1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
|
//===-- PPCCTRLoops.cpp - Identify and generate CTR loops -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass identifies loops where we can generate the PPC branch instructions
// that decrement and test the count register (CTR) (bdnz and friends).
// This pass is based on the HexagonHardwareLoops pass.
//
// The pattern that defines the induction variable can changed depending on
// prior optimizations. For example, the IndVarSimplify phase run by 'opt'
// normalizes induction variables, and the Loop Strength Reduction pass
// run by 'llc' may also make changes to the induction variable.
// The pattern detected by this phase is due to running Strength Reduction.
//
// Criteria for CTR loops:
// - Countable loops (w/ ind. var for a trip count)
// - Assumes loops are normalized by IndVarSimplify
// - Try inner-most loops first
// - No nested CTR loops.
// - No function calls in loops.
//
// Note: As with unconverted loops, PPCBranchSelector must be run after this
// pass in order to convert long-displacement jumps into jump pairs.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "ctrloops"
#include "PPC.h"
#include "MCTargetDesc/PPCPredicates.h"
#include "PPCTargetMachine.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/IR/Constants.h"
#include "llvm/PassSupport.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include <algorithm>
using namespace llvm;
STATISTIC(NumCTRLoops, "Number of loops converted to CTR loops");
namespace {
class CountValue;
struct PPCCTRLoops : public MachineFunctionPass {
MachineLoopInfo *MLI;
MachineRegisterInfo *MRI;
const TargetInstrInfo *TII;
public:
static char ID; // Pass identification, replacement for typeid
PPCCTRLoops() : MachineFunctionPass(ID) {}
virtual bool runOnMachineFunction(MachineFunction &MF);
const char *getPassName() const { return "PPC CTR Loops"; }
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<MachineLoopInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
private:
/// getCanonicalInductionVariable - Check to see if the loop has a canonical
/// induction variable.
/// Should be defined in MachineLoop. Based upon version in class Loop.
void getCanonicalInductionVariable(MachineLoop *L,
SmallVector<MachineInstr *, 4> &IVars,
SmallVector<MachineInstr *, 4> &IOps) const;
/// getTripCount - Return a loop-invariant LLVM register indicating the
/// number of times the loop will be executed. If the trip-count cannot
/// be determined, this return null.
CountValue *getTripCount(MachineLoop *L,
SmallVector<MachineInstr *, 2> &OldInsts) const;
/// isInductionOperation - Return true if the instruction matches the
/// pattern for an opertion that defines an induction variable.
bool isInductionOperation(const MachineInstr *MI, unsigned IVReg) const;
/// isInvalidOperation - Return true if the instruction is not valid within
/// a CTR loop.
bool isInvalidLoopOperation(const MachineInstr *MI) const;
/// containsInavlidInstruction - Return true if the loop contains an
/// instruction that inhibits using the CTR loop.
bool containsInvalidInstruction(MachineLoop *L) const;
/// converToCTRLoop - Given a loop, check if we can convert it to a
/// CTR loop. If so, then perform the conversion and return true.
bool convertToCTRLoop(MachineLoop *L);
/// isDead - Return true if the instruction is now dead.
bool isDead(const MachineInstr *MI,
SmallVector<MachineInstr *, 1> &DeadPhis) const;
/// removeIfDead - Remove the instruction if it is now dead.
void removeIfDead(MachineInstr *MI);
};
char PPCCTRLoops::ID = 0;
// CountValue class - Abstraction for a trip count of a loop. A
// smaller vesrsion of the MachineOperand class without the concerns
// of changing the operand representation.
