aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms')
-rw-r--r--lib/Transforms/Hello/Hello.cpp2
-rw-r--r--lib/Transforms/IPO/ArgumentPromotion.cpp28
-rw-r--r--lib/Transforms/IPO/ConstantMerge.cpp8
-rw-r--r--lib/Transforms/IPO/DeadArgumentElimination.cpp42
-rw-r--r--lib/Transforms/IPO/ExtractGV.cpp8
-rw-r--r--lib/Transforms/IPO/FunctionAttrs.cpp30
-rw-r--r--lib/Transforms/IPO/GlobalDCE.cpp4
-rw-r--r--lib/Transforms/IPO/GlobalOpt.cpp158
-rw-r--r--lib/Transforms/IPO/IPConstantPropagation.cpp6
-rw-r--r--lib/Transforms/IPO/InlineAlways.cpp15
-rw-r--r--lib/Transforms/IPO/InlineSimple.cpp12
-rw-r--r--lib/Transforms/IPO/Inliner.cpp41
-rw-r--r--lib/Transforms/IPO/Internalize.cpp10
-rw-r--r--lib/Transforms/IPO/LoopExtractor.cpp4
-rw-r--r--lib/Transforms/IPO/MergeFunctions.cpp28
-rw-r--r--lib/Transforms/IPO/PartialInlining.cpp4
-rw-r--r--lib/Transforms/IPO/PassManagerBuilder.cpp4
-rw-r--r--lib/Transforms/IPO/PruneEH.cpp18
-rw-r--r--lib/Transforms/IPO/StripDeadPrototypes.cpp2
-rw-r--r--lib/Transforms/IPO/StripSymbols.cpp12
-rw-r--r--lib/Transforms/InstCombine/InstCombine.h12
-rw-r--r--lib/Transforms/InstCombine/InstCombineAddSub.cpp817
-rw-r--r--lib/Transforms/InstCombine/InstCombineAndOrXor.cpp341
-rw-r--r--lib/Transforms/InstCombine/InstCombineCalls.cpp78
-rw-r--r--lib/Transforms/InstCombine/InstCombineCasts.cpp38
-rw-r--r--lib/Transforms/InstCombine/InstCombineCompares.cpp14
-rw-r--r--lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp11
-rw-r--r--lib/Transforms/InstCombine/InstCombineMulDivRem.cpp184
-rw-r--r--lib/Transforms/InstCombine/InstCombinePHI.cpp2
-rw-r--r--lib/Transforms/InstCombine/InstCombineShifts.cpp2
-rw-r--r--lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp262
-rw-r--r--lib/Transforms/InstCombine/InstCombineWorklist.h2
-rw-r--r--lib/Transforms/InstCombine/InstructionCombining.cpp89
-rw-r--r--lib/Transforms/Instrumentation/AddressSanitizer.cpp510
-rw-r--r--lib/Transforms/Instrumentation/BlackList.cpp8
-rw-r--r--lib/Transforms/Instrumentation/BoundsChecking.cpp6
-rw-r--r--lib/Transforms/Instrumentation/EdgeProfiling.cpp7
-rw-r--r--lib/Transforms/Instrumentation/GCOVProfiling.cpp29
-rw-r--r--lib/Transforms/Instrumentation/MaximumSpanningTree.h2
-rw-r--r--lib/Transforms/Instrumentation/MemorySanitizer.cpp514
-rw-r--r--lib/Transforms/Instrumentation/OptimalEdgeProfiling.cpp9
-rw-r--r--lib/Transforms/Instrumentation/PathProfiling.cpp19
-rw-r--r--lib/Transforms/Instrumentation/ProfilingUtils.cpp10
-rw-r--r--lib/Transforms/Instrumentation/ThreadSanitizer.cpp36
-rw-r--r--lib/Transforms/NaCl/ExpandCtors.cpp10
-rw-r--r--lib/Transforms/NaCl/ExpandTls.cpp16
-rw-r--r--lib/Transforms/NaCl/ExpandTlsConstantExpr.cpp6
-rw-r--r--lib/Transforms/Scalar/ADCE.cpp6
-rw-r--r--lib/Transforms/Scalar/BasicBlockPlacement.cpp2
-rw-r--r--lib/Transforms/Scalar/CodeGenPrepare.cpp657
-rw-r--r--lib/Transforms/Scalar/ConstantProp.cpp6
-rw-r--r--lib/Transforms/Scalar/CorrelatedValuePropagation.cpp6
-rw-r--r--lib/Transforms/Scalar/DCE.cpp2
-rw-r--r--lib/Transforms/Scalar/DeadStoreElimination.cpp12
-rw-r--r--lib/Transforms/Scalar/EarlyCSE.cpp4
-rw-r--r--lib/Transforms/Scalar/GVN.cpp12
-rw-r--r--lib/Transforms/Scalar/GlobalMerge.cpp53
-rw-r--r--lib/Transforms/Scalar/IndVarSimplify.cpp14
-rw-r--r--lib/Transforms/Scalar/JumpThreading.cpp12
-rw-r--r--lib/Transforms/Scalar/LICM.cpp51
-rw-r--r--lib/Transforms/Scalar/LoopIdiomRecognize.cpp38
-rw-r--r--lib/Transforms/Scalar/LoopInstSimplify.cpp4
-rw-r--r--lib/Transforms/Scalar/LoopRotation.cpp12
-rw-r--r--lib/Transforms/Scalar/LoopStrengthReduce.cpp449
-rw-r--r--lib/Transforms/Scalar/LoopUnrollPass.cpp21
-rw-r--r--lib/Transforms/Scalar/LoopUnswitch.cpp18
-rw-r--r--lib/Transforms/Scalar/LowerAtomic.cpp6
-rw-r--r--lib/Transforms/Scalar/MemCpyOptimizer.cpp10
-rw-r--r--lib/Transforms/Scalar/NaClCcRewrite.cpp66
-rw-r--r--lib/Transforms/Scalar/ObjCARC.cpp822
-rw-r--r--lib/Transforms/Scalar/Reassociate.cpp12
-rw-r--r--lib/Transforms/Scalar/Reg2Mem.cpp10
-rw-r--r--lib/Transforms/Scalar/SCCP.cpp8
-rw-r--r--lib/Transforms/Scalar/SROA.cpp437
-rw-r--r--lib/Transforms/Scalar/Scalar.cpp2
-rw-r--r--lib/Transforms/Scalar/ScalarReplAggregates.cpp22
-rw-r--r--lib/Transforms/Scalar/SimplifyCFGPass.cpp45
-rw-r--r--lib/Transforms/Scalar/SimplifyLibCalls.cpp8
-rw-r--r--lib/Transforms/Scalar/Sink.cpp2
-rw-r--r--lib/Transforms/Scalar/TailRecursionElimination.cpp12
-rw-r--r--lib/Transforms/Utils/AddrModeMatcher.cpp577
-rw-r--r--lib/Transforms/Utils/BasicBlockUtils.cpp12
-rw-r--r--lib/Transforms/Utils/BreakCriticalEdges.cpp6
-rw-r--r--lib/Transforms/Utils/BuildLibCalls.cpp84
-rw-r--r--lib/Transforms/Utils/BypassSlowDivision.cpp6
-rw-r--r--lib/Transforms/Utils/CMakeLists.txt1
-rw-r--r--lib/Transforms/Utils/CloneFunction.cpp16
-rw-r--r--lib/Transforms/Utils/CloneModule.cpp6
-rw-r--r--lib/Transforms/Utils/CmpInstAnalysis.cpp4
-rw-r--r--lib/Transforms/Utils/CodeExtractor.cpp12
-rw-r--r--lib/Transforms/Utils/DemoteRegToStack.cpp13
-rw-r--r--lib/Transforms/Utils/InlineFunction.cpp18
-rw-r--r--lib/Transforms/Utils/InstructionNamer.cpp4
-rw-r--r--lib/Transforms/Utils/IntegerDivision.cpp8
-rw-r--r--lib/Transforms/Utils/LCSSA.cpp6
-rw-r--r--lib/Transforms/Utils/Local.cpp102
-rw-r--r--lib/Transforms/Utils/LoopSimplify.cpp12
-rw-r--r--lib/Transforms/Utils/LoopUnroll.cpp2
-rw-r--r--lib/Transforms/Utils/LoopUnrollRuntime.cpp2
-rw-r--r--lib/Transforms/Utils/LowerExpectIntrinsic.cpp16
-rw-r--r--lib/Transforms/Utils/LowerInvoke.cpp12
-rw-r--r--lib/Transforms/Utils/LowerSwitch.cpp8
-rw-r--r--lib/Transforms/Utils/Mem2Reg.cpp4
-rw-r--r--lib/Transforms/Utils/MetaRenamer.cpp11
-rw-r--r--lib/Transforms/Utils/ModuleUtils.cpp8
-rw-r--r--lib/Transforms/Utils/PromoteMemoryToRegister.cpp12
-rw-r--r--lib/Transforms/Utils/SSAUpdater.cpp6
-rw-r--r--lib/Transforms/Utils/SimplifyCFG.cpp104
-rw-r--r--lib/Transforms/Utils/SimplifyIndVar.cpp4
-rw-r--r--lib/Transforms/Utils/SimplifyInstructions.cpp6
-rw-r--r--lib/Transforms/Utils/SimplifyLibCalls.cpp16
-rw-r--r--lib/Transforms/Utils/UnifyFunctionExitNodes.cpp8
-rw-r--r--lib/Transforms/Utils/ValueMapper.cpp10
-rw-r--r--lib/Transforms/Vectorize/BBVectorize.cpp174
-rw-r--r--lib/Transforms/Vectorize/LoopVectorize.cpp1788
-rw-r--r--lib/Transforms/Vectorize/LoopVectorize.h458
-rw-r--r--lib/Transforms/Vectorize/Vectorize.cpp2
117 files changed, 6172 insertions, 3677 deletions
diff --git a/lib/Transforms/Hello/Hello.cpp b/lib/Transforms/Hello/Hello.cpp
index d0b146b4e9..9f2343b3b3 100644
--- a/lib/Transforms/Hello/Hello.cpp
+++ b/lib/Transforms/Hello/Hello.cpp
@@ -14,7 +14,7 @@
#define DEBUG_TYPE "hello"
#include "llvm/ADT/Statistic.h"
-#include "llvm/Function.h"
+#include "llvm/IR/Function.h"
#include "llvm/Pass.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
diff --git a/lib/Transforms/IPO/ArgumentPromotion.cpp b/lib/Transforms/IPO/ArgumentPromotion.cpp
index 2132e0a5fe..385544af3f 100644
--- a/lib/Transforms/IPO/ArgumentPromotion.cpp
+++ b/lib/Transforms/IPO/ArgumentPromotion.cpp
@@ -36,12 +36,12 @@
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CallGraph.h"
-#include "llvm/CallGraphSCCPass.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
+#include "llvm/Analysis/CallGraphSCCPass.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
@@ -153,8 +153,8 @@ CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
SmallPtrSet<Argument*, 8> ArgsToPromote;
SmallPtrSet<Argument*, 8> ByValArgsToTransform;
for (unsigned i = 0; i != PointerArgs.size(); ++i) {
- bool isByVal=F->getParamAttributes(PointerArgs[i].second+1).
- hasAttribute(Attributes::ByVal);
+ bool isByVal=F->getAttributes().
+ hasAttribute(PointerArgs[i].second+1, Attribute::ByVal);
Argument *PtrArg = PointerArgs[i].first;
Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
@@ -511,14 +511,14 @@ CallGraphNode *ArgPromotion::DoPromotion(Function *F,
// what the new GEP/Load instructions we are inserting look like.
std::map<IndicesVector, LoadInst*> OriginalLoads;
- // Attributes - Keep track of the parameter attributes for the arguments
+ // Attribute - Keep track of the parameter attributes for the arguments
// that we are *not* promoting. For the ones that we do promote, the parameter
// attributes are lost
SmallVector<AttributeWithIndex, 8> AttributesVec;
const AttributeSet &PAL = F->getAttributes();
// Add any return attributes.
- Attributes attrs = PAL.getRetAttributes();
+ Attribute attrs = PAL.getRetAttributes();
if (attrs.hasAttributes())
AttributesVec.push_back(AttributeWithIndex::get(AttributeSet::ReturnIndex,
attrs));
@@ -537,7 +537,7 @@ CallGraphNode *ArgPromotion::DoPromotion(Function *F,
} else if (!ArgsToPromote.count(I)) {
// Unchanged argument
Params.push_back(I->getType());
- Attributes attrs = PAL.getParamAttributes(ArgIndex);
+ Attribute attrs = PAL.getParamAttributes(ArgIndex);
if (attrs.hasAttributes())
AttributesVec.push_back(AttributeWithIndex::get(Params.size(), attrs));
} else if (I->use_empty()) {
@@ -639,7 +639,7 @@ CallGraphNode *ArgPromotion::DoPromotion(Function *F,
const AttributeSet &CallPAL = CS.getAttributes();
// Add any return attributes.
- Attributes attrs = CallPAL.getRetAttributes();
+ Attribute attrs = CallPAL.getRetAttributes();
if (attrs.hasAttributes())
AttributesVec.push_back(AttributeWithIndex::get(AttributeSet::ReturnIndex,
attrs));
@@ -653,7 +653,7 @@ CallGraphNode *ArgPromotion::DoPromotion(Function *F,
if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
Args.push_back(*AI); // Unmodified argument
- Attributes Attrs = CallPAL.getParamAttributes(ArgIndex);
+ Attribute Attrs = CallPAL.getParamAttributes(ArgIndex);
if (Attrs.hasAttributes())
AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
@@ -715,7 +715,7 @@ CallGraphNode *ArgPromotion::DoPromotion(Function *F,
// Push any varargs arguments on the list.
for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
Args.push_back(*AI);
- Attributes Attrs = CallPAL.getParamAttributes(ArgIndex);
+ Attribute Attrs = CallPAL.getParamAttributes(ArgIndex);
if (Attrs.hasAttributes())
AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
}
diff --git a/lib/Transforms/IPO/ConstantMerge.cpp b/lib/Transforms/IPO/ConstantMerge.cpp
index d30eeaf7d3..8336d3ad34 100644
--- a/lib/Transforms/IPO/ConstantMerge.cpp
+++ b/lib/Transforms/IPO/ConstantMerge.cpp
@@ -23,10 +23,10 @@
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/Constants.h"
-#include "llvm/DataLayout.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Module.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
using namespace llvm;
diff --git a/lib/Transforms/IPO/DeadArgumentElimination.cpp b/lib/Transforms/IPO/DeadArgumentElimination.cpp
index 6236a04fc2..4757ce8093 100644
--- a/lib/Transforms/IPO/DeadArgumentElimination.cpp
+++ b/lib/Transforms/IPO/DeadArgumentElimination.cpp
@@ -23,15 +23,15 @@
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
-#include "llvm/CallingConv.h"
-#include "llvm/Constant.h"
#include "llvm/DIBuilder.h"
#include "llvm/DebugInfo.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
@@ -276,7 +276,7 @@ bool DAE::DeleteDeadVarargs(Function &Fn) {
SmallVector<AttributeWithIndex, 8> AttributesVec;
for (unsigned i = 0; PAL.getSlot(i).Index <= NumArgs; ++i)
AttributesVec.push_back(PAL.getSlot(i));
- Attributes FnAttrs = PAL.getFnAttributes();
+ Attribute FnAttrs = PAL.getFnAttributes();
if (FnAttrs.hasAttributes())
AttributesVec.push_back(AttributeWithIndex::get(AttributeSet::FunctionIndex,
FnAttrs));
@@ -351,7 +351,7 @@ bool DAE::RemoveDeadArgumentsFromCallers(Function &Fn)
if (Fn.use_empty())
return false;
- llvm::SmallVector<unsigned, 8> UnusedArgs;
+ SmallVector<unsigned, 8> UnusedArgs;
for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
I != E; ++I) {
Argument *Arg = I;
@@ -701,8 +701,8 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
const AttributeSet &PAL = F->getAttributes();
// The existing function return attributes.
- Attributes RAttrs = PAL.getRetAttributes();
- Attributes FnAttrs = PAL.getFnAttributes();
+ Attribute RAttrs = PAL.getRetAttributes();
+ Attribute FnAttrs = PAL.getFnAttributes();
// Find out the new return value.
@@ -765,11 +765,11 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
// required when new return value attributes are added.
if (NRetTy->isVoidTy())
RAttrs =
- Attributes::get(NRetTy->getContext(), AttrBuilder(RAttrs).
- removeAttributes(Attributes::typeIncompatible(NRetTy)));
+ Attribute::get(NRetTy->getContext(), AttrBuilder(RAttrs).
+ removeAttributes(Attribute::typeIncompatible(NRetTy)));
else
assert(!AttrBuilder(RAttrs).
- hasAttributes(Attributes::typeIncompatible(NRetTy)) &&
+ hasAttributes(Attribute::typeIncompatible(NRetTy)) &&
"Return attributes no longer compatible?");
if (RAttrs.hasAttributes())
@@ -791,7 +791,7 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
// Get the original parameter attributes (skipping the first one, that is
// for the return value.
- Attributes Attrs = PAL.getParamAttributes(i + 1);
+ Attribute Attrs = PAL.getParamAttributes(i + 1);
if (Attrs.hasAttributes())
AttributesVec.push_back(AttributeWithIndex::get(Params.size(), Attrs));
} else {
@@ -836,12 +836,12 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
const AttributeSet &CallPAL = CS.getAttributes();
// The call return attributes.
- Attributes RAttrs = CallPAL.getRetAttributes();
- Attributes FnAttrs = CallPAL.getFnAttributes();
+ Attribute RAttrs = CallPAL.getRetAttributes();
+ Attribute FnAttrs = CallPAL.getFnAttributes();
// Adjust in case the function was changed to return void.
RAttrs =
- Attributes::get(NF->getContext(), AttrBuilder(RAttrs).
- removeAttributes(Attributes::typeIncompatible(NF->getReturnType())));
+ Attribute::get(NF->getContext(), AttrBuilder(RAttrs).
+ removeAttributes(Attribute::typeIncompatible(NF->getReturnType())));
if (RAttrs.hasAttributes())
AttributesVec.push_back(AttributeWithIndex::get(AttributeSet::ReturnIndex,
RAttrs));
@@ -856,7 +856,7 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
if (ArgAlive[i]) {
Args.push_back(*I);
// Get original parameter attributes, but skip return attributes.
- Attributes Attrs = CallPAL.getParamAttributes(i + 1);
+ Attribute Attrs = CallPAL.getParamAttributes(i + 1);
if (Attrs.hasAttributes())
AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
}
@@ -864,7 +864,7 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
// Push any varargs arguments on the list. Don't forget their attributes.
for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
Args.push_back(*I);
- Attributes Attrs = CallPAL.getParamAttributes(i + 1);
+ Attribute Attrs = CallPAL.getParamAttributes(i + 1);
if (Attrs.hasAttributes())
AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
}
diff --git a/lib/Transforms/IPO/ExtractGV.cpp b/lib/Transforms/IPO/ExtractGV.cpp
index 1dc79d113e..09f9d7c788 100644
--- a/lib/Transforms/IPO/ExtractGV.cpp
+++ b/lib/Transforms/IPO/ExtractGV.cpp
@@ -13,10 +13,10 @@
#include "llvm/Transforms/IPO.h"
#include "llvm/ADT/SetVector.h"
-#include "llvm/Constants.h"
-#include "llvm/Instructions.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include <algorithm>
using namespace llvm;
diff --git a/lib/Transforms/IPO/FunctionAttrs.cpp b/lib/Transforms/IPO/FunctionAttrs.cpp
index 685833da1a..e9bc4ad437 100644
--- a/lib/Transforms/IPO/FunctionAttrs.cpp
+++ b/lib/Transforms/IPO/FunctionAttrs.cpp
@@ -26,11 +26,11 @@
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CallGraph.h"
+#include "llvm/Analysis/CallGraphSCCPass.h"
#include "llvm/Analysis/CaptureTracking.h"
-#include "llvm/CallGraphSCCPass.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/InstIterator.h"
using namespace llvm;
@@ -213,16 +213,16 @@ bool FunctionAttrs::AddReadAttrs(const CallGraphSCC &SCC) {
// Clear out any existing attributes.
AttrBuilder B;
- B.addAttribute(Attributes::ReadOnly)
- .addAttribute(Attributes::ReadNone);
+ B.addAttribute(Attribute::ReadOnly)
+ .addAttribute(Attribute::ReadNone);
F->removeAttribute(AttributeSet::FunctionIndex,
- Attributes::get(F->getContext(), B));
+ Attribute::get(F->getContext(), B));
// Add in the new attribute.
B.clear();
- B.addAttribute(ReadsMemory ? Attributes::ReadOnly : Attributes::ReadNone);
+ B.addAttribute(ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone);
F->addAttribute(AttributeSet::FunctionIndex,
- Attributes::get(F->getContext(), B));
+ Attribute::get(F->getContext(), B));
if (ReadsMemory)
++NumReadOnly;
@@ -358,7 +358,7 @@ bool FunctionAttrs::AddNoCaptureAttrs(const CallGraphSCC &SCC) {
ArgumentGraph AG;
AttrBuilder B;
- B.addAttribute(Attributes::NoCapture);
+ B.addAttribute(Attribute::NoCapture);
// Check each function in turn, determining which pointer arguments are not
// captured.
@@ -381,7 +381,7 @@ bool FunctionAttrs::AddNoCaptureAttrs(const CallGraphSCC &SCC) {
for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end();
A != E; ++A) {
if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
- A->addAttr(Attributes::get(F->getContext(), B));
+ A->addAttr(Attribute::get(F->getContext(), B));
++NumNoCapture;
Changed = true;
}
@@ -396,7 +396,7 @@ bool FunctionAttrs::AddNoCaptureAttrs(const CallGraphSCC &SCC) {
if (!Tracker.Captured) {
if (Tracker.Uses.empty()) {
// If it's trivially not captured, mark it nocapture now.
- A->addAttr(Attributes::get(F->getContext(), B));
+ A->addAttr(Attribute::get(F->getContext(), B));
++NumNoCapture;
Changed = true;
} else {
@@ -431,7 +431,7 @@ bool FunctionAttrs::AddNoCaptureAttrs(const CallGraphSCC &SCC) {
ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
ArgumentSCC[0]->
Definition->
- addAttr(Attributes::get(ArgumentSCC[0]->Definition->getContext(), B));
+ addAttr(Attribute::get(ArgumentSCC[0]->Definition->getContext(), B));
++NumNoCapture;
Changed = true;
}
@@ -473,7 +473,7 @@ bool FunctionAttrs::AddNoCaptureAttrs(const CallGraphSCC &SCC) {
for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
Argument *A = ArgumentSCC[i]->Definition;
- A->addAttr(Attributes::get(A->getContext(), B));
+ A->addAttr(Attribute::get(A->getContext(), B));
++NumNoCapture;
Changed = true;
}
@@ -530,7 +530,7 @@ bool FunctionAttrs::IsFunctionMallocLike(Function *F,
case Instruction::Call:
case Instruction::Invoke: {
CallSite CS(RVI);
- if (CS.paramHasAttr(0, Attributes::NoAlias))
+ if (CS.paramHasAttr(0, Attribute::NoAlias))
break;
if (CS.getCalledFunction() &&
SCCNodes.count(CS.getCalledFunction()))
diff --git a/lib/Transforms/IPO/GlobalDCE.cpp b/lib/Transforms/IPO/GlobalDCE.cpp
index b2c819de2b..dc99492990 100644
--- a/lib/Transforms/IPO/GlobalDCE.cpp
+++ b/lib/Transforms/IPO/GlobalDCE.cpp
@@ -19,8 +19,8 @@
#include "llvm/Transforms/IPO.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/Constants.h"
-#include "llvm/Module.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
using namespace llvm;
diff --git a/lib/Transforms/IPO/GlobalOpt.cpp b/lib/Transforms/IPO/GlobalOpt.cpp
index 20f9de5a83..efec788162 100644
--- a/lib/Transforms/IPO/GlobalOpt.cpp
+++ b/lib/Transforms/IPO/GlobalOpt.cpp
@@ -22,14 +22,14 @@
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/MemoryBuiltins.h"
-#include "llvm/CallingConv.h"
-#include "llvm/Constants.h"
-#include "llvm/DataLayout.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Module.h"
-#include "llvm/Operator.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
@@ -448,8 +448,8 @@ static bool CleanupPointerRootUsers(GlobalVariable *GV,
Dead[i].second->eraseFromParent();
Instruction *I = Dead[i].first;
do {
- if (isAllocationFn(I, TLI))
- break;
+ if (isAllocationFn(I, TLI))
+ break;
Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
if (!J)
break;
@@ -1825,7 +1825,8 @@ static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
GlobalValue::InternalLinkage,
ConstantInt::getFalse(GV->getContext()),
GV->getName()+".b",
- GV->getThreadLocalMode());
+ GV->getThreadLocalMode(),
+ GV->getType()->getAddressSpace());
GV->getParent()->getGlobalList().insert(GV, NewGV);
Constant *InitVal = GV->getInitializer();
@@ -1989,7 +1990,7 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
return Changed;
} else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
- DEBUG(dbgs() << "MARKING CONSTANT: " << *GV);
+ DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
GV->setConstant(true);
// Clean up any obviously simplifiable users now.
@@ -2067,12 +2068,12 @@ static void ChangeCalleesToFastCall(Function *F) {
static AttributeSet StripNest(LLVMContext &C, const AttributeSet &Attrs) {
for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
- if (!Attrs.getSlot(i).Attrs.hasAttribute(Attributes::Nest))
+ if (!Attrs.getSlot(i).Attrs.hasAttribute(Attribute::Nest))
continue;
// There can be only one.
return Attrs.removeAttr(C, Attrs.getSlot(i).Index,
- Attributes::get(C, Attributes::Nest));
+ Attribute::get(C, Attribute::Nest));
}
return Attrs;
@@ -2113,7 +2114,7 @@ bool GlobalOpt::OptimizeFunctions(Module &M) {
Changed = true;
}
- if (F->getAttributes().hasAttrSomewhere(Attributes::Nest) &&
+ if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
!F->hasAddressTaken()) {
// The function is not used by a trampoline intrinsic, so it is safe
// to remove the 'nest' attribute.
@@ -2584,24 +2585,38 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
while (1) {
Constant *InstResult = 0;
+ DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
+
if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
- if (!SI->isSimple()) return false; // no volatile/atomic accesses.
+ if (!SI->isSimple()) {
+ DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
+ return false; // no volatile/atomic accesses.
+ }
Constant *Ptr = getVal(SI->getOperand(1));
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
+ DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
Ptr = ConstantFoldConstantExpression(CE, TD, TLI);
- if (!isSimpleEnoughPointerToCommit(Ptr))
+ DEBUG(dbgs() << "; To: " << *Ptr << "\n");
+ }
+ if (!isSimpleEnoughPointerToCommit(Ptr)) {
// If this is too complex for us to commit, reject it.
+ DEBUG(dbgs() << "Pointer is too complex for us to evaluate store.");
return false;
+ }
Constant *Val = getVal(SI->getOperand(0));
// If this might be too difficult for the backend to handle (e.g. the addr
// of one global variable divided by another) then we can't commit it.
- if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, TD))
+ if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, TD)) {
+ DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val
+ << "\n");
return false;
+ }
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
if (CE->getOpcode() == Instruction::BitCast) {
+ DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n");
// If we're evaluating a store through a bitcast, then we need
// to pull the bitcast off the pointer type and push it onto the
// stored value.
@@ -2630,6 +2645,8 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
// If we can't improve the situation by introspecting NewTy,
// we have to give up.
} else {
+ DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
+ "evaluate.\n");
return false;
}
}
@@ -2637,25 +2654,36 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
// If we found compatible types, go ahead and push the bitcast
// onto the stored value.
Val = ConstantExpr::getBitCast(Val, NewTy);
+
+ DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n");
}
+ }
MutatedMemory[Ptr] = Val;
} else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
InstResult = ConstantExpr::get(BO->getOpcode(),
getVal(BO->getOperand(0)),
getVal(BO->getOperand(1)));
+ DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult
+ << "\n");
} else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
InstResult = ConstantExpr::getCompare(CI->getPredicate(),
getVal(CI->getOperand(0)),
getVal(CI->getOperand(1)));
+ DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
+ << "\n");
} else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
InstResult = ConstantExpr::getCast(CI->getOpcode(),
getVal(CI->getOperand(0)),
CI->getType());
+ DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
+ << "\n");
} else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
getVal(SI->getOperand(1)),
getVal(SI->getOperand(2)));
+ DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
+ << "\n");
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
Constant *P = getVal(GEP->getOperand(0));
SmallVector<Constant*, 8> GEPOps;
@@ -2665,41 +2693,70 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
InstResult =
ConstantExpr::getGetElementPtr(P, GEPOps,
cast<GEPOperator>(GEP)->isInBounds());
+ DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult
+ << "\n");
} else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
- if (!LI->isSimple()) return false; // no volatile/atomic accesses.
+
+ if (!LI->isSimple()) {
+ DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
+ return false; // no volatile/atomic accesses.
+ }
+
Constant *Ptr = getVal(LI->getOperand(0));
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
Ptr = ConstantFoldConstantExpression(CE, TD, TLI);
+ DEBUG(dbgs() << "Found a constant pointer expression, constant "
+ "folding: " << *Ptr << "\n");
+ }
InstResult = ComputeLoadResult(Ptr);
- if (InstResult == 0) return false; // Could not evaluate load.
+ if (InstResult == 0) {
+ DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load."
+ "\n");
+ return false; // Could not evaluate load.
+ }
+
+ DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
} else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
- if (AI->isArrayAllocation()) return false; // Cannot handle array allocs.
+ if (AI->isArrayAllocation()) {
+ DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
+ return false; // Cannot handle array allocs.
+ }
Type *Ty = AI->getType()->getElementType();
AllocaTmps.push_back(new GlobalVariable(Ty, false,
GlobalValue::InternalLinkage,
UndefValue::get(Ty),
AI->getName()));
InstResult = AllocaTmps.back();
+ DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
} else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
CallSite CS(CurInst);
// Debug info can safely be ignored here.
if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
+ DEBUG(dbgs() << "Ignoring debug info.\n");
++CurInst;
continue;
}
// Cannot handle inline asm.
- if (isa<InlineAsm>(CS.getCalledValue())) return false;
+ if (isa<InlineAsm>(CS.getCalledValue())) {
+ DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
+ return false;
+ }
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
- if (MSI->isVolatile()) return false;
+ if (MSI->isVolatile()) {
+ DEBUG(dbgs() << "Can not optimize a volatile memset " <<
+ "intrinsic.\n");
+ return false;
+ }
Constant *Ptr = getVal(MSI->getDest());
Constant *Val = getVal(MSI->getValue());
Constant *DestVal = ComputeLoadResult(getVal(Ptr));
if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
// This memset is a no-op.
+ DEBUG(dbgs() << "Ignoring no-op memset.\n");
++CurInst;
continue;
}
@@ -2707,6 +2764,7 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
II->getIntrinsicID() == Intrinsic::lifetime_end) {
+ DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
++CurInst;
continue;
}
@@ -2714,8 +2772,10 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
if (II->getIntrinsicID() == Intrinsic::invariant_start) {
// We don't insert an entry into Values, as it doesn't have a
// meaningful return value.
- if (!II->use_empty())
+ if (!II->use_empty()) {
+ DEBUG(dbgs() << "Found unused invariant_start. Cant evaluate.\n");
return false;
+ }
ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
Value *PtrArg = getVal(II->getArgOperand(1));
Value *Ptr = PtrArg->stripPointerCasts();
@@ -2723,20 +2783,30 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
Type *ElemTy = cast<PointerType>(GV->getType())->getElementType();
if (!Size->isAllOnesValue() &&
Size->getValue().getLimitedValue() >=
- TD->getTypeStoreSize(ElemTy))
+ TD->getTypeStoreSize(ElemTy)) {
Invariants.insert(GV);
+ DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV
+ << "\n");
+ } else {
+ DEBUG(dbgs() << "Found a global var, but can not treat it as an "
+ "invariant.\n");
+ }
}
// Continue even if we do nothing.
++CurInst;
continue;
}
+
+ DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
return false;
}
// Resolve function pointers.
Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue()));
- if (!Callee || Callee->mayBeOverridden())
+ if (!Callee || Callee->mayBeOverridden()) {
+ DEBUG(dbgs() << "Can not resolve function pointer.\n");
return false; // Cannot resolve.
+ }
SmallVector<Constant*, 8> Formals;
for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i)
@@ -2746,22 +2816,38 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
// If this is a function we can constant fold, do it.
if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) {
InstResult = C;
+ DEBUG(dbgs() << "Constant folded function call. Result: " <<
+ *InstResult << "\n");
} else {
+ DEBUG(dbgs() << "Can not constant fold function call.\n");
return false;
}
} else {
- if (Callee->getFunctionType()->isVarArg())
+ if (Callee->getFunctionType()->isVarArg()) {
+ DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
return false;
+ }
- Constant *RetVal;
+ Constant *RetVal = 0;
// Execute the call, if successful, use the return value.
ValueStack.push_back(new DenseMap<Value*, Constant*>);
- if (!EvaluateFunction(Callee, RetVal, Formals))
+ if (!EvaluateFunction(Callee, RetVal, Formals)) {
+ DEBUG(dbgs() << "Failed to evaluate function.\n");
return false;
+ }
delete ValueStack.pop_back_val();
InstResult = RetVal;
+
+ if (InstResult != NULL) {
+ DEBUG(dbgs() << "Successfully evaluated function. Result: " <<
+ InstResult << "\n\n");
+ } else {
+ DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n");
+ }
}
} else if (isa<TerminatorInst>(CurInst)) {
+ DEBUG(dbgs() << "Found a terminator instruction.\n");
+
if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
if (BI->isUnconditional()) {
NextBB = BI->getSuccessor(0);
@@ -2787,13 +2873,17 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
NextBB = 0;
} else {
// invoke, unwind, resume, unreachable.
+ DEBUG(dbgs() << "Can not handle terminator.");
return false; // Cannot handle this terminator.
}
// We succeeded at evaluating this block!
+ DEBUG(dbgs() << "Successfully evaluated block.\n");
return true;
} else {
// Did not know how to evaluate this!
+ DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction."
+ "\n");
return false;
}
@@ -2807,6 +2897,7 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
// If we just processed an invoke, we finished evaluating the block.
if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
NextBB = II->getNormalDest();
+ DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
return true;
}
@@ -2845,6 +2936,8 @@ bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
while (1) {
BasicBlock *NextBB = 0; // Initialized to avoid compiler warnings.
+ DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
+
if (!EvaluateBlock(CurInst, NextBB))
return false;
@@ -2924,6 +3017,7 @@ bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
}
break;
}
+ DEBUG(dbgs() << "Optimizing Global Constructor: " << *F << "\n");
// We cannot simplify external ctor functions.
if (F->empty()) continue;
diff --git a/lib/Transforms/IPO/IPConstantPropagation.cpp b/lib/Transforms/IPO/IPConstantPropagation.cpp
index 252b5b0584..4ac1dfc096 100644
--- a/lib/Transforms/IPO/IPConstantPropagation.cpp
+++ b/lib/Transforms/IPO/IPConstantPropagation.cpp
@@ -20,9 +20,9 @@
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Constants.h"
-#include "llvm/Instructions.h"
-#include "llvm/Module.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
using namespace llvm;
diff --git a/lib/Transforms/IPO/InlineAlways.cpp b/lib/Transforms/IPO/InlineAlways.cpp
index 5b8832e5d7..29718034b4 100644
--- a/lib/Transforms/IPO/InlineAlways.cpp
+++ b/lib/Transforms/IPO/InlineAlways.cpp
@@ -17,14 +17,14 @@
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/InlineCost.h"
-#include "llvm/CallingConv.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Module.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Transforms/IPO/InlinerPass.h"
-#include "llvm/Type.h"
using namespace llvm;
@@ -87,7 +87,8 @@ InlineCost AlwaysInliner::getInlineCost(CallSite CS) {
// that are viable for inlining. FIXME: We shouldn't even get here for
// declarations.
if (Callee && !Callee->isDeclaration() &&
- Callee->getFnAttributes().hasAttribute(Attributes::AlwaysInline) &&
+ Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::AlwaysInline) &&
CA.isInlineViable(*Callee))
return InlineCost::getAlways();
diff --git a/lib/Transforms/IPO/InlineSimple.cpp b/lib/Transforms/IPO/InlineSimple.cpp
index 9c5feba08b..9682923d20 100644
--- a/lib/Transforms/IPO/InlineSimple.cpp
+++ b/lib/Transforms/IPO/InlineSimple.cpp
@@ -15,14 +15,14 @@
#include "llvm/Transforms/IPO.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/InlineCost.h"
-#include "llvm/CallingConv.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Module.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Transforms/IPO/InlinerPass.h"
-#include "llvm/Type.h"
using namespace llvm;
diff --git a/lib/Transforms/IPO/Inliner.cpp b/lib/Transforms/IPO/Inliner.cpp
index bd8fa66d52..2187a2a8ee 100644
--- a/lib/Transforms/IPO/Inliner.cpp
+++ b/lib/Transforms/IPO/Inliner.cpp
@@ -19,10 +19,10 @@
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/InlineCost.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Module.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
@@ -64,8 +64,8 @@ Inliner::Inliner(char &ID, int Threshold, bool InsertLifetime)
/// getAnalysisUsage - For this class, we declare that we require and preserve
/// the call graph. If the derived class implements this method, it should
/// always explicitly call the implementation here.
-void Inliner::getAnalysisUsage(AnalysisUsage &Info) const {
- CallGraphSCCPass::getAnalysisUsage(Info);
+void Inliner::getAnalysisUsage(AnalysisUsage &AU) const {
+ CallGraphSCCPass::getAnalysisUsage(AU);
}
@@ -93,11 +93,14 @@ static bool InlineCallIfPossible(CallSite CS, InlineFunctionInfo &IFI,
// If the inlined function had a higher stack protection level than the
// calling function, then bump up the caller's stack protection level.
- if (Callee->getFnAttributes().hasAttribute(Attributes::StackProtectReq))
- Caller->addFnAttr(Attributes::StackProtectReq);
- else if (Callee->getFnAttributes().hasAttribute(Attributes::StackProtect) &&
- !Caller->getFnAttributes().hasAttribute(Attributes::StackProtectReq))
- Caller->addFnAttr(Attributes::StackProtect);
+ if (Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::StackProtectReq))
+ Caller->addFnAttr(Attribute::StackProtectReq);
+ else if (Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::StackProtect) &&
+ !Caller->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::StackProtectReq))
+ Caller->addFnAttr(Attribute::StackProtect);
// Look at all of the allocas that we inlined through this call site. If we
// have already inlined other allocas through other calls into this function,
@@ -209,16 +212,21 @@ unsigned Inliner::getInlineThreshold(CallSite CS) const {
// would decrease the threshold.
Function *Caller = CS.getCaller();
bool OptSize = Caller && !Caller->isDeclaration() &&
- Caller->getFnAttributes().hasAttribute(Attributes::OptimizeForSize);
+ Caller->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::OptimizeForSize);
if (!(InlineLimit.getNumOccurrences() > 0) && OptSize &&
OptSizeThreshold < thres)
thres = OptSizeThreshold;
- // Listen to the inlinehint attribute when it would increase the threshold.
+ // Listen to the inlinehint attribute when it would increase the threshold
+ // and the caller does not need to minimize its size.
