placeholders.count(From)) {
// Users of the placeholder can be updated in place.
Placeholders[From]->replaceAllUsesWith(To);
Placeholders.erase(From);
}
RewrittenMap[From] = To;
}
if (TakeName) {
To->takeName(From);
}
}
void eraseReplacedInstructions() {
for (SmallVectorImpl<Instruction *>::iterator I = ToErase.begin(),
E = ToErase.end(); I != E; ++I)
(*I)->dropAllReferences();
for (SmallVectorImpl<Instruction *>::iterator I = ToErase.begin(),
E = ToErase.end(); I != E; ++I)
(*I)->eraseFromParent();
}
private:
// Maps illegal values to their new converted values (or placeholders
// if no new value is available yet)
DenseMap<Value *, Value *> RewrittenMap;
// Maps illegal values with no conversion available yet to their placeholders
DenseMap<Value *, Value *> Placeholders;
// Illegal values which have already been converted, will be erased.
SmallVector<Instruction *, 8> ToErase;
};
} // anonymous namespace
// Split an illegal load into multiple legal loads and return the resulting
// promoted value. The size of the load is assumed to be a multiple of 8.
Value *PromoteIntegers::splitLoad(LoadInst *Inst, ConversionState &State) {
if (Inst->isVolatile() || Inst->isAtomic())
report_fatal_error("Can't split volatile/atomic loads");
if (DL->getTypeSizeInBits(Inst->getType()) % 8 != 0)
report_fatal_error("Loads must be a multiple of 8 bits");
Value *OrigPtr = State.getConverted(Inst->getPointerOperand());
// OrigPtr is a placeholder in recursive calls, and so has no name
if (OrigPtr->getName().empty())
OrigPtr->setName(Inst->getPointerOperand()->getName());
unsigned Width = DL->getTypeSizeInBits(Inst->getType());
Type *NewType = getPromotedType(Inst->getType());
unsigned LoWidth = Width;
while (!isLegalSize(LoWidth)) LoWidth -= 8;
IntegerType *LoType = IntegerType::get(Inst->getContext(), LoWidth);
IntegerType *HiType = IntegerType::get(Inst->getContext(), Width - LoWidth);
IRBuilder<> IRB(Inst);
Value *BCLo = IRB.CreateBitCast(
OrigPtr,
LoType->getPointerTo(),
OrigPtr->getName() + ".loty");
Value *LoadLo = IRB.CreateAlignedLoad(
BCLo, Inst->getAlignment(), Inst->getName() + ".lo");
Value *LoExt = IRB.CreateZExt(LoadLo, NewType, LoadLo->getName() + ".ext");
Value *GEPHi = IRB.CreateConstGEP1_32(BCLo, 1, OrigPtr->getName() + ".hi");
Value *BCHi = IRB.CreateBitCast(
GEPHi,
HiType->getPointerTo(),
OrigPtr->getName() + ".hity");
#if 0 // XXX EMSCRIPTEN: We want the full-strength alignment.
Value *LoadHi = IRB.CreateAlignedLoad(BCHi, 1, Inst->getName() + ".hi");
#else
unsigned HiAlign = MinAlign(Inst->getAlignment() == 0 ?
DL->getABITypeAlignment(Inst->getType()) :
Inst->getAlignment(),
LoWidth / 8);
Value *LoadHi = IRB.CreateAlignedLoad(BCHi, HiAlign, Inst->getName() + ".hi");
#endif
if (!isLegalSize(Width - LoWidth)) {
LoadHi = splitLoad(cast<LoadInst>(LoadHi), State);
#if 0 /// XXX EMSCRIPTEN: We don't need to convert pointers.
// BCHi was still illegal, and has been replaced with a placeholder in the
// recursive call. Since it is redundant with BCLo in the recursive call,
// just splice it out entirely.