class CountValue {
public:
enum CountValueType {
CV_Register,
CV_Immediate
};
private:
CountValueType Kind;
union Values {
unsigned RegNum;
int64_t ImmVal;
Values(unsigned r) : RegNum(r) {}
Values(int64_t i) : ImmVal(i) {}
} Contents;
bool isNegative;
public:
CountValue(unsigned r, bool neg) : Kind(CV_Register), Contents(r),
isNegative(neg) {}
explicit CountValue(int64_t i) : Kind(CV_Immediate), Contents(i),
isNegative(i < 0) {}
CountValueType getType() const { return Kind; }
bool isReg() const { return Kind == CV_Register; }
bool isImm() const { return Kind == CV_Immediate; }
bool isNeg() const { return isNegative; }
unsigned getReg() const {
assert(isReg() && "Wrong CountValue accessor");
return Contents.RegNum;
}
void setReg(unsigned Val) {
Contents.RegNum = Val;
}
int64_t getImm() const {
assert(isImm() && "Wrong CountValue accessor");
if (isNegative) {
return -Contents.ImmVal;
}
return Contents.ImmVal;
}
void setImm(int64_t Val) {
Contents.ImmVal = Val;
}
void print(raw_ostream &OS, const TargetMachine *TM = 0) const {
if (isReg()) { OS << PrintReg(getReg()); }
if (isImm()) { OS << getImm(); }
}
};
} // end anonymous namespace
/// isCompareEquals - Returns true if the instruction is a compare equals
/// instruction with an immediate operand.
static bool isCompareEqualsImm(const MachineInstr *MI, bool &SignedCmp) {
if (MI->getOpcode() == PPC::CMPWI || MI->getOpcode() == PPC::CMPDI) {
SignedCmp = true;
return true;
} else if (MI->getOpcode() == PPC::CMPLWI || MI->getOpcode() == PPC::CMPLDI) {
SignedCmp = false;
return true;
}
return false;
}
/// createPPCCTRLoops - Factory for creating
/// the CTR loop phase.
FunctionPass *llvm::createPPCCTRLoops() {
return new PPCCTRLoops();
}
bool PPCCTRLoops::runOnMachineFunction(MachineFunction &MF) {
DEBUG(dbgs() << "********* PPC CTR Loops *********\n");
bool Changed = false;
// get the loop information
MLI = &getAnalysis<MachineLoopInfo>();
// get the register information
MRI = &MF.getRegInfo();
// the target specific instructio info.
TII = MF.getTarget().getInstrInfo();
for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end();
I != E; ++I) {
MachineLoop *L = *I;
if (!L->getParentLoop()) {
Changed |= convertToCTRLoop(L);
}
}
return Changed;
}
/// getCanonicalInductionVariable - Check to see if the loop has a canonical
/// induction variable. We check for a simple recurrence pattern - an
/// integer recurrence that decrements by one each time through the loop and
/// ends at zero. If so, return the phi node that corresponds to it.
///
/// Based upon the similar code in LoopInfo except this code is specific to
/// the machine.
/// This method assumes that the IndVarSimplify pass has been run by 'opt'.
///
void
PPCCTRLoops::getCanonicalInductionVariable(MachineLoop *L,
SmallVector<MachineInstr *, 4> &IVars,
SmallVector<MachineInstr *, 4> &IOps) const {
MachineBasicBlock *TopMBB = L->getTopBlock();
MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
assert(PI != TopMBB->pred_end() &&
"Loop must have more than one incoming edge!");
MachineBasicBlock *Backedge = *PI++;
if (PI == TopMBB->pred_end()) return; // dead loop
MachineBasicBlock *Incoming = *PI++;
if (PI != TopMBB->pred_end()) return; // multiple backedges?
// make sure there is one incoming and one backedge and determine which
// is which.
if (L->contains(Incoming)) {
if (L->contains(Backedge))
return;
std::swap(Incoming, Backedge);
} else if (!L->contains(Backedge))
return;
// Loop over all of the PHI nodes, looking for a canonical induction variable:
// - The PHI node is "reg1 = PHI reg2, BB1, reg3, BB2".
// - The recurrence comes from the backedge.
// - the definition is an induction operatio.n
for (MachineBasicBlock::iterator I = TopMBB->begin(), E = TopMBB->end();
I != E && I->isPHI(); ++I) {
MachineInstr *MPhi = &*I;
unsigned DefReg = MPhi->getOperand(0).getReg();
for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
// Check each operand for the value from the backedge.
MachineBasicBlock *MBB = MPhi->getOperand(i+1).getMBB();
if (L->contains(MBB)) { // operands comes from the backedge
// Check if the definition is an induction operation.
