aboutsummaryrefslogtreecommitdiff
path: root/lib/IR/Attributes.cpp
blob: 2c84a3d13fef5c4ffd573a07d55a961933fb9a50 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
//===-- Attributes.cpp - Implement AttributesList -------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// \file
// \brief This file implements the Attribute, AttributeImpl, AttrBuilder,
// AttributeSetImpl, and AttributeSet classes.
//
//===----------------------------------------------------------------------===//

#include "llvm/IR/Attributes.h"
#include "AttributeImpl.h"
#include "LLVMContextImpl.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Atomic.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace llvm;

//===----------------------------------------------------------------------===//
// Attribute Construction Methods
//===----------------------------------------------------------------------===//

Attribute Attribute::get(LLVMContext &Context, AttrKind Kind) {
  AttrBuilder B;
  return Attribute::get(Context, B.addAttribute(Kind));
}

Attribute Attribute::get(LLVMContext &Context, AttrBuilder &B) {
  // If there are no attributes, return an empty Attribute class.
  if (!B.hasAttributes())
    return Attribute();

  assert(std::distance(B.begin(), B.end()) == 1 &&
         "The Attribute object should represent one attribute only!");

  // Otherwise, build a key to look up the existing attributes.
  LLVMContextImpl *pImpl = Context.pImpl;
  FoldingSetNodeID ID;
  ConstantInt *CI = ConstantInt::get(Type::getInt64Ty(Context), B.Raw());
  ID.AddPointer(CI);

  void *InsertPoint;
  AttributeImpl *PA = pImpl->AttrsSet.FindNodeOrInsertPos(ID, InsertPoint);

  if (!PA) {
    // If we didn't find any existing attributes of the same shape then create a
    // new one and insert it.
    PA = new AttributeImpl(Context, CI);
    pImpl->AttrsSet.InsertNode(PA, InsertPoint);
  }

  // Return the AttributesList that we found or created.
  return Attribute(PA);
}

Attribute Attribute::getWithAlignment(LLVMContext &Context, uint64_t Align) {
  AttrBuilder B;
  return get(Context, B.addAlignmentAttr(Align));
}

Attribute Attribute::getWithStackAlignment(LLVMContext &Context,
                                           uint64_t Align) {
  AttrBuilder B;
  return get(Context, B.addStackAlignmentAttr(Align));
}

//===----------------------------------------------------------------------===//
// Attribute Accessor Methods
//===----------------------------------------------------------------------===//

bool Attribute::hasAttribute(AttrKind Val) const {
  return pImpl && pImpl->hasAttribute(Val);
}

Constant *Attribute::getAttributeKind() const {
  return pImpl ? pImpl->getAttributeKind() : 0;
}

ArrayRef<Constant*> Attribute::getAttributeValues() const {
  return pImpl ? pImpl->getAttributeValues() : ArrayRef<Constant*>();
}

/// This returns the alignment field of an attribute as a byte alignment value.
unsigned Attribute::getAlignment() const {
  if (!hasAttribute(Attribute::Alignment))
    return 0;
  return pImpl->getAlignment();
}

/// This returns the stack alignment field of an attribute as a byte alignment
/// value.
unsigned Attribute::getStackAlignment() const {
  if (!hasAttribute(Attribute::StackAlignment))
    return 0;
  return pImpl->getStackAlignment();
}

