1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
|
//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
// register allocator for LLVM. This allocator works by constructing a PBQP
// problem representing the register allocation problem under consideration,
// solving this using a PBQP solver, and mapping the solution back to a
// register assignment. If any variables are selected for spilling then spill
// code is inserted and the process repeated.
//
// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
// for register allocation. For more information on PBQP for register
// allocation, see the following papers:
//
// (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
// PBQP. In Proceedings of the 7th Joint Modular Languages Conference
// (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
//
// (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
// architectures. In Proceedings of the Joint Conference on Languages,
// Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
// NY, USA, 139-148.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "RenderMachineFunction.h"
#include "Splitter.h"
#include "VirtRegMap.h"
#include "VirtRegRewriter.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/RegAllocPBQP.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PBQP/HeuristicSolver.h"
#include "llvm/CodeGen/PBQP/Graph.h"
#include "llvm/CodeGen/PBQP/Heuristics/Briggs.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include <limits>
#include <memory>
#include <set>
#include <vector>
using namespace llvm;
static RegisterRegAlloc
registerPBQPRepAlloc("pbqp", "PBQP register allocator",
createDefaultPBQPRegisterAllocator);
static cl::opt<bool>
pbqpCoalescing("pbqp-coalescing",
cl::desc("Attempt coalescing during PBQP register allocation."),
cl::init(false), cl::Hidden);
static cl::opt<bool>
pbqpPreSplitting("pbqp-pre-splitting",
cl::desc("Pre-split before PBQP register allocation."),
cl::init(false), cl::Hidden);
namespace {
///
/// PBQP based allocators solve the register allocation problem by mapping
/// register allocation problems to Partitioned Boolean Quadratic
/// Programming problems.
class RegAllocPBQP : public MachineFunctionPass {
public:
static char ID;
/// Construct a PBQP register allocator.
RegAllocPBQP(std::auto_ptr<PBQPBuilder> b) : MachineFunctionPass(ID), builder(b) {}
/// Return the pass name.
virtual const char* getPassName() const {
return "PBQP Register Allocator";
}
/// PBQP analysis usage.
virtual void getAnalysisUsage(AnalysisUsage &au) const;
/// Perform register allocation
virtual bool runOnMachineFunction(MachineFunction &MF);
private:
typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
typedef std::vector<const LiveInterval*> Node2LIMap;
typedef std::vector<unsigned> AllowedSet;
typedef std::vector<AllowedSet> AllowedSetMap;
typedef std::pair<unsigned, unsigned> RegPair;
typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
typedef std::vector<PBQP::Graph::NodeItr> NodeVector;
typedef std::set<unsigned> RegSet;
std::auto_ptr<PBQPBuilder> builder;
MachineFunction *mf;
const TargetMachine *tm;
const TargetRegisterInfo *tri;
const TargetInstrInfo *tii;
const MachineLoopInfo *loopInfo;
MachineRegisterInfo *mri;
RenderMachineFunction *rmf;
LiveIntervals *lis;
LiveStacks *lss;
VirtRegMap *vrm;
RegSet vregsToAlloc, emptyIntervalVRegs;
/// \brief Finds the initial set of vreg intervals to allocate.
void findVRegIntervalsToAlloc();
/// \brief Adds a stack interval if the given live interval has been
/// spilled. Used to support stack slot coloring.
void addStackInterval(const LiveInterval *spilled,MachineRegisterInfo* mri);
/// \brief Given a solved PBQP problem maps this solution back to a register
/// assignment.
bool mapPBQPToRegAlloc(const PBQPRAProblem &problem,
const PBQP::Solution &solution);
/// \brief Postprocessing before final spilling. Sets basic block "live in"
/// variables.
void finalizeAlloc() const;
};
char RegAllocPBQP::ID = 0;
} // End anonymous namespace.
