1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
|
//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief Custom DAG lowering for SI
//
//===----------------------------------------------------------------------===//
#include "SIISelLowering.h"
#include "AMDIL.h"
#include "AMDGPU.h"
#include "AMDILIntrinsicInfo.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
using namespace llvm;
SITargetLowering::SITargetLowering(TargetMachine &TM) :
AMDGPUTargetLowering(TM),
TII(static_cast<const SIInstrInfo*>(TM.getInstrInfo())),
TRI(TM.getRegisterInfo()) {
addRegisterClass(MVT::i1, &AMDGPU::SReg_64RegClass);
addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
addRegisterClass(MVT::v16i8, &AMDGPU::SReg_128RegClass);
addRegisterClass(MVT::v32i8, &AMDGPU::SReg_256RegClass);
addRegisterClass(MVT::v64i8, &AMDGPU::SReg_512RegClass);
addRegisterClass(MVT::i32, &AMDGPU::VReg_32RegClass);
addRegisterClass(MVT::f32, &AMDGPU::VReg_32RegClass);
addRegisterClass(MVT::v1i32, &AMDGPU::VReg_32RegClass);
addRegisterClass(MVT::v2i32, &AMDGPU::VReg_64RegClass);
addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
addRegisterClass(MVT::v4i32, &AMDGPU::VReg_128RegClass);
addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
addRegisterClass(MVT::i128, &AMDGPU::SReg_128RegClass);
addRegisterClass(MVT::v8i32, &AMDGPU::VReg_256RegClass);
addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
addRegisterClass(MVT::v16i32, &AMDGPU::VReg_512RegClass);
addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
computeRegisterProperties();
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
setOperationAction(ISD::ADD, MVT::i64, Legal);
setOperationAction(ISD::ADD, MVT::i32, Legal);
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);
setOperationAction(ISD::STORE, MVT::i32, Custom);
setOperationAction(ISD::STORE, MVT::i64, Custom);
setTargetDAGCombine(ISD::SELECT_CC);
setTargetDAGCombine(ISD::SETCC);
setSchedulingPreference(Sched::RegPressure);
}
SDValue SITargetLowering::LowerFormalArguments(
SDValue Chain,
CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc DL, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
MachineFunction &MF = DAG.getMachineFunction();
FunctionType *FType = MF.getFunction()->getFunctionType();
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
assert(CallConv == CallingConv::C);
SmallVector<ISD::InputArg, 16> Splits;
uint32_t Skipped = 0;
for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) {
const ISD::InputArg &Arg = Ins[i];
// First check if it's a PS input addr
if (Info->ShaderType == ShaderType::PIXEL && !Arg.Flags.isInReg()) {
assert((PSInputNum <= 15) && "Too many PS inputs!");
if (!Arg.Used) {
// We can savely skip PS inputs
Skipped |= 1 << i;
++PSInputNum;
continue;
}
Info->PSInputAddr |= 1 << PSInputNum++;
}
// Second split vertices into their elements
if (Arg.VT.isVector()) {
ISD::InputArg NewArg = Arg;
NewArg.Flags.setSplit();
NewArg.VT = Arg.VT.getVectorElementType();
// We REALLY want the ORIGINAL number of vertex elements here, e.g. a
// three or five element vertex only needs three or five registers,
// NOT four or eigth.
Type *ParamType = FType->getParamType(Arg.OrigArgIndex);
unsigned NumElements = ParamType->getVectorNumElements();
for (unsigned j = 0; j != NumElements; ++j) {
Splits.push_back(NewArg);
NewArg.PartOffset += NewArg.VT.getStoreSize();
}
} else {
Splits.push_back(Arg);
}
}
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
getTargetMachine(), ArgLocs, *DAG.getContext());
// At least one interpolation mode must be enabled or else the GPU will hang.