Function *Callee = CS.getCalledFunction();
bool InlineHint = Callee && !Callee->isDeclaration() &&
- Callee->getFnAttributes().hasAttribute(Attributes::InlineHint);
- if (InlineHint && HintThreshold > thres)
+ Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::InlineHint);
+ if (InlineHint && HintThreshold > thres
+ && !Caller->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::MinSize))
thres = HintThreshold;
return thres;
@@ -534,7 +542,8 @@ bool Inliner::removeDeadFunctions(CallGraph &CG, bool AlwaysInlineOnly) {
// about always-inline functions. This is a bit of a hack to share code
// between here and the InlineAlways pass.
if (AlwaysInlineOnly &&
- !F->getFnAttributes().hasAttribute(Attributes::AlwaysInline))
+ !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::AlwaysInline))
continue;
// If the only remaining users of the function are dead constants, remove
diff --git a/lib/Transforms/IPO/Internalize.cpp b/lib/Transforms/IPO/Internalize.cpp
index b2cd3a765a..70d55b0061 100644
--- a/lib/Transforms/IPO/Internalize.cpp
+++ b/lib/Transforms/IPO/Internalize.cpp
@@ -17,7 +17,7 @@
#include "llvm/Transforms/IPO.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CallGraph.h"
-#include "llvm/Module.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
@@ -48,7 +48,7 @@ namespace {
public:
static char ID; // Pass identification, replacement for typeid
explicit InternalizePass();
- explicit InternalizePass(const std::vector <const char *>& exportList);
+ explicit InternalizePass(ArrayRef<const char *> exportList);
void LoadFile(const char *Filename);
virtual bool runOnModule(Module &M);
@@ -72,10 +72,10 @@ InternalizePass::InternalizePass()
ExternalNames.insert(APIList.begin(), APIList.end());
}
-InternalizePass::InternalizePass(const std::vector<const char *>&exportList)
+InternalizePass::InternalizePass(ArrayRef<const char *> exportList)
: ModulePass(ID){
initializeInternalizePassPass(*PassRegistry::getPassRegistry());
- for(std::vector<const char *>::const_iterator itr = exportList.begin();
+ for(ArrayRef<const char *>::const_iterator itr = exportList.begin();
itr != exportList.end(); itr++) {
ExternalNames.insert(*itr);
}
@@ -173,6 +173,6 @@ ModulePass *llvm::createInternalizePass() {
return new InternalizePass();
}
-ModulePass *llvm::createInternalizePass(const std::vector <const char *> &el) {
+ModulePass *llvm::createInternalizePass(ArrayRef<const char *> el) {
return new InternalizePass(el);
}
diff --git a/lib/Transforms/IPO/LoopExtractor.cpp b/lib/Transforms/IPO/LoopExtractor.cpp
index af04d054ed..8282a8e6fa 100644
--- a/lib/Transforms/IPO/LoopExtractor.cpp
+++ b/lib/Transforms/IPO/LoopExtractor.cpp
@@ -19,8 +19,8 @@
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopPass.h"
-#include "llvm/Instructions.h"
-#include "llvm/Module.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Scalar.h"
diff --git a/lib/Transforms/IPO/MergeFunctions.cpp b/lib/Transforms/IPO/MergeFunctions.cpp
index 70345b8334..892100f058 100644
--- a/lib/Transforms/IPO/MergeFunctions.cpp
+++ b/lib/Transforms/IPO/MergeFunctions.cpp
@@ -50,14 +50,14 @@
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/Constants.h"
-#include "llvm/DataLayout.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/InlineAsm.h"
-#include "llvm/Instructions.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/Operator.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
@@ -346,13 +346,11 @@ bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1,
const GEPOperator *GEP2) {
// When we have target data, we can reduce the GEP down to the value in bytes
// added to the address.
- if (TD && GEP1->hasAllConstantIndices() && GEP2->hasAllConstantIndices()) {
- SmallVector<Value *, 8> Indices1(GEP1->idx_begin(), GEP1->idx_end());
- SmallVector<Value *, 8> Indices2(GEP2->idx_begin(), GEP2->idx_end());
- uint64_t Offset1 = TD->getIndexedOffset(GEP1->getPointerOperandType(),
- Indices1);
- uint64_t Offset2 = TD->getIndexedOffset(GEP2->getPointerOperandType(),
- Indices2);
+ unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 1;
+ APInt Offset1(BitWidth, 0), Offset2(BitWidth, 0);
+ if (TD &&
+ GEP1->accumulateConstantOffset(*TD, Offset1) &&
+ GEP2->accumulateConstantOffset(*TD, Offset2)) {
return Offset1 == Offset2;
}
diff --git a/lib/Transforms/IPO/PartialInlining.cpp b/lib/Transforms/IPO/PartialInlining.cpp
index 6bd9c8372e..fa518cb0ab 100644
--- a/lib/Transforms/IPO/PartialInlining.cpp
+++ b/lib/Transforms/IPO/PartialInlining.cpp
@@ -16,8 +16,8 @@
#include "llvm/Transforms/IPO.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
-#include "llvm/Instructions.h"
-#include "llvm/Module.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
#include "llvm/Transforms/Utils/Cloning.h"
diff --git a/lib/Transforms/IPO/PassManagerBuilder.cpp b/lib/Transforms/IPO/PassManagerBuilder.cpp
index a9a9f2eece..6dc1773778 100644
--- a/lib/Transforms/IPO/PassManagerBuilder.cpp
+++ b/lib/Transforms/IPO/PassManagerBuilder.cpp
@@ -18,8 +18,6 @@
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/Verifier.h"
-#include "llvm/DefaultPasses.h"
-#include "llvm/PassManager.h"
#include "llvm/PassManager.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ManagedStatic.h"
@@ -188,7 +186,7 @@ void PassManagerBuilder::populateModulePassManager(PassManagerBase &MPM) {
MPM.add(createLoopIdiomPass()); // Recognize idioms like memset.
MPM.add(createLoopDeletionPass()); // Delete dead loops
- if (LoopVectorize && OptLevel > 1)
+ if (LoopVectorize && OptLevel > 2)
MPM.add(createLoopVectorizePass());
if (!DisableUnrollLoops)
diff --git a/lib/Transforms/IPO/PruneEH.cpp b/lib/Transforms/IPO/PruneEH.cpp
index 19f34837c7..d872f0cfba 100644
--- a/lib/Transforms/IPO/PruneEH.cpp
+++ b/lib/Transforms/IPO/PruneEH.cpp
@@ -20,12 +20,12 @@
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CallGraph.h"
-#include "llvm/CallGraphSCCPass.h"
-#include "llvm/Constants.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
+#include "llvm/Analysis/CallGraphSCCPass.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/CFG.h"
#include <algorithm>
using namespace llvm;
@@ -140,14 +140,14 @@ bool PruneEH::runOnSCC(CallGraphSCC &SCC) {
AttrBuilder NewAttributes;
if (!SCCMightUnwind)
- NewAttributes.addAttribute(Attributes::NoUnwind);
+ NewAttributes.addAttribute(Attribute::NoUnwind);
if (!SCCMightReturn)
- NewAttributes.addAttribute(Attributes::NoReturn);
+ NewAttributes.addAttribute(Attribute::NoReturn);
Function *F = (*I)->getFunction();
const AttributeSet &PAL = F->getAttributes();
const AttributeSet &NPAL = PAL.addAttr(F->getContext(), ~0,
- Attributes::get(F->getContext(),
+ Attribute::get(F->getContext(),
NewAttributes));
if (PAL != NPAL) {
MadeChange = true;
diff --git a/lib/Transforms/IPO/StripDeadPrototypes.cpp b/lib/Transforms/IPO/StripDeadPrototypes.cpp
index 80cb869f02..f00830aada 100644
--- a/lib/Transforms/IPO/StripDeadPrototypes.cpp
+++ b/lib/Transforms/IPO/StripDeadPrototypes.cpp
@@ -17,7 +17,7 @@
#define DEBUG_TYPE "strip-dead-prototypes"
#include "llvm/Transforms/IPO.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/Module.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
using namespace llvm;
diff --git a/lib/Transforms/IPO/StripSymbols.cpp b/lib/Transforms/IPO/StripSymbols.cpp
index ad915d716f..5f8681ff45 100644
--- a/lib/Transforms/IPO/StripSymbols.cpp
+++ b/lib/Transforms/IPO/StripSymbols.cpp
@@ -23,15 +23,15 @@
#include "llvm/Transforms/IPO.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/Constants.h"
#include "llvm/DebugInfo.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/Module.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/TypeFinder.h"
+#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/Pass.h"
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/TypeFinder.h"
-#include "llvm/ValueSymbolTable.h"
using namespace llvm;
namespace {
diff --git a/lib/Transforms/InstCombine/InstCombine.h b/lib/Transforms/InstCombine/InstCombine.h
index 0570104205..a36b1e6b9e 100644
--- a/lib/Transforms/InstCombine/InstCombine.h
+++ b/lib/Transforms/InstCombine/InstCombine.h
@@ -12,10 +12,10 @@
#include "InstCombineWorklist.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/IRBuilder.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Operator.h"
#include "llvm/InstVisitor.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Operator.h"
#include "llvm/Pass.h"
#include "llvm/Support/TargetFolder.h"
#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
@@ -76,6 +76,7 @@ class LLVM_LIBRARY_VISIBILITY InstCombiner
TargetLibraryInfo *TLI;
bool MadeIRChange;
LibCallSimplifier *Simplifier;
+ bool MinimizeSize;
public:
/// Worklist - All of the instructions that need to be simplified.
InstCombineWorklist Worklist;
@@ -87,6 +88,7 @@ public:
static char ID; // Pass identification, replacement for typeid
InstCombiner() : FunctionPass(ID), TD(0), Builder(0) {
+ MinimizeSize = false;
initializeInstCombinerPass(*PassRegistry::getPassRegistry());
}
@@ -114,6 +116,8 @@ public:
Instruction *visitSub(BinaryOperator &I);
Instruction *visitFSub(BinaryOperator &I);
Instruction *visitMul(BinaryOperator &I);
+ Value *foldFMulConst(Instruction *FMulOrDiv, ConstantFP *C,
+ Instruction *InsertBefore);
Instruction *visitFMul(BinaryOperator &I);
Instruction *visitURem(BinaryOperator &I);
Instruction *visitSRem(BinaryOperator &I);
@@ -207,7 +211,7 @@ public:
private:
bool ShouldChangeType(Type *From, Type *To) const;
Value *dyn_castNegVal(Value *V) const;
- Value *dyn_castFNegVal(Value *V) const;
+ Value *dyn_castFNegVal(Value *V, bool NoSignedZero=false) const;
Type *FindElementAtOffset(Type *Ty, int64_t Offset,
SmallVectorImpl<Value*> &NewIndices);
Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
diff --git a/lib/Transforms/InstCombine/InstCombineAddSub.cpp b/lib/Transforms/InstCombine/InstCombineAddSub.cpp
index d8257e64d8..f07c58d7d0 100644
--- a/lib/Transforms/InstCombine/InstCombineAddSub.cpp
+++ b/lib/Transforms/InstCombine/InstCombineAddSub.cpp
@@ -13,16 +13,719 @@
#include "InstCombine.h"
#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/DataLayout.h"
+#include "llvm/IR/DataLayout.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/PatternMatch.h"
using namespace llvm;
using namespace PatternMatch;
+namespace {
+
+ /// Class representing coefficient of floating-point addend.
+ /// This class needs to be highly efficient, which is especially true for
+ /// the constructor. As of I write this comment, the cost of the default
+ /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
+ /// perform write-merging).
+ ///
+ class FAddendCoef {
+ public:
+ // The constructor has to initialize a APFloat, which is uncessary for
+ // most addends which have coefficient either 1 or -1. So, the constructor
+ // is expensive. In order to avoid the cost of the constructor, we should
+ // reuse some instances whenever possible. The pre-created instances
+ // FAddCombine::Add[0-5] embodies this idea.
+ //
+ FAddendCoef() : IsFp(false), BufHasFpVal(false), IntVal(0) {}
+ ~FAddendCoef();
+
+ void set(short C) {
+ assert(!insaneIntVal(C) && "Insane coefficient");
+ IsFp = false; IntVal = C;
+ }
+
+ void set(const APFloat& C);
+
+ void negate();
+
+ bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
+ Value *getValue(Type *) const;
+
+ // If possible, don't define operator+/operator- etc because these
+ // operators inevitably call FAddendCoef's constructor which is not cheap.
+ void operator=(const FAddendCoef &A);
+ void operator+=(const FAddendCoef &A);
+ void operator-=(const FAddendCoef &A);
+ void operator*=(const FAddendCoef &S);
+
+ bool isOne() const { return isInt() && IntVal == 1; }
+ bool isTwo() const { return isInt() && IntVal == 2; }
+ bool isMinusOne() const { return isInt() && IntVal == -1; }
+ bool isMinusTwo() const { return isInt() && IntVal == -2; }
+
+ private:
+ bool insaneIntVal(int V) { return V > 4 || V < -4; }
+ APFloat *getFpValPtr(void)
+ { return reinterpret_cast<APFloat*>(&FpValBuf.buffer[0]); }
+
+ const APFloat &getFpVal(void) const {
+ assert(IsFp && BufHasFpVal && "Incorret state");
+ return *reinterpret_cast<const APFloat*>(&FpValBuf.buffer[0]);
+ }
+
+ APFloat &getFpVal(void)
+ { assert(IsFp && BufHasFpVal && "Incorret state"); return *getFpValPtr(); }
+
+ bool isInt() const { return !IsFp; }
+
+ private:
+
+ bool IsFp;
+
+ // True iff FpValBuf contains an instance of APFloat.
+ bool BufHasFpVal;
+
+ // The integer coefficient of an individual addend is either 1 or -1,
+ // and we try to simplify at most 4 addends from neighboring at most
+ // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
+ // is overkill of this end.
+ short IntVal;
+
+ AlignedCharArrayUnion<APFloat> FpValBuf;
+ };
+
+ /// FAddend is used to represent floating-point addend. An addend is
+ /// represented as <C, V>, where the V is a symbolic value, and C is a
+ /// constant coefficient. A constant addend is represented as <C, 0>.
+ ///
+ class FAddend {
+ public:
+ FAddend() { Val = 0; }
+
+ Value *getSymVal (void) const { return Val; }
+ const FAddendCoef &getCoef(void) const { return Coeff; }
+
+ bool isConstant() const { return Val == 0; }
+ bool isZero() const { return Coeff.isZero(); }
+
+ void set(short Coefficient, Value *V) { Coeff.set(Coefficient), Val = V; }
+ void set(const APFloat& Coefficient, Value *V)
+ { Coeff.set(Coefficient); Val = V; }
+ void set(const ConstantFP* Coefficient, Value *V)
+ { Coeff.set(Coefficient->getValueAPF()); Val = V; }
+
+ void negate() { Coeff.negate(); }
+
+ /// Drill down the U-D chain one step to find the definition of V, and
+ /// try to break the definition into one or two addends.
+ static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
+
+ /// Similar to FAddend::drillDownOneStep() except that the value being
+ /// splitted is the addend itself.
+ unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
+
+ void operator+=(const FAddend &T) {
+ assert((Val == T.Val) && "Symbolic-values disagree");
+ Coeff += T.Coeff;
+ }
+
+ private:
+ void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
+
+ // This addend has the value of "Coeff * Val".
+ Value *Val;
+ FAddendCoef Coeff;
+ };
+
+ /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
+ /// with its neighboring at most two instructions.
+ ///
+ class FAddCombine {
+ public:
+ FAddCombine(InstCombiner::BuilderTy *B) : Builder(B), Instr(0) {}
+ Value *simplify(Instruction *FAdd);
+
+ private:
+ typedef SmallVector<const FAddend*, 4> AddendVect;
+
+ Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
+
+ /// Convert given addend to a Value
+ Value *createAddendVal(const FAddend &A, bool& NeedNeg);
+
+ /// Return the number of instructions needed to emit the N-ary addition.
+ unsigned calcInstrNumber(const AddendVect& Vect);
+ Value *createFSub(Value *Opnd0, Value *Opnd1);
+ Value *createFAdd(Value *Opnd0, Value *Opnd1);
+ Value *createFMul(Value *Opnd0, Value *Opnd1);
+ Value *createFNeg(Value *V);
+ Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
+ void createInstPostProc(Instruction *NewInst);
+
+ InstCombiner::BuilderTy *Builder;
+ Instruction *Instr;
+
+ private:
+ // Debugging stuff are clustered here.
+ #ifndef NDEBUG
+ unsigned CreateInstrNum;
+ void initCreateInstNum() { CreateInstrNum = 0; }
+ void incCreateInstNum() { CreateInstrNum++; }
+ #else
+ void initCreateInstNum() {}
+ void incCreateInstNum() {}
+ #endif
+ };
+}
+
+//===----------------------------------------------------------------------===//
+//
+// Implementation of
+// {FAddendCoef, FAddend, FAddition, FAddCombine}.
+//
+//===----------------------------------------------------------------------===//
+FAddendCoef::~FAddendCoef() {
+ if (BufHasFpVal)
+ getFpValPtr()->~APFloat();
+}
+
+void FAddendCoef::set(const APFloat& C) {
+ APFloat *P = getFpValPtr();
+
+ if (isInt()) {
+ // As the buffer is meanless byte stream, we cannot call
+ // APFloat::operator=().
+ new(P) APFloat(C);
+ } else
+ *P = C;
+
+ IsFp = BufHasFpVal = true;
+}
+
+void FAddendCoef::operator=(const FAddendCoef& That) {
+ if (That.isInt())
+ set(That.IntVal);
+ else
+ set(That.getFpVal());
+}
+
+void FAddendCoef::operator+=(const FAddendCoef &That) {
+ enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
+ if (isInt() == That.isInt()) {
+ if (isInt())
+ IntVal += That.IntVal;
+ else
+ getFpVal().add(That.getFpVal(), RndMode);
+ return;
+ }
+
+ if (isInt()) {
+ const APFloat &T = That.getFpVal();
+ set(T);
+ getFpVal().add(APFloat(T.getSemantics(), IntVal), RndMode);
+ return;
+ }
+
+ APFloat &T = getFpVal();
+ T.add(APFloat(T.getSemantics(), That.IntVal), RndMode);
+}
+
+void FAddendCoef::operator-=(const FAddendCoef &That) {
+ enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
+ if (isInt() == That.isInt()) {
+ if (isInt())
+ IntVal -= That.IntVal;
+ else
+ getFpVal().subtract(That.getFpVal(), RndMode);
+ return;
+ }
+
+ if (isInt()) {
+ const APFloat &T = That.getFpVal();
+ set(T);
+ getFpVal().subtract(APFloat(T.getSemantics(), IntVal), RndMode);
+ return;
+ }
+
+ APFloat &T = getFpVal();
+ T.subtract(APFloat(T.getSemantics(), IntVal), RndMode);
+}
+
+void FAddendCoef::operator*=(const FAddendCoef &That) {
+ if (That.isOne())
+ return;
+
+ if (That.isMinusOne()) {
+ negate();
+ return;
+ }
+
+ if (isInt() && That.isInt()) {
+ int Res = IntVal * (int)That.IntVal;
+ assert(!insaneIntVal(Res) && "Insane int value");
+ IntVal = Res;
+ return;
+ }
+
+ const fltSemantics &Semantic =
+ isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
+
+ if (isInt())
+ set(APFloat(Semantic, IntVal));
+ APFloat &F0 = getFpVal();
+
+ if (That.isInt())
+ F0.multiply(APFloat(Semantic, That.IntVal), APFloat::rmNearestTiesToEven);
+ else
+ F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
+
+ return;
+}
+
+void FAddendCoef::negate() {
+ if (isInt())
+ IntVal = 0 - IntVal;
+ else
+ getFpVal().changeSign();
+}
+
+Value *FAddendCoef::getValue(Type *Ty) const {
+ return isInt() ?
+ ConstantFP::get(Ty, float(IntVal)) :
+ ConstantFP::get(Ty->getContext(), getFpVal());
+}
+
+// The definition of <Val> Addends
+// =========================================
+// A + B <1, A>, <1,B>
+// A - B <1, A>, <1,B>
+// 0 - B <-1, B>
+// C * A, <C, A>
+// A + C <1, A> <C, NULL>
+// 0 +/- 0 <0, NULL> (corner case)
+//
+// Legend: A and B are not constant, C is constant
+//
+unsigned FAddend::drillValueDownOneStep
+ (Value *Val, FAddend &Addend0, FAddend &Addend1) {
+ Instruction *I = 0;
+ if (Val == 0 || !(I = dyn_cast<Instruction>(Val)))
+ return 0;
+
+ unsigned Opcode = I->getOpcode();
+
+ if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
+ ConstantFP *C0, *C1;
+ Value *Opnd0 = I->getOperand(0);
+ Value *Opnd1 = I->getOperand(1);
+ if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
+ Opnd0 = 0;
+
+ if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
+ Opnd1 = 0;
+
+ if (Opnd0) {
+ if (!C0)
+ Addend0.set(1, Opnd0);
+ else
+ Addend0.set(C0, 0);
+ }
+
+ if (Opnd1) {
+ FAddend &Addend = Opnd0 ? Addend1 : Addend0;
+ if (!C1)
+ Addend.set(1, Opnd1);
+ else
+ Addend.set(C1, 0);
+ if (Opcode == Instruction::FSub)
+ Addend.negate();
+ }
+
+ if (Opnd0 || Opnd1)
+ return Opnd0 && Opnd1 ? 2 : 1;
+
+ // Both operands are zero. Weird!
+ Addend0.set(APFloat(C0->getValueAPF().getSemantics()), 0);
+ return 1;
+ }
+
+ if (I->getOpcode() == Instruction::FMul) {
+ Value *V0 = I->getOperand(0);
+ Value *V1 = I->getOperand(1);
+ if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
+ Addend0.set(C, V1);
+ return 1;
+ }
+
+ if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
+ Addend0.set(C, V0);
+ return 1;
+ }
+ }
+
+ return 0;
+}
+
+// Try to break *this* addend into two addends. e.g. Suppose this addend is
+// <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
+// i.e. <2.3, X> and <2.3, Y>.
+//
+unsigned FAddend::drillAddendDownOneStep
+ (FAddend &Addend0, FAddend &Addend1) const {
+ if (isConstant())
+ return 0;
+
+ unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
+ if (!BreakNum || Coeff.isOne())
+ return BreakNum;
+
+ Addend0.Scale(Coeff);
+
+ if (BreakNum == 2)
+ Addend1.Scale(Coeff);
+
+ return BreakNum;
+}
+
+Value *FAddCombine::simplify(Instruction *I) {
+ assert(I->hasUnsafeAlgebra() && "Should be in unsafe mode");
+
+ // Currently we are not able to handle vector type.
+ if (I->getType()->isVectorTy())
+ return 0;
+
+ assert((I->getOpcode() == Instruction::FAdd ||
+ I->getOpcode() == Instruction::FSub) && "Expect add/sub");
+
+ // Save the instruction before calling other member-functions.
+ Instr = I;
+
+ FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
+
+ unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
+
+ // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
+ unsigned Opnd0_ExpNum = 0;
+ unsigned Opnd1_ExpNum = 0;
+
+ if (!Opnd0.isConstant())
+ Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
+
+ // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
+ if (OpndNum == 2 && !Opnd1.isConstant())
+ Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
+
+ // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
+ if (Opnd0_ExpNum && Opnd1_ExpNum) {
+ AddendVect AllOpnds;
+ AllOpnds.push_back(&Opnd0_0);
+ AllOpnds.push_back(&Opnd1_0);
+ if (Opnd0_ExpNum == 2)
+ AllOpnds.push_back(&Opnd0_1);
+ if (Opnd1_ExpNum == 2)
+ AllOpnds.push_back(&Opnd1_1);
+
+ // Compute instruction quota. We should save at least one instruction.
+ unsigned InstQuota = 0;
+
+ Value *V0 = I->getOperand(0);
+ Value *V1 = I->getOperand(1);
+ InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
+ (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
+
+ if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
+ return R;
+ }
+
+ if (OpndNum != 2) {
+ // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
+ // splitted into two addends, say "V = X - Y", the instruction would have
+ // been optimized into "I = Y - X" in the previous steps.
+ //
+ const FAddendCoef &CE = Opnd0.getCoef();
+ return CE.isOne() ? Opnd0.getSymVal() : 0;
+ }
+
+ // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
+ if (Opnd1_ExpNum) {
+ AddendVect AllOpnds;
+ AllOpnds.push_back(&Opnd0);
+ AllOpnds.push_back(&Opnd1_0);
+ if (Opnd1_ExpNum == 2)
+ AllOpnds.push_back(&Opnd1_1);
+
+ if (Value *R = simplifyFAdd(AllOpnds, 1))
+ return R;
+ }
+
+ // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
+ if (Opnd0_ExpNum) {
+ AddendVect AllOpnds;
+ AllOpnds.push_back(&Opnd1);
+ AllOpnds.push_back(&Opnd0_0);
+ if (Opnd0_ExpNum == 2)
+ AllOpnds.push_back(&Opnd0_1);
+
+ if (Value *R = simplifyFAdd(AllOpnds, 1))
+ return R;
+ }
+
+ return 0;
+}
+
+Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
+
+ unsigned AddendNum = Addends.size();
+ assert(AddendNum <= 4 && "Too many addends");
+
+ // For saving intermediate results;
+ unsigned NextTmpIdx = 0;
+ FAddend TmpResult[3];
+
+ // Points to the constant addend of the resulting simplified expression.
+ // If the resulting expr has constant-addend, this constant-addend is
+ // desirable to reside at the top of the resulting expression tree. Placing
+ // constant close to supper-expr(s) will potentially reveal some optimization
+ // opportunities in super-expr(s).
+ //
+ const FAddend *ConstAdd = 0;
+
+ // Simplified addends are placed <SimpVect>.
+ AddendVect SimpVect;
+
+ // The outer loop works on one symbolic-value at a time. Suppose the input
+ // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
+ // The symbolic-values will be processed in this order: x, y, z.
+ //
+ for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
+
+ const FAddend *ThisAddend = Addends[SymIdx];
+ if (!ThisAddend) {
+ // This addend was processed before.
+ continue;
+ }
+
+ Value *Val = ThisAddend->getSymVal();
+ unsigned StartIdx = SimpVect.size();
+ SimpVect.push_back(ThisAddend);
+
+ // The inner loop collects addends sharing same symbolic-value, and these
+ // addends will be later on folded into a single addend. Following above
+ // example, if the symbolic value "y" is being processed, the inner loop
+ // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
+ // be later on folded into "<b1+b2, y>".
+ //
+ for (unsigned SameSymIdx = SymIdx + 1;
+ SameSymIdx < AddendNum; SameSymIdx++) {
+ const FAddend *T = Addends[SameSymIdx];
+ if (T && T->getSymVal() == Val) {
+ // Set null such that next iteration of the outer loop will not process
+ // this addend again.
+ Addends[SameSymIdx] = 0;
+ SimpVect.push_back(T);
+ }
+ }
+
+ // If multiple addends share same symbolic value, fold them together.
+ if (StartIdx + 1 != SimpVect.size()) {
+ FAddend &R = TmpResult[NextTmpIdx ++];
+ R = *SimpVect[StartIdx];
+ for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
+ R += *SimpVect[Idx];
+
+ // Pop all addends being folded and push the resulting folded addend.
+ SimpVect.resize(StartIdx);
+ if (Val != 0) {
+ if (!R.isZero()) {
+ SimpVect.push_back(&R);
+ }
+ } else {
+ // Don't push constant addend at this time. It will be the last element
+ // of <SimpVect>.
+ ConstAdd = &R;
+ }
+ }
+ }
+
+ assert((NextTmpIdx <= sizeof(TmpResult)/sizeof(TmpResult[0]) + 1) &&
+ "out-of-bound access");
+
+ if (ConstAdd)
+ SimpVect.push_back(ConstAdd);
+
+ Value *Result;
+ if (!SimpVect.empty())
+ Result = createNaryFAdd(SimpVect, InstrQuota);
+ else {
+ // The addition is folded to 0.0.
+ Result = ConstantFP::get(Instr->getType(), 0.0);
+ }
+
+ return Result;
+}
+
+Value *FAddCombine::createNaryFAdd
+ (const AddendVect &Opnds, unsigned InstrQuota) {
+ assert(!Opnds.empty() && "Expect at least one addend");
+
+ // Step 1: Check if the # of instructions needed exceeds the quota.
+ //
+ unsigned InstrNeeded = calcInstrNumber(Opnds);
+ if (InstrNeeded > InstrQuota)
+ return 0;
+
+ initCreateInstNum();
+
+ // step 2: Emit the N-ary addition.
+ // Note that at most three instructions are involved in Fadd-InstCombine: the
+ // addition in question, and at most two neighboring instructions.
+ // The resulting optimized addition should have at least one less instruction
+ // than the original addition expression tree. This implies that the resulting
+ // N-ary addition has at most two instructions, and we don't need to worry
+ // about tree-height when constructing the N-ary addition.
+
+ Value *LastVal = 0;
+ bool LastValNeedNeg = false;
+
+ // Iterate the addends, creating fadd/fsub using adjacent two addends.
+ for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
+ I != E; I++) {
+ bool NeedNeg;
+ Value *V = createAddendVal(**I, NeedNeg);
+ if (!LastVal) {
+ LastVal = V;
+ LastValNeedNeg = NeedNeg;
+ continue;
+ }
+
+ if (LastValNeedNeg == NeedNeg) {
+ LastVal = createFAdd(LastVal, V);
+ continue;
+ }
+
+ if (LastValNeedNeg)
+ LastVal = createFSub(V, LastVal);
+ else
+ LastVal = createFSub(LastVal, V);
+
+ LastValNeedNeg = false;
+ }
+
+ if (LastValNeedNeg) {
+ LastVal = createFNeg(LastVal);
+ }
+
+ #ifndef NDEBUG
+ assert(CreateInstrNum == InstrNeeded &&
+ "Inconsistent in instruction numbers");
+ #endif
+
+ return LastVal;
+}
+
+Value *FAddCombine::createFSub
+ (Value *Opnd0, Value *Opnd1) {
+ Value *V = Builder->CreateFSub(Opnd0, Opnd1);
+ createInstPostProc(cast<Instruction>(V));
+ return V;
+}
+
+Value *FAddCombine::createFNeg(Value *V) {
+ Value *Zero = cast<Value>(ConstantFP::get(V->getType(), 0.0));
+ return createFSub(Zero, V);
+}
+
+Value *FAddCombine::createFAdd
+ (Value *Opnd0, Value *Opnd1) {
+ Value *V = Builder->CreateFAdd(Opnd0, Opnd1);
+ createInstPostProc(cast<Instruction>(V));
+ return V;
+}
+
+Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
+ Value *V = Builder->CreateFMul(Opnd0, Opnd1);
+ createInstPostProc(cast<Instruction>(V));
+ return V;
+}
+
+void FAddCombine::createInstPostProc(Instruction *NewInstr) {
+ NewInstr->setDebugLoc(Instr->getDebugLoc());
+
+ // Keep track of the number of instruction created.
+ incCreateInstNum();
+
+ // Propagate fast-math flags
+ NewInstr->setFastMathFlags(Instr->getFastMathFlags());
+}
+
+// Return the number of instruction needed to emit the N-ary addition.
+// NOTE: Keep this function in sync with createAddendVal().
+unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
+ unsigned OpndNum = Opnds.size();
+ unsigned InstrNeeded = OpndNum - 1;
+
+ // The number of addends in the form of "(-1)*x".
+ unsigned NegOpndNum = 0;
+
+ // Adjust the number of instructions needed to emit the N-ary add.
+ for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
+ I != E; I++) {
+ const FAddend *Opnd = *I;
+ if (Opnd->isConstant())
+ continue;
+
+ const FAddendCoef &CE = Opnd->getCoef();
+ if (CE.isMinusOne() || CE.isMinusTwo())
+ NegOpndNum++;
+
+ // Let the addend be "c * x". If "c == +/-1", the value of the addend
+ // is immediately available; otherwise, it needs exactly one instruction
+ // to evaluate the value.
+ if (!CE.isMinusOne() && !CE.isOne())
+ InstrNeeded++;
+ }
+ if (NegOpndNum == OpndNum)
+ InstrNeeded++;
+ return InstrNeeded;
+}
+
+// Input Addend Value NeedNeg(output)
+// ================================================================
+// Constant C C false
+// <+/-1, V> V coefficient is -1
+// <2/-2, V> "fadd V, V" coefficient is -2
+// <C, V> "fmul V, C" false
+//
+// NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
+Value *FAddCombine::createAddendVal
+ (const FAddend &Opnd, bool &NeedNeg) {
+ const FAddendCoef &Coeff = Opnd.getCoef();
+
+ if (Opnd.isConstant()) {
+ NeedNeg = false;
+ return Coeff.getValue(Instr->getType());
+ }
+
+ Value *OpndVal = Opnd.getSymVal();
+
+ if (Coeff.isMinusOne() || Coeff.isOne()) {
+ NeedNeg = Coeff.isMinusOne();
+ return OpndVal;
+ }
+
+ if (Coeff.isTwo() || Coeff.isMinusTwo()) {
+ NeedNeg = Coeff.isMinusTwo();
+ return createFAdd(OpndVal, OpndVal);
+ }
+
+ NeedNeg = false;
+ return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
+}
+
/// AddOne - Add one to a ConstantInt.
static Constant *AddOne(Constant *C) {
return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
}
+
/// SubOne - Subtract one from a ConstantInt.
static Constant *SubOne(ConstantInt *C) {
return ConstantInt::get(C->getContext(), C->getValue()-1);
@@ -37,10 +740,10 @@ static Constant *SubOne(ConstantInt *C) {
static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
if (!V->hasOneUse() || !V->getType()->isIntegerTy())
return 0;
-
+
Instruction *I = dyn_cast<Instruction>(V);
if (I == 0) return 0;
-
+
if (I->getOpcode() == Instruction::Mul)
if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
return I->getOperand(0);
@@ -64,22 +767,22 @@ static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
// There are different heuristics we can use for this. Here are some simple
// ones.
-
- // Add has the property that adding any two 2's complement numbers can only
+
+ // Add has the property that adding any two 2's complement numbers can only
// have one carry bit which can change a sign. As such, if LHS and RHS each
// have at least two sign bits, we know that the addition of the two values
// will sign extend fine.
if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
return true;
-
-
+
+
// If one of the operands only has one non-zero bit, and if the other operand
// has a known-zero bit in a more significant place than it (not including the
// sign bit) the ripple may go up to and fill the zero, but won't change the
// sign. For example, (X & ~4) + 1.
-
+
// TODO: Implement.
-
+
return false;
}
@@ -100,7 +803,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
const APInt &Val = CI->getValue();
if (Val.isSignBit())
return BinaryOperator::CreateXor(LHS, RHS);
-
+
// See if SimplifyDemandedBits can simplify this. This handles stuff like
// (X & 254)+1 -> (X&254)|1
if (SimplifyDemandedInstructionBits(I))
@@ -110,7 +813,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
if (ZI->getSrcTy()->isIntegerTy(1))
return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
-
+
Value *XorLHS = 0; ConstantInt *XorRHS = 0;
if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
@@ -124,13 +827,13 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
else if (XorRHS->getValue().isPowerOf2())
ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
}
-
+
if (ExtendAmt) {
APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
if (!MaskedValueIsZero(XorLHS, Mask))
ExtendAmt = 0;
}
-
+
if (ExtendAmt) {
Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
@@ -175,7 +878,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
return BinaryOperator::CreateNeg(NewAdd);
}
-
+
return BinaryOperator::CreateSub(RHS, LHSV);
}
@@ -209,7 +912,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
APInt RHSKnownOne(IT->getBitWidth(), 0);
APInt RHSKnownZero(IT->getBitWidth(), 0);
ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne);
-
+
// No bits in common -> bitwise or.
if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
return BinaryOperator::CreateOr(LHS, RHS);
@@ -251,7 +954,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
// See if all bits from the first bit set in the Add RHS up are included
// in the mask. First, get the rightmost bit.
const APInt &AddRHSV = CRHS->getValue();
-
+
// Form a mask of all bits from the lowest bit added through the top.
APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
@@ -289,7 +992,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
// Fold the add into the true select value.
return SelectInst::Create(SI->getCondition(), N, A);
-
+
if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
// Fold the add into the false select value.
return SelectInst::Create(SI->getCondition(), A, N);
@@ -301,18 +1004,18 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
// (add (sext x), cst) --> (sext (add x, cst'))
if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
- Constant *CI =
+ Constant *CI =
ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
if (LHSConv->hasOneUse() &&
ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
// Insert the new, smaller add.
- Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
+ Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
CI, "addconv");
return new SExtInst(NewAdd, I.getType());
}
}
-
+
// (add (sext x), (sext y)) --> (sext (add int x, y))
if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
// Only do this if x/y have the same type, if at last one of them has a
@@ -323,7 +1026,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
WillNotOverflowSignedAdd(LHSConv->getOperand(0),
RHSConv->getOperand(0))) {
// Insert the new integer add.
- Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
+ Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
RHSConv->getOperand(0), "addconv");
return new SExtInst(NewAdd, I.getType());
}
@@ -351,18 +1054,12 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
bool Changed = SimplifyAssociativeOrCommutative(I);
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
- if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
- // X + 0 --> X
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
- if (CFP->isExactlyValue(ConstantFP::getNegativeZero
- (I.getType())->getValueAPF()))
- return ReplaceInstUsesWith(I, LHS);
- }
+ if (Value *V = SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), TD))
+ return ReplaceInstUsesWith(I, V);
- if (isa<PHINode>(LHS))
- if (Instruction *NV = FoldOpIntoPhi(I))
- return NV;
- }
+ if (isa<Constant>(RHS) && isa<PHINode>(LHS))
+ if (Instruction *NV = FoldOpIntoPhi(I))
+ return NV;
// -A + B --> B - A
// -A + -B --> -(A + B)
@@ -374,11 +1071,6 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
if (Value *V = dyn_castFNegVal(RHS))
return BinaryOperator::CreateFSub(LHS, V);
- // Check for X+0.0. Simplify it to X if we know X is not -0.0.
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
- if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
- return ReplaceInstUsesWith(I, LHS);
-
// Check for (fadd double (sitofp x), y), see if we can merge this into an
// integer add followed by a promotion.
if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
@@ -388,7 +1080,7 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
// requires a constant pool load, and generally allows the add to be better
// instcombined.
if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
- Constant *CI =
+ Constant *CI =
ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
if (LHSConv->hasOneUse() &&
ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
@@ -399,7 +1091,7 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
return new SIToFPInst(NewAdd, I.getType());
}
}
-
+
// (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
// Only do this if x/y have the same type, if at last one of them has a
@@ -410,13 +1102,18 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
WillNotOverflowSignedAdd(LHSConv->getOperand(0),
RHSConv->getOperand(0))) {
// Insert the new integer add.
- Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
+ Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
RHSConv->getOperand(0),"addconv");
return new SIToFPInst(NewAdd, I.getType());
}
}
}
-
+
+ if (I.hasUnsafeAlgebra()) {
+ if (Value *V = FAddCombine(Builder).simplify(&I))
+ return ReplaceInstUsesWith(I, V);
+ }
+
return Changed ? &I : 0;
}
@@ -428,7 +1125,7 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
Type *Ty) {
assert(TD && "Must have target data info for this");
-
+
// If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
// this.
bool Swapped = false;
@@ -451,7 +1148,7 @@ Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
}
}
}
-
+
if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
// X - (gep X, ...)
if (RHSGEP->getOperand(0) == LHS) {
@@ -467,16 +1164,16 @@ Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
}
}
}
-
+
// Avoid duplicating the arithmetic if GEP2 has non-constant indices and
// multiple users.
if (GEP1 == 0 ||
(GEP2 != 0 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse()))
return 0;
-
+
// Emit the offset of the GEP and an intptr_t.
