1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
|
//=- X86SchedHaswell.td - X86 Haswell Scheduling -------------*- tablegen -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the machine model for Haswell to support instruction
// scheduling and other instruction cost heuristics.
//
//===----------------------------------------------------------------------===//
def HaswellModel : SchedMachineModel {
// All x86 instructions are modeled as a single micro-op, and HW can decode 4
// instructions per cycle.
let IssueWidth = 4;
let MinLatency = 0; // 0 = Out-of-order execution.
let LoadLatency = 4;
let ILPWindow = 30;
let MispredictPenalty = 16;
}
let SchedModel = HaswellModel in {
// Haswell can issue micro-ops to 8 different ports in one cycle.
// Ports 0, 1, 5, 6 and 7 handle all computation.
// Port 4 gets the data half of stores. Store data can be available later than
// the store address, but since we don't model the latency of stores, we can
// ignore that.
// Ports 2 and 3 are identical. They handle loads and the address half of
// stores. Port 7 can handle address calculations.
def HWPort0 : ProcResource<1>;
def HWPort1 : ProcResource<1>;
def HWPort2 : ProcResource<1>;
def HWPort3 : ProcResource<1>;
def HWPort4 : ProcResource<1>;
def HWPort5 : ProcResource<1>;
def HWPort6 : ProcResource<1>;
def HWPort7 : ProcResource<1>;
// Many micro-ops are capable of issuing on multiple ports.
def HWPort23 : ProcResGroup<[HWPort2, HWPort3]>;
def HWPort237 : ProcResGroup<[HWPort2, HWPort3, HWPort7]>;
def HWPort05 : ProcResGroup<[HWPort0, HWPort5]>;
def HWPort056 : ProcResGroup<[HWPort0, HWPort5, HWPort6]>;
def HWPort15 : ProcResGroup<[HWPort1, HWPort5]>;
def HWPort015 : ProcResGroup<[HWPort0, HWPort1, HWPort5]>;
def HWPort0156: ProcResGroup<[HWPort0, HWPort1, HWPort5, HWPort6]>;
// Integer division issued on port 0.
def HWDivider : ProcResource<1>;
// Loads are 4 cycles, so ReadAfterLd registers needn't be available until 4
// cycles after the memory operand.
def : ReadAdvance<ReadAfterLd, 4>;
// Many SchedWrites are defined in pairs with and without a folded load.
// Instructions with folded loads are usually micro-fused, so they only appear
// as two micro-ops when queued in the reservation station.
// This multiclass defines the resource usage for variants with and without
// folded loads.
multiclass HWWriteResPair<X86FoldableSchedWrite SchedRW,
ProcResourceKind ExePort,
int Lat> {
// Register variant is using a single cycle on ExePort.
def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; }
// Memory variant also uses a cycle on port 2/3 and adds 4 cycles to the
// latency.
def : WriteRes<SchedRW.Folded, [HWPort23, ExePort]> {
let Latency = !add(Lat, 4);
}
}
// A folded store needs a cycle on port 4 for the store data, but it does not
// need an extra port 2/3 cycle to recompute the address.
def : WriteRes<WriteRMW, [HWPort4]>;
def : WriteRes<WriteStore, [HWPort237, HWPort4]>;
def : WriteRes<WriteLoad, [HWPort23]> { let Latency = 4; }
def : WriteRes<WriteMove, [HWPort0156]>;
def : WriteRes<WriteZero, []>;
defm : HWWriteResPair<WriteALU, HWPort0156, 1>;
defm : HWWriteResPair<WriteIMul, HWPort1, 3>;
defm : HWWriteResPair<WriteShift, HWPort056, 1>;
defm : HWWriteResPair<WriteJump, HWPort5, 1>;
// This is for simple LEAs with one or two input operands.
// The complex ones can only execute on port 1, and they require two cycles on
// the port to read all inputs. We don't model that.
def : WriteRes<WriteLEA, [HWPort15]>;
// This is quite rough, latency depends on the dividend.
def : WriteRes<WriteIDiv, [HWPort0, HWDivider]> {
let Latency = 25;
let ResourceCycles = [1, 10];
}
def : WriteRes<WriteIDivLd, [HWPort23, HWPort0, HWDivider]> {
let Latency = 29;
let ResourceCycles = [1, 1, 10];
}
// Scalar and vector floating point.
defm : HWWriteResPair<WriteFAdd, HWPort1, 3>;
defm : HWWriteResPair<WriteFMul, HWPort0, 5>;
defm : HWWriteResPair<WriteFDiv, HWPort0, 12>; // 10-14 cycles.
defm : HWWriteResPair<WriteFRcp, HWPort0, 5>;
defm : HWWriteResPair<WriteFSqrt, HWPort0, 15>;
defm : HWWriteResPair<WriteCvtF2I, HWPort1, 3>;
defm : HWWriteResPair<WriteCvtI2F, HWPort1, 4>;
defm : HWWriteResPair<WriteCvtF2F, HWPort1, 3>;
// Vector integer operations.
defm : HWWriteResPair<WriteVecShift, HWPort05, 1>;
defm : HWWriteResPair<WriteVecLogic, HWPort015, 1>;
defm : HWWriteResPair<WriteVecALU, HWPort15, 1>;
defm : HWWriteResPair<WriteVecIMul, HWPort0, 5>;
defm : HWWriteResPair<WriteShuffle, HWPort15, 1>;
def : WriteRes<WriteSystem, [HWPort0156]> { let Latency = 100; }
def : WriteRes<WriteMicrocoded, [HWPort0156]> { let Latency = 100; }
} // SchedModel
|