if (Info->ShaderType == ShaderType::PIXEL && (Info->PSInputAddr & 0x7F) == 0) {
Info->PSInputAddr |= 1;
CCInfo.AllocateReg(AMDGPU::VGPR0);
CCInfo.AllocateReg(AMDGPU::VGPR1);
}
AnalyzeFormalArguments(CCInfo, Splits);
for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
if (Skipped & (1 << i)) {
InVals.push_back(SDValue());
continue;
}
CCValAssign &VA = ArgLocs[ArgIdx++];
assert(VA.isRegLoc() && "Parameter must be in a register!");
unsigned Reg = VA.getLocReg();
MVT VT = VA.getLocVT();
if (VT == MVT::i64) {
// For now assume it is a pointer
Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0,
&AMDGPU::SReg_64RegClass);
Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass);
InVals.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT));
continue;
}
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
Reg = MF.addLiveIn(Reg, RC);
SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
const ISD::InputArg &Arg = Ins[i];
if (Arg.VT.isVector()) {
// Build a vector from the registers
Type *ParamType = FType->getParamType(Arg.OrigArgIndex);
unsigned NumElements = ParamType->getVectorNumElements();
SmallVector<SDValue, 4> Regs;
Regs.push_back(Val);
for (unsigned j = 1; j != NumElements; ++j) {
Reg = ArgLocs[ArgIdx++].getLocReg();
Reg = MF.addLiveIn(Reg, RC);
Regs.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT));
}
// Fill up the missing vector elements
NumElements = Arg.VT.getVectorNumElements() - NumElements;
for (unsigned j = 0; j != NumElements; ++j)
Regs.push_back(DAG.getUNDEF(VT));
InVals.push_back(DAG.getNode(ISD::BUILD_VECTOR, DL, Arg.VT,
Regs.data(), Regs.size()));
continue;
}
InVals.push_back(Val);
}
return Chain;
}
MachineBasicBlock * SITargetLowering::EmitInstrWithCustomInserter(
MachineInstr * MI, MachineBasicBlock * BB) const {
switch (MI->getOpcode()) {
default:
return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
case AMDGPU::BRANCH: return BB;
}
return BB;
}
EVT SITargetLowering::getSetCCResultType(EVT VT) const {
return MVT::i1;
}
MVT SITargetLowering::getScalarShiftAmountTy(EVT VT) const {
return MVT::i32;
}
//===----------------------------------------------------------------------===//
// Custom DAG Lowering Operations
//===----------------------------------------------------------------------===//
SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
case ISD::STORE: return LowerSTORE(Op, DAG);
}
return SDValue();
}
/// \brief Helper function for LowerBRCOND
static SDNode *findUser(SDValue Value, unsigned Opcode) {
SDNode *Parent = Value.getNode();
for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
I != E; ++I) {
if (I.getUse().get() != Value)
continue;
if (I->getOpcode() == Opcode)
return *I;
}
return 0;
}
/// This transforms the control flow intrinsics to get the branch destination as
/// last parameter, also switches branch target with BR if the need arise
SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
SelectionDAG &DAG) const {
DebugLoc DL = BRCOND.getDebugLoc();
SDNode *Intr = BRCOND.getOperand(1).getNode();
SDValue Target = BRCOND.getOperand(2);
SDNode *BR = 0;
if (Intr->getOpcode() == ISD::SETCC) {
// As long as we negate the condition everything is fine
SDNode *SetCC = Intr;
assert(SetCC->getConstantOperandVal(1) == 1);
assert(cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
ISD::SETNE);
Intr = SetCC->getOperand(0).getNode();
} else {
// Get the target from BR if we don't negate the condition
BR = findUser(BRCOND, ISD::BR);
Target = BR->getOperand(1);
}
assert(Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN);
// Build the result and
SmallVector<EVT, 4> Res;