Value *Result = EmitGEPOffset(GEP1);
-
+
// If we had a constant expression GEP on the other side offsetting the
// pointer, subtract it from the offset we have.
if (GEP2) {
@@ -517,7 +1214,7 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
// Replace (-1 - A) with (~A).
if (match(Op0, m_AllOnes()))
return BinaryOperator::CreateNot(Op1);
-
+
if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
// C - ~X == X + (1+C)
Value *X = 0;
@@ -553,18 +1250,18 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
return &I;
}
-
+
{ Value *Y;
// X-(X+Y) == -Y X-(Y+X) == -Y
if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) ||
match(Op1, m_Add(m_Value(Y), m_Specific(Op0))))
return BinaryOperator::CreateNeg(Y);
-
+
// (X-Y)-X == -Y
if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
return BinaryOperator::CreateNeg(Y);
}
-
+
if (Op1->hasOneUse()) {
Value *X = 0, *Y = 0, *Z = 0;
Constant *C = 0;
@@ -581,7 +1278,7 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
match(Op1, m_And(m_Specific(Op0), m_Value(Y))))
return BinaryOperator::CreateAnd(Op0,
Builder->CreateNot(Y, Y->getName() + ".not"));
-
+
// 0 - (X sdiv C) -> (X sdiv -C)
if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) &&
match(Op0, m_Zero()))
@@ -604,14 +1301,14 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
C = ConstantExpr::getSub(One, ConstantExpr::getShl(One, CI));
return BinaryOperator::CreateMul(Op0, C);
}
-
+
// X - A*-B -> X + A*B
// X - -A*B -> X + A*B
Value *A, *B;
if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) ||
match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B))))
return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B));
-
+
// X - A*CI -> X + A*-CI
// X - CI*A -> X + A*-CI
if (match(Op1, m_Mul(m_Value(A), m_ConstantInt(CI))) ||
@@ -630,7 +1327,7 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
if (X == dyn_castFoldableMul(Op1, C2))
return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2));
}
-
+
// Optimize pointer differences into the same array into a size. Consider:
// &A[10] - &A[0]: we should compile this to "10".
if (TD) {
@@ -639,23 +1336,31 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
match(Op1, m_PtrToInt(m_Value(RHSOp))))
if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
return ReplaceInstUsesWith(I, Res);
-
+
// trunc(p)-trunc(q) -> trunc(p-q)
if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
return ReplaceInstUsesWith(I, Res);
}
-
+
return 0;
}
Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ if (Value *V = SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), TD))
+ return ReplaceInstUsesWith(I, V);
+
// If this is a 'B = x-(-A)', change to B = x+A...
if (Value *V = dyn_castFNegVal(Op1))
return BinaryOperator::CreateFAdd(Op0, V);
+ if (I.hasUnsafeAlgebra()) {
+ if (Value *V = FAddCombine(Builder).simplify(&I))
+ return ReplaceInstUsesWith(I, V);
+ }
+
return 0;
}
diff --git a/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp b/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
index f5c42a7983..c1e60d4c42 100644
--- a/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
+++ b/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
@@ -13,7 +13,7 @@
#include "InstCombine.h"
#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Intrinsics.h"
+#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/PatternMatch.h"
#include "llvm/Transforms/Utils/CmpInstAnalysis.h"
@@ -36,15 +36,15 @@ static inline bool isFreeToInvert(Value *V) {
// ~(~(X)) -> X.
if (BinaryOperator::isNot(V))
return true;
-
+
// Constants can be considered to be not'ed values.
if (isa<ConstantInt>(V))
return true;
-
+
// Compares can be inverted if they have a single use.
if (CmpInst *CI = dyn_cast<CmpInst>(V))
return CI->hasOneUse();
-
+
return false;
}
@@ -56,7 +56,7 @@ static inline Value *dyn_castNotVal(Value *V) {
if (!isFreeToInvert(Operand))
return Operand;
}
-
+
// Constants can be considered to be not'ed values...
if (ConstantInt *C = dyn_cast<ConstantInt>(V))
return ConstantInt::get(C->getType(), ~C->getValue());
@@ -91,7 +91,7 @@ static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
}
/// getNewICmpValue - This is the complement of getICmpCode, which turns an
-/// opcode and two operands into either a constant true or false, or a brand
+/// opcode and two operands into either a constant true or false, or a brand
/// new ICmp instruction. The sign is passed in to determine which kind
/// of predicate to use in the new icmp instruction.
static Value *getNewICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS,
@@ -118,7 +118,7 @@ static Value *getFCmpValue(bool isordered, unsigned code,
case 4: Pred = isordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; break;
case 5: Pred = isordered ? FCmpInst::FCMP_ONE : FCmpInst::FCMP_UNE; break;
case 6: Pred = isordered ? FCmpInst::FCMP_OLE : FCmpInst::FCMP_ULE; break;
- case 7:
+ case 7:
if (!isordered) return ConstantInt::getTrue(LHS->getContext());
Pred = FCmpInst::FCMP_ORD; break;
}
@@ -154,7 +154,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
Or->takeName(Op);
return BinaryOperator::CreateAnd(Or, AndRHS);
}
-
+
ConstantInt *TogetherCI = dyn_cast<ConstantInt>(Together);
if (TogetherCI && !TogetherCI->isZero()){
// (X | C1) & C2 --> (X & (C2^(C1&C2))) | C1
@@ -166,7 +166,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
return BinaryOperator::CreateOr(And, OpRHS);
}
}
-
+
break;
case Instruction::Add:
if (Op->hasOneUse()) {
@@ -215,7 +215,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
if (CI->getValue() == ShlMask)
// Masking out bits that the shift already masks.
return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
-
+
if (CI != AndRHS) { // Reducing bits set in and.
TheAnd.setOperand(1, CI);
return &TheAnd;
@@ -236,7 +236,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
if (CI->getValue() == ShrMask)
// Masking out bits that the shift already masks.
return ReplaceInstUsesWith(TheAnd, Op);
-
+
if (CI != AndRHS) {
TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
return &TheAnd;
@@ -274,17 +274,17 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
/// insert new instructions.
Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
bool isSigned, bool Inside) {
- assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
+ assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
"Lo is not <= Hi in range emission code!");
-
+
if (Inside) {
if (Lo == Hi) // Trivially false.
return ConstantInt::getFalse(V->getContext());
// V >= Min && V < Hi --> V < Hi
if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
- ICmpInst::Predicate pred = (isSigned ?
+ ICmpInst::Predicate pred = (isSigned ?
ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
return Builder->CreateICmp(pred, V, Hi);
}
@@ -302,7 +302,7 @@ Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
// V < Min || V >= Hi -> V > Hi-1
Hi = SubOne(cast<ConstantInt>(Hi));
if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
- ICmpInst::Predicate pred = (isSigned ?
+ ICmpInst::Predicate pred = (isSigned ?
ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
return Builder->CreateICmp(pred, V, Hi);
}
@@ -327,14 +327,14 @@ static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
// look for the first zero bit after the run of ones
MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
// look for the first non-zero bit
- ME = V.getActiveBits();
+ ME = V.getActiveBits();
return true;
}
/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
/// where isSub determines whether the operator is a sub. If we can fold one of
/// the following xforms:
-///
+///
/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
@@ -355,8 +355,8 @@ Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
case Instruction::And:
if (ConstantExpr::getAnd(N, Mask) == Mask) {
// If the AndRHS is a power of two minus one (0+1+), this is simple.
- if ((Mask->getValue().countLeadingZeros() +
- Mask->getValue().countPopulation()) ==
+ if ((Mask->getValue().countLeadingZeros() +
+ Mask->getValue().countPopulation()) ==
Mask->getValue().getBitWidth())
break;
@@ -375,33 +375,33 @@ Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
case Instruction::Or:
case Instruction::Xor:
// If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
- if ((Mask->getValue().countLeadingZeros() +
+ if ((Mask->getValue().countLeadingZeros() +
Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
&& ConstantExpr::getAnd(N, Mask)->isNullValue())
break;
return 0;
}
-
+
if (isSub)
return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
}
/// enum for classifying (icmp eq (A & B), C) and (icmp ne (A & B), C)
-/// One of A and B is considered the mask, the other the value. This is
-/// described as the "AMask" or "BMask" part of the enum. If the enum
+/// One of A and B is considered the mask, the other the value. This is
+/// described as the "AMask" or "BMask" part of the enum. If the enum
/// contains only "Mask", then both A and B can be considered masks.
/// If A is the mask, then it was proven, that (A & C) == C. This
/// is trivial if C == A, or C == 0. If both A and C are constants, this
/// proof is also easy.
/// For the following explanations we assume that A is the mask.
-/// The part "AllOnes" declares, that the comparison is true only
+/// The part "AllOnes" declares, that the comparison is true only
/// if (A & B) == A, or all bits of A are set in B.
/// Example: (icmp eq (A & 3), 3) -> FoldMskICmp_AMask_AllOnes
-/// The part "AllZeroes" declares, that the comparison is true only
+/// The part "AllZeroes" declares, that the comparison is true only
/// if (A & B) == 0, or all bits of A are cleared in B.
/// Example: (icmp eq (A & 3), 0) -> FoldMskICmp_Mask_AllZeroes
-/// The part "Mixed" declares, that (A & B) == C and C might or might not
+/// The part "Mixed" declares, that (A & B) == C and C might or might not
/// contain any number of one bits and zero bits.
/// Example: (icmp eq (A & 3), 1) -> FoldMskICmp_AMask_Mixed
/// The Part "Not" means, that in above descriptions "==" should be replaced
@@ -425,16 +425,16 @@ enum MaskedICmpType {
/// return the set of pattern classes (from MaskedICmpType)
/// that (icmp SCC (A & B), C) satisfies
-static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
+static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
ICmpInst::Predicate SCC)
{
ConstantInt *ACst = dyn_cast<ConstantInt>(A);
ConstantInt *BCst = dyn_cast<ConstantInt>(B);
ConstantInt *CCst = dyn_cast<ConstantInt>(C);
bool icmp_eq = (SCC == ICmpInst::ICMP_EQ);
- bool icmp_abit = (ACst != 0 && !ACst->isZero() &&
+ bool icmp_abit = (ACst != 0 && !ACst->isZero() &&
ACst->getValue().isPowerOf2());
- bool icmp_bbit = (BCst != 0 && !BCst->isZero() &&
+ bool icmp_bbit = (BCst != 0 && !BCst->isZero() &&
BCst->getValue().isPowerOf2());
unsigned result = 0;
if (CCst != 0 && CCst->isZero()) {
@@ -449,12 +449,12 @@ static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
FoldMskICmp_BMask_NotMixed));
if (icmp_abit)
result |= (icmp_eq ? (FoldMskICmp_AMask_NotAllOnes |
- FoldMskICmp_AMask_NotMixed)
+ FoldMskICmp_AMask_NotMixed)
: (FoldMskICmp_AMask_AllOnes |
FoldMskICmp_AMask_Mixed));
if (icmp_bbit)
result |= (icmp_eq ? (FoldMskICmp_BMask_NotAllOnes |
- FoldMskICmp_BMask_NotMixed)
+ FoldMskICmp_BMask_NotMixed)
: (FoldMskICmp_BMask_AllOnes |
FoldMskICmp_BMask_Mixed));
return result;
@@ -469,26 +469,23 @@ static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
FoldMskICmp_AMask_NotMixed)
: (FoldMskICmp_Mask_AllZeroes |
FoldMskICmp_AMask_Mixed));
- }
- else if (ACst != 0 && CCst != 0 &&
- ConstantExpr::getAnd(ACst, CCst) == CCst) {
+ } else if (ACst != 0 && CCst != 0 &&
+ ConstantExpr::getAnd(ACst, CCst) == CCst) {
result |= (icmp_eq ? FoldMskICmp_AMask_Mixed
: FoldMskICmp_AMask_NotMixed);
}
- if (B == C)
- {
+ if (B == C) {
result |= (icmp_eq ? (FoldMskICmp_BMask_AllOnes |
FoldMskICmp_BMask_Mixed)
: (FoldMskICmp_BMask_NotAllOnes |
FoldMskICmp_BMask_NotMixed));
if (icmp_bbit)
result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
- FoldMskICmp_BMask_NotMixed)
+ FoldMskICmp_BMask_NotMixed)
: (FoldMskICmp_Mask_AllZeroes |
FoldMskICmp_BMask_Mixed));
- }
- else if (BCst != 0 && CCst != 0 &&
- ConstantExpr::getAnd(BCst, CCst) == CCst) {
+ } else if (BCst != 0 && CCst != 0 &&
+ ConstantExpr::getAnd(BCst, CCst) == CCst) {
result |= (icmp_eq ? FoldMskICmp_BMask_Mixed
: FoldMskICmp_BMask_NotMixed);
}
@@ -531,7 +528,7 @@ static bool decomposeBitTestICmp(const ICmpInst *I, ICmpInst::Predicate &Pred,
/// handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
/// return the set of pattern classes (from MaskedICmpType)
/// that both LHS and RHS satisfy
-static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
+static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
Value*& B, Value*& C,
Value*& D, Value*& E,
ICmpInst *LHS, ICmpInst *RHS,
@@ -542,10 +539,10 @@ static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
if (LHS->getOperand(0)->getType()->isVectorTy()) return 0;
// Here comes the tricky part:
- // LHS might be of the form L11 & L12 == X, X == L21 & L22,
+ // LHS might be of the form L11 & L12 == X, X == L21 & L22,
// and L11 & L12 == L21 & L22. The same goes for RHS.
// Now we must find those components L** and R**, that are equal, so
- // that we can extract the parameters A, B, C, D, and E for the canonical
+ // that we can extract the parameters A, B, C, D, and E for the canonical
// above.
Value *L1 = LHS->getOperand(0);
Value *L2 = LHS->getOperand(1);
@@ -610,14 +607,11 @@ static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
if (L11 == A) {
B = L12; C = L2;
- }
- else if (L12 == A) {
+ } else if (L12 == A) {
B = L11; C = L2;
- }
- else if (L21 == A) {
+ } else if (L21 == A) {
B = L22; C = L1;
- }
- else if (L22 == A) {
+ } else if (L22 == A) {
B = L21; C = L1;
}
@@ -643,32 +637,32 @@ static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS,
mask >>= 1; // treat "Not"-states as normal states
if (mask & FoldMskICmp_Mask_AllZeroes) {
- // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
+ // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
// -> (icmp eq (A & (B|D)), 0)
Value* newOr = Builder->CreateOr(B, D);
Value* newAnd = Builder->CreateAnd(A, newOr);
// we can't use C as zero, because we might actually handle
- // (icmp ne (A & B), B) & (icmp ne (A & D), D)
+ // (icmp ne (A & B), B) & (icmp ne (A & D), D)
// with B and D, having a single bit set
Value* zero = Constant::getNullValue(A->getType());
return Builder->CreateICmp(NEWCC, newAnd, zero);
}
- else if (mask & FoldMskICmp_BMask_AllOnes) {
- // (icmp eq (A & B), B) & (icmp eq (A & D), D)
+ if (mask & FoldMskICmp_BMask_AllOnes) {
+ // (icmp eq (A & B), B) & (icmp eq (A & D), D)
// -> (icmp eq (A & (B|D)), (B|D))
Value* newOr = Builder->CreateOr(B, D);
Value* newAnd = Builder->CreateAnd(A, newOr);
return Builder->CreateICmp(NEWCC, newAnd, newOr);
- }
- else if (mask & FoldMskICmp_AMask_AllOnes) {
- // (icmp eq (A & B), A) & (icmp eq (A & D), A)
+ }
+ if (mask & FoldMskICmp_AMask_AllOnes) {
+ // (icmp eq (A & B), A) & (icmp eq (A & D), A)
// -> (icmp eq (A & (B&D)), A)
Value* newAnd1 = Builder->CreateAnd(B, D);
Value* newAnd = Builder->CreateAnd(A, newAnd1);
return Builder->CreateICmp(NEWCC, newAnd, A);
}
- else if (mask & FoldMskICmp_BMask_Mixed) {
- // (icmp eq (A & B), C) & (icmp eq (A & D), E)
+ if (mask & FoldMskICmp_BMask_Mixed) {
+ // (icmp eq (A & B), C) & (icmp eq (A & D), E)
// We already know that B & C == C && D & E == E.
// If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
// C and E, which are shared by both the mask B and the mask D, don't
@@ -680,7 +674,7 @@ static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS,
ConstantInt *DCst = dyn_cast<ConstantInt>(D);
if (DCst == 0) return 0;
// we can't simply use C and E, because we might actually handle
- // (icmp ne (A & B), B) & (icmp eq (A & D), D)
+ // (icmp ne (A & B), B) & (icmp eq (A & D), D)
// with B and D, having a single bit set
ConstantInt *CCst = dyn_cast<ConstantInt>(C);
@@ -727,13 +721,13 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
// handle (roughly): (icmp eq (A & B), C) & (icmp eq (A & D), E)
if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, ICmpInst::ICMP_EQ, Builder))
return V;
-
+
// This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
if (LHSCst == 0 || RHSCst == 0) return 0;
-
+
if (LHSCst == RHSCst && LHSCC == RHSCC) {
// (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
// where C is a power of 2
@@ -742,7 +736,7 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
Value *NewOr = Builder->CreateOr(Val, Val2);
return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
}
-
+
// (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) {
Value *NewOr = Builder->CreateOr(Val, Val2);
@@ -759,14 +753,13 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
ConstantInt *AndCst, *SmallCst = 0, *BigCst = 0;
// (trunc x) == C1 & (and x, CA) == C2
+ // (and x, CA) == C2 & (trunc x) == C1
if (match(Val2, m_Trunc(m_Value(V))) &&
match(Val, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
SmallCst = RHSCst;
BigCst = LHSCst;
- }
- // (and x, CA) == C2 & (trunc x) == C1
- else if (match(Val, m_Trunc(m_Value(V))) &&
- match(Val2, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
+ } else if (match(Val, m_Trunc(m_Value(V))) &&
+ match(Val2, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
SmallCst = LHSCst;
BigCst = RHSCst;
}
@@ -789,7 +782,7 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
// From here on, we only handle:
// (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
if (Val != Val2) return 0;
-
+
// ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
@@ -799,9 +792,9 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
// Make a constant range that's the intersection of the two icmp ranges.
// If the intersection is empty, we know that the result is false.
- ConstantRange LHSRange =
+ ConstantRange LHSRange =
ConstantRange::makeICmpRegion(LHSCC, LHSCst->getValue());
- ConstantRange RHSRange =
+ ConstantRange RHSRange =
ConstantRange::makeICmpRegion(RHSCC, RHSCst->getValue());
if (LHSRange.intersectWith(RHSRange).isEmptySet())
@@ -810,16 +803,16 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
// We can't fold (ugt x, C) & (sgt x, C2).
if (!PredicatesFoldable(LHSCC, RHSCC))
return 0;
-
+
// Ensure that the larger constant is on the RHS.
bool ShouldSwap;
if (CmpInst::isSigned(LHSCC) ||
- (ICmpInst::isEquality(LHSCC) &&
+ (ICmpInst::isEquality(LHSCC) &&
CmpInst::isSigned(RHSCC)))
ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
else
ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
-
+
if (ShouldSwap) {
std::swap(LHS, RHS);
std::swap(LHSCst, RHSCst);
@@ -829,8 +822,8 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
// At this point, we know we have two icmp instructions
// comparing a value against two constants and and'ing the result
// together. Because of the above check, we know that we only have
- // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
- // (from the icmp folding check above), that the two constants
+ // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
+ // (from the icmp folding check above), that the two constants
// are not equal and that the larger constant is on the RHS
assert(LHSCst != RHSCst && "Compares not folded above?");
@@ -932,7 +925,7 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
}
break;
}
-
+
return 0;
}
@@ -951,7 +944,7 @@ Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
return ConstantInt::getFalse(LHS->getContext());
return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
}
-
+
// Handle vector zeros. This occurs because the canonical form of
// "fcmp ord x,x" is "fcmp ord x, 0".
if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
@@ -959,18 +952,18 @@ Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
return 0;
}
-
+
Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
-
-
+
+
if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
// Swap RHS operands to match LHS.
Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
std::swap(Op1LHS, Op1RHS);
}
-
+
if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
// Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
if (Op0CC == Op1CC)
@@ -981,7 +974,7 @@ Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
return RHS;
if (Op1CC == FCmpInst::FCMP_TRUE)
return LHS;
-
+
bool Op0Ordered;
bool Op1Ordered;
unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
@@ -1001,7 +994,7 @@ Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
return LHS;
if (Op0Ordered && (Op0Ordered == Op1Ordered))
return RHS;
-
+
// uno && oeq -> uno && (ord && eq) -> false
if (!Op0Ordered)
return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
@@ -1025,10 +1018,10 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
if (Value *V = SimplifyUsingDistributiveLaws(I))
return ReplaceInstUsesWith(I, V);
- // See if we can simplify any instructions used by the instruction whose sole
+ // See if we can simplify any instructions used by the instruction whose sole
// purpose is to compute bits we don't care about.
if (SimplifyDemandedInstructionBits(I))
- return &I;
+ return &I;
if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
const APInt &AndRHSMask = AndRHS->getValue();
@@ -1043,7 +1036,7 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
case Instruction::Or: {
// If the mask is only needed on one incoming arm, push it up.
if (!Op0I->hasOneUse()) break;
-
+
APInt NotAndRHS(~AndRHSMask);
if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
// Not masking anything out for the LHS, move to RHS.
@@ -1103,12 +1096,12 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
}
break;
}
-
+
if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
return Res;
}
-
+
// If this is an integer truncation, and if the source is an 'and' with
// immediate, transform it. This frequently occurs for bitfield accesses.
{
@@ -1116,7 +1109,7 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
// Change: and (trunc (and X, YC) to T), C2
// into : and (trunc X to T), trunc(YC) & C2
- // This will fold the two constants together, which may allow
+ // This will fold the two constants together, which may allow
// other simplifications.
Value *NewCast = Builder->CreateTrunc(X, I.getType(), "and.shrunk");
Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
@@ -1143,7 +1136,7 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
I.getName()+".demorgan");
return BinaryOperator::CreateNot(Or);
}
-
+
{
Value *A = 0, *B = 0, *C = 0, *D = 0;
// (A|B) & ~(A&B) -> A^B
@@ -1151,13 +1144,13 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) &&
((A == C && B == D) || (A == D && B == C)))
return BinaryOperator::CreateXor(A, B);
-
+
// ~(A&B) & (A|B) -> A^B
if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) &&
((A == C && B == D) || (A == D && B == C)))
return BinaryOperator::CreateXor(A, B);
-
+
// A&(A^B) => A & ~B
{
Value *tmpOp0 = Op0;
@@ -1193,19 +1186,19 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
return BinaryOperator::CreateAnd(A, Op0);
}
-
+
if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1))
if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
if (Value *Res = FoldAndOfICmps(LHS, RHS))
return ReplaceInstUsesWith(I, Res);
-
+
// If and'ing two fcmp, try combine them into one.
if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
if (Value *Res = FoldAndOfFCmps(LHS, RHS))
return ReplaceInstUsesWith(I, Res);
-
-
+
+
// fold (and (cast A), (cast B)) -> (cast (and A, B))
if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) {
@@ -1214,21 +1207,21 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
SrcTy == Op1C->getOperand(0)->getType() &&
SrcTy->isIntOrIntVectorTy()) {
Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
-
+
// Only do this if the casts both really cause code to be generated.
if (ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
Value *NewOp = Builder->CreateAnd(Op0COp, Op1COp, I.getName());
return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
}
-
+
// If this is and(cast(icmp), cast(icmp)), try to fold this even if the
// cast is otherwise not optimizable. This happens for vector sexts.
if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
if (Value *Res = FoldAndOfICmps(LHS, RHS))
return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
-
+
// If this is and(cast(fcmp), cast(fcmp)), try to fold this even if the
// cast is otherwise not optimizable. This happens for vector sexts.
if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
@@ -1237,17 +1230,17 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
}
}
-
+
// (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
- if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
+ if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
SI0->getOperand(1) == SI1->getOperand(1) &&
(SI0->hasOneUse() || SI1->hasOneUse())) {
Value *NewOp =
Builder->CreateAnd(SI0->getOperand(0), SI1->getOperand(0),
SI0->getName());
- return BinaryOperator::Create(SI1->getOpcode(), NewOp,
+ return BinaryOperator::Create(SI1->getOpcode(), NewOp,
SI1->getOperand(1));
}
}
@@ -1288,11 +1281,11 @@ static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
ByteValues);
}
-
+
// If this is a logical shift by a constant multiple of 8, recurse with
// OverallLeftShift and ByteMask adjusted.
if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
- unsigned ShAmt =
+ unsigned ShAmt =
cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
// Ensure the shift amount is defined and of a byte value.
if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
@@ -1313,7 +1306,7 @@ static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
if (OverallLeftShift >= (int)ByteValues.size()) return true;
if (OverallLeftShift <= -(int)ByteValues.size()) return true;
- return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
+ return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
ByteValues);
}
@@ -1325,20 +1318,20 @@ static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
unsigned NumBytes = ByteValues.size();
APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
-
+
for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
// If this byte is masked out by a later operation, we don't care what
// the and mask is.
if ((ByteMask & (1 << i)) == 0)
continue;
-
+
// If the AndMask is all zeros for this byte, clear the bit.
APInt MaskB = AndMask & Byte;
if (MaskB == 0) {
ByteMask &= ~(1U << i);
continue;
}
-
+
// If the AndMask is not all ones for this byte, it's not a bytezap.
if (MaskB != Byte)
return true;
@@ -1346,11 +1339,11 @@ static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
// Otherwise, this byte is kept.
}
- return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
+ return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
ByteValues);
}
}
-
+
// Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
// the input value to the bswap. Some observations: 1) if more than one byte
// is demanded from this input, then it could not be successfully assembled
@@ -1358,7 +1351,7 @@ static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
// their ultimate destination.
if (!isPowerOf2_32(ByteMask)) return true;
unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
-
+
// 2) The input and ultimate destinations must line up: if byte 3 of an i32
// is demanded, it needs to go into byte 0 of the result. This means that the
// byte needs to be shifted until it lands in the right byte bucket. The
@@ -1368,7 +1361,7 @@ static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
unsigned DestByteNo = InputByteNo + OverallLeftShift;
if (ByteValues.size()-1-DestByteNo != InputByteNo)
return true;
-
+
// If the destination byte value is already defined, the values are or'd
// together, which isn't a bswap (unless it's an or of the same bits).
if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
@@ -1381,25 +1374,25 @@ static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
/// If so, insert the new bswap intrinsic and return it.
Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
- if (!ITy || ITy->getBitWidth() % 16 ||
+ if (!ITy || ITy->getBitWidth() % 16 ||
// ByteMask only allows up to 32-byte values.
- ITy->getBitWidth() > 32*8)
+ ITy->getBitWidth() > 32*8)
return 0; // Can only bswap pairs of bytes. Can't do vectors.
-
+
/// ByteValues - For each byte of the result, we keep track of which value
/// defines each byte.
SmallVector<Value*, 8> ByteValues;
ByteValues.resize(ITy->getBitWidth()/8);
-
+
// Try to find all the pieces corresponding to the bswap.
uint32_t ByteMask = ~0U >> (32-ByteValues.size());
if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
return 0;
-
+
// Check to see if all of the bytes come from the same value.
Value *V = ByteValues[0];
if (V == 0) return 0; // Didn't find a byte? Must be zero.
-
+
// Check to make sure that all of the bytes come from the same value.
for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
if (ByteValues[i] != V)
@@ -1425,7 +1418,7 @@ static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
return SelectInst::Create(Cond, C, B);
if (match(D, m_SExt(m_Not(m_Specific(Cond)))))
return SelectInst::Create(Cond, C, B);
-
+
// ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
if (match(B, m_Not(m_SExt(m_Specific(Cond)))))
return SelectInst::Create(Cond, C, D);
@@ -1483,33 +1476,33 @@ Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
// From here on, we only handle:
// (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
if (Val != Val2) return 0;
-
+
// ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
return 0;
-
+
// We can't fold (ugt x, C) | (sgt x, C2).
if (!PredicatesFoldable(LHSCC, RHSCC))
return 0;
-
+
// Ensure that the larger constant is on the RHS.
bool ShouldSwap;
if (CmpInst::isSigned(LHSCC) ||
- (ICmpInst::isEquality(LHSCC) &&
+ (ICmpInst::isEquality(LHSCC) &&
CmpInst::isSigned(RHSCC)))
ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
else
ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
-
+
if (ShouldSwap) {
std::swap(LHS, RHS);
std::swap(LHSCst, RHSCst);
std::swap(LHSCC, RHSCC);
}
-
+
// At this point, we know we have two icmp instructions
// comparing a value against two constants and or'ing the result
// together. Because of the above check, we know that we only have
@@ -1531,6 +1524,20 @@ Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
return Builder->CreateICmpULT(Add, AddCST);
}
+
+ if (LHS->getOperand(0) == RHS->getOperand(0)) {
+ // if LHSCst and RHSCst differ only by one bit:
+ // (A == C1 || A == C2) -> (A & ~(C1 ^ C2)) == C1
+ assert(LHSCst->getValue().ule(LHSCst->getValue()));
+
+ APInt Xor = LHSCst->getValue() ^ RHSCst->getValue();
+ if (Xor.isPowerOf2()) {
+ Value *NegCst = Builder->getInt(~Xor);
+ Value *And = Builder->CreateAnd(LHS->getOperand(0), NegCst);
+ return Builder->CreateICmp(ICmpInst::ICMP_EQ, And, LHSCst);
+ }
+ }
+
break; // (X == 13 | X == 15) -> no change
case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
@@ -1632,7 +1639,7 @@ Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
/// function.
Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
- RHS->getPredicate() == FCmpInst::FCMP_UNO &&
+ RHS->getPredicate() == FCmpInst::FCMP_UNO &&
LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
@@ -1640,25 +1647,25 @@ Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
// true.
if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
return ConstantInt::getTrue(LHS->getContext());
-
+
// Otherwise, no need to compare the two constants, compare the
// rest.
return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
}
-
+
// Handle vector zeros. This occurs because the canonical form of
// "fcmp uno x,x" is "fcmp uno x, 0".
if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
isa<ConstantAggregateZero>(RHS->getOperand(1)))
return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
-
+
return 0;
}
-
+
Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
-
+
if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
// Swap RHS operands to match LHS.
Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
@@ -1692,7 +1699,7 @@ Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
/// ((A | B) & C1) | (B & C2)
///
/// into:
-///
+///
/// (A & C1) | B
///
/// when the XOR of the two constants is "all ones" (-1).
@@ -1727,7 +1734,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
if (Value *V = SimplifyUsingDistributiveLaws(I))
return ReplaceInstUsesWith(I, V);
- // See if we can simplify any instructions used by the instruction whose sole
+ // See if we can simplify any instructions used by the instruction whose sole
// purpose is to compute bits we don't care about.
if (SimplifyDemandedInstructionBits(I))
return &I;
@@ -1741,7 +1748,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
Op0->hasOneUse()) {
Value *Or = Builder->CreateOr(X, RHS);
Or->takeName(Op0);
- return BinaryOperator::CreateAnd(Or,
+ return BinaryOperator::CreateAnd(Or,
ConstantInt::get(I.getContext(),
RHS->getValue() | C1->getValue()));
}
@@ -1778,7 +1785,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
if (Instruction *BSwap = MatchBSwap(I))
return BSwap;
}
-
+
// (X^C)|Y -> (X|Y)^C iff Y&C == 0
if (Op0->hasOneUse() &&
match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
@@ -1827,7 +1834,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
return ReplaceInstUsesWith(I, B);
}
}
-
+
if ((C1->getValue() & C2->getValue()) == 0) {
// ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
// iff (C1&C2) == 0 and (N&~C1) == 0
@@ -1844,7 +1851,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
return BinaryOperator::CreateAnd(B,
ConstantInt::get(B->getContext(),
C1->getValue()|C2->getValue()));
-
+
// ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
// iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
ConstantInt *C3 = 0, *C4 = 0;
@@ -1904,16 +1911,16 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
if (Ret) return Ret;
}
}
-
+
// (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
- if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
+ if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
SI0->getOperand(1) == SI1->getOperand(1) &&
(SI0->hasOneUse() || SI1->hasOneUse())) {
Value *NewOp = Builder->CreateOr(SI0->getOperand(0), SI1->getOperand(0),
SI0->getName());
- return BinaryOperator::Create(SI1->getOpcode(), NewOp,
+ return BinaryOperator::Create(SI1->getOpcode(), NewOp,
SI1->getOperand(1));
}
}
@@ -1975,13 +1982,13 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
if (Value *Res = FoldOrOfICmps(LHS, RHS))
return ReplaceInstUsesWith(I, Res);
-
+
// (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
if (Value *Res = FoldOrOfFCmps(LHS, RHS))
return ReplaceInstUsesWith(I, Res);
-
+
// fold (or (cast A), (cast B)) -> (cast (or A, B))
if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
CastInst *Op1C = dyn_cast<CastInst>(Op1);
@@ -1999,14 +2006,14 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
Value *NewOp = Builder->CreateOr(Op0COp, Op1COp, I.getName());
return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
}
-
+
// If this is or(cast(icmp), cast(icmp)), try to fold this even if the
// cast is otherwise not optimizable. This happens for vector sexts.
if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
if (Value *Res = FoldOrOfICmps(LHS, RHS))
return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
-
+
// If this is or(cast(fcmp), cast(fcmp)), try to fold this even if the
// cast is otherwise not optimizable. This happens for vector sexts.
if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
@@ -2035,7 +2042,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
Inner->takeName(Op0);
return BinaryOperator::CreateOr(Inner, C1);
}
-
+
return Changed ? &I : 0;
}
@@ -2050,7 +2057,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
if (Value *V = SimplifyUsingDistributiveLaws(I))
return ReplaceInstUsesWith(I, V);
- // See if we can simplify any instructions used by the instruction whose sole
+ // See if we can simplify any instructions used by the instruction whose sole
// purpose is to compute bits we don't care about.
if (SimplifyDemandedInstructionBits(I))
return &I;
@@ -2058,7 +2065,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
// Is this a ~ operation?
if (Value *NotOp = dyn_castNotVal(&I)) {
if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
- if (Op0I->getOpcode() == Instruction::And ||
+ if (Op0I->getOpcode() == Instruction::And ||
Op0I->getOpcode() == Instruction::Or) {
// ~(~X & Y) --> (X | ~Y) - De Morgan's Law
// ~(~X | Y) === (X & ~Y) - De Morgan's Law
@@ -2072,10 +2079,10 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
return BinaryOperator::CreateOr(Op0NotVal, NotY);
return BinaryOperator::CreateAnd(Op0NotVal, NotY);
}
-
+
// ~(X & Y) --> (~X | ~Y) - De Morgan's Law
// ~(X | Y) === (~X & ~Y) - De Morgan's Law
- if (isFreeToInvert(Op0I->getOperand(0)) &&
+ if (isFreeToInvert(Op0I->getOperand(0)) &&
isFreeToInvert(Op0I->getOperand(1))) {
Value *NotX =
Builder->CreateNot(Op0I->getOperand(0), "notlhs");
@@ -2093,8 +2100,8 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
}
}
}
-
-
+
+
if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
if (RHS->isOne() && Op0->hasOneUse())
// xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
@@ -2109,7 +2116,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
if (CI->hasOneUse() && Op0C->hasOneUse()) {
Instruction::CastOps Opcode = Op0C->getOpcode();
if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
- (RHS == ConstantExpr::getCast(Opcode,
+ (RHS == ConstantExpr::getCast(Opcode,
ConstantInt::getTrue(I.getContext()),
Op0C->getDestTy()))) {
CI->setPredicate(CI->getInversePredicate());
@@ -2128,7 +2135,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
ConstantInt::get(I.getType(), 1));
return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
}
-
+
if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
if (Op0I->getOpcode() == Instruction::Add) {
// ~(X-c) --> (-c-1)-X
@@ -2152,7 +2159,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
// Anything in both C1 and C2 is known to be zero, remove it from
// NewRHS.
Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
- NewRHS = ConstantExpr::getAnd(NewRHS,
+ NewRHS = ConstantExpr::getAnd(NewRHS,
ConstantExpr::getNot(CommonBits));
Worklist.Add(Op0I);
I.setOperand(0, Op0I->getOperand(0));
@@ -2162,7 +2169,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
} else if (Op0I->getOpcode() == Instruction::LShr) {
// ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
// E1 = "X ^ C1"
- BinaryOperator *E1;
+ BinaryOperator *E1;
ConstantInt *C1;
if (Op0I->hasOneUse() &&
(E1 = dyn_cast<BinaryOperator>(Op0I->getOperand(0))) &&
@@ -2205,7 +2212,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
I.swapOperands(); // Simplified below.
std::swap(Op0, Op1);
}
- } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
+ } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
Op1I->hasOneUse()){
if (A == Op0) { // A^(A&B) -> A^(B&A)
Op1I->swapOperands();
@@ -2217,7 +2224,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
}
}
}
-
+
BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
if (Op0I) {
Value *A, *B;
@@ -2227,7 +2234,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
std::swap(A, B);
if (B == Op1) // (A|B)^B == A & ~B
return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1));
- } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
+ } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
Op0I->hasOneUse()){
if (A == Op1) // (A&B)^A -> (B&A)^A
std::swap(A, B);
@@ -2237,31 +2244,31 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
}
}
}
-
+
// (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
- if (Op0I && Op1I && Op0I->isShift() &&
- Op0I->getOpcode() == Op1I->getOpcode() &&
+ if (Op0I && Op1I && Op0I->isShift() &&
+ Op0I->getOpcode() == Op1I->getOpcode() &&
Op0I->getOperand(1) == Op1I->getOperand(1) &&
(Op0I->hasOneUse() || Op1I->hasOneUse())) {
Value *NewOp =
Builder->CreateXor(Op0I->getOperand(0), Op1I->getOperand(0),
Op0I->getName());
- return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
+ return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
Op1I->getOperand(1));
}
-
+
if (Op0I && Op1I) {
Value *A, *B, *C, *D;
// (A & B)^(A | B) -> A ^ B
if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
- if ((A == C && B == D) || (A == D && B == C))
+ if ((A == C && B == D) || (A == D && B == C))
return BinaryOperator::CreateXor(A, B);
}
// (A | B)^(A & B) -> A ^ B
if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
match(Op1I, m_And(m_Value(C), m_Value(D)))) {
- if ((A == C && B == D) || (A == D && B == C))
+ if ((A == C && B == D) || (A == D && B == C))
return BinaryOperator::CreateXor(A, B);
}
}
@@ -2278,7 +2285,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
bool isSigned = LHS->isSigned() || RHS->isSigned();
- return ReplaceInstUsesWith(I,
+ return ReplaceInstUsesWith(I,
getNewICmpValue(isSigned, Code, Op0, Op1,
Builder));
}
@@ -2291,9 +2298,9 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
Type *SrcTy = Op0C->getOperand(0)->getType();
if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegerTy() &&
// Only do this if the casts both really cause code to be generated.
- ShouldOptimizeCast(Op0C->getOpcode(), Op0C->getOperand(0),
+ ShouldOptimizeCast(Op0C->getOpcode(), Op0C->getOperand(0),
I.getType()) &&
- ShouldOptimizeCast(Op1C->getOpcode(), Op1C->getOperand(0),
+ ShouldOptimizeCast(Op1C->getOpcode(), Op1C->getOperand(0),
I.getType())) {
Value *NewOp = Builder->CreateXor(Op0C->getOperand(0),
Op1C->getOperand(0), I.getName());
diff --git a/lib/Transforms/InstCombine/InstCombineCalls.cpp b/lib/Transforms/InstCombine/InstCombineCalls.cpp
index 41fe0873b3..d17879b587 100644
--- a/lib/Transforms/InstCombine/InstCombineCalls.cpp
+++ b/lib/Transforms/InstCombine/InstCombineCalls.cpp
@@ -14,11 +14,13 @@
#include "InstCombine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/MemoryBuiltins.h"
-#include "llvm/DataLayout.h"
+#include "llvm/IR/DataLayout.h"
#include "llvm/Support/CallSite.h"
+#include "llvm/Support/PatternMatch.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
+using namespace PatternMatch;
STATISTIC(NumSimplified, "Number of library calls simplified");
@@ -276,25 +278,25 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
return ReplaceInstUsesWith(CI, ConstantInt::get(CI.getType(), Size));
return 0;
}
- case Intrinsic::bswap:
+ case Intrinsic::bswap: {
+ Value *IIOperand = II->getArgOperand(0);
+ Value *X = 0;
+
// bswap(bswap(x)) -> x
- if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getArgOperand(0)))
- if (Operand->getIntrinsicID() == Intrinsic::bswap)
- return ReplaceInstUsesWith(CI, Operand->getArgOperand(0));
+ if (match(IIOperand, m_BSwap(m_Value(X))))
+ return ReplaceInstUsesWith(CI, X);
// bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
- if (TruncInst *TI = dyn_cast<TruncInst>(II->getArgOperand(0))) {
- if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
- if (Operand->getIntrinsicID() == Intrinsic::bswap) {
- unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
- TI->getType()->getPrimitiveSizeInBits();
- Value *CV = ConstantInt::get(Operand->getType(), C);
- Value *V = Builder->CreateLShr(Operand->getArgOperand(0), CV);
- return new TruncInst(V, TI->getType());
- }
+ if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
+ unsigned C = X->getType()->getPrimitiveSizeInBits() -
+ IIOperand->getType()->getPrimitiveSizeInBits();
+ Value *CV = ConstantInt::get(X->getType(), C);
+ Value *V = Builder->CreateLShr(X, CV);
+ return new TruncInst(V, IIOperand->getType());
}
-
break;
+ }
+
case Intrinsic::powi:
if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
// powi(x, 0) -> 1.0
@@ -693,7 +695,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
if (Splat->isOne()) {
if (Zext)
return CastInst::CreateZExtOrBitCast(Arg0, II->getType());
- // else
+ // else
return CastInst::CreateSExtOrBitCast(Arg0, II->getType());
}
}
@@ -899,7 +901,7 @@ Instruction *InstCombiner::visitCallSite(CallSite CS) {
new StoreInst(ConstantInt::getTrue(Callee->getContext()),
UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
OldCall);
- // If OldCall dues not return void then replaceAllUsesWith undef.
+ // If OldCall does not return void then replaceAllUsesWith undef.
// This allows ValueHandlers and custom metadata to adjust itself.
if (!OldCall->getType()->isVoidTy())
ReplaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
@@ -1013,7 +1015,7 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
AttrBuilder RAttrs = CallerPAL.getRetAttributes();
- if (RAttrs.hasAttributes(Attributes::typeIncompatible(NewRetTy)))
+ if (RAttrs.hasAttributes(Attribute::typeIncompatible(NewRetTy)))
return false; // Attribute not compatible with transformed value.
