1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
|
//===- PNaClABIVerifyFunctions.cpp - Verify PNaCl ABI rules ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Verify function-level PNaCl ABI requirements.
//
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/NaCl.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/NaClAtomicIntrinsics.h"
#include "llvm/IR/Operator.h"
#include "llvm/Pass.h"
#include "llvm/Support/raw_ostream.h"
#include "PNaClABITypeChecker.h"
using namespace llvm;
namespace {
// Checks that examine anything in the function body should be in
// FunctionPasses to make them streaming-friendly
class PNaClABIVerifyFunctions : public FunctionPass {
public:
static char ID;
PNaClABIVerifyFunctions() :
FunctionPass(ID),
Reporter(new PNaClABIErrorReporter),
ReporterIsOwned(true) {
initializePNaClABIVerifyFunctionsPass(*PassRegistry::getPassRegistry());
}
explicit PNaClABIVerifyFunctions(PNaClABIErrorReporter *Reporter_) :
FunctionPass(ID),
Reporter(Reporter_),
ReporterIsOwned(false) {
initializePNaClABIVerifyFunctionsPass(*PassRegistry::getPassRegistry());
}
~PNaClABIVerifyFunctions() {
if (ReporterIsOwned)
delete Reporter;
}
virtual bool doInitialization(Module &M) {
AtomicIntrinsics.reset(new NaCl::AtomicIntrinsics(M.getContext()));
return false;
}
bool runOnFunction(Function &F);
virtual void print(raw_ostream &O, const Module *M) const;
private:
bool IsWhitelistedMetadata(unsigned MDKind);
const char *checkInstruction(const Instruction *Inst);
PNaClABIErrorReporter *Reporter;
bool ReporterIsOwned;
OwningPtr<NaCl::AtomicIntrinsics> AtomicIntrinsics;
};
} // and anonymous namespace
// There's no built-in way to get the name of an MDNode, so use a
// string ostream to print it.
static std::string getMDNodeString(unsigned Kind,
const SmallVectorImpl<StringRef> &MDNames) {
std::string MDName;
raw_string_ostream N(MDName);
if (Kind < MDNames.size()) {
N << "!" << MDNames[Kind];
} else {
N << "!<unknown kind #" << Kind << ">";
}
return N.str();
}
bool PNaClABIVerifyFunctions::IsWhitelistedMetadata(unsigned MDKind) {
return MDKind == LLVMContext::MD_dbg && PNaClABIAllowDebugMetadata;
}
// A valid pointer type is either:
// * a pointer to a valid PNaCl scalar type (except i1), or
// * a function pointer (with valid argument and return types).
//
// i1 is disallowed so that all loads and stores are a whole number of
// bytes, and so that we do not need to define whether a store of i1
// zero-extends.
static bool isValidPointerType(Type *Ty) {
if (PointerType *PtrTy = dyn_cast<PointerType>(Ty)) {
if (PtrTy->getAddressSpace() != 0)
return false;
Type *EltTy = PtrTy->getElementType();
if (PNaClABITypeChecker::isValidScalarType(EltTy) &&
!EltTy->isIntegerTy(1))
return true;
if (FunctionType *FTy = dyn_cast<FunctionType>(EltTy))
return PNaClABITypeChecker::isValidFunctionType(FTy);
}
return false;
}
static bool isIntrinsicFunc(const Value *Val) {
if (const Function *F = dyn_cast<Function>(Val))
return F->isIntrinsic();
return false;
}
// InherentPtrs may be referenced by casts -- PtrToIntInst and
// BitCastInst -- that produce NormalizedPtrs.