for (unsigned i = 1, e = Intr->getNumValues(); i != e; ++i)
Res.push_back(Intr->getValueType(i));
// operands of the new intrinsic call
SmallVector<SDValue, 4> Ops;
Ops.push_back(BRCOND.getOperand(0));
for (unsigned i = 1, e = Intr->getNumOperands(); i != e; ++i)
Ops.push_back(Intr->getOperand(i));
Ops.push_back(Target);
// build the new intrinsic call
SDNode *Result = DAG.getNode(
Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL,
DAG.getVTList(Res.data(), Res.size()), Ops.data(), Ops.size()).getNode();
if (BR) {
// Give the branch instruction our target
SDValue Ops[] = {
BR->getOperand(0),
BRCOND.getOperand(2)
};
DAG.MorphNodeTo(BR, ISD::BR, BR->getVTList(), Ops, 2);
}
SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
// Copy the intrinsic results to registers
for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
if (!CopyToReg)
continue;
Chain = DAG.getCopyToReg(
Chain, DL,
CopyToReg->getOperand(1),
SDValue(Result, i - 1),
SDValue());
DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
}
// Remove the old intrinsic from the chain
DAG.ReplaceAllUsesOfValueWith(
SDValue(Intr, Intr->getNumValues() - 1),
Intr->getOperand(0));
return Chain;
}
#define RSRC_DATA_FORMAT 0xf00000000000
SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
SDValue Chain = Op.getOperand(0);
SDValue Value = Op.getOperand(1);
SDValue VirtualAddress = Op.getOperand(2);
DebugLoc DL = Op.getDebugLoc();
if (StoreNode->getAddressSpace() != AMDGPUAS::GLOBAL_ADDRESS) {
return SDValue();
}
SDValue SrcSrc = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128,
DAG.getConstant(0, MVT::i64),
DAG.getConstant(RSRC_DATA_FORMAT, MVT::i64));
SDValue Ops[2];
Ops[0] = DAG.getNode(AMDGPUISD::BUFFER_STORE, DL, MVT::Other, Chain,
Value, SrcSrc, VirtualAddress);
Ops[1] = Chain;
return DAG.getMergeValues(Ops, 2, DL);
}
SDValue SITargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue True = Op.getOperand(2);
SDValue False = Op.getOperand(3);
SDValue CC = Op.getOperand(4);
EVT VT = Op.getValueType();
DebugLoc DL = Op.getDebugLoc();
// Possible Min/Max pattern
SDValue MinMax = LowerMinMax(Op, DAG);
if (MinMax.getNode()) {
return MinMax;
}
SDValue Cond = DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS, CC);
return DAG.getNode(ISD::SELECT, DL, VT, Cond, True, False);
}
//===----------------------------------------------------------------------===//
// Custom DAG optimizations
//===----------------------------------------------------------------------===//
SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
DebugLoc DL = N->getDebugLoc();
EVT VT = N->getValueType(0);
switch (N->getOpcode()) {
default: break;
case ISD::SELECT_CC: {
N->dump();
ConstantSDNode *True, *False;
// i1 selectcc(l, r, -1, 0, cc) -> i1 setcc(l, r, cc)
if ((True = dyn_cast<ConstantSDNode>(N->getOperand(2)))
&& (False = dyn_cast<ConstantSDNode>(N->getOperand(3)))
&& True->isAllOnesValue()
&& False->isNullValue()
&& VT == MVT::i1) {
return DAG.getNode(ISD::SETCC, DL, VT, N->getOperand(0),
N->getOperand(1), N->getOperand(4));
}
break;
}
case ISD::SETCC: {
SDValue Arg0 = N->getOperand(0);
SDValue Arg1 = N->getOperand(1);
SDValue CC = N->getOperand(2);
ConstantSDNode * C = NULL;
ISD::CondCode CCOp = dyn_cast<CondCodeSDNode>(CC)->get();
// i1 setcc (sext(i1), 0, setne) -> i1 setcc(i1, 0, setne)
if (VT == MVT::i1
&& Arg0.getOpcode() == ISD::SIGN_EXTEND
&& Arg0.getOperand(0).getValueType() == MVT::i1
&& (C = dyn_cast<ConstantSDNode>(Arg1))
&& C->isNullValue()
&& CCOp == ISD::SETNE) {
return SimplifySetCC(VT, Arg0.getOperand(0),
DAG.getConstant(0, MVT::i1), CCOp, true, DCI, DL);
}
break;
}
}
