aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/SparcV9/InstrSched/SchedGraph.cpp
blob: 9e9af5b80d816fa365022e1a769ff098fa935d01 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
// $Id$
//***************************************************************************
// File:
//	SchedGraph.cpp
// 
// Purpose:
//	Scheduling graph based on SSA graph plus extra dependence edges
//	capturing dependences due to machine resources (machine registers,
//	CC registers, and any others).
// 
// History:
//	7/20/01	 -  Vikram Adve  -  Created
//**************************************************************************/

#include "SchedGraph.h"
#include "llvm/InstrTypes.h"
#include "llvm/Instruction.h"
#include "llvm/BasicBlock.h"
#include "llvm/Method.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/InstrSelection.h"
#include "llvm/Target/MachineInstrInfo.h"
#include "llvm/Target/MachineRegInfo.h"
#include "llvm/iOther.h"
#include "Support/StringExtras.h"
#include <algorithm>
#include <hash_map>
#include <vector>


//*********************** Internal Data Structures *************************/

// The following two types need to be classes, not typedefs, so we can use
// opaque declarations in SchedGraph.h
// 
struct RefVec: public vector< pair<SchedGraphNode*, int> > {
  typedef vector< pair<SchedGraphNode*, int> >::      iterator       iterator;
  typedef vector< pair<SchedGraphNode*, int> >::const_iterator const_iterator;
};

struct RegToRefVecMap: public hash_map<int, RefVec> {
  typedef hash_map<int, RefVec>::      iterator       iterator;
  typedef hash_map<int, RefVec>::const_iterator const_iterator;
};

struct ValueToDefVecMap: public hash_map<const Instruction*, RefVec> {
  typedef hash_map<const Instruction*, RefVec>::      iterator       iterator;
  typedef hash_map<const Instruction*, RefVec>::const_iterator const_iterator;
};

// 
// class SchedGraphEdge
// 

/*ctor*/
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
			       SchedGraphNode* _sink,
			       SchedGraphEdgeDepType _depType,
			       unsigned int     _depOrderType,
			       int _minDelay)
  : src(_src),
    sink(_sink),
    depType(_depType),
    depOrderType(_depOrderType),
    minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()),
    val(NULL)
{
  assert(src != sink && "Self-loop in scheduling graph!");
  src->addOutEdge(this);
  sink->addInEdge(this);
}


/*ctor*/
SchedGraphEdge::SchedGraphEdge(SchedGraphNode*  _src,
			       SchedGraphNode*  _sink,
			       const Value*     _val,
			       unsigned int     _depOrderType,
			       int              _minDelay)
  : src(_src),
    sink(_sink),
    depType(ValueDep),
    depOrderType(_depOrderType),
    minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()),
    val(_val)
{
  assert(src != sink && "Self-loop in scheduling graph!");
  src->addOutEdge(this);
  sink->addInEdge(this);
}


/*ctor*/
SchedGraphEdge::SchedGraphEdge(SchedGraphNode*  _src,
			       SchedGraphNode*  _sink,
			       unsigned int     _regNum,
			       unsigned int     _depOrderType,
			       int             _minDelay)
  : src(_src),
    sink(_sink),
    depType(MachineRegister),
    depOrderType(_depOrderType),
    minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()),
    machineRegNum(_regNum)
{
  assert(src != sink && "Self-loop in scheduling graph!");
  src->addOutEdge(this);
  sink->addInEdge(this);
}


/*ctor*/
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
			       SchedGraphNode* _sink,
			       ResourceId      _resourceId,
			       int             _minDelay)
  : src(_src),
    sink(_sink),
    depType(MachineResource),
    depOrderType(NonDataDep),
    minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()),
    resourceId(_resourceId)
{
  assert(src != sink && "Self-loop in scheduling graph!");
  src->addOutEdge(this);
  sink->addInEdge(this);
}

/*dtor*/
SchedGraphEdge::~SchedGraphEdge()
{
}

void SchedGraphEdge::dump(int indent=0) const {
  cout << string(indent*2, ' ') << *this; 
}


// 
// class SchedGraphNode
// 

/*ctor*/
SchedGraphNode::SchedGraphNode(unsigned int _nodeId,
                               const BasicBlock*   _bb,
			       const MachineInstr* _minstr,
                               int   indexInBB,
			       const TargetMachine& target)
  : nodeId(_nodeId),
    bb(_bb),
    minstr(_minstr),
    origIndexInBB(indexInBB),
    latency(0)
{
  if (minstr)
    {
      MachineOpCode mopCode = minstr->getOpCode();
      latency = target.getInstrInfo().hasResultInterlock(mopCode)
	? target.getInstrInfo().minLatency(mopCode)
	: target.getInstrInfo().maxLatency(mopCode);
    }
}


