aboutsummaryrefslogtreecommitdiff
path: root/include/llvm/Analysis/ScalarEvolutionExpander.h
blob: 1708cccf3334803046efeddf8098df66d0949305 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
//===---- llvm/Analysis/ScalarEvolutionExpander.h - SCEV Exprs --*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the classes used to generate code from scalar expressions.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H
#define LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H

#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ScalarEvolutionNormalization.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/Support/TargetFolder.h"
#include "llvm/Support/ValueHandle.h"
#include <set>

namespace llvm {
  class TargetTransformInfo;

  /// Return true if the given expression is safe to expand in the sense that
  /// all materialized values are safe to speculate.
  bool isSafeToExpand(const SCEV *S);

  /// SCEVExpander - This class uses information about analyze scalars to
  /// rewrite expressions in canonical form.
  ///
  /// Clients should create an instance of this class when rewriting is needed,
  /// and destroy it when finished to allow the release of the associated
  /// memory.
  class SCEVExpander : public SCEVVisitor<SCEVExpander, Value*> {
    ScalarEvolution &SE;

    // New instructions receive a name to identifies them with the current pass.
    const char* IVName;

    std::map<std::pair<const SCEV *, Instruction *>, AssertingVH<Value> >
      InsertedExpressions;
    std::set<AssertingVH<Value> > InsertedValues;
    std::set<AssertingVH<Value> > InsertedPostIncValues;

    /// RelevantLoops - A memoization of the "relevant" loop for a given SCEV.
    DenseMap<const SCEV *, const Loop *> RelevantLoops;

    /// PostIncLoops - Addrecs referring to any of the given loops are expanded
    /// in post-inc mode. For example, expanding {1,+,1}<L> in post-inc mode
    /// returns the add instruction that adds one to the phi for {0,+,1}<L>,
    /// as opposed to a new phi starting at 1. This is only supported in
    /// non-canonical mode.
    PostIncLoopSet PostIncLoops;

    /// IVIncInsertPos - When this is non-null, addrecs expanded in the
    /// loop it indicates should be inserted with increments at
    /// IVIncInsertPos.
    const Loop *IVIncInsertLoop;

    /// IVIncInsertPos - When expanding addrecs in the IVIncInsertLoop loop,
    /// insert the IV increment at this position.
    Instruction *IVIncInsertPos;

    /// Phis that complete an IV chain. Reuse
    std::set<AssertingVH<PHINode> > ChainedPhis;

    /// CanonicalMode - When true, expressions are expanded in "canonical"
    /// form. In particular, addrecs are expanded as arithmetic based on
    /// a canonical induction variable. When false, expression are expanded
    /// in a more literal form.
    bool CanonicalMode;

    /// When invoked from LSR, the expander is in "strength reduction" mode. The
    /// only difference is that phi's are only reused if they are already in
    /// "expanded" form.
    bool LSRMode;

    typedef IRBuilder<true, TargetFolder> BuilderType;
    BuilderType Builder;

#ifndef NDEBUG
    const char *DebugType;
#endif

    friend struct SCEVVisitor<SCEVExpander, Value*>;

  public:
    /// SCEVExpander - Construct a SCEVExpander in "canonical" mode.
    explicit SCEVExpander(ScalarEvolution &se, const char *name)
      : SE(se), IVName(name), IVIncInsertLoop(0), IVIncInsertPos(0),
        CanonicalMode(true), LSRMode(false),
        Builder(se.getContext(), TargetFolder(se.TD)) {
#ifndef NDEBUG
      DebugType = "";
#endif
    }

#ifndef NDEBUG
    void setDebugType(const char* s) { DebugType = s; }
#endif

    /// clear - Erase the contents of the InsertedExpressions map so that users
    /// trying to expand the same expression into multiple BasicBlocks or
    /// different places within the same BasicBlock can do so.
    void clear() {
      InsertedExpressions.clear();
      InsertedValues.clear();
      InsertedPostIncValues.clear();
      ChainedPhis.clear();
    }

    /// getOrInsertCanonicalInductionVariable - This method returns the
    /// canonical induction variable of the specified type for the specified
    /// loop (inserting one if there is none).  A canonical induction variable
    /// starts at zero and steps by one on each iteration.
    PHINode *getOrInsertCanonicalInductionVariable(const Loop *L, Type *Ty);

    /// getIVIncOperand - Return the induction variable increment's IV operand.
    Instruction *getIVIncOperand(Instruction *IncV, Instruction *InsertPos,
                                 bool allowScale);

    /// hoistIVInc - Utility for hoisting an IV increment.
    bool hoistIVInc(Instruction *IncV, Instruction *InsertPos);

    /// replaceCongruentIVs - replace congruent phis with their most canonical
    /// representative. Return the number of phis eliminated.
    unsigned replaceCongruentIVs(Loop *L, const DominatorTree *DT,
                                 SmallVectorImpl<WeakVH> &DeadInsts,
                                 const TargetTransformInfo *TTI = NULL);