return SDValue();
}
/// \brief Test if RegClass is one of the VSrc classes
static bool isVSrc(unsigned RegClass) {
return AMDGPU::VSrc_32RegClassID == RegClass ||
AMDGPU::VSrc_64RegClassID == RegClass;
}
/// \brief Test if RegClass is one of the SSrc classes
static bool isSSrc(unsigned RegClass) {
return AMDGPU::SSrc_32RegClassID == RegClass ||
AMDGPU::SSrc_64RegClassID == RegClass;
}
/// \brief Analyze the possible immediate value Op
///
/// Returns -1 if it isn't an immediate, 0 if it's and inline immediate
/// and the immediate value if it's a literal immediate
int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const {
union {
int32_t I;
float F;
} Imm;
if (const ConstantSDNode *Node = dyn_cast<ConstantSDNode>(N)) {
if (Node->getZExtValue() >> 32) {
return -1;
}
Imm.I = Node->getSExtValue();
} else if (const ConstantFPSDNode *Node = dyn_cast<ConstantFPSDNode>(N))
Imm.F = Node->getValueAPF().convertToFloat();
else
return -1; // It isn't an immediate
if ((Imm.I >= -16 && Imm.I <= 64) ||
Imm.F == 0.5f || Imm.F == -0.5f ||
Imm.F == 1.0f || Imm.F == -1.0f ||
Imm.F == 2.0f || Imm.F == -2.0f ||
Imm.F == 4.0f || Imm.F == -4.0f)
return 0; // It's an inline immediate
return Imm.I; // It's a literal immediate
}
/// \brief Try to fold an immediate directly into an instruction
bool SITargetLowering::foldImm(SDValue &Operand, int32_t &Immediate,
bool &ScalarSlotUsed) const {
MachineSDNode *Mov = dyn_cast<MachineSDNode>(Operand);
if (Mov == 0 || !TII->isMov(Mov->getMachineOpcode()))
return false;
const SDValue &Op = Mov->getOperand(0);
int32_t Value = analyzeImmediate(Op.getNode());
if (Value == -1) {
// Not an immediate at all
return false;
} else if (Value == 0) {
// Inline immediates can always be fold
Operand = Op;
return true;
} else if (Value == Immediate) {
// Already fold literal immediate
Operand = Op;
return true;
} else if (!ScalarSlotUsed && !Immediate) {
// Fold this literal immediate
ScalarSlotUsed = true;
Immediate = Value;
Operand = Op;
return true;
}
return false;
}
/// \brief Does "Op" fit into register class "RegClass" ?
bool SITargetLowering::fitsRegClass(SelectionDAG &DAG, SDValue &Op,
unsigned RegClass) const {
MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
SDNode *Node = Op.getNode();
const TargetRegisterClass *OpClass;
if (MachineSDNode *MN = dyn_cast<MachineSDNode>(Node)) {
const MCInstrDesc &Desc = TII->get(MN->getMachineOpcode());
int OpClassID = Desc.OpInfo[Op.getResNo()].RegClass;
if (OpClassID == -1)
OpClass = getRegClassFor(Op.getSimpleValueType());
else
OpClass = TRI->getRegClass(OpClassID);
} else if (Node->getOpcode() == ISD::CopyFromReg) {
RegisterSDNode *Reg = cast<RegisterSDNode>(Node->getOperand(1).getNode());
OpClass = MRI.getRegClass(Reg->getReg());
} else
return false;
return TRI->getRegClass(RegClass)->hasSubClassEq(OpClass);
}
/// \brief Make sure that we don't exeed the number of allowed scalars
void SITargetLowering::ensureSRegLimit(SelectionDAG &DAG, SDValue &Operand,
unsigned RegClass,
bool &ScalarSlotUsed) const {
// First map the operands register class to a destination class
if (RegClass == AMDGPU::VSrc_32RegClassID)
RegClass = AMDGPU::VReg_32RegClassID;
else if (RegClass == AMDGPU::VSrc_64RegClassID)
RegClass = AMDGPU::VReg_64RegClassID;
else
return;
// Nothing todo if they fit naturaly
if (fitsRegClass(DAG, Operand, RegClass))
return;
// If the scalar slot isn't used yet use it now
if (!ScalarSlotUsed) {
ScalarSlotUsed = true;
return;
}
// This is a conservative aproach, it is possible that we can't determine
// the correct register class and copy too often, but better save than sorry.