State.recordConverted(cast<Instruction>(BCHi), GEPHi, /*TakeName=*/false);
#endif
}
Value *HiExt = IRB.CreateZExt(LoadHi, NewType, LoadHi->getName() + ".ext");
Value *HiShift = IRB.CreateShl(HiExt, LoWidth, HiExt->getName() + ".sh");
Value *Result = IRB.CreateOr(LoExt, HiShift);
State.recordConverted(Inst, Result);
return Result;
}
Value *PromoteIntegers::splitStore(StoreInst *Inst, ConversionState &State) {
if (Inst->isVolatile() || Inst->isAtomic())
report_fatal_error("Can't split volatile/atomic stores");
if (DL->getTypeSizeInBits(Inst->getValueOperand()->getType()) % 8 != 0)
report_fatal_error("Stores must be a multiple of 8 bits");
Value *OrigPtr = State.getConverted(Inst->getPointerOperand());
// OrigPtr is now a placeholder in recursive calls, and so has no name.
if (OrigPtr->getName().empty())
OrigPtr->setName(Inst->getPointerOperand()->getName());
Value *OrigVal = State.getConverted(Inst->getValueOperand());
unsigned Width = DL->getTypeSizeInBits(Inst->getValueOperand()->getType());
unsigned LoWidth = Width;
while (!isLegalSize(LoWidth)) LoWidth -= 8;
IntegerType *LoType = IntegerType::get(Inst->getContext(), LoWidth);
IntegerType *HiType = IntegerType::get(Inst->getContext(), Width - LoWidth);
IRBuilder<> IRB(Inst);
Value *BCLo = IRB.CreateBitCast(
OrigPtr,
LoType->getPointerTo(),
OrigPtr->getName() + ".loty");
Value *LoTrunc = IRB.CreateTrunc(
OrigVal, LoType, OrigVal->getName() + ".lo");
IRB.CreateAlignedStore(LoTrunc, BCLo, Inst->getAlignment());
Value *HiLShr = IRB.CreateLShr(
OrigVal, LoWidth, OrigVal->getName() + ".hi.sh");
Value *GEPHi = IRB.CreateConstGEP1_32(BCLo, 1, OrigPtr->getName() + ".hi");
Value *HiTrunc = IRB.CreateTrunc(
HiLShr, HiType, OrigVal->getName() + ".hi");
Value *BCHi = IRB.CreateBitCast(
GEPHi,
HiType->getPointerTo(),
OrigPtr->getName() + ".hity");
#if 0 // XXX EMSCRIPTEN: We want the full-strength alignment.
Value *StoreHi = IRB.CreateAlignedStore(HiTrunc, BCHi, 1);
#else
unsigned HiAlign = MinAlign(Inst->getAlignment() == 0 ?
DL->getABITypeAlignment(Inst->getValueOperand()->getType()) :
Inst->getAlignment(),
LoWidth / 8);
Value *StoreHi = IRB.CreateAlignedStore(HiTrunc, BCHi, HiAlign);
#endif
if (!isLegalSize(Width - LoWidth)) {
// HiTrunc is still illegal, and is redundant with the truncate in the
// recursive call, so just get rid of it.
#if 0 /// XXX EMSCRIPTEN: Allow these to be ConstantExprs
State.recordConverted(cast<Instruction>(HiTrunc), HiLShr,
/*TakeName=*/false);
#else
if (Instruction *HiTruncInst = dyn_cast<Instruction>(HiTrunc)) {
State.recordConverted(HiTruncInst, HiLShr,
/*TakeName=*/false);
}
#endif
StoreHi = splitStore(cast<StoreInst>(StoreHi), State);
// BCHi was still illegal, and has been replaced with a placeholder in the
// recursive call. Since it is redundant with BCLo in the recursive call,
// just splice it out entirely.
#if 0 /// XXX EMSCRIPTEN: We don't need to convert pointers.
State.recordConverted(cast<Instruction>(BCHi), GEPHi, /*TakeName=*/false);
#endif
}
State.recordConverted(Inst, StoreHi, /*TakeName=*/false);
return StoreHi;
}
// Return a converted value with the bits of the operand above the size of the
// original type cleared.
static Value *getClearConverted(Value *Operand, Instruction *InsertPt,
ConversionState &State) {
Type *OrigType = Operand->getType();
Instruction *OrigInst = dyn_cast<Instruction>(Operand);
Operand = State.getConverted(Operand);
// If the operand is a constant, it will have been created by
// ConversionState.getConverted, which zero-extends by default.
if (isa<Constant>(Operand))
return Operand;
Instruction *NewInst = BinaryOperator::Create(
Instruction::And,
Operand,
ConstantInt::get(
getPromotedType(OrigType),
APInt::getLowBitsSet(getPromotedType(OrigType)->getIntegerBitWidth(),
OrigType->getIntegerBitWidth())),
Operand->getName() + ".clear",
InsertPt);
if (OrigInst)
CopyDebug(NewInst, OrigInst);
return NewInst;
}
// Return a value with the bits of the operand above the size of the original
// type equal to the sign bit of the original operand. The new operand is
// assumed to have been legalized already.