MachineInstr *DI = MRI->getVRegDef(MPhi->getOperand(i).getReg());
if (isInductionOperation(DI, DefReg)) {
IOps.push_back(DI);
IVars.push_back(MPhi);
}
}
}
}
return;
}
/// getTripCount - Return a loop-invariant LLVM value indicating the
/// number of times the loop will be executed. The trip count can
/// be either a register or a constant value. If the trip-count
/// cannot be determined, this returns null.
///
/// We find the trip count from the phi instruction that defines the
/// induction variable. We follow the links to the CMP instruction
/// to get the trip count.
///
/// Based upon getTripCount in LoopInfo.
///
CountValue *PPCCTRLoops::getTripCount(MachineLoop *L,
SmallVector<MachineInstr *, 2> &OldInsts) const {
MachineBasicBlock *LastMBB = L->getExitingBlock();
// Don't generate a CTR loop if the loop has more than one exit.
if (LastMBB == 0)
return 0;
MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
if (LastI->getOpcode() != PPC::BCC)
return 0;
// We need to make sure that this compare is defining the condition
// register actually used by the terminating branch.
unsigned PredReg = LastI->getOperand(1).getReg();
DEBUG(dbgs() << "Examining loop with first terminator: " << *LastI);
unsigned PredCond = LastI->getOperand(0).getImm();
if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
return 0;
// Check that the loop has a induction variable.
SmallVector<MachineInstr *, 4> IVars, IOps;
getCanonicalInductionVariable(L, IVars, IOps);
for (unsigned i = 0; i < IVars.size(); ++i) {
MachineInstr *IOp = IOps[i];
MachineInstr *IV_Inst = IVars[i];
// Canonical loops will end with a 'cmpwi/cmpdi cr, IV, Imm',
// if Imm is 0, get the count from the PHI opnd
// if Imm is -M, than M is the count
// Otherwise, Imm is the count
MachineOperand *IV_Opnd;
const MachineOperand *InitialValue;
if (!L->contains(IV_Inst->getOperand(2).getMBB())) {
InitialValue = &IV_Inst->getOperand(1);
IV_Opnd = &IV_Inst->getOperand(3);
} else {
InitialValue = &IV_Inst->getOperand(3);
IV_Opnd = &IV_Inst->getOperand(1);
}
DEBUG(dbgs() << "Considering:\n");
DEBUG(dbgs() << " induction operation: " << *IOp);
DEBUG(dbgs() << " induction variable: " << *IV_Inst);
DEBUG(dbgs() << " initial value: " << *InitialValue << "\n");
// Look for the cmp instruction to determine if we
// can get a useful trip count. The trip count can
// be either a register or an immediate. The location
// of the value depends upon the type (reg or imm).
for (MachineRegisterInfo::reg_iterator
RI = MRI->reg_begin(IV_Opnd->getReg()), RE = MRI->reg_end();
RI != RE; ++RI) {
IV_Opnd = &RI.getOperand();
bool SignedCmp;
MachineInstr *MI = IV_Opnd->getParent();
if (L->contains(MI) && isCompareEqualsImm(MI, SignedCmp) &&
MI->getOperand(0).getReg() == PredReg) {
OldInsts.push_back(MI);
OldInsts.push_back(IOp);
DEBUG(dbgs() << " compare: " << *MI);
const MachineOperand &MO = MI->getOperand(2);
assert(MO.isImm() && "IV Cmp Operand should be an immediate");
int64_t ImmVal;
if (SignedCmp)
ImmVal = (short) MO.getImm();
else
ImmVal = MO.getImm();
const MachineInstr *IV_DefInstr = MRI->getVRegDef(IV_Opnd->getReg());
assert(L->contains(IV_DefInstr->getParent()) &&
"IV definition should occurs in loop");
int64_t iv_value = (short) IV_DefInstr->getOperand(2).getImm();
assert(InitialValue->isReg() && "Expecting register for init value");
unsigned InitialValueReg = InitialValue->getReg();
const MachineInstr *DefInstr = MRI->getVRegDef(InitialValueReg);
// Here we need to look for an immediate load (an li or lis/ori pair).