/*dtor*/
SchedGraphNode::~SchedGraphNode()
{
}

void SchedGraphNode::dump(int indent=0) const {
  cout << string(indent*2, ' ') << *this; 
}


inline void
SchedGraphNode::addInEdge(SchedGraphEdge* edge)
{
  inEdges.push_back(edge);
}


inline void
SchedGraphNode::addOutEdge(SchedGraphEdge* edge)
{
  outEdges.push_back(edge);
}

inline void
SchedGraphNode::removeInEdge(const SchedGraphEdge* edge)
{
  assert(edge->getSink() == this);
  
  for (iterator I = beginInEdges(); I != endInEdges(); ++I)
    if ((*I) == edge)
      {
	inEdges.erase(I);
	break;
      }
}

inline void
SchedGraphNode::removeOutEdge(const SchedGraphEdge* edge)
{
  assert(edge->getSrc() == this);
  
  for (iterator I = beginOutEdges(); I != endOutEdges(); ++I)
    if ((*I) == edge)
      {
	outEdges.erase(I);
	break;
      }
}


// 
// class SchedGraph
// 


/*ctor*/
SchedGraph::SchedGraph(const BasicBlock* bb,
		       const TargetMachine& target)
{
  bbVec.push_back(bb);
  this->buildGraph(target);
}


/*dtor*/
SchedGraph::~SchedGraph()
{
  for (iterator I=begin(); I != end(); ++I)
    {
      SchedGraphNode* node = (*I).second;
      
      // for each node, delete its out-edges
      for (SchedGraphNode::iterator I = node->beginOutEdges();
	   I != node->endOutEdges(); ++I)
	delete *I;
      
      // then delete the node itself.
      delete node;
    }
}


void
SchedGraph::dump() const
{
  cout << "  Sched Graph for Basic Blocks: ";
  for (unsigned i=0, N=bbVec.size(); i < N; i++)
    {
      cout << (bbVec[i]->hasName()? bbVec[i]->getName() : "block")
	   << " (" << bbVec[i] << ")"
	   << ((i == N-1)? "" : ", ");
    }
  
  cout << endl << endl << "    Actual Root nodes : ";
  for (unsigned i=0, N=graphRoot->outEdges.size(); i < N; i++)
    cout << graphRoot->outEdges[i]->getSink()->getNodeId()
	 << ((i == N-1)? "" : ", ");
  
  cout << endl << "    Graph Nodes:" << endl;
  for (const_iterator I=begin(); I != end(); ++I)
    cout << endl << * (*I).second;
  
  cout << endl;
}


void
SchedGraph::eraseIncomingEdges(SchedGraphNode* node, bool addDummyEdges)
{
  // Delete and disconnect all in-edges for the node
  for (SchedGraphNode::iterator I = node->beginInEdges();
       I != node->endInEdges(); ++I)
    {
      SchedGraphNode* srcNode = (*I)->getSrc();
      srcNode->removeOutEdge(*I);
      delete *I;
      
      if (addDummyEdges &&
	  srcNode != getRoot() &&
	  srcNode->beginOutEdges() == srcNode->endOutEdges())
	{ // srcNode has no more out edges, so add an edge to dummy EXIT node
	  assert(node != getLeaf() && "Adding edge that was just removed?");
	  (void) new SchedGraphEdge(srcNode, getLeaf(),
		    SchedGraphEdge::CtrlDep, SchedGraphEdge::NonDataDep, 0);
	}
    }
  
  node->inEdges.clear();
}

void
SchedGraph::eraseOutgoingEdges(SchedGraphNode* node, bool addDummyEdges)
{
  // Delete and disconnect all out-edges for the node
  for (SchedGraphNode::iterator I = node->beginOutEdges();
       I != node->endOutEdges(); ++I)
    {
      SchedGraphNode* sinkNode = (*I)->getSink();
      sinkNode->removeInEdge(*I);
      delete *I;
      
      if (addDummyEdges &&
	  sinkNode != getLeaf() &&
	  sinkNode->beginInEdges() == sinkNode->endInEdges())
	{ //sinkNode has no more in edges, so add an edge from dummy ENTRY node
	  assert(node != getRoot() && "Adding edge that was just removed?");
	  (void) new SchedGraphEdge(getRoot(), sinkNode,
		    SchedGraphEdge::CtrlDep, SchedGraphEdge::NonDataDep, 0);
	}
    }
  
  node->outEdges.clear();
}

void
SchedGraph::eraseIncidentEdges(SchedGraphNode* node, bool addDummyEdges)
{
  this->eraseIncomingEdges(node, addDummyEdges);	
  this->eraseOutgoingEdges(node, addDummyEdges);	
}


void
SchedGraph::addDummyEdges()
{
  assert(graphRoot->outEdges.size() == 0);
  
