1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
|
//===- PNaClABIVerifyFunctions.cpp - Verify PNaCl ABI rules ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Verify function-level PNaCl ABI requirements.
//
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/NaCl.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Operator.h"
#include "llvm/Pass.h"
#include "llvm/Support/raw_ostream.h"
#include "PNaClABITypeChecker.h"
using namespace llvm;
namespace {
// Checks that examine anything in the function body should be in
// FunctionPasses to make them streaming-friendly
class PNaClABIVerifyFunctions : public FunctionPass {
public:
static char ID;
PNaClABIVerifyFunctions() :
FunctionPass(ID),
Reporter(new PNaClABIErrorReporter),
ReporterIsOwned(true) {
initializePNaClABIVerifyFunctionsPass(*PassRegistry::getPassRegistry());
}
explicit PNaClABIVerifyFunctions(PNaClABIErrorReporter *Reporter_) :
FunctionPass(ID),
Reporter(Reporter_),
ReporterIsOwned(false) {
initializePNaClABIVerifyFunctionsPass(*PassRegistry::getPassRegistry());
}
~PNaClABIVerifyFunctions() {
if (ReporterIsOwned)
delete Reporter;
}
bool runOnFunction(Function &F);
virtual void print(raw_ostream &O, const Module *M) const;
private:
bool IsWhitelistedMetadata(unsigned MDKind);
const char *checkInstruction(const Instruction *Inst);
PNaClABIErrorReporter *Reporter;
bool ReporterIsOwned;
};
} // and anonymous namespace
// There's no built-in way to get the name of an MDNode, so use a
// string ostream to print it.
static std::string getMDNodeString(unsigned Kind,
const SmallVectorImpl<StringRef> &MDNames) {
std::string MDName;
raw_string_ostream N(MDName);
if (Kind < MDNames.size()) {
N << "!" << MDNames[Kind];
} else {
N << "!<unknown kind #" << Kind << ">";
}
return N.str();
}
bool PNaClABIVerifyFunctions::IsWhitelistedMetadata(unsigned MDKind) {
return MDKind == LLVMContext::MD_dbg && PNaClABIAllowDebugMetadata;
}
// A valid pointer type is either:
// * a pointer to a valid PNaCl scalar type, or
// * a function pointer (with valid argument and return types).
static bool isValidPointerType(Type *Ty) {
if (PointerType *PtrTy = dyn_cast<PointerType>(Ty)) {
if (PtrTy->getAddressSpace() != 0)
return false;
if (PNaClABITypeChecker::isValidScalarType(PtrTy->getElementType()))
return true;
if (FunctionType *FTy = dyn_cast<FunctionType>(PtrTy->getElementType()))
return PNaClABITypeChecker::isValidFunctionType(FTy);
}
return false;
}
static bool isIntrinsicFunc(const Value *Val) {
if (const Function *F = dyn_cast<Function>(Val))
return F->isIntrinsic();
return false;
}
// InherentPtrs may be referenced by casts -- PtrToIntInst and
// BitCastInst -- that produce NormalizedPtrs.
//
// InherentPtrs exclude intrinsic functions in order to prevent taking
// the address of an intrinsic function. InherentPtrs include
// intrinsic calls because some intrinsics return pointer types
// (e.g. nacl.read.tp returns i8*).
static bool isInherentPtr(const Value *Val) {
return isa<AllocaInst>(Val) ||
(isa<GlobalValue>(Val) && !isIntrinsicFunc(Val)) ||
isa<IntrinsicInst>(Val);
}
// NormalizedPtrs may be used where pointer types are required -- for
// loads, stores, etc. Note that this excludes ConstantExprs,
// ConstantPointerNull and UndefValue.
static bool isNormalizedPtr(const Value *Val) {
if (!isValidPointerType(Val->getType()))
return false;
// The bitcast must also be a bitcast of an InherentPtr, but we
// check that when visiting the bitcast instruction.
return isa<IntToPtrInst>(Val) || isa<BitCastInst>(Val) || isInherentPtr(Val);
}
static bool isValidScalarOperand(const Value *Val) {
// The types of Instructions and Arguments are checked elsewhere
// (when visiting the Instruction or the Function). BasicBlocks are
// included here because branch instructions have BasicBlock
// operands.
if (isa<Instruction>(Val) || isa<Argument>(Val) || isa<BasicBlock>(Val))
return true;
// Allow some Constants. Note that this excludes ConstantExprs.
return PNaClABITypeChecker::isValidScalarType(Val->getType()) &&
(isa<ConstantInt>(Val) ||
isa<ConstantFP>(Val) ||
isa<UndefValue>(Val));
}
static bool isAllowedAlignment(unsigned Alignment, Type *Ty, bool IsAtomic) {
if (IsAtomic) {
// For atomic operations, the alignment must match the size of the type.
if (Ty->isIntegerTy()) {
unsigned Bits = Ty->getIntegerBitWidth();
return Bits % 8 == 0 && Alignment == Bits / 8;
}
return (Ty->isDoubleTy() && Alignment == 8) ||
(Ty->isFloatTy() && Alignment == 4);
}
// Non-atomic integer operations must always use "align 1", since we
// do not want the backend to generate code with non-portable
// undefined behaviour (such as misaligned access faults) if user
// code specifies "align 4" but uses a misaligned pointer. As a
// concession to performance, we allow larger alignment values for
// floating point types.
