1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
|
//===- llvm/ADT/TinyPtrVector.h - 'Normally tiny' vectors -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_TINYPTRVECTOR_H
#define LLVM_ADT_TINYPTRVECTOR_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Compiler.h"
namespace llvm {
/// TinyPtrVector - This class is specialized for cases where there are
/// normally 0 or 1 element in a vector, but is general enough to go beyond that
/// when required.
///
/// NOTE: This container doesn't allow you to store a null pointer into it.
///
template <typename EltTy>
class TinyPtrVector {
public:
typedef llvm::SmallVector<EltTy, 4> VecTy;
typedef typename VecTy::value_type value_type;
llvm::PointerUnion<EltTy, VecTy*> Val;
TinyPtrVector() {}
~TinyPtrVector() {
if (VecTy *V = Val.template dyn_cast<VecTy*>())
delete V;
}
TinyPtrVector(const TinyPtrVector &RHS) : Val(RHS.Val) {
if (VecTy *V = Val.template dyn_cast<VecTy*>())
Val = new VecTy(*V);
}
TinyPtrVector &operator=(const TinyPtrVector &RHS) {
if (this == &RHS)
return *this;
if (RHS.empty()) {
this->clear();
return *this;
}
// Try to squeeze into the single slot. If it won't fit, allocate a copied
// vector.
if (Val.template is<EltTy>()) {
if (RHS.size() == 1)
Val = RHS.front();
else
Val = new VecTy(*RHS.Val.template get<VecTy*>());
return *this;
}
// If we have a full vector allocated, try to re-use it.
if (RHS.Val.template is<EltTy>()) {
Val.template get<VecTy*>()->clear();
Val.template get<VecTy*>()->push_back(RHS.front());
} else {
*Val.template get<VecTy*>() = *RHS.Val.template get<VecTy*>();
}
return *this;
}
#if LLVM_HAS_RVALUE_REFERENCES
TinyPtrVector(TinyPtrVector &&RHS) : Val(RHS.Val) {
RHS.Val = (EltTy)0;
}
TinyPtrVector &operator=(TinyPtrVector &&RHS) {
if (this == &RHS)
return *this;
if (RHS.empty()) {
this->clear();
return *this;
}
// If this vector has been allocated on the heap, re-use it if cheap. If it
// would require more copying, just delete it and we'll steal the other
// side.
if (VecTy *V = Val.template dyn_cast<VecTy*>()) {
if (RHS.Val.template is<EltTy>()) {
V->clear();
V->push_back(RHS.front());
return *this;
}
delete V;
}
Val = RHS.Val;
RHS.Val = (EltTy)0;
return *this;
}
#endif
// implicit conversion operator to ArrayRef.
operator ArrayRef<EltTy>() const {
if (Val.isNull())
return ArrayRef<EltTy>();
if (Val.template is<EltTy>())
return *Val.getAddrOfPtr1();
return *Val.template get<VecTy*>();
}
bool empty() const {
// This vector can be empty if it contains no element, or if it
// contains a pointer to an empty vector.