  for (const_iterator I=begin(); I != end(); ++I)
    {
      SchedGraphNode* node = (*I).second;
      assert(node != graphRoot && node != graphLeaf);
      if (node->beginInEdges() == node->endInEdges())
	(void) new SchedGraphEdge(graphRoot, node, SchedGraphEdge::CtrlDep,
				  SchedGraphEdge::NonDataDep, 0);
      if (node->beginOutEdges() == node->endOutEdges())
	(void) new SchedGraphEdge(node, graphLeaf, SchedGraphEdge::CtrlDep,
				  SchedGraphEdge::NonDataDep, 0);
    }
}


void
SchedGraph::addCDEdges(const TerminatorInst* term,
		       const TargetMachine& target)
{
  const MachineInstrInfo& mii = target.getInstrInfo();
  MachineCodeForVMInstr& termMvec = term->getMachineInstrVec();
  
  // Find the first branch instr in the sequence of machine instrs for term
  // 
  unsigned first = 0;
  while (! mii.isBranch(termMvec[first]->getOpCode()))
    ++first;
  assert(first < termMvec.size() &&
	 "No branch instructions for BR?  Ok, but weird!  Delete assertion.");
  if (first == termMvec.size())
    return;
  
  SchedGraphNode* firstBrNode = this->getGraphNodeForInstr(termMvec[first]);
  
  // Add CD edges from each instruction in the sequence to the
  // *last preceding* branch instr. in the sequence 
  // Use a latency of 0 because we only need to prevent out-of-order issue.
  // 
  for (int i = (int) termMvec.size()-1; i > (int) first; i--) 
    {
      SchedGraphNode* toNode = this->getGraphNodeForInstr(termMvec[i]);
      assert(toNode && "No node for instr generated for branch?");
      
      for (int j = i-1; j >= 0; j--) 
	if (mii.isBranch(termMvec[j]->getOpCode()))
	  {
	    SchedGraphNode* brNode = this->getGraphNodeForInstr(termMvec[j]);
	    assert(brNode && "No node for instr generated for branch?");
	    (void) new SchedGraphEdge(brNode, toNode, SchedGraphEdge::CtrlDep,
				      SchedGraphEdge::NonDataDep, 0);
	    break;			// only one incoming edge is enough
	  }
    }
  
  // Add CD edges from each instruction preceding the first branch
  // to the first branch.  Use a latency of 0 as above.
  // 
  for (int i = first-1; i >= 0; i--) 
    {
      SchedGraphNode* fromNode = this->getGraphNodeForInstr(termMvec[i]);
      assert(fromNode && "No node for instr generated for branch?");
      (void) new SchedGraphEdge(fromNode, firstBrNode, SchedGraphEdge::CtrlDep,
				SchedGraphEdge::NonDataDep, 0);
    }
  
  // Now add CD edges to the first branch instruction in the sequence from
  // all preceding instructions in the basic block.  Use 0 latency again.
  // 
  const BasicBlock* bb = firstBrNode->getBB();
  const MachineCodeForBasicBlock& mvec = bb->getMachineInstrVec();
  for (unsigned i=0, N=mvec.size(); i < N; i++) 
    {
      if (mvec[i] == termMvec[first]) // reached the first branch
        break;
      
      SchedGraphNode* fromNode = this->getGraphNodeForInstr(mvec[i]);
      if (fromNode == NULL)
        continue;			// dummy instruction, e.g., PHI
      
      (void) new SchedGraphEdge(fromNode, firstBrNode,
                                SchedGraphEdge::CtrlDep,
                                SchedGraphEdge::NonDataDep, 0);
      
      // If we find any other machine instructions (other than due to
      // the terminator) that also have delay slots, add an outgoing edge
      // from the instruction to the instructions in the delay slots.
      // 
      unsigned d = mii.getNumDelaySlots(mvec[i]->getOpCode());
      assert(i+d < N && "Insufficient delay slots for instruction?");
      
      for (unsigned j=1; j <= d; j++)
        {
          SchedGraphNode* toNode = this->getGraphNodeForInstr(mvec[i+j]);
          assert(toNode && "No node for machine instr in delay slot?");
          (void) new SchedGraphEdge(fromNode, toNode,
                                    SchedGraphEdge::CtrlDep,
                                    SchedGraphEdge::NonDataDep, 0);
        }
    }
}

static const int SG_LOAD_REF  = 0;
static const int SG_STORE_REF = 1;
static const int SG_CALL_REF  = 2;

static const unsigned int SG_DepOrderArray[][3] = {
  { SchedGraphEdge::NonDataDep,
            SchedGraphEdge::AntiDep,
                        SchedGraphEdge::AntiDep },
  { SchedGraphEdge::TrueDep,
            SchedGraphEdge::OutputDep,
                        SchedGraphEdge::TrueDep | SchedGraphEdge::OutputDep },
  { SchedGraphEdge::TrueDep,
            SchedGraphEdge::AntiDep | SchedGraphEdge::OutputDep,
                        SchedGraphEdge::TrueDep | SchedGraphEdge::AntiDep
                                                | SchedGraphEdge::OutputDep }
};


