aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp
blob: ed290ca7ed95eda9525f2f58fe23356342ed03ac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
//==-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ ---===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines an instruction selector for the SystemZ target.
//
//===----------------------------------------------------------------------===//

#include "SystemZ.h"
#include "SystemZTargetMachine.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Intrinsics.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

namespace {
  /// SystemZRRIAddressMode - This corresponds to rriaddr, but uses SDValue's
  /// instead of register numbers for the leaves of the matched tree.
  struct SystemZRRIAddressMode {
    enum {
      RegBase,
      FrameIndexBase
    } BaseType;

    struct {            // This is really a union, discriminated by BaseType!
      SDValue Reg;
      int FrameIndex;
    } Base;

    SDValue IndexReg;
    int64_t Disp;
    bool isRI;

    SystemZRRIAddressMode(bool RI = false)
      : BaseType(RegBase), IndexReg(), Disp(0), isRI(RI) {
    }

    void dump() {
      errs() << "SystemZRRIAddressMode " << this << '\n';
      if (BaseType == RegBase) {
        errs() << "Base.Reg ";
        if (Base.Reg.getNode() != 0)
          Base.Reg.getNode()->dump();
        else
          errs() << "nul";
        errs() << '\n';
      } else {
        errs() << " Base.FrameIndex " << Base.FrameIndex << '\n';
      }
      if (!isRI) {
        errs() << "IndexReg ";
        if (IndexReg.getNode() != 0) IndexReg.getNode()->dump();
        else errs() << "nul";
      }
      errs() << " Disp " << Disp << '\n';
    }
  };
}

/// SystemZDAGToDAGISel - SystemZ specific code to select SystemZ machine
/// instructions for SelectionDAG operations.
///
namespace {
  class SystemZDAGToDAGISel : public SelectionDAGISel {
    const SystemZTargetLowering &Lowering;
    const SystemZSubtarget &Subtarget;

    void getAddressOperandsRI(const SystemZRRIAddressMode &AM,
                            SDValue &Base, SDValue &Disp);
    void getAddressOperands(const SystemZRRIAddressMode &AM,
                            SDValue &Base, SDValue &Disp,
                            SDValue &Index);

  public:
    SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
      : SelectionDAGISel(TM, OptLevel),
        Lowering(*TM.getTargetLowering()),
        Subtarget(*TM.getSubtargetImpl()) { }

    virtual const char *getPassName() const {
      return "SystemZ DAG->DAG Pattern Instruction Selection";
    }

    /// getI8Imm - Return a target constant with the specified value, of type
    /// i8.
    inline SDValue getI8Imm(uint64_t Imm) {
      return CurDAG->getTargetConstant(Imm, MVT::i8);
    }

    /// getI16Imm - Return a target constant with the specified value, of type
    /// i16.
    inline SDValue getI16Imm(uint64_t Imm) {
      return CurDAG->getTargetConstant(Imm, MVT::i16);
    }

    /// getI32Imm - Return a target constant with the specified value, of type
    /// i32.
    inline SDValue getI32Imm(uint64_t Imm) {
      return CurDAG->getTargetConstant(Imm, MVT::i32);
    }

    // Include the pieces autogenerated from the target description.
    #include "SystemZGenDAGISel.inc"

  private:
    bool SelectAddrRI12Only(SDNode *Op, SDValue& Addr,
                            SDValue &Base, SDValue &Disp);
    bool SelectAddrRI12(SDNode *Op, SDValue& Addr,
                        SDValue &Base, SDValue &Disp,
                        bool is12BitOnly = false);
    bool SelectAddrRI(SDNode *Op, SDValue& Addr,
                      SDValue &Base, SDValue &Disp);
    bool SelectAddrRRI12(SDNode *Op, SDValue Addr,
                         SDValue &Base, SDValue &Disp, SDValue &Index);
    bool SelectAddrRRI20(SDNode *Op, SDValue Addr,
                         SDValue &Base, SDValue &Disp, SDValue &Index);
    bool SelectLAAddr(SDNode *Op, SDValue Addr,
                      SDValue &Base, SDValue &Disp, SDValue &Index);

