Age | Commit message (Collapse) | Author |
|
When Reassociator optimize "(x | C1)" ^ "(X & C2)", it may swap the two
subexpressions, however, it forgot to swap cached constants (of C1 and C2)
accordingly.
rdar://13739160
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180676 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
invalidation in Reassociate.
I brazenly think this change is slightly simpler than r178793 because:
- no "state" in functor
- "OpndPtrs[i]" looks simpler than "&Opnds[OpndIndices[i]]"
While I can reproduce the probelm in Valgrind, it is rather difficult to come up
a standalone testing case. The reason is that when an iterator is invalidated,
the stale invalidated elements are not yet clobbered by nonsense data, so the
optimizer can still proceed successfully.
Thank Benjamin for fixing this bug and generously providing the test case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179062 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
OpndPtrs stored pointers into the Opnd vector that became invalid when the
vector grows. Store indices instead. Sadly I only have a large testcase that
only triggers under valgrind, so I didn't include it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178793 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178484 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
rule 1: (x | c1) ^ c2 => (x & ~c1) ^ (c1^c2),
only useful when c1=c2
rule 2: (x & c1) ^ (x & c2) = (x & (c1^c2))
rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
rule 4: (x | c1) ^ (x & c2) => (x & c3) ^ c1, where c3 = ~c1 ^ c2
It reduces an application's size (in terms of # of instructions) by 8.9%.
Reviwed by Pete Cooper. Thanks a lot!
rdar://13212115
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178409 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
removed in commit 168035, but I missed this bit).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168292 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
operands of the expression being written was wrongly thought to be reusable as
an inner node of the expression resulting in it turning up as both an inner node
*and* a leaf, creating a cycle in the def-use graph. This would have caused the
verifier to blow up if things had gotten that far, however it managed to provoke
an infinite loop first.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168291 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
the utility for extracting a chain of operations from the IR, thought that it
might as well combine any constants it came across (rather than just returning
them along with everything else). On the other hand, the factorization code
would like to see the individual constants (this is quite reasonable: it is
much easier to pull a factor of 3 out of 2*3 than it is to pull it out of 6;
you may think 6/3 isn't so hard, but due to overflow it's not as easy to undo
multiplications of constants as it may at first appear). This patch therefore
makes LinearizeExprTree stupider: it now leaves optimizing to the optimization
part of reassociate, and sticks to just analysing the IR.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168035 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167787 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
Reassociate pass.
The assertion is trigged when the Reassociater tries to transform expression
... + 2 * n * 3 + 2 * m + ...
into:
... + 2 * (n*3 + m).
In the process of the transformation, a helper routine folds the constant 2*3 into 6,
confusing optimizer which is trying the to eliminate the common factor 2, and cannot
find 2 any more.
Review is pending. But I'd like commit first in order to help those who are waiting
for this fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167740 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
is a temporary measure until my fix for PR13021 is ready.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160778 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160668 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160629 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
really happening. No intended functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159451 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
the optimizers producing a multiply expression with more multiplications than
the original (!).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159426 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
This was always part of the VMCore library out of necessity -- it deals
entirely in the IR. The .cpp file in fact was already part of the VMCore
library. This is just a mechanical move.
I've tried to go through and re-apply the coding standard's preferred
header sort, but at 40-ish files, I may have gotten some wrong. Please
let me know if so.
I'll be committing the corresponding updates to Clang and Polly, and
Duncan has DragonEgg.
Thanks to Bill and Eric for giving the green light for this bit of cleanup.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159421 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
before the expression root. Any existing operators that are changed to use one
of them needs to be moved between it and the expression root, and recursively
for the operators using that one. When I rewrote RewriteExprTree I accidentally
inverted the logic, resulting in the compacting going down from operators to
operands rather than up from operands to the operators using them, oops. Fix
this, resolving PR12963.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159265 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159096 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
example degenerate phi nodes and binops that use themselves in unreachable code.
Thanks to Charles Davis for the testcase that uncovered this can of worms.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158508 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
combine to the absorbing element. Thanks to nbjoerg on IRC for pointing this
out.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158399 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
since then the entire expression must equal zero (similarly for other operations
with an absorbing element). With this in place a bunch of reassociate code for
handling constants is dead since it is all taken care of when linearizing. No
intended functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158398 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158371 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
POD type, causing memory corruption when mapping to APInts with bitwidth > 64.