if (Val.isNull()) return true;
if (VecTy *Vec = Val.template dyn_cast<VecTy*>())
return Vec->empty();
return false;
}
unsigned size() const {
if (empty())
return 0;
if (Val.template is<EltTy>())
return 1;
return Val.template get<VecTy*>()->size();
}
typedef const EltTy *const_iterator;
typedef EltTy *iterator;
iterator begin() {
if (Val.template is<EltTy>())
return Val.getAddrOfPtr1();
return Val.template get<VecTy *>()->begin();
}
iterator end() {
if (Val.template is<EltTy>())
return begin() + (Val.isNull() ? 0 : 1);
return Val.template get<VecTy *>()->end();
}
const_iterator begin() const {
return (const_iterator)const_cast<TinyPtrVector*>(this)->begin();
}
const_iterator end() const {
return (const_iterator)const_cast<TinyPtrVector*>(this)->end();
}
EltTy operator[](unsigned i) const {
assert(!Val.isNull() && "can't index into an empty vector");
if (EltTy V = Val.template dyn_cast<EltTy>()) {
assert(i == 0 && "tinyvector index out of range");
return V;
}
assert(i < Val.template get<VecTy*>()->size() &&
"tinyvector index out of range");
return (*Val.template get<VecTy*>())[i];
}
EltTy front() const {
assert(!empty() && "vector empty");
if (EltTy V = Val.template dyn_cast<EltTy>())
return V;
return Val.template get<VecTy*>()->front();
}
EltTy back() const {
assert(!empty() && "vector empty");
if (EltTy V = Val.template dyn_cast<EltTy>())
return V;
return Val.template get<VecTy*>()->back();
}
void push_back(EltTy NewVal) {
assert(NewVal != 0 && "Can't add a null value");
// If we have nothing, add something.
if (Val.isNull()) {
Val = NewVal;
return;
}
// If we have a single value, convert to a vector.
if (EltTy V = Val.template dyn_cast<EltTy>()) {
Val = new VecTy();
Val.template get<VecTy*>()->push_back(V);
}
// Add the new value, we know we have a vector.
Val.template get<VecTy*>()->push_back(NewVal);
}
void pop_back() {
// If we have a single value, convert to empty.
if (Val.template is<EltTy>())
Val = (EltTy)0;
else if (VecTy *Vec = Val.template get<VecTy*>())
Vec->pop_back();
}
void clear() {
// If we have a single value, convert to empty.
if (Val.template is<EltTy>()) {
Val = (EltTy)0;
} else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
// If we have a vector form, just clear it.
Vec->clear();
}
// Otherwise, we're already empty.
}
iterator erase(iterator I) {
assert(I >= begin() && "Iterator to erase is out of bounds.");
assert(I < end() && "Erasing at past-the-end iterator.");
// If we have a single value, convert to empty.
if (Val.template is<EltTy>()) {
if (I == begin())
Val = (EltTy)0;
} else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
// multiple items in a vector; just do the erase, there is no
// benefit to collapsing back to a pointer
return Vec->erase(I);
}
return end();
}
iterator erase(iterator S, iterator E) {
assert(S >= begin() && "Range to erase is out of bounds.");
assert(S <= E && "Trying to erase invalid range.");
assert(E <= end() && "Trying to erase past the end.");
if (Val.template is<EltTy>()) {
if (S == begin() && S != E)
Val = (EltTy)0;
} else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
return Vec->erase(S, E);
}
return end();
}
iterator insert(iterator I, const EltTy &Elt) {
assert(I >= this->begin() && "Insertion iterator is out of bounds.");
assert(I <= this->end() && "Inserting past the end of the vector.");
if (I == end()) {
push_back(Elt);
return llvm::prior(end());
}
assert(!Val.isNull() && "Null value with non-end insert iterator.");
if (EltTy V = Val.template dyn_cast<EltTy>()) {
assert(I == begin());
Val = Elt;
push_back(V);
return begin();
}
return Val.template get<VecTy*>()->insert(I, Elt);
}
template<typename ItTy>
iterator insert(iterator I, ItTy From, ItTy To) {
assert(I >= this->begin() && "Insertion iterator is out of bounds.");
assert(I <= this->end() && "Inserting past the end of the vector.");
if (From == To)
return I;
// If we have a single value, convert to a vector.
ptrdiff_t Offset = I - begin();
if (Val.isNull()) {
if (llvm::next(From) == To) {
Val = *From;
return begin();
}
Val = new VecTy();
} else if (EltTy V = Val.template dyn_cast<EltTy>()) {
Val = new VecTy();
Val.template get<VecTy*>()->push_back(V);
}
return Val.template get<VecTy*>()->insert(begin() + Offset, From, To);
}
};
} // end namespace llvm
#endif
|