}
@@ -1042,14 +1044,14 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
if (!CastInst::isCastable(ActTy, ParamTy))
return false; // Cannot transform this parameter value.
- Attributes Attrs = CallerPAL.getParamAttributes(i + 1);
+ Attribute Attrs = CallerPAL.getParamAttributes(i + 1);
if (AttrBuilder(Attrs).
- hasAttributes(Attributes::typeIncompatible(ParamTy)))
+ hasAttributes(Attribute::typeIncompatible(ParamTy)))
return false; // Attribute not compatible with transformed value.
// If the parameter is passed as a byval argument, then we have to have a
// sized type and the sized type has to have the same size as the old type.
- if (ParamTy != ActTy && Attrs.hasAttribute(Attributes::ByVal)) {
+ if (ParamTy != ActTy && Attrs.hasAttribute(Attribute::ByVal)) {
PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
if (ParamPTy == 0 || !ParamPTy->getElementType()->isSized() || TD == 0)
return false;
@@ -1100,8 +1102,9 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
break;
- Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
- if (PAttrs.hasIncompatibleWithVarArgsAttrs())
+ Attribute PAttrs = CallerPAL.getSlot(i - 1).Attrs;
+ // Check if it has an attribute that's incompatible with varargs.
+ if (PAttrs.hasAttribute(Attribute::StructRet))
return false;
}
@@ -1118,13 +1121,13 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
// If the return value is not being used, the type may not be compatible
// with the existing attributes. Wipe out any problematic attributes.
- RAttrs.removeAttributes(Attributes::typeIncompatible(NewRetTy));
+ RAttrs.removeAttributes(Attribute::typeIncompatible(NewRetTy));
// Add the new return attributes.
if (RAttrs.hasAttributes())
attrVec.push_back(
AttributeWithIndex::get(AttributeSet::ReturnIndex,
- Attributes::get(FT->getContext(), RAttrs)));
+ Attribute::get(FT->getContext(), RAttrs)));
AI = CS.arg_begin();
for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
@@ -1138,7 +1141,7 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
}
// Add any parameter attributes.
- Attributes PAttrs = CallerPAL.getParamAttributes(i + 1);
+ Attribute PAttrs = CallerPAL.getParamAttributes(i + 1);
if (PAttrs.hasAttributes())
attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
}
@@ -1150,12 +1153,8 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
// If we are removing arguments to the function, emit an obnoxious warning.
if (FT->getNumParams() < NumActualArgs) {
- if (!FT->isVarArg()) {
- if (Callee->getName() != "main") { // @LOCALMOD
- errs() << "WARNING: While resolving call to function '"
- << Callee->getName() << "' arguments were dropped!\n";
- }
- } else {
+ // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
+ if (FT->isVarArg()) {
// Add all of the arguments in their promoted form to the arg list.
for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
Type *PTy = getPromotedType((*AI)->getType());
@@ -1169,14 +1168,14 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
}
// Add any parameter attributes.
- Attributes PAttrs = CallerPAL.getParamAttributes(i + 1);
+ Attribute PAttrs = CallerPAL.getParamAttributes(i + 1);
if (PAttrs.hasAttributes())
attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
}
}
}
- Attributes FnAttrs = CallerPAL.getFnAttributes();
+ Attribute FnAttrs = CallerPAL.getFnAttributes();
if (FnAttrs.hasAttributes())
attrVec.push_back(AttributeWithIndex::get(AttributeSet::FunctionIndex,
FnAttrs));
@@ -1249,9 +1248,8 @@ InstCombiner::transformCallThroughTrampoline(CallSite CS,
// If the call already has the 'nest' attribute somewhere then give up -
// otherwise 'nest' would occur twice after splicing in the chain.
- for (unsigned I = 0, E = Attrs.getNumAttrs(); I != E; ++I)
- if (Attrs.getAttributesAtIndex(I).hasAttribute(Attributes::Nest))
- return 0;
+ if (Attrs.hasAttrSomewhere(Attribute::Nest))
+ return 0;
assert(Tramp &&
"transformCallThroughTrampoline called with incorrect CallSite.");
@@ -1264,12 +1262,12 @@ InstCombiner::transformCallThroughTrampoline(CallSite CS,
if (!NestAttrs.isEmpty()) {
unsigned NestIdx = 1;
Type *NestTy = 0;
- Attributes NestAttr;
+ Attribute NestAttr;
// Look for a parameter marked with the 'nest' attribute.
for (FunctionType::param_iterator I = NestFTy->param_begin(),
E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
- if (NestAttrs.getParamAttributes(NestIdx).hasAttribute(Attributes::Nest)){
+ if (NestAttrs.getParamAttributes(NestIdx).hasAttribute(Attribute::Nest)){
// Record the parameter type and any other attributes.
NestTy = *I;
NestAttr = NestAttrs.getParamAttributes(NestIdx);
@@ -1288,7 +1286,7 @@ InstCombiner::transformCallThroughTrampoline(CallSite CS,
// mean appending it. Likewise for attributes.
// Add any result attributes.
- Attributes Attr = Attrs.getRetAttributes();
+ Attribute Attr = Attrs.getRetAttributes();
if (Attr.hasAttributes())
NewAttrs.push_back(AttributeWithIndex::get(AttributeSet::ReturnIndex,
Attr));
diff --git a/lib/Transforms/InstCombine/InstCombineCasts.cpp b/lib/Transforms/InstCombine/InstCombineCasts.cpp
index 19de62c81f..c782032c45 100644
--- a/lib/Transforms/InstCombine/InstCombineCasts.cpp
+++ b/lib/Transforms/InstCombine/InstCombineCasts.cpp
@@ -13,7 +13,7 @@
#include "InstCombine.h"
#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/DataLayout.h"
+#include "llvm/IR/DataLayout.h"
#include "llvm/Support/PatternMatch.h"
#include "llvm/Target/TargetLibraryInfo.h"
using namespace llvm;
@@ -1204,8 +1204,34 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
}
break;
}
+
+ // (fptrunc (fneg x)) -> (fneg (fptrunc x))
+ if (BinaryOperator::isFNeg(OpI)) {
+ Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1),
+ CI.getType());
+ return BinaryOperator::CreateFNeg(InnerTrunc);
+ }
}
-
+
+ IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0));
+ if (II) {
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::fabs: {
+ // (fptrunc (fabs x)) -> (fabs (fptrunc x))
+ Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0),
+ CI.getType());
+ Type *IntrinsicType[] = { CI.getType() };
+ Function *Overload =
+ Intrinsic::getDeclaration(CI.getParent()->getParent()->getParent(),
+ II->getIntrinsicID(), IntrinsicType);
+
+ Value *Args[] = { InnerTrunc };
+ return CallInst::Create(Overload, Args, II->getName());
+ }
+ }
+ }
+
// Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
if (Call && Call->getCalledFunction() && TLI->has(LibFunc::sqrtf) &&
@@ -1337,17 +1363,15 @@ Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
// GEP computes a constant offset, see if we can convert these three
// instructions into fewer. This typically happens with unions and other
// non-type-safe code.
+ APInt Offset(TD ? TD->getPointerSizeInBits() : 1, 0);
if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) &&
- GEP->hasAllConstantIndices()) {
- SmallVector<Value*, 8> Ops(GEP->idx_begin(), GEP->idx_end());
- int64_t Offset = TD->getIndexedOffset(GEP->getPointerOperandType(), Ops);
-
+ GEP->accumulateConstantOffset(*TD, Offset)) {
// Get the base pointer input of the bitcast, and the type it points to.
Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
Type *GEPIdxTy =
cast<PointerType>(OrigBase->getType())->getElementType();
SmallVector<Value*, 8> NewIndices;
- if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
+ if (FindElementAtOffset(GEPIdxTy, Offset.getSExtValue(), NewIndices)) {
// If we were able to index down into an element, create the GEP
// and bitcast the result. This eliminates one bitcast, potentially
// two.
diff --git a/lib/Transforms/InstCombine/InstCombineCompares.cpp b/lib/Transforms/InstCombine/InstCombineCompares.cpp
index 1b96c3cca4..40e559eda5 100644
--- a/lib/Transforms/InstCombine/InstCombineCompares.cpp
+++ b/lib/Transforms/InstCombine/InstCombineCompares.cpp
@@ -15,8 +15,8 @@
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
-#include "llvm/DataLayout.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/PatternMatch.h"
@@ -1226,6 +1226,16 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
ICI.setOperand(0, NewAnd);
return &ICI;
}
+
+ // Replace ((X & AndCST) > RHSV) with ((X & AndCST) != 0), if any
+ // bit set in (X & AndCST) will produce a result greater than RHSV.
+ if (ICI.getPredicate() == ICmpInst::ICMP_UGT) {
+ unsigned NTZ = AndCST->getValue().countTrailingZeros();
+ if ((NTZ < AndCST->getBitWidth()) &&
+ APInt::getOneBitSet(AndCST->getBitWidth(), NTZ).ugt(RHSV))
+ return new ICmpInst(ICmpInst::ICMP_NE, LHSI,
+ Constant::getNullValue(RHS->getType()));
+ }
}
// Try to optimize things like "A[i]&42 == 0" to index computations.
diff --git a/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp b/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
index 5726d3a91d..337cfe32a8 100644
--- a/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
+++ b/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
@@ -14,8 +14,8 @@
#include "InstCombine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Loads.h"
-#include "llvm/DataLayout.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
@@ -802,6 +802,13 @@ bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
InsertNewInstBefore(NewSI, *BBI);
NewSI->setDebugLoc(OtherStore->getDebugLoc());
+ // If the two stores had the same TBAA tag, preserve it.
+ if (MDNode *TBAATag = SI.getMetadata(LLVMContext::MD_tbaa))
+ if ((TBAATag = MDNode::getMostGenericTBAA(TBAATag,
+ OtherStore->getMetadata(LLVMContext::MD_tbaa))))
+ NewSI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
+
+
// Nuke the old stores.
EraseInstFromFunction(SI);
EraseInstFromFunction(*OtherStore);
diff --git a/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp b/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
index 5cd611c420..d0f43928c3 100644
--- a/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
+++ b/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
@@ -14,7 +14,7 @@
#include "InstCombine.h"
#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/PatternMatch.h"
using namespace llvm;
using namespace PatternMatch;
@@ -37,7 +37,7 @@ static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) {
if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(PowerOf2), m_Value(A))),
m_Value(B))) &&
// The "1" can be any value known to be a power of 2.
- isPowerOfTwo(PowerOf2, IC.getDataLayout())) {
+ isKnownToBeAPowerOfTwo(PowerOf2)) {
A = IC.Builder->CreateSub(A, B);
return IC.Builder->CreateShl(PowerOf2, A);
}
@@ -45,8 +45,7 @@ static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) {
// (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
// inexact. Similarly for <<.
if (BinaryOperator *I = dyn_cast<BinaryOperator>(V))
- if (I->isLogicalShift() &&
- isPowerOfTwo(I->getOperand(0), IC.getDataLayout())) {
+ if (I->isLogicalShift() && isKnownToBeAPowerOfTwo(I->getOperand(0))) {
// We know that this is an exact/nuw shift and that the input is a
// non-zero context as well.
if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC)) {
@@ -292,24 +291,94 @@ static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) {
Y = I->getOperand(0);
}
+/// Helper function of InstCombiner::visitFMul(BinaryOperator(). It returns
+/// true iff the given value is FMul or FDiv with one and only one operand
+/// being a normal constant (i.e. not Zero/NaN/Infinity).
+static bool isFMulOrFDivWithConstant(Value *V) {
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I || (I->getOpcode() != Instruction::FMul &&
+ I->getOpcode() != Instruction::FDiv))
+ return false;
+
+ ConstantFP *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
+ ConstantFP *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
+
+ if (C0 && C1)
+ return false;
+
+ return (C0 && C0->getValueAPF().isNormal()) ||
+ (C1 && C1->getValueAPF().isNormal());
+}
+
+static bool isNormalFp(const ConstantFP *C) {
+ const APFloat &Flt = C->getValueAPF();
+ return Flt.isNormal() && !Flt.isDenormal();
+}
+
+/// foldFMulConst() is a helper routine of InstCombiner::visitFMul().
+/// The input \p FMulOrDiv is a FMul/FDiv with one and only one operand
+/// being a constant (i.e. isFMulOrFDivWithConstant(FMulOrDiv) == true).
+/// This function is to simplify "FMulOrDiv * C" and returns the
+/// resulting expression. Note that this function could return NULL in
+/// case the constants cannot be folded into a normal floating-point.
+///
+Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, ConstantFP *C,
+ Instruction *InsertBefore) {
+ assert(isFMulOrFDivWithConstant(FMulOrDiv) && "V is invalid");
+
+ Value *Opnd0 = FMulOrDiv->getOperand(0);
+ Value *Opnd1 = FMulOrDiv->getOperand(1);
+
+ ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0);
+ ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1);
+
+ BinaryOperator *R = 0;
+
+ // (X * C0) * C => X * (C0*C)
+ if (FMulOrDiv->getOpcode() == Instruction::FMul) {
+ Constant *F = ConstantExpr::getFMul(C1 ? C1 : C0, C);
+ if (isNormalFp(cast<ConstantFP>(F)))
+ R = BinaryOperator::CreateFMul(C1 ? Opnd0 : Opnd1, F);
+ } else {
+ if (C0) {
+ // (C0 / X) * C => (C0 * C) / X
+ ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFMul(C0, C));
+ if (isNormalFp(F))
+ R = BinaryOperator::CreateFDiv(F, Opnd1);
+ } else {
+ // (X / C1) * C => X * (C/C1) if C/C1 is not a denormal
+ ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFDiv(C, C1));
+ if (isNormalFp(F)) {
+ R = BinaryOperator::CreateFMul(Opnd0, F);
+ } else {
+ // (X / C1) * C => X / (C1/C)
+ Constant *F = ConstantExpr::getFDiv(C1, C);
+ if (isNormalFp(cast<ConstantFP>(F)))
+ R = BinaryOperator::CreateFDiv(Opnd0, F);
+ }
+ }
+ }
+
+ if (R) {
+ R->setHasUnsafeAlgebra(true);
+ InsertNewInstWith(R, *InsertBefore);
+ }
+
+ return R;
+}
+
Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
bool Changed = SimplifyAssociativeOrCommutative(I);
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- // Simplify mul instructions with a constant RHS.
- if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
- if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1C)) {
- // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
- // ANSI says we can drop signals, so we can do this anyway." (from GCC)
- if (Op1F->isExactlyValue(1.0))
- return ReplaceInstUsesWith(I, Op0); // Eliminate 'fmul double %X, 1.0'
- } else if (ConstantDataVector *Op1V = dyn_cast<ConstantDataVector>(Op1C)) {
- // As above, vector X*splat(1.0) -> X in all defined cases.
- if (ConstantFP *F = dyn_cast_or_null<ConstantFP>(Op1V->getSplatValue()))
- if (F->isExactlyValue(1.0))
- return ReplaceInstUsesWith(I, Op0);
- }
+ if (isa<Constant>(Op0))
+ std::swap(Op0, Op1);
+ if (Value *V = SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), TD))
+ return ReplaceInstUsesWith(I, V);
+
+ // Simplify mul instructions with a constant RHS.
+ if (isa<Constant>(Op1)) {
// Try to fold constant mul into select arguments.
if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
if (Instruction *R = FoldOpIntoSelect(I, SI))
@@ -318,6 +387,55 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
if (isa<PHINode>(Op0))
if (Instruction *NV = FoldOpIntoPhi(I))
return NV;
+
+ ConstantFP *C = dyn_cast<ConstantFP>(Op1);
+ if (C && I.hasUnsafeAlgebra() && C->getValueAPF().isNormal()) {
+ // Let MDC denote an expression in one of these forms:
+ // X * C, C/X, X/C, where C is a constant.
+ //
+ // Try to simplify "MDC * Constant"
+ if (isFMulOrFDivWithConstant(Op0)) {
+ Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I);
+ if (V)
+ return ReplaceInstUsesWith(I, V);
+ }
+
+ // (MDC +/- C1) * C2 => (MDC * C2) +/- (C1 * C2)
+ Instruction *FAddSub = dyn_cast<Instruction>(Op0);
+ if (FAddSub &&
+ (FAddSub->getOpcode() == Instruction::FAdd ||
+ FAddSub->getOpcode() == Instruction::FSub)) {
+ Value *Opnd0 = FAddSub->getOperand(0);
+ Value *Opnd1 = FAddSub->getOperand(1);
+ ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0);
+ ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1);
+ bool Swap = false;
+ if (C0) {
+ std::swap(C0, C1);
+ std::swap(Opnd0, Opnd1);
+ Swap = true;
+ }
+
+ if (C1 && C1->getValueAPF().isNormal() &&
+ isFMulOrFDivWithConstant(Opnd0)) {
+ Value *M0 = ConstantExpr::getFMul(C1, C);
+ Value *M1 = isNormalFp(cast<ConstantFP>(M0)) ?
+ foldFMulConst(cast<Instruction>(Opnd0), C, &I) :
+ 0;
+ if (M0 && M1) {
+ if (Swap && FAddSub->getOpcode() == Instruction::FSub)
+ std::swap(M0, M1);
+
+ Value *R = (FAddSub->getOpcode() == Instruction::FAdd) ?
+ BinaryOperator::CreateFAdd(M0, M1) :
+ BinaryOperator::CreateFSub(M0, M1);
+ Instruction *RI = cast<Instruction>(R);
+ RI->setHasUnsafeAlgebra(true);
+ return RI;
+ }
+ }
+ }
+ }
}
if (Value *Op0v = dyn_castFNegVal(Op0)) // -X * -Y = X*Y
@@ -351,6 +469,38 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
}
}
+ // X * cond ? 1.0 : 0.0 => cond ? X : 0.0
+ if (I.hasNoNaNs() && I.hasNoSignedZeros()) {
+ Value *V0 = I.getOperand(0);
+ Value *V1 = I.getOperand(1);
+ Value *Cond, *SLHS, *SRHS;
+ bool Match = false;
+
+ if (match(V0, m_Select(m_Value(Cond), m_Value(SLHS), m_Value(SRHS)))) {
+ Match = true;
+ } else if (match(V1, m_Select(m_Value(Cond), m_Value(SLHS),
+ m_Value(SRHS)))) {
+ Match = true;
+ std::swap(V0, V1);
+ }
+
+ if (Match) {
+ ConstantFP *C0 = dyn_cast<ConstantFP>(SLHS);
+ ConstantFP *C1 = dyn_cast<ConstantFP>(SRHS);
+
+ if (C0 && C1 &&
+ ((C0->isZero() && C1->isExactlyValue(1.0)) ||
+ (C1->isZero() && C0->isExactlyValue(1.0)))) {
+ Value *T;
+ if (C0->isZero())
+ T = Builder->CreateSelect(Cond, SLHS, V1);
+ else
+ T = Builder->CreateSelect(Cond, V1, SRHS);
+ return ReplaceInstUsesWith(I, T);
+ }
+ }
+ }
+
return Changed ? &I : 0;
}
diff --git a/lib/Transforms/InstCombine/InstCombinePHI.cpp b/lib/Transforms/InstCombine/InstCombinePHI.cpp
index ea127e9f53..b0a998cca7 100644
--- a/lib/Transforms/InstCombine/InstCombinePHI.cpp
+++ b/lib/Transforms/InstCombine/InstCombinePHI.cpp
@@ -15,7 +15,7 @@
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/DataLayout.h"
+#include "llvm/IR/DataLayout.h"
using namespace llvm;
/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(a,c)]
diff --git a/lib/Transforms/InstCombine/InstCombineShifts.cpp b/lib/Transforms/InstCombine/InstCombineShifts.cpp
index 8a28d8eaa2..8cf76e5e8a 100644
--- a/lib/Transforms/InstCombine/InstCombineShifts.cpp
+++ b/lib/Transforms/InstCombine/InstCombineShifts.cpp
@@ -14,7 +14,7 @@
#include "InstCombine.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/PatternMatch.h"
using namespace llvm;
using namespace PatternMatch;
diff --git a/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp b/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
index 08aedb3200..8add1ea618 100644
--- a/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
+++ b/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
@@ -14,18 +14,18 @@
#include "InstCombine.h"
-#include "llvm/DataLayout.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/PatternMatch.h"
using namespace llvm;
using namespace llvm::PatternMatch;
-/// ShrinkDemandedConstant - Check to see if the specified operand of the
+/// ShrinkDemandedConstant - Check to see if the specified operand of the
/// specified instruction is a constant integer. If so, check to see if there
/// are any bits set in the constant that are not demanded. If so, shrink the
/// constant and return true.
-static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
+static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
APInt Demanded) {
assert(I && "No instruction?");
assert(OpNo < I->getNumOperands() && "Operand index too large");
@@ -54,8 +54,8 @@ bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
-
- Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask,
+
+ Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask,
KnownZero, KnownOne, 0);
if (V == 0) return false;
if (V == &Inst) return true;
@@ -66,7 +66,7 @@ bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
/// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the
/// specified instruction operand if possible, updating it in place. It returns
/// true if it made any change and false otherwise.
-bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
+bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
APInt &KnownZero, APInt &KnownOne,
unsigned Depth) {
Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask,
@@ -87,7 +87,7 @@ bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
/// to be one in the expression. KnownZero contains all the bits that are known
/// to be zero in the expression. These are provided to potentially allow the
/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
-/// the expression. KnownOne and KnownZero always follow the invariant that
+/// the expression. KnownOne and KnownZero always follow the invariant that
/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
/// the bits in KnownOne and KnownZero may only be accurate for those bits set
/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
@@ -134,10 +134,10 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
return 0;
return UndefValue::get(VTy);
}
-
+
if (Depth == 6) // Limit search depth.
return 0;
-
+
APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
@@ -159,56 +159,56 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// If either the LHS or the RHS are Zero, the result is zero.
ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
-
+
// If all of the demanded bits are known 1 on one side, return the other.
// These bits cannot contribute to the result of the 'and' in this
// context.
- if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
+ if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
(DemandedMask & ~LHSKnownZero))
return I->getOperand(0);
- if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
+ if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
(DemandedMask & ~RHSKnownZero))
return I->getOperand(1);
-
+
// If all of the demanded bits in the inputs are known zeros, return zero.
if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
return Constant::getNullValue(VTy);
-
+
} else if (I->getOpcode() == Instruction::Or) {
// We can simplify (X|Y) -> X or Y in the user's context if we know that
// only bits from X or Y are demanded.
-
+
// If either the LHS or the RHS are One, the result is One.
ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
-
+
// If all of the demanded bits are known zero on one side, return the
// other. These bits cannot contribute to the result of the 'or' in this
// context.
- if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
+ if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
(DemandedMask & ~LHSKnownOne))
return I->getOperand(0);
- if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
+ if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
(DemandedMask & ~RHSKnownOne))
return I->getOperand(1);
-
+
// If all of the potentially set bits on one side are known to be set on
// the other side, just use the 'other' side.
- if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
+ if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
(DemandedMask & (~RHSKnownZero)))
return I->getOperand(0);
- if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
+ if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
(DemandedMask & (~LHSKnownZero)))
return I->getOperand(1);
} else if (I->getOpcode() == Instruction::Xor) {
// We can simplify (X^Y) -> X or Y in the user's context if we know that
// only bits from X or Y are demanded.
-
+
ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
-
+
// If all of the demanded bits are known zero on one side, return the
- // other.
+ // other.
if ((DemandedMask & RHSKnownZero) == DemandedMask)
return I->getOperand(0);
if ((DemandedMask & LHSKnownZero) == DemandedMask)
@@ -219,14 +219,14 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
ComputeMaskedBits(I, KnownZero, KnownOne, Depth);
return 0;
}
-
+
// If this is the root being simplified, allow it to have multiple uses,
// just set the DemandedMask to all bits so that we can try to simplify the
// operands. This allows visitTruncInst (for example) to simplify the
// operand of a trunc without duplicating all the logic below.
if (Depth == 0 && !V->hasOneUse())
DemandedMask = APInt::getAllOnesValue(BitWidth);
-
+
switch (I->getOpcode()) {
default:
ComputeMaskedBits(I, KnownZero, KnownOne, Depth);
@@ -238,26 +238,26 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
LHSKnownZero, LHSKnownOne, Depth+1))
return I;
- assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
- assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
+ assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
+ assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
// If all of the demanded bits are known 1 on one side, return the other.
// These bits cannot contribute to the result of the 'and'.
- if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
+ if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
(DemandedMask & ~LHSKnownZero))
return I->getOperand(0);
- if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
+ if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
(DemandedMask & ~RHSKnownZero))
return I->getOperand(1);
-
+
// If all of the demanded bits in the inputs are known zeros, return zero.
if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
return Constant::getNullValue(VTy);
-
+
// If the RHS is a constant, see if we can simplify it.
if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
return I;
-
+
// Output known-1 bits are only known if set in both the LHS & RHS.
KnownOne = RHSKnownOne & LHSKnownOne;
// Output known-0 are known to be clear if zero in either the LHS | RHS.
@@ -265,36 +265,36 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
break;
case Instruction::Or:
// If either the LHS or the RHS are One, the result is One.
- if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
+ if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
RHSKnownZero, RHSKnownOne, Depth+1) ||
- SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
+ SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
LHSKnownZero, LHSKnownOne, Depth+1))
return I;
- assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
- assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
-
+ assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
+ assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
+
// If all of the demanded bits are known zero on one side, return the other.
// These bits cannot contribute to the result of the 'or'.
- if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
+ if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
(DemandedMask & ~LHSKnownOne))
return I->getOperand(0);
- if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
+ if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
(DemandedMask & ~RHSKnownOne))
return I->getOperand(1);
// If all of the potentially set bits on one side are known to be set on
// the other side, just use the 'other' side.
- if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
+ if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
(DemandedMask & (~RHSKnownZero)))
return I->getOperand(0);
- if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
+ if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
(DemandedMask & (~LHSKnownZero)))
return I->getOperand(1);
-
+
// If the RHS is a constant, see if we can simplify it.
if (ShrinkDemandedConstant(I, 1, DemandedMask))
return I;
-
+
// Output known-0 bits are only known if clear in both the LHS & RHS.
KnownZero = RHSKnownZero & LHSKnownZero;
// Output known-1 are known to be set if set in either the LHS | RHS.
@@ -303,34 +303,34 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
case Instruction::Xor: {
if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
RHSKnownZero, RHSKnownOne, Depth+1) ||
- SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
+ SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
LHSKnownZero, LHSKnownOne, Depth+1))
return I;
- assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
- assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
-
+ assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
+ assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
+
// If all of the demanded bits are known zero on one side, return the other.
// These bits cannot contribute to the result of the 'xor'.
if ((DemandedMask & RHSKnownZero) == DemandedMask)
return I->getOperand(0);
if ((DemandedMask & LHSKnownZero) == DemandedMask)
return I->getOperand(1);
-
+
// If all of the demanded bits are known to be zero on one side or the
// other, turn this into an *inclusive* or.
// e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
- Instruction *Or =
+ Instruction *Or =
BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
I->getName());
return InsertNewInstWith(Or, *I);
}
-
+
// If all of the demanded bits on one side are known, and all of the set
// bits on that side are also known to be set on the other side, turn this
// into an AND, as we know the bits will be cleared.
// e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
- if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
+ if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
// all known
if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
Constant *AndC = Constant::getIntegerValue(VTy,
@@ -339,12 +339,12 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
return InsertNewInstWith(And, *I);
}
}
-
+
// If the RHS is a constant, see if we can simplify it.
// FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
if (ShrinkDemandedConstant(I, 1, DemandedMask))
return I;
-
+
// If our LHS is an 'and' and if it has one use, and if any of the bits we
// are flipping are known to be set, then the xor is just resetting those
// bits to zero. We can just knock out bits from the 'and' and the 'xor',
@@ -357,12 +357,12 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
-
+
Constant *AndC =
ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
InsertNewInstWith(NewAnd, *I);
-
+
Constant *XorC =
ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
@@ -378,17 +378,17 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
case Instruction::Select:
if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask,
RHSKnownZero, RHSKnownOne, Depth+1) ||
- SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
+ SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
LHSKnownZero, LHSKnownOne, Depth+1))
return I;
- assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
- assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
-
+ assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
+ assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
+
// If the operands are constants, see if we can simplify them.
if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
ShrinkDemandedConstant(I, 2, DemandedMask))
return I;
-
+
// Only known if known in both the LHS and RHS.
KnownOne = RHSKnownOne & LHSKnownOne;
KnownZero = RHSKnownZero & LHSKnownZero;
@@ -398,13 +398,13 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
DemandedMask = DemandedMask.zext(truncBf);
KnownZero = KnownZero.zext(truncBf);
KnownOne = KnownOne.zext(truncBf);
- if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
+ if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
KnownZero, KnownOne, Depth+1))
return I;
DemandedMask = DemandedMask.trunc(BitWidth);
KnownZero = KnownZero.trunc(BitWidth);
KnownOne = KnownOne.trunc(BitWidth);
- assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
+ assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
break;
}
case Instruction::BitCast:
@@ -427,12 +427,12 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
KnownZero, KnownOne, Depth+1))
return I;
- assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
+ assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
break;
case Instruction::ZExt: {
// Compute the bits in the result that are not present in the input.
unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
-
+
DemandedMask = DemandedMask.trunc(SrcBitWidth);
KnownZero = KnownZero.trunc(SrcBitWidth);
KnownOne = KnownOne.trunc(SrcBitWidth);
@@ -442,7 +442,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
DemandedMask = DemandedMask.zext(BitWidth);
KnownZero = KnownZero.zext(BitWidth);
KnownOne = KnownOne.zext(BitWidth);
- assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
+ assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
// The top bits are known to be zero.
KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
break;
@@ -450,8 +450,8 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
case Instruction::SExt: {
// Compute the bits in the result that are not present in the input.
unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
-
- APInt InputDemandedBits = DemandedMask &
+
+ APInt InputDemandedBits = DemandedMask &
APInt::getLowBitsSet(BitWidth, SrcBitWidth);
APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
@@ -459,7 +459,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// bit is demanded.
if ((NewBits & DemandedMask) != 0)
InputDemandedBits.setBit(SrcBitWidth-1);
-
+
InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
KnownZero = KnownZero.trunc(SrcBitWidth);
KnownOne = KnownOne.trunc(SrcBitWidth);
@@ -469,8 +469,8 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
InputDemandedBits = InputDemandedBits.zext(BitWidth);
KnownZero = KnownZero.zext(BitWidth);
KnownOne = KnownOne.zext(BitWidth);
- assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
-
+ assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
+
// If the sign bit of the input is known set or clear, then we know the
// top bits of the result.
@@ -490,7 +490,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// are not demanded, then the add doesn't demand them from its input
// either.
unsigned NLZ = DemandedMask.countLeadingZeros();
-
+
// If there is a constant on the RHS, there are a variety of xformations
// we can do.
if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
@@ -498,13 +498,13 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// won't work if the RHS is zero.
if (RHS->isZero())
break;
-
+
// If the top bit of the output is demanded, demand everything from the
// input. Otherwise, we demand all the input bits except NLZ top bits.
APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
// Find information about known zero/one bits in the input.
- if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits,
+ if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits,
LHSKnownZero, LHSKnownOne, Depth+1))
return I;
@@ -512,11 +512,11 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// the constant.
if (ShrinkDemandedConstant(I, 1, InDemandedBits))
return I;
-
+
// Avoid excess work.
if (LHSKnownZero == 0 && LHSKnownOne == 0)
break;
-
+
// Turn it into OR if input bits are zero.
if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
Instruction *Or =
@@ -524,26 +524,26 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
I->getName());
return InsertNewInstWith(Or, *I);
}
-
+
// We can say something about the output known-zero and known-one bits,
// depending on potential carries from the input constant and the
// unknowns. For example if the LHS is known to have at most the 0x0F0F0
// bits set and the RHS constant is 0x01001, then we know we have a known
// one mask of 0x00001 and a known zero mask of 0xE0F0E.
-
+
// To compute this, we first compute the potential carry bits. These are
// the bits which may be modified. I'm not aware of a better way to do
// this scan.
const APInt &RHSVal = RHS->getValue();
APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
-
+
// Now that we know which bits have carries, compute the known-1/0 sets.
-
+
// Bits are known one if they are known zero in one operand and one in the
// other, and there is no input carry.
- KnownOne = ((LHSKnownZero & RHSVal) |
+ KnownOne = ((LHSKnownZero & RHSVal) |
(LHSKnownOne & ~RHSVal)) & ~CarryBits;
-
+
// Bits are known zero if they are known zero in both operands and there
// is no input carry.
KnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
@@ -607,15 +607,15 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
-
+
// If the shift is NUW/NSW, then it does demand the high bits.
ShlOperator *IOp = cast<ShlOperator>(I);
if (IOp->hasNoSignedWrap())
DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
else if (IOp->hasNoUnsignedWrap())
DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
-
- if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
+
+ if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
KnownZero, KnownOne, Depth+1))
return I;
assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
@@ -630,15 +630,15 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// For a logical shift right
if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
-
+
// Unsigned shift right.
APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
-
+
// If the shift is exact, then it does demand the low bits (and knows that
// they are zero).
if (cast<LShrOperator>(I)->isExact())
DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
-
+
if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
KnownZero, KnownOne, Depth+1))
return I;
@@ -662,28 +662,28 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
Instruction *NewVal = BinaryOperator::CreateLShr(
I->getOperand(0), I->getOperand(1), I->getName());
return InsertNewInstWith(NewVal, *I);
- }
+ }
// If the sign bit is the only bit demanded by this ashr, then there is no
// need to do it, the shift doesn't change the high bit.
if (DemandedMask.isSignBit())
return I->getOperand(0);
-
+
if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
-
+
// Signed shift right.
APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
// If any of the "high bits" are demanded, we should set the sign bit as
// demanded.
if (DemandedMask.countLeadingZeros() <= ShiftAmt)
DemandedMaskIn.setBit(BitWidth-1);
-
+
// If the shift is exact, then it does demand the low bits (and knows that
// they are zero).
if (cast<AShrOperator>(I)->isExact())
DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
-
+
if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
KnownZero, KnownOne, Depth+1))
return I;
@@ -692,15 +692,15 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
-
+
// Handle the sign bits.
APInt SignBit(APInt::getSignBit(BitWidth));
// Adjust to where it is now in the mask.
- SignBit = APIntOps::lshr(SignBit, ShiftAmt);
-
+ SignBit = APIntOps::lshr(SignBit, ShiftAmt);
+
// If the input sign bit is known to be zero, or if none of the top bits
// are demanded, turn this into an unsigned shift right.
- if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
+ if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
(HighBits & ~DemandedMask) == HighBits) {
// Perform the logical shift right.
BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0),
@@ -743,7 +743,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0))
KnownOne |= ~LowBits;
- assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
+ assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
}
}
@@ -781,7 +781,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// just shift the input byte into position to eliminate the bswap.
unsigned NLZ = DemandedMask.countLeadingZeros();
unsigned NTZ = DemandedMask.countTrailingZeros();
-
+
// Round NTZ down to the next byte. If we have 11 trailing zeros, then
// we need all the bits down to bit 8. Likewise, round NLZ. If we
// have 14 leading zeros, round to 8.
@@ -791,7 +791,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
if (BitWidth-NLZ-NTZ == 8) {
unsigned ResultBit = NTZ;
unsigned InputBit = BitWidth-NTZ-8;
-
+
// Replace this with either a left or right shift to get the byte into
// the right place.
Instruction *NewVal;
@@ -804,7 +804,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
NewVal->takeName(I);
return InsertNewInstWith(NewVal, *I);
}
-
+
// TODO: Could compute known zero/one bits based on the input.
break;
}
@@ -817,7 +817,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
ComputeMaskedBits(V, KnownZero, KnownOne, Depth);
break;
}
-
+
// If the client is only demanding bits that we know, return the known
// constant.
if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
@@ -858,8 +858,8 @@ Value *InstCombiner::SimplifyShrShlDemandedBits(Instruction *Shr,
Value *VarX = Shr->getOperand(0);
Type *Ty = VarX->getType();
- APInt BitMask1(Ty->getIntegerBitWidth(), (uint64_t)-1);
- APInt BitMask2(Ty->getIntegerBitWidth(), (uint64_t)-1);
+ APInt BitMask1(APInt::getAllOnesValue(Ty->getIntegerBitWidth()));
+ APInt BitMask2(APInt::getAllOnesValue(Ty->getIntegerBitWidth()));
bool isLshr = (Shr->getOpcode() == Instruction::LShr);
BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
@@ -891,6 +891,8 @@ Value *InstCombiner::SimplifyShrShlDemandedBits(Instruction *Shr,
Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
BinaryOperator::CreateAShr(VarX, Amt);
+ if (cast<BinaryOperator>(Shr)->isExact())
+ New->setIsExact(true);
}
return InsertNewInstWith(New, *Shl);
@@ -919,14 +921,14 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
UndefElts = EltMask;
return 0;
}
-
+
if (DemandedElts == 0) { // If nothing is demanded, provide undef.
UndefElts = EltMask;
return UndefValue::get(V->getType());
}
UndefElts = 0;
-
+
// Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
if (Constant *C = dyn_cast<Constant>(V)) {
// Check if this is identity. If so, return 0 since we are not simplifying
@@ -936,7 +938,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
Type *EltTy = cast<VectorType>(V->getType())->getElementType();
Constant *Undef = UndefValue::get(EltTy);
-
+
SmallVector<Constant*, 16> Elts;
for (unsigned i = 0; i != VWidth; ++i) {
if (!DemandedElts[i]) { // If not demanded, set to undef.
@@ -944,10 +946,10 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
UndefElts.setBit(i);
continue;
}
-
+
Constant *Elt = C->getAggregateElement(i);
if (Elt == 0) return 0;
-
+
if (isa<UndefValue>(Elt)) { // Already undef.
Elts.push_back(Undef);
UndefElts.setBit(i);
@@ -955,12 +957,12 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
Elts.push_back(Elt);
}
}
-
+
// If we changed the constant, return it.
Constant *NewCV = ConstantVector::get(Elts);
return NewCV != C ? NewCV : 0;
}
-
+
// Limit search depth.
if (Depth == 10)
return 0;
@@ -979,16 +981,16 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
// Conservatively assume that all elements are needed.
DemandedElts = EltMask;
}
-
+
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return 0; // Only analyze instructions.
-
+
bool MadeChange = false;
APInt UndefElts2(VWidth, 0);
Value *TmpV;
switch (I->getOpcode()) {
default: break;
-
+
case Instruction::InsertElement: {
// If this is a variable index, we don't know which element it overwrites.
// demand exactly the same input as we produce.
@@ -1001,7 +1003,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
break;
}
-
+
// If this is inserting an element that isn't demanded, remove this
// insertelement.
unsigned IdxNo = Idx->getZExtValue();
@@ -1009,7 +1011,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
Worklist.Add(I);
return I->getOperand(0);
}
-
+
// Otherwise, the element inserted overwrites whatever was there, so the
// input demanded set is simpler than the output set.
APInt DemandedElts2 = DemandedElts;
@@ -1105,7 +1107,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
UndefElts2, Depth+1);
if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }
-
+
// Output elements are undefined if both are undefined.
UndefElts &= UndefElts2;
break;
@@ -1126,7 +1128,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
} else if (VWidth > InVWidth) {
// Untested so far.
break;
-
+
// If there are more elements in the result than there are in the source,
// then an input element is live if any of the corresponding output
// elements are live.
@@ -1138,7 +1140,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
} else {
// Untested so far.
break;
-
+
// If there are more elements in the source than there are in the result,
// then an input element is live if the corresponding output element is
// live.
@@ -1147,7 +1149,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
if (DemandedElts[InIdx/Ratio])
InputDemandedElts.setBit(InIdx);
}
-
+
// div/rem demand all inputs, because they don't want divide by zero.
TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
UndefElts2, Depth+1);
@@ -1155,7 +1157,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
I->setOperand(0, TmpV);
MadeChange = true;
}
-
+
UndefElts = UndefElts2;
if (VWidth > InVWidth) {
llvm_unreachable("Unimp");
@@ -1190,7 +1192,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
UndefElts2, Depth+1);
if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
-
+
// Output elements are undefined if both are undefined. Consider things
// like undef&0. The result is known zero, not undef.
UndefElts &= UndefElts2;
@@ -1201,13 +1203,13 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
UndefElts, Depth+1);
if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
break;
-
+
case Instruction::Call: {
IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
if (!II) break;
switch (II->getIntrinsicID()) {
default: break;
-
+
// Binary vector operations that work column-wise. A dest element is a
// function of the corresponding input elements from the two inputs.
case Intrinsic::x86_sse_sub_ss:
@@ -1238,11 +1240,11 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
Value *LHS = II->getArgOperand(0);
Value *RHS = II->getArgOperand(1);
// Extract the element as scalars.