unsigned PBQPRAProblem::getVRegForNode(PBQP::Graph::ConstNodeItr node) const {
Node2VReg::const_iterator vregItr = node2VReg.find(node);
assert(vregItr != node2VReg.end() && "No vreg for node.");
return vregItr->second;
}
PBQP::Graph::NodeItr PBQPRAProblem::getNodeForVReg(unsigned vreg) const {
VReg2Node::const_iterator nodeItr = vreg2Node.find(vreg);
assert(nodeItr != vreg2Node.end() && "No node for vreg.");
return nodeItr->second;
}
const PBQPRAProblem::AllowedSet&
PBQPRAProblem::getAllowedSet(unsigned vreg) const {
AllowedSetMap::const_iterator allowedSetItr = allowedSets.find(vreg);
assert(allowedSetItr != allowedSets.end() && "No pregs for vreg.");
const AllowedSet &allowedSet = allowedSetItr->second;
return allowedSet;
}
unsigned PBQPRAProblem::getPRegForOption(unsigned vreg, unsigned option) const {
assert(isPRegOption(vreg, option) && "Not a preg option.");
const AllowedSet& allowedSet = getAllowedSet(vreg);
assert(option <= allowedSet.size() && "Option outside allowed set.");
return allowedSet[option - 1];
}
std::auto_ptr<PBQPRAProblem> PBQPBuilder::build(MachineFunction *mf,
const LiveIntervals *lis,
const MachineLoopInfo *loopInfo,
const RegSet &vregs) {
typedef std::vector<const LiveInterval*> LIVector;
MachineRegisterInfo *mri = &mf->getRegInfo();
const TargetRegisterInfo *tri = mf->getTarget().getRegisterInfo();
std::auto_ptr<PBQPRAProblem> p(new PBQPRAProblem());
PBQP::Graph &g = p->getGraph();
RegSet pregs;
// Collect the set of preg intervals, record that they're used in the MF.
for (LiveIntervals::const_iterator itr = lis->begin(), end = lis->end();
itr != end; ++itr) {
if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
pregs.insert(itr->first);
mri->setPhysRegUsed(itr->first);
}
}
BitVector reservedRegs = tri->getReservedRegs(*mf);
// Iterate over vregs.
for (RegSet::const_iterator vregItr = vregs.begin(), vregEnd = vregs.end();
vregItr != vregEnd; ++vregItr) {
unsigned vreg = *vregItr;
const TargetRegisterClass *trc = mri->getRegClass(vreg);
const LiveInterval *vregLI = &lis->getInterval(vreg);
// Compute an initial allowed set for the current vreg.
typedef std::vector<unsigned> VRAllowed;
VRAllowed vrAllowed;
for (TargetRegisterClass::iterator aoItr = trc->allocation_order_begin(*mf),
aoEnd = trc->allocation_order_end(*mf);
aoItr != aoEnd; ++aoItr) {
unsigned preg = *aoItr;
if (!reservedRegs.test(preg)) {
vrAllowed.push_back(preg);
}
}
// Remove any physical registers which overlap.
for (RegSet::const_iterator pregItr = pregs.begin(),
pregEnd = pregs.end();
pregItr != pregEnd; ++pregItr) {
unsigned preg = *pregItr;
const LiveInterval *pregLI = &lis->getInterval(preg);
if (pregLI->empty())
continue;
if (!vregLI->overlaps(*pregLI))
continue;
// Remove the register from the allowed set.
VRAllowed::iterator eraseItr =
std::find(vrAllowed.begin(), vrAllowed.end(), preg);
if (eraseItr != vrAllowed.end()) {
vrAllowed.erase(eraseItr);
}
// Also remove any aliases.
const unsigned *aliasItr = tri->getAliasSet(preg);
if (aliasItr != 0) {
for (; *aliasItr != 0; ++aliasItr) {
VRAllowed::iterator eraseItr =
std::find(vrAllowed.begin(), vrAllowed.end(), *aliasItr);
if (eraseItr != vrAllowed.end()) {
vrAllowed.erase(eraseItr);
}
}
}
}
// Construct the node.
