aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/SelectionDAG/TargetLowering.cpp
blob: edb98f3817fbdbdf3624e648f8b942388cc24428 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the TargetLowering class.
//
//===----------------------------------------------------------------------===//

#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;

TargetLowering::TargetLowering(TargetMachine &tm)
  : TM(tm), TD(TM.getTargetData()) {
  assert(ISD::BUILTIN_OP_END <= 128 &&
         "Fixed size array in TargetLowering is not large enough!");
  // All operations default to being supported.
  memset(OpActions, 0, sizeof(OpActions));

  IsLittleEndian = TD.isLittleEndian();
  ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD.getIntPtrType());
  ShiftAmtHandling = Undefined;
  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
  maxStoresPerMemSet = maxStoresPerMemCpy = maxStoresPerMemMove = 8;
  allowUnalignedMemoryAccesses = false;
  UseUnderscoreSetJmpLongJmp = false;
  IntDivIsCheap = false;
  Pow2DivIsCheap = false;
  StackPointerRegisterToSaveRestore = 0;
  SchedPreferenceInfo = SchedulingForLatency;
}

TargetLowering::~TargetLowering() {}

/// setValueTypeAction - Set the action for a particular value type.  This
/// assumes an action has not already been set for this value type.
static void SetValueTypeAction(MVT::ValueType VT,
                               TargetLowering::LegalizeAction Action,
                               TargetLowering &TLI,
                               MVT::ValueType *TransformToType,
                        TargetLowering::ValueTypeActionImpl &ValueTypeActions) {
  ValueTypeActions.setTypeAction(VT, Action);
  if (Action == TargetLowering::Promote) {
    MVT::ValueType PromoteTo;
    if (VT == MVT::f32)
      PromoteTo = MVT::f64;
    else {
      unsigned LargerReg = VT+1;
      while (!TLI.isTypeLegal((MVT::ValueType)LargerReg)) {
        ++LargerReg;
        assert(MVT::isInteger((MVT::ValueType)LargerReg) &&
               "Nothing to promote to??");
      }
      PromoteTo = (MVT::ValueType)LargerReg;
    }

    assert(MVT::isInteger(VT) == MVT::isInteger(PromoteTo) &&
           MVT::isFloatingPoint(VT) == MVT::isFloatingPoint(PromoteTo) &&
           "Can only promote from int->int or fp->fp!");
    assert(VT < PromoteTo && "Must promote to a larger type!");
    TransformToType[VT] = PromoteTo;
  } else if (Action == TargetLowering::Expand) {
    assert((VT == MVT::Vector || MVT::isInteger(VT)) && VT > MVT::i8 &&
           "Cannot expand this type: target must support SOME integer reg!");
    // Expand to the next smaller integer type!
    TransformToType[VT] = (MVT::ValueType)(VT-1);
  }
}


/// computeRegisterProperties - Once all of the register classes are added,
/// this allows us to compute derived properties we expose.
void TargetLowering::computeRegisterProperties() {
  assert(MVT::LAST_VALUETYPE <= 32 &&
         "Too many value types for ValueTypeActions to hold!");

  // Everything defaults to one.
  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i)
    NumElementsForVT[i] = 1;

  // Find the largest integer register class.
  unsigned LargestIntReg = MVT::i128;
  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");

  // Every integer value type larger than this largest register takes twice as
  // many registers to represent as the previous ValueType.
  unsigned ExpandedReg = LargestIntReg; ++LargestIntReg;
  for (++ExpandedReg; MVT::isInteger((MVT::ValueType)ExpandedReg);++ExpandedReg)
    NumElementsForVT[ExpandedReg] = 2*NumElementsForVT[ExpandedReg-1];

  // Inspect all of the ValueType's possible, deciding how to process them.
  for (unsigned IntReg = MVT::i1; IntReg <= MVT::i128; ++IntReg)
    // If we are expanding this type, expand it!
    if (getNumElements((MVT::ValueType)IntReg) != 1)
      SetValueTypeAction((MVT::ValueType)IntReg, Expand, *this, TransformToType,
                         ValueTypeActions);
    else if (!isTypeLegal((MVT::ValueType)IntReg))
      // Otherwise, if we don't have native support, we must promote to a
      // larger type.
      SetValueTypeAction((MVT::ValueType)IntReg, Promote, *this,
                         TransformToType, ValueTypeActions);
    else
      TransformToType[(MVT::ValueType)IntReg] = (MVT::ValueType)IntReg;

