1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
|
//===- ExpandI64.cpp - Expand i64 and wider integer types -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===------------------------------------------------------------------===//
//
// This pass expands and lowers all operations on integers i64 and wider
// into 32-bit operations that can be handled by JS in a natural way.
//
// 64-bit variables become pairs of 2 32-bit variables, for the low and
// high 32 bit chunks. This happens for both registers and function
// arguments. Function return values become a return of the low 32 bits
// and a store of the high 32-bits in tempRet0, a global helper variable.
// Larger values become more chunks of 32 bits. Currently we require that
// types be a multiple of 32 bits.
//
// Many operations then become simple pairs of operations, for example
// bitwise AND becomes and AND of each 32-bit chunk. More complex operations
// like addition are lowered into calls into library support code in
// Emscripten (i64Add for example).
//
//===------------------------------------------------------------------===//
#include "OptPasses.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/Local.h"
#include <map>
#include <vector>
#include "llvm/Support/raw_ostream.h"
#ifdef NDEBUG
#undef assert
#define assert(x) { if (!(x)) report_fatal_error(#x); }
#endif
using namespace llvm;
namespace {
struct PhiBlockChange {
BasicBlock *DD, *SwitchBB, *NewBB;
};
typedef SmallVector<Value*, 2> ChunksVec;
typedef std::map<Value*, ChunksVec> SplitsMap;
typedef SmallVector<PHINode *, 8> PHIVec;
typedef SmallVector<Instruction *, 8> DeadVec;
// This is a ModulePass because the pass recreates functions in
// order to expand i64 arguments to pairs of i32s.
class ExpandI64 : public ModulePass {
bool Changed;
DataLayout *DL;
Module *TheModule;
SplitsMap Splits; // old illegal value to new insts
PHIVec Phis;
std::vector<PhiBlockChange> PhiBlockChanges;
// If the function has an illegal return or argument, create a legal version
void ensureLegalFunc(Function *F);
// If a function is illegal, remove it
void removeIllegalFunc(Function *F);
// splits an illegal instruction into 32-bit chunks. We do
// not yet have the values yet, as they depend on other
// splits, so store the parts in Splits, for FinalizeInst.
bool splitInst(Instruction *I);
// For an illegal value, returns the split out chunks
// representing the low and high parts, that splitInst
// generated.
// The value can also be a constant, in which case we just
// split it, or a function argument, in which case we
// map to the proper legalized new arguments
//
// @param AllowUnreachable It is possible for phi nodes
// to refer to unreachable blocks,
// which our traversal never
// reaches; this flag lets us
// ignore those - otherwise,
// not finding chunks is fatal
ChunksVec getChunks(Value *V, bool AllowUnreachable=false);
Function *Add, *Sub, *Mul, *SDiv, *UDiv, *SRem, *URem, *LShr, *AShr, *Shl, *GetHigh, *SetHigh, *FtoILow, *FtoIHigh, *DtoILow, *DtoIHigh, *SItoF, *UItoF, *SItoD, *UItoD, *BItoD, *BDtoILow, *BDtoIHigh;
void ensureFuncs();
unsigned getNumChunks(Type *T);
public:
static char ID;
ExpandI64() : ModulePass(ID) {
initializeExpandI64Pass(*PassRegistry::getPassRegistry());
Add = Sub = Mul = SDiv = UDiv = SRem = URem = LShr = AShr = Shl = GetHigh = SetHigh = NULL;
}
virtual bool runOnModule(Module &M);
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
};
}
char ExpandI64::ID = 0;
INITIALIZE_PASS(ExpandI64, "expand-illegal-ints",
"Expand and lower illegal >i32 operations into 32-bit chunks",
false, false)
// Utilities
static Instruction *CopyDebug(Instruction *NewInst, Instruction *Original) {
NewInst->setDebugLoc(Original->getDebugLoc());
return NewInst;
}
static bool isIllegal(Type *T) {
return T->isIntegerTy() && T->getIntegerBitWidth() > 32;
}
static FunctionType *getLegalizedFunctionType(FunctionType *FT) {
SmallVector<Type*, 0> ArgTypes; // XXX
int Num = FT->getNumParams();
for (int i = 0; i < Num; i++) {
Type *T = FT->getParamType(i);
if (!isIllegal(T)) {
ArgTypes.push_back(T);
} else {
Type *i32 = Type::getInt32Ty(FT->getContext());
ArgTypes.push_back(i32);
ArgTypes.push_back(i32);
}
}
Type *RT = FT->getReturnType();
Type *NewRT;
if (!isIllegal(RT)) {
NewRT = RT;
} else {
NewRT = Type::getInt32Ty(FT->getContext());
}
return FunctionType::get(NewRT, ArgTypes, false);
}
// Implementation of ExpandI64
static bool okToRemainIllegal(Function *F) {
StringRef Name = F->getName();
if (Name == "llvm.dbg.value") return true;
// XXX EMSCRIPTEN: These take an i64 immediate argument; since they're not
// real instructions, we don't need to legalize them.
if (Name == "llvm.lifetime.start") return true;
if (Name == "llvm.lifetime.end") return true;
if (Name == "llvm.invariant.start") return true;
if (Name == "llvm.invariant.end") return true;
return false;
}
unsigned ExpandI64::getNumChunks(Type *T) {
unsigned Num = DL->getTypeSizeInBits(T);
return (Num + 31) / 32;
}
static bool isLegalFunctionType(FunctionType *FT) {
if (isIllegal(FT->getReturnType())) {
return false;
}
int Num = FT->getNumParams();
for (int i = 0; i < Num; i++) {
if (isIllegal(FT->getParamType(i))) {
return false;
}
}
return true;
}
static bool isLegalInstruction(const Instruction *I) {
if (isIllegal(I->getType())) {
return false;
}
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
if (isIllegal(I->getOperand(i)->getType())) {
return false;
}
}
return true;
}
// We can't use RecreateFunction because we need to handle
// function and argument attributes specially.