- LHS = InsertNewInstWith(ExtractElementInst::Create(LHS,
+ LHS = InsertNewInstWith(ExtractElementInst::Create(LHS,
ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
RHS = InsertNewInstWith(ExtractElementInst::Create(RHS,
ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
-
+
switch (II->getIntrinsicID()) {
default: llvm_unreachable("Case stmts out of sync!");
case Intrinsic::x86_sse_sub_ss:
@@ -1256,7 +1258,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
II->getName()), *II);
break;
}
-
+
Instruction *New =
InsertElementInst::Create(
UndefValue::get(II->getType()), TmpV,
@@ -1264,9 +1266,9 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
II->getName());
InsertNewInstWith(New, *II);
return New;
- }
+ }
}
-
+
// Output elements are undefined if both are undefined. Consider things
// like undef&0. The result is known zero, not undef.
UndefElts &= UndefElts2;
diff --git a/lib/Transforms/InstCombine/InstCombineWorklist.h b/lib/Transforms/InstCombine/InstCombineWorklist.h
index b1a4966920..57ed9e32bb 100644
--- a/lib/Transforms/InstCombine/InstCombineWorklist.h
+++ b/lib/Transforms/InstCombine/InstCombineWorklist.h
@@ -13,7 +13,7 @@
#define DEBUG_TYPE "instcombine"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
-#include "llvm/Instruction.h"
+#include "llvm/IR/Instruction.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
diff --git a/lib/Transforms/InstCombine/InstructionCombining.cpp b/lib/Transforms/InstCombine/InstructionCombining.cpp
index 9da58d0e71..dc7fe5cf6b 100644
--- a/lib/Transforms/InstCombine/InstructionCombining.cpp
+++ b/lib/Transforms/InstCombine/InstructionCombining.cpp
@@ -43,8 +43,8 @@
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
-#include "llvm/DataLayout.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
@@ -516,8 +516,8 @@ Value *InstCombiner::dyn_castNegVal(Value *V) const {
// instruction if the LHS is a constant negative zero (which is the 'negate'
// form).
//
-Value *InstCombiner::dyn_castFNegVal(Value *V) const {
- if (BinaryOperator::isFNeg(V))
+Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const {
+ if (BinaryOperator::isFNeg(V, IgnoreZeroSign))
return BinaryOperator::getFNegArgument(V);
// Constants can be considered to be negated values if they can be folded.
@@ -1309,17 +1309,15 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
/// into a gep of the original struct. This is important for SROA and alias
/// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
+ APInt Offset(TD ? TD->getPointerSizeInBits() : 1, 0);
if (TD &&
- !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices() &&
+ !isa<BitCastInst>(BCI->getOperand(0)) &&
+ GEP.accumulateConstantOffset(*TD, Offset) &&
StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
- // Determine how much the GEP moves the pointer.
- SmallVector<Value*, 8> Ops(GEP.idx_begin(), GEP.idx_end());
- int64_t Offset = TD->getIndexedOffset(GEP.getPointerOperandType(), Ops);
-
// If this GEP instruction doesn't move the pointer, just replace the GEP
// with a bitcast of the real input to the dest type.
- if (Offset == 0) {
+ if (!Offset) {
// If the bitcast is of an allocation, and the allocation will be
// converted to match the type of the cast, don't touch this.
if (isa<AllocaInst>(BCI->getOperand(0)) ||
@@ -1343,7 +1341,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
SmallVector<Value*, 8> NewIndices;
Type *InTy =
cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
- if (FindElementAtOffset(InTy, Offset, NewIndices)) {
+ if (FindElementAtOffset(InTy, Offset.getSExtValue(), NewIndices)) {
Value *NGEP = GEP.isInBounds() ?
Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices) :
Builder->CreateGEP(BCI->getOperand(0), NewIndices);
@@ -1477,6 +1475,62 @@ Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
return 0;
}
+/// \brief Move the call to free before a NULL test.
+///
+/// Check if this free is accessed after its argument has been test
+/// against NULL (property 0).
+/// If yes, it is legal to move this call in its predecessor block.
+///
+/// The move is performed only if the block containing the call to free
+/// will be removed, i.e.:
+/// 1. it has only one predecessor P, and P has two successors
+/// 2. it contains the call and an unconditional branch
+/// 3. its successor is the same as its predecessor's successor
+///
+/// The profitability is out-of concern here and this function should
+/// be called only if the caller knows this transformation would be
+/// profitable (e.g., for code size).
+static Instruction *
+tryToMoveFreeBeforeNullTest(CallInst &FI) {
+ Value *Op = FI.getArgOperand(0);
+ BasicBlock *FreeInstrBB = FI.getParent();
+ BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
+
+ // Validate part of constraint #1: Only one predecessor
+ // FIXME: We can extend the number of predecessor, but in that case, we
+ // would duplicate the call to free in each predecessor and it may
+ // not be profitable even for code size.
+ if (!PredBB)
+ return 0;
+
+ // Validate constraint #2: Does this block contains only the call to
+ // free and an unconditional branch?
+ // FIXME: We could check if we can speculate everything in the
+ // predecessor block
+ if (FreeInstrBB->size() != 2)
+ return 0;
+ BasicBlock *SuccBB;
+ if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB)))
+ return 0;
+
+ // Validate the rest of constraint #1 by matching on the pred branch.
+ TerminatorInst *TI = PredBB->getTerminator();
+ BasicBlock *TrueBB, *FalseBB;
+ ICmpInst::Predicate Pred;
+ if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB)))
+ return 0;
+ if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
+ return 0;
+
+ // Validate constraint #3: Ensure the null case just falls through.
+ if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
+ return 0;
+ assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
+ "Broken CFG: missing edge from predecessor to successor");
+
+ FI.moveBefore(TI);
+ return &FI;
+}
Instruction *InstCombiner::visitFree(CallInst &FI) {
@@ -1495,6 +1549,16 @@ Instruction *InstCombiner::visitFree(CallInst &FI) {
if (isa<ConstantPointerNull>(Op))
return EraseInstFromFunction(FI);
+ // If we optimize for code size, try to move the call to free before the null
+ // test so that simplify cfg can remove the empty block and dead code
+ // elimination the branch. I.e., helps to turn something like:
+ // if (foo) free(foo);
+ // into
+ // free(foo);
+ if (MinimizeSize)
+ if (Instruction *I = tryToMoveFreeBeforeNullTest(FI))
+ return I;
+
return 0;
}
@@ -2395,6 +2459,9 @@ public:
bool InstCombiner::runOnFunction(Function &F) {
TD = getAnalysisIfAvailable<DataLayout>();
TLI = &getAnalysis<TargetLibraryInfo>();
+ // Minimizing size?
+ MinimizeSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::MinSize);
/// Builder - This is an IRBuilder that automatically inserts new
/// instructions into the worklist when they are created.
diff --git a/lib/Transforms/Instrumentation/AddressSanitizer.cpp b/lib/Transforms/Instrumentation/AddressSanitizer.cpp
index f095cff33c..9bd3239167 100644
--- a/lib/Transforms/Instrumentation/AddressSanitizer.cpp
+++ b/lib/Transforms/Instrumentation/AddressSanitizer.cpp
@@ -18,19 +18,24 @@
#include "llvm/Transforms/Instrumentation.h"
#include "BlackList.h"
#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Triple.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/InlineAsm.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
+#include "llvm/DIBuilder.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/InstVisitor.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/Debug.h"
@@ -38,8 +43,8 @@
#include "llvm/Support/system_error.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
-#include "llvm/Type.h"
#include <algorithm>
#include <string>
@@ -222,39 +227,15 @@ struct AddressSanitizer : public FunctionPass {
void createInitializerPoisonCalls(Module &M,
Value *FirstAddr, Value *LastAddr);
bool maybeInsertAsanInitAtFunctionEntry(Function &F);
- bool poisonStackInFunction(Function &F);
virtual bool doInitialization(Module &M);
static char ID; // Pass identification, replacement for typeid
private:
void initializeCallbacks(Module &M);
- uint64_t getAllocaSizeInBytes(AllocaInst *AI) {
- Type *Ty = AI->getAllocatedType();
- uint64_t SizeInBytes = TD->getTypeAllocSize(Ty);
- return SizeInBytes;
- }
- uint64_t getAlignedSize(uint64_t SizeInBytes) {
- size_t RZ = RedzoneSize();
- return ((SizeInBytes + RZ - 1) / RZ) * RZ;
- }
- uint64_t getAlignedAllocaSize(AllocaInst *AI) {
- uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
- return getAlignedSize(SizeInBytes);
- }
bool ShouldInstrumentGlobal(GlobalVariable *G);
- void PoisonStack(const ArrayRef<AllocaInst*> &AllocaVec, IRBuilder<> IRB,
- Value *ShadowBase, bool DoPoison);
bool LooksLikeCodeInBug11395(Instruction *I);
void FindDynamicInitializers(Module &M);
- /// Analyze lifetime intrinsics for given alloca. Use Value* instead of
- /// AllocaInst* here, as we call this method after we merge all allocas into a
- /// single one. Returns true if ASan added some instrumentation.
- bool handleAllocaLifetime(Value *Alloca);
- /// Analyze lifetime intrinsics for a specific value, casted from alloca.
- /// Returns true if if ASan added some instrumentation.
- bool handleValueLifetime(Value *V);
- void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> IRB, bool DoPoison);
bool CheckInitOrder;
bool CheckUseAfterReturn;
@@ -264,11 +245,8 @@ struct AddressSanitizer : public FunctionPass {
uint64_t MappingOffset;
int LongSize;
Type *IntptrTy;
- Type *IntptrPtrTy;
Function *AsanCtorFunction;
Function *AsanInitFunction;
- Function *AsanStackMallocFunc, *AsanStackFreeFunc;
- Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc;
Function *AsanHandleNoReturnFunc;
SmallString<64> BlacklistFile;
OwningPtr<BlackList> BL;
@@ -276,6 +254,8 @@ struct AddressSanitizer : public FunctionPass {
Function *AsanErrorCallback[2][kNumberOfAccessSizes];
InlineAsm *EmptyAsm;
SetOfDynamicallyInitializedGlobals DynamicallyInitializedGlobals;
+
+ friend struct FunctionStackPoisoner;
};
class AddressSanitizerModule : public ModulePass {
@@ -293,6 +273,8 @@ class AddressSanitizerModule : public ModulePass {
}
private:
+ void initializeCallbacks(Module &M);
+
bool ShouldInstrumentGlobal(GlobalVariable *G);
void createInitializerPoisonCalls(Module &M, Value *FirstAddr,
Value *LastAddr);
@@ -304,6 +286,149 @@ class AddressSanitizerModule : public ModulePass {
Type *IntptrTy;
LLVMContext *C;
DataLayout *TD;
+ Function *AsanPoisonGlobals;
+ Function *AsanUnpoisonGlobals;
+ Function *AsanRegisterGlobals;
+ Function *AsanUnregisterGlobals;
+};
+
+// Stack poisoning does not play well with exception handling.
+// When an exception is thrown, we essentially bypass the code
+// that unpoisones the stack. This is why the run-time library has
+// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
+// stack in the interceptor. This however does not work inside the
+// actual function which catches the exception. Most likely because the
+// compiler hoists the load of the shadow value somewhere too high.
+// This causes asan to report a non-existing bug on 453.povray.
+// It sounds like an LLVM bug.
+struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
+ Function &F;
+ AddressSanitizer &ASan;
+ DIBuilder DIB;
+ LLVMContext *C;
+ Type *IntptrTy;
+ Type *IntptrPtrTy;
+
+ SmallVector<AllocaInst*, 16> AllocaVec;
+ SmallVector<Instruction*, 8> RetVec;
+ uint64_t TotalStackSize;
+ unsigned StackAlignment;
+
+ Function *AsanStackMallocFunc, *AsanStackFreeFunc;
+ Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc;
+
+ // Stores a place and arguments of poisoning/unpoisoning call for alloca.
+ struct AllocaPoisonCall {
+ IntrinsicInst *InsBefore;
+ uint64_t Size;
+ bool DoPoison;
+ };
+ SmallVector<AllocaPoisonCall, 8> AllocaPoisonCallVec;
+
+ // Maps Value to an AllocaInst from which the Value is originated.
+ typedef DenseMap<Value*, AllocaInst*> AllocaForValueMapTy;
+ AllocaForValueMapTy AllocaForValue;
+
+ FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
+ : F(F), ASan(ASan), DIB(*F.getParent()), C(ASan.C),
+ IntptrTy(ASan.IntptrTy), IntptrPtrTy(PointerType::get(IntptrTy, 0)),
+ TotalStackSize(0), StackAlignment(1 << MappingScale()) {}
+
+ bool runOnFunction() {
+ if (!ClStack) return false;
+ // Collect alloca, ret, lifetime instructions etc.
+ for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
+ DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
+ BasicBlock *BB = *DI;
+ visit(*BB);
+ }
+ if (AllocaVec.empty()) return false;
+
+ initializeCallbacks(*F.getParent());
+
+ poisonStack();
+
+ if (ClDebugStack) {
+ DEBUG(dbgs() << F);
+ }
+ return true;
+ }
+
+ // Finds all static Alloca instructions and puts
+ // poisoned red zones around all of them.
+ // Then unpoison everything back before the function returns.
+ void poisonStack();
+
+ // ----------------------- Visitors.
+ /// \brief Collect all Ret instructions.
+ void visitReturnInst(ReturnInst &RI) {
+ RetVec.push_back(&RI);
+ }
+
+ /// \brief Collect Alloca instructions we want (and can) handle.
+ void visitAllocaInst(AllocaInst &AI) {
+ if (!isInterestingAlloca(AI)) return;
+
+ StackAlignment = std::max(StackAlignment, AI.getAlignment());
+ AllocaVec.push_back(&AI);
+ uint64_t AlignedSize = getAlignedAllocaSize(&AI);
+ TotalStackSize += AlignedSize;
+ }
+
+ /// \brief Collect lifetime intrinsic calls to check for use-after-scope
+ /// errors.
+ void visitIntrinsicInst(IntrinsicInst &II) {
+ if (!ASan.CheckLifetime) return;
+ Intrinsic::ID ID = II.getIntrinsicID();
+ if (ID != Intrinsic::lifetime_start &&
+ ID != Intrinsic::lifetime_end)
+ return;
+ // Found lifetime intrinsic, add ASan instrumentation if necessary.
+ ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0));
+ // If size argument is undefined, don't do anything.
+ if (Size->isMinusOne()) return;
+ // Check that size doesn't saturate uint64_t and can
+ // be stored in IntptrTy.
+ const uint64_t SizeValue = Size->getValue().getLimitedValue();
+ if (SizeValue == ~0ULL ||
+ !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
+ return;
+ // Find alloca instruction that corresponds to llvm.lifetime argument.
+ AllocaInst *AI = findAllocaForValue(II.getArgOperand(1));
+ if (!AI) return;
+ bool DoPoison = (ID == Intrinsic::lifetime_end);
+ AllocaPoisonCall APC = {&II, SizeValue, DoPoison};
+ AllocaPoisonCallVec.push_back(APC);
+ }
+
+ // ---------------------- Helpers.
+ void initializeCallbacks(Module &M);
+
+ // Check if we want (and can) handle this alloca.
+ bool isInterestingAlloca(AllocaInst &AI) {
+ return (!AI.isArrayAllocation() &&
+ AI.isStaticAlloca() &&
+ AI.getAllocatedType()->isSized());
+ }
+
+ uint64_t getAllocaSizeInBytes(AllocaInst *AI) {
+ Type *Ty = AI->getAllocatedType();
+ uint64_t SizeInBytes = ASan.TD->getTypeAllocSize(Ty);
+ return SizeInBytes;
+ }
+ uint64_t getAlignedSize(uint64_t SizeInBytes) {
+ size_t RZ = RedzoneSize();
+ return ((SizeInBytes + RZ - 1) / RZ) * RZ;
+ }
+ uint64_t getAlignedAllocaSize(AllocaInst *AI) {
+ uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
+ return getAlignedSize(SizeInBytes);
+ }
+ /// Finds alloca where the value comes from.
+ AllocaInst *findAllocaForValue(Value *V);
+ void poisonRedZones(const ArrayRef<AllocaInst*> &AllocaVec, IRBuilder<> IRB,
+ Value *ShadowBase, bool DoPoison);
+ void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> IRB, bool DoPoison);
};
} // namespace
@@ -555,14 +680,6 @@ void AddressSanitizerModule::createInitializerPoisonCalls(
// Set up the arguments to our poison/unpoison functions.
IRBuilder<> IRB(GlobalInit->begin()->getFirstInsertionPt());
- // Declare our poisoning and unpoisoning functions.
- Function *AsanPoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
- kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
- AsanPoisonGlobals->setLinkage(Function::ExternalLinkage);
- Function *AsanUnpoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
- kAsanUnpoisonGlobalsName, IRB.getVoidTy(), NULL));
- AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage);
-
// Add a call to poison all external globals before the given function starts.
IRB.CreateCall2(AsanPoisonGlobals, FirstAddr, LastAddr);
@@ -634,6 +751,26 @@ bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) {
return true;
}
+void AddressSanitizerModule::initializeCallbacks(Module &M) {
+ IRBuilder<> IRB(*C);
+ // Declare our poisoning and unpoisoning functions.
+ AsanPoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
+ AsanPoisonGlobals->setLinkage(Function::ExternalLinkage);
+ AsanUnpoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanUnpoisonGlobalsName, IRB.getVoidTy(), NULL));
+ AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage);
+ // Declare functions that register/unregister globals.
+ AsanRegisterGlobals = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanRegisterGlobalsName, IRB.getVoidTy(),
+ IntptrTy, IntptrTy, NULL));
+ AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);
+ AsanUnregisterGlobals = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanUnregisterGlobalsName,
+ IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
+ AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage);
+}
+
// This function replaces all global variables with new variables that have
// trailing redzones. It also creates a function that poisons
// redzones and inserts this function into llvm.global_ctors.
@@ -644,9 +781,10 @@ bool AddressSanitizerModule::runOnModule(Module &M) {
return false;
BL.reset(new BlackList(BlacklistFile));
if (BL->isIn(M)) return false;
- DynamicallyInitializedGlobals.Init(M);
C = &(M.getContext());
IntptrTy = Type::getIntNTy(*C, TD->getPointerSizeInBits());
+ initializeCallbacks(M);
+ DynamicallyInitializedGlobals.Init(M);
SmallVector<GlobalVariable *, 16> GlobalsToChange;
@@ -748,12 +886,6 @@ bool AddressSanitizerModule::runOnModule(Module &M) {
// Create calls for poisoning before initializers run and unpoisoning after.
if (CheckInitOrder && FirstDynamic && LastDynamic)
createInitializerPoisonCalls(M, FirstDynamic, LastDynamic);
-
- Function *AsanRegisterGlobals = checkInterfaceFunction(M.getOrInsertFunction(
- kAsanRegisterGlobalsName, IRB.getVoidTy(),
- IntptrTy, IntptrTy, NULL));
- AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);
-
IRB.CreateCall2(AsanRegisterGlobals,
IRB.CreatePointerCast(AllGlobals, IntptrTy),
ConstantInt::get(IntptrTy, n));
@@ -765,12 +897,6 @@ bool AddressSanitizerModule::runOnModule(Module &M) {
GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB));
- Function *AsanUnregisterGlobals =
- checkInterfaceFunction(M.getOrInsertFunction(
- kAsanUnregisterGlobalsName,
- IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
- AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage);
-
IRB_Dtor.CreateCall2(AsanUnregisterGlobals,
IRB.CreatePointerCast(AllGlobals, IntptrTy),
ConstantInt::get(IntptrTy, n));
@@ -796,18 +922,8 @@ void AddressSanitizer::initializeCallbacks(Module &M) {
}
}
- AsanStackMallocFunc = checkInterfaceFunction(M.getOrInsertFunction(
- kAsanStackMallocName, IntptrTy, IntptrTy, IntptrTy, NULL));
- AsanStackFreeFunc = checkInterfaceFunction(M.getOrInsertFunction(
- kAsanStackFreeName, IRB.getVoidTy(),
- IntptrTy, IntptrTy, IntptrTy, NULL));
AsanHandleNoReturnFunc = checkInterfaceFunction(M.getOrInsertFunction(
kAsanHandleNoReturnName, IRB.getVoidTy(), NULL));
- AsanPoisonStackMemoryFunc = checkInterfaceFunction(M.getOrInsertFunction(
- kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
- AsanUnpoisonStackMemoryFunc = checkInterfaceFunction(M.getOrInsertFunction(
- kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
-
// We insert an empty inline asm after __asan_report* to avoid callback merge.
EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
StringRef(""), StringRef(""),
@@ -827,7 +943,6 @@ bool AddressSanitizer::doInitialization(Module &M) {
C = &(M.getContext());
LongSize = TD->getPointerSizeInBits();
IntptrTy = Type::getIntNTy(*C, LongSize);
- IntptrPtrTy = PointerType::get(IntptrTy, 0);
AsanCtorFunction = Function::Create(
FunctionType::get(Type::getVoidTy(*C), false),
@@ -903,7 +1018,8 @@ bool AddressSanitizer::runOnFunction(Function &F) {
// If needed, insert __asan_init before checking for AddressSafety attr.
maybeInsertAsanInitAtFunctionEntry(F);
- if (!F.getFnAttributes().hasAttribute(Attributes::AddressSafety))
+ if (!F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::AddressSafety))
return false;
if (!ClDebugFunc.empty() && ClDebugFunc != F.getName())
@@ -962,7 +1078,8 @@ bool AddressSanitizer::runOnFunction(Function &F) {
NumInstrumented++;
}
- bool ChangedStack = poisonStackInFunction(F);
+ FunctionStackPoisoner FSP(F, *this);
+ bool ChangedStack = FSP.runOnFunction();
// We must unpoison the stack before every NoReturn call (throw, _exit, etc).
// See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37
@@ -1002,9 +1119,34 @@ static void PoisonShadowPartialRightRedzone(uint8_t *Shadow,
}
}
-void AddressSanitizer::PoisonStack(const ArrayRef<AllocaInst*> &AllocaVec,
- IRBuilder<> IRB,
- Value *ShadowBase, bool DoPoison) {
+// Workaround for bug 11395: we don't want to instrument stack in functions
+// with large assembly blobs (32-bit only), otherwise reg alloc may crash.
+// FIXME: remove once the bug 11395 is fixed.
+bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
+ if (LongSize != 32) return false;
+ CallInst *CI = dyn_cast<CallInst>(I);
+ if (!CI || !CI->isInlineAsm()) return false;
+ if (CI->getNumArgOperands() <= 5) return false;
+ // We have inline assembly with quite a few arguments.
+ return true;
+}
+
+void FunctionStackPoisoner::initializeCallbacks(Module &M) {
+ IRBuilder<> IRB(*C);
+ AsanStackMallocFunc = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanStackMallocName, IntptrTy, IntptrTy, IntptrTy, NULL));
+ AsanStackFreeFunc = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanStackFreeName, IRB.getVoidTy(),
+ IntptrTy, IntptrTy, IntptrTy, NULL));
+ AsanPoisonStackMemoryFunc = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
+ AsanUnpoisonStackMemoryFunc = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
+}
+
+void FunctionStackPoisoner::poisonRedZones(
+ const ArrayRef<AllocaInst*> &AllocaVec, IRBuilder<> IRB, Value *ShadowBase,
+ bool DoPoison) {
size_t ShadowRZSize = RedzoneSize() >> MappingScale();
assert(ShadowRZSize >= 1 && ShadowRZSize <= 4);
Type *RZTy = Type::getIntNTy(*C, ShadowRZSize * 8);
@@ -1052,145 +1194,22 @@ void AddressSanitizer::PoisonStack(const ArrayRef<AllocaInst*> &AllocaVec,
// Poison the full redzone at right.
Ptr = IRB.CreateAdd(ShadowBase,
ConstantInt::get(IntptrTy, Pos >> MappingScale()));
- Value *Poison = i == AllocaVec.size() - 1 ? PoisonRight : PoisonMid;
+ bool LastAlloca = (i == AllocaVec.size() - 1);
+ Value *Poison = LastAlloca ? PoisonRight : PoisonMid;
IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, RZPtrTy));
Pos += RedzoneSize();
}
}
-// Workaround for bug 11395: we don't want to instrument stack in functions
-// with large assembly blobs (32-bit only), otherwise reg alloc may crash.
-// FIXME: remove once the bug 11395 is fixed.
-bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
- if (LongSize != 32) return false;
- CallInst *CI = dyn_cast<CallInst>(I);
- if (!CI || !CI->isInlineAsm()) return false;
- if (CI->getNumArgOperands() <= 5) return false;
- // We have inline assembly with quite a few arguments.
- return true;
-}
-
-// Handling llvm.lifetime intrinsics for a given %alloca:
-// (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
-// (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
-// invalid accesses) and unpoison it for llvm.lifetime.start (the memory
-// could be poisoned by previous llvm.lifetime.end instruction, as the
-// variable may go in and out of scope several times, e.g. in loops).
-// (3) if we poisoned at least one %alloca in a function,
-// unpoison the whole stack frame at function exit.
-bool AddressSanitizer::handleAllocaLifetime(Value *Alloca) {
- assert(CheckLifetime);
- Type *AllocaType = Alloca->getType();
- Type *Int8PtrTy = Type::getInt8PtrTy(AllocaType->getContext());
-
- bool Res = false;
- // Typical code looks like this:
- // %alloca = alloca <type>, <alignment>
- // ... some code ...
- // %val1 = bitcast <type>* %alloca to i8*
- // call void @llvm.lifetime.start(i64 <size>, i8* %val1)
- // ... more code ...
- // %val2 = bitcast <type>* %alloca to i8*
- // call void @llvm.lifetime.start(i64 <size>, i8* %val2)
- // That is, to handle %alloca we must find all its casts to
- // i8* values, and find lifetime instructions for these values.
- if (AllocaType == Int8PtrTy)
- Res |= handleValueLifetime(Alloca);
- for (Value::use_iterator UI = Alloca->use_begin(), UE = Alloca->use_end();
- UI != UE; ++UI) {
- if (UI->getType() != Int8PtrTy) continue;
- if (UI->stripPointerCasts() != Alloca) continue;
- Res |= handleValueLifetime(*UI);
- }
- return Res;
-}
-
-bool AddressSanitizer::handleValueLifetime(Value *V) {
- assert(CheckLifetime);
- bool Res = false;
- for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;
- ++UI) {
- IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI);
- if (!II) continue;
- Intrinsic::ID ID = II->getIntrinsicID();
- if (ID != Intrinsic::lifetime_start &&
- ID != Intrinsic::lifetime_end)
- continue;
- if (V != II->getArgOperand(1))
- continue;
- // Found lifetime intrinsic, add ASan instrumentation if necessary.
- ConstantInt *Size = dyn_cast<ConstantInt>(II->getArgOperand(0));
- // If size argument is undefined, don't do anything.
- if (Size->isMinusOne())
- continue;
- // Check that size doesn't saturate uint64_t and can
- // be stored in IntptrTy.
- const uint64_t SizeValue = Size->getValue().getLimitedValue();
- if (SizeValue == ~0ULL ||
- !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) {
- continue;
- }
- IRBuilder<> IRB(II);
- bool DoPoison = (ID == Intrinsic::lifetime_end);
- poisonAlloca(V, SizeValue, IRB, DoPoison);
- Res = true;
- }
- return Res;
-}
-
-// Find all static Alloca instructions and put
-// poisoned red zones around all of them.
-// Then unpoison everything back before the function returns.
-//
-// Stack poisoning does not play well with exception handling.
-// When an exception is thrown, we essentially bypass the code
-// that unpoisones the stack. This is why the run-time library has
-// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
-// stack in the interceptor. This however does not work inside the
-// actual function which catches the exception. Most likely because the
-// compiler hoists the load of the shadow value somewhere too high.
-// This causes asan to report a non-existing bug on 453.povray.
-// It sounds like an LLVM bug.
-bool AddressSanitizer::poisonStackInFunction(Function &F) {
- if (!ClStack) return false;
- SmallVector<AllocaInst*, 16> AllocaVec;
- SmallVector<Instruction*, 8> RetVec;
- uint64_t TotalSize = 0;
- bool HavePoisonedAllocas = false;
-
- // Filter out Alloca instructions we want (and can) handle.
- // Collect Ret instructions.
- unsigned ResultAlignment = 1 << MappingScale();
- for (Function::iterator FI = F.begin(), FE = F.end();
- FI != FE; ++FI) {
- BasicBlock &BB = *FI;
- for (BasicBlock::iterator BI = BB.begin(), BE = BB.end();
- BI != BE; ++BI) {
- if (isa<ReturnInst>(BI)) {
- RetVec.push_back(BI);
- continue;
- }
-
- AllocaInst *AI = dyn_cast<AllocaInst>(BI);
- if (!AI) continue;
- if (AI->isArrayAllocation()) continue;
- if (!AI->isStaticAlloca()) continue;
- if (!AI->getAllocatedType()->isSized()) continue;
- ResultAlignment = std::max(ResultAlignment, AI->getAlignment());
- AllocaVec.push_back(AI);
- uint64_t AlignedSize = getAlignedAllocaSize(AI);
- TotalSize += AlignedSize;
- }
- }
-
- if (AllocaVec.empty()) return false;
+void FunctionStackPoisoner::poisonStack() {
+ uint64_t LocalStackSize = TotalStackSize +
+ (AllocaVec.size() + 1) * RedzoneSize();
- uint64_t LocalStackSize = TotalSize + (AllocaVec.size() + 1) * RedzoneSize();
-
- bool DoStackMalloc = CheckUseAfterReturn
+ bool DoStackMalloc = ASan.CheckUseAfterReturn
&& LocalStackSize <= kMaxStackMallocSize;
+ assert(AllocaVec.size() > 0);
Instruction *InsBefore = AllocaVec[0];
IRBuilder<> IRB(InsBefore);
@@ -1198,9 +1217,9 @@ bool AddressSanitizer::poisonStackInFunction(Function &F) {
Type *ByteArrayTy = ArrayType::get(IRB.getInt8Ty(), LocalStackSize);
AllocaInst *MyAlloca =
new AllocaInst(ByteArrayTy, "MyAlloca", InsBefore);
- if (ClRealignStack && ResultAlignment < RedzoneSize())
- ResultAlignment = RedzoneSize();
- MyAlloca->setAlignment(ResultAlignment);
+ if (ClRealignStack && StackAlignment < RedzoneSize())
+ StackAlignment = RedzoneSize();
+ MyAlloca->setAlignment(StackAlignment);
assert(MyAlloca->isStaticAlloca());
Value *OrigStackBase = IRB.CreatePointerCast(MyAlloca, IntptrTy);
Value *LocalStackBase = OrigStackBase;
@@ -1215,6 +1234,18 @@ bool AddressSanitizer::poisonStackInFunction(Function &F) {
raw_svector_ostream StackDescription(StackDescriptionStorage);
StackDescription << F.getName() << " " << AllocaVec.size() << " ";
+ // Insert poison calls for lifetime intrinsics for alloca.
+ bool HavePoisonedAllocas = false;
+ for (size_t i = 0, n = AllocaPoisonCallVec.size(); i < n; i++) {
+ const AllocaPoisonCall &APC = AllocaPoisonCallVec[i];
+ IntrinsicInst *II = APC.InsBefore;
+ AllocaInst *AI = findAllocaForValue(II->getArgOperand(1));
+ assert(AI);
+ IRBuilder<> IRB(II);
+ poisonAlloca(AI, APC.Size, IRB, APC.DoPoison);
+ HavePoisonedAllocas |= APC.DoPoison;
+ }
+
uint64_t Pos = RedzoneSize();
// Replace Alloca instructions with base+offset.
for (size_t i = 0, n = AllocaVec.size(); i < n; i++) {
@@ -1228,10 +1259,8 @@ bool AddressSanitizer::poisonStackInFunction(Function &F) {
Value *NewAllocaPtr = IRB.CreateIntToPtr(
IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Pos)),
AI->getType());
+ replaceDbgDeclareForAlloca(AI, NewAllocaPtr, DIB);
AI->replaceAllUsesWith(NewAllocaPtr);
- // Analyze lifetime intrinsics only for static allocas we handle.
- if (CheckLifetime)
- HavePoisonedAllocas |= handleAllocaLifetime(NewAllocaPtr);
Pos += AlignedSize + RedzoneSize();
}
assert(Pos == LocalStackSize);
@@ -1241,28 +1270,28 @@ bool AddressSanitizer::poisonStackInFunction(Function &F) {
IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
BasePlus0);
Value *BasePlus1 = IRB.CreateAdd(LocalStackBase,
- ConstantInt::get(IntptrTy, LongSize/8));
+ ConstantInt::get(IntptrTy,
+ ASan.LongSize/8));
BasePlus1 = IRB.CreateIntToPtr(BasePlus1, IntptrPtrTy);
GlobalVariable *StackDescriptionGlobal =
createPrivateGlobalForString(*F.getParent(), StackDescription.str());
- Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
+ Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal,
+ IntptrTy);
IRB.CreateStore(Description, BasePlus1);
// Poison the stack redzones at the entry.
- Value *ShadowBase = memToShadow(LocalStackBase, IRB);
- PoisonStack(ArrayRef<AllocaInst*>(AllocaVec), IRB, ShadowBase, true);
+ Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
+ poisonRedZones(AllocaVec, IRB, ShadowBase, true);
// Unpoison the stack before all ret instructions.
for (size_t i = 0, n = RetVec.size(); i < n; i++) {
Instruction *Ret = RetVec[i];
IRBuilder<> IRBRet(Ret);
-
// Mark the current frame as retired.
IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
BasePlus0);
// Unpoison the stack.
- PoisonStack(ArrayRef<AllocaInst*>(AllocaVec), IRBRet, ShadowBase, false);
-
+ poisonRedZones(AllocaVec, IRBRet, ShadowBase, false);
if (DoStackMalloc) {
// In use-after-return mode, mark the whole stack frame unaddressable.
IRBRet.CreateCall3(AsanStackFreeFunc, LocalStackBase,
@@ -1279,16 +1308,10 @@ bool AddressSanitizer::poisonStackInFunction(Function &F) {
// We are done. Remove the old unused alloca instructions.
for (size_t i = 0, n = AllocaVec.size(); i < n; i++)
AllocaVec[i]->eraseFromParent();
-
- if (ClDebugStack) {
- DEBUG(dbgs() << F);
- }
-
- return true;
}
-void AddressSanitizer::poisonAlloca(Value *V, uint64_t Size, IRBuilder<> IRB,
- bool DoPoison) {
+void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
+ IRBuilder<> IRB, bool DoPoison) {
// For now just insert the call to ASan runtime.
Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
Value *SizeArg = ConstantInt::get(IntptrTy, Size);
@@ -1296,3 +1319,44 @@ void AddressSanitizer::poisonAlloca(Value *V, uint64_t Size, IRBuilder<> IRB,
: AsanUnpoisonStackMemoryFunc,
AddrArg, SizeArg);
}
+
+// Handling llvm.lifetime intrinsics for a given %alloca:
+// (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
+// (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
+// invalid accesses) and unpoison it for llvm.lifetime.start (the memory
+// could be poisoned by previous llvm.lifetime.end instruction, as the
+// variable may go in and out of scope several times, e.g. in loops).
+// (3) if we poisoned at least one %alloca in a function,
+// unpoison the whole stack frame at function exit.
+
+AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) {
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
+ // We're intested only in allocas we can handle.
+ return isInterestingAlloca(*AI) ? AI : 0;
+ // See if we've already calculated (or started to calculate) alloca for a
+ // given value.
+ AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
+ if (I != AllocaForValue.end())
+ return I->second;
+ // Store 0 while we're calculating alloca for value V to avoid
+ // infinite recursion if the value references itself.
+ AllocaForValue[V] = 0;
+ AllocaInst *Res = 0;
+ if (CastInst *CI = dyn_cast<CastInst>(V))
+ Res = findAllocaForValue(CI->getOperand(0));
+ else if (PHINode *PN = dyn_cast<PHINode>(V)) {
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ Value *IncValue = PN->getIncomingValue(i);
+ // Allow self-referencing phi-nodes.
+ if (IncValue == PN) continue;
+ AllocaInst *IncValueAI = findAllocaForValue(IncValue);
+ // AI for incoming values should exist and should all be equal.
+ if (IncValueAI == 0 || (Res != 0 && IncValueAI != Res))
+ return 0;
+ Res = IncValueAI;
+ }
+ }
+ if (Res != 0)
+ AllocaForValue[V] = Res;
+ return Res;
+}
diff --git a/lib/Transforms/Instrumentation/BlackList.cpp b/lib/Transforms/Instrumentation/BlackList.cpp
index 0bfb186562..4fcbea4117 100644
--- a/lib/Transforms/Instrumentation/BlackList.cpp
+++ b/lib/Transforms/Instrumentation/BlackList.cpp
@@ -17,10 +17,10 @@
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/Module.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Module.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/raw_ostream.h"
diff --git a/lib/Transforms/Instrumentation/BoundsChecking.cpp b/lib/Transforms/Instrumentation/BoundsChecking.cpp
index 303e04ac16..b094d42568 100644
--- a/lib/Transforms/Instrumentation/BoundsChecking.cpp
+++ b/lib/Transforms/Instrumentation/BoundsChecking.cpp
@@ -16,9 +16,9 @@
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/MemoryBuiltins.h"
-#include "llvm/DataLayout.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Intrinsics.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Intrinsics.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
diff --git a/lib/Transforms/Instrumentation/EdgeProfiling.cpp b/lib/Transforms/Instrumentation/EdgeProfiling.cpp
index 41e42aff49..0b18b4ce64 100644
--- a/lib/Transforms/Instrumentation/EdgeProfiling.cpp
+++ b/lib/Transforms/Instrumentation/EdgeProfiling.cpp
@@ -21,7 +21,8 @@
#include "llvm/Transforms/Instrumentation.h"
#include "ProfilingUtils.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/Module.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
@@ -54,8 +55,8 @@ ModulePass *llvm::createEdgeProfilerPass() { return new EdgeProfiler(); }
bool EdgeProfiler::runOnModule(Module &M) {
Function *Main = M.getFunction("main");
if (Main == 0) {
- errs() << "WARNING: cannot insert edge profiling into a module"
- << " with no main function!\n";
+ M.getContext().emitWarning("cannot insert edge profiling into a module"
+ " with no main function");
return false; // No main, no instrumentation!