std::string Attribute::getAsString() const {
  if (hasAttribute(Attribute::ZExt))
    return "zeroext";
  if (hasAttribute(Attribute::SExt))
    return "signext";
  if (hasAttribute(Attribute::NoReturn))
    return "noreturn";
  if (hasAttribute(Attribute::NoUnwind))
    return "nounwind";
  if (hasAttribute(Attribute::UWTable))
    return "uwtable";
  if (hasAttribute(Attribute::ReturnsTwice))
    return "returns_twice";
  if (hasAttribute(Attribute::InReg))
    return "inreg";
  if (hasAttribute(Attribute::NoAlias))
    return "noalias";
  if (hasAttribute(Attribute::NoCapture))
    return "nocapture";
  if (hasAttribute(Attribute::StructRet))
    return "sret";
  if (hasAttribute(Attribute::ByVal))
    return "byval";
  if (hasAttribute(Attribute::Nest))
    return "nest";
  if (hasAttribute(Attribute::ReadNone))
    return "readnone";
  if (hasAttribute(Attribute::ReadOnly))
    return "readonly";
  if (hasAttribute(Attribute::OptimizeForSize))
    return "optsize";
  if (hasAttribute(Attribute::NoInline))
    return "noinline";
  if (hasAttribute(Attribute::InlineHint))
    return "inlinehint";
  if (hasAttribute(Attribute::AlwaysInline))
    return "alwaysinline";
  if (hasAttribute(Attribute::StackProtect))
    return "ssp";
  if (hasAttribute(Attribute::StackProtectReq))
    return "sspreq";
  if (hasAttribute(Attribute::StackProtectStrong))
    return "sspstrong";
  if (hasAttribute(Attribute::NoRedZone))
    return "noredzone";
  if (hasAttribute(Attribute::NoImplicitFloat))
    return "noimplicitfloat";
  if (hasAttribute(Attribute::Naked))
    return "naked";
  if (hasAttribute(Attribute::NonLazyBind))
    return "nonlazybind";
  if (hasAttribute(Attribute::AddressSafety))
    return "address_safety";
  if (hasAttribute(Attribute::MinSize))
    return "minsize";
  if (hasAttribute(Attribute::StackAlignment)) {
    std::string Result;
    Result += "alignstack(";
    Result += utostr(getStackAlignment());
    Result += ")";
    return Result;
  }
  if (hasAttribute(Attribute::Alignment)) {
    std::string Result;
    Result += "align ";
    Result += utostr(getAlignment());
    Result += "";
    return Result;
  }
  if (hasAttribute(Attribute::NoDuplicate))
    return "noduplicate";

  llvm_unreachable("Unknown attribute");
}

bool Attribute::operator==(AttrKind K) const {
  return (pImpl && *pImpl == K) || (!pImpl && K == None);
}
bool Attribute::operator!=(AttrKind K) const {
  return !(*this == K);
}

bool Attribute::operator<(Attribute A) const {
  if (!pImpl && !A.pImpl) return false;
  if (!pImpl) return true;
  if (!A.pImpl) return false;
  return *pImpl < *A.pImpl;
}

uint64_t Attribute::Raw() const {
  return pImpl ? pImpl->Raw() : 0;
}

//===----------------------------------------------------------------------===//
// AttributeImpl Definition
//===----------------------------------------------------------------------===//

AttributeImpl::AttributeImpl(LLVMContext &C, Attribute::AttrKind kind)
  : Context(C) {
  Kind = ConstantInt::get(Type::getInt64Ty(C), kind);
}
AttributeImpl::AttributeImpl(LLVMContext &C, Attribute::AttrKind kind,
                             ArrayRef<Constant*> values)
  : Context(C) {
  Kind = ConstantInt::get(Type::getInt64Ty(C), kind);
  Vals.reserve(values.size());
  Vals.append(values.begin(), values.end());
}
AttributeImpl::AttributeImpl(LLVMContext &C, StringRef kind)
  : Context(C) {
  Kind = ConstantDataArray::getString(C, kind);
}

bool AttributeImpl::hasAttribute(Attribute::AttrKind A) const {
  return (Raw() & getAttrMask(A)) != 0;
}

uint64_t AttributeImpl::getAlignment() const {
  uint64_t Mask = Raw() & getAttrMask(Attribute::Alignment);
  return 1ULL << ((Mask >> 16) - 1);
}

uint64_t AttributeImpl::getStackAlignment() const {
  uint64_t Mask = Raw() & getAttrMask(Attribute::StackAlignment);
  return 1ULL << ((Mask >> 26) - 1);
}

bool AttributeImpl::operator==(Attribute::AttrKind kind) const {
  if (ConstantInt *CI = dyn_cast<ConstantInt>(Kind))
    return CI->getZExtValue() == kind;
  return false;
}
bool AttributeImpl::operator!=(Attribute::AttrKind kind) const {
  return !(*this == kind);
}

bool AttributeImpl::operator==(StringRef kind) const {
  if (ConstantDataArray *CDA = dyn_cast<ConstantDataArray>(Kind))
    if (CDA->isString())
      return CDA->getAsString() == kind;
  return false;
}

bool AttributeImpl::operator!=(StringRef kind) const {
  return !(*this == kind);
}

bool AttributeImpl::operator<(const AttributeImpl &AI) const {
  if (!Kind && !AI.Kind) return false;
  if (!Kind && AI.Kind) return true;
  if (Kind && !AI.Kind) return false;

  ConstantInt *ThisCI = dyn_cast<ConstantInt>(Kind);
  ConstantInt *ThatCI = dyn_cast<ConstantInt>(AI.Kind);