//
// To reduce the set of alignment values that need to be encoded in
// pexes, we disallow other alignment values. We require alignments
// to be explicit by disallowing Alignment == 0.
return Alignment == 1 ||
(Ty->isDoubleTy() && Alignment == 8) ||
(Ty->isFloatTy() && Alignment == 4);
}
// Check the instruction's opcode and its operands. The operands may
// require opcode-specific checking.
//
// This returns an error string if the instruction is rejected, or
// NULL if the instruction is allowed.
const char *PNaClABIVerifyFunctions::checkInstruction(const Instruction *Inst) {
// If the instruction has a single pointer operand, PtrOperandIndex is
// set to its operand index.
unsigned PtrOperandIndex = -1;
switch (Inst->getOpcode()) {
// Disallowed instructions. Default is to disallow.
// We expand GetElementPtr out into arithmetic.
case Instruction::GetElementPtr:
// VAArg is expanded out by ExpandVarArgs.
case Instruction::VAArg:
// Zero-cost C++ exception handling is not supported yet.
case Instruction::Invoke:
case Instruction::LandingPad:
case Instruction::Resume:
// indirectbr may interfere with streaming
case Instruction::IndirectBr:
// No vector instructions yet
case Instruction::ExtractElement:
case Instruction::InsertElement:
case Instruction::ShuffleVector:
// ExtractValue and InsertValue operate on struct values.
case Instruction::ExtractValue:
case Instruction::InsertValue:
return "bad instruction opcode";
default:
return "unknown instruction opcode";
// Terminator instructions
case Instruction::Ret:
case Instruction::Br:
case Instruction::Unreachable:
// Binary operations
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
// Bitwise binary operations
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
// Memory instructions
case Instruction::Fence:
// Conversion operations
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::UIToFP:
case Instruction::SIToFP:
// Other operations
case Instruction::ICmp:
case Instruction::FCmp:
case Instruction::PHI:
case Instruction::Select:
break;
// Memory accesses.
case Instruction::Load: {
const LoadInst *Load = cast<LoadInst>(Inst);
if (!isAllowedAlignment(Load->getAlignment(),
Load->getType(),
Load->isAtomic()))
return "bad alignment";
PtrOperandIndex = 0;
if (!isNormalizedPtr(Inst->getOperand(PtrOperandIndex)))
return "bad pointer";
break;
}
case Instruction::Store: {
const StoreInst *Store = cast<StoreInst>(Inst);
if (!isAllowedAlignment(Store->getAlignment(),
Store->getValueOperand()->getType(),
Store->isAtomic()))
return "bad alignment";
PtrOperandIndex = 1;
if (!isNormalizedPtr(Inst->getOperand(PtrOperandIndex)))
return "bad pointer";
break;
}
case Instruction::AtomicCmpXchg:
case Instruction::AtomicRMW:
PtrOperandIndex = 0;
if (!isNormalizedPtr(Inst->getOperand(PtrOperandIndex)))
return "bad pointer";
break;
// Casts.
case Instruction::BitCast:
if (Inst->getType()->isPointerTy()) {
PtrOperandIndex = 0;
if (!isInherentPtr(Inst->getOperand(PtrOperandIndex)))
return "operand not InherentPtr";
}
break;
case Instruction::IntToPtr:
if (!cast<IntToPtrInst>(Inst)->getSrcTy()->isIntegerTy(32))
return "non-i32 inttoptr";
break;
case Instruction::PtrToInt:
PtrOperandIndex = 0;
if (!isInherentPtr(Inst->getOperand(PtrOperandIndex)))
return "operand not InherentPtr";
if (!Inst->getType()->isIntegerTy(32))
return "non-i32 ptrtoint";
break;
case Instruction::Alloca: {
if (!cast<AllocaInst>(Inst)->getAllocatedType()->isIntegerTy(8))
return "non-i8 alloca";
break;
}
case Instruction::Call: {
const CallInst *Call = cast<CallInst>(Inst);
if (Call->isInlineAsm())
return "inline assembly";
if (!Call->getAttributes().isEmpty())
return "bad call attributes";
if (Call->getCallingConv() != CallingConv::C)
return "bad calling convention";
// Intrinsic calls can have multiple pointer arguments and
// metadata arguments, so handle them specially.
if (const IntrinsicInst *Call = dyn_cast<IntrinsicInst>(Inst)) {
for (unsigned ArgNum = 0, E = Call->getNumArgOperands();
ArgNum < E; ++ArgNum) {
const Value *Arg = Call->getArgOperand(ArgNum);
if (!(isValidScalarOperand(Arg) ||
isNormalizedPtr(Arg) ||
isa<MDNode>(Arg)))
return "bad intrinsic operand";
}
// Disallow alignments other than 1 on memcpy() etc., for the
// same reason that we disallow them on integer loads and
// stores.
if (const MemIntrinsic *MemOp = dyn_cast<MemIntrinsic>(Call)) {
// Avoid the getAlignment() method here because it aborts if
// the alignment argument is not a Constant.