static Function *RecreateFunctionLegalized(Function *F, FunctionType *NewType) {
Function *NewFunc = Function::Create(NewType, F->getLinkage());
AttributeSet Attrs = F->getAttributes();
AttributeSet FnAttrs = Attrs.getFnAttributes();
// Legalizing the return value is done by storing part of the value into
// static storage. Subsequent analysis will see this as a memory access,
// so we can no longer claim to be readonly or readnone.
if (isIllegal(F->getReturnType())) {
FnAttrs = FnAttrs.removeAttribute(F->getContext(),
AttributeSet::FunctionIndex,
Attribute::ReadOnly);
FnAttrs = FnAttrs.removeAttribute(F->getContext(),
AttributeSet::FunctionIndex,
Attribute::ReadNone);
}
NewFunc->addAttributes(AttributeSet::FunctionIndex, FnAttrs);
NewFunc->addAttributes(AttributeSet::ReturnIndex, Attrs.getRetAttributes());
Function::arg_iterator AI = F->arg_begin();
// We need to recreate the attribute set, with the right indexes
AttributeSet NewAttrs;
unsigned NumArgs = F->arg_size();
for (unsigned i = 1, j = 1; i < NumArgs+1; i++, j++, AI++) {
if (isIllegal(AI->getType())) {
j++;
continue;
}
if (!Attrs.hasAttributes(i)) continue;
AttributeSet ParamAttrs = Attrs.getParamAttributes(i);
AttrBuilder AB;
unsigned NumSlots = ParamAttrs.getNumSlots();
for (unsigned k = 0; k < NumSlots; k++) {
for (AttributeSet::iterator I = ParamAttrs.begin(k), E = ParamAttrs.end(k); I != E; I++) {
AB.addAttribute(*I);
}
}
NewFunc->addAttributes(j, AttributeSet::get(F->getContext(), j, AB));
}
F->getParent()->getFunctionList().insert(F, NewFunc);
NewFunc->takeName(F);
NewFunc->getBasicBlockList().splice(NewFunc->begin(),
F->getBasicBlockList());
F->replaceAllUsesWith(
ConstantExpr::getBitCast(NewFunc,
F->getFunctionType()->getPointerTo()));
return NewFunc;
}
void ExpandI64::ensureLegalFunc(Function *F) {
if (okToRemainIllegal(F)) return;
FunctionType *FT = F->getFunctionType();
if (isLegalFunctionType(FT)) return;
Changed = true;
Function *NF = RecreateFunctionLegalized(F, getLegalizedFunctionType(FT));
std::string Name = NF->getName();
if (strncmp(Name.c_str(), "llvm.", 5) == 0) {
// this is an intrinsic, and we are changing its signature, which will annoy LLVM, so rename
const size_t len = Name.size();
SmallString<256> NewName;
NewName.resize(len);
for (unsigned i = 0; i < len; i++) {
NewName[i] = Name[i] != '.' ? Name[i] : '_';
}
NF->setName(Twine(NewName));
}
// Move and update arguments
for (Function::arg_iterator Arg = F->arg_begin(), E = F->arg_end(), NewArg = NF->arg_begin();
Arg != E; ++Arg) {
if (Arg->getType() == NewArg->getType()) {
NewArg->takeName(Arg);
Arg->replaceAllUsesWith(NewArg);
NewArg++;
} else {
// This was legalized
ChunksVec &Chunks = Splits[&*Arg];
int Num = getNumChunks(Arg->getType());
assert(Num == 2);
for (int i = 0; i < Num; i++) {
Chunks.push_back(&*NewArg);
if (NewArg->hasName()) Chunks[i]->setName(NewArg->getName() + "$" + utostr(i));
NewArg++;
}
}
}
}
void ExpandI64::removeIllegalFunc(Function *F) {
if (okToRemainIllegal(F)) return;
FunctionType *FT = F->getFunctionType();
if (!isLegalFunctionType(FT)) {
F->eraseFromParent();
}
}
bool ExpandI64::splitInst(Instruction *I) {
Type *i32 = Type::getInt32Ty(I->getContext());
Type *i32P = i32->getPointerTo();
Type *i64 = Type::getInt64Ty(I->getContext());
Value *Zero = Constant::getNullValue(i32);
ChunksVec &Chunks = Splits[I];
switch (I->getOpcode()) {
case Instruction::GetElementPtr: {
GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
SmallVector<Value*, 2> NewOps;
for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i) {
Value *Op = I->getOperand(i);
if (isIllegal(Op->getType())) {
// Truncate the operand down to one chunk.