  ConstantDataArray *ThisCDA = dyn_cast<ConstantDataArray>(Kind);
  ConstantDataArray *ThatCDA = dyn_cast<ConstantDataArray>(AI.Kind);

  if (ThisCI && ThatCI)
    return ThisCI->getZExtValue() < ThatCI->getZExtValue();

  if (ThisCI && ThatCDA)
    return true;

  if (ThisCDA && ThatCI)
    return false;

  return ThisCDA->getAsString() < ThatCDA->getAsString();
}

uint64_t AttributeImpl::Raw() const {
  // FIXME: Remove this.
  return cast<ConstantInt>(Kind)->getZExtValue();
}

uint64_t AttributeImpl::getAttrMask(Attribute::AttrKind Val) {
  // FIXME: Remove this.
  switch (Val) {
  case Attribute::EndAttrKinds:
  case Attribute::AttrKindEmptyKey:
  case Attribute::AttrKindTombstoneKey:
    llvm_unreachable("Synthetic enumerators which should never get here");

  case Attribute::None:            return 0;
  case Attribute::ZExt:            return 1 << 0;
  case Attribute::SExt:            return 1 << 1;
  case Attribute::NoReturn:        return 1 << 2;
  case Attribute::InReg:           return 1 << 3;
  case Attribute::StructRet:       return 1 << 4;
  case Attribute::NoUnwind:        return 1 << 5;
  case Attribute::NoAlias:         return 1 << 6;
  case Attribute::ByVal:           return 1 << 7;
  case Attribute::Nest:            return 1 << 8;
  case Attribute::ReadNone:        return 1 << 9;
  case Attribute::ReadOnly:        return 1 << 10;
  case Attribute::NoInline:        return 1 << 11;
  case Attribute::AlwaysInline:    return 1 << 12;
  case Attribute::OptimizeForSize: return 1 << 13;
  case Attribute::StackProtect:    return 1 << 14;
  case Attribute::StackProtectReq: return 1 << 15;
  case Attribute::Alignment:       return 31 << 16;
  case Attribute::NoCapture:       return 1 << 21;
  case Attribute::NoRedZone:       return 1 << 22;
  case Attribute::NoImplicitFloat: return 1 << 23;
  case Attribute::Naked:           return 1 << 24;
  case Attribute::InlineHint:      return 1 << 25;
  case Attribute::StackAlignment:  return 7 << 26;
  case Attribute::ReturnsTwice:    return 1 << 29;
  case Attribute::UWTable:         return 1 << 30;
  case Attribute::NonLazyBind:     return 1U << 31;
  case Attribute::AddressSafety:   return 1ULL << 32;
  case Attribute::MinSize:         return 1ULL << 33;
  case Attribute::NoDuplicate:     return 1ULL << 34;
  case Attribute::StackProtectStrong: return 1ULL << 35;
  }
  llvm_unreachable("Unsupported attribute type");
}

//===----------------------------------------------------------------------===//
// AttributeSetNode Definition
//===----------------------------------------------------------------------===//

AttributeSetNode *AttributeSetNode::get(LLVMContext &C,
                                        ArrayRef<Attribute> Attrs) {
  if (Attrs.empty())
    return 0;

  // Otherwise, build a key to look up the existing attributes.
  LLVMContextImpl *pImpl = C.pImpl;
  FoldingSetNodeID ID;

  SmallVector<Attribute, 8> SortedAttrs(Attrs.begin(), Attrs.end());
  std::sort(SortedAttrs.begin(), SortedAttrs.end());

  for (SmallVectorImpl<Attribute>::iterator I = SortedAttrs.begin(),
         E = SortedAttrs.end(); I != E; ++I)
    I->Profile(ID);

  void *InsertPoint;
  AttributeSetNode *PA =
    pImpl->AttrsSetNodes.FindNodeOrInsertPos(ID, InsertPoint);

  // If we didn't find any existing attributes of the same shape then create a
  // new one and insert it.
  if (!PA) {
    PA = new AttributeSetNode(SortedAttrs);
    pImpl->AttrsSetNodes.InsertNode(PA, InsertPoint);
  }