}
diff --git a/lib/Transforms/Instrumentation/GCOVProfiling.cpp b/lib/Transforms/Instrumentation/GCOVProfiling.cpp
index 5e064cd70d..eb0dc1ec39 100644
--- a/lib/Transforms/Instrumentation/GCOVProfiling.cpp
+++ b/lib/Transforms/Instrumentation/GCOVProfiling.cpp
@@ -25,9 +25,9 @@
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/UniqueVector.h"
#include "llvm/DebugInfo.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Instructions.h"
-#include "llvm/Module.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DebugLoc.h"
@@ -48,10 +48,11 @@ namespace {
UseExtraChecksum(false), NoRedZone(false) {
initializeGCOVProfilerPass(*PassRegistry::getPassRegistry());
}
- GCOVProfiler(bool EmitNotes, bool EmitData, bool use402Format = false,
- bool useExtraChecksum = false, bool NoRedZone = false)
+ GCOVProfiler(bool EmitNotes, bool EmitData, bool use402Format,
+ bool useExtraChecksum, bool NoRedZone_)
: ModulePass(ID), EmitNotes(EmitNotes), EmitData(EmitData),
- Use402Format(use402Format), UseExtraChecksum(useExtraChecksum) {
+ Use402Format(use402Format), UseExtraChecksum(useExtraChecksum),
+ NoRedZone(NoRedZone_) {
assert((EmitNotes || EmitData) && "GCOVProfiler asked to do nothing?");
initializeGCOVProfilerPass(*PassRegistry::getPassRegistry());
}
@@ -641,9 +642,9 @@ void GCOVProfiler::insertCounterWriteout(
WriteoutF = Function::Create(WriteoutFTy, GlobalValue::InternalLinkage,
"__llvm_gcov_writeout", M);
WriteoutF->setUnnamedAddr(true);
- WriteoutF->addFnAttr(Attributes::NoInline);
+ WriteoutF->addFnAttr(Attribute::NoInline);
if (NoRedZone)
- WriteoutF->addFnAttr(Attributes::NoRedZone);
+ WriteoutF->addFnAttr(Attribute::NoRedZone);
BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", WriteoutF);
IRBuilder<> Builder(BB);
@@ -688,9 +689,9 @@ void GCOVProfiler::insertCounterWriteout(
"__llvm_gcov_init", M);
F->setUnnamedAddr(true);
F->setLinkage(GlobalValue::InternalLinkage);
- F->addFnAttr(Attributes::NoInline);
+ F->addFnAttr(Attribute::NoInline);
if (NoRedZone)
- F->addFnAttr(Attributes::NoRedZone);
+ F->addFnAttr(Attribute::NoRedZone);
BB = BasicBlock::Create(*Ctx, "entry", F);
Builder.SetInsertPoint(BB);
@@ -709,9 +710,9 @@ void GCOVProfiler::insertIndirectCounterIncrement() {
cast<Function>(GCOVProfiler::getIncrementIndirectCounterFunc());
Fn->setUnnamedAddr(true);
Fn->setLinkage(GlobalValue::InternalLinkage);
- Fn->addFnAttr(Attributes::NoInline);
+ Fn->addFnAttr(Attribute::NoInline);
if (NoRedZone)
- Fn->addFnAttr(Attributes::NoRedZone);
+ Fn->addFnAttr(Attribute::NoRedZone);
Type *Int32Ty = Type::getInt32Ty(*Ctx);
Type *Int64Ty = Type::getInt64Ty(*Ctx);
@@ -768,9 +769,9 @@ insertFlush(ArrayRef<std::pair<GlobalVariable*, MDNode*> > CountersBySP) {
else
FlushF->setLinkage(GlobalValue::InternalLinkage);
FlushF->setUnnamedAddr(true);
- FlushF->addFnAttr(Attributes::NoInline);
+ FlushF->addFnAttr(Attribute::NoInline);
if (NoRedZone)
- FlushF->addFnAttr(Attributes::NoRedZone);
+ FlushF->addFnAttr(Attribute::NoRedZone);
BasicBlock *Entry = BasicBlock::Create(*Ctx, "entry", FlushF);
diff --git a/lib/Transforms/Instrumentation/MaximumSpanningTree.h b/lib/Transforms/Instrumentation/MaximumSpanningTree.h
index 50226db8c2..363539b288 100644
--- a/lib/Transforms/Instrumentation/MaximumSpanningTree.h
+++ b/lib/Transforms/Instrumentation/MaximumSpanningTree.h
@@ -16,7 +16,7 @@
#define LLVM_ANALYSIS_MAXIMUMSPANNINGTREE_H
#include "llvm/ADT/EquivalenceClasses.h"
-#include "llvm/BasicBlock.h"
+#include "llvm/IR/BasicBlock.h"
#include <algorithm>
#include <vector>
diff --git a/lib/Transforms/Instrumentation/MemorySanitizer.cpp b/lib/Transforms/Instrumentation/MemorySanitizer.cpp
index 947a2e3b12..76da970682 100644
--- a/lib/Transforms/Instrumentation/MemorySanitizer.cpp
+++ b/lib/Transforms/Instrumentation/MemorySanitizer.cpp
@@ -43,6 +43,29 @@
/// parameters and return values may be passed via registers, we have a
/// specialized thread-local shadow for return values
/// (__msan_retval_tls) and parameters (__msan_param_tls).
+///
+/// Origin tracking.
+///
+/// MemorySanitizer can track origins (allocation points) of all uninitialized
+/// values. This behavior is controlled with a flag (msan-track-origins) and is
+/// disabled by default.
+///
+/// Origins are 4-byte values created and interpreted by the runtime library.
+/// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
+/// of application memory. Propagation of origins is basically a bunch of
+/// "select" instructions that pick the origin of a dirty argument, if an
+/// instruction has one.
+///
+/// Every 4 aligned, consecutive bytes of application memory have one origin
+/// value associated with them. If these bytes contain uninitialized data
+/// coming from 2 different allocations, the last store wins. Because of this,
+/// MemorySanitizer reports can show unrelated origins, but this is unlikely in
+/// practice.
+///
+/// Origins are meaningless for fully initialized values, so MemorySanitizer
+/// avoids storing origin to memory when a fully initialized value is stored.
+/// This way it avoids needless overwritting origin of the 4-byte region on
+/// a short (i.e. 1 byte) clean store, and it is also good for performance.
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "msan"
@@ -53,22 +76,23 @@
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/ValueMap.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/InlineAsm.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
#include "llvm/InstVisitor.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/MDBuilder.h"
-#include "llvm/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
-#include "llvm/Type.h"
using namespace llvm;
@@ -76,12 +100,13 @@ static const uint64_t kShadowMask32 = 1ULL << 31;
static const uint64_t kShadowMask64 = 1ULL << 46;
static const uint64_t kOriginOffset32 = 1ULL << 30;
static const uint64_t kOriginOffset64 = 1ULL << 45;
+static const unsigned kMinOriginAlignment = 4;
+static const unsigned kShadowTLSAlignment = 8;
-// This is an important flag that makes the reports much more
-// informative at the cost of greater slowdown. Not fully implemented
-// yet.
-// FIXME: this should be a top-level clang flag, e.g.
-// -fmemory-sanitizer-full.
+/// \brief Track origins of uninitialized values.
+///
+/// Adds a section to MemorySanitizer report that points to the allocation
+/// (stack or heap) the uninitialized bits came from originally.
static cl::opt<bool> ClTrackOrigins("msan-track-origins",
cl::desc("Track origins (allocation sites) of poisoned memory"),
cl::Hidden, cl::init(false));
@@ -120,7 +145,7 @@ static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
cl::desc("print out instructions with default strict semantics"),
cl::Hidden, cl::init(false));
-static cl::opt<std::string> ClBlackListFile("msan-blacklist",
+static cl::opt<std::string> ClBlacklistFile("msan-blacklist",
cl::desc("File containing the list of functions where MemorySanitizer "
"should not report bugs"), cl::Hidden);
@@ -132,16 +157,26 @@ namespace {
/// MemorySanitizer: instrument the code in module to find
/// uninitialized reads.
class MemorySanitizer : public FunctionPass {
-public:
- MemorySanitizer() : FunctionPass(ID), TD(0), WarningFn(0) { }
+ public:
+ MemorySanitizer(bool TrackOrigins = false,
+ StringRef BlacklistFile = StringRef())
+ : FunctionPass(ID),
+ TrackOrigins(TrackOrigins || ClTrackOrigins),
+ TD(0),
+ WarningFn(0),
+ BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile
+ : BlacklistFile) { }
const char *getPassName() const { return "MemorySanitizer"; }
bool runOnFunction(Function &F);
bool doInitialization(Module &M);
static char ID; // Pass identification, replacement for typeid.
-private:
+ private:
void initializeCallbacks(Module &M);
+ /// \brief Track origins (allocation points) of uninitialized values.
+ bool TrackOrigins;
+
DataLayout *TD;
LLVMContext *C;
Type *IntptrTy;
@@ -186,6 +221,8 @@ private:
MDNode *ColdCallWeights;
/// \brief Branch weights for origin store.
MDNode *OriginStoreWeights;
+ /// \bried Path to blacklist file.
+ SmallString<64> BlacklistFile;
/// \brief The blacklist.
OwningPtr<BlackList> BL;
/// \brief An empty volatile inline asm that prevents callback merge.
@@ -201,8 +238,9 @@ INITIALIZE_PASS(MemorySanitizer, "msan",
"MemorySanitizer: detects uninitialized reads.",
false, false)
-FunctionPass *llvm::createMemorySanitizerPass() {
- return new MemorySanitizer();
+FunctionPass *llvm::createMemorySanitizerPass(bool TrackOrigins,
+ StringRef BlacklistFile) {
+ return new MemorySanitizer(TrackOrigins, BlacklistFile);
}
/// \brief Create a non-const global initialized with the given string.
@@ -241,8 +279,8 @@ void MemorySanitizer::initializeCallbacks(Module &M) {
MsanPoisonStackFn = M.getOrInsertFunction(
"__msan_poison_stack", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, NULL);
MemmoveFn = M.getOrInsertFunction(
- "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
- IntptrTy, NULL);
+ "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
+ IRB.getInt8PtrTy(), IntptrTy, NULL);
MemcpyFn = M.getOrInsertFunction(
"__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
IntptrTy, NULL);
@@ -292,7 +330,7 @@ bool MemorySanitizer::doInitialization(Module &M) {
TD = getAnalysisIfAvailable<DataLayout>();
if (!TD)
return false;
- BL.reset(new BlackList(ClBlackListFile));
+ BL.reset(new BlackList(BlacklistFile));
C = &(M.getContext());
unsigned PtrSize = TD->getPointerSizeInBits(/* AddressSpace */0);
switch (PtrSize) {
@@ -321,7 +359,7 @@ bool MemorySanitizer::doInitialization(Module &M) {
"__msan_init", IRB.getVoidTy(), NULL)), 0);
new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
- IRB.getInt32(ClTrackOrigins), "__msan_track_origins");
+ IRB.getInt32(TrackOrigins), "__msan_track_origins");
return true;
}
@@ -377,7 +415,7 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
// An unfortunate workaround for asymmetric lowering of va_arg stuff.
// See a comment in visitCallSite for more details.
- static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
+ static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
static const unsigned AMD64FpEndOffset = 176;
struct ShadowOriginAndInsertPoint {
@@ -409,7 +447,8 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
Value *Shadow = getShadow(Val);
Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
- StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, I.getAlignment());
+ StoreInst *NewSI =
+ IRB.CreateAlignedStore(Shadow, ShadowPtr, I.getAlignment());
DEBUG(dbgs() << " STORE: " << *NewSI << "\n");
(void)NewSI;
// If the store is volatile, add a check.
@@ -418,9 +457,11 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
if (ClCheckAccessAddress)
insertCheck(Addr, &I);
- if (ClTrackOrigins) {
+ if (MS.TrackOrigins) {
+ unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
if (ClStoreCleanOrigin || isa<StructType>(Shadow->getType())) {
- IRB.CreateAlignedStore(getOrigin(Val), getOriginPtr(Addr, IRB), I.getAlignment());
+ IRB.CreateAlignedStore(getOrigin(Val), getOriginPtr(Addr, IRB),
+ Alignment);
} else {
Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
@@ -434,10 +475,11 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
getCleanShadow(ConvertedShadow), "_mscmp");
Instruction *CheckTerm =
- SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false, MS.OriginStoreWeights);
- IRBuilder<> IRBNewBlock(CheckTerm);
- IRBNewBlock.CreateAlignedStore(getOrigin(Val),
- getOriginPtr(Addr, IRBNewBlock), I.getAlignment());
+ SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false,
+ MS.OriginStoreWeights);
+ IRBuilder<> IRBNew(CheckTerm);
+ IRBNew.CreateAlignedStore(getOrigin(Val), getOriginPtr(Addr, IRBNew),
+ Alignment);
}
}
}
@@ -459,7 +501,7 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
MS.ColdCallWeights);
IRB.SetInsertPoint(CheckTerm);
- if (ClTrackOrigins) {
+ if (MS.TrackOrigins) {
Instruction *Origin = InstrumentationList[i].Origin;
IRB.CreateStore(Origin ? (Value*)Origin : (Value*)IRB.getInt32(0),
MS.OriginTLS);
@@ -476,6 +518,13 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
bool runOnFunction() {
MS.initializeCallbacks(*F.getParent());
if (!MS.TD) return false;
+
+ // In the presence of unreachable blocks, we may see Phi nodes with
+ // incoming nodes from such blocks. Since InstVisitor skips unreachable
+ // blocks, such nodes will not have any shadow value associated with them.
+ // It's easier to remove unreachable blocks than deal with missing shadow.
+ removeUnreachableBlocks(F);
+
// Iterate all BBs in depth-first order and create shadow instructions
// for all instructions (where applicable).
// For PHI nodes we create dummy shadow PHIs which will be finalized later.
@@ -489,7 +538,7 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
for (size_t i = 0, n = ShadowPHINodes.size(); i < n; i++) {
PHINode *PN = ShadowPHINodes[i];
PHINode *PNS = cast<PHINode>(getShadow(PN));
- PHINode *PNO = ClTrackOrigins ? cast<PHINode>(getOrigin(PN)) : 0;
+ PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : 0;
size_t NumValues = PN->getNumIncomingValues();
for (size_t v = 0; v < NumValues; v++) {
PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
@@ -524,8 +573,11 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
// This may return weird-sized types like i1.
if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
return IT;
- if (VectorType *VT = dyn_cast<VectorType>(OrigTy))
- return VectorType::getInteger(VT);
+ if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
+ uint32_t EltSize = MS.TD->getTypeStoreSizeInBits(VT->getElementType());
+ return VectorType::get(IntegerType::get(*MS.C, EltSize),
+ VT->getNumElements());
+ }
if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
SmallVector<Type*, 4> Elements;
for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
@@ -595,7 +647,7 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
/// \brief Compute the origin address for a given function argument.
Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
int ArgOffset) {
- if (!ClTrackOrigins) return 0;
+ if (!MS.TrackOrigins) return 0;
Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
@@ -623,7 +675,7 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
/// \brief Set Origin to be the origin value for V.
void setOrigin(Value *V, Value *Origin) {
- if (!ClTrackOrigins) return;
+ if (!MS.TrackOrigins) return;
assert(!OriginMap.count(V) && "Values may only have one origin");
DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n");
OriginMap[V] = Origin;
@@ -711,7 +763,7 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
}
DEBUG(dbgs() << " ARG: " << *AI << " ==> " <<
**ShadowPtr << "\n");
- if (ClTrackOrigins) {
+ if (MS.TrackOrigins) {
Value* OriginPtr = getOriginPtrForArgument(AI, EntryIRB, ArgOffset);
setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
}
@@ -732,7 +784,7 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
/// \brief Get the origin for a value.
Value *getOrigin(Value *V) {
- if (!ClTrackOrigins) return 0;
+ if (!MS.TrackOrigins) return 0;
if (isa<Instruction>(V) || isa<Argument>(V)) {
Value *Origin = OriginMap[V];
if (!Origin) {
@@ -768,7 +820,7 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
}
- //------------------- Visitors.
+ // ------------------- Visitors.
/// \brief Instrument LoadInst
///
@@ -785,8 +837,10 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
if (ClCheckAccessAddress)
insertCheck(I.getPointerOperand(), &I);
- if (ClTrackOrigins)
- setOrigin(&I, IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB), I.getAlignment()));
+ if (MS.TrackOrigins) {
+ unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
+ setOrigin(&I, IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB), Alignment));
+ }
}
/// \brief Instrument StoreInst
@@ -918,67 +972,135 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
setOriginForNaryOp(I);
}
- /// \brief Propagate origin for an instruction.
+ /// \brief Default propagation of shadow and/or origin.
///
- /// This is a general case of origin propagation. For an Nary operation,
- /// is set to the origin of an argument that is not entirely initialized.
- /// If there is more than one such arguments, the rightmost of them is picked.
- /// It does not matter which one is picked if all arguments are initialized.
- void setOriginForNaryOp(Instruction &I) {
- if (!ClTrackOrigins) return;
- IRBuilder<> IRB(&I);
- Value *Origin = getOrigin(&I, 0);
- for (unsigned Op = 1, n = I.getNumOperands(); Op < n; ++Op) {
- Value *S = convertToShadowTyNoVec(getShadow(&I, Op), IRB);
- Origin = IRB.CreateSelect(IRB.CreateICmpNE(S, getCleanShadow(S)),
- getOrigin(&I, Op), Origin);
+ /// This class implements the general case of shadow propagation, used in all
+ /// cases where we don't know and/or don't care about what the operation
+ /// actually does. It converts all input shadow values to a common type
+ /// (extending or truncating as necessary), and bitwise OR's them.
+ ///
+ /// This is much cheaper than inserting checks (i.e. requiring inputs to be
+ /// fully initialized), and less prone to false positives.
+ ///
+ /// This class also implements the general case of origin propagation. For a
+ /// Nary operation, result origin is set to the origin of an argument that is
+ /// not entirely initialized. If there is more than one such arguments, the
+ /// rightmost of them is picked. It does not matter which one is picked if all
+ /// arguments are initialized.
+ template <bool CombineShadow>
+ class Combiner {
+ Value *Shadow;
+ Value *Origin;
+ IRBuilder<> &IRB;
+ MemorySanitizerVisitor *MSV;
+
+ public:
+ Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) :
+ Shadow(0), Origin(0), IRB(IRB), MSV(MSV) {}
+
+ /// \brief Add a pair of shadow and origin values to the mix.
+ Combiner &Add(Value *OpShadow, Value *OpOrigin) {
+ if (CombineShadow) {
+ assert(OpShadow);
+ if (!Shadow)
+ Shadow = OpShadow;
+ else {
+ OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
+ Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
+ }
+ }
+
+ if (MSV->MS.TrackOrigins) {
+ assert(OpOrigin);
+ if (!Origin) {
+ Origin = OpOrigin;
+ } else {
+ Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
+ Value *Cond = IRB.CreateICmpNE(FlatShadow,
+ MSV->getCleanShadow(FlatShadow));
+ Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
+ }
+ }
+ return *this;
}
- setOrigin(&I, Origin);
- }
- /// \brief Propagate shadow for a binary operation.
- ///
- /// Shadow = Shadow0 | Shadow1, all 3 must have the same type.
- /// Bitwise OR is selected as an operation that will never lose even a bit of
- /// poison.
- void handleShadowOrBinary(Instruction &I) {
+ /// \brief Add an application value to the mix.
+ Combiner &Add(Value *V) {
+ Value *OpShadow = MSV->getShadow(V);
+ Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : 0;
+ return Add(OpShadow, OpOrigin);
+ }
+
+ /// \brief Set the current combined values as the given instruction's shadow
+ /// and origin.
+ void Done(Instruction *I) {
+ if (CombineShadow) {
+ assert(Shadow);
+ Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
+ MSV->setShadow(I, Shadow);
+ }
+ if (MSV->MS.TrackOrigins) {
+ assert(Origin);
+ MSV->setOrigin(I, Origin);
+ }
+ }
+ };
+
+ typedef Combiner<true> ShadowAndOriginCombiner;
+ typedef Combiner<false> OriginCombiner;
+
+ /// \brief Propagate origin for arbitrary operation.
+ void setOriginForNaryOp(Instruction &I) {
+ if (!MS.TrackOrigins) return;
IRBuilder<> IRB(&I);
- Value *Shadow0 = getShadow(&I, 0);
- Value *Shadow1 = getShadow(&I, 1);
- setShadow(&I, IRB.CreateOr(Shadow0, Shadow1, "_msprop"));
- setOriginForNaryOp(I);
+ OriginCombiner OC(this, IRB);
+ for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
+ OC.Add(OI->get());
+ OC.Done(&I);
+ }
+
+ size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
+ assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
+ "Vector of pointers is not a valid shadow type");
+ return Ty->isVectorTy() ?
+ Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
+ Ty->getPrimitiveSizeInBits();
+ }
+
+ /// \brief Cast between two shadow types, extending or truncating as
+ /// necessary.
+ Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy) {
+ Type *srcTy = V->getType();
+ if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
+ return IRB.CreateIntCast(V, dstTy, false);
+ if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
+ dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
+ return IRB.CreateIntCast(V, dstTy, false);
+ size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
+ size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
+ Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
+ Value *V2 =
+ IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), false);
+ return IRB.CreateBitCast(V2, dstTy);
+ // TODO: handle struct types.
}
/// \brief Propagate shadow for arbitrary operation.
- ///
- /// This is a general case of shadow propagation, used in all cases where we
- /// don't know and/or care about what the operation actually does.
- /// It converts all input shadow values to a common type (extending or
- /// truncating as necessary), and bitwise OR's them.
- ///
- /// This is much cheaper than inserting checks (i.e. requiring inputs to be
- /// fully initialized), and less prone to false positives.
- // FIXME: is the casting actually correct?
- // FIXME: merge this with handleShadowOrBinary.
void handleShadowOr(Instruction &I) {
IRBuilder<> IRB(&I);
- Value *Shadow = getShadow(&I, 0);
- for (unsigned Op = 1, n = I.getNumOperands(); Op < n; ++Op)
- Shadow = IRB.CreateOr(
- Shadow, IRB.CreateIntCast(getShadow(&I, Op), Shadow->getType(), false),
- "_msprop");
- Shadow = IRB.CreateIntCast(Shadow, getShadowTy(&I), false);
- setShadow(&I, Shadow);
- setOriginForNaryOp(I);
+ ShadowAndOriginCombiner SC(this, IRB);
+ for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
+ SC.Add(OI->get());
+ SC.Done(&I);
}
- void visitFAdd(BinaryOperator &I) { handleShadowOrBinary(I); }
- void visitFSub(BinaryOperator &I) { handleShadowOrBinary(I); }
- void visitFMul(BinaryOperator &I) { handleShadowOrBinary(I); }
- void visitAdd(BinaryOperator &I) { handleShadowOrBinary(I); }
- void visitSub(BinaryOperator &I) { handleShadowOrBinary(I); }
- void visitXor(BinaryOperator &I) { handleShadowOrBinary(I); }
- void visitMul(BinaryOperator &I) { handleShadowOrBinary(I); }
+ void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
+ void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
+ void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
+ void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
+ void visitSub(BinaryOperator &I) { handleShadowOr(I); }
+ void visitXor(BinaryOperator &I) { handleShadowOr(I); }
+ void visitMul(BinaryOperator &I) { handleShadowOr(I); }
void handleDiv(Instruction &I) {
IRBuilder<> IRB(&I);
@@ -1142,6 +1264,147 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
VAHelper->visitVACopyInst(I);
}
+ enum IntrinsicKind {
+ IK_DoesNotAccessMemory,
+ IK_OnlyReadsMemory,
+ IK_WritesMemory
+ };
+
+ static IntrinsicKind getIntrinsicKind(Intrinsic::ID iid) {
+ const int DoesNotAccessMemory = IK_DoesNotAccessMemory;
+ const int OnlyReadsArgumentPointees = IK_OnlyReadsMemory;
+ const int OnlyReadsMemory = IK_OnlyReadsMemory;
+ const int OnlyAccessesArgumentPointees = IK_WritesMemory;
+ const int UnknownModRefBehavior = IK_WritesMemory;
+#define GET_INTRINSIC_MODREF_BEHAVIOR
+#define ModRefBehavior IntrinsicKind
+#include "llvm/IR/Intrinsics.gen"
+#undef ModRefBehavior
+#undef GET_INTRINSIC_MODREF_BEHAVIOR
+ }
+
+ /// \brief Handle vector store-like intrinsics.
+ ///
+ /// Instrument intrinsics that look like a simple SIMD store: writes memory,
+ /// has 1 pointer argument and 1 vector argument, returns void.
+ bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
+ IRBuilder<> IRB(&I);
+ Value* Addr = I.getArgOperand(0);
+ Value *Shadow = getShadow(&I, 1);
+ Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
+
+ // We don't know the pointer alignment (could be unaligned SSE store!).
+ // Have to assume to worst case.
+ IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
+
+ if (ClCheckAccessAddress)
+ insertCheck(Addr, &I);
+
+ // FIXME: use ClStoreCleanOrigin
+ // FIXME: factor out common code from materializeStores
+ if (MS.TrackOrigins)
+ IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB));
+ return true;
+ }
+
+ /// \brief Handle vector load-like intrinsics.
+ ///
+ /// Instrument intrinsics that look like a simple SIMD load: reads memory,
+ /// has 1 pointer argument, returns a vector.
+ bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *Addr = I.getArgOperand(0);
+
+ Type *ShadowTy = getShadowTy(&I);
+ Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
+ // We don't know the pointer alignment (could be unaligned SSE load!).
+ // Have to assume to worst case.
+ setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld"));
+
+ if (ClCheckAccessAddress)
+ insertCheck(Addr, &I);
+
+ if (MS.TrackOrigins)
+ setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB)));
+ return true;
+ }
+
+ /// \brief Handle (SIMD arithmetic)-like intrinsics.
+ ///
+ /// Instrument intrinsics with any number of arguments of the same type,
+ /// equal to the return type. The type should be simple (no aggregates or
+ /// pointers; vectors are fine).
+ /// Caller guarantees that this intrinsic does not access memory.
+ bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
+ Type *RetTy = I.getType();
+ if (!(RetTy->isIntOrIntVectorTy() ||
+ RetTy->isFPOrFPVectorTy() ||
+ RetTy->isX86_MMXTy()))
+ return false;
+
+ unsigned NumArgOperands = I.getNumArgOperands();
+
+ for (unsigned i = 0; i < NumArgOperands; ++i) {
+ Type *Ty = I.getArgOperand(i)->getType();
+ if (Ty != RetTy)
+ return false;
+ }
+
+ IRBuilder<> IRB(&I);
+ ShadowAndOriginCombiner SC(this, IRB);
+ for (unsigned i = 0; i < NumArgOperands; ++i)
+ SC.Add(I.getArgOperand(i));
+ SC.Done(&I);
+
+ return true;
+ }
+
+ /// \brief Heuristically instrument unknown intrinsics.
+ ///
+ /// The main purpose of this code is to do something reasonable with all
+ /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
+ /// We recognize several classes of intrinsics by their argument types and
+ /// ModRefBehaviour and apply special intrumentation when we are reasonably
+ /// sure that we know what the intrinsic does.
+ ///
+ /// We special-case intrinsics where this approach fails. See llvm.bswap
+ /// handling as an example of that.
+ bool handleUnknownIntrinsic(IntrinsicInst &I) {
+ unsigned NumArgOperands = I.getNumArgOperands();
+ if (NumArgOperands == 0)
+ return false;
+
+ Intrinsic::ID iid = I.getIntrinsicID();
+ IntrinsicKind IK = getIntrinsicKind(iid);
+ bool OnlyReadsMemory = IK == IK_OnlyReadsMemory;
+ bool WritesMemory = IK == IK_WritesMemory;
+ assert(!(OnlyReadsMemory && WritesMemory));
+
+ if (NumArgOperands == 2 &&
+ I.getArgOperand(0)->getType()->isPointerTy() &&
+ I.getArgOperand(1)->getType()->isVectorTy() &&
+ I.getType()->isVoidTy() &&
+ WritesMemory) {
+ // This looks like a vector store.
+ return handleVectorStoreIntrinsic(I);
+ }
+
+ if (NumArgOperands == 1 &&
+ I.getArgOperand(0)->getType()->isPointerTy() &&
+ I.getType()->isVectorTy() &&
+ OnlyReadsMemory) {
+ // This looks like a vector load.
+ return handleVectorLoadIntrinsic(I);
+ }
+
+ if (!OnlyReadsMemory && !WritesMemory)
+ if (maybeHandleSimpleNomemIntrinsic(I))
+ return true;
+
+ // FIXME: detect and handle SSE maskstore/maskload
+ return false;
+ }
+
void handleBswap(IntrinsicInst &I) {
IRBuilder<> IRB(&I);
Value *Op = I.getArgOperand(0);
@@ -1155,9 +1418,12 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
void visitIntrinsicInst(IntrinsicInst &I) {
switch (I.getIntrinsicID()) {
case llvm::Intrinsic::bswap:
- handleBswap(I); break;
+ handleBswap(I);
+ break;
default:
- visitInstruction(I); break;
+ if (!handleUnknownIntrinsic(I))
+ visitInstruction(I);
+ break;
}
}
@@ -1190,10 +1456,10 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
if (Function *Func = Call->getCalledFunction()) {
// Clear out readonly/readnone attributes.
AttrBuilder B;
- B.addAttribute(Attributes::ReadOnly)
- .addAttribute(Attributes::ReadNone);
+ B.addAttribute(Attribute::ReadOnly)
+ .addAttribute(Attribute::ReadNone);
Func->removeAttribute(AttributeSet::FunctionIndex,
- Attributes::get(Func->getContext(), B));
+ Attribute::get(Func->getContext(), B));
}
}
IRBuilder<> IRB(&I);
@@ -1216,7 +1482,7 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
DEBUG(dbgs() << " Arg#" << i << ": " << *A <<
" Shadow: " << *ArgShadow << "\n");
- if (CS.paramHasAttr(i + 1, Attributes::ByVal)) {
+ if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
assert(A->getType()->isPointerTy() &&
"ByVal argument is not a pointer!");
Size = MS.TD->getTypeAllocSize(A->getType()->getPointerElementType());
@@ -1226,9 +1492,10 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
Size, Alignment);
} else {
Size = MS.TD->getTypeAllocSize(A->getType());
- Store = IRB.CreateStore(ArgShadow, ArgShadowBase);
+ Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
+ kShadowTLSAlignment);
}
- if (ClTrackOrigins)
+ if (MS.TrackOrigins)
IRB.CreateStore(getOrigin(A),
getOriginPtrForArgument(A, IRB, ArgOffset));
assert(Size != 0 && Store != 0);
@@ -1248,7 +1515,7 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
IRBuilder<> IRBBefore(&I);
// Untill we have full dynamic coverage, make sure the retval shadow is 0.
Value *Base = getShadowPtrForRetval(&I, IRBBefore);
- IRBBefore.CreateStore(getCleanShadow(&I), Base);
+ IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
Instruction *NextInsn = 0;
if (CS.isCall()) {
NextInsn = I.getNextNode();
@@ -1267,9 +1534,11 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
"Could not find insertion point for retval shadow load");
}
IRBuilder<> IRBAfter(NextInsn);
- setShadow(&I, IRBAfter.CreateLoad(getShadowPtrForRetval(&I, IRBAfter),
- "_msret"));
- if (ClTrackOrigins)
+ Value *RetvalShadow =
+ IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter),
+ kShadowTLSAlignment, "_msret");
+ setShadow(&I, RetvalShadow);
+ if (MS.TrackOrigins)
setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
}
@@ -1280,8 +1549,8 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
Value *Shadow = getShadow(RetVal);
Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
DEBUG(dbgs() << "Return: " << *Shadow << "\n" << *ShadowPtr << "\n");
- IRB.CreateStore(Shadow, ShadowPtr);
- if (ClTrackOrigins)
+ IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
+ if (MS.TrackOrigins)
IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
}
}
@@ -1291,7 +1560,7 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
ShadowPHINodes.push_back(&I);
setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
"_msphi_s"));
- if (ClTrackOrigins)
+ if (MS.TrackOrigins)
setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
"_msphi_o"));
}
@@ -1311,7 +1580,7 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
Size, I.getAlignment());
}
- if (ClTrackOrigins) {
+ if (MS.TrackOrigins) {
setOrigin(&I, getCleanOrigin());
SmallString<2048> StackDescriptionStorage;
raw_svector_ostream StackDescription(StackDescriptionStorage);
@@ -1336,9 +1605,18 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
setShadow(&I, IRB.CreateSelect(I.getCondition(),
getShadow(I.getTrueValue()), getShadow(I.getFalseValue()),
"_msprop"));
- if (ClTrackOrigins)
- setOrigin(&I, IRB.CreateSelect(I.getCondition(),
+ if (MS.TrackOrigins) {
+ // Origins are always i32, so any vector conditions must be flattened.
+ // FIXME: consider tracking vector origins for app vectors?
+ Value *Cond = I.getCondition();
+ if (Cond->getType()->isVectorTy()) {
+ Value *ConvertedShadow = convertToShadowTyNoVec(Cond, IRB);
+ Cond = IRB.CreateICmpNE(ConvertedShadow,
+ getCleanShadow(ConvertedShadow), "_mso_select");
+ }
+ setOrigin(&I, IRB.CreateSelect(Cond,
getOrigin(I.getTrueValue()), getOrigin(I.getFalseValue())));
+ }
}
void visitLandingPadInst(LandingPadInst &I) {
@@ -1407,7 +1685,7 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
struct VarArgAMD64Helper : public VarArgHelper {
// An unfortunate workaround for asymmetric lowering of va_arg stuff.
// See a comment in visitCallSite for more details.
- static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
+ static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
static const unsigned AMD64FpEndOffset = 176;
Function &F;
@@ -1471,7 +1749,7 @@ struct VarArgAMD64Helper : public VarArgHelper {
Base = getShadowPtrForVAArgument(A, IRB, OverflowOffset);
OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8);
}
- IRB.CreateStore(MSV.getShadow(A), Base);
+ IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
}
Constant *OverflowSize =
ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
@@ -1496,7 +1774,7 @@ struct VarArgAMD64Helper : public VarArgHelper {
// Unpoison the whole __va_list_tag.
// FIXME: magic ABI constants.
IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
- /* size */24, /* alignment */16, false);
+ /* size */24, /* alignment */8, false);
}
void visitVACopyInst(VACopyInst &I) {
@@ -1507,7 +1785,7 @@ struct VarArgAMD64Helper : public VarArgHelper {
// Unpoison the whole __va_list_tag.
// FIXME: magic ABI constants.
IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
- /* size */ 24, /* alignment */ 16, false);
+ /* size */24, /* alignment */8, false);
}
void finalizeInstrumentation() {
@@ -1570,10 +1848,10 @@ bool MemorySanitizer::runOnFunction(Function &F) {
// Clear out readonly/readnone attributes.
AttrBuilder B;
- B.addAttribute(Attributes::ReadOnly)
- .addAttribute(Attributes::ReadNone);
+ B.addAttribute(Attribute::ReadOnly)
+ .addAttribute(Attribute::ReadNone);
F.removeAttribute(AttributeSet::FunctionIndex,
- Attributes::get(F.getContext(), B));
+ Attribute::get(F.getContext(), B));
return Visitor.runOnFunction();
}
diff --git a/lib/Transforms/Instrumentation/OptimalEdgeProfiling.cpp b/lib/Transforms/Instrumentation/OptimalEdgeProfiling.cpp
index 8f8d027dca..c5a1fe9188 100644
--- a/lib/Transforms/Instrumentation/OptimalEdgeProfiling.cpp
+++ b/lib/Transforms/Instrumentation/OptimalEdgeProfiling.cpp
@@ -21,8 +21,9 @@
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/ProfileInfo.h"
#include "llvm/Analysis/ProfileInfoLoader.h"
-#include "llvm/Constants.h"
-#include "llvm/Module.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
@@ -75,8 +76,8 @@ inline static void printEdgeCounter(ProfileInfo::Edge e,
bool OptimalEdgeProfiler::runOnModule(Module &M) {
Function *Main = M.getFunction("main");
if (Main == 0) {
- errs() << "WARNING: cannot insert edge profiling into a module"
- << " with no main function!\n";
+ M.getContext().emitWarning("cannot insert edge profiling into a module"
+ " with no main function");
return false; // No main, no instrumentation!
}
diff --git a/lib/Transforms/Instrumentation/PathProfiling.cpp b/lib/Transforms/Instrumentation/PathProfiling.cpp
index 8aefe5901c..358bbeb3c8 100644
--- a/lib/Transforms/Instrumentation/PathProfiling.cpp
+++ b/lib/Transforms/Instrumentation/PathProfiling.cpp
@@ -48,13 +48,13 @@
#include "llvm/Transforms/Instrumentation.h"
#include "ProfilingUtils.h"
#include "llvm/Analysis/PathNumbering.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/InstrTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/TypeBuilder.h"
#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
@@ -62,7 +62,6 @@
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/TypeBuilder.h"
#include <vector>
#define HASH_THRESHHOLD 100000
@@ -1346,8 +1345,8 @@ bool PathProfiler::runOnModule(Module &M) {
Main = M.getFunction("MAIN__");
if (!Main) {
- errs() << "WARNING: cannot insert path profiling into a module"
- << " with no main function!\n";
+ Context->emitWarning("cannot insert edge profiling into a module"
+ " with no main function");
return false;
}
diff --git a/lib/Transforms/Instrumentation/ProfilingUtils.cpp b/lib/Transforms/Instrumentation/ProfilingUtils.cpp
index de57cd1734..4b3de6d7fc 100644
--- a/lib/Transforms/Instrumentation/ProfilingUtils.cpp
+++ b/lib/Transforms/Instrumentation/ProfilingUtils.cpp
@@ -15,11 +15,11 @@
//===----------------------------------------------------------------------===//
#include "ProfilingUtils.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
void llvm::InsertProfilingInitCall(Function *MainFn, const char *FnName,
GlobalValue *Array,
diff --git a/lib/Transforms/Instrumentation/ThreadSanitizer.cpp b/lib/Transforms/Instrumentation/ThreadSanitizer.cpp
index f14a5d8a1e..29d2ece7d7 100644
--- a/lib/Transforms/Instrumentation/ThreadSanitizer.cpp
+++ b/lib/Transforms/Instrumentation/ThreadSanitizer.cpp
@@ -28,24 +28,24 @@
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Metadata.h"
-#include "llvm/Module.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
-#include "llvm/Type.h"
using namespace llvm;
-static cl::opt<std::string> ClBlackListFile("tsan-blacklist",
+static cl::opt<std::string> ClBlacklistFile("tsan-blacklist",
cl::desc("Blacklist file"), cl::Hidden);
static cl::opt<bool> ClInstrumentMemoryAccesses(
"tsan-instrument-memory-accesses", cl::init(true),
@@ -71,7 +71,11 @@ namespace {
/// ThreadSanitizer: instrument the code in module to find races.
struct ThreadSanitizer : public FunctionPass {
- ThreadSanitizer();
+ ThreadSanitizer(StringRef BlacklistFile = StringRef())
+ : FunctionPass(ID),
+ TD(0),
+ BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile
+ : BlacklistFile) { }
const char *getPassName() const;
bool runOnFunction(Function &F);
bool doInitialization(Module &M);
@@ -87,6 +91,7 @@ struct ThreadSanitizer : public FunctionPass {
int getMemoryAccessFuncIndex(Value *Addr);
DataLayout *TD;
+ SmallString<64> BlacklistFile;
OwningPtr<BlackList> BL;
IntegerType *OrdTy;
// Callbacks to run-time library are computed in doInitialization.
@@ -115,13 +120,8 @@ const char *ThreadSanitizer::getPassName() const {
return "ThreadSanitizer";
}
-ThreadSanitizer::ThreadSanitizer()
- : FunctionPass(ID),
- TD(NULL) {
-}
-
-FunctionPass *llvm::createThreadSanitizerPass() {
- return new ThreadSanitizer();
+FunctionPass *llvm::createThreadSanitizerPass(StringRef BlacklistFile) {
+ return new ThreadSanitizer(BlacklistFile);
}
static Function *checkInterfaceFunction(Constant *FuncOrBitcast) {
@@ -206,7 +206,7 @@ bool ThreadSanitizer::doInitialization(Module &M) {
TD = getAnalysisIfAvailable<DataLayout>();
if (!TD)
return false;
- BL.reset(new BlackList(ClBlackListFile));
+ BL.reset(new BlackList(BlacklistFile));
// Always insert a call to __tsan_init into the module's CTORs.