NewOps.push_back(getChunks(Op)[0]);
} else {
NewOps.push_back(Op);
}
}
Value *NewGEP = CopyDebug(GetElementPtrInst::Create(GEP->getPointerOperand(), NewOps, "", GEP), GEP);
Chunks.push_back(NewGEP);
I->replaceAllUsesWith(NewGEP);
break;
}
case Instruction::SExt: {
ChunksVec InputChunks;
Value *Op = I->getOperand(0);
if (isIllegal(Op->getType())) {
InputChunks = getChunks(Op);
} else {
InputChunks.push_back(Op);
}
for (unsigned i = 0, e = InputChunks.size(); i != e; ++i) {
Value *Input = InputChunks[i];
Type *T = Input->getType();
Value *Chunk;
if (T->getIntegerBitWidth() < 32) {
Chunk = CopyDebug(new SExtInst(Input, i32, "", I), I);
} else {
assert(T->getIntegerBitWidth() == 32);
Chunk = Input;
}
Chunks.push_back(Chunk);
}
Instruction *Check = CopyDebug(new ICmpInst(I, ICmpInst::ICMP_SLT, Chunks.back(), Zero), I);
int Num = getNumChunks(I->getType());
for (int i = Chunks.size(); i < Num; i++) {
Instruction *High = CopyDebug(new SExtInst(Check, i32, "", I), I);
Chunks.push_back(High);
}
break;
}
case Instruction::PtrToInt:
case Instruction::ZExt: {
Value *Op = I->getOperand(0);
ChunksVec InputChunks;
if (I->getOpcode() == Instruction::PtrToInt) {
InputChunks.push_back(CopyDebug(new PtrToIntInst(Op, i32, "", I), I));
} else if (isIllegal(Op->getType())) {
InputChunks = getChunks(Op);
} else {
InputChunks.push_back(Op);
}
for (unsigned i = 0, e = InputChunks.size(); i != e; ++i) {
Value *Input = InputChunks[i];
Type *T = Input->getType();
Value *Chunk;
if (T->getIntegerBitWidth() < 32) {
Chunk = CopyDebug(new ZExtInst(Input, i32, "", I), I);
} else {
assert(T->getIntegerBitWidth() == 32);
Chunk = Input;
}
Chunks.push_back(Chunk);
}
int Num = getNumChunks(I->getType());
for (int i = Chunks.size(); i < Num; i++) {
Chunks.push_back(Zero);
}
break;
}
case Instruction::IntToPtr:
case Instruction::Trunc: {
unsigned Num = getNumChunks(I->getType());
unsigned NumBits = DL->getTypeSizeInBits(I->getType());
ChunksVec InputChunks = getChunks(I->getOperand(0));
for (unsigned i = 0; i < Num; i++) {
Value *Input = InputChunks[i];
Value *Chunk;
if (NumBits < 32) {
Chunk = CopyDebug(new TruncInst(Input, IntegerType::get(I->getContext(), NumBits), "", I), I);
NumBits = 0;
} else {
Chunk = Input;
NumBits -= 32;
}
if (I->getOpcode() == Instruction::IntToPtr) {
assert(i == 0);
Chunk = CopyDebug(new IntToPtrInst(Chunk, I->getType(), "", I), I);
}
Chunks.push_back(Chunk);
}
if (!isIllegal(I->getType())) {
assert(Chunks.size() == 1);
I->replaceAllUsesWith(Chunks[0]);
}
break;
}
case Instruction::Load: {
LoadInst *LI = cast<LoadInst>(I);
Instruction *AI = CopyDebug(new PtrToIntInst(LI->getPointerOperand(), i32, "", I), I);
int Num = getNumChunks(I->getType());
for (int i = 0; i < Num; i++) {
Instruction *Add = i == 0 ? AI : CopyDebug(BinaryOperator::Create(Instruction::Add, AI, ConstantInt::get(i32, 4*i), "", I), I);
Instruction *Ptr = CopyDebug(new IntToPtrInst(Add, i32P, "", I), I);
LoadInst *Chunk = new LoadInst(Ptr, "", I); CopyDebug(Chunk, I);
Chunk->setAlignment(MinAlign(LI->getAlignment() == 0 ?
DL->getABITypeAlignment(LI->getType()) :
LI->getAlignment(),
4*i));
Chunk->setVolatile(LI->isVolatile());
Chunk->setOrdering(LI->getOrdering());
Chunk->setSynchScope(LI->getSynchScope());
Chunks.push_back(Chunk);
}
break;
}
case Instruction::Store: {
StoreInst *SI = cast<StoreInst>(I);
Instruction *AI = CopyDebug(new PtrToIntInst(SI->getPointerOperand(), i32, "", I), I);
ChunksVec InputChunks = getChunks(SI->getValueOperand());
int Num = InputChunks.size();
for (int i = 0; i < Num; i++) {
Instruction *Add = i == 0 ? AI : CopyDebug(BinaryOperator::Create(Instruction::Add, AI, ConstantInt::get(i32, 4*i), "", I), I);
Instruction *Ptr = CopyDebug(new IntToPtrInst(Add, i32P, "", I), I);
StoreInst *Chunk = new StoreInst(InputChunks[i], Ptr, I);
Chunk->setAlignment(MinAlign(SI->getAlignment() == 0 ?