  // Return the AttributesListNode that we found or created.
  return PA;
}

bool AttributeSetNode::hasAttribute(Attribute::AttrKind Kind) const {
  for (SmallVectorImpl<Attribute>::const_iterator I = AttrList.begin(),
         E = AttrList.end(); I != E; ++I)
    if (*I == Kind)
      return true;
  return false;
}

unsigned AttributeSetNode::getAlignment() const {
  for (SmallVectorImpl<Attribute>::const_iterator I = AttrList.begin(),
         E = AttrList.end(); I != E; ++I)
    if (*I == Attribute::Alignment)
      return I->getAlignment();
  return 0;
}

unsigned AttributeSetNode::getStackAlignment() const {
  for (SmallVectorImpl<Attribute>::const_iterator I = AttrList.begin(),
         E = AttrList.end(); I != E; ++I)
    if (*I == Attribute::StackAlignment)
      return I->getStackAlignment();
  return 0;
}

std::string AttributeSetNode::getAsString() const {
  std::string Str = "";
  for (SmallVectorImpl<Attribute>::const_iterator I = AttrList.begin(),
         E = AttrList.end(); I != E; ++I) {
    if (I != AttrList.begin()) Str += " ";
    Str += I->getAsString();
  }
  return Str;
}

//===----------------------------------------------------------------------===//
// AttributeSetImpl Definition
//===----------------------------------------------------------------------===//

uint64_t AttributeSetImpl::Raw(uint64_t Index) const {
  for (unsigned I = 0, E = getNumAttributes(); I != E; ++I) {
    if (getSlotIndex(I) != Index) continue;
    const AttributeSetNode *ASN = AttrNodes[I].second;
    AttrBuilder B;

    for (AttributeSetNode::const_iterator II = ASN->begin(),
           IE = ASN->end(); II != IE; ++II)
      B.addAttributes(*II);
    return B.Raw();
  }

  return 0;
}

//===----------------------------------------------------------------------===//
// AttributeSet Construction and Mutation Methods
//===----------------------------------------------------------------------===//

AttributeSet
AttributeSet::getImpl(LLVMContext &C,
                      ArrayRef<std::pair<unsigned, AttributeSetNode*> > Attrs) {
  LLVMContextImpl *pImpl = C.pImpl;
  FoldingSetNodeID ID;
  AttributeSetImpl::Profile(ID, Attrs);

  void *InsertPoint;
  AttributeSetImpl *PA = pImpl->AttrsLists.FindNodeOrInsertPos(ID, InsertPoint);

  // If we didn't find any existing attributes of the same shape then
  // create a new one and insert it.
  if (!PA) {
    PA = new AttributeSetImpl(C, Attrs);
    pImpl->AttrsLists.InsertNode(PA, InsertPoint);
  }

  // Return the AttributesList that we found or created.
  return AttributeSet(PA);
}

AttributeSet AttributeSet::get(LLVMContext &C,
                               ArrayRef<std::pair<unsigned, Attribute> > Attrs){
  // If there are no attributes then return a null AttributesList pointer.
  if (Attrs.empty())
    return AttributeSet();

#ifndef NDEBUG
  for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
    assert((!i || Attrs[i-1].first <= Attrs[i].first) &&
           "Misordered Attributes list!");
    assert(Attrs[i].second != Attribute::None &&
           "Pointless attribute!");
  }
#endif

  // Create a vector if (unsigned, AttributeSetNode*) pairs from the attributes
  // list.
  SmallVector<std::pair<unsigned, AttributeSetNode*>, 8> AttrPairVec;
  for (ArrayRef<std::pair<unsigned, Attribute> >::iterator I = Attrs.begin(),
         E = Attrs.end(); I != E; ) {
    unsigned Index = I->first;
    SmallVector<Attribute, 4> AttrVec;
    while (I != E && I->first == Index) {
      AttrVec.push_back(I->second);
      ++I;
    }

    AttrPairVec.push_back(std::make_pair(Index,
                                         AttributeSetNode::get(C, AttrVec)));
  }

  return getImpl(C, AttrPairVec);
}

AttributeSet AttributeSet::get(LLVMContext &C,
                               ArrayRef<std::pair<unsigned,
                                                  AttributeSetNode*> > Attrs) {
  // If there are no attributes then return a null AttributesList pointer.
  if (Attrs.empty())
    return AttributeSet();

  return getImpl(C, Attrs);
}

AttributeSet AttributeSet::get(LLVMContext &C, unsigned Idx, AttrBuilder &B) {
  if (!B.hasAttributes())
    return AttributeSet();