IRBuilder<> IRB(M.getContext());
diff --git a/lib/Transforms/NaCl/ExpandCtors.cpp b/lib/Transforms/NaCl/ExpandCtors.cpp
index 6b8130e4fb..30d56fee6b 100644
--- a/lib/Transforms/NaCl/ExpandCtors.cpp
+++ b/lib/Transforms/NaCl/ExpandCtors.cpp
@@ -18,14 +18,14 @@
#include <vector>
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/Module.h"
#include "llvm/Pass.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/TypeBuilder.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/NaCl.h"
-#include "llvm/TypeBuilder.h"
using namespace llvm;
diff --git a/lib/Transforms/NaCl/ExpandTls.cpp b/lib/Transforms/NaCl/ExpandTls.cpp
index 54299edf4b..065226fedd 100644
--- a/lib/Transforms/NaCl/ExpandTls.cpp
+++ b/lib/Transforms/NaCl/ExpandTls.cpp
@@ -24,12 +24,12 @@
#include <vector>
-#include "llvm/Constants.h"
-#include "llvm/DataLayout.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/Module.h"
#include "llvm/Pass.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/NaCl.h"
@@ -237,11 +237,11 @@ static void rewriteTlsVars(Module &M, std::vector<VarInfo> *TlsVars,
FunctionType *ReadTpType = FunctionType::get(PointerType::get(i8, 0),
/*isVarArg=*/false);
AttrBuilder B;
- B.addAttribute(Attributes::ReadOnly);
- B.addAttribute(Attributes::NoUnwind);
+ B.addAttribute(Attribute::ReadOnly);
+ B.addAttribute(Attribute::NoUnwind);
AttributeSet ReadTpAttrs = AttributeSet().addAttr(
M.getContext(), AttributeSet::FunctionIndex,
- Attributes::get(M.getContext(), B));
+ Attribute::get(M.getContext(), B));
Constant *ReadTpFunc = M.getOrInsertTargetIntrinsic("llvm.nacl.read.tp",
ReadTpType,
ReadTpAttrs);
diff --git a/lib/Transforms/NaCl/ExpandTlsConstantExpr.cpp b/lib/Transforms/NaCl/ExpandTlsConstantExpr.cpp
index 90e007604f..45612b2616 100644
--- a/lib/Transforms/NaCl/ExpandTlsConstantExpr.cpp
+++ b/lib/Transforms/NaCl/ExpandTlsConstantExpr.cpp
@@ -38,10 +38,10 @@
#include <vector>
-#include "llvm/Constants.h"
-#include "llvm/Instructions.h"
-#include "llvm/Module.h"
#include "llvm/Pass.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
#include "llvm/Transforms/NaCl.h"
using namespace llvm;
diff --git a/lib/Transforms/Scalar/ADCE.cpp b/lib/Transforms/Scalar/ADCE.cpp
index f43baf5a76..a097308640 100644
--- a/lib/Transforms/Scalar/ADCE.cpp
+++ b/lib/Transforms/Scalar/ADCE.cpp
@@ -20,9 +20,9 @@
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/BasicBlock.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/InstIterator.h"
diff --git a/lib/Transforms/Scalar/BasicBlockPlacement.cpp b/lib/Transforms/Scalar/BasicBlockPlacement.cpp
index 6214e3b703..e755008808 100644
--- a/lib/Transforms/Scalar/BasicBlockPlacement.cpp
+++ b/lib/Transforms/Scalar/BasicBlockPlacement.cpp
@@ -30,7 +30,7 @@
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ProfileInfo.h"
-#include "llvm/Function.h"
+#include "llvm/IR/Function.h"
#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
#include <set>
diff --git a/lib/Transforms/Scalar/CodeGenPrepare.cpp b/lib/Transforms/Scalar/CodeGenPrepare.cpp
index e6abfdf581..d513c96bac 100644
--- a/lib/Transforms/Scalar/CodeGenPrepare.cpp
+++ b/lib/Transforms/Scalar/CodeGenPrepare.cpp
@@ -23,14 +23,14 @@
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/ProfileInfo.h"
#include "llvm/Assembly/Writer.h"
-#include "llvm/Constants.h"
-#include "llvm/DataLayout.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/InlineAsm.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CommandLine.h"
@@ -41,7 +41,6 @@
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Target/TargetLowering.h"
-#include "llvm/Transforms/Utils/AddrModeMatcher.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
#include "llvm/Transforms/Utils/BypassSlowDivision.h"
@@ -106,6 +105,8 @@ namespace {
}
bool runOnFunction(Function &F);
+ const char *getPassName() const { return "CodeGen Prepare"; }
+
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addPreserved<DominatorTree>();
AU.addPreserved<ProfileInfo>();
@@ -148,7 +149,8 @@ bool CodeGenPrepare::runOnFunction(Function &F) {
TLInfo = &getAnalysis<TargetLibraryInfo>();
DT = getAnalysisIfAvailable<DominatorTree>();
PFI = getAnalysisIfAvailable<ProfileInfo>();
- OptSize = F.getFnAttributes().hasAttribute(Attributes::OptimizeForSize);
+ OptSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::OptimizeForSize);
/// This optimization identifies DIV instructions that can be
/// profitably bypassed and carried out with a shorter, faster divide.
@@ -727,9 +729,9 @@ bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) {
// It's not safe to eliminate the sign / zero extension of the return value.
// See llvm::isInTailCallPosition().
const Function *F = BB->getParent();
- Attributes CallerRetAttr = F->getAttributes().getRetAttributes();
- if (CallerRetAttr.hasAttribute(Attributes::ZExt) ||
- CallerRetAttr.hasAttribute(Attributes::SExt))
+ Attribute CallerRetAttr = F->getAttributes().getRetAttributes();
+ if (CallerRetAttr.hasAttribute(Attribute::ZExt) ||
+ CallerRetAttr.hasAttribute(Attribute::SExt))
return false;
// Make sure there are no instructions between the PHI and return, or that the
@@ -786,11 +788,11 @@ bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) {
// Conservatively require the attributes of the call to match those of the
// return. Ignore noalias because it doesn't affect the call sequence.
- Attributes CalleeRetAttr = CS.getAttributes().getRetAttributes();
+ Attribute CalleeRetAttr = CS.getAttributes().getRetAttributes();
if (AttrBuilder(CalleeRetAttr).
- removeAttribute(Attributes::NoAlias) !=
+ removeAttribute(Attribute::NoAlias) !=
AttrBuilder(CallerRetAttr).
- removeAttribute(Attributes::NoAlias))
+ removeAttribute(Attribute::NoAlias))
continue;
// Make sure the call instruction is followed by an unconditional branch to
@@ -817,6 +819,629 @@ bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) {
// Memory Optimization
//===----------------------------------------------------------------------===//
+namespace {
+
+/// ExtAddrMode - This is an extended version of TargetLowering::AddrMode
+/// which holds actual Value*'s for register values.
+struct ExtAddrMode : public TargetLowering::AddrMode {
+ Value *BaseReg;
+ Value *ScaledReg;
+ ExtAddrMode() : BaseReg(0), ScaledReg(0) {}
+ void print(raw_ostream &OS) const;
+ void dump() const;
+
+ bool operator==(const ExtAddrMode& O) const {
+ return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) &&
+ (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) &&
+ (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale);
+ }
+};
+
+static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
+ AM.print(OS);
+ return OS;
+}
+
+void ExtAddrMode::print(raw_ostream &OS) const {
+ bool NeedPlus = false;
+ OS << "[";
+ if (BaseGV) {
+ OS << (NeedPlus ? " + " : "")
+ << "GV:";
+ WriteAsOperand(OS, BaseGV, /*PrintType=*/false);
+ NeedPlus = true;
+ }
+
+ if (BaseOffs)
+ OS << (NeedPlus ? " + " : "") << BaseOffs, NeedPlus = true;
+
+ if (BaseReg) {
+ OS << (NeedPlus ? " + " : "")
+ << "Base:";
+ WriteAsOperand(OS, BaseReg, /*PrintType=*/false);
+ NeedPlus = true;
+ }
+ if (Scale) {
+ OS << (NeedPlus ? " + " : "")
+ << Scale << "*";
+ WriteAsOperand(OS, ScaledReg, /*PrintType=*/false);
+ NeedPlus = true;
+ }
+
+ OS << ']';
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+void ExtAddrMode::dump() const {
+ print(dbgs());
+ dbgs() << '\n';
+}
+#endif
+
+
+/// \brief A helper class for matching addressing modes.
+///
+/// This encapsulates the logic for matching the target-legal addressing modes.
+class AddressingModeMatcher {
+ SmallVectorImpl<Instruction*> &AddrModeInsts;
+ const TargetLowering &TLI;
+
+ /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
+ /// the memory instruction that we're computing this address for.
+ Type *AccessTy;
+ Instruction *MemoryInst;
+
+ /// AddrMode - This is the addressing mode that we're building up. This is
+ /// part of the return value of this addressing mode matching stuff.
+ ExtAddrMode &AddrMode;
+
+ /// IgnoreProfitability - This is set to true when we should not do
+ /// profitability checks. When true, IsProfitableToFoldIntoAddressingMode
+ /// always returns true.
+ bool IgnoreProfitability;
+
+ AddressingModeMatcher(SmallVectorImpl<Instruction*> &AMI,
+ const TargetLowering &T, Type *AT,
+ Instruction *MI, ExtAddrMode &AM)
+ : AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM) {
+ IgnoreProfitability = false;
+ }
+public:
+
+ /// Match - Find the maximal addressing mode that a load/store of V can fold,
+ /// give an access type of AccessTy. This returns a list of involved
+ /// instructions in AddrModeInsts.
+ static ExtAddrMode Match(Value *V, Type *AccessTy,
+ Instruction *MemoryInst,
+ SmallVectorImpl<Instruction*> &AddrModeInsts,
+ const TargetLowering &TLI) {
+ ExtAddrMode Result;
+
+ bool Success =
+ AddressingModeMatcher(AddrModeInsts, TLI, AccessTy,
+ MemoryInst, Result).MatchAddr(V, 0);
+ (void)Success; assert(Success && "Couldn't select *anything*?");
+ return Result;
+ }
+private:
+ bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
+ bool MatchAddr(Value *V, unsigned Depth);
+ bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth);
+ bool IsProfitableToFoldIntoAddressingMode(Instruction *I,
+ ExtAddrMode &AMBefore,
+ ExtAddrMode &AMAfter);
+ bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
+};
+
+/// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.
+/// Return true and update AddrMode if this addr mode is legal for the target,
+/// false if not.
+bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
+ unsigned Depth) {
+ // If Scale is 1, then this is the same as adding ScaleReg to the addressing
+ // mode. Just process that directly.
+ if (Scale == 1)
+ return MatchAddr(ScaleReg, Depth);
+
+ // If the scale is 0, it takes nothing to add this.
+ if (Scale == 0)
+ return true;
+
+ // If we already have a scale of this value, we can add to it, otherwise, we
+ // need an available scale field.
+ if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
+ return false;
+
+ ExtAddrMode TestAddrMode = AddrMode;
+
+ // Add scale to turn X*4+X*3 -> X*7. This could also do things like
+ // [A+B + A*7] -> [B+A*8].
+ TestAddrMode.Scale += Scale;
+ TestAddrMode.ScaledReg = ScaleReg;
+
+ // If the new address isn't legal, bail out.
+ if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy))
+ return false;
+
+ // It was legal, so commit it.
+ AddrMode = TestAddrMode;
+
+ // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
+ // to see if ScaleReg is actually X+C. If so, we can turn this into adding
+ // X*Scale + C*Scale to addr mode.
+ ConstantInt *CI = 0; Value *AddLHS = 0;
+ if (isa<Instruction>(ScaleReg) && // not a constant expr.
+ match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
+ TestAddrMode.ScaledReg = AddLHS;
+ TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
+
+ // If this addressing mode is legal, commit it and remember that we folded
+ // this instruction.
+ if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) {
+ AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
+ AddrMode = TestAddrMode;
+ return true;
+ }
+ }
+
+ // Otherwise, not (x+c)*scale, just return what we have.
+ return true;
+}
+
+/// MightBeFoldableInst - This is a little filter, which returns true if an
+/// addressing computation involving I might be folded into a load/store
+/// accessing it. This doesn't need to be perfect, but needs to accept at least
+/// the set of instructions that MatchOperationAddr can.
+static bool MightBeFoldableInst(Instruction *I) {
+ switch (I->getOpcode()) {
+ case Instruction::BitCast:
+ // Don't touch identity bitcasts.
+ if (I->getType() == I->getOperand(0)->getType())
+ return false;
+ return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
+ case Instruction::PtrToInt:
+ // PtrToInt is always a noop, as we know that the int type is pointer sized.
+ return true;
+ case Instruction::IntToPtr:
+ // We know the input is intptr_t, so this is foldable.
+ return true;
+ case Instruction::Add:
+ return true;
+ case Instruction::Mul:
+ case Instruction::Shl:
+ // Can only handle X*C and X << C.
+ return isa<ConstantInt>(I->getOperand(1));
+ case Instruction::GetElementPtr:
+ return true;
+ default:
+ return false;
+ }
+}
+
+/// MatchOperationAddr - Given an instruction or constant expr, see if we can
+/// fold the operation into the addressing mode. If so, update the addressing
+/// mode and return true, otherwise return false without modifying AddrMode.
+bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
+ unsigned Depth) {
+ // Avoid exponential behavior on extremely deep expression trees.
+ if (Depth >= 5) return false;
+
+ switch (Opcode) {
+ case Instruction::PtrToInt:
+ // PtrToInt is always a noop, as we know that the int type is pointer sized.
+ return MatchAddr(AddrInst->getOperand(0), Depth);
+ case Instruction::IntToPtr:
+ // This inttoptr is a no-op if the integer type is pointer sized.
+ if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
+ TLI.getPointerTy())
+ return MatchAddr(AddrInst->getOperand(0), Depth);
+ return false;
+ case Instruction::BitCast:
+ // BitCast is always a noop, and we can handle it as long as it is
+ // int->int or pointer->pointer (we don't want int<->fp or something).
+ if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
+ AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
+ // Don't touch identity bitcasts. These were probably put here by LSR,
+ // and we don't want to mess around with them. Assume it knows what it
+ // is doing.
+ AddrInst->getOperand(0)->getType() != AddrInst->getType())
+ return MatchAddr(AddrInst->getOperand(0), Depth);
+ return false;
+ case Instruction::Add: {
+ // Check to see if we can merge in the RHS then the LHS. If so, we win.
+ ExtAddrMode BackupAddrMode = AddrMode;
+ unsigned OldSize = AddrModeInsts.size();
+ if (MatchAddr(AddrInst->getOperand(1), Depth+1) &&
+ MatchAddr(AddrInst->getOperand(0), Depth+1))
+ return true;
+
+ // Restore the old addr mode info.
+ AddrMode = BackupAddrMode;
+ AddrModeInsts.resize(OldSize);
+
+ // Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
+ if (MatchAddr(AddrInst->getOperand(0), Depth+1) &&
+ MatchAddr(AddrInst->getOperand(1), Depth+1))
+ return true;
+
+ // Otherwise we definitely can't merge the ADD in.
+ AddrMode = BackupAddrMode;
+ AddrModeInsts.resize(OldSize);
+ break;
+ }
+ //case Instruction::Or:
+ // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
+ //break;
+ case Instruction::Mul:
+ case Instruction::Shl: {
+ // Can only handle X*C and X << C.
+ ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
+ if (!RHS) return false;
+ int64_t Scale = RHS->getSExtValue();
+ if (Opcode == Instruction::Shl)
+ Scale = 1LL << Scale;
+
+ return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
+ }
+ case Instruction::GetElementPtr: {
+ // Scan the GEP. We check it if it contains constant offsets and at most
+ // one variable offset.
+ int VariableOperand = -1;
+ unsigned VariableScale = 0;
+
+ int64_t ConstantOffset = 0;
+ const DataLayout *TD = TLI.getDataLayout();
+ gep_type_iterator GTI = gep_type_begin(AddrInst);
+ for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
+ if (StructType *STy = dyn_cast<StructType>(*GTI)) {
+ const StructLayout *SL = TD->getStructLayout(STy);
+ unsigned Idx =
+ cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
+ ConstantOffset += SL->getElementOffset(Idx);
+ } else {
+ uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType());
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
+ ConstantOffset += CI->getSExtValue()*TypeSize;
+ } else if (TypeSize) { // Scales of zero don't do anything.
+ // We only allow one variable index at the moment.
+ if (VariableOperand != -1)
+ return false;
+
+ // Remember the variable index.
+ VariableOperand = i;
+ VariableScale = TypeSize;
+ }
+ }
+ }
+
+ // A common case is for the GEP to only do a constant offset. In this case,
+ // just add it to the disp field and check validity.
+ if (VariableOperand == -1) {
+ AddrMode.BaseOffs += ConstantOffset;
+ if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
+ // Check to see if we can fold the base pointer in too.
+ if (MatchAddr(AddrInst->getOperand(0), Depth+1))
+ return true;
+ }
+ AddrMode.BaseOffs -= ConstantOffset;
+ return false;
+ }
+
+ // Save the valid addressing mode in case we can't match.
+ ExtAddrMode BackupAddrMode = AddrMode;
+ unsigned OldSize = AddrModeInsts.size();
+
+ // See if the scale and offset amount is valid for this target.
+ AddrMode.BaseOffs += ConstantOffset;
+
+ // Match the base operand of the GEP.
+ if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) {
+ // If it couldn't be matched, just stuff the value in a register.
+ if (AddrMode.HasBaseReg) {
+ AddrMode = BackupAddrMode;
+ AddrModeInsts.resize(OldSize);
+ return false;
+ }
+ AddrMode.HasBaseReg = true;
+ AddrMode.BaseReg = AddrInst->getOperand(0);
+ }
+
+ // Match the remaining variable portion of the GEP.
+ if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
+ Depth)) {
+ // If it couldn't be matched, try stuffing the base into a register
+ // instead of matching it, and retrying the match of the scale.
+ AddrMode = BackupAddrMode;
+ AddrModeInsts.resize(OldSize);
+ if (AddrMode.HasBaseReg)
+ return false;
+ AddrMode.HasBaseReg = true;
+ AddrMode.BaseReg = AddrInst->getOperand(0);
+ AddrMode.BaseOffs += ConstantOffset;
+ if (!MatchScaledValue(AddrInst->getOperand(VariableOperand),
+ VariableScale, Depth)) {
+ // If even that didn't work, bail.
+ AddrMode = BackupAddrMode;
+ AddrModeInsts.resize(OldSize);
+ return false;
+ }
+ }
+
+ return true;
+ }
+ }
+ return false;
+}
+
+/// MatchAddr - If we can, try to add the value of 'Addr' into the current
+/// addressing mode. If Addr can't be added to AddrMode this returns false and
+/// leaves AddrMode unmodified. This assumes that Addr is either a pointer type
+/// or intptr_t for the target.
+///
+bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
+ // Fold in immediates if legal for the target.
+ AddrMode.BaseOffs += CI->getSExtValue();
+ if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
+ return true;
+ AddrMode.BaseOffs -= CI->getSExtValue();
+ } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
+ // If this is a global variable, try to fold it into the addressing mode.
+ if (AddrMode.BaseGV == 0) {
+ AddrMode.BaseGV = GV;
+ if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
+ return true;
+ AddrMode.BaseGV = 0;
+ }
+ } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
+ ExtAddrMode BackupAddrMode = AddrMode;
+ unsigned OldSize = AddrModeInsts.size();
+
+ // Check to see if it is possible to fold this operation.
+ if (MatchOperationAddr(I, I->getOpcode(), Depth)) {
+ // Okay, it's possible to fold this. Check to see if it is actually
+ // *profitable* to do so. We use a simple cost model to avoid increasing
+ // register pressure too much.
+ if (I->hasOneUse() ||
+ IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
+ AddrModeInsts.push_back(I);
+ return true;
+ }
+
+ // It isn't profitable to do this, roll back.
+ //cerr << "NOT FOLDING: " << *I;
+ AddrMode = BackupAddrMode;
+ AddrModeInsts.resize(OldSize);
+ }
+ } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
+ if (MatchOperationAddr(CE, CE->getOpcode(), Depth))
+ return true;
+ } else if (isa<ConstantPointerNull>(Addr)) {
+ // Null pointer gets folded without affecting the addressing mode.
+ return true;
+ }
+
+ // Worse case, the target should support [reg] addressing modes. :)
+ if (!AddrMode.HasBaseReg) {
+ AddrMode.HasBaseReg = true;
+ AddrMode.BaseReg = Addr;
+ // Still check for legality in case the target supports [imm] but not [i+r].
+ if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
+ return true;
+ AddrMode.HasBaseReg = false;
+ AddrMode.BaseReg = 0;
+ }
+
+ // If the base register is already taken, see if we can do [r+r].
+ if (AddrMode.Scale == 0) {
+ AddrMode.Scale = 1;
+ AddrMode.ScaledReg = Addr;
+ if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
+ return true;
+ AddrMode.Scale = 0;
+ AddrMode.ScaledReg = 0;
+ }
+ // Couldn't match.
+ return false;
+}
+
+/// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified
+/// inline asm call are due to memory operands. If so, return true, otherwise
+/// return false.
+static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
+ const TargetLowering &TLI) {
+ TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI));
+ for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
+ TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
+
+ // Compute the constraint code and ConstraintType to use.
+ TLI.ComputeConstraintToUse(OpInfo, SDValue());
+
+ // If this asm operand is our Value*, and if it isn't an indirect memory
+ // operand, we can't fold it!
+ if (OpInfo.CallOperandVal == OpVal &&
+ (OpInfo.ConstraintType != TargetLowering::C_Memory ||
+ !OpInfo.isIndirect))
+ return false;
+ }
+
+ return true;
+}
+
+/// FindAllMemoryUses - Recursively walk all the uses of I until we find a
+/// memory use. If we find an obviously non-foldable instruction, return true.
+/// Add the ultimately found memory instructions to MemoryUses.
+static bool FindAllMemoryUses(Instruction *I,
+ SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses,
+ SmallPtrSet<Instruction*, 16> &ConsideredInsts,
+ const TargetLowering &TLI) {
+ // If we already considered this instruction, we're done.
+ if (!ConsideredInsts.insert(I))
+ return false;
+
+ // If this is an obviously unfoldable instruction, bail out.
+ if (!MightBeFoldableInst(I))
+ return true;
+
+ // Loop over all the uses, recursively processing them.
+ for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
+ UI != E; ++UI) {
+ User *U = *UI;
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
+ MemoryUses.push_back(std::make_pair(LI, UI.getOperandNo()));
+ continue;
+ }
+
+ if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
+ unsigned opNo = UI.getOperandNo();
+ if (opNo == 0) return true; // Storing addr, not into addr.
+ MemoryUses.push_back(std::make_pair(SI, opNo));
+ continue;
+ }
+
+ if (CallInst *CI = dyn_cast<CallInst>(U)) {
+ InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
+ if (!IA) return true;
+
+ // If this is a memory operand, we're cool, otherwise bail out.
+ if (!IsOperandAMemoryOperand(CI, IA, I, TLI))
+ return true;
+ continue;
+ }
+
+ if (FindAllMemoryUses(cast<Instruction>(U), MemoryUses, ConsideredInsts,
+ TLI))
+ return true;
+ }
+
+ return false;
+}
+
+/// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at
+/// the use site that we're folding it into. If so, there is no cost to
+/// include it in the addressing mode. KnownLive1 and KnownLive2 are two values
+/// that we know are live at the instruction already.
+bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
+ Value *KnownLive2) {
+ // If Val is either of the known-live values, we know it is live!
+ if (Val == 0 || Val == KnownLive1 || Val == KnownLive2)
+ return true;
+
+ // All values other than instructions and arguments (e.g. constants) are live.
+ if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
+
+ // If Val is a constant sized alloca in the entry block, it is live, this is
+ // true because it is just a reference to the stack/frame pointer, which is
+ // live for the whole function.
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
+ if (AI->isStaticAlloca())
+ return true;
+
+ // Check to see if this value is already used in the memory instruction's
+ // block. If so, it's already live into the block at the very least, so we
+ // can reasonably fold it.
+ return Val->isUsedInBasicBlock(MemoryInst->getParent());
+}
+
+/// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing
+/// mode of the machine to fold the specified instruction into a load or store
+/// that ultimately uses it. However, the specified instruction has multiple
+/// uses. Given this, it may actually increase register pressure to fold it
+/// into the load. For example, consider this code:
+///
+/// X = ...
+/// Y = X+1
+/// use(Y) -> nonload/store
+/// Z = Y+1
+/// load Z
+///
+/// In this case, Y has multiple uses, and can be folded into the load of Z
+/// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
+/// be live at the use(Y) line. If we don't fold Y into load Z, we use one
+/// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
+/// number of computations either.
+///
+/// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
+/// X was live across 'load Z' for other reasons, we actually *would* want to
+/// fold the addressing mode in the Z case. This would make Y die earlier.
+bool AddressingModeMatcher::
+IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
+ ExtAddrMode &AMAfter) {
+ if (IgnoreProfitability) return true;
+
+ // AMBefore is the addressing mode before this instruction was folded into it,
+ // and AMAfter is the addressing mode after the instruction was folded. Get
+ // the set of registers referenced by AMAfter and subtract out those
+ // referenced by AMBefore: this is the set of values which folding in this
+ // address extends the lifetime of.
+ //
+ // Note that there are only two potential values being referenced here,
+ // BaseReg and ScaleReg (global addresses are always available, as are any
+ // folded immediates).
+ Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
+
+ // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
+ // lifetime wasn't extended by adding this instruction.
+ if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
+ BaseReg = 0;
+ if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
+ ScaledReg = 0;
+
+ // If folding this instruction (and it's subexprs) didn't extend any live
+ // ranges, we're ok with it.
+ if (BaseReg == 0 && ScaledReg == 0)
+ return true;
+
+ // If all uses of this instruction are ultimately load/store/inlineasm's,
+ // check to see if their addressing modes will include this instruction. If
+ // so, we can fold it into all uses, so it doesn't matter if it has multiple
+ // uses.
+ SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
+ SmallPtrSet<Instruction*, 16> ConsideredInsts;
+ if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI))
+ return false; // Has a non-memory, non-foldable use!
+
+ // Now that we know that all uses of this instruction are part of a chain of
+ // computation involving only operations that could theoretically be folded
+ // into a memory use, loop over each of these uses and see if they could
+ // *actually* fold the instruction.
+ SmallVector<Instruction*, 32> MatchedAddrModeInsts;
+ for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
+ Instruction *User = MemoryUses[i].first;
+ unsigned OpNo = MemoryUses[i].second;
+
+ // Get the access type of this use. If the use isn't a pointer, we don't
+ // know what it accesses.
+ Value *Address = User->getOperand(OpNo);
+ if (!Address->getType()->isPointerTy())
+ return false;
+ Type *AddressAccessTy =
+ cast<PointerType>(Address->getType())->getElementType();
+
+ // Do a match against the root of this address, ignoring profitability. This
+ // will tell us if the addressing mode for the memory operation will
+ // *actually* cover the shared instruction.
+ ExtAddrMode Result;
+ AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy,
+ MemoryInst, Result);
+ Matcher.IgnoreProfitability = true;
+ bool Success = Matcher.MatchAddr(Address, 0);
+ (void)Success; assert(Success && "Couldn't select *anything*?");
+
+ // If the match didn't cover I, then it won't be shared by it.
+ if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
+ I) == MatchedAddrModeInsts.end())
+ return false;
+
+ MatchedAddrModeInsts.clear();
+ }
+
+ return true;
+}
+
+} // end anonymous namespace
+
/// IsNonLocalValue - Return true if the specified values are defined in a
/// different basic block than BB.
static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
diff --git a/lib/Transforms/Scalar/ConstantProp.cpp b/lib/Transforms/Scalar/ConstantProp.cpp
index 27efde53cd..d5a96eceb9 100644
--- a/lib/Transforms/Scalar/ConstantProp.cpp
+++ b/lib/Transforms/Scalar/ConstantProp.cpp
@@ -22,9 +22,9 @@
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/Constant.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Instruction.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instruction.h"
#include "llvm/Pass.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/Target/TargetLibraryInfo.h"
diff --git a/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp b/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp
index b5a2a25ba0..4c3631b270 100644
--- a/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp
+++ b/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp
@@ -16,9 +16,9 @@
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LazyValueInfo.h"
-#include "llvm/Constants.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
#include "llvm/Transforms/Utils/Local.h"
diff --git a/lib/Transforms/Scalar/DCE.cpp b/lib/Transforms/Scalar/DCE.cpp
index f260331c6d..e8a090af40 100644
--- a/lib/Transforms/Scalar/DCE.cpp
+++ b/lib/Transforms/Scalar/DCE.cpp
@@ -19,7 +19,7 @@
#define DEBUG_TYPE "dce"
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/Instruction.h"
+#include "llvm/IR/Instruction.h"
#include "llvm/Pass.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/Target/TargetLibraryInfo.h"
diff --git a/lib/Transforms/Scalar/DeadStoreElimination.cpp b/lib/Transforms/Scalar/DeadStoreElimination.cpp
index 124892887c..fe3acbf62a 100644
--- a/lib/Transforms/Scalar/DeadStoreElimination.cpp
+++ b/lib/Transforms/Scalar/DeadStoreElimination.cpp
@@ -26,12 +26,12 @@
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Constants.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Function.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetLibraryInfo.h"
diff --git a/lib/Transforms/Scalar/EarlyCSE.cpp b/lib/Transforms/Scalar/EarlyCSE.cpp
index 6b622c73f0..3c08634bfe 100644
--- a/lib/Transforms/Scalar/EarlyCSE.cpp
+++ b/lib/Transforms/Scalar/EarlyCSE.cpp
@@ -19,8 +19,8 @@
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Instructions.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/RecyclingAllocator.h"
diff --git a/lib/Transforms/Scalar/GVN.cpp b/lib/Transforms/Scalar/GVN.cpp
index 1c540b240c..14201b97b2 100644
--- a/lib/Transforms/Scalar/GVN.cpp
+++ b/lib/Transforms/Scalar/GVN.cpp
@@ -32,12 +32,12 @@
#include "llvm/Analysis/PHITransAddr.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Assembly/Writer.h"
-#include "llvm/DataLayout.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Metadata.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
diff --git a/lib/Transforms/Scalar/GlobalMerge.cpp b/lib/Transforms/Scalar/GlobalMerge.cpp
index 486a349c55..1601a8d646 100644
--- a/lib/Transforms/Scalar/GlobalMerge.cpp
+++ b/lib/Transforms/Scalar/GlobalMerge.cpp
@@ -54,15 +54,15 @@
#define DEBUG_TYPE "global-merge"
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/Attributes.h"
-#include "llvm/Constants.h"
-#include "llvm/DataLayout.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/Instructions.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/Module.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
@@ -76,7 +76,7 @@ namespace {
const TargetLowering *TLI;
bool doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
- Module &M, bool isConst) const;
+ Module &M, bool isConst, unsigned AddrSpace) const;
public:
static char ID; // Pass identification, replacement for typeid.
@@ -118,7 +118,7 @@ INITIALIZE_PASS(GlobalMerge, "global-merge",
bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
- Module &M, bool isConst) const {
+ Module &M, bool isConst, unsigned AddrSpace) const {
const DataLayout *TD = TLI->getDataLayout();
// FIXME: Infer the maximum possible offset depending on the actual users
@@ -150,7 +150,9 @@ bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
Constant *MergedInit = ConstantStruct::get(MergedTy, Inits);
GlobalVariable *MergedGV = new GlobalVariable(M, MergedTy, isConst,
GlobalValue::InternalLinkage,
- MergedInit, "_MergedGlobals");
+ MergedInit, "_MergedGlobals",
+ 0, GlobalVariable::NotThreadLocal,
+ AddrSpace);
for (size_t k = i; k < j; ++k) {
Constant *Idx[2] = {
ConstantInt::get(Int32Ty, 0),
@@ -169,7 +171,8 @@ bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
bool GlobalMerge::doInitialization(Module &M) {
- SmallVector<GlobalVariable*, 16> Globals, ConstGlobals, BSSGlobals;
+ DenseMap<unsigned, SmallVector<GlobalVariable*, 16> > Globals, ConstGlobals,
+ BSSGlobals;
const DataLayout *TD = TLI->getDataLayout();
unsigned MaxOffset = TLI->getMaximalGlobalOffset();
bool Changed = false;
@@ -181,6 +184,11 @@ bool GlobalMerge::doInitialization(Module &M) {
if (!I->hasLocalLinkage() || I->isThreadLocal() || I->hasSection())
continue;
+ PointerType *PT = dyn_cast<PointerType>(I->getType());
+ assert(PT && "Global variable is not a pointer!");
+
+ unsigned AddressSpace = PT->getAddressSpace();
+
// Ignore fancy-aligned globals for now.
unsigned Alignment = TD->getPreferredAlignment(I);
Type *Ty = I->getType()->getElementType();
@@ -195,18 +203,23 @@ bool GlobalMerge::doInitialization(Module &M) {
if (TD->getTypeAllocSize(Ty) < MaxOffset) {
if (TargetLoweringObjectFile::getKindForGlobal(I, TLI->getTargetMachine())
.isBSSLocal())
- BSSGlobals.push_back(I);
+ BSSGlobals[AddressSpace].push_back(I);
else if (I->isConstant())
- ConstGlobals.push_back(I);
+ ConstGlobals[AddressSpace].push_back(I);
else
- Globals.push_back(I);
+ Globals[AddressSpace].push_back(I);
}
}
- if (Globals.size() > 1)
- Changed |= doMerge(Globals, M, false);
- if (BSSGlobals.size() > 1)
- Changed |= doMerge(BSSGlobals, M, false);
+ for (DenseMap<unsigned, SmallVector<GlobalVariable*, 16> >::iterator
+ I = Globals.begin(), E = Globals.end(); I != E; ++I)
+ if (I->second.size() > 1)
+ Changed |= doMerge(I->second, M, false, I->first);
+
+ for (DenseMap<unsigned, SmallVector<GlobalVariable*, 16> >::iterator
+ I = BSSGlobals.begin(), E = BSSGlobals.end(); I != E; ++I)
+ if (I->second.size() > 1)
+ Changed |= doMerge(I->second, M, false, I->first);
// FIXME: This currently breaks the EH processing due to way how the
// typeinfo detection works. We might want to detect the TIs and ignore
diff --git a/lib/Transforms/Scalar/IndVarSimplify.cpp b/lib/Transforms/Scalar/IndVarSimplify.cpp
index 29f5a10e09..97fff7e782 100644
--- a/lib/Transforms/Scalar/IndVarSimplify.cpp
+++ b/lib/Transforms/Scalar/IndVarSimplify.cpp
@@ -33,12 +33,13 @@
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
-#include "llvm/BasicBlock.h"
-#include "llvm/Constants.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Type.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
@@ -47,7 +48,6 @@
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SimplifyIndVar.h"
-#include "llvm/Type.h"
using namespace llvm;
STATISTIC(NumWidened , "Number of indvars widened");
diff --git a/lib/Transforms/Scalar/JumpThreading.cpp b/lib/Transforms/Scalar/JumpThreading.cpp
index 4a4cd705e2..b61c5ba56e 100644
--- a/lib/Transforms/Scalar/JumpThreading.cpp
+++ b/lib/Transforms/Scalar/JumpThreading.cpp
@@ -23,9 +23,9 @@
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LazyValueInfo.h"
#include "llvm/Analysis/Loads.h"
-#include "llvm/DataLayout.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
@@ -249,7 +249,11 @@ static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB,
// as having cost of 2 total, and if they are a vector intrinsic, we model
// them as having cost 1.
if (const CallInst *CI = dyn_cast<CallInst>(I)) {
- if (!isa<IntrinsicInst>(CI))
+ if (CI->hasFnAttr(Attribute::NoDuplicate))
+ // Blocks with NoDuplicate are modelled as having infinite cost, so they
+ // are never duplicated.
+ return ~0U;
+ else if (!isa<IntrinsicInst>(CI))
Size += 3;
else if (!CI->getType()->isVectorTy())
Size += 1;
diff --git a/lib/Transforms/Scalar/LICM.cpp b/lib/Transforms/Scalar/LICM.cpp
index 7ef1d34d3f..f94cd2a073 100644
--- a/lib/Transforms/Scalar/LICM.cpp
+++ b/lib/Transforms/Scalar/LICM.cpp
@@ -40,12 +40,13 @@
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Constants.h"
-#include "llvm/DataLayout.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
@@ -439,13 +440,12 @@ bool LICM::canSinkOrHoistInst(Instruction &I) {
}
// Only these instructions are hoistable/sinkable.
- bool HoistableKind = (isa<BinaryOperator>(I) || isa<CastInst>(I) ||
- isa<SelectInst>(I) || isa<GetElementPtrInst>(I) ||
- isa<CmpInst>(I) || isa<InsertElementInst>(I) ||
- isa<ExtractElementInst>(I) ||
- isa<ShuffleVectorInst>(I));
- if (!HoistableKind)
- return false;
+ if (!isa<BinaryOperator>(I) && !isa<CastInst>(I) && !isa<SelectInst>(I) &&
+ !isa<GetElementPtrInst>(I) && !isa<CmpInst>(I) &&
+ !isa<InsertElementInst>(I) && !isa<ExtractElementInst>(I) &&
+ !isa<ShuffleVectorInst>(I) && !isa<ExtractValueInst>(I) &&
+ !isa<InsertValueInst>(I))
+ return false;
return isSafeToExecuteUnconditionally(I);
}
@@ -665,16 +665,18 @@ namespace {
AliasSetTracker &AST;
DebugLoc DL;
int Alignment;
+ MDNode *TBAATag;
public:
LoopPromoter(Value *SP,
const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
SmallPtrSet<Value*, 4> &PMA,
SmallVectorImpl<BasicBlock*> &LEB,
SmallVectorImpl<Instruction*> &LIP,
- AliasSetTracker &ast, DebugLoc dl, int alignment)
+ AliasSetTracker &ast, DebugLoc dl, int alignment,
+ MDNode *TBAATag)
: LoadAndStorePromoter(Insts, S), SomePtr(SP),
PointerMustAliases(PMA), LoopExitBlocks(LEB), LoopInsertPts(LIP),
- AST(ast), DL(dl), Alignment(alignment) {}
+ AST(ast), DL(dl), Alignment(alignment), TBAATag(TBAATag) {}
virtual bool isInstInList(Instruction *I,
const SmallVectorImpl<Instruction*> &) const {
@@ -698,6 +700,7 @@ namespace {
StoreInst *NewSI = new StoreInst(LiveInValue, SomePtr, InsertPos);
NewSI->setAlignment(Alignment);
NewSI->setDebugLoc(DL);
+ if (TBAATag) NewSI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
}
}
@@ -751,10 +754,11 @@ void LICM::PromoteAliasSet(AliasSet &AS,
// We start with an alignment of one and try to find instructions that allow
// us to prove better alignment.
unsigned Alignment = 1;
+ MDNode *TBAATag = 0;
// Check that all of the pointers in the alias set have the same type. We
// cannot (yet) promote a memory location that is loaded and stored in
- // different sizes.
+ // different sizes. While we are at it, collect alignment and TBAA info.
for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) {
Value *ASIV = ASI->getValue();
PointerMustAliases.insert(ASIV);
@@ -796,8 +800,7 @@ void LICM::PromoteAliasSet(AliasSet &AS,
// instruction will be executed, update the alignment.
// Larger is better, with the exception of 0 being the best alignment.
unsigned InstAlignment = store->getAlignment();
- if ((InstAlignment > Alignment || InstAlignment == 0)
- && (Alignment != 0))
+ if ((InstAlignment > Alignment || InstAlignment == 0) && Alignment != 0)
if (isGuaranteedToExecute(*Use)) {
GuaranteedToExecute = true;
Alignment = InstAlignment;
@@ -809,6 +812,15 @@ void LICM::PromoteAliasSet(AliasSet &AS,
} else
return; // Not a load or store.
+ // Merge the TBAA tags.
+ if (LoopUses.empty()) {
+ // On the first load/store, just take its TBAA tag.
+ TBAATag = Use->getMetadata(LLVMContext::MD_tbaa);
+ } else if (TBAATag) {
+ TBAATag = MDNode::getMostGenericTBAA(TBAATag,
+ Use->getMetadata(LLVMContext::MD_tbaa));
+ }
+
LoopUses.push_back(Use);
}
}
@@ -841,7 +853,7 @@ void LICM::PromoteAliasSet(AliasSet &AS,
SmallVector<PHINode*, 16> NewPHIs;
SSAUpdater SSA(&NewPHIs);
LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
- InsertPts, *CurAST, DL, Alignment);
+ InsertPts, *CurAST, DL, Alignment, TBAATag);
// Set up the preheader to have a definition of the value. It is the live-out
// value from the preheader that uses in the loop will use.
@@ -850,6 +862,7 @@ void LICM::PromoteAliasSet(AliasSet &AS,
Preheader->getTerminator());
PreheaderLoad->setAlignment(Alignment);
PreheaderLoad->setDebugLoc(DL);
+ if (TBAATag) PreheaderLoad->setMetadata(LLVMContext::MD_tbaa, TBAATag);
SSA.AddAvailableValue(Preheader, PreheaderLoad);
// Rewrite all the loads in the loop and remember all the definitions from
diff --git a/lib/Transforms/Scalar/LoopIdiomRecognize.cpp b/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
index 7807e9bb4f..8258719a02 100644
--- a/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
+++ b/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
@@ -48,15 +48,15 @@
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/DataLayout.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Module.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLibraryInfo.h"
-#include "llvm/TargetTransformInfo.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
@@ -135,12 +135,12 @@ namespace {
DominatorTree *DT;
ScalarEvolution *SE;
TargetLibraryInfo *TLI;
- const ScalarTargetTransformInfo *STTI;
+ const TargetTransformInfo *TTI;
public:
static char ID;
explicit LoopIdiomRecognize() : LoopPass(ID) {
initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
- TD = 0; DT = 0; SE = 0; TLI = 0; STTI = 0;
+ TD = 0; DT = 0; SE = 0; TLI = 0; TTI = 0;
}
bool runOnLoop(Loop *L, LPPassManager &LPM);
@@ -177,6 +177,7 @@ namespace {
AU.addPreserved<DominatorTree>();
AU.addRequired<DominatorTree>();
AU.addRequired<TargetLibraryInfo>();
+ AU.addRequired<TargetTransformInfo>();
}
const DataLayout *getDataLayout() {
@@ -195,12 +196,8 @@ namespace {
return TLI ? TLI : (TLI = &getAnalysis<TargetLibraryInfo>());
}
- const ScalarTargetTransformInfo *getScalarTargetTransformInfo() {
- if (!STTI) {
- TargetTransformInfo *TTI = getAnalysisIfAvailable<TargetTransformInfo>();
- if (TTI) STTI = TTI->getScalarTargetTransformInfo();
- }
- return STTI;
+ const TargetTransformInfo *getTargetTransformInfo() {
+ return TTI ? TTI : (TTI = &getAnalysis<TargetTransformInfo>());
}
Loop *getLoop() const { return CurLoop; }
@@ -221,6 +218,7 @@ INITIALIZE_PASS_DEPENDENCY(LCSSA)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
false, false)
@@ -312,8 +310,8 @@ NclPopcountRecognize::NclPopcountRecognize(LoopIdiomRecognize &TheLIR):
}
bool NclPopcountRecognize::preliminaryScreen() {
- const ScalarTargetTransformInfo *STTI = LIR.getScalarTargetTransformInfo();
- if (STTI->getPopcntHwSupport(32) != ScalarTargetTransformInfo::Fast)
+ const TargetTransformInfo *TTI = LIR.getTargetTransformInfo();
+ if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
return false;
// Counting population are usually conducted by few arithmetic instrutions.