  // If the target does not have native support for F32, promote it to F64.
  if (!isTypeLegal(MVT::f32))
    SetValueTypeAction(MVT::f32, Promote, *this,
                       TransformToType, ValueTypeActions);
  else
    TransformToType[MVT::f32] = MVT::f32;
  
  // Set MVT::Vector to always be Expanded
  SetValueTypeAction(MVT::Vector, Expand, *this, TransformToType, 
                     ValueTypeActions);

  assert(isTypeLegal(MVT::f64) && "Target does not support FP?");
  TransformToType[MVT::f64] = MVT::f64;
}

const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
  return NULL;
}



/// MaskedValueIsZero - Return true if 'Op & Mask' is known to be zero.  We use
/// this predicate to simplify operations downstream.  Op and Mask are known to
/// be the same type.
bool TargetLowering::MaskedValueIsZero(const SDOperand &Op,
                                       uint64_t Mask) const {
  unsigned SrcBits;
  if (Mask == 0) return true;
  
  // If we know the result of a setcc has the top bits zero, use this info.
  switch (Op.getOpcode()) {
  case ISD::Constant:
    return (cast<ConstantSDNode>(Op)->getValue() & Mask) == 0;
  case ISD::SETCC:
    return ((Mask & 1) == 0) &&
      getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult;
  case ISD::ZEXTLOAD:
    SrcBits = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(3))->getVT());
    return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits.
  case ISD::ZERO_EXTEND:
    SrcBits = MVT::getSizeInBits(Op.getOperand(0).getValueType());
    return MaskedValueIsZero(Op.getOperand(0),Mask & (~0ULL >> (64-SrcBits)));
  case ISD::AssertZext:
    SrcBits = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
    return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits.
  case ISD::AND:
    // If either of the operands has zero bits, the result will too.
    if (MaskedValueIsZero(Op.getOperand(1), Mask) ||
        MaskedValueIsZero(Op.getOperand(0), Mask))
      return true;
    // (X & C1) & C2 == 0   iff   C1 & C2 == 0.
    if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
      return MaskedValueIsZero(Op.getOperand(0),AndRHS->getValue() & Mask);
    return false;
  case ISD::OR:
  case ISD::XOR:
    return MaskedValueIsZero(Op.getOperand(0), Mask) &&
           MaskedValueIsZero(Op.getOperand(1), Mask);
  case ISD::SELECT:
    return MaskedValueIsZero(Op.getOperand(1), Mask) &&
           MaskedValueIsZero(Op.getOperand(2), Mask);
  case ISD::SELECT_CC:
    return MaskedValueIsZero(Op.getOperand(2), Mask) &&
           MaskedValueIsZero(Op.getOperand(3), Mask);
  case ISD::SRL:
    // (ushr X, C1) & C2 == 0   iff  X & (C2 << C1) == 0
    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
      uint64_t NewVal = Mask << ShAmt->getValue();
      SrcBits = MVT::getSizeInBits(Op.getValueType());
      if (SrcBits != 64) NewVal &= (1ULL << SrcBits)-1;
      return MaskedValueIsZero(Op.getOperand(0), NewVal);
    }
    return false;
  case ISD::SHL:
    // (ushl X, C1) & C2 == 0   iff  X & (C2 >> C1) == 0
    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
      uint64_t NewVal = Mask >> ShAmt->getValue();
      return MaskedValueIsZero(Op.getOperand(0), NewVal);
    }
    return false;
  case ISD::ADD:
    // (add X, Y) & C == 0 iff (X&C)|(Y&C) == 0 and all bits are low bits.
    if ((Mask&(Mask+1)) == 0) {  // All low bits
      if (MaskedValueIsZero(Op.getOperand(0), Mask) &&
          MaskedValueIsZero(Op.getOperand(1), Mask))
        return true;
    }
    break;
  case ISD::SUB:
    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
      // We know that the top bits of C-X are clear if X contains less bits