1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
|
//===- FindUsedTypes.cpp - Find all Types used by a module ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass is used to seek out all of the types in use by the program. Note
// that this analysis explicitly does not include types only used by the symbol
// table.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/FindUsedTypes.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
char FindUsedTypes::ID = 0;
INITIALIZE_PASS(FindUsedTypes, "print-used-types",
"Find Used Types", false, true)
// IncorporateType - Incorporate one type and all of its subtypes into the
// collection of used types.
//
void FindUsedTypes::IncorporateType(Type *Ty) {
// If ty doesn't already exist in the used types map, add it now, otherwise
// return.
if (!UsedTypes.insert(Ty)) return; // Already contain Ty.
// Make sure to add any types this type references now.
//
for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
I != E; ++I)
IncorporateType(*I);
}
void FindUsedTypes::IncorporateValue(const Value *V) {
IncorporateType(V->getType());
// If this is a constant, it could be using other types...
if (const Constant *C = dyn_cast<Constant>(V)) {
if (!isa<GlobalValue>(C))
for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
OI != OE; ++OI)
IncorporateValue(*OI);
}
}
// run - This incorporates all types used by the specified module
//
bool FindUsedTypes::runOnModule(Module &m) {
UsedTypes.clear(); // reset if run multiple times...
// Loop over global variables, incorporating their types
for (Module::const_global_iterator I = m.global_begin(), E = m.global_end();
I != E; ++I) {
IncorporateType(I->getType());
if (I->hasInitializer())
IncorporateValue(I->getInitializer());
}
for (Module::iterator MI = m.begin(), ME = m.end(); MI != ME; ++MI) {
IncorporateType(MI->getType());
const Function &F = *MI;
// Loop over all of the instructions in the function, adding their return
// type as well as the types of their operands.
//
for (const_inst_iterator II = inst_begin(F), IE = inst_end(F);
II != IE; ++II) {
const Instruction &I = *II;
IncorporateType(I.getType()); // Incorporate the type of the instruction
for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end();
OI != OE; ++OI)
IncorporateValue(*OI); // Insert inst operand types as well
}
}
return false;
}
// Print the types found in the module. If the optional Module parameter is
// passed in, then the types are printed symbolically if possible, using the
// symbol table from the module.
//
void FindUsedTypes::print(raw_ostream &OS, const Module *M) const {
OS << "Types in use by this module:\n";
for (SetVector<Type *>::const_iterator I = UsedTypes.begin(),
E = UsedTypes.end(); I != E; ++I) {
OS << " " << **I << '\n';
}
}
|