    SDNode *Select(SDNode *Node);

    bool TryFoldLoad(SDNode *P, SDValue N,
                     SDValue &Base, SDValue &Disp, SDValue &Index);

    bool MatchAddress(SDValue N, SystemZRRIAddressMode &AM,
                      bool is12Bit, unsigned Depth = 0);
    bool MatchAddressBase(SDValue N, SystemZRRIAddressMode &AM);
    bool MatchAddressRI(SDValue N, SystemZRRIAddressMode &AM,
                        bool is12Bit);
  };
}  // end anonymous namespace

/// createSystemZISelDag - This pass converts a legalized DAG into a
/// SystemZ-specific DAG, ready for instruction scheduling.
///
FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
                                        CodeGenOpt::Level OptLevel) {
  return new SystemZDAGToDAGISel(TM, OptLevel);
}

/// isImmSExt20 - This method tests to see if the node is either a 32-bit
/// or 64-bit immediate, and if the value can be accurately represented as a
/// sign extension from a 20-bit value. If so, this returns true and the
/// immediate.
static bool isImmSExt20(int64_t Val, int64_t &Imm) {
  if (Val >= -524288 && Val <= 524287) {
    Imm = Val;
    return true;
  }
  return false;
}

/// isImmZExt12 - This method tests to see if the node is either a 32-bit
/// or 64-bit immediate, and if the value can be accurately represented as a
/// zero extension from a 12-bit value. If so, this returns true and the
/// immediate.
static bool isImmZExt12(int64_t Val, int64_t &Imm) {
  if (Val >= 0 && Val <= 0xFFF) {
    Imm = Val;
    return true;
  }
  return false;
}

/// MatchAddress - Add the specified node to the specified addressing mode,
/// returning true if it cannot be done.  This just pattern matches for the
/// addressing mode.
bool SystemZDAGToDAGISel::MatchAddress(SDValue N, SystemZRRIAddressMode &AM,
                                       bool is12Bit, unsigned Depth) {
  DebugLoc dl = N.getDebugLoc();
  DEBUG(errs() << "MatchAddress: "; AM.dump());
  // Limit recursion.
  if (Depth > 5)
    return MatchAddressBase(N, AM);

  // FIXME: We can perform better here. If we have something like
  // (shift (add A, imm), N), we can try to reassociate stuff and fold shift of
  // imm into addressing mode.
  switch (N.getOpcode()) {
  default: break;
  case ISD::Constant: {
    int64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
    int64_t Imm = 0;
    bool Match = (is12Bit ?
                  isImmZExt12(AM.Disp + Val, Imm) :
                  isImmSExt20(AM.Disp + Val, Imm));
    if (Match) {
      AM.Disp = Imm;
      return false;
    }
    break;
  }

  case ISD::FrameIndex:
    if (AM.BaseType == SystemZRRIAddressMode::RegBase &&
        AM.Base.Reg.getNode() == 0) {
      AM.BaseType = SystemZRRIAddressMode::FrameIndexBase;
      AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
      return false;
    }
    break;

  case ISD::SUB: {
    // Given A-B, if A can be completely folded into the address and
    // the index field with the index field unused, use -B as the index.
    // This is a win if a has multiple parts that can be folded into
    // the address. Also, this saves a mov if the base register has
    // other uses, since it avoids a two-address sub instruction, however
    // it costs an additional mov if the index register has other uses.

    // Test if the LHS of the sub can be folded.
    SystemZRRIAddressMode Backup = AM;
    if (MatchAddress(N.getNode()->getOperand(0), AM, is12Bit, Depth+1)) {
      AM = Backup;
      break;
    }
    // Test if the index field is free for use.
    if (AM.IndexReg.getNode() || AM.isRI) {
      AM = Backup;
      break;
    }

    // If the base is a register with multiple uses, this transformation may
    // save a mov. Otherwise it's probably better not to do it.
    if (AM.BaseType == SystemZRRIAddressMode::RegBase &&
        (!AM.Base.Reg.getNode() || AM.Base.Reg.getNode()->hasOneUse())) {
      AM = Backup;
      break;
    }