SDValue RC = DAG.getTargetConstant(RegClass, MVT::i32);
SDNode *Node = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS, DebugLoc(),
Operand.getValueType(), Operand, RC);
Operand = SDValue(Node, 0);
}
/// \brief Try to fold the Nodes operands into the Node
SDNode *SITargetLowering::foldOperands(MachineSDNode *Node,
SelectionDAG &DAG) const {
// Original encoding (either e32 or e64)
int Opcode = Node->getMachineOpcode();
const MCInstrDesc *Desc = &TII->get(Opcode);
unsigned NumDefs = Desc->getNumDefs();
unsigned NumOps = Desc->getNumOperands();
// Commuted opcode if available
int OpcodeRev = Desc->isCommutable() ? TII->commuteOpcode(Opcode) : -1;
const MCInstrDesc *DescRev = OpcodeRev == -1 ? 0 : &TII->get(OpcodeRev);
assert(!DescRev || DescRev->getNumDefs() == NumDefs);
assert(!DescRev || DescRev->getNumOperands() == NumOps);
// e64 version if available, -1 otherwise
int OpcodeE64 = AMDGPU::getVOPe64(Opcode);
const MCInstrDesc *DescE64 = OpcodeE64 == -1 ? 0 : &TII->get(OpcodeE64);
assert(!DescE64 || DescE64->getNumDefs() == NumDefs);
assert(!DescE64 || DescE64->getNumOperands() == (NumOps + 4));
int32_t Immediate = Desc->getSize() == 4 ? 0 : -1;
bool HaveVSrc = false, HaveSSrc = false;
// First figure out what we alread have in this instruction
for (unsigned i = 0, e = Node->getNumOperands(), Op = NumDefs;
i != e && Op < NumOps; ++i, ++Op) {
unsigned RegClass = Desc->OpInfo[Op].RegClass;
if (isVSrc(RegClass))
HaveVSrc = true;
else if (isSSrc(RegClass))
HaveSSrc = true;
else
continue;
int32_t Imm = analyzeImmediate(Node->getOperand(i).getNode());
if (Imm != -1 && Imm != 0) {
// Literal immediate
Immediate = Imm;
}
}
// If we neither have VSrc nor SSrc it makes no sense to continue
if (!HaveVSrc && !HaveSSrc)
return Node;
// No scalar allowed when we have both VSrc and SSrc
bool ScalarSlotUsed = HaveVSrc && HaveSSrc;
// Second go over the operands and try to fold them
std::vector<SDValue> Ops;
bool Promote2e64 = false;
for (unsigned i = 0, e = Node->getNumOperands(), Op = NumDefs;
i != e && Op < NumOps; ++i, ++Op) {
const SDValue &Operand = Node->getOperand(i);
Ops.push_back(Operand);
// Already folded immediate ?
if (isa<ConstantSDNode>(Operand.getNode()) ||
isa<ConstantFPSDNode>(Operand.getNode()))
continue;
// Is this a VSrc or SSrc operand ?
unsigned RegClass = Desc->OpInfo[Op].RegClass;
if (isVSrc(RegClass) || isSSrc(RegClass)) {
// Try to fold the immediates
if (!foldImm(Ops[i], Immediate, ScalarSlotUsed)) {
// Folding didn't worked, make sure we don't hit the SReg limit
ensureSRegLimit(DAG, Ops[i], RegClass, ScalarSlotUsed);
}
continue;
}
if (i == 1 && DescRev && fitsRegClass(DAG, Ops[0], RegClass)) {
unsigned OtherRegClass = Desc->OpInfo[NumDefs].RegClass;
assert(isVSrc(OtherRegClass) || isSSrc(OtherRegClass));
// Test if it makes sense to swap operands
if (foldImm(Ops[1], Immediate, ScalarSlotUsed) ||
(!fitsRegClass(DAG, Ops[1], RegClass) &&
fitsRegClass(DAG, Ops[1], OtherRegClass))) {
// Swap commutable operands
SDValue Tmp = Ops[1];
Ops[1] = Ops[0];
Ops[0] = Tmp;
Desc = DescRev;
DescRev = 0;
continue;
}
}
if (DescE64 && !Immediate) {
// Test if it makes sense to switch to e64 encoding
unsigned OtherRegClass = DescE64->OpInfo[Op].RegClass;
if (!isVSrc(OtherRegClass) && !isSSrc(OtherRegClass))
continue;
int32_t TmpImm = -1;
if (foldImm(Ops[i], TmpImm, ScalarSlotUsed) ||
(!fitsRegClass(DAG, Ops[i], RegClass) &&