  SmallVector<std::pair<unsigned, Attribute>, 8> Attrs;
  for (AttrBuilder::iterator I = B.begin(), E = B.end(); I != E; ++I) {
    Attribute::AttrKind Kind = *I;
    if (Kind == Attribute::Alignment)
      Attrs.push_back(std::make_pair(Idx, Attribute::
                                     getWithAlignment(C, B.getAlignment())));
    else if (Kind == Attribute::StackAlignment)
      Attrs.push_back(std::make_pair(Idx, Attribute::
                              getWithStackAlignment(C, B.getStackAlignment())));
    else
      Attrs.push_back(std::make_pair(Idx, Attribute::get(C, Kind)));
  }

  return get(C, Attrs);
}

AttributeSet AttributeSet::get(LLVMContext &C, unsigned Idx,
                               ArrayRef<Attribute::AttrKind> Kind) {
  SmallVector<std::pair<unsigned, Attribute>, 8> Attrs;
  for (ArrayRef<Attribute::AttrKind>::iterator I = Kind.begin(),
         E = Kind.end(); I != E; ++I)
    Attrs.push_back(std::make_pair(Idx, Attribute::get(C, *I)));
  return get(C, Attrs);
}

AttributeSet AttributeSet::get(LLVMContext &C, ArrayRef<AttributeSet> Attrs) {
  if (Attrs.empty()) return AttributeSet();

  SmallVector<std::pair<unsigned, AttributeSetNode*>, 8> AttrNodeVec;
  for (unsigned I = 0, E = Attrs.size(); I != E; ++I) {
    AttributeSet AS = Attrs[I];
    if (!AS.pImpl) continue;
    AttrNodeVec.append(AS.pImpl->AttrNodes.begin(), AS.pImpl->AttrNodes.end());
  }

  return getImpl(C, AttrNodeVec);
}

AttributeSet AttributeSet::addAttribute(LLVMContext &C, unsigned Idx,
                                        Attribute::AttrKind Attr) const {
  return addAttributes(C, Idx, AttributeSet::get(C, Idx, Attr));
}

AttributeSet AttributeSet::addAttributes(LLVMContext &C, unsigned Idx,
                                         AttributeSet Attrs) const {
  if (!pImpl) return Attrs;
  if (!Attrs.pImpl) return *this;

#ifndef NDEBUG
  // FIXME it is not obvious how this should work for alignment. For now, say
  // we can't change a known alignment.
  unsigned OldAlign = getParamAlignment(Idx);
  unsigned NewAlign = Attrs.getParamAlignment(Idx);
  assert((!OldAlign || !NewAlign || OldAlign == NewAlign) &&
         "Attempt to change alignment!");
#endif

  // Add the attribute slots before the one we're trying to add.
  SmallVector<AttributeSet, 4> AttrSet;
  uint64_t NumAttrs = pImpl->getNumAttributes();
  AttributeSet AS;
  uint64_t LastIndex = 0;
  for (unsigned I = 0, E = NumAttrs; I != E; ++I) {
    if (getSlotIndex(I) >= Idx) {
      if (getSlotIndex(I) == Idx) AS = getSlotAttributes(LastIndex++);
      break;
    }
    LastIndex = I + 1;
    AttrSet.push_back(getSlotAttributes(I));
  }

  // Now add the attribute into the correct slot. There may already be an
  // AttributeSet there.
  AttrBuilder B(AS, Idx);

  for (unsigned I = 0, E = Attrs.pImpl->getNumAttributes(); I != E; ++I)
    if (Attrs.getSlotIndex(I) == Idx) {
      for (AttributeSetImpl::const_iterator II = Attrs.pImpl->begin(I),
             IE = Attrs.pImpl->end(I); II != IE; ++II)
        B.addAttributes(*II);
      break;
    }

  AttrSet.push_back(AttributeSet::get(C, Idx, B));

  // Add the remaining attribute slots.
  for (unsigned I = LastIndex, E = NumAttrs; I < E; ++I)
    AttrSet.push_back(getSlotAttributes(I));

  return get(C, AttrSet);
}

AttributeSet AttributeSet::removeAttribute(LLVMContext &C, unsigned Idx,
                                           Attribute::AttrKind Attr) const {
  return removeAttributes(C, Idx, AttributeSet::get(C, Idx, Attr));
}

AttributeSet AttributeSet::removeAttributes(LLVMContext &C, unsigned Idx,
                                            AttributeSet Attrs) const {
  if (!pImpl) return AttributeSet();
  if (!Attrs.pImpl) return *this;

#ifndef NDEBUG
  // FIXME it is not obvious how this should work for alignment.
  // For now, say we can't pass in alignment, which no current use does.
  assert(!Attrs.hasAttribute(Idx, Attribute::Alignment) &&
         "Attempt to change alignment!");
#endif