    // Ok, the transformation is legal and appears profitable. Go for it.
    SDValue RHS = N.getNode()->getOperand(1);
    SDValue Zero = CurDAG->getConstant(0, N.getValueType());
    SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
    AM.IndexReg = Neg;

    // Insert the new nodes into the topological ordering.
    if (Zero.getNode()->getNodeId() == -1 ||
        Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) {
      CurDAG->RepositionNode(N.getNode(), Zero.getNode());
      Zero.getNode()->setNodeId(N.getNode()->getNodeId());
    }
    if (Neg.getNode()->getNodeId() == -1 ||
        Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) {
      CurDAG->RepositionNode(N.getNode(), Neg.getNode());
      Neg.getNode()->setNodeId(N.getNode()->getNodeId());
    }
    return false;
  }

  case ISD::ADD: {
    SystemZRRIAddressMode Backup = AM;
    if (!MatchAddress(N.getNode()->getOperand(0), AM, is12Bit, Depth+1) &&
        !MatchAddress(N.getNode()->getOperand(1), AM, is12Bit, Depth+1))
      return false;
    AM = Backup;
    if (!MatchAddress(N.getNode()->getOperand(1), AM, is12Bit, Depth+1) &&
        !MatchAddress(N.getNode()->getOperand(0), AM, is12Bit, Depth+1))
      return false;
    AM = Backup;

    // If we couldn't fold both operands into the address at the same time,
    // see if we can just put each operand into a register and fold at least
    // the add.
    if (!AM.isRI &&
        AM.BaseType == SystemZRRIAddressMode::RegBase &&
        !AM.Base.Reg.getNode() && !AM.IndexReg.getNode()) {
      AM.Base.Reg = N.getNode()->getOperand(0);
      AM.IndexReg = N.getNode()->getOperand(1);
      return false;
    }
    break;
  }

  case ISD::OR:
    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
    if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
      SystemZRRIAddressMode Backup = AM;
      int64_t Offset = CN->getSExtValue();
      int64_t Imm = 0;
      bool MatchOffset = (is12Bit ?
                          isImmZExt12(AM.Disp + Offset, Imm) :
                          isImmSExt20(AM.Disp + Offset, Imm));
      // The resultant disp must fit in 12 or 20-bits.
      if (MatchOffset &&
          // LHS should be an addr mode.
          !MatchAddress(N.getOperand(0), AM, is12Bit, Depth+1) &&
          // Check to see if the LHS & C is zero.
          CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) {
        AM.Disp = Imm;
        return false;
      }
      AM = Backup;
    }
    break;
  }

  return MatchAddressBase(N, AM);
}

/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
/// specified addressing mode without any further recursion.
bool SystemZDAGToDAGISel::MatchAddressBase(SDValue N,
                                           SystemZRRIAddressMode &AM) {
  // Is the base register already occupied?
  if (AM.BaseType != SystemZRRIAddressMode::RegBase || AM.Base.Reg.getNode()) {
    // If so, check to see if the index register is set.
    if (AM.IndexReg.getNode() == 0 && !AM.isRI) {
      AM.IndexReg = N;
      return false;
    }

    // Otherwise, we cannot select it.
    return true;
  }

  // Default, generate it as a register.
  AM.BaseType = SystemZRRIAddressMode::RegBase;
  AM.Base.Reg = N;
  return false;
}

void SystemZDAGToDAGISel::getAddressOperandsRI(const SystemZRRIAddressMode &AM,
                                               SDValue &Base, SDValue &Disp) {
  if (AM.BaseType == SystemZRRIAddressMode::RegBase)
    Base = AM.Base.Reg;
  else
    Base = CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy());
  Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i64);
}

void SystemZDAGToDAGISel::getAddressOperands(const SystemZRRIAddressMode &AM,
                                             SDValue &Base, SDValue &Disp,
                                             SDValue &Index) {
  getAddressOperandsRI(AM, Base, Disp);
  Index = AM.IndexReg;
}