// Add a dependence edge between every pair of machine load/store/call
// instructions, where at least one is a store or a call.
// Use latency 1 just to ensure that memory operations are ordered;
// latency does not otherwise matter (true dependences enforce that).
// 
void
SchedGraph::addMemEdges(const vector<SchedGraphNode*>& memNodeVec,
			const TargetMachine& target)
{
  const MachineInstrInfo& mii = target.getInstrInfo();
  
  // Instructions in memNodeVec are in execution order within the basic block,
  // so simply look at all pairs <memNodeVec[i], memNodeVec[j: j > i]>.
  // 
  for (unsigned im=0, NM=memNodeVec.size(); im < NM; im++)
    {
      MachineOpCode fromOpCode = memNodeVec[im]->getOpCode();
      int fromType = mii.isCall(fromOpCode)? SG_CALL_REF
                       : mii.isLoad(fromOpCode)? SG_LOAD_REF
                                               : SG_STORE_REF;
      for (unsigned jm=im+1; jm < NM; jm++)
	{
          MachineOpCode toOpCode = memNodeVec[jm]->getOpCode();
          int toType = mii.isCall(toOpCode)? SG_CALL_REF
                         : mii.isLoad(toOpCode)? SG_LOAD_REF
                                               : SG_STORE_REF;
          
          if (fromType != SG_LOAD_REF || toType != SG_LOAD_REF)
            (void) new SchedGraphEdge(memNodeVec[im], memNodeVec[jm],
                                      SchedGraphEdge::MemoryDep,
                                      SG_DepOrderArray[fromType][toType], 1);
        }
    }
} 

// Add edges from/to CC reg instrs to/from call instrs.
// Essentially this prevents anything that sets or uses a CC reg from being
// reordered w.r.t. a call.
// Use a latency of 0 because we only need to prevent out-of-order issue,
// like with control dependences.
// 
void
SchedGraph::addCallCCEdges(const vector<SchedGraphNode*>& memNodeVec,
                           MachineCodeForBasicBlock& bbMvec,
                           const TargetMachine& target)
{
  const MachineInstrInfo& mii = target.getInstrInfo();
  vector<SchedGraphNode*> callNodeVec;
  
  // Find the call instruction nodes and put them in a vector.
  for (unsigned im=0, NM=memNodeVec.size(); im < NM; im++)
    if (mii.isCall(memNodeVec[im]->getOpCode()))
      callNodeVec.push_back(memNodeVec[im]);
  
  // Now walk the entire basic block, looking for CC instructions *and*
  // call instructions, and keep track of the order of the instructions.
  // Use the call node vec to quickly find earlier and later call nodes
  // relative to the current CC instruction.
  // 
  int lastCallNodeIdx = -1;
  for (unsigned i=0, N=bbMvec.size(); i < N; i++)
    if (mii.isCall(bbMvec[i]->getOpCode()))
      {
        ++lastCallNodeIdx;
        for ( ; lastCallNodeIdx < (int)callNodeVec.size(); ++lastCallNodeIdx)
          if (callNodeVec[lastCallNodeIdx]->getMachineInstr() == bbMvec[i])
            break;
        assert(lastCallNodeIdx < (int)callNodeVec.size() && "Missed Call?");
      }
    else if (mii.isCCInstr(bbMvec[i]->getOpCode()))
      { // Add incoming/outgoing edges from/to preceding/later calls
        SchedGraphNode* ccNode = this->getGraphNodeForInstr(bbMvec[i]);
        int j=0;
        for ( ; j <= lastCallNodeIdx; j++)
          (void) new SchedGraphEdge(callNodeVec[j], ccNode,
                                    MachineCCRegsRID, 0);
        for ( ; j < (int) callNodeVec.size(); j++)
          (void) new SchedGraphEdge(ccNode, callNodeVec[j],
                                    MachineCCRegsRID, 0);
      }
}


void
SchedGraph::addMachineRegEdges(RegToRefVecMap& regToRefVecMap,
			       const TargetMachine& target)
{
  assert(bbVec.size() == 1 && "Only handling a single basic block here");
  
  // This assumes that such hardwired registers are never allocated
  // to any LLVM value (since register allocation happens later), i.e.,
  // any uses or defs of this register have been made explicit!
  // Also assumes that two registers with different numbers are
  // not aliased!
  // 
  for (RegToRefVecMap::iterator I = regToRefVecMap.begin();
       I != regToRefVecMap.end(); ++I)
    {
      int regNum        = (*I).first;
      RefVec& regRefVec = (*I).second;
      