  // Add the attribute slots before the one we're trying to add.
  SmallVector<AttributeSet, 4> AttrSet;
  uint64_t NumAttrs = pImpl->getNumAttributes();
  AttributeSet AS;
  uint64_t LastIndex = 0;
  for (unsigned I = 0, E = NumAttrs; I != E; ++I) {
    if (getSlotIndex(I) >= Idx) {
      if (getSlotIndex(I) == Idx) AS = getSlotAttributes(LastIndex++);
      break;
    }
    LastIndex = I + 1;
    AttrSet.push_back(getSlotAttributes(I));
  }

  // Now remove the attribute from the correct slot. There may already be an
  // AttributeSet there.
  AttrBuilder B(AS, Idx);

  for (unsigned I = 0, E = Attrs.pImpl->getNumAttributes(); I != E; ++I)
    if (Attrs.getSlotIndex(I) == Idx) {
      B.removeAttributes(Attrs.pImpl->getSlotAttributes(I), Idx);
      break;
    }

  AttrSet.push_back(AttributeSet::get(C, Idx, B));

  // Add the remaining attribute slots.
  for (unsigned I = LastIndex, E = NumAttrs; I < E; ++I)
    AttrSet.push_back(getSlotAttributes(I));

  return get(C, AttrSet);
}

//===----------------------------------------------------------------------===//
// AttributeSet Accessor Methods
//===----------------------------------------------------------------------===//

AttributeSet AttributeSet::getParamAttributes(unsigned Idx) const {
  return pImpl && hasAttributes(Idx) ?
    AttributeSet::get(pImpl->getContext(),
                      ArrayRef<std::pair<unsigned, AttributeSetNode*> >(
                        std::make_pair(Idx, getAttributes(Idx)))) :
    AttributeSet();
}

AttributeSet AttributeSet::getRetAttributes() const {
  return pImpl && hasAttributes(ReturnIndex) ?
    AttributeSet::get(pImpl->getContext(),
                      ArrayRef<std::pair<unsigned, AttributeSetNode*> >(
                        std::make_pair(ReturnIndex,
                                       getAttributes(ReturnIndex)))) :
    AttributeSet();
}

AttributeSet AttributeSet::getFnAttributes() const {
  return pImpl && hasAttributes(FunctionIndex) ?
    AttributeSet::get(pImpl->getContext(),
                      ArrayRef<std::pair<unsigned, AttributeSetNode*> >(
                        std::make_pair(FunctionIndex,
                                       getAttributes(FunctionIndex)))) :
    AttributeSet();
}

bool AttributeSet::hasAttribute(unsigned Index, Attribute::AttrKind Kind) const{
  AttributeSetNode *ASN = getAttributes(Index);
  return ASN ? ASN->hasAttribute(Kind) : false;
}

bool AttributeSet::hasAttributes(unsigned Index) const {
  AttributeSetNode *ASN = getAttributes(Index);
  return ASN ? ASN->hasAttributes() : false;
}

/// \brief Return true if the specified attribute is set for at least one
/// parameter or for the return value.
bool AttributeSet::hasAttrSomewhere(Attribute::AttrKind Attr) const {
  if (pImpl == 0) return false;

  for (unsigned I = 0, E = pImpl->getNumAttributes(); I != E; ++I)
    for (AttributeSetImpl::const_iterator II = pImpl->begin(I),
           IE = pImpl->end(I); II != IE; ++II)
      if (*II == Attr)
        return true;

  return false;
}

unsigned AttributeSet::getParamAlignment(unsigned Index) const {
  AttributeSetNode *ASN = getAttributes(Index);
  return ASN ? ASN->getAlignment() : 0;
}

unsigned AttributeSet::getStackAlignment(unsigned Index) const {
  AttributeSetNode *ASN = getAttributes(Index);
  return ASN ? ASN->getStackAlignment() : 0;
}

std::string AttributeSet::getAsString(unsigned Index) const {
  AttributeSetNode *ASN = getAttributes(Index);
  return ASN ? ASN->getAsString() : std::string("");
}

/// \brief The attributes for the specified index are returned.
AttributeSetNode *AttributeSet::getAttributes(unsigned Idx) const {
  if (!pImpl) return 0;

  // Loop through to find the attribute node we want.
  for (unsigned I = 0, E = pImpl->getNumAttributes(); I != E; ++I)
    if (pImpl->getSlotIndex(I) == Idx)
      return pImpl->getSlotNode(I);

  return 0;
}

//===----------------------------------------------------------------------===//
// AttributeSet Introspection Methods
//===----------------------------------------------------------------------===//