DL->getABITypeAlignment(SI->getValueOperand()->getType()) :
SI->getAlignment(),
4*i));
Chunk->setVolatile(SI->isVolatile());
Chunk->setOrdering(SI->getOrdering());
Chunk->setSynchScope(SI->getSynchScope());
CopyDebug(Chunk, I);
}
break;
}
case Instruction::Ret: {
assert(I->getOperand(0)->getType() == i64);
ChunksVec InputChunks = getChunks(I->getOperand(0));
ensureFuncs();
SmallVector<Value *, 1> Args;
Args.push_back(InputChunks[1]);
CopyDebug(CallInst::Create(SetHigh, Args, "", I), I);
CopyDebug(ReturnInst::Create(I->getContext(), InputChunks[0], I), I);
break;
}
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::SDiv:
case Instruction::UDiv:
case Instruction::SRem:
case Instruction::URem:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::Shl: {
ChunksVec LeftChunks = getChunks(I->getOperand(0));
ChunksVec RightChunks = getChunks(I->getOperand(1));
unsigned Num = getNumChunks(I->getType());
if (Num == 2) {
ensureFuncs();
Value *Low = NULL, *High = NULL;
Function *F = NULL;
switch (I->getOpcode()) {
case Instruction::Add: F = Add; break;
case Instruction::Sub: F = Sub; break;
case Instruction::Mul: F = Mul; break;
case Instruction::SDiv: F = SDiv; break;
case Instruction::UDiv: F = UDiv; break;
case Instruction::SRem: F = SRem; break;
case Instruction::URem: F = URem; break;
case Instruction::AShr: F = AShr; break;
case Instruction::LShr: {
if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
unsigned Shifts = CI->getZExtValue();
if (Shifts == 32) {
Low = LeftChunks[1];
High = Zero;
break;
}
}
F = LShr;
break;
}
case Instruction::Shl: {
if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
const APInt &Shifts = CI->getValue();
if (Shifts == 32) {
Low = Zero;
High = LeftChunks[0];
break;
}
}
F = Shl;
break;
}
default: assert(0);
}
if (F) {
// use a library call, no special optimization was found
SmallVector<Value *, 4> Args;
Args.push_back(LeftChunks[0]);
Args.push_back(LeftChunks[1]);
Args.push_back(RightChunks[0]);
Args.push_back(RightChunks[1]);
Low = CopyDebug(CallInst::Create(F, Args, "", I), I);
High = CopyDebug(CallInst::Create(GetHigh, "", I), I);
}
Chunks.push_back(Low);
Chunks.push_back(High);
} else {
// more than 64 bits. handle simple shifts for lshr and shl
assert(I->getOpcode() == Instruction::LShr || I->getOpcode() == Instruction::AShr || I->getOpcode() == Instruction::Shl);
ConstantInt *CI = cast<ConstantInt>(I->getOperand(1));
unsigned Shifts = CI->getZExtValue();
unsigned Fraction = Shifts % 32;
Constant *Frac = ConstantInt::get(i32, Fraction);
Constant *Comp = ConstantInt::get(i32, 32 - Fraction);
Instruction::BinaryOps Opcode, Reverse;
unsigned ShiftChunks, Dir;
Value *TopFiller = Zero;
if (I->getOpcode() == Instruction::Shl) {
Opcode = Instruction::Shl;
Reverse = Instruction::LShr;
ShiftChunks = -(Shifts/32);
Dir = -1;
} else {
Opcode = Instruction::LShr;
Reverse = Instruction::Shl;
ShiftChunks = Shifts/32;
Dir = 1;
if (I->getOpcode() == Instruction::AShr) {
Value *Cond = CopyDebug(new ICmpInst(I, ICmpInst::ICMP_SLT, LeftChunks[LeftChunks.size()-1], Zero), I);
TopFiller = CopyDebug(SelectInst::Create(Cond, ConstantInt::get(i32, -1), Zero, "", I), I);
}
}
for (unsigned i = 0; i < Num; i++) {
Value *L;
if (i + ShiftChunks < LeftChunks.size()) {
L = LeftChunks[i + ShiftChunks];
} else {
L = Zero;
}
Value *H;
if (i + ShiftChunks + Dir < LeftChunks.size()) {
H = LeftChunks[i + ShiftChunks + Dir];
} else {
H = TopFiller;
}
// shifted the fractional amount
if (Frac != Zero && L != Zero) {
if (Fraction == 32) {
L = Zero;
} else {
L = CopyDebug(BinaryOperator::Create(Opcode, L, Frac, "", I), I);
}
}
// shifted the complement-fractional amount to the other side
if (Comp != Zero && H != Zero) {
if (Fraction == 0) {
H = TopFiller;
} else {
H = CopyDebug(BinaryOperator::Create(Reverse, H, Comp, "", I), I);
}
}
// Or the parts together. Since we may have zero, try to fold it away.
if (Value *V = SimplifyBinOp(Instruction::Or, L, H, DL)) {
Chunks.push_back(V);
} else {
Chunks.push_back(CopyDebug(BinaryOperator::Create(Instruction::Or, L, H, "", I), I));
}
}
}
break;
}
case Instruction::ICmp: {
ICmpInst *CE = cast<ICmpInst>(I);
ICmpInst::Predicate Pred = CE->getPredicate();
ChunksVec LeftChunks = getChunks(I->getOperand(0));
ChunksVec RightChunks = getChunks(I->getOperand(1));
switch (Pred) {
case ICmpInst::ICMP_EQ:
case ICmpInst::ICMP_NE: {
ICmpInst::Predicate PartPred; // the predicate to use on each of the parts
llvm::Instruction::BinaryOps CombineOp; // the predicate to use to combine the subcomparisons
int Num = LeftChunks.size();
if (Pred == ICmpInst::ICMP_EQ) {
PartPred = ICmpInst::ICMP_EQ;
CombineOp = Instruction::And;
} else {
PartPred = ICmpInst::ICMP_NE;
CombineOp = Instruction::Or;
}
// first combine 0 and 1. then combine that with 2, etc.