// This is done by shifting the sign bit of the smaller value up to the MSB
// position in the larger size, and then arithmetic-shifting it back down.
static Value *getSignExtend(Value *Operand, Value *OrigOperand,
Instruction *InsertPt) {
// If OrigOperand was a constant, NewOperand will have been created by
// ConversionState.getConverted, which zero-extends by default. But that is
// wrong here, so replace it with a sign-extended constant.
if (Constant *C = dyn_cast<Constant>(OrigOperand))
return convertConstant(C, /*SignExt=*/true);
Type *OrigType = OrigOperand->getType();
ConstantInt *ShiftAmt = ConstantInt::getSigned(
cast<IntegerType>(getPromotedType(OrigType)),
getPromotedType(OrigType)->getIntegerBitWidth() -
OrigType->getIntegerBitWidth());
BinaryOperator *Shl = BinaryOperator::Create(
Instruction::Shl,
Operand,
ShiftAmt,
Operand->getName() + ".getsign",
InsertPt);
if (Instruction *Inst = dyn_cast<Instruction>(OrigOperand))
CopyDebug(Shl, Inst);
return CopyDebug(BinaryOperator::Create(
Instruction::AShr,
Shl,
ShiftAmt,
Operand->getName() + ".signed",
InsertPt), Shl);
}
void PromoteIntegers::convertInstruction(Instruction *Inst, ConversionState &State) {
if (SExtInst *Sext = dyn_cast<SExtInst>(Inst)) {
Value *Op = Sext->getOperand(0);
Value *NewInst = NULL;
// If the operand to be extended is illegal, we first need to fill its
// upper bits with its sign bit.
if (shouldConvert(Op)) {
NewInst = getSignExtend(State.getConverted(Op), Op, Sext);
}
// If the converted type of the operand is the same as the converted
// type of the result, we won't actually be changing the type of the
// variable, just its value.
if (getPromotedType(Op->getType()) !=
getPromotedType(Sext->getType())) {
NewInst = CopyDebug(new SExtInst(
NewInst ? NewInst : State.getConverted(Op),
getPromotedType(cast<IntegerType>(Sext->getType())),
Sext->getName() + ".sext", Sext), Sext);
}
assert(NewInst && "Failed to convert sign extension");
State.recordConverted(Sext, NewInst);
} else if (ZExtInst *Zext = dyn_cast<ZExtInst>(Inst)) {
Value *Op = Zext->getOperand(0);
Value *NewInst = NULL;
if (shouldConvert(Op)) {
NewInst = getClearConverted(Op, Zext, State);
}
// If the converted type of the operand is the same as the converted
// type of the result, we won't actually be changing the type of the
// variable, just its value.
if (getPromotedType(Op->getType()) !=
getPromotedType(Zext->getType())) {
NewInst = CopyDebug(CastInst::CreateZExtOrBitCast(
NewInst ? NewInst : State.getConverted(Op),
getPromotedType(cast<IntegerType>(Zext->getType())),
"", Zext), Zext);
}
assert(NewInst);
State.recordConverted(Zext, NewInst);
} else if (TruncInst *Trunc = dyn_cast<TruncInst>(Inst)) {
Value *Op = Trunc->getOperand(0);
Value *NewInst;
// If the converted type of the operand is the same as the converted
// type of the result, we don't actually need to change the type of the
// variable, just its value. However, because we don't care about the values
// of the upper bits until they are consumed, truncation can be a no-op.
if (getPromotedType(Op->getType()) !=
getPromotedType(Trunc->getType())) {
NewInst = CopyDebug(new TruncInst(
State.getConverted(Op),
getPromotedType(cast<IntegerType>(Trunc->getType())),
State.getConverted(Op)->getName() + ".trunc",
Trunc), Trunc);
} else {
NewInst = State.getConverted(Op);
}
State.recordConverted(Trunc, NewInst);
} else if (AllocaInst *Alloc = dyn_cast<AllocaInst>(Inst)) {
// Don't handle arrays of illegal types, but we could handle an array
// with size specified as an illegal type, as unlikely as that seems.