//
// InherentPtrs exclude intrinsic functions in order to prevent taking
// the address of an intrinsic function. InherentPtrs include
// intrinsic calls because some intrinsics return pointer types
// (e.g. nacl.read.tp returns i8*).
static bool isInherentPtr(const Value *Val) {
return isa<AllocaInst>(Val) ||
(isa<GlobalValue>(Val) && !isIntrinsicFunc(Val)) ||
isa<IntrinsicInst>(Val);
}
// NormalizedPtrs may be used where pointer types are required -- for
// loads, stores, etc. Note that this excludes ConstantExprs,
// ConstantPointerNull and UndefValue.
static bool isNormalizedPtr(const Value *Val) {
if (!isValidPointerType(Val->getType()))
return false;
// The bitcast must also be a bitcast of an InherentPtr, but we
// check that when visiting the bitcast instruction.
return isa<IntToPtrInst>(Val) || isa<BitCastInst>(Val) || isInherentPtr(Val);
}
static bool isValidScalarOperand(const Value *Val) {
// The types of Instructions and Arguments are checked elsewhere
// (when visiting the Instruction or the Function). BasicBlocks are
// included here because branch instructions have BasicBlock
// operands.
if (isa<Instruction>(Val) || isa<Argument>(Val) || isa<BasicBlock>(Val))
return true;
// Allow some Constants. Note that this excludes ConstantExprs.
return PNaClABITypeChecker::isValidScalarType(Val->getType()) &&
(isa<ConstantInt>(Val) ||
isa<ConstantFP>(Val) ||
isa<UndefValue>(Val));
}
static bool isAllowedAlignment(unsigned Alignment, Type *Ty) {
// Non-atomic integer operations must always use "align 1", since we
// do not want the backend to generate code with non-portable
// undefined behaviour (such as misaligned access faults) if user
// code specifies "align 4" but uses a misaligned pointer. As a
// concession to performance, we allow larger alignment values for
// floating point types.
//
// To reduce the set of alignment values that need to be encoded in
// pexes, we disallow other alignment values. We require alignments
// to be explicit by disallowing Alignment == 0.
return Alignment == 1 ||
(Ty->isDoubleTy() && Alignment == 8) ||
(Ty->isFloatTy() && Alignment == 4);
}
static bool hasAllowedAtomicRMWOperation(
const NaCl::AtomicIntrinsics::AtomicIntrinsic *I, const CallInst *Call) {
for (size_t P = 0; P != I->NumParams; ++P) {
if (I->ParamType[P] != NaCl::AtomicIntrinsics::RMW)
continue;
const Value *Operation = Call->getOperand(P);
if (!Operation)
return false;
const Constant *C = dyn_cast<Constant>(Operation);
if (!C)
return false;
const APInt &I = C->getUniqueInteger();
if (I.ule(NaCl::AtomicInvalid) || I.uge(NaCl::AtomicNum))
return false;
}
return true;
}
static bool hasAllowedAtomicMemoryOrder(
const NaCl::AtomicIntrinsics::AtomicIntrinsic *I, const CallInst *Call) {
for (size_t P = 0; P != I->NumParams; ++P) {
if (I->ParamType[P] != NaCl::AtomicIntrinsics::Mem)
continue;
const Value *MemoryOrder = Call->getOperand(P);
if (!MemoryOrder)
return false;
const Constant *C = dyn_cast<Constant>(MemoryOrder);
if (!C)
return false;
const APInt &I = C->getUniqueInteger();
if (I.ule(NaCl::MemoryOrderInvalid) || I.uge(NaCl::MemoryOrderNum))
return false;
// TODO For now only sequential consistency is allowed. When more
// are allowed we need to validate that the memory order is
// allowed on the specific atomic operation (e.g. no store
// acquire, and relationship between success/failure memory
// order on compare exchange).
if (I != NaCl::MemoryOrderSequentiallyConsistent)
return false;
}
return true;
}
static bool hasAllowedLockFreeByteSize(const CallInst *Call) {
if (!Call->getType()->isIntegerTy())
return false;
const Value *Operation = Call->getOperand(0);
if (!Operation)
return false;
const Constant *C = dyn_cast<Constant>(Operation);
if (!C)
return false;
const APInt &I = C->getUniqueInteger();
// PNaCl currently only supports atomics of byte size {1,2,4,8} (which
// may or may not be lock-free). These values coincide with
// C11/C++11's supported atomic types.
if (I == 1 || I == 2 || I == 4 || I == 8)
return true;
return false;
}
// Check the instruction's opcode and its operands. The operands may
// require opcode-specific checking.