if (DefInstr && (DefInstr->getOpcode() == PPC::ORI8 ||
DefInstr->getOpcode() == PPC::ORI)) {
int64_t start = (short) DefInstr->getOperand(2).getImm();
const MachineInstr *DefInstr2 =
MRI->getVRegDef(DefInstr->getOperand(0).getReg());
if (DefInstr2 && (DefInstr2->getOpcode() == PPC::LIS8 ||
DefInstr2->getOpcode() == PPC::LIS)) {
DEBUG(dbgs() << " initial constant: " << *DefInstr);
DEBUG(dbgs() << " initial constant: " << *DefInstr2);
start |= int64_t(short(DefInstr2->getOperand(1).getImm())) << 16;
int64_t count = ImmVal - start;
if ((count % iv_value) != 0) {
return 0;
}
return new CountValue(count/iv_value);
}
} else if (DefInstr && (DefInstr->getOpcode() == PPC::LI8 ||
DefInstr->getOpcode() == PPC::LI)) {
DEBUG(dbgs() << " initial constant: " << *DefInstr);
int64_t count = ImmVal - int64_t(short(DefInstr->getOperand(1).getImm()));
if ((count % iv_value) != 0) {
return 0;
}
return new CountValue(count/iv_value);
} else if (iv_value == 1 || iv_value == -1) {
// We can't determine a constant starting value.
if (ImmVal == 0) {
return new CountValue(InitialValueReg, iv_value > 0);
}
// FIXME: handle non-zero end value.
}
// FIXME: handle non-unit increments (we might not want to introduce division
// but we can handle some 2^n cases with shifts).
}
}
}
return 0;
}
/// isInductionOperation - return true if the operation is matches the
/// pattern that defines an induction variable:
/// addi iv, c
///
bool
PPCCTRLoops::isInductionOperation(const MachineInstr *MI,
unsigned IVReg) const {
return ((MI->getOpcode() == PPC::ADDI || MI->getOpcode() == PPC::ADDI8) &&
MI->getOperand(1).isReg() && // could be a frame index instead
MI->getOperand(1).getReg() == IVReg);
}
/// isInvalidOperation - Return true if the operation is invalid within
/// CTR loop.
bool
PPCCTRLoops::isInvalidLoopOperation(const MachineInstr *MI) const {
// call is not allowed because the callee may use a CTR loop
if (MI->getDesc().isCall()) {
return true;
}
// check if the instruction defines a CTR loop register
// (this will also catch nested CTR loops)
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isDef() &&
(MO.getReg() == PPC::CTR || MO.getReg() == PPC::CTR8)) {
return true;
}
}
return false;
}
/// containsInvalidInstruction - Return true if the loop contains
/// an instruction that inhibits the use of the CTR loop function.
///
bool PPCCTRLoops::containsInvalidInstruction(MachineLoop *L) const {
const std::vector<MachineBasicBlock*> Blocks = L->getBlocks();
for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
MachineBasicBlock *MBB = Blocks[i];
for (MachineBasicBlock::iterator
MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) {
const MachineInstr *MI = &*MII;
if (isInvalidLoopOperation(MI)) {
return true;
}
}
}
return false;
}
/// isDead returns true if the instruction is dead
/// (this was essentially copied from DeadMachineInstructionElim::isDead, but
/// with special cases for inline asm, physical registers and instructions with
/// side effects removed)
bool PPCCTRLoops::isDead(const MachineInstr *MI,
SmallVector<MachineInstr *, 1> &DeadPhis) const {
// Examine each operand.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isDef()) {
unsigned Reg = MO.getReg();
if (!MRI->use_nodbg_empty(Reg)) {
// This instruction has users, but if the only user is the phi node for the
// parent block, and the only use of that phi node is this instruction, then
// this instruction is dead: both it (and the phi node) can be removed.
MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg);
if (llvm::next(I) == MRI->use_end() &&
I.getOperand().getParent()->isPHI()) {
MachineInstr *OnePhi = I.getOperand().getParent();
for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) {
const MachineOperand &OPO = OnePhi->getOperand(j);
if (OPO.isReg() && OPO.isDef()) {
unsigned OPReg = OPO.getReg();
MachineRegisterInfo::use_iterator nextJ;
for (MachineRegisterInfo::use_iterator J = MRI->use_begin(OPReg),
E = MRI->use_end(); J!=E; J=nextJ) {
nextJ = llvm::next(J);
MachineOperand& Use = J.getOperand();
MachineInstr *UseMI = Use.getParent();
if (MI != UseMI) {
// The phi node has a user that is not MI, bail...
return false;
}
}
}
}
DeadPhis.push_back(OnePhi);
} else {
// This def has a non-debug use. Don't delete the instruction!
return false;
}
}
}
}
// If there are no defs with uses, the instruction is dead.
return true;
}
void PPCCTRLoops::removeIfDead(MachineInstr *MI) {
// This procedure was essentially copied from DeadMachineInstructionElim
SmallVector<MachineInstr *, 1> DeadPhis;
if (isDead(MI, DeadPhis)) {
DEBUG(dbgs() << "CTR looping will remove: " << *MI);
// It is possible that some DBG_VALUE instructions refer to this
// instruction. Examine each def operand for such references;
// if found, mark the DBG_VALUE as undef (but don't delete it).
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !MO.isDef())
continue;
unsigned Reg = MO.getReg();
MachineRegisterInfo::use_iterator nextI;
for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg),
E = MRI->use_end(); I!=E; I=nextI) {
nextI = llvm::next(I); // I is invalidated by the setReg
MachineOperand& Use = I.getOperand();
MachineInstr *UseMI = Use.getParent();
if (UseMI==MI)
continue;
if (Use.isDebug()) // this might also be a instr -> phi -> instr case
// which can also be removed.
UseMI->getOperand(0).setReg(0U);
}
}
MI->eraseFromParent();
for (unsigned i = 0; i < DeadPhis.size(); ++i) {
DeadPhis[i]->eraseFromParent();
}
}
}
/// converToCTRLoop - check if the loop is a candidate for
/// converting to a CTR loop. If so, then perform the
/// transformation.
///
/// This function works on innermost loops first. A loop can
/// be converted if it is a counting loop; either a register
/// value or an immediate.
///
/// The code makes several assumptions about the representation
/// of the loop in llvm.
bool PPCCTRLoops::convertToCTRLoop(MachineLoop *L) {
bool Changed = false;
// Process nested loops first.
for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
Changed |= convertToCTRLoop(*I);
}
// If a nested loop has been converted, then we can't convert this loop.
if (Changed) {
return Changed;
}
SmallVector<MachineInstr *, 2> OldInsts;
// Are we able to determine the trip count for the loop?
CountValue *TripCount = getTripCount(L, OldInsts);
if (TripCount == 0) {
DEBUG(dbgs() << "failed to get trip count!\n");
return false;
}
// Does the loop contain any invalid instructions?
if (containsInvalidInstruction(L)) {
return false;
}
MachineBasicBlock *Preheader = L->getLoopPreheader();
// No preheader means there's not place for the loop instr.
if (Preheader == 0) {
return false;
}
MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();
DebugLoc dl;
if (InsertPos != Preheader->end())
dl = InsertPos->getDebugLoc();
MachineBasicBlock *LastMBB = L->getExitingBlock();
// Don't generate CTR loop if the loop has more than one exit.
if (LastMBB == 0) {
return false;
}
MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
// Determine the loop start.
MachineBasicBlock *LoopStart = L->getTopBlock();
if (L->getLoopLatch() != LastMBB) {
// When the exit and latch are not the same, use the latch block as the
// start.
// The loop start address is used only after the 1st iteration, and the loop
// latch may contains instrs. that need to be executed after the 1st iter.