      // regRefVec is ordered by control flow order in the basic block
      for (unsigned i=0; i < regRefVec.size(); ++i)
	{
	  SchedGraphNode* node = regRefVec[i].first;
	  unsigned int opNum   = regRefVec[i].second;
	  bool isDef = node->getMachineInstr()->operandIsDefined(opNum);
	        
          for (unsigned p=0; p < i; ++p)
            {
              SchedGraphNode* prevNode = regRefVec[p].first;
              if (prevNode != node)
                {
                  unsigned int prevOpNum = regRefVec[p].second;
                  bool prevIsDef =
                    prevNode->getMachineInstr()->operandIsDefined(prevOpNum);
                  
                  if (isDef)
                    new SchedGraphEdge(prevNode, node, regNum,
                                       (prevIsDef)? SchedGraphEdge::OutputDep
                                                  : SchedGraphEdge::AntiDep);
                  else if (prevIsDef)
                    new SchedGraphEdge(prevNode, node, regNum,
                                       SchedGraphEdge::TrueDep);
                }
            }
        }
    }
}


void
SchedGraph::addEdgesForValue(SchedGraphNode* refNode,
                             const RefVec& defVec,
                             const Value* defValue,
                             bool  refNodeIsDef,
                             const TargetMachine& target)
{
  // Add true or output dep edges from all def nodes before refNode in BB.
  // Add anti or output dep edges to all def nodes after refNode.
  for (RefVec::const_iterator I=defVec.begin(), E=defVec.end(); I != E; ++I)
    {
      if ((*I).first == refNode)
        continue;                       // Dont add any self-loops
      
      if ((*I).first->getOrigIndexInBB() < refNode->getOrigIndexInBB())
        // (*).first is before refNode
        (void) new SchedGraphEdge((*I).first, refNode, defValue,
                                  (refNodeIsDef)? SchedGraphEdge::OutputDep
                                                : SchedGraphEdge::TrueDep);
      else
        // (*).first is after refNode
        (void) new SchedGraphEdge(refNode, (*I).first, defValue,
                                  (refNodeIsDef)? SchedGraphEdge::OutputDep
                                                : SchedGraphEdge::AntiDep);
    }
}


void
SchedGraph::addEdgesForInstruction(const MachineInstr& minstr,
                                   const ValueToDefVecMap& valueToDefVecMap,
				   const TargetMachine& target)
{
  SchedGraphNode* node = this->getGraphNodeForInstr(&minstr);
  if (node == NULL)
    return;
  
  // Add edges for all operands of the machine instruction.
  // 
  for (unsigned i=0, numOps=minstr.getNumOperands(); i < numOps; i++)
    {
      const MachineOperand& mop = minstr.getOperand(i);
      switch(mop.getOperandType())
	{
	case MachineOperand::MO_VirtualRegister:
	case MachineOperand::MO_CCRegister:
	  if (const Instruction* srcI =
              dyn_cast_or_null<Instruction>(mop.getVRegValue()))
            {
              ValueToDefVecMap::const_iterator I = valueToDefVecMap.find(srcI);
              if (I != valueToDefVecMap.end())
                addEdgesForValue(node, (*I).second, mop.getVRegValue(),
                                 minstr.operandIsDefined(i), target);
            }
	  break;
	  
	case MachineOperand::MO_MachineRegister:
	  break; 
	  
	case MachineOperand::MO_SignExtendedImmed:
	case MachineOperand::MO_UnextendedImmed:
	case MachineOperand::MO_PCRelativeDisp:
	  break;	// nothing to do for immediate fields
	  
	default:
	  assert(0 && "Unknown machine operand type in SchedGraph builder");
	  break;
	}
    }
  
  // Add edges for values implicitly used by the machine instruction.
  // Examples include function arguments to a Call instructions or the return
  // value of a Ret instruction.
  // 
  for (unsigned i=0, N=minstr.getNumImplicitRefs(); i < N; ++i)
    if (! minstr.implicitRefIsDefined(i))
      if (const Instruction* srcI =
          dyn_cast_or_null<Instruction>(minstr.getImplicitRef(i)))
        {
          ValueToDefVecMap::const_iterator I = valueToDefVecMap.find(srcI);
          if (I != valueToDefVecMap.end())
            addEdgesForValue(node, (*I).second, minstr.getImplicitRef(i),
                             minstr.implicitRefIsDefined(i), target);
        }
}


#undef NEED_SEPARATE_NONSSA_EDGES_CODE
#ifdef NEED_SEPARATE_NONSSA_EDGES_CODE
void
SchedGraph::addNonSSAEdgesForValue(const Instruction* instr,
                                   const TargetMachine& target)
{
  if (isa<PHINode>(instr))
    return;
  