Value *Combined = NULL;
for (int i = 0; i < Num; i++) {
Value *Cmp = CopyDebug(new ICmpInst(I, PartPred, LeftChunks[i], RightChunks[i]), I);
Combined = !Combined ? Cmp : CopyDebug(BinaryOperator::Create(CombineOp, Combined, Cmp, "", I), I);
}
I->replaceAllUsesWith(Combined);
break;
}
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_ULE:
case ICmpInst::ICMP_SLE:
case ICmpInst::ICMP_UGE:
case ICmpInst::ICMP_SGE: {
if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
if (CI->getZExtValue() == 0 && Pred == ICmpInst::ICMP_SLT) {
// strict < 0 is easy to do, even on non-i64, just the sign bit matters
Instruction *NewInst = new ICmpInst(I, ICmpInst::ICMP_SLT, LeftChunks[LeftChunks.size()-1], Zero);
CopyDebug(NewInst, I);
I->replaceAllUsesWith(NewInst);
return true;
}
}
assert(I->getOperand(0)->getType() == i64);
Instruction *A, *B, *C, *D, *Final;
ICmpInst::Predicate StrictPred = Pred;
ICmpInst::Predicate UnsignedPred = Pred;
switch (Pred) {
case ICmpInst::ICMP_ULE: StrictPred = ICmpInst::ICMP_ULT; break;
case ICmpInst::ICMP_UGE: StrictPred = ICmpInst::ICMP_UGT; break;
case ICmpInst::ICMP_SLE: StrictPred = ICmpInst::ICMP_SLT; UnsignedPred = ICmpInst::ICMP_ULE; break;
case ICmpInst::ICMP_SGE: StrictPred = ICmpInst::ICMP_SGT; UnsignedPred = ICmpInst::ICMP_UGE; break;
case ICmpInst::ICMP_SLT: UnsignedPred = ICmpInst::ICMP_ULT; break;
case ICmpInst::ICMP_SGT: UnsignedPred = ICmpInst::ICMP_UGT; break;
case ICmpInst::ICMP_ULT: break;
case ICmpInst::ICMP_UGT: break;
default: assert(0);
}
A = CopyDebug(new ICmpInst(I, StrictPred, LeftChunks[1], RightChunks[1]), I);
B = CopyDebug(new ICmpInst(I, ICmpInst::ICMP_EQ, LeftChunks[1], RightChunks[1]), I);
C = CopyDebug(new ICmpInst(I, UnsignedPred, LeftChunks[0], RightChunks[0]), I);
D = CopyDebug(BinaryOperator::Create(Instruction::And, B, C, "", I), I);
Final = CopyDebug(BinaryOperator::Create(Instruction::Or, A, D, "", I), I);
I->replaceAllUsesWith(Final);
break;
}
default: assert(0);
}
break;
}
case Instruction::Select: {
SelectInst *SI = cast<SelectInst>(I);
Value *Cond = SI->getCondition();
ChunksVec TrueChunks = getChunks(SI->getTrueValue());
ChunksVec FalseChunks = getChunks(SI->getFalseValue());
unsigned Num = getNumChunks(I->getType());
for (unsigned i = 0; i < Num; i++) {
Instruction *Part = CopyDebug(SelectInst::Create(Cond, TrueChunks[i], FalseChunks[i], "", I), I);
Chunks.push_back(Part);
}
break;
}
case Instruction::PHI: {
PHINode *Parent = cast<PHINode>(I);
int Num = getNumChunks(I->getType());
int PhiNum = Parent->getNumIncomingValues();
for (int i = 0; i < Num; i++) {
Instruction *P = CopyDebug(PHINode::Create(i32, PhiNum, "", I), I);
Chunks.push_back(P);
}
// PHI node operands may not be translated yet; we'll handle them at the end.
Phis.push_back(Parent);
break;
}
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
BinaryOperator *BO = cast<BinaryOperator>(I);
ChunksVec LeftChunks = getChunks(BO->getOperand(0));
ChunksVec RightChunks = getChunks(BO->getOperand(1));
int Num = getNumChunks(BO->getType());
for (int i = 0; i < Num; i++) {
// If there's a constant operand, it's likely enough that one of the
// chunks will be a trivial operation, so it's worth calling
// SimplifyBinOp here.