/// Returns true if the address can be represented by a base register plus
/// an unsigned 12-bit displacement [r+imm].
bool SystemZDAGToDAGISel::SelectAddrRI12Only(SDNode *Op, SDValue& Addr,
                                             SDValue &Base, SDValue &Disp) {
  return SelectAddrRI12(Op, Addr, Base, Disp, /*is12BitOnly*/true);
}

bool SystemZDAGToDAGISel::SelectAddrRI12(SDNode *Op, SDValue& Addr,
                                         SDValue &Base, SDValue &Disp,
                                         bool is12BitOnly) {
  SystemZRRIAddressMode AM20(/*isRI*/true), AM12(/*isRI*/true);
  bool Done = false;

  if (!Addr.hasOneUse()) {
    unsigned Opcode = Addr.getOpcode();
    if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) {
      // If we are able to fold N into addressing mode, then we'll allow it even
      // if N has multiple uses. In general, addressing computation is used as
      // addresses by all of its uses. But watch out for CopyToReg uses, that
      // means the address computation is liveout. It will be computed by a LA
      // so we want to avoid computing the address twice.
      for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
             UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
        if (UI->getOpcode() == ISD::CopyToReg) {
          MatchAddressBase(Addr, AM12);
          Done = true;
          break;
        }
      }
    }
  }
  if (!Done && MatchAddress(Addr, AM12, /* is12Bit */ true))
    return false;

  // Check, whether we can match stuff using 20-bit displacements
  if (!Done && !is12BitOnly &&
      !MatchAddress(Addr, AM20, /* is12Bit */ false))
    if (AM12.Disp == 0 && AM20.Disp != 0)
      return false;

  DEBUG(errs() << "MatchAddress (final): "; AM12.dump());

  EVT VT = Addr.getValueType();
  if (AM12.BaseType == SystemZRRIAddressMode::RegBase) {
    if (!AM12.Base.Reg.getNode())
      AM12.Base.Reg = CurDAG->getRegister(0, VT);
  }

  assert(AM12.IndexReg.getNode() == 0 && "Invalid reg-imm address mode!");

  getAddressOperandsRI(AM12, Base, Disp);

  return true;
}

/// Returns true if the address can be represented by a base register plus
/// a signed 20-bit displacement [r+imm].
bool SystemZDAGToDAGISel::SelectAddrRI(SDNode *Op, SDValue& Addr,
                                       SDValue &Base, SDValue &Disp) {
  SystemZRRIAddressMode AM(/*isRI*/true);
  bool Done = false;

  if (!Addr.hasOneUse()) {
    unsigned Opcode = Addr.getOpcode();
    if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) {
      // If we are able to fold N into addressing mode, then we'll allow it even
      // if N has multiple uses. In general, addressing computation is used as
      // addresses by all of its uses. But watch out for CopyToReg uses, that
      // means the address computation is liveout. It will be computed by a LA
      // so we want to avoid computing the address twice.
      for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
             UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
        if (UI->getOpcode() == ISD::CopyToReg) {
          MatchAddressBase(Addr, AM);
          Done = true;
          break;
        }
      }
    }
  }
  if (!Done && MatchAddress(Addr, AM, /* is12Bit */ false))
    return false;

  DEBUG(errs() << "MatchAddress (final): "; AM.dump());

  EVT VT = Addr.getValueType();
  if (AM.BaseType == SystemZRRIAddressMode::RegBase) {
    if (!AM.Base.Reg.getNode())
      AM.Base.Reg = CurDAG->getRegister(0, VT);
  }

  assert(AM.IndexReg.getNode() == 0 && "Invalid reg-imm address mode!");

  getAddressOperandsRI(AM, Base, Disp);

  return true;
}

/// Returns true if the address can be represented by a base register plus
/// index register plus an unsigned 12-bit displacement [base + idx + imm].
bool SystemZDAGToDAGISel::SelectAddrRRI12(SDNode *Op, SDValue Addr,
                                SDValue &Base, SDValue &Disp, SDValue &Index) {
  SystemZRRIAddressMode AM20, AM12;
  bool Done = false;