/// \brief Return the number of slots used in this attribute list.  This is the
/// number of arguments that have an attribute set on them (including the
/// function itself).
unsigned AttributeSet::getNumSlots() const {
  return pImpl ? pImpl->getNumAttributes() : 0;
}

uint64_t AttributeSet::getSlotIndex(unsigned Slot) const {
  assert(pImpl && Slot < pImpl->getNumAttributes() &&
         "Slot # out of range!");
  return pImpl->getSlotIndex(Slot);
}

AttributeSet AttributeSet::getSlotAttributes(unsigned Slot) const {
  assert(pImpl && Slot < pImpl->getNumAttributes() &&
         "Slot # out of range!");
  return pImpl->getSlotAttributes(Slot);
}

uint64_t AttributeSet::Raw(unsigned Index) const {
  // FIXME: Remove this.
  return pImpl ? pImpl->Raw(Index) : 0;
}

void AttributeSet::dump() const {
  dbgs() << "PAL[\n";

  for (unsigned i = 0, e = getNumSlots(); i < e; ++i) {
    uint64_t Index = getSlotIndex(i);
    dbgs() << "  { ";
    if (Index == ~0U)
      dbgs() << "~0U";
    else
      dbgs() << Index;
    dbgs() << " => " << getAsString(Index) << " }\n";
  }

  dbgs() << "]\n";
}

//===----------------------------------------------------------------------===//
// AttrBuilder Method Implementations
//===----------------------------------------------------------------------===//

AttrBuilder::AttrBuilder(AttributeSet AS, unsigned Idx)
  : Alignment(0), StackAlignment(0) {
  AttributeSetImpl *pImpl = AS.pImpl;
  if (!pImpl) return;

  for (unsigned I = 0, E = pImpl->getNumAttributes(); I != E; ++I) {
    if (pImpl->getSlotIndex(I) != Idx) continue;

    for (AttributeSetImpl::const_iterator II = pImpl->begin(I),
           IE = pImpl->end(I); II != IE; ++II)
      addAttributes(*II);

    break;
  }
}

void AttrBuilder::clear() {
  Attrs.clear();
  Alignment = StackAlignment = 0;
}

AttrBuilder &AttrBuilder::addAttribute(Attribute::AttrKind Val) {
  Attrs.insert(Val);
  return *this;
}

AttrBuilder &AttrBuilder::removeAttribute(Attribute::AttrKind Val) {
  Attrs.erase(Val);
  if (Val == Attribute::Alignment)
    Alignment = 0;
  else if (Val == Attribute::StackAlignment)
    StackAlignment = 0;

  return *this;
}

AttrBuilder &AttrBuilder::addAttributes(Attribute Attr) {
  uint64_t Mask = Attr.Raw();

  for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
       I = Attribute::AttrKind(I + 1))
    if ((Mask & AttributeImpl::getAttrMask(I)) != 0)
      Attrs.insert(I);

  if (Attr.getAlignment())
    Alignment = Attr.getAlignment();
  if (Attr.getStackAlignment())
    StackAlignment = Attr.getStackAlignment();
  return *this;
}

AttrBuilder &AttrBuilder::removeAttributes(AttributeSet A, uint64_t Index) {
  uint64_t Mask = A.Raw(Index);

  for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
       I = Attribute::AttrKind(I + 1)) {
    if (Mask & AttributeImpl::getAttrMask(I)) {
      Attrs.erase(I);

      if (I == Attribute::Alignment)
        Alignment = 0;
      else if (I == Attribute::StackAlignment)
        StackAlignment = 0;
    }
  }

  return *this;
}

AttrBuilder &AttrBuilder::addAlignmentAttr(unsigned Align) {
  if (Align == 0) return *this;

  assert(isPowerOf2_32(Align) && "Alignment must be a power of two.");
  assert(Align <= 0x40000000 && "Alignment too large.");

  Attrs.insert(Attribute::Alignment);
  Alignment = Align;
  return *this;
}

AttrBuilder &AttrBuilder::addStackAlignmentAttr(unsigned Align) {
  // Default alignment, allow the target to define how to align it.
  if (Align == 0) return *this;

  assert(isPowerOf2_32(Align) && "Alignment must be a power of two.");
  assert(Align <= 0x100 && "Alignment too large.");