PBQP::Graph::NodeItr node =
g.addNode(PBQP::Vector(vrAllowed.size() + 1, 0));
// Record the mapping and allowed set in the problem.
p->recordVReg(vreg, node, vrAllowed.begin(), vrAllowed.end());
PBQP::PBQPNum spillCost = (vregLI->weight != 0.0) ?
vregLI->weight : std::numeric_limits<PBQP::PBQPNum>::min();
addSpillCosts(g.getNodeCosts(node), spillCost);
}
for (RegSet::const_iterator vr1Itr = vregs.begin(), vrEnd = vregs.end();
vr1Itr != vrEnd; ++vr1Itr) {
unsigned vr1 = *vr1Itr;
const LiveInterval &l1 = lis->getInterval(vr1);
const PBQPRAProblem::AllowedSet &vr1Allowed = p->getAllowedSet(vr1);
for (RegSet::const_iterator vr2Itr = llvm::next(vr1Itr);
vr2Itr != vrEnd; ++vr2Itr) {
unsigned vr2 = *vr2Itr;
const LiveInterval &l2 = lis->getInterval(vr2);
const PBQPRAProblem::AllowedSet &vr2Allowed = p->getAllowedSet(vr2);
assert(!l2.empty() && "Empty interval in vreg set?");
if (l1.overlaps(l2)) {
PBQP::Graph::EdgeItr edge =
g.addEdge(p->getNodeForVReg(vr1), p->getNodeForVReg(vr2),
PBQP::Matrix(vr1Allowed.size()+1, vr2Allowed.size()+1, 0));
addInterferenceCosts(g.getEdgeCosts(edge), vr1Allowed, vr2Allowed, tri);
}
}
}
return p;
}
void PBQPBuilder::addSpillCosts(PBQP::Vector &costVec,
PBQP::PBQPNum spillCost) {
costVec[0] = spillCost;
}
void PBQPBuilder::addInterferenceCosts(
PBQP::Matrix &costMat,
const PBQPRAProblem::AllowedSet &vr1Allowed,
const PBQPRAProblem::AllowedSet &vr2Allowed,
const TargetRegisterInfo *tri) {
assert(costMat.getRows() == vr1Allowed.size() + 1 && "Matrix height mismatch.");
assert(costMat.getCols() == vr2Allowed.size() + 1 && "Matrix width mismatch.");
for (unsigned i = 0; i < vr1Allowed.size(); ++i) {
unsigned preg1 = vr1Allowed[i];
for (unsigned j = 0; j < vr2Allowed.size(); ++j) {
unsigned preg2 = vr2Allowed[j];
if (tri->regsOverlap(preg1, preg2)) {
costMat[i + 1][j + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
}
}
}
}
std::auto_ptr<PBQPRAProblem> PBQPBuilderWithCoalescing::build(
MachineFunction *mf,
const LiveIntervals *lis,
const MachineLoopInfo *loopInfo,
const RegSet &vregs) {
std::auto_ptr<PBQPRAProblem> p = PBQPBuilder::build(mf, lis, loopInfo, vregs);
PBQP::Graph &g = p->getGraph();
const TargetMachine &tm = mf->getTarget();
CoalescerPair cp(*tm.getInstrInfo(), *tm.getRegisterInfo());
// Scan the machine function and add a coalescing cost whenever CoalescerPair
// gives the Ok.
for (MachineFunction::const_iterator mbbItr = mf->begin(),
mbbEnd = mf->end();
mbbItr != mbbEnd; ++mbbItr) {
const MachineBasicBlock *mbb = &*mbbItr;
for (MachineBasicBlock::const_iterator miItr = mbb->begin(),
miEnd = mbb->end();
miItr != miEnd; ++miItr) {
const MachineInstr *mi = &*miItr;
if (!cp.setRegisters(mi))
continue; // Not coalescable.
if (cp.getSrcReg() == cp.getDstReg())
continue; // Already coalesced.
unsigned dst = cp.getDstReg(),
src = cp.getSrcReg();
const float copyFactor = 0.5; // Cost of copy relative to load. Current
// value plucked randomly out of the air.