  if (!Addr.hasOneUse()) {
    unsigned Opcode = Addr.getOpcode();
    if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) {
      // If we are able to fold N into addressing mode, then we'll allow it even
      // if N has multiple uses. In general, addressing computation is used as
      // addresses by all of its uses. But watch out for CopyToReg uses, that
      // means the address computation is liveout. It will be computed by a LA
      // so we want to avoid computing the address twice.
      for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
             UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
        if (UI->getOpcode() == ISD::CopyToReg) {
          MatchAddressBase(Addr, AM12);
          Done = true;
          break;
        }
      }
    }
  }
  if (!Done && MatchAddress(Addr, AM12, /* is12Bit */ true))
    return false;

  // Check, whether we can match stuff using 20-bit displacements
  if (!Done && !MatchAddress(Addr, AM20, /* is12Bit */ false))
    if (AM12.Disp == 0 && AM20.Disp != 0)
      return false;

  DEBUG(errs() << "MatchAddress (final): "; AM12.dump());

  EVT VT = Addr.getValueType();
  if (AM12.BaseType == SystemZRRIAddressMode::RegBase) {
    if (!AM12.Base.Reg.getNode())
      AM12.Base.Reg = CurDAG->getRegister(0, VT);
  }

  if (!AM12.IndexReg.getNode())
    AM12.IndexReg = CurDAG->getRegister(0, VT);

  getAddressOperands(AM12, Base, Disp, Index);

  return true;
}

/// Returns true if the address can be represented by a base register plus
/// index register plus a signed 20-bit displacement [base + idx + imm].
bool SystemZDAGToDAGISel::SelectAddrRRI20(SDNode *Op, SDValue Addr,
                                SDValue &Base, SDValue &Disp, SDValue &Index) {
  SystemZRRIAddressMode AM;
  bool Done = false;

  if (!Addr.hasOneUse()) {
    unsigned Opcode = Addr.getOpcode();
    if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) {
      // If we are able to fold N into addressing mode, then we'll allow it even
      // if N has multiple uses. In general, addressing computation is used as
      // addresses by all of its uses. But watch out for CopyToReg uses, that
      // means the address computation is liveout. It will be computed by a LA
      // so we want to avoid computing the address twice.
      for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
             UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
        if (UI->getOpcode() == ISD::CopyToReg) {
          MatchAddressBase(Addr, AM);
          Done = true;
          break;
        }
      }
    }
  }
  if (!Done && MatchAddress(Addr, AM, /* is12Bit */ false))
    return false;

  DEBUG(errs() << "MatchAddress (final): "; AM.dump());

  EVT VT = Addr.getValueType();
  if (AM.BaseType == SystemZRRIAddressMode::RegBase) {
    if (!AM.Base.Reg.getNode())
      AM.Base.Reg = CurDAG->getRegister(0, VT);
  }

  if (!AM.IndexReg.getNode())
    AM.IndexReg = CurDAG->getRegister(0, VT);

  getAddressOperands(AM, Base, Disp, Index);

  return true;
}

/// SelectLAAddr - it calls SelectAddr and determines if the maximal addressing
/// mode it matches can be cost effectively emitted as an LA/LAY instruction.
bool SystemZDAGToDAGISel::SelectLAAddr(SDNode *Op, SDValue Addr,
                                  SDValue &Base, SDValue &Disp, SDValue &Index) {
  SystemZRRIAddressMode AM;

  if (MatchAddress(Addr, AM, false))
    return false;

  EVT VT = Addr.getValueType();
  unsigned Complexity = 0;
  if (AM.BaseType == SystemZRRIAddressMode::RegBase)
    if (AM.Base.Reg.getNode())
      Complexity = 1;
    else
      AM.Base.Reg = CurDAG->getRegister(0, VT);
  else if (AM.BaseType == SystemZRRIAddressMode::FrameIndexBase)
    Complexity = 4;

  if (AM.IndexReg.getNode())
    Complexity += 1;
  else
    AM.IndexReg = CurDAG->getRegister(0, VT);

  if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
    Complexity += 1;

  if (Complexity > 2) {
    getAddressOperands(AM, Base, Disp, Index);
    return true;
  }

  return false;
}

bool SystemZDAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
                                 SDValue &Base, SDValue &Disp, SDValue &Index) {
  if (ISD::isNON_EXTLoad(N.getNode()) &&
      IsLegalToFold(N, P, P, OptLevel))
    return SelectAddrRRI20(P, N.getOperand(1), Base, Disp, Index);
  return false;
}