//
// This returns an error string if the instruction is rejected, or
// NULL if the instruction is allowed.
const char *PNaClABIVerifyFunctions::checkInstruction(const Instruction *Inst) {
// If the instruction has a single pointer operand, PtrOperandIndex is
// set to its operand index.
unsigned PtrOperandIndex = -1;
switch (Inst->getOpcode()) {
// Disallowed instructions. Default is to disallow.
// We expand GetElementPtr out into arithmetic.
case Instruction::GetElementPtr:
// VAArg is expanded out by ExpandVarArgs.
case Instruction::VAArg:
// Zero-cost C++ exception handling is not supported yet.
case Instruction::Invoke:
case Instruction::LandingPad:
case Instruction::Resume:
// indirectbr may interfere with streaming
case Instruction::IndirectBr:
// No vector instructions yet
case Instruction::ExtractElement:
case Instruction::InsertElement:
case Instruction::ShuffleVector:
// ExtractValue and InsertValue operate on struct values.
case Instruction::ExtractValue:
case Instruction::InsertValue:
// Atomics should become NaCl intrinsics.
case Instruction::AtomicCmpXchg:
case Instruction::AtomicRMW:
case Instruction::Fence:
return "bad instruction opcode";
default:
return "unknown instruction opcode";
// Terminator instructions
case Instruction::Ret:
case Instruction::Br:
case Instruction::Unreachable:
// Binary operations
case Instruction::FAdd:
case Instruction::FSub:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
// Bitwise binary operations
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
// Conversion operations
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::UIToFP:
case Instruction::SIToFP:
// Other operations
case Instruction::FCmp:
case Instruction::PHI:
case Instruction::Select:
break;
// The following operations are of dubious usefulness on 1-bit
// values. Use of the i1 type is disallowed here so that code
// generators do not need to support these corner cases.
case Instruction::ICmp:
// Binary operations
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
if (Inst->getOperand(0)->getType()->isIntegerTy(1))
return "arithmetic on i1";
break;
// Memory accesses.
case Instruction::Load: {
const LoadInst *Load = cast<LoadInst>(Inst);
PtrOperandIndex = Load->getPointerOperandIndex();
if (Load->isAtomic())
return "atomic load";
if (Load->isVolatile())
return "volatile load";
if (!isAllowedAlignment(Load->getAlignment(),
Load->getType()))
return "bad alignment";
if (!isNormalizedPtr(Inst->getOperand(PtrOperandIndex)))
return "bad pointer";
break;
}
case Instruction::Store: {
const StoreInst *Store = cast<StoreInst>(Inst);
PtrOperandIndex = Store->getPointerOperandIndex();
if (Store->isAtomic())
return "atomic store";
if (Store->isVolatile())
return "volatile store";
if (!isAllowedAlignment(Store->getAlignment(),
Store->getValueOperand()->getType()))
return "bad alignment";
if (!isNormalizedPtr(Inst->getOperand(PtrOperandIndex)))
return "bad pointer";
break;
}
// Casts.