PBQP::PBQPNum cBenefit =
copyFactor * LiveIntervals::getSpillWeight(false, true,
loopInfo->getLoopDepth(mbb));
if (cp.isPhys()) {
if (!lis->isAllocatable(dst))
continue;
const PBQPRAProblem::AllowedSet &allowed = p->getAllowedSet(src);
unsigned pregOpt = 0;
while (pregOpt < allowed.size() && allowed[pregOpt] != dst)
++pregOpt;
if (pregOpt < allowed.size()) {
++pregOpt; // +1 to account for spill option.
PBQP::Graph::NodeItr node = p->getNodeForVReg(src);
addPhysRegCoalesce(g.getNodeCosts(node), pregOpt, cBenefit);
}
} else {
const PBQPRAProblem::AllowedSet *allowed1 = &p->getAllowedSet(dst);
const PBQPRAProblem::AllowedSet *allowed2 = &p->getAllowedSet(src);
PBQP::Graph::NodeItr node1 = p->getNodeForVReg(dst);
PBQP::Graph::NodeItr node2 = p->getNodeForVReg(src);
PBQP::Graph::EdgeItr edge = g.findEdge(node1, node2);
if (edge == g.edgesEnd()) {
edge = g.addEdge(node1, node2, PBQP::Matrix(allowed1->size() + 1,
allowed2->size() + 1,
0));
} else {
if (g.getEdgeNode1(edge) == node2) {
std::swap(node1, node2);
std::swap(allowed1, allowed2);
}
}
addVirtRegCoalesce(g.getEdgeCosts(edge), *allowed1, *allowed2,
cBenefit);
}
}
}
return p;
}
void PBQPBuilderWithCoalescing::addPhysRegCoalesce(PBQP::Vector &costVec,
unsigned pregOption,
PBQP::PBQPNum benefit) {
costVec[pregOption] += -benefit;
}
void PBQPBuilderWithCoalescing::addVirtRegCoalesce(
PBQP::Matrix &costMat,
const PBQPRAProblem::AllowedSet &vr1Allowed,
const PBQPRAProblem::AllowedSet &vr2Allowed,
PBQP::PBQPNum benefit) {
assert(costMat.getRows() == vr1Allowed.size() + 1 && "Size mismatch.");
assert(costMat.getCols() == vr2Allowed.size() + 1 && "Size mismatch.");
for (unsigned i = 0; i < vr1Allowed.size(); ++i) {
unsigned preg1 = vr1Allowed[i];
for (unsigned j = 0; j < vr2Allowed.size(); ++j) {
unsigned preg2 = vr2Allowed[j];
if (preg1 == preg2) {
costMat[i + 1][j + 1] += -benefit;
}
}
}
}
void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const {
au.addRequired<SlotIndexes>();
au.addPreserved<SlotIndexes>();
au.addRequired<LiveIntervals>();
//au.addRequiredID(SplitCriticalEdgesID);
au.addRequired<RegisterCoalescer>();
au.addRequired<CalculateSpillWeights>();
au.addRequired<LiveStacks>();
au.addPreserved<LiveStacks>();
au.addRequired<MachineLoopInfo>();
au.addPreserved<MachineLoopInfo>();
if (pbqpPreSplitting)
au.addRequired<LoopSplitter>();
au.addRequired<VirtRegMap>();
au.addRequired<RenderMachineFunction>();
MachineFunctionPass::getAnalysisUsage(au);
}
void RegAllocPBQP::findVRegIntervalsToAlloc() {
// Iterate over all live ranges.
for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
itr != end; ++itr) {
// Ignore physical ones.
if (TargetRegisterInfo::isPhysicalRegister(itr->first))
continue;
LiveInterval *li = itr->second;
// If this live interval is non-empty we will use pbqp to allocate it.