if (Value *V = SimplifyBinOp(BO->getOpcode(), LeftChunks[i], RightChunks[i], DL)) {
Chunks.push_back(V);
} else {
Chunks.push_back(CopyDebug(BinaryOperator::Create(BO->getOpcode(), LeftChunks[i], RightChunks[i], "", BO), BO));
}
}
break;
}
case Instruction::Call: {
CallInst *CI = cast<CallInst>(I);
Function *F = CI->getCalledFunction();
if (F) {
assert(okToRemainIllegal(F));
return false;
}
Value *CV = CI->getCalledValue();
FunctionType *OFT = NULL;
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
assert(CE);
assert(CE->getOpcode() == Instruction::BitCast);
OFT = cast<FunctionType>(cast<PointerType>(CE->getType())->getElementType());
Constant *C = CE->getOperand(0);
CV = ConstantExpr::getBitCast(C, getLegalizedFunctionType(OFT)->getPointerTo());
} else {
// this is a function pointer call
OFT = cast<FunctionType>(cast<PointerType>(CV->getType())->getElementType());
// we need to add a bitcast
CV = new BitCastInst(CV, getLegalizedFunctionType(OFT)->getPointerTo(), "", I);
}
// create a call with space for legal args
SmallVector<Value *, 0> Args; // XXX
int Num = OFT->getNumParams();
for (int i = 0; i < Num; i++) {
Type *T = OFT->getParamType(i);
if (!isIllegal(T)) {
Args.push_back(CI->getArgOperand(i));
} else {
assert(T == i64);
ChunksVec ArgChunks = getChunks(CI->getArgOperand(i));
Args.push_back(ArgChunks[0]);
Args.push_back(ArgChunks[1]);
}
}
Instruction *L = CopyDebug(CallInst::Create(CV, Args, "", I), I);
Instruction *H = NULL;
// legalize return value as well, if necessary
if (isIllegal(I->getType())) {
assert(I->getType() == i64);
ensureFuncs();
H = CopyDebug(CallInst::Create(GetHigh, "", I), I);
Chunks.push_back(L);
Chunks.push_back(H);
} else {
I->replaceAllUsesWith(L);
}
break;
}
case Instruction::FPToUI:
case Instruction::FPToSI: {
assert(I->getType() == i64);
ensureFuncs();
SmallVector<Value *, 1> Args;
Value *Input = I->getOperand(0);
Args.push_back(Input);
Instruction *L, *H;
if (Input->getType()->isFloatTy()) {
L = CopyDebug(CallInst::Create(FtoILow, Args, "", I), I);
H = CopyDebug(CallInst::Create(FtoIHigh, Args, "", I), I);
} else {
L = CopyDebug(CallInst::Create(DtoILow, Args, "", I), I);
H = CopyDebug(CallInst::Create(DtoIHigh, Args, "", I), I);
}
Chunks.push_back(L);
Chunks.push_back(H);
break;
}
case Instruction::BitCast: {
if (I->getType() == Type::getDoubleTy(TheModule->getContext())) {
// fall through to itofp
} else if (I->getOperand(0)->getType() == Type::getDoubleTy(TheModule->getContext())) {
// double to i64
assert(I->getType() == i64);
ensureFuncs();
SmallVector<Value *, 1> Args;
Args.push_back(I->getOperand(0));
Instruction *L = CopyDebug(CallInst::Create(BDtoILow, Args, "", I), I);
Instruction *H = CopyDebug(CallInst::Create(BDtoIHigh, Args, "", I), I);
Chunks.push_back(L);
Chunks.push_back(H);
break;
} else {
// no-op bitcast
assert(I->getType() == I->getOperand(0)->getType());
Chunks = getChunks(I->getOperand(0));
break;
}
}
case Instruction::SIToFP:
case Instruction::UIToFP: {
assert(I->getOperand(0)->getType() == i64);
ensureFuncs();
ChunksVec InputChunks = getChunks(I->getOperand(0));
Function *F;
switch (I->getOpcode()) {
case Instruction::SIToFP: F = I->getType() == Type::getDoubleTy(TheModule->getContext()) ? SItoD : SItoF; break;
case Instruction::UIToFP: F = I->getType() == Type::getDoubleTy(TheModule->getContext()) ? UItoD : UItoF; break;
case Instruction::BitCast: {
assert(I->getType() == Type::getDoubleTy(TheModule->getContext()));
F = BItoD;
break;
}
default: assert(0);
}
Instruction *D = CopyDebug(CallInst::Create(F, InputChunks, "", I), I);
I->replaceAllUsesWith(D);
break;
}
case Instruction::Switch: {
assert(I->getOperand(0)->getType() == i64);
ChunksVec InputChunks = getChunks(I->getOperand(0));
// do a switch on the lower 32 bits, into a different basic block for each target, then do a branch in each of those on the high 32 bits
SwitchInst* SI = cast<SwitchInst>(I);
BasicBlock *DD = SI->getDefaultDest();
BasicBlock *SwitchBB = I->getParent();
Function *F = SwitchBB->getParent();
unsigned NumItems = 0;
for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) {
NumItems += i.getCaseValueEx().getNumItems();
}
SwitchInst *LowSI = SwitchInst::Create(InputChunks[0], DD, NumItems, I); // same default destination: if lower bits do not match, go straight to default
CopyDebug(LowSI, I);
typedef std::pair<uint32_t, BasicBlock*> Pair;
typedef std::vector<Pair> Vec; // vector of pairs of high 32 bits, basic block
typedef std::map<uint32_t, Vec> Map; // maps low 32 bits to their Vec info
Map Groups; // (as two 64-bit values in the switch may share their lower bits)
for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) {
BasicBlock *BB = i.getCaseSuccessor();
const IntegersSubset CaseVal = i.getCaseValueEx();
assert(CaseVal.isSingleNumbersOnly());
for (unsigned Index = 0; Index < CaseVal.getNumItems(); Index++) {
uint64_t Bits = CaseVal.getSingleNumber(Index).toConstantInt()->getZExtValue();
uint32_t LowBits = (uint32_t)Bits;
uint32_t HighBits = (uint32_t)(Bits >> 32);
Vec& V = Groups[LowBits];
V.push_back(Pair(HighBits, BB));
}
}
unsigned Counter = 0;
BasicBlock *InsertPoint = SwitchBB;
for (Map::iterator GI = Groups.begin(); GI != Groups.end(); GI++) {
uint32_t LowBits = GI->first;
Vec &V = GI->second;
BasicBlock *NewBB = BasicBlock::Create(F->getContext(), "switch64_" + utostr(Counter++), F);
NewBB->moveAfter(InsertPoint);
InsertPoint = NewBB;
LowSI->addCase(cast<ConstantInt>(ConstantInt::get(i32, LowBits)), NewBB);
/*if (V.size() == 1) {
// just one option, create a branch
Instruction *CheckHigh = CopyDebug(new ICmpInst(*NewBB, ICmpInst::ICMP_EQ, InputChunks[1], ConstantInt::get(i32, V[0]->first)), I);
Split.ToFix.push_back(CheckHigh);
CopyDebug(BranchInst::Create(V[0]->second, DD, CheckHigh, NewBB), I);
} else {*/
// multiple options, create a switch - we could also optimize and make an icmp/branch if just one, as in commented code above
SwitchInst *HighSI = SwitchInst::Create(InputChunks[1], DD, V.size(), NewBB); // same default destination: if lower bits do not match, go straight to default
for (unsigned i = 0; i < V.size(); i++) {
BasicBlock *BB = V[i].second;
HighSI->addCase(cast<ConstantInt>(ConstantInt::get(i32, V[i].first)), BB);
// fix phis, we used to go SwitchBB->BB, but now go SwitchBB->NewBB->BB, so we look like we arrived from NewBB. Replace the phi from the
// now unneeded SwitchBB to the new BB
for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
PHINode *Phi = dyn_cast<PHINode>(I);
if (!Phi) break;
Phi->setIncomingBlock(Phi->getBasicBlockIndex(SwitchBB), NewBB);
}
}
// We used to go SwitchBB->DD, but now go SwitchBB->NewBB->DD, fix that like with BB above. However here we do not replace,
// as the switch BB is still possible to arrive from - we can arrive at the default if either the lower bits were wrong (we
// arrive from the switchBB) or from the NewBB if the high bits were wrong.