if (shouldConvert(Alloc) && Alloc->isArrayAllocation())
report_fatal_error("Can't convert arrays of illegal type");
AllocaInst *NewInst = new AllocaInst(
getPromotedType(Alloc->getAllocatedType()),
State.getConverted(Alloc->getArraySize()),
"", Alloc);
CopyDebug(NewInst, Alloc);
NewInst->setAlignment(Alloc->getAlignment());
State.recordConverted(Alloc, NewInst);
} else if (BitCastInst *BCInst = dyn_cast<BitCastInst>(Inst)) {
// Only handle pointers. Ints can't be casted to/from other ints
Type *DestType = shouldConvert(BCInst) ?
getPromotedType(BCInst->getDestTy()) : BCInst->getDestTy();
Instruction *NewInst = CopyDebug(new BitCastInst(
State.getConverted(BCInst->getOperand(0)),
DestType,
"", BCInst), BCInst);
State.recordConverted(BCInst, NewInst);
} else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
if (shouldConvert(Load)) {
splitLoad(Load, State);
}
} else if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) {
if (shouldConvert(Store->getValueOperand())) {
splitStore(Store, State);
}
} else if (isa<CallInst>(Inst)) {
report_fatal_error("can't convert calls with illegal types");
} else if (BinaryOperator *Binop = dyn_cast<BinaryOperator>(Inst)) {
Value *NewInst = NULL;
switch (Binop->getOpcode()) {
case Instruction::AShr: {
// The AShr operand needs to be sign-extended to the promoted size
// before shifting. Because the sign-extension is implemented with
// with AShr, it can be combined with the original operation.
Value *Op = Binop->getOperand(0);
Value *ShiftAmount = NULL;
APInt SignShiftAmt = APInt(
getPromotedType(Op->getType())->getIntegerBitWidth(),
getPromotedType(Op->getType())->getIntegerBitWidth() -
Op->getType()->getIntegerBitWidth());
NewInst = CopyDebug(BinaryOperator::Create(
Instruction::Shl,
State.getConverted(Op),
ConstantInt::get(getPromotedType(Op->getType()), SignShiftAmt),
State.getConverted(Op)->getName() + ".getsign",
Binop), Binop);
if (ConstantInt *C = dyn_cast<ConstantInt>(
State.getConverted(Binop->getOperand(1)))) {
ShiftAmount = ConstantInt::get(getPromotedType(Op->getType()),
SignShiftAmt + C->getValue());
} else {
// Clear the upper bits of the original shift amount, and add back the
// amount we shifted to get the sign bit.
ShiftAmount = getClearConverted(Binop->getOperand(1), Binop, State);
ShiftAmount = CopyDebug(BinaryOperator::Create(
Instruction::Add,
ShiftAmount,
ConstantInt::get(
getPromotedType(Binop->getOperand(1)->getType()),
SignShiftAmt),
State.getConverted(Op)->getName() + ".shamt", Binop), Binop);
}
NewInst = CopyDebug(BinaryOperator::Create(
Instruction::AShr,
NewInst,
ShiftAmount,
Binop->getName() + ".result", Binop), Binop);
break;
}
case Instruction::LShr:
case Instruction::Shl: {
// For LShr, clear the upper bits of the operand before shifting them
// down into the valid part of the value.
Value *Op = Binop->getOpcode() == Instruction::LShr
? getClearConverted(Binop->getOperand(0), Binop, State)
: State.getConverted(Binop->getOperand(0));
NewInst = BinaryOperator::Create(
Binop->getOpcode(), Op,
// Clear the upper bits of the shift amount.
getClearConverted(Binop->getOperand(1), Binop, State),
Binop->getName() + ".result", Binop);
break;
}
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
// These operations don't care about the state of the upper bits.
NewInst = CopyDebug(BinaryOperator::Create(
Binop->getOpcode(),
State.getConverted(Binop->getOperand(0)),
State.getConverted(Binop->getOperand(1)),
Binop->getName() + ".result", Binop), Binop);
break;
case Instruction::FAdd:
case Instruction::FSub:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::BinaryOpsEnd:
// We should not see FP operators here.