Merge another crash testcase into crash.ll while there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158369 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
topologies, it is quite possible for a leaf node to have huge multiplicity, for
example: x0 = x*x, x1 = x0*x0, x2 = x1*x1, ... rapidly gives a value which is x
raised to a vast power (the multiplicity, or weight, of x). This patch fixes
the computation of weights by correctly computing them no matter how big they
are, rather than just overflowing and getting a wrong value. It turns out that
the weight for a value never needs more bits to represent than the value itself,
so it is enough to represent weights as APInts of the same bitwidth and do the
right overflow-avoiding dance steps when computing weights. As a side-effect it
reduces the number of multiplies needed in some cases of large powers. While
there, in view of external uses (eg by the vectorizer) I made LinearizeExprTree
static, pushing the rank computation out into users. This is progress towards
fixing PR13021.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158358 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
problem was that by moving instructions around inside the function, the pass
could accidentally move the iterator being used to advance over the function
too. Fix this by only processing the instruction equal to the iterator, and
leaving processing of instructions that might not be equal to the iterator
to later (later = after traversing the basic block; it could also wait until
after traversing the entire function, but this might make the sets quite big).
Original commit message:
Grab-bag of reassociate tweaks. Unify handling of dead instructions and
instructions to reoptimize. Exploit this to more systematically eliminate
dead instructions (this isn't very useful in practice but is convenient for
analysing some testcase I am working on). No need for WeakVH any more: use
an AssertingVH instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158226 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
can move instructions within the instruction list. If the instruction just
happens to be the one the basic block iterator is pointing to, and it is
moved to a different basic block, then we get into an infinite loop due to
the iterator running off the end of the basic block (for some reason this
doesn't fire any assertions). Original commit message:
Grab-bag of reassociate tweaks. Unify handling of dead instructions and
instructions to reoptimize. Exploit this to more systematically eliminate
dead instructions (this isn't very useful in practice but is convenient for
analysing some testcase I am working on). No need for WeakVH any more: use
an AssertingVH instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158199 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
instructions to reoptimize. Exploit this to more systematically eliminate
dead instructions (this isn't very useful in practice but is convenient for
analysing some testcase I am working on). No need for WeakVH any more: use
an AssertingVH instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158073 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157885 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
then it doesn't alter the instructions composing it, however it would continue
to move the instructions to just before the expression root. Ensure it doesn't
move them either, so now it really does nothing if there is nothing to do. That
commit also ensured that nsw etc flags weren't cleared if the expression was not
being changed. Tweak this a bit so that it doesn't clear flags on the initial
part of a computation either if that part didn't change but later bits did.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157518 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
which operands come flying out of the linearization stage.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157512 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
with arbitrary topologies (previously it would give up when hitting a diamond
in the use graph for example). The testcase from PR12764 is now reduced from
a pile of additions to the optimal 1617*%x0+208. In doing this I changed the
previous strategy of dropping all uses for expression leaves to one of dropping
all but one use. This works out more neatly (but required a bunch of tweaks)
and is also safer: some recently fixed bugs during recursive linearization were
because the linearization code thinks it completely owns a node if it has no uses
outside the expression it is linearizing. But if the node was also in another
expression that had been linearized (and thus all uses of the node from that
expression dropped) then the conclusion that it is completely owned by the
expression currently being linearized is wrong. Keeping one use from within each
linearized expression avoids this kind of mistake.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157467 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
replace the operands of expressions with only one use with undef and generate
a new expression for the original without using RAUW to update the original.
Thus any copies of the original expression held in a vector may end up
referring to some bogus value - and using a ValueHandle won't help since there
is no RAUW. There is already a mechanism for getting the effect of recursion
non-recursively: adding the value to be recursed on to RedoInsts. But it wasn't
being used systematically. Have various places where recursion had snuck in at
some point use the RedoInsts mechanism instead. Fixes PR12169.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156379 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
order of their operands across instructions. This allows for greater CSE opportunities.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156323 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
Also combine the code in the 'assert' statement.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156155 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156034 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
methods. Use a weak value handle to keep up with this.
PR12245
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155984 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
elements to minimize the number of multiplies required to compute the
final result. This uses a heuristic to attempt to form near-optimal
binary exponentiation-style multiply chains. While there are some cases
it misses, it seems to at least a decent job on a very diverse range of
inputs.
Initial benchmarks show no interesting regressions, and an 8%
improvement on SPASS. Let me know if any other interesting results (in
either direction) crop up!
Credit to Richard Smith for the core algorithm, and helping code the
patch itself.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155616 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153429 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
when building with assertions disabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137460 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
llvm-gcc buildbots on i386. Devang is looking into the root cause.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136674 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136503 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136480 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135251 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130450 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
reassociation opportunities are exposed. This fixes a bug where
the nested reassociation expects to be the IR to be consistent,
but it isn't, because the outer reassociation has disconnected
some of the operands. rdar://9167457
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129324 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
Value, not an Instruction, so casting is not necessary. Also,
it's theoretically possible that the Value is not an
Instruction, since WeakVH follows RAUWs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127427 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
after it has finished all of its reassociations, because its
habit of unlinking operands and holding them in a datastructure
while working means that it's not easy to determine when an
instruction is really dead until after all its regular work is
done. rdar://9096268.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127424 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
it swaps the LHS/RHS of a single binop.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125700 91177308-0d34-0410-b5e6-96231b3b80d8
|