// We cannot do this here right now, as phis we encounter may be in the middle of processing (empty), so we queue these.
PhiBlockChange Change;
Change.DD = DD;
Change.SwitchBB = SwitchBB;
Change.NewBB = NewBB;
PhiBlockChanges.push_back(Change);
}
break;
}
default: {
I->dump();
assert(0 && "some i64 thing we can't legalize yet");
}
}
return true;
}
ChunksVec ExpandI64::getChunks(Value *V, bool AllowUnreachable) {
assert(isIllegal(V->getType()));
unsigned Num = getNumChunks(V->getType());
Type *i32 = Type::getInt32Ty(V->getContext());
if (isa<UndefValue>(V))
return ChunksVec(Num, UndefValue::get(i32));
if (Constant *C = dyn_cast<Constant>(V)) {
ChunksVec Chunks;
for (unsigned i = 0; i < Num; i++) {
Constant *Count = ConstantInt::get(C->getType(), i * 32);
Constant *NewC = ConstantExpr::getTrunc(ConstantExpr::getLShr(C, Count), i32);
TargetLibraryInfo *TLI = 0; // TODO
if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC)) {
if (Constant *FoldedC = ConstantFoldConstantExpression(NewCE, DL, TLI)) {
NewC = FoldedC;
}
}
Chunks.push_back(NewC);
}
return Chunks;
}
if (Splits.find(V) == Splits.end()) {
if (AllowUnreachable)
return ChunksVec(Num, UndefValue::get(i32));
errs() << *V << "\n";
report_fatal_error("could not find chunks for illegal value");
}
assert(Splits[V].size() == Num);
return Splits[V];
}
void ExpandI64::ensureFuncs() {
if (Add != NULL) return;
Type *i32 = Type::getInt32Ty(TheModule->getContext());
SmallVector<Type*, 4> FourArgTypes;
FourArgTypes.push_back(i32);
FourArgTypes.push_back(i32);
FourArgTypes.push_back(i32);
FourArgTypes.push_back(i32);
FunctionType *FourFunc = FunctionType::get(i32, FourArgTypes, false);
Add = Function::Create(FourFunc, GlobalValue::ExternalLinkage,
"i64Add", TheModule);
Sub = Function::Create(FourFunc, GlobalValue::ExternalLinkage,
"i64Subtract", TheModule);
Mul = Function::Create(FourFunc, GlobalValue::ExternalLinkage,
"__muldi3", TheModule);
SDiv = Function::Create(FourFunc, GlobalValue::ExternalLinkage,
"__divdi3", TheModule);
UDiv = Function::Create(FourFunc, GlobalValue::ExternalLinkage,
"__udivdi3", TheModule);
SRem = Function::Create(FourFunc, GlobalValue::ExternalLinkage,
"__remdi3", TheModule);
URem = Function::Create(FourFunc, GlobalValue::ExternalLinkage,
"__uremdi3", TheModule);
LShr = Function::Create(FourFunc, GlobalValue::ExternalLinkage,
"bitshift64Lshr", TheModule);
AShr = Function::Create(FourFunc, GlobalValue::ExternalLinkage,
"bitshift64Ashr", TheModule);
Shl = Function::Create(FourFunc, GlobalValue::ExternalLinkage,
"bitshift64Shl", TheModule);
if (!(GetHigh = TheModule->getFunction("getHigh32"))) {
SmallVector<Type*, 0> GetHighArgTypes;
FunctionType *GetHighFunc = FunctionType::get(i32, GetHighArgTypes, false);
GetHigh = Function::Create(GetHighFunc, GlobalValue::ExternalLinkage,
"getHigh32", TheModule);
}
Type *V = Type::getVoidTy(TheModule->getContext());
SmallVector<Type*, 1> SetHighArgTypes;
SetHighArgTypes.push_back(i32);
FunctionType *SetHighFunc = FunctionType::get(V, SetHighArgTypes, false);
SetHigh = Function::Create(SetHighFunc, GlobalValue::ExternalLinkage,
"setHigh32", TheModule);
Type *Double = Type::getDoubleTy(TheModule->getContext());
Type *Float = Type::getFloatTy(TheModule->getContext());
SmallVector<Type*, 1> FtoITypes;
FtoITypes.push_back(Float);
FunctionType *FtoIFunc = FunctionType::get(i32, FtoITypes, false);
SmallVector<Type*, 1> DtoITypes;
DtoITypes.push_back(Double);
FunctionType *DtoIFunc = FunctionType::get(i32, DtoITypes, false);
FtoILow = Function::Create(FtoIFunc, GlobalValue::ExternalLinkage,
"FtoILow", TheModule);
FtoIHigh = Function::Create(FtoIFunc, GlobalValue::ExternalLinkage,
"FtoIHigh", TheModule);
DtoILow = Function::Create(DtoIFunc, GlobalValue::ExternalLinkage,
"DtoILow", TheModule);
DtoIHigh = Function::Create(DtoIFunc, GlobalValue::ExternalLinkage,