// We don't handle div.
errs() << *Inst << "\n";
llvm_unreachable("Cannot handle binary operator");
break;
}
if (isa<OverflowingBinaryOperator>(NewInst)) {
cast<BinaryOperator>(NewInst)->setHasNoUnsignedWrap(
Binop->hasNoUnsignedWrap());
cast<BinaryOperator>(NewInst)->setHasNoSignedWrap(
Binop->hasNoSignedWrap());
}
State.recordConverted(Binop, NewInst);
} else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(Inst)) {
Value *Op0, *Op1;
// For signed compares, operands are sign-extended to their
// promoted type. For unsigned or equality compares, the upper bits are
// cleared.
if (Cmp->isSigned()) {
Op0 = getSignExtend(State.getConverted(Cmp->getOperand(0)),
Cmp->getOperand(0),
Cmp);
Op1 = getSignExtend(State.getConverted(Cmp->getOperand(1)),
Cmp->getOperand(1),
Cmp);
} else {
Op0 = getClearConverted(Cmp->getOperand(0), Cmp, State);
Op1 = getClearConverted(Cmp->getOperand(1), Cmp, State);
}
Instruction *NewInst = CopyDebug(new ICmpInst(
Cmp, Cmp->getPredicate(), Op0, Op1, ""), Cmp);
State.recordConverted(Cmp, NewInst);
} else if (SelectInst *Select = dyn_cast<SelectInst>(Inst)) {
Instruction *NewInst = CopyDebug(SelectInst::Create(
Select->getCondition(),
State.getConverted(Select->getTrueValue()),
State.getConverted(Select->getFalseValue()),
"", Select), Select);
State.recordConverted(Select, NewInst);
} else if (PHINode *Phi = dyn_cast<PHINode>(Inst)) {
PHINode *NewPhi = PHINode::Create(
getPromotedType(Phi->getType()),
Phi->getNumIncomingValues(),
"", Phi);
CopyDebug(NewPhi, Phi);
for (unsigned I = 0, E = Phi->getNumIncomingValues(); I < E; ++I) {
NewPhi->addIncoming(State.getConverted(Phi->getIncomingValue(I)),
Phi->getIncomingBlock(I));
}
State.recordConverted(Phi, NewPhi);
} else if (SwitchInst *Switch = dyn_cast<SwitchInst>(Inst)) {
Value *Condition = getClearConverted(Switch->getCondition(), Switch, State);
SwitchInst *NewInst = SwitchInst::Create(
Condition,
Switch->getDefaultDest(),
Switch->getNumCases(),
Switch);
CopyDebug(NewInst, Switch);
for (SwitchInst::CaseIt I = Switch->case_begin(),
E = Switch->case_end();
I != E; ++I) {
// Build a new case from the ranges that map to the successor BB. Each
// range consists of a high and low value which are typed, so the ranges
// must be rebuilt and a new case constructed from them.
IntegersSubset CaseRanges = I.getCaseValueEx();
IntegersSubsetToBB CaseBuilder;
for (unsigned RI = 0, RE = CaseRanges.getNumItems(); RI < RE; ++RI) {
CaseBuilder.add(
IntItem::fromConstantInt(cast<ConstantInt>(convertConstant(
CaseRanges.getItem(RI).getLow().toConstantInt()))),
IntItem::fromConstantInt(cast<ConstantInt>(convertConstant(
CaseRanges.getItem(RI).getHigh().toConstantInt()))));
}
IntegersSubset Case = CaseBuilder.getCase();
NewInst->addCase(Case, I.getCaseSuccessor());
}
Switch->eraseFromParent();
} else {
errs() << *Inst<<"\n";
llvm_unreachable("unhandled instruction");
}
}
bool PromoteIntegers::runOnFunction(Function &F) {
DL = &getAnalysis<DataLayout>();
// Don't support changing the function arguments. This should not be
// generated by clang.
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
Value *Arg = I;
if (shouldConvert(Arg)) {
errs() << "Function " << F.getName() << ": " << *Arg << "\n";
llvm_unreachable("Function has illegal integer/pointer argument");
}
}
ConversionState State;
bool Modified = false;
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
for (BasicBlock::iterator BBI = FI->begin(), BBE = FI->end(); BBI != BBE;) {
Instruction *Inst = BBI++;
// Only attempt to convert an instruction if its result or any of its
// operands are illegal.
bool ShouldConvert = shouldConvert(Inst);
for (User::op_iterator OI = Inst->op_begin(), OE = Inst->op_end();
OI != OE; ++OI)
ShouldConvert |= shouldConvert(cast<Value>(OI));
if (ShouldConvert) {
convertInstruction(Inst, State);
Modified = true;
}
}
}
State.eraseReplacedInstructions();
return Modified;
}
FunctionPass *llvm::createPromoteIntegersPass() {
return new PromoteIntegers();
}
|