Value *AlignArg = MemOp->getArgOperand(3);
if (!isa<ConstantInt>(AlignArg) ||
cast<ConstantInt>(AlignArg)->getZExtValue() != 1) {
return "bad alignment";
}
}
// Allow the instruction and skip the later checks.
return NULL;
}
// The callee is the last operand.
PtrOperandIndex = Inst->getNumOperands() - 1;
if (!isNormalizedPtr(Inst->getOperand(PtrOperandIndex)))
return "bad function callee operand";
break;
}
case Instruction::Switch: {
// SwitchInst represents switch cases using array and vector
// constants, which we normally reject, so we must check
// SwitchInst specially here.
const SwitchInst *Switch = cast<SwitchInst>(Inst);
if (!isValidScalarOperand(Switch->getCondition()))
return "bad switch condition";
// SwitchInst requires the cases to be ConstantInts, but it
// doesn't require their types to be the same as the condition
// value, so check all the cases too.
for (SwitchInst::ConstCaseIt Case = Switch->case_begin(),
E = Switch->case_end(); Case != E; ++Case) {
IntegersSubset CaseRanges = Case.getCaseValueEx();
for (unsigned I = 0, E = CaseRanges.getNumItems(); I < E ; ++I) {
if (!isValidScalarOperand(
CaseRanges.getItem(I).getLow().toConstantInt()) ||
!isValidScalarOperand(
CaseRanges.getItem(I).getHigh().toConstantInt())) {
return "bad switch case";
}
}
}
// Allow the instruction and skip the later checks.
return NULL;
}
}
// Check the instruction's operands. We have already checked any
// pointer operands. Any remaining operands must be scalars.
for (unsigned OpNum = 0, E = Inst->getNumOperands(); OpNum < E; ++OpNum) {
if (OpNum != PtrOperandIndex &&
!isValidScalarOperand(Inst->getOperand(OpNum)))
return "bad operand";
}
// Check arithmetic attributes.
if (const OverflowingBinaryOperator *Op =
dyn_cast<OverflowingBinaryOperator>(Inst)) {
if (Op->hasNoUnsignedWrap())
return "has \"nuw\" attribute";
if (Op->hasNoSignedWrap())
return "has \"nsw\" attribute";
}
if (const PossiblyExactOperator *Op =
dyn_cast<PossiblyExactOperator>(Inst)) {
if (Op->isExact())
return "has \"exact\" attribute";
}
// Allow the instruction.
return NULL;
}
bool PNaClABIVerifyFunctions::runOnFunction(Function &F) {
SmallVector<StringRef, 8> MDNames;
F.getContext().getMDKindNames(MDNames);
for (Function::const_iterator FI = F.begin(), FE = F.end();
FI != FE; ++FI) {
for (BasicBlock::const_iterator BBI = FI->begin(), BBE = FI->end();
BBI != BBE; ++BBI) {
const Instruction *Inst = BBI;
// Check the instruction opcode first. This simplifies testing,
// because some instruction opcodes must be rejected out of hand
// (regardless of the instruction's result type) and the tests
// check the reason for rejection.
const char *Error = checkInstruction(BBI);
// Check the instruction's result type.
if (!Error && !(PNaClABITypeChecker::isValidScalarType(Inst->getType()) ||
isNormalizedPtr(Inst) ||
isa<AllocaInst>(Inst))) {
Error = "bad result type";
}
if (Error) {
Reporter->addError() << "Function " << F.getName() <<
" disallowed: " << Error << ": " << *BBI << "\n";
}
// Check instruction attachment metadata.
SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst;
BBI->getAllMetadata(MDForInst);
for (unsigned i = 0, e = MDForInst.size(); i != e; i++) {
if (!IsWhitelistedMetadata(MDForInst[i].first)) {
Reporter->addError()
<< "Function " << F.getName()
<< " has disallowed instruction metadata: "
<< getMDNodeString(MDForInst[i].first, MDNames) << "\n";
}
}
}
}
Reporter->checkForFatalErrors();
return false;
}
// This method exists so that the passes can easily be run with opt -analyze.
// In this case the default constructor is used and we want to reset the error
// messages after each print.
void PNaClABIVerifyFunctions::print(llvm::raw_ostream &O, const Module *M)
const {
Reporter->printErrors(O);
Reporter->reset();
}
char PNaClABIVerifyFunctions::ID = 0;
INITIALIZE_PASS(PNaClABIVerifyFunctions, "verify-pnaclabi-functions",
"Verify functions for PNaCl", false, true)
FunctionPass *llvm::createPNaClABIVerifyFunctionsPass(
PNaClABIErrorReporter *Reporter) {
return new PNaClABIVerifyFunctions(Reporter);
}
|