  MachineCodeForVMInstr& mvec = instr->getMachineInstrVec();
  const MachineInstrInfo& mii = target.getInstrInfo();
  RefVec refVec;
  
  for (unsigned i=0, N=mvec.size(); i < N; i++)
    for (int o=0, N = mii.getNumOperands(mvec[i]->getOpCode()); o < N; o++)
      {
	const MachineOperand& mop = mvec[i]->getOperand(o); 
	
	if ((mop.getOperandType() == MachineOperand::MO_VirtualRegister ||
             mop.getOperandType() == MachineOperand::MO_CCRegister)
	    && mop.getVRegValue() == (Value*) instr)
          {
	    // this operand is a definition or use of value `instr'
	    SchedGraphNode* node = this->getGraphNodeForInstr(mvec[i]);
            assert(node && "No node for machine instruction in this BB?");
            refVec.push_back(make_pair(node, o));
          }
      }
  
  // refVec is ordered by control flow order of the machine instructions
  for (unsigned i=0; i < refVec.size(); ++i)
    {
      SchedGraphNode* node = refVec[i].first;
      unsigned int   opNum = refVec[i].second;
      bool isDef = node->getMachineInstr()->operandIsDefined(opNum);
      
      if (isDef)
        // add output and/or anti deps to this definition
        for (unsigned p=0; p < i; ++p)
          {
            SchedGraphNode* prevNode = refVec[p].first;
            if (prevNode != node)
              {
                bool prevIsDef = prevNode->getMachineInstr()->
                  operandIsDefined(refVec[p].second);
                new SchedGraphEdge(prevNode, node, SchedGraphEdge::ValueDep,
                                   (prevIsDef)? SchedGraphEdge::OutputDep
                                              : SchedGraphEdge::AntiDep);
              }
          }
    }
}
#endif //NEED_SEPARATE_NONSSA_EDGES_CODE


void
SchedGraph::findDefUseInfoAtInstr(const TargetMachine& target,
                                  SchedGraphNode* node,
                                  vector<SchedGraphNode*>& memNodeVec,
                                  RegToRefVecMap& regToRefVecMap,
                                  ValueToDefVecMap& valueToDefVecMap)
{
  const MachineInstrInfo& mii = target.getInstrInfo();
  
  
  MachineOpCode opCode = node->getOpCode();
  if (mii.isLoad(opCode) || mii.isStore(opCode) || mii.isCall(opCode))
    memNodeVec.push_back(node);
  
  // Collect the register references and value defs. for explicit operands
  // 
  const MachineInstr& minstr = * node->getMachineInstr();
  for (int i=0, numOps = (int) minstr.getNumOperands(); i < numOps; i++)
    {
      const MachineOperand& mop = minstr.getOperand(i);
      
      // if this references a register other than the hardwired
      // "zero" register, record the reference.
      if (mop.getOperandType() == MachineOperand::MO_MachineRegister)
        {
          int regNum = mop.getMachineRegNum();
	  if (regNum != target.getRegInfo().getZeroRegNum())
            regToRefVecMap[mop.getMachineRegNum()].push_back(make_pair(node,
                                                                       i));
          continue;                     // nothing more to do
	}
      
      // ignore all other non-def operands
      if (! minstr.operandIsDefined(i))
	continue;
      
      // We must be defining a value.
      assert((mop.getOperandType() == MachineOperand::MO_VirtualRegister ||
              mop.getOperandType() == MachineOperand::MO_CCRegister)
             && "Do not expect any other kind of operand to be defined!");
      
      const Instruction* defInstr = cast<Instruction>(mop.getVRegValue());
      valueToDefVecMap[defInstr].push_back(make_pair(node, i)); 
    }
  
  // 
  // Collect value defs. for implicit operands.  The interface to extract
  // them assumes they must be virtual registers!
  // 
  for (int i=0, N = (int) minstr.getNumImplicitRefs(); i < N; ++i)
    if (minstr.implicitRefIsDefined(i))
      if (const Instruction* defInstr =
          dyn_cast_or_null<Instruction>(minstr.getImplicitRef(i)))
        {
          valueToDefVecMap[defInstr].push_back(make_pair(node, -i)); 
        }
}


void
SchedGraph::buildNodesforBB(const TargetMachine& target,
                            const BasicBlock* bb,
                            vector<SchedGraphNode*>& memNodeVec,
                            RegToRefVecMap& regToRefVecMap,
                            ValueToDefVecMap& valueToDefVecMap)
{
  const MachineInstrInfo& mii = target.getInstrInfo();
  
  // Build graph nodes for each VM instruction and gather def/use info.
  // Do both those together in a single pass over all machine instructions.
  const MachineCodeForBasicBlock& mvec = bb->getMachineInstrVec();
  for (unsigned i=0; i < mvec.size(); i++)
    if (! mii.isDummyPhiInstr(mvec[i]->getOpCode()))
      {
        SchedGraphNode* node = new SchedGraphNode(getNumNodes(), bb,
                                                  mvec[i], i, target);
        this->noteGraphNodeForInstr(mvec[i], node);
        