SDNode *SystemZDAGToDAGISel::Select(SDNode *Node) {
  EVT NVT = Node->getValueType(0);
  DebugLoc dl = Node->getDebugLoc();
  unsigned Opcode = Node->getOpcode();

  // Dump information about the Node being selected
  DEBUG(errs() << "Selecting: "; Node->dump(CurDAG); errs() << "\n");

  // If we have a custom node, we already have selected!
  if (Node->isMachineOpcode()) {
    DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
    return NULL; // Already selected.
  }

  switch (Opcode) {
  default: break;
  case ISD::SDIVREM: {
    unsigned Opc, MOpc;
    SDValue N0 = Node->getOperand(0);
    SDValue N1 = Node->getOperand(1);

    EVT ResVT;
    bool is32Bit = false;
    switch (NVT.getSimpleVT().SimpleTy) {
    default: assert(0 && "Unsupported VT!");
    case MVT::i32:
      Opc = SystemZ::SDIVREM32r; MOpc = SystemZ::SDIVREM32m;
      ResVT = MVT::v2i64;
      is32Bit = true;
      break;
    case MVT::i64:
      Opc = SystemZ::SDIVREM64r; MOpc = SystemZ::SDIVREM64m;
      ResVT = MVT::v2i64;
      break;
    }

    SDValue Tmp0, Tmp1, Tmp2;
    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2);

    // Prepare the dividend
    SDNode *Dividend;
    if (is32Bit)
      Dividend = CurDAG->getMachineNode(SystemZ::MOVSX64rr32, dl, MVT::i64, N0);
    else
      Dividend = N0.getNode();

    // Insert prepared dividend into suitable 'subreg'
    SDNode *Tmp = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
                                         dl, ResVT);
    Dividend =
      CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, dl, ResVT,
                             SDValue(Tmp, 0), SDValue(Dividend, 0),
                     CurDAG->getTargetConstant(SystemZ::subreg_odd, MVT::i32));

    SDNode *Result;
    SDValue DivVal = SDValue(Dividend, 0);
    if (foldedLoad) {
      SDValue Ops[] = { DivVal, Tmp0, Tmp1, Tmp2, N1.getOperand(0) };
      Result = CurDAG->getMachineNode(MOpc, dl, ResVT, MVT::Other,
                                      Ops, array_lengthof(Ops));
      // Update the chain.
      ReplaceUses(N1.getValue(1), SDValue(Result, 1));
    } else {
      Result = CurDAG->getMachineNode(Opc, dl, ResVT, SDValue(Dividend, 0), N1);
    }

    // Copy the division (odd subreg) result, if it is needed.
    if (!SDValue(Node, 0).use_empty()) {
      unsigned SubRegIdx = (is32Bit ?
                            SystemZ::subreg_odd32 : SystemZ::subreg_odd);
      SDNode *Div = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
                                           dl, NVT,
                                           SDValue(Result, 0),
                                           CurDAG->getTargetConstant(SubRegIdx,
                                                                     MVT::i32));

      ReplaceUses(SDValue(Node, 0), SDValue(Div, 0));
      DEBUG(errs() << "=> "; Result->dump(CurDAG); errs() << "\n");
    }

    // Copy the remainder (even subreg) result, if it is needed.
    if (!SDValue(Node, 1).use_empty()) {
      unsigned SubRegIdx = (is32Bit ?
                            SystemZ::subreg_32bit : SystemZ::subreg_even);
      SDNode *Rem = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
                                           dl, NVT,
                                           SDValue(Result, 0),
                                           CurDAG->getTargetConstant(SubRegIdx,
                                                                     MVT::i32));