LoopStart = L->getLoopLatch();
// Make sure the latch is a successor of the exit, otherwise it won't work.
if (!LastMBB->isSuccessor(LoopStart)) {
return false;
}
}
// Convert the loop to a CTR loop
DEBUG(dbgs() << "Change to CTR loop at "; L->dump());
MachineFunction *MF = LastMBB->getParent();
const PPCSubtarget &Subtarget = MF->getTarget().getSubtarget<PPCSubtarget>();
bool isPPC64 = Subtarget.isPPC64();
const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
const TargetRegisterClass *RC = isPPC64 ? G8RC : GPRC;
unsigned CountReg;
if (TripCount->isReg()) {
// Create a copy of the loop count register.
const TargetRegisterClass *SrcRC =
MF->getRegInfo().getRegClass(TripCount->getReg());
CountReg = MF->getRegInfo().createVirtualRegister(RC);
unsigned CopyOp = (isPPC64 && SrcRC == GPRC) ?
(unsigned) PPC::EXTSW_32_64 :
(unsigned) TargetOpcode::COPY;
BuildMI(*Preheader, InsertPos, dl,
TII->get(CopyOp), CountReg).addReg(TripCount->getReg());
if (TripCount->isNeg()) {
unsigned CountReg1 = CountReg;
CountReg = MF->getRegInfo().createVirtualRegister(RC);
BuildMI(*Preheader, InsertPos, dl,
TII->get(isPPC64 ? PPC::NEG8 : PPC::NEG),
CountReg).addReg(CountReg1);
}
} else {
assert(TripCount->isImm() && "Expecting immedate vaule for trip count");
// Put the trip count in a register for transfer into the count register.
int64_t CountImm = TripCount->getImm();
assert(!TripCount->isNeg() && "Constant trip count must be positive");
CountReg = MF->getRegInfo().createVirtualRegister(RC);
if (CountImm > 0xFFFF) {
BuildMI(*Preheader, InsertPos, dl,
TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS),
CountReg).addImm(CountImm >> 16);
unsigned CountReg1 = CountReg;
CountReg = MF->getRegInfo().createVirtualRegister(RC);
BuildMI(*Preheader, InsertPos, dl,
TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
CountReg).addReg(CountReg1).addImm(CountImm & 0xFFFF);
} else {
BuildMI(*Preheader, InsertPos, dl,
TII->get(isPPC64 ? PPC::LI8 : PPC::LI),
CountReg).addImm(CountImm);
}
}
// Add the mtctr instruction to the beginning of the loop.
BuildMI(*Preheader, InsertPos, dl,
TII->get(isPPC64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(CountReg,
TripCount->isImm() ? RegState::Kill : 0);
// Make sure the loop start always has a reference in the CFG. We need to
// create a BlockAddress operand to get this mechanism to work both the
// MachineBasicBlock and BasicBlock objects need the flag set.
LoopStart->setHasAddressTaken();
// This line is needed to set the hasAddressTaken flag on the BasicBlock
// object
BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock()));
// Replace the loop branch with a bdnz instruction.
dl = LastI->getDebugLoc();
const std::vector<MachineBasicBlock*> Blocks = L->getBlocks();
for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
MachineBasicBlock *MBB = Blocks[i];
if (MBB != Preheader)
MBB->addLiveIn(isPPC64 ? PPC::CTR8 : PPC::CTR);
}
// The loop ends with either:
// - a conditional branch followed by an unconditional branch, or
// - a conditional branch to the loop start.
assert(LastI->getOpcode() == PPC::BCC &&
"loop end must start with a BCC instruction");
// Either the BCC branches to the beginning of the loop, or it
// branches out of the loop and there is an unconditional branch
// to the start of the loop.
MachineBasicBlock *BranchTarget = LastI->getOperand(2).getMBB();
BuildMI(*LastMBB, LastI, dl,
TII->get((BranchTarget == LoopStart) ?
(isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
(isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(BranchTarget);
// Conditional branch; just delete it.
DEBUG(dbgs() << "Removing old branch: " << *LastI);
LastMBB->erase(LastI);
delete TripCount;
// The induction operation (add) and the comparison (cmpwi) may now be
// unneeded. If these are unneeded, then remove them.
for (unsigned i = 0; i < OldInsts.size(); ++i)
removeIfDead(OldInsts[i]);
++NumCTRLoops;
return true;
}
|