    /// expandCodeFor - Insert code to directly compute the specified SCEV
    /// expression into the program.  The inserted code is inserted into the
    /// specified block.
    Value *expandCodeFor(const SCEV *SH, Type *Ty, Instruction *I);

    /// setIVIncInsertPos - Set the current IV increment loop and position.
    void setIVIncInsertPos(const Loop *L, Instruction *Pos) {
      assert(!CanonicalMode &&
             "IV increment positions are not supported in CanonicalMode");
      IVIncInsertLoop = L;
      IVIncInsertPos = Pos;
    }

    /// setPostInc - Enable post-inc expansion for addrecs referring to the
    /// given loops. Post-inc expansion is only supported in non-canonical
    /// mode.
    void setPostInc(const PostIncLoopSet &L) {
      assert(!CanonicalMode &&
             "Post-inc expansion is not supported in CanonicalMode");
      PostIncLoops = L;
    }

    /// clearPostInc - Disable all post-inc expansion.
    void clearPostInc() {
      PostIncLoops.clear();

      // When we change the post-inc loop set, cached expansions may no
      // longer be valid.
      InsertedPostIncValues.clear();
    }

    /// disableCanonicalMode - Disable the behavior of expanding expressions in
    /// canonical form rather than in a more literal form. Non-canonical mode
    /// is useful for late optimization passes.
    void disableCanonicalMode() { CanonicalMode = false; }

    void enableLSRMode() { LSRMode = true; }

    /// clearInsertPoint - Clear the current insertion point. This is useful
    /// if the instruction that had been serving as the insertion point may
    /// have been deleted.
    void clearInsertPoint() {
      Builder.ClearInsertionPoint();
    }

    /// isInsertedInstruction - Return true if the specified instruction was
    /// inserted by the code rewriter.  If so, the client should not modify the
    /// instruction.
    bool isInsertedInstruction(Instruction *I) const {
      return InsertedValues.count(I) || InsertedPostIncValues.count(I);
    }

    void setChainedPhi(PHINode *PN) { ChainedPhis.insert(PN); }

  private:
    LLVMContext &getContext() const { return SE.getContext(); }

    /// InsertBinop - Insert the specified binary operator, doing a small amount
    /// of work to avoid inserting an obviously redundant operation.
    Value *InsertBinop(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS);

    /// ReuseOrCreateCast - Arange for there to be a cast of V to Ty at IP,
    /// reusing an existing cast if a suitable one exists, moving an existing
    /// cast if a suitable one exists but isn't in the right place, or
    /// or creating a new one.
    Value *ReuseOrCreateCast(Value *V, Type *Ty,
                             Instruction::CastOps Op,
                             BasicBlock::iterator IP);

    /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
    /// which must be possible with a noop cast, doing what we can to
    /// share the casts.
    Value *InsertNoopCastOfTo(Value *V, Type *Ty);

    /// expandAddToGEP - Expand a SCEVAddExpr with a pointer type into a GEP
    /// instead of using ptrtoint+arithmetic+inttoptr.
    Value *expandAddToGEP(const SCEV *const *op_begin,
                          const SCEV *const *op_end,
                          PointerType *PTy, Type *Ty, Value *V);

    Value *expand(const SCEV *S);

    /// expandCodeFor - Insert code to directly compute the specified SCEV
    /// expression into the program.  The inserted code is inserted into the
    /// SCEVExpander's current insertion point. If a type is specified, the
    /// result will be expanded to have that type, with a cast if necessary.
    Value *expandCodeFor(const SCEV *SH, Type *Ty = 0);

    /// getRelevantLoop - Determine the most "relevant" loop for the given SCEV.
    const Loop *getRelevantLoop(const SCEV *);

    Value *visitConstant(const SCEVConstant *S) {
      return S->getValue();
    }

    Value *visitTruncateExpr(const SCEVTruncateExpr *S);

    Value *visitZeroExtendExpr(const SCEVZeroExtendExpr *S);

    Value *visitSignExtendExpr(const SCEVSignExtendExpr *S);

    Value *visitAddExpr(const SCEVAddExpr *S);

    Value *visitMulExpr(const SCEVMulExpr *S);

    Value *visitUDivExpr(const SCEVUDivExpr *S);

    Value *visitAddRecExpr(const SCEVAddRecExpr *S);

    Value *visitSMaxExpr(const SCEVSMaxExpr *S);

    Value *visitUMaxExpr(const SCEVUMaxExpr *S);

    Value *visitUnknown(const SCEVUnknown *S) {
      return S->getValue();
    }

    void rememberInstruction(Value *I);

    void restoreInsertPoint(BasicBlock *BB, BasicBlock::iterator I);

    bool isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);

    bool isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);

    Value *expandAddRecExprLiterally(const SCEVAddRecExpr *);
    PHINode *getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
                                       const Loop *L,
                                       Type *ExpandTy,
                                       Type *IntTy);
    Value *expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
                       Type *ExpandTy, Type *IntTy, bool useSubtract);
  };
}

#endif