  Attrs.insert(Attribute::StackAlignment);
  StackAlignment = Align;
  return *this;
}

bool AttrBuilder::contains(Attribute::AttrKind A) const {
  return Attrs.count(A);
}

bool AttrBuilder::hasAttributes() const {
  return !Attrs.empty();
}

bool AttrBuilder::hasAttributes(AttributeSet A, uint64_t Index) const {
  return Raw() & A.Raw(Index);
}

bool AttrBuilder::hasAlignmentAttr() const {
  return Alignment != 0;
}

bool AttrBuilder::operator==(const AttrBuilder &B) {
  SmallVector<Attribute::AttrKind, 8> This(Attrs.begin(), Attrs.end());
  SmallVector<Attribute::AttrKind, 8> That(B.Attrs.begin(), B.Attrs.end());
  return This == That;
}

AttrBuilder &AttrBuilder::addRawValue(uint64_t Val) {
  if (!Val) return *this;

  for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
       I = Attribute::AttrKind(I + 1)) {
    if (uint64_t A = (Val & AttributeImpl::getAttrMask(I))) {
      Attrs.insert(I);
 
      if (I == Attribute::Alignment)
        Alignment = 1ULL << ((A >> 16) - 1);
      else if (I == Attribute::StackAlignment)
        StackAlignment = 1ULL << ((A >> 26)-1);
    }
  }
 
  return *this;
}

uint64_t AttrBuilder::Raw() const {
  uint64_t Mask = 0;

  for (DenseSet<Attribute::AttrKind>::const_iterator I = Attrs.begin(),
         E = Attrs.end(); I != E; ++I) {
    Attribute::AttrKind Kind = *I;

    if (Kind == Attribute::Alignment)
      Mask |= (Log2_32(Alignment) + 1) << 16;
    else if (Kind == Attribute::StackAlignment)
      Mask |= (Log2_32(StackAlignment) + 1) << 26;
    else
      Mask |= AttributeImpl::getAttrMask(Kind);
  }

  return Mask;
}

//===----------------------------------------------------------------------===//
// AttributeFuncs Function Defintions
//===----------------------------------------------------------------------===//

AttributeSet AttributeFuncs::typeIncompatible(Type *Ty, uint64_t Index) {
  AttrBuilder Incompatible;

  if (!Ty->isIntegerTy())
    // Attribute that only apply to integers.
    Incompatible.addAttribute(Attribute::SExt)
      .addAttribute(Attribute::ZExt);

  if (!Ty->isPointerTy())
    // Attribute that only apply to pointers.
    Incompatible.addAttribute(Attribute::ByVal)
      .addAttribute(Attribute::Nest)
      .addAttribute(Attribute::NoAlias)
      .addAttribute(Attribute::NoCapture)
      .addAttribute(Attribute::StructRet);

  return AttributeSet::get(Ty->getContext(), Index, Incompatible);
}

/// \brief This returns an integer containing an encoding of all the LLVM
/// attributes found in the given attribute bitset.  Any change to this encoding
/// is a breaking change to bitcode compatibility.
/// N.B. This should be used only by the bitcode reader!
uint64_t AttributeFuncs::encodeLLVMAttributesForBitcode(AttributeSet Attrs,
                                                        unsigned Index) {
  // FIXME: It doesn't make sense to store the alignment information as an
  // expanded out value, we should store it as a log2 value.  However, we can't
  // just change that here without breaking bitcode compatibility.  If this ever
  // becomes a problem in practice, we should introduce new tag numbers in the
  // bitcode file and have those tags use a more efficiently encoded alignment
  // field.

  // Store the alignment in the bitcode as a 16-bit raw value instead of a 5-bit
  // log2 encoded value. Shift the bits above the alignment up by 11 bits.
  uint64_t EncodedAttrs = Attrs.Raw(Index) & 0xffff;
  if (Attrs.hasAttribute(Index, Attribute::Alignment))
    EncodedAttrs |= Attrs.getParamAlignment(Index) << 16;
  EncodedAttrs |= (Attrs.Raw(Index) & (0xffffULL << 21)) << 11;
  return EncodedAttrs;
}

/// \brief This fills an AttrBuilder object with the LLVM attributes that have
/// been decoded from the given integer. This function must stay in sync with
/// 'encodeLLVMAttributesForBitcode'.
/// N.B. This should be used only by the bitcode reader!
void AttributeFuncs::decodeLLVMAttributesForBitcode(LLVMContext &C,
                                                    AttrBuilder &B,
                                                    uint64_t EncodedAttrs) {
  // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
  // the bits above 31 down by 11 bits.
  unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
  assert((!Alignment || isPowerOf2_32(Alignment)) &&
         "Alignment must be a power of two.");

  if (Alignment)
    B.addAlignmentAttr(Alignment);
  B.addRawValue(((EncodedAttrs & (0xffffULL << 32)) >> 11) |
                (EncodedAttrs & 0xffff));
}