"DtoIHigh", TheModule);
BDtoILow = Function::Create(DtoIFunc, GlobalValue::ExternalLinkage,
"BDtoILow", TheModule);
BDtoIHigh = Function::Create(DtoIFunc, GlobalValue::ExternalLinkage,
"BDtoIHigh", TheModule);
SmallVector<Type*, 2> ItoTypes;
ItoTypes.push_back(i32);
ItoTypes.push_back(i32);
FunctionType *ItoFFunc = FunctionType::get(Float, ItoTypes, false);
SItoF = Function::Create(ItoFFunc, GlobalValue::ExternalLinkage,
"SItoF", TheModule);
UItoF = Function::Create(ItoFFunc, GlobalValue::ExternalLinkage,
"UItoF", TheModule);
FunctionType *ItoDFunc = FunctionType::get(Double, ItoTypes, false);
SItoD = Function::Create(ItoDFunc, GlobalValue::ExternalLinkage,
"SItoD", TheModule);
UItoD = Function::Create(ItoDFunc, GlobalValue::ExternalLinkage,
"UItoD", TheModule);
BItoD = Function::Create(ItoDFunc, GlobalValue::ExternalLinkage,
"BItoD", TheModule);
}
bool ExpandI64::runOnModule(Module &M) {
TheModule = &M;
DL = &getAnalysis<DataLayout>();
Splits.clear();
Changed = false;
// pre pass - legalize functions
for (Module::iterator Iter = M.begin(), E = M.end(); Iter != E; ) {
Function *Func = Iter++;
ensureLegalFunc(Func);
}
// first pass - split
DeadVec Dead;
for (Module::iterator Iter = M.begin(), E = M.end(); Iter != E; ++Iter) {
Function *Func = Iter;
if (Func->isDeclaration()) {
continue;
}
// Walk the body of the function. We use reverse postorder so that we visit
// all operands of an instruction before the instruction itself. The
// exception to this is PHI nodes, which we put on a list and handle below.
ReversePostOrderTraversal<Function*> RPOT(Func);
for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
RE = RPOT.end(); RI != RE; ++RI) {
BasicBlock *BB = *RI;
for (BasicBlock::iterator Iter = BB->begin(), E = BB->end();
Iter != E; ) {
Instruction *I = Iter++;
if (!isLegalInstruction(I)) {
if (splitInst(I)) {
Changed = true;
Dead.push_back(I);
}
}
}
}
// Fix up PHI node operands.
while (!Phis.empty()) {
PHINode *PN = Phis.pop_back_val();
ChunksVec OutputChunks = getChunks(PN);
for (unsigned j = 0, je = PN->getNumIncomingValues(); j != je; ++j) {
Value *Op = PN->getIncomingValue(j);
ChunksVec InputChunks = getChunks(Op, true);
for (unsigned k = 0, ke = OutputChunks.size(); k != ke; ++k) {
PHINode *NewPN = cast<PHINode>(OutputChunks[k]);
NewPN->addIncoming(InputChunks[k], PN->getIncomingBlock(j));
}
}
PN->dropAllReferences();
}
// Delete instructions which were replaced. We do this after the full walk
// of the instructions so that all uses are replaced first.
while (!Dead.empty()) {
Instruction *D = Dead.pop_back_val();
D->eraseFromParent();
}
// Apply basic block changes to phis, now that phis are all processed (and illegal phis erased)
for (unsigned i = 0; i < PhiBlockChanges.size(); i++) {
PhiBlockChange &Change = PhiBlockChanges[i];
for (BasicBlock::iterator I = Change.DD->begin(); I != Change.DD->end(); ++I) {
PHINode *Phi = dyn_cast<PHINode>(I);
if (!Phi) break;
int Index = Phi->getBasicBlockIndex(Change.SwitchBB);
assert(Index >= 0);
Phi->addIncoming(Phi->getIncomingValue(Index), Change.NewBB);
}
}
// We only visited blocks found by a DFS walk from the entry, so we haven't
// visited any unreachable blocks, and they may still contain illegal
// instructions at this point. Being unreachable, they can simply be deleted.
removeUnreachableBlocks(*Func);
}
// post pass - clean up illegal functions that were legalized. We do this
// after the full walk of the functions so that all uses are replaced first.
for (Module::iterator Iter = M.begin(), E = M.end(); Iter != E; ) {
Function *Func = Iter++;
removeIllegalFunc(Func);
}
return Changed;
}
void ExpandI64::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<DataLayout>();
ModulePass::getAnalysisUsage(AU);
}
Pass *llvm::createExpandI64Pass() {
return new ExpandI64();
}
|