case Instruction::BitCast:
if (Inst->getType()->isPointerTy()) {
PtrOperandIndex = 0;
if (!isInherentPtr(Inst->getOperand(PtrOperandIndex)))
return "operand not InherentPtr";
}
break;
case Instruction::IntToPtr:
if (!cast<IntToPtrInst>(Inst)->getSrcTy()->isIntegerTy(32))
return "non-i32 inttoptr";
break;
case Instruction::PtrToInt:
PtrOperandIndex = 0;
if (!isInherentPtr(Inst->getOperand(PtrOperandIndex)))
return "operand not InherentPtr";
if (!Inst->getType()->isIntegerTy(32))
return "non-i32 ptrtoint";
break;
case Instruction::Alloca: {
const AllocaInst *Alloca = cast<AllocaInst>(Inst);
if (!Alloca->getAllocatedType()->isIntegerTy(8))
return "non-i8 alloca";
if (!Alloca->getArraySize()->getType()->isIntegerTy(32))
return "alloca array size is not i32";
break;
}
case Instruction::Call: {
const CallInst *Call = cast<CallInst>(Inst);
if (Call->isInlineAsm())
return "inline assembly";
if (!Call->getAttributes().isEmpty())
return "bad call attributes";
if (Call->getCallingConv() != CallingConv::C)
return "bad calling convention";
// Intrinsic calls can have multiple pointer arguments and
// metadata arguments, so handle them specially.
if (const IntrinsicInst *Call = dyn_cast<IntrinsicInst>(Inst)) {
for (unsigned ArgNum = 0, E = Call->getNumArgOperands();
ArgNum < E; ++ArgNum) {
const Value *Arg = Call->getArgOperand(ArgNum);
if (!(isValidScalarOperand(Arg) ||
isNormalizedPtr(Arg) ||
isa<MDNode>(Arg)))
return "bad intrinsic operand";
}
// Disallow alignments other than 1 on memcpy() etc., for the
// same reason that we disallow them on integer loads and
// stores.
if (const MemIntrinsic *MemOp = dyn_cast<MemIntrinsic>(Call)) {
// Avoid the getAlignment() method here because it aborts if
// the alignment argument is not a Constant.
Value *AlignArg = MemOp->getArgOperand(3);
if (!isa<ConstantInt>(AlignArg) ||
cast<ConstantInt>(AlignArg)->getZExtValue() != 1) {
return "bad alignment";
}
}
switch (Call->getIntrinsicID()) {
default: break; // Other intrinsics don't require checks.
// Disallow NaCl atomic intrinsics which don't have valid
// constant NaCl::AtomicOperation and NaCl::MemoryOrder
// parameters.
case Intrinsic::nacl_atomic_load:
case Intrinsic::nacl_atomic_store:
case Intrinsic::nacl_atomic_rmw:
case Intrinsic::nacl_atomic_cmpxchg:
case Intrinsic::nacl_atomic_fence:
case Intrinsic::nacl_atomic_fence_all: {
// All overloads have memory order and RMW operation in the
// same parameter, arbitrarily use the I32 overload.
Type *T = Type::getInt32Ty(
Inst->getParent()->getParent()->getContext());
const NaCl::AtomicIntrinsics::AtomicIntrinsic *I =
AtomicIntrinsics->find(Call->getIntrinsicID(), T);
if (!hasAllowedAtomicMemoryOrder(I, Call))
return "invalid memory order";
if (!hasAllowedAtomicRMWOperation(I, Call))
return "invalid atomicRMW operation";
} break;
// Disallow NaCl atomic_is_lock_free intrinsics which don't
// have valid constant size type.
case Intrinsic::nacl_atomic_is_lock_free:
if (!hasAllowedLockFreeByteSize(Call))
return "invalid atomic lock-free byte size";
break;
}
// Allow the instruction and skip the later checks.
return NULL;
}
// The callee is the last operand.