fitsRegClass(DAG, Ops[1], OtherRegClass))) {
// Switch to e64 encoding
Immediate = -1;
Promote2e64 = true;
Desc = DescE64;
DescE64 = 0;
}
}
}
if (Promote2e64) {
// Add the modifier flags while promoting
for (unsigned i = 0; i < 4; ++i)
Ops.push_back(DAG.getTargetConstant(0, MVT::i32));
}
// Add optional chain and glue
for (unsigned i = NumOps - NumDefs, e = Node->getNumOperands(); i < e; ++i)
Ops.push_back(Node->getOperand(i));
// Create a complete new instruction
return DAG.getMachineNode(Desc->Opcode, Node->getDebugLoc(),
Node->getVTList(), Ops);
}
/// \brief Helper function for adjustWritemask
unsigned SubIdx2Lane(unsigned Idx) {
switch (Idx) {
default: return 0;
case AMDGPU::sub0: return 0;
case AMDGPU::sub1: return 1;
case AMDGPU::sub2: return 2;
case AMDGPU::sub3: return 3;
}
}
/// \brief Adjust the writemask of MIMG instructions
void SITargetLowering::adjustWritemask(MachineSDNode *&Node,
SelectionDAG &DAG) const {
SDNode *Users[4] = { };
unsigned Writemask = 0, Lane = 0;
// Try to figure out the used register components
for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
I != E; ++I) {
// Abort if we can't understand the usage
if (!I->isMachineOpcode() ||
I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
return;
Lane = SubIdx2Lane(I->getConstantOperandVal(1));
// Abort if we have more than one user per component
if (Users[Lane])
return;
Users[Lane] = *I;
Writemask |= 1 << Lane;
}
// Abort if all components are used
if (Writemask == 0xf)
return;
// Adjust the writemask in the node
std::vector<SDValue> Ops;
Ops.push_back(DAG.getTargetConstant(Writemask, MVT::i32));
for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
Ops.push_back(Node->getOperand(i));
Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops.data(), Ops.size());
// If we only got one lane, replace it with a copy
if (Writemask == (1U << Lane)) {
SDValue RC = DAG.getTargetConstant(AMDGPU::VReg_32RegClassID, MVT::i32);
SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
DebugLoc(), Users[Lane]->getValueType(0),
SDValue(Node, 0), RC);
DAG.ReplaceAllUsesWith(Users[Lane], Copy);
return;
}
// Update the users of the node with the new indices
for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {
SDNode *User = Users[i];
if (!User)
continue;
SDValue Op = DAG.getTargetConstant(Idx, MVT::i32);
DAG.UpdateNodeOperands(User, User->getOperand(0), Op);
switch (Idx) {
default: break;
case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
}
}
}
/// \brief Fold the instructions after slecting them
SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
SelectionDAG &DAG) const {
if (AMDGPU::isMIMG(Node->getMachineOpcode()) != -1)
adjustWritemask(Node, DAG);
return foldOperands(Node, DAG);
}
/// \brief Assign the register class depending on the number of
/// bits set in the writemask
void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
SDNode *Node) const {
if (AMDGPU::isMIMG(MI->getOpcode()) == -1)
return;
unsigned VReg = MI->getOperand(0).getReg();
unsigned Writemask = MI->getOperand(1).getImm();
unsigned BitsSet = 0;
for (unsigned i = 0; i < 4; ++i)
BitsSet += Writemask & (1 << i) ? 1 : 0;
const TargetRegisterClass *RC;
switch (BitsSet) {
default: return;
case 1: RC = &AMDGPU::VReg_32RegClass; break;
case 2: RC = &AMDGPU::VReg_64RegClass; break;
case 3: RC = &AMDGPU::VReg_96RegClass; break;
}
MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
MRI.setRegClass(VReg, RC);
}
|