      ReplaceUses(SDValue(Node, 1), SDValue(Rem, 0));
      DEBUG(errs() << "=> "; Result->dump(CurDAG); errs() << "\n");
    }

    return NULL;
  }
  case ISD::UDIVREM: {
    unsigned Opc, MOpc, ClrOpc;
    SDValue N0 = Node->getOperand(0);
    SDValue N1 = Node->getOperand(1);
    EVT ResVT;

    bool is32Bit = false;
    switch (NVT.getSimpleVT().SimpleTy) {
    default: assert(0 && "Unsupported VT!");
    case MVT::i32:
      Opc = SystemZ::UDIVREM32r; MOpc = SystemZ::UDIVREM32m;
      ClrOpc = SystemZ::MOV64Pr0_even;
      ResVT = MVT::v2i32;
      is32Bit = true;
      break;
    case MVT::i64:
      Opc = SystemZ::UDIVREM64r; MOpc = SystemZ::UDIVREM64m;
      ClrOpc = SystemZ::MOV128r0_even;
      ResVT = MVT::v2i64;
      break;
    }

    SDValue Tmp0, Tmp1, Tmp2;
    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2);

    // Prepare the dividend
    SDNode *Dividend = N0.getNode();

    // Insert prepared dividend into suitable 'subreg'
    SDNode *Tmp = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
                                         dl, ResVT);
    {
      unsigned SubRegIdx = (is32Bit ?
                            SystemZ::subreg_odd32 : SystemZ::subreg_odd);
      Dividend =
        CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, dl, ResVT,
                               SDValue(Tmp, 0), SDValue(Dividend, 0),
                               CurDAG->getTargetConstant(SubRegIdx, MVT::i32));
    }

    // Zero out even subreg
    Dividend = CurDAG->getMachineNode(ClrOpc, dl, ResVT, SDValue(Dividend, 0));

    SDValue DivVal = SDValue(Dividend, 0);
    SDNode *Result;
    if (foldedLoad) {
      SDValue Ops[] = { DivVal, Tmp0, Tmp1, Tmp2, N1.getOperand(0) };
      Result = CurDAG->getMachineNode(MOpc, dl, ResVT, MVT::Other,
                                      Ops, array_lengthof(Ops));
      // Update the chain.
      ReplaceUses(N1.getValue(1), SDValue(Result, 1));
    } else {
      Result = CurDAG->getMachineNode(Opc, dl, ResVT, DivVal, N1);
    }

    // Copy the division (odd subreg) result, if it is needed.
    if (!SDValue(Node, 0).use_empty()) {
      unsigned SubRegIdx = (is32Bit ?
                            SystemZ::subreg_odd32 : SystemZ::subreg_odd);
      SDNode *Div = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
                                           dl, NVT,
                                           SDValue(Result, 0),
                                           CurDAG->getTargetConstant(SubRegIdx,
                                                                     MVT::i32));
      ReplaceUses(SDValue(Node, 0), SDValue(Div, 0));
      DEBUG(errs() << "=> "; Result->dump(CurDAG); errs() << "\n");
    }

    // Copy the remainder (even subreg) result, if it is needed.
    if (!SDValue(Node, 1).use_empty()) {
      unsigned SubRegIdx = (is32Bit ?
                            SystemZ::subreg_32bit : SystemZ::subreg_even);
      SDNode *Rem = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
                                           dl, NVT,
                                           SDValue(Result, 0),
                                           CurDAG->getTargetConstant(SubRegIdx,
                                                                     MVT::i32));
      ReplaceUses(SDValue(Node, 1), SDValue(Rem, 0));
      DEBUG(errs() << "=> "; Result->dump(CurDAG); errs() << "\n");
    }

    return NULL;
  }
  }

  // Select the default instruction
  SDNode *ResNode = SelectCode(Node);

  DEBUG(errs() << "=> ";
        if (ResNode == NULL || ResNode == Node)
          Node->dump(CurDAG);
        else
          ResNode->dump(CurDAG);
        errs() << "\n";
        );
  return ResNode;
}