        // Remember all register references and value defs
        findDefUseInfoAtInstr(target, node,
                              memNodeVec, regToRefVecMap,valueToDefVecMap);
      }
  
#undef REALLY_NEED_TO_SEARCH_SUCCESSOR_PHIS
#ifdef REALLY_NEED_TO_SEARCH_SUCCESSOR_PHIS
  // This is a BIG UGLY HACK.  IT NEEDS TO BE ELIMINATED.
  // Look for copy instructions inserted in this BB due to Phi instructions
  // in the successor BBs.
  // There MUST be exactly one copy per Phi in successor nodes.
  // 
  for (BasicBlock::succ_const_iterator SI=bb->succ_begin(), SE=bb->succ_end();
       SI != SE; ++SI)
    for (BasicBlock::const_iterator PI=(*SI)->begin(), PE=(*SI)->end();
         PI != PE; ++PI)
      {
        if ((*PI)->getOpcode() != Instruction::PHINode)
          break;                        // No more Phis in this successor
        
        // Find the incoming value from block bb to block (*SI)
        int bbIndex = cast<PHINode>(*PI)->getBasicBlockIndex(bb);
        assert(bbIndex >= 0 && "But I know bb is a predecessor of (*SI)?");
        Value* inVal = cast<PHINode>(*PI)->getIncomingValue(bbIndex);
        assert(inVal != NULL && "There must be an in-value on every edge");
        
        // Find the machine instruction that makes a copy of inval to (*PI).
        // This must be in the current basic block (bb).
        const MachineCodeForVMInstr& mvec = (*PI)->getMachineInstrVec();
        const MachineInstr* theCopy = NULL;
        for (unsigned i=0; i < mvec.size() && theCopy == NULL; i++)
          if (! mii.isDummyPhiInstr(mvec[i]->getOpCode()))
            // not a Phi: assume this is a copy and examine its operands
            for (int o=0, N=(int) mvec[i]->getNumOperands(); o < N; o++)
              {
                const MachineOperand& mop = mvec[i]->getOperand(o);
                if (mvec[i]->operandIsDefined(o))
                  assert(mop.getVRegValue() == (*PI) && "dest shd be my Phi");
                else if (mop.getVRegValue() == inVal)
                  { // found the copy!
                    theCopy = mvec[i];
                    break;
                  }
              }
        
        // Found the dang instruction.  Now create a node and do the rest...
        if (theCopy != NULL)
          {
            SchedGraphNode* node = new SchedGraphNode(getNumNodes(), bb,
                                            theCopy, origIndexInBB++, target);
            this->noteGraphNodeForInstr(theCopy, node);
            findDefUseInfoAtInstr(target, node,
                                  memNodeVec, regToRefVecMap,valueToDefVecMap);
          }
      }
#endif  //REALLY_NEED_TO_SEARCH_SUCCESSOR_PHIS
}


void
SchedGraph::buildGraph(const TargetMachine& target)
{
  const MachineInstrInfo& mii = target.getInstrInfo();
  const BasicBlock* bb = bbVec[0];
  
  assert(bbVec.size() == 1 && "Only handling a single basic block here");
  
  // Use this data structure to note all machine operands that compute
  // ordinary LLVM values.  These must be computed defs (i.e., instructions). 
  // Note that there may be multiple machine instructions that define
  // each Value.
  ValueToDefVecMap valueToDefVecMap;
  
  // Use this data structure to note all memory instructions.
  // We use this to add memory dependence edges without a second full walk.
  // 
  // vector<const Instruction*> memVec;
  vector<SchedGraphNode*> memNodeVec;
  
  // Use this data structure to note any uses or definitions of
  // machine registers so we can add edges for those later without
  // extra passes over the nodes.
  // The vector holds an ordered list of references to the machine reg,
  // ordered according to control-flow order.  This only works for a
  // single basic block, hence the assertion.  Each reference is identified
  // by the pair: <node, operand-number>.
  // 
  RegToRefVecMap regToRefVecMap;
  
  // Make a dummy root node.  We'll add edges to the real roots later.
  graphRoot = new SchedGraphNode(0, NULL, NULL, -1, target);
  graphLeaf = new SchedGraphNode(1, NULL, NULL, -1, target);

  //----------------------------------------------------------------
  // First add nodes for all the machine instructions in the basic block
  // because this greatly simplifies identifying which edges to add.
  // Do this one VM instruction at a time since the SchedGraphNode needs that.
  // Also, remember the load/store instructions to add memory deps later.
  //----------------------------------------------------------------
  
  buildNodesforBB(target, bb, memNodeVec, regToRefVecMap, valueToDefVecMap);
  