// Empty intervals we allocate in a simple post-processing stage in
// finalizeAlloc.
if (!li->empty()) {
vregsToAlloc.insert(li->reg);
}
else {
emptyIntervalVRegs.insert(li->reg);
}
}
}
void RegAllocPBQP::addStackInterval(const LiveInterval *spilled,
MachineRegisterInfo* mri) {
int stackSlot = vrm->getStackSlot(spilled->reg);
if (stackSlot == VirtRegMap::NO_STACK_SLOT)
return;
const TargetRegisterClass *RC = mri->getRegClass(spilled->reg);
LiveInterval &stackInterval = lss->getOrCreateInterval(stackSlot, RC);
VNInfo *vni;
if (stackInterval.getNumValNums() != 0)
vni = stackInterval.getValNumInfo(0);
else
vni = stackInterval.getNextValue(
SlotIndex(), 0, lss->getVNInfoAllocator());
LiveInterval &rhsInterval = lis->getInterval(spilled->reg);
stackInterval.MergeRangesInAsValue(rhsInterval, vni);
}
bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAProblem &problem,
const PBQP::Solution &solution) {
// Set to true if we have any spills
bool anotherRoundNeeded = false;
// Clear the existing allocation.
vrm->clearAllVirt();
const PBQP::Graph &g = problem.getGraph();
// Iterate over the nodes mapping the PBQP solution to a register
// assignment.
for (PBQP::Graph::ConstNodeItr node = g.nodesBegin(),
nodeEnd = g.nodesEnd();
node != nodeEnd; ++node) {
unsigned vreg = problem.getVRegForNode(node);
unsigned alloc = solution.getSelection(node);
if (problem.isPRegOption(vreg, alloc)) {
unsigned preg = problem.getPRegForOption(vreg, alloc);
DEBUG(dbgs() << "VREG " << vreg << " -> " << tri->getName(preg) << "\n");
assert(preg != 0 && "Invalid preg selected.");
vrm->assignVirt2Phys(vreg, preg);
} else if (problem.isSpillOption(vreg, alloc)) {
vregsToAlloc.erase(vreg);
const LiveInterval* spillInterval = &lis->getInterval(vreg);
double oldWeight = spillInterval->weight;
SmallVector<LiveInterval*, 8> spillIs;
rmf->rememberUseDefs(spillInterval);
std::vector<LiveInterval*> newSpills =
lis->addIntervalsForSpills(*spillInterval, spillIs, loopInfo, *vrm);
addStackInterval(spillInterval, mri);
rmf->rememberSpills(spillInterval, newSpills);
(void) oldWeight;
DEBUG(dbgs() << "VREG " << vreg << " -> SPILLED (Cost: "
<< oldWeight << ", New vregs: ");
// Copy any newly inserted live intervals into the list of regs to
// allocate.
for (std::vector<LiveInterval*>::const_iterator
itr = newSpills.begin(), end = newSpills.end();
itr != end; ++itr) {
assert(!(*itr)->empty() && "Empty spill range.");
DEBUG(dbgs() << (*itr)->reg << " ");
vregsToAlloc.insert((*itr)->reg);
}
DEBUG(dbgs() << ")\n");
// We need another round if spill intervals were added.
anotherRoundNeeded |= !newSpills.empty();
} else {
assert(false && "Unknown allocation option.");
}
}
return !anotherRoundNeeded;
}
void RegAllocPBQP::finalizeAlloc() const {
typedef LiveIntervals::iterator LIIterator;
typedef LiveInterval::Ranges::const_iterator LRIterator;
// First allocate registers for the empty intervals.
for (RegSet::const_iterator
itr = emptyIntervalVRegs.begin(), end = emptyIntervalVRegs.end();
itr != end; ++itr) {
LiveInterval *li = &lis->getInterval(*itr);
unsigned physReg = vrm->getRegAllocPref(li->reg);
if (physReg == 0) {
const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
physReg = *liRC->allocation_order_begin(*mf);
}
vrm->assignVirt2Phys(li->reg, physReg);
}
// Finally iterate over the basic blocks to compute and set the live-in sets.