PtrOperandIndex = Inst->getNumOperands() - 1;
if (!isNormalizedPtr(Inst->getOperand(PtrOperandIndex)))
return "bad function callee operand";
break;
}
case Instruction::Switch: {
// SwitchInst represents switch cases using array and vector
// constants, which we normally reject, so we must check
// SwitchInst specially here.
const SwitchInst *Switch = cast<SwitchInst>(Inst);
if (!isValidScalarOperand(Switch->getCondition()))
return "bad switch condition";
if (Switch->getCondition()->getType()->isIntegerTy(1))
return "switch on i1";
// SwitchInst requires the cases to be ConstantInts, but it
// doesn't require their types to be the same as the condition
// value, so check all the cases too.
for (SwitchInst::ConstCaseIt Case = Switch->case_begin(),
E = Switch->case_end(); Case != E; ++Case) {
IntegersSubset CaseRanges = Case.getCaseValueEx();
for (unsigned I = 0, E = CaseRanges.getNumItems(); I < E ; ++I) {
if (!isValidScalarOperand(
CaseRanges.getItem(I).getLow().toConstantInt()) ||
!isValidScalarOperand(
CaseRanges.getItem(I).getHigh().toConstantInt())) {
return "bad switch case";
}
}
}
// Allow the instruction and skip the later checks.
return NULL;
}
}
// Check the instruction's operands. We have already checked any
// pointer operands. Any remaining operands must be scalars.
for (unsigned OpNum = 0, E = Inst->getNumOperands(); OpNum < E; ++OpNum) {
if (OpNum != PtrOperandIndex &&
!isValidScalarOperand(Inst->getOperand(OpNum)))
return "bad operand";
}
// Check arithmetic attributes.
if (const OverflowingBinaryOperator *Op =
dyn_cast<OverflowingBinaryOperator>(Inst)) {
if (Op->hasNoUnsignedWrap())
return "has \"nuw\" attribute";
if (Op->hasNoSignedWrap())
return "has \"nsw\" attribute";
}
if (const PossiblyExactOperator *Op =
dyn_cast<PossiblyExactOperator>(Inst)) {
if (Op->isExact())
return "has \"exact\" attribute";
}
// Allow the instruction.
return NULL;
}
bool PNaClABIVerifyFunctions::runOnFunction(Function &F) {
SmallVector<StringRef, 8> MDNames;
F.getContext().getMDKindNames(MDNames);
for (Function::const_iterator FI = F.begin(), FE = F.end();
FI != FE; ++FI) {
for (BasicBlock::const_iterator BBI = FI->begin(), BBE = FI->end();
BBI != BBE; ++BBI) {
const Instruction *Inst = BBI;
// Check the instruction opcode first. This simplifies testing,
// because some instruction opcodes must be rejected out of hand
// (regardless of the instruction's result type) and the tests
// check the reason for rejection.
const char *Error = checkInstruction(BBI);
// Check the instruction's result type.
if (!Error && !(PNaClABITypeChecker::isValidScalarType(Inst->getType()) ||
isNormalizedPtr(Inst) ||
isa<AllocaInst>(Inst))) {
Error = "bad result type";
}
if (Error) {
Reporter->addError() << "Function " << F.getName() <<
" disallowed: " << Error << ": " << *BBI << "\n";
}
// Check instruction attachment metadata.
SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst;
BBI->getAllMetadata(MDForInst);
for (unsigned i = 0, e = MDForInst.size(); i != e; i++) {
if (!IsWhitelistedMetadata(MDForInst[i].first)) {
Reporter->addError()
<< "Function " << F.getName()
<< " has disallowed instruction metadata: "
<< getMDNodeString(MDForInst[i].first, MDNames) << "\n";
}
}
}
}
Reporter->checkForFatalErrors();
return false;
}
// This method exists so that the passes can easily be run with opt -analyze.
// In this case the default constructor is used and we want to reset the error
// messages after each print.
void PNaClABIVerifyFunctions::print(llvm::raw_ostream &O, const Module *M)
const {
Reporter->printErrors(O);
Reporter->reset();
}
char PNaClABIVerifyFunctions::ID = 0;
INITIALIZE_PASS(PNaClABIVerifyFunctions, "verify-pnaclabi-functions",
"Verify functions for PNaCl", false, true)
FunctionPass *llvm::createPNaClABIVerifyFunctionsPass(
PNaClABIErrorReporter *Reporter) {
return new PNaClABIVerifyFunctions(Reporter);
}
|