  //----------------------------------------------------------------
  // Now add edges for the following (all are incoming edges except (4)):
  // (1) operands of the machine instruction, including hidden operands
  // (2) machine register dependences
  // (3) memory load/store dependences
  // (3) other resource dependences for the machine instruction, if any
  // (4) output dependences when multiple machine instructions define the
  //     same value; all must have been generated from a single VM instrn
  // (5) control dependences to branch instructions generated for the
  //     terminator instruction of the BB. Because of delay slots and
  //     2-way conditional branches, multiple CD edges are needed
  //     (see addCDEdges for details).
  // Also, note any uses or defs of machine registers.
  // 
  //----------------------------------------------------------------
      
  MachineCodeForBasicBlock& bbMvec = bb->getMachineInstrVec();
  
  // First, add edges to the terminator instruction of the basic block.
  this->addCDEdges(bb->getTerminator(), target);
      
  // Then add memory dep edges: store->load, load->store, and store->store.
  // Call instructions are treated as both load and store.
  this->addMemEdges(memNodeVec, target);

  // Then add edges between call instructions and CC set/use instructions
  this->addCallCCEdges(memNodeVec, bbMvec, target);
  
  // Then add incoming def-use (SSA) edges for each machine instruction.
  for (unsigned i=0, N=bbMvec.size(); i < N; i++)
    addEdgesForInstruction(*bbMvec[i], valueToDefVecMap, target);
  
#ifdef NEED_SEPARATE_NONSSA_EDGES_CODE
  // Then add non-SSA edges for all VM instructions in the block.
  // We assume that all machine instructions that define a value are
  // generated from the VM instruction corresponding to that value.
  // TODO: This could probably be done much more efficiently.
  for (BasicBlock::const_iterator II = bb->begin(); II != bb->end(); ++II)
    this->addNonSSAEdgesForValue(*II, target);
#endif //NEED_SEPARATE_NONSSA_EDGES_CODE
  
  // Then add edges for dependences on machine registers
  this->addMachineRegEdges(regToRefVecMap, target);
  
  // Finally, add edges from the dummy root and to dummy leaf
  this->addDummyEdges();		
}


// 
// class SchedGraphSet
// 

/*ctor*/
SchedGraphSet::SchedGraphSet(const Method* _method,
			     const TargetMachine& target) :
  method(_method)
{
  buildGraphsForMethod(method, target);
}


/*dtor*/
SchedGraphSet::~SchedGraphSet()
{
  // delete all the graphs
  for (iterator I=begin(); I != end(); ++I)
    delete (*I).second;
}


void
SchedGraphSet::dump() const
{
  cout << "======== Sched graphs for method `"
       << (method->hasName()? method->getName() : "???")
       << "' ========" << endl << endl;
  
  for (const_iterator I=begin(); I != end(); ++I)
    (*I).second->dump();
  
  cout << endl << "====== End graphs for method `"
       << (method->hasName()? method->getName() : "")
       << "' ========" << endl << endl;
}


void
SchedGraphSet::buildGraphsForMethod(const Method *method,
				    const TargetMachine& target)
{
  for (Method::const_iterator BI = method->begin(); BI != method->end(); ++BI)
    {
      SchedGraph* graph = new SchedGraph(*BI, target);
      this->noteGraphForBlock(*BI, graph);
    }   
}



ostream&
operator<<(ostream& os, const SchedGraphEdge& edge)
{
  os << "edge [" << edge.src->getNodeId() << "] -> ["
     << edge.sink->getNodeId() << "] : ";
  
  switch(edge.depType) {
  case SchedGraphEdge::CtrlDep:		os<< "Control Dep"; break;
  case SchedGraphEdge::ValueDep:        os<< "Reg Value " << edge.val; break;
  case SchedGraphEdge::MemoryDep:	os<< "Memory Dep"; break;
  case SchedGraphEdge::MachineRegister: os<< "Reg " <<edge.machineRegNum;break;
  case SchedGraphEdge::MachineResource: os<<"Resource "<<edge.resourceId;break;
  default: assert(0); break;
  }
  
  os << " : delay = " << edge.minDelay << endl;
  
  return os;
}

ostream&
operator<<(ostream& os, const SchedGraphNode& node)
{
  os << string(8, ' ')
     << "Node " << node.nodeId << " : "
     << "latency = " << node.latency << endl << string(12, ' ');
  
  if (node.getMachineInstr() == NULL)
    os << "(Dummy node)" << endl;
  else
    {
      os << *node.getMachineInstr() << endl << string(12, ' ');
      os << node.inEdges.size() << " Incoming Edges:" << endl;
      for (unsigned i=0, N=node.inEdges.size(); i < N; i++)
	  os << string(16, ' ') << *node.inEdges[i];
  
      os << string(12, ' ') << node.outEdges.size()
         << " Outgoing Edges:" << endl;
      for (unsigned i=0, N=node.outEdges.size(); i < N; i++)
	{
	  os << string(16, ' ') << * node.outEdges[i];
	}
    }
  
  return os;
}