SmallVector<MachineBasicBlock*, 8> liveInMBBs;
MachineBasicBlock *entryMBB = &*mf->begin();
for (LIIterator liItr = lis->begin(), liEnd = lis->end();
liItr != liEnd; ++liItr) {
const LiveInterval *li = liItr->second;
unsigned reg = 0;
// Get the physical register for this interval
if (TargetRegisterInfo::isPhysicalRegister(li->reg)) {
reg = li->reg;
}
else if (vrm->isAssignedReg(li->reg)) {
reg = vrm->getPhys(li->reg);
}
else {
// Ranges which are assigned a stack slot only are ignored.
continue;
}
if (reg == 0) {
// Filter out zero regs - they're for intervals that were spilled.
continue;
}
// Iterate over the ranges of the current interval...
for (LRIterator lrItr = li->begin(), lrEnd = li->end();
lrItr != lrEnd; ++lrItr) {
// Find the set of basic blocks which this range is live into...
if (lis->findLiveInMBBs(lrItr->start, lrItr->end, liveInMBBs)) {
// And add the physreg for this interval to their live-in sets.
for (unsigned i = 0; i < liveInMBBs.size(); ++i) {
if (liveInMBBs[i] != entryMBB) {
if (!liveInMBBs[i]->isLiveIn(reg)) {
liveInMBBs[i]->addLiveIn(reg);
}
}
}
liveInMBBs.clear();
}
}
}
}
bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
mf = &MF;
tm = &mf->getTarget();
tri = tm->getRegisterInfo();
tii = tm->getInstrInfo();
mri = &mf->getRegInfo();
lis = &getAnalysis<LiveIntervals>();
lss = &getAnalysis<LiveStacks>();
loopInfo = &getAnalysis<MachineLoopInfo>();
rmf = &getAnalysis<RenderMachineFunction>();
vrm = &getAnalysis<VirtRegMap>();
DEBUG(dbgs() << "PBQP Register Allocating for " << mf->getFunction()->getName() << "\n");
// Allocator main loop:
//
// * Map current regalloc problem to a PBQP problem
// * Solve the PBQP problem
// * Map the solution back to a register allocation
// * Spill if necessary
//
// This process is continued till no more spills are generated.
// Find the vreg intervals in need of allocation.
findVRegIntervalsToAlloc();
// If there are non-empty intervals allocate them using pbqp.
if (!vregsToAlloc.empty()) {
bool pbqpAllocComplete = false;
unsigned round = 0;
while (!pbqpAllocComplete) {
DEBUG(dbgs() << " PBQP Regalloc round " << round << ":\n");
std::auto_ptr<PBQPRAProblem> problem =
builder->build(mf, lis, loopInfo, vregsToAlloc);
PBQP::Solution solution =
PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve(
problem->getGraph());
pbqpAllocComplete = mapPBQPToRegAlloc(*problem, solution);
++round;
}
}
// Finalise allocation, allocate empty ranges.
finalizeAlloc();
rmf->renderMachineFunction("After PBQP register allocation.", vrm);
vregsToAlloc.clear();
emptyIntervalVRegs.clear();
DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
// Run rewriter
std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
rewriter->runOnMachineFunction(*mf, *vrm, lis);
return true;
}
FunctionPass* llvm::createPBQPRegisterAllocator(
std::auto_ptr<PBQPBuilder> builder) {
return new RegAllocPBQP(builder);
}
FunctionPass* llvm::createDefaultPBQPRegisterAllocator() {
if (pbqpCoalescing) {
return createPBQPRegisterAllocator(
std::auto_ptr<PBQPBuilder>(new PBQPBuilderWithCoalescing()));
} // else
return createPBQPRegisterAllocator(
std::auto_ptr<PBQPBuilder>(new PBQPBuilder()));
}
#undef DEBUG_TYPE
|