@@ -409,7 +407,7 @@ bool NclPopcountRecognize::detectIdiom(Instruction *&CntInst,
// step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
{
- if (DefX2->getOpcode() != Instruction::And)
+ if (!DefX2 || DefX2->getOpcode() != Instruction::And)
return false;
BinaryOperator *SubOneOp;
@@ -631,7 +629,7 @@ CallInst *NclPopcountRecognize::createPopcntIntrinsic(IRBuilderTy &IRBuilder,
/// call, and return true; otherwise, return false.
bool NclPopcountRecognize::recognize() {
- if (!LIR.getScalarTargetTransformInfo())
+ if (!LIR.getTargetTransformInfo())
return false;
LIR.getScalarEvolution();
@@ -669,12 +667,14 @@ bool LoopIdiomRecognize::runOnCountableLoop() {
if (!getDataLayout())
return false;
- getDominatorTree();
+ // set DT
+ (void)getDominatorTree();
LoopInfo &LI = getAnalysis<LoopInfo>();
TLI = &getAnalysis<TargetLibraryInfo>();
- getTargetLibraryInfo();
+ // set TLI
+ (void)getTargetLibraryInfo();
SmallVector<BasicBlock*, 8> ExitBlocks;
CurLoop->getUniqueExitBlocks(ExitBlocks);
diff --git a/lib/Transforms/Scalar/LoopInstSimplify.cpp b/lib/Transforms/Scalar/LoopInstSimplify.cpp
index 10ba22434a..c48808f3cc 100644
--- a/lib/Transforms/Scalar/LoopInstSimplify.cpp
+++ b/lib/Transforms/Scalar/LoopInstSimplify.cpp
@@ -18,8 +18,8 @@
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Instructions.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instructions.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/Local.h"
diff --git a/lib/Transforms/Scalar/LoopRotation.cpp b/lib/Transforms/Scalar/LoopRotation.cpp
index 249baf5164..0ea80f3545 100644
--- a/lib/Transforms/Scalar/LoopRotation.cpp
+++ b/lib/Transforms/Scalar/LoopRotation.cpp
@@ -19,8 +19,8 @@
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Function.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
@@ -274,10 +274,16 @@ bool LoopRotate::rotateLoop(Loop *L) {
if (OrigLatch == 0 || L->isLoopExiting(OrigLatch))
return false;
- // Check size of original header and reject loop if it is very big.
+ // Check size of original header and reject loop if it is very big or we can't
+ // duplicate blocks inside it.
{
CodeMetrics Metrics;
Metrics.analyzeBasicBlock(OrigHeader);
+ if (Metrics.notDuplicatable) {
+ DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non duplicatable"
+ << " instructions: "; L->dump());
+ return false;
+ }
if (Metrics.NumInsts > MAX_HEADER_SIZE)
return false;
}
diff --git a/lib/Transforms/Scalar/LoopStrengthReduce.cpp b/lib/Transforms/Scalar/LoopStrengthReduce.cpp
index d571ba3fe0..87e34473fc 100644
--- a/lib/Transforms/Scalar/LoopStrengthReduce.cpp
+++ b/lib/Transforms/Scalar/LoopStrengthReduce.cpp
@@ -37,8 +37,8 @@
//
// TODO: Handle multiple loops at a time.
//
-// TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
-// instead of a GlobalValue?
+// TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
+// of a GlobalValue?
//
// TODO: When truncation is free, truncate ICmp users' operands to make it a
// smaller encoding (on x86 at least).
@@ -58,21 +58,20 @@
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallBitVector.h"
-#include "llvm/AddressingMode.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/IVUsers.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Assembly/Writer.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetLowering.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
@@ -224,16 +223,24 @@ namespace {
/// computing satisfying a use. It may include broken-out immediates and scaled
/// registers.
struct Formula {
- /// AM - This is used to represent complex addressing, as well as other kinds
- /// of interesting uses.
- AddrMode AM;
+ /// Global base address used for complex addressing.
+ GlobalValue *BaseGV;
+
+ /// Base offset for complex addressing.
+ int64_t BaseOffset;
+
+ /// Whether any complex addressing has a base register.
+ bool HasBaseReg;
+
+ /// The scale of any complex addressing.
+ int64_t Scale;
/// BaseRegs - The list of "base" registers for this use. When this is
- /// non-empty, AM.HasBaseReg should be set to true.
+ /// non-empty,
SmallVector<const SCEV *, 2> BaseRegs;
/// ScaledReg - The 'scaled' register for this use. This should be non-null
- /// when AM.Scale is not zero.
+ /// when Scale is not zero.
const SCEV *ScaledReg;
/// UnfoldedOffset - An additional constant offset which added near the
@@ -241,7 +248,9 @@ struct Formula {
/// live in an add immediate field rather than a register.
int64_t UnfoldedOffset;
- Formula() : ScaledReg(0), UnfoldedOffset(0) {}
+ Formula()
+ : BaseGV(0), BaseOffset(0), HasBaseReg(false), Scale(0), ScaledReg(0),
+ UnfoldedOffset(0) {}
void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
@@ -327,13 +336,13 @@ void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
const SCEV *Sum = SE.getAddExpr(Good);
if (!Sum->isZero())
BaseRegs.push_back(Sum);
- AM.HasBaseReg = true;
+ HasBaseReg = true;
}
if (!Bad.empty()) {
const SCEV *Sum = SE.getAddExpr(Bad);
if (!Sum->isZero())
BaseRegs.push_back(Sum);
- AM.HasBaseReg = true;
+ HasBaseReg = true;
}
}
@@ -349,7 +358,7 @@ unsigned Formula::getNumRegs() const {
Type *Formula::getType() const {
return !BaseRegs.empty() ? BaseRegs.front()->getType() :
ScaledReg ? ScaledReg->getType() :
- AM.BaseGV ? AM.BaseGV->getType() :
+ BaseGV ? BaseGV->getType() :
0;
}
@@ -382,29 +391,29 @@ bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
void Formula::print(raw_ostream &OS) const {
bool First = true;
- if (AM.BaseGV) {
+ if (BaseGV) {
if (!First) OS << " + "; else First = false;
- WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
+ WriteAsOperand(OS, BaseGV, /*PrintType=*/false);
}
- if (AM.BaseOffs != 0) {
+ if (BaseOffset != 0) {
if (!First) OS << " + "; else First = false;
- OS << AM.BaseOffs;
+ OS << BaseOffset;
}
for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
E = BaseRegs.end(); I != E; ++I) {
if (!First) OS << " + "; else First = false;
OS << "reg(" << **I << ')';
}
- if (AM.HasBaseReg && BaseRegs.empty()) {
+ if (HasBaseReg && BaseRegs.empty()) {
if (!First) OS << " + "; else First = false;
OS << "**error: HasBaseReg**";
- } else if (!AM.HasBaseReg && !BaseRegs.empty()) {
+ } else if (!HasBaseReg && !BaseRegs.empty()) {
if (!First) OS << " + "; else First = false;
OS << "**error: !HasBaseReg**";
}
- if (AM.Scale != 0) {
+ if (Scale != 0) {
if (!First) OS << " + "; else First = false;
- OS << AM.Scale << "*reg(";
+ OS << Scale << "*reg(";
if (ScaledReg)
OS << *ScaledReg;
else
@@ -927,8 +936,8 @@ void Cost::RateFormula(const Formula &F,
// Tally up the non-zero immediates.
for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
E = Offsets.end(); I != E; ++I) {
- int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
- if (F.AM.BaseGV)
+ int64_t Offset = (uint64_t)*I + F.BaseOffset;
+ if (F.BaseGV)
ImmCost += 64; // Handle symbolic values conservatively.
// TODO: This should probably be the pointer size.
else if (Offset != 0)
@@ -1270,46 +1279,42 @@ void LSRUse::dump() const {
/// isLegalUse - Test whether the use described by AM is "legal", meaning it can
/// be completely folded into the user instruction at isel time. This includes
/// address-mode folding and special icmp tricks.
-static bool isLegalUse(const AddrMode &AM,
- LSRUse::KindType Kind, Type *AccessTy,
- const TargetLowering *TLI) {
+static bool isLegalUse(const TargetTransformInfo &TTI, LSRUse::KindType Kind,
+ Type *AccessTy, GlobalValue *BaseGV, int64_t BaseOffset,
+ bool HasBaseReg, int64_t Scale) {
switch (Kind) {
case LSRUse::Address:
- // If we have low-level target information, ask the target if it can
- // completely fold this address.
- if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
+ return TTI.isLegalAddressingMode(AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale);
// Otherwise, just guess that reg+reg addressing is legal.
- return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
+ //return ;
case LSRUse::ICmpZero:
// There's not even a target hook for querying whether it would be legal to
// fold a GV into an ICmp.
- if (AM.BaseGV)
+ if (BaseGV)
return false;
// ICmp only has two operands; don't allow more than two non-trivial parts.
- if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
+ if (Scale != 0 && HasBaseReg && BaseOffset != 0)
return false;
// ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
// putting the scaled register in the other operand of the icmp.
- if (AM.Scale != 0 && AM.Scale != -1)
+ if (Scale != 0 && Scale != -1)
return false;
// If we have low-level target information, ask the target if it can fold an
// integer immediate on an icmp.
- if (AM.BaseOffs != 0) {
- if (!TLI)
- return false;
+ if (BaseOffset != 0) {
// We have one of:
- // ICmpZero BaseReg + Offset => ICmp BaseReg, -Offset
- // ICmpZero -1*ScaleReg + Offset => ICmp ScaleReg, Offset
+ // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
+ // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
// Offs is the ICmp immediate.
- int64_t Offs = AM.BaseOffs;
- if (AM.Scale == 0)
- Offs = -(uint64_t)Offs; // The cast does the right thing with INT64_MIN.
- return TLI->isLegalICmpImmediate(Offs);
+ if (Scale == 0)
+ // The cast does the right thing with INT64_MIN.
+ BaseOffset = -(uint64_t)BaseOffset;
+ return TTI.isLegalICmpImmediate(BaseOffset);
}
// ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
@@ -1317,92 +1322,87 @@ static bool isLegalUse(const AddrMode &AM,
case LSRUse::Basic:
// Only handle single-register values.
- return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
+ return !BaseGV && Scale == 0 && BaseOffset == 0;
case LSRUse::Special:
// Special case Basic to handle -1 scales.
- return !AM.BaseGV && (AM.Scale == 0 || AM.Scale == -1) && AM.BaseOffs == 0;
+ return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
}
llvm_unreachable("Invalid LSRUse Kind!");
}
-static bool isLegalUse(AddrMode AM,
- int64_t MinOffset, int64_t MaxOffset,
- LSRUse::KindType Kind, Type *AccessTy,
- const TargetLowering *TLI) {
+static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
+ int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy,
+ GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg,
+ int64_t Scale) {
// Check for overflow.
- if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
+ if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
(MinOffset > 0))
return false;
- AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
- if (isLegalUse(AM, Kind, AccessTy, TLI)) {
- AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
- // Check for overflow.
- if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
- (MaxOffset > 0))
- return false;
- AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
- return isLegalUse(AM, Kind, AccessTy, TLI);
- }
- return false;
+ MinOffset = (uint64_t)BaseOffset + MinOffset;
+ if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
+ (MaxOffset > 0))
+ return false;
+ MaxOffset = (uint64_t)BaseOffset + MaxOffset;
+
+ return isLegalUse(TTI, Kind, AccessTy, BaseGV, MinOffset, HasBaseReg,
+ Scale) &&
+ isLegalUse(TTI, Kind, AccessTy, BaseGV, MaxOffset, HasBaseReg, Scale);
}
-static bool isAlwaysFoldable(int64_t BaseOffs,
- GlobalValue *BaseGV,
- bool HasBaseReg,
+static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
+ int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy,
+ const Formula &F) {
+ return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
+ F.BaseOffset, F.HasBaseReg, F.Scale);
+}
+
+static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
LSRUse::KindType Kind, Type *AccessTy,
- const TargetLowering *TLI) {
+ GlobalValue *BaseGV, int64_t BaseOffset,
+ bool HasBaseReg) {
// Fast-path: zero is always foldable.
- if (BaseOffs == 0 && !BaseGV) return true;
+ if (BaseOffset == 0 && !BaseGV) return true;
// Conservatively, create an address with an immediate and a
// base and a scale.
- AddrMode AM;
- AM.BaseOffs = BaseOffs;
- AM.BaseGV = BaseGV;
- AM.HasBaseReg = HasBaseReg;
- AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
+ int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
// Canonicalize a scale of 1 to a base register if the formula doesn't
// already have a base register.
- if (!AM.HasBaseReg && AM.Scale == 1) {
- AM.Scale = 0;
- AM.HasBaseReg = true;
+ if (!HasBaseReg && Scale == 1) {
+ Scale = 0;
+ HasBaseReg = true;
}
- return isLegalUse(AM, Kind, AccessTy, TLI);
+ return isLegalUse(TTI, Kind, AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale);
}
-static bool isAlwaysFoldable(const SCEV *S,
- int64_t MinOffset, int64_t MaxOffset,
- bool HasBaseReg,
- LSRUse::KindType Kind, Type *AccessTy,
- const TargetLowering *TLI,
- ScalarEvolution &SE) {
+static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
+ ScalarEvolution &SE, int64_t MinOffset,
+ int64_t MaxOffset, LSRUse::KindType Kind,
+ Type *AccessTy, const SCEV *S, bool HasBaseReg) {
// Fast-path: zero is always foldable.
if (S->isZero()) return true;
// Conservatively, create an address with an immediate and a
// base and a scale.
- int64_t BaseOffs = ExtractImmediate(S, SE);
+ int64_t BaseOffset = ExtractImmediate(S, SE);
GlobalValue *BaseGV = ExtractSymbol(S, SE);
// If there's anything else involved, it's not foldable.
if (!S->isZero()) return false;
// Fast-path: zero is always foldable.
- if (BaseOffs == 0 && !BaseGV) return true;
+ if (BaseOffset == 0 && !BaseGV) return true;
// Conservatively, create an address with an immediate and a
// base and a scale.
- AddrMode AM;
- AM.BaseOffs = BaseOffs;
- AM.BaseGV = BaseGV;
- AM.HasBaseReg = HasBaseReg;
- AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
+ int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
- return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
+ return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
+ BaseOffset, HasBaseReg, Scale);
}
namespace {
@@ -1502,7 +1502,7 @@ class LSRInstance {
ScalarEvolution &SE;
DominatorTree &DT;
LoopInfo &LI;
- const TargetLowering *const TLI;
+ const TargetTransformInfo &TTI;
Loop *const L;
bool Changed;
@@ -1638,7 +1638,7 @@ class LSRInstance {
Pass *P);
public:
- LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
+ LSRInstance(Loop *L, Pass *P);
bool getChanged() const { return Changed; }
@@ -1688,12 +1688,9 @@ void LSRInstance::OptimizeShadowIV() {
}
if (!DestTy) continue;
- if (TLI) {
- // If target does not support DestTy natively then do not apply
- // this transformation.
- EVT DVT = TLI->getValueType(DestTy);
- if (!TLI->isTypeLegal(DVT)) continue;
- }
+ // If target does not support DestTy natively then do not apply
+ // this transformation.
+ if (!TTI.isTypeLegal(DestTy)) continue;
PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
if (!PH) continue;
@@ -2015,18 +2012,17 @@ LSRInstance::OptimizeLoopTermCond() {
if (C->getValue().getMinSignedBits() >= 64 ||
C->getValue().isMinSignedValue())
goto decline_post_inc;
- // Without TLI, assume that any stride might be valid, and so any
- // use might be shared.
- if (!TLI)
- goto decline_post_inc;
// Check for possible scaled-address reuse.
Type *AccessTy = getAccessType(UI->getUser());
- AddrMode AM;
- AM.Scale = C->getSExtValue();
- if (TLI->isLegalAddressingMode(AM, AccessTy))
+ int64_t Scale = C->getSExtValue();
+ if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ 0,
+ /*BaseOffset=*/ 0,
+ /*HasBaseReg=*/ false, Scale))
goto decline_post_inc;
- AM.Scale = -AM.Scale;
- if (TLI->isLegalAddressingMode(AM, AccessTy))
+ Scale = -Scale;
+ if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ 0,
+ /*BaseOffset=*/ 0,
+ /*HasBaseReg=*/ false, Scale))
goto decline_post_inc;
}
}
@@ -2096,13 +2092,13 @@ LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
return false;
// Conservatively assume HasBaseReg is true for now.
if (NewOffset < LU.MinOffset) {
- if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg,
- Kind, AccessTy, TLI))
+ if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ 0,
+ LU.MaxOffset - NewOffset, HasBaseReg))
return false;
NewMinOffset = NewOffset;
} else if (NewOffset > LU.MaxOffset) {
- if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg,
- Kind, AccessTy, TLI))
+ if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ 0,
+ NewOffset - LU.MinOffset, HasBaseReg))
return false;
NewMaxOffset = NewOffset;
}
@@ -2131,7 +2127,8 @@ LSRInstance::getUse(const SCEV *&Expr,
int64_t Offset = ExtractImmediate(Expr, SE);
// Basic uses can't accept any offset, for example.
- if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
+ if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ 0,
+ Offset, /*HasBaseReg=*/ true)) {
Expr = Copy;
Offset = 0;
}
@@ -2199,10 +2196,10 @@ LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
// as OrigF.
if (F.BaseRegs == OrigF.BaseRegs &&
F.ScaledReg == OrigF.ScaledReg &&
- F.AM.BaseGV == OrigF.AM.BaseGV &&
- F.AM.Scale == OrigF.AM.Scale &&
+ F.BaseGV == OrigF.BaseGV &&
+ F.Scale == OrigF.Scale &&
F.UnfoldedOffset == OrigF.UnfoldedOffset) {
- if (F.AM.BaseOffs == 0)
+ if (F.BaseOffset == 0)
return &LU;
// This is the formula where all the registers and symbols matched;
// there aren't going to be any others. Since we declined it, we
@@ -2396,7 +2393,7 @@ bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
/// TODO: Consider IVInc free if it's already used in another chains.
static bool
isProfitableChain(IVChain &Chain, SmallPtrSet<Instruction*, 4> &Users,
- ScalarEvolution &SE, const TargetLowering *TLI) {
+ ScalarEvolution &SE, const TargetTransformInfo &TTI) {
if (StressIVChain)
return true;
@@ -2654,7 +2651,7 @@ void LSRInstance::CollectChains() {
for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
UsersIdx < NChains; ++UsersIdx) {
if (!isProfitableChain(IVChainVec[UsersIdx],
- ChainUsersVec[UsersIdx].FarUsers, SE, TLI))
+ ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
continue;
// Preserve the chain at UsesIdx.
if (ChainIdx != UsersIdx)
@@ -2681,7 +2678,7 @@ void LSRInstance::FinalizeChain(IVChain &Chain) {
/// Return true if the IVInc can be folded into an addressing mode.
static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
- Value *Operand, const TargetLowering *TLI) {
+ Value *Operand, const TargetTransformInfo &TTI) {
const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
if (!IncConst || !isAddressUse(UserInst, Operand))
return false;
@@ -2690,8 +2687,9 @@ static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
return false;
int64_t IncOffset = IncConst->getValue()->getSExtValue();
- if (!isAlwaysFoldable(IncOffset, /*BaseGV=*/0, /*HaseBaseReg=*/false,
- LSRUse::Address, getAccessType(UserInst), TLI))
+ if (!isAlwaysFoldable(TTI, LSRUse::Address,
+ getAccessType(UserInst), /*BaseGV=*/ 0,
+ IncOffset, /*HaseBaseReg=*/ false))
return false;
return true;
@@ -2762,7 +2760,7 @@ void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
// If an IV increment can't be folded, use it as the next IV value.
if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand,
- TLI)) {
+ TTI)) {
assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
IVSrc = IVOper;
LeftOverExpr = 0;
@@ -2904,7 +2902,7 @@ LSRInstance::InsertSupplementalFormula(const SCEV *S,
LSRUse &LU, size_t LUIdx) {
Formula F;
F.BaseRegs.push_back(S);
- F.AM.HasBaseReg = true;
+ F.HasBaseReg = true;
bool Inserted = InsertFormula(LU, LUIdx, F);
assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
}
@@ -3106,9 +3104,8 @@ void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
// Don't pull a constant into a register if the constant could be folded
// into an immediate field.
- if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
- Base.getNumRegs() > 1,
- LU.Kind, LU.AccessTy, TLI, SE))
+ if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
+ LU.AccessTy, *J, Base.getNumRegs() > 1))
continue;
// Collect all operands except *J.
@@ -3120,9 +3117,8 @@ void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
// Don't leave just a constant behind in a register if the constant could
// be folded into an immediate field.
if (InnerAddOps.size() == 1 &&
- isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
- Base.getNumRegs() > 1,
- LU.Kind, LU.AccessTy, TLI, SE))
+ isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
+ LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
continue;
const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
@@ -3132,10 +3128,10 @@ void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
// Add the remaining pieces of the add back into the new formula.
const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
- if (TLI && InnerSumSC &&
+ if (InnerSumSC &&
SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
- TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
- InnerSumSC->getValue()->getZExtValue())) {
+ TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
+ InnerSumSC->getValue()->getZExtValue())) {
F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
InnerSumSC->getValue()->getZExtValue();
F.BaseRegs.erase(F.BaseRegs.begin() + i);
@@ -3144,9 +3140,9 @@ void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
// Add J as its own register, or an unfolded immediate.
const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
- if (TLI && SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
- TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
- SC->getValue()->getZExtValue()))
+ if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
+ TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
+ SC->getValue()->getZExtValue()))
F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
SC->getValue()->getZExtValue();
else
@@ -3195,7 +3191,7 @@ void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
Formula Base) {
// We can't add a symbolic offset if the address already contains one.
- if (Base.AM.BaseGV) return;
+ if (Base.BaseGV) return;
for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
const SCEV *G = Base.BaseRegs[i];
@@ -3203,9 +3199,8 @@ void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
if (G->isZero() || !GV)
continue;
Formula F = Base;
- F.AM.BaseGV = GV;
- if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
- LU.Kind, LU.AccessTy, TLI))
+ F.BaseGV = GV;
+ if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
continue;
F.BaseRegs[i] = G;
(void)InsertFormula(LU, LUIdx, F);
@@ -3228,9 +3223,9 @@ void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
E = Worklist.end(); I != E; ++I) {
Formula F = Base;
- F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
- if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
- LU.Kind, LU.AccessTy, TLI)) {
+ F.BaseOffset = (uint64_t)Base.BaseOffset - *I;
+ if (isLegalUse(TTI, LU.MinOffset - *I, LU.MaxOffset - *I, LU.Kind,
+ LU.AccessTy, F)) {
// Add the offset to the base register.
const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G);
// If it cancelled out, drop the base register, otherwise update it.
@@ -3248,9 +3243,8 @@ void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
if (G->isZero() || Imm == 0)
continue;
Formula F = Base;
- F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
- if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
- LU.Kind, LU.AccessTy, TLI))
+ F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
+ if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
continue;
F.BaseRegs[i] = G;
(void)InsertFormula(LU, LUIdx, F);
@@ -3271,7 +3265,7 @@ void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
// Don't do this if there is more than one offset.
if (LU.MinOffset != LU.MaxOffset) return;
- assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
+ assert(!Base.BaseGV && "ICmpZero use is not legal!");
// Check each interesting stride.
for (SmallSetVector<int64_t, 8>::const_iterator
@@ -3279,10 +3273,10 @@ void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
int64_t Factor = *I;
// Check that the multiplication doesn't overflow.
- if (Base.AM.BaseOffs == INT64_MIN && Factor == -1)
+ if (Base.BaseOffset == INT64_MIN && Factor == -1)
continue;
- int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
- if (NewBaseOffs / Factor != Base.AM.BaseOffs)
+ int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
+ if (NewBaseOffset / Factor != Base.BaseOffset)
continue;
// Check that multiplying with the use offset doesn't overflow.
@@ -3294,14 +3288,14 @@ void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
continue;
Formula F = Base;
- F.AM.BaseOffs = NewBaseOffs;
+ F.BaseOffset = NewBaseOffset;
// Check that this scale is legal.
- if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
+ if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
continue;
// Compensate for the use having MinOffset built into it.
- F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
+ F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
const SCEV *FactorS = SE.getConstant(IntTy, Factor);
@@ -3342,23 +3336,23 @@ void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
if (!IntTy) return;
// If this Formula already has a scaled register, we can't add another one.
- if (Base.AM.Scale != 0) return;
+ if (Base.Scale != 0) return;
// Check each interesting stride.
for (SmallSetVector<int64_t, 8>::const_iterator
I = Factors.begin(), E = Factors.end(); I != E; ++I) {
int64_t Factor = *I;
- Base.AM.Scale = Factor;
- Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
+ Base.Scale = Factor;
+ Base.HasBaseReg = Base.BaseRegs.size() > 1;
// Check whether this scale is going to be legal.
- if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
- LU.Kind, LU.AccessTy, TLI)) {
+ if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
+ Base)) {
// As a special-case, handle special out-of-loop Basic users specially.
// TODO: Reconsider this special case.
if (LU.Kind == LSRUse::Basic &&
- isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
- LSRUse::Special, LU.AccessTy, TLI) &&
+ isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
+ LU.AccessTy, Base) &&
LU.AllFixupsOutsideLoop)
LU.Kind = LSRUse::Special;
else
@@ -3367,7 +3361,7 @@ void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
// For an ICmpZero, negating a solitary base register won't lead to
// new solutions.
if (LU.Kind == LSRUse::ICmpZero &&
- !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
+ !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
continue;
// For each addrec base reg, apply the scale, if possible.
for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
@@ -3391,11 +3385,8 @@ void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
/// GenerateTruncates - Generate reuse formulae from different IV types.
void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
- // This requires TargetLowering to tell us which truncates are free.
- if (!TLI) return;
-
// Don't bother truncating symbolic values.
- if (Base.AM.BaseGV) return;
+ if (Base.BaseGV) return;
// Determine the integer type for the base formula.
Type *DstTy = Base.getType();
@@ -3405,7 +3396,7 @@ void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
for (SmallSetVector<Type *, 4>::const_iterator
I = Types.begin(), E = Types.end(); I != E; ++I) {
Type *SrcTy = *I;
- if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
+ if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
Formula F = Base;
if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
@@ -3552,16 +3543,15 @@ void LSRInstance::GenerateCrossUseConstantOffsets() {
const Formula &F = LU.Formulae[L];
// Use the immediate in the scaled register.
if (F.ScaledReg == OrigReg) {
- int64_t Offs = (uint64_t)F.AM.BaseOffs +
- Imm * (uint64_t)F.AM.Scale;
+ int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
// Don't create 50 + reg(-50).
if (F.referencesReg(SE.getSCEV(
- ConstantInt::get(IntTy, -(uint64_t)Offs))))
+ ConstantInt::get(IntTy, -(uint64_t)Offset))))
continue;
Formula NewF = F;
- NewF.AM.BaseOffs = Offs;
- if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
- LU.Kind, LU.AccessTy, TLI))
+ NewF.BaseOffset = Offset;
+ if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
+ NewF))
continue;
NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
@@ -3570,9 +3560,9 @@ void LSRInstance::GenerateCrossUseConstantOffsets() {
// immediate itself, then the formula isn't worthwhile.
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
if (C->getValue()->isNegative() !=
- (NewF.AM.BaseOffs < 0) &&
- (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
- .ule(abs64(NewF.AM.BaseOffs)))
+ (NewF.BaseOffset < 0) &&
+ (C->getValue()->getValue().abs() * APInt(BitWidth, F.Scale))
+ .ule(abs64(NewF.BaseOffset)))
continue;
// OK, looks good.
@@ -3584,11 +3574,10 @@ void LSRInstance::GenerateCrossUseConstantOffsets() {
if (BaseReg != OrigReg)
continue;
Formula NewF = F;
- NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
- if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
- LU.Kind, LU.AccessTy, TLI)) {
- if (!TLI ||
- !TLI->isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
+ NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
+ if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
+ LU.Kind, LU.AccessTy, NewF)) {
+ if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
continue;
NewF = F;
NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
@@ -3602,11 +3591,11 @@ void LSRInstance::GenerateCrossUseConstantOffsets() {
J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
J != JE; ++J)
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
- if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt(
- abs64(NewF.AM.BaseOffs)) &&
+ if ((C->getValue()->getValue() + NewF.BaseOffset).abs().slt(
+ abs64(NewF.BaseOffset)) &&
(C->getValue()->getValue() +
- NewF.AM.BaseOffs).countTrailingZeros() >=
- CountTrailingZeros_64(NewF.AM.BaseOffs))
+ NewF.BaseOffset).countTrailingZeros() >=
+ CountTrailingZeros_64(NewF.BaseOffset))
goto skip_formula;
// Ok, looks good.
@@ -3804,7 +3793,7 @@ void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
Formula NewF = F;
- NewF.AM.BaseOffs += C->getValue()->getSExtValue();
+ NewF.BaseOffset += C->getValue()->getSExtValue();
NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
(I - F.BaseRegs.begin()));
if (LU.HasFormulaWithSameRegs(NewF)) {
@@ -3817,9 +3806,9 @@ void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
}
} else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
- if (!F.AM.BaseGV) {
+ if (!F.BaseGV) {
Formula NewF = F;
- NewF.AM.BaseGV = GV;
+ NewF.BaseGV = GV;
NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
(I - F.BaseRegs.begin()));
if (LU.HasFormulaWithSameRegs(NewF)) {
@@ -3862,9 +3851,9 @@ void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
E = LU.Formulae.end(); I != E; ++I) {
const Formula &F = *I;
- if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) {
+ if (F.BaseOffset != 0 && F.Scale == 0) {
if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) {
- if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs,
+ if (reconcileNewOffset(*LUThatHas, F.BaseOffset,
/*HasBaseReg=*/false,
LU.Kind, LU.AccessTy)) {
DEBUG(dbgs() << " Deleting use "; LU.print(dbgs());
@@ -3878,7 +3867,7 @@ void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
LSRFixup &Fixup = *I;
if (Fixup.LUIdx == LUIdx) {
Fixup.LUIdx = LUThatHas - &Uses.front();
- Fixup.Offset += F.AM.BaseOffs;
+ Fixup.Offset += F.BaseOffset;
// Add the new offset to LUThatHas' offset list.
if (LUThatHas->Offsets.back() != Fixup.Offset) {
LUThatHas->Offsets.push_back(Fixup.Offset);
@@ -3898,9 +3887,8 @@ void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
bool Any = false;
for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
Formula &F = LUThatHas->Formulae[i];
- if (!isLegalUse(F.AM,
- LUThatHas->MinOffset, LUThatHas->MaxOffset,
- LUThatHas->Kind, LUThatHas->AccessTy, TLI)) {
+ if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
+ LUThatHas->Kind, LUThatHas->AccessTy, F)) {
DEBUG(dbgs() << " Deleting "; F.print(dbgs());
dbgs() << '\n');
LUThatHas->DeleteFormula(F);
@@ -4308,7 +4296,7 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
// Expand the ScaledReg portion.
Value *ICmpScaledV = 0;
- if (F.AM.Scale != 0) {
+ if (F.Scale != 0) {
const SCEV *ScaledS = F.ScaledReg;
// If we're expanding for a post-inc user, make the post-inc adjustment.
@@ -4321,7 +4309,7 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
// An interesting way of "folding" with an icmp is to use a negated
// scale, which we'll implement by inserting it into the other operand
// of the icmp.
- assert(F.AM.Scale == -1 &&
+ assert(F.Scale == -1 &&
"The only scale supported by ICmpZero uses is -1!");
ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
} else {
@@ -4336,20 +4324,20 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
}
ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
ScaledS = SE.getMulExpr(ScaledS,
- SE.getConstant(ScaledS->getType(), F.AM.Scale));
+ SE.getConstant(ScaledS->getType(), F.Scale));
Ops.push_back(ScaledS);
}
}
// Expand the GV portion.
- if (F.AM.BaseGV) {
+ if (F.BaseGV) {
// Flush the operand list to suppress SCEVExpander hoisting.
if (!Ops.empty()) {
Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
Ops.clear();
Ops.push_back(SE.getUnknown(FullV));
}
- Ops.push_back(SE.getUnknown(F.AM.BaseGV));
+ Ops.push_back(SE.getUnknown(F.BaseGV));
}
// Flush the operand list to suppress SCEVExpander hoisting of both folded and
@@ -4361,7 +4349,7 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
}
// Expand the immediate portion.
- int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
+ int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
if (Offset != 0) {
if (LU.Kind == LSRUse::ICmpZero) {
// The other interesting way of "folding" with an ICmpZero is to use a
@@ -4402,9 +4390,9 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
if (LU.Kind == LSRUse::ICmpZero) {
ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
DeadInsts.push_back(CI->getOperand(1));
- assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
+ assert(!F.BaseGV && "ICmp does not support folding a global value and "
"a scale at the same time!");
- if (F.AM.Scale == -1) {
+ if (F.Scale == -1) {
if (ICmpScaledV->getType() != OpTy) {
Instruction *Cast =
CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
@@ -4414,7 +4402,7 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
}
CI->setOperand(1, ICmpScaledV);
} else {
- assert(F.AM.Scale == 0 &&
+ assert(F.Scale == 0 &&
"ICmp does not support folding a global value and "
"a scale at the same time!");
Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
@@ -4589,13 +4577,11 @@ LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
}
-LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
- : IU(P->getAnalysis<IVUsers>()),
- SE(P->getAnalysis<ScalarEvolution>()),
- DT(P->getAnalysis<DominatorTree>()),
- LI(P->getAnalysis<LoopInfo>()),
- TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
-
+LSRInstance::LSRInstance(Loop *L, Pass *P)
+ : IU(P->getAnalysis<IVUsers>()), SE(P->getAnalysis<ScalarEvolution>()),
+ DT(P->getAnalysis<DominatorTree>()), LI(P->getAnalysis<LoopInfo>()),
+ TTI(P->getAnalysis<TargetTransformInfo>()), L(L), Changed(false),
+ IVIncInsertPos(0) {
// If LoopSimplify form is not available, stay out of trouble.
if (!L->isLoopSimplifyForm())
return;
@@ -4678,14 +4664,14 @@ LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
#ifndef NDEBUG
// Formulae should be legal.
- for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
- E = Uses.end(); I != E; ++I) {
- const LSRUse &LU = *I;
- for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
- JE = LU.Formulae.end(); J != JE; ++J)
- assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
- LU.Kind, LU.AccessTy, TLI) &&
- "Illegal formula generated!");
+ for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), E = Uses.end();
+ I != E; ++I) {
+ const LSRUse &LU = *I;
+ for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
+ JE = LU.Formulae.end();
+ J != JE; ++J)
+ assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
+ *J) && "Illegal formula generated!");
};
#endif
@@ -4757,13 +4743,9 @@ void LSRInstance::dump() const {
namespace {
class LoopStrengthReduce : public LoopPass {
- /// TLI - Keep a pointer of a TargetLowering to consult for determining
- /// transformation profitability.
- const TargetLowering *const TLI;
-
public:
static char ID; // Pass ID, replacement for typeid
- explicit LoopStrengthReduce(const TargetLowering *tli = 0);
+ LoopStrengthReduce();
private:
bool runOnLoop(Loop *L, LPPassManager &LPM);
@@ -4775,6 +4757,7 @@ private:
char LoopStrengthReduce::ID = 0;
INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
"Loop Strength Reduction", false, false)
+INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(IVUsers)
@@ -4784,14 +4767,13 @@ INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
"Loop Strength Reduction", false, false)
-Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
- return new LoopStrengthReduce(TLI);
+Pass *llvm::createLoopStrengthReducePass() {
+ return new LoopStrengthReduce();
}
-LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
- : LoopPass(ID), TLI(tli) {
- initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
- }
+LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
+ initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
+}
void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
// We split critical edges, so we change the CFG. However, we do update
@@ -4810,24 +4792,27 @@ void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequiredID(LoopSimplifyID);
AU.addRequired<IVUsers>();
AU.addPreserved<IVUsers>();
+ AU.addRequired<TargetTransformInfo>();
}
bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
bool Changed = false;
// Run the main LSR transformation.
- Changed |= LSRInstance(TLI, L, this).getChanged();
+ Changed |= LSRInstance(L, this).getChanged();
// Remove any extra phis created by processing inner loops.
Changed |= DeleteDeadPHIs(L->getHeader());
- if (EnablePhiElim) {
+ if (EnablePhiElim && L->isLoopSimplifyForm()) {
SmallVector<WeakVH, 16> DeadInsts;
SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), "lsr");
#ifndef NDEBUG
Rewriter.setDebugType(DEBUG_TYPE);
#endif
- unsigned numFolded = Rewriter.
- replaceCongruentIVs(L, &getAnalysis<DominatorTree>(), DeadInsts, TLI);
+ unsigned numFolded =
+ Rewriter.replaceCongruentIVs(L, &getAnalysis<DominatorTree>(),
+ DeadInsts,
+ &getAnalysis<TargetTransformInfo>());
if (numFolded) {
Changed = true;
DeleteTriviallyDeadInstructions(DeadInsts);
diff --git a/lib/Transforms/Scalar/LoopUnrollPass.cpp b/lib/Transforms/Scalar/LoopUnrollPass.cpp
index 2b15528411..e0f915b445 100644
--- a/lib/Transforms/Scalar/LoopUnrollPass.cpp
+++ b/lib/Transforms/Scalar/LoopUnrollPass.cpp
@@ -17,8 +17,8 @@
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/DataLayout.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
@@ -113,12 +113,13 @@ Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial) {
/// ApproximateLoopSize - Approximate the size of the loop.
static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
- const DataLayout *TD) {
+ bool &NotDuplicatable, const DataLayout *TD) {
CodeMetrics Metrics;
for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
I != E; ++I)
Metrics.analyzeBasicBlock(*I, TD);
NumCalls = Metrics.NumInlineCandidates;
+ NotDuplicatable = Metrics.notDuplicatable;
unsigned LoopSize = Metrics.NumInsts;
@@ -145,8 +146,9 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
// not user specified.
unsigned Threshold = CurrentThreshold;
if (!UserThreshold &&
- Header->getParent()->getFnAttributes().
- hasAttribute(Attributes::OptimizeForSize))
+ Header->getParent()->getAttributes().
+ hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::OptimizeForSize))
Threshold = OptSizeUnrollThreshold;
// Find trip count and trip multiple if count is not available
@@ -181,8 +183,15 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
if (Threshold != NoThreshold) {
const DataLayout *TD = getAnalysisIfAvailable<DataLayout>();
unsigned NumInlineCandidates;
- unsigned LoopSize = ApproximateLoopSize(L, NumInlineCandidates, TD);
+ bool notDuplicatable;
+ unsigned LoopSize = ApproximateLoopSize(L, NumInlineCandidates,
+ notDuplicatable, TD);
DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n");
+ if (notDuplicatable) {
+ DEBUG(dbgs() << " Not unrolling loop which contains non duplicatable"
+ << " instructions.\n");
+ return false;
+ }
if (NumInlineCandidates != 0) {
DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n");
return false;
diff --git a/lib/Transforms/Scalar/LoopUnswitch.cpp b/lib/Transforms/Scalar/LoopUnswitch.cpp
index d41da4a9a9..68d4423ff9 100644
--- a/lib/Transforms/Scalar/LoopUnswitch.cpp
+++ b/lib/Transforms/Scalar/LoopUnswitch.cpp
@@ -37,10 +37,10 @@
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
@@ -248,6 +248,13 @@ bool LUAnalysisCache::countLoop(const Loop* L) {
Props.SizeEstimation = std::min(Metrics.NumInsts, Metrics.NumBlocks * 5);
Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
+
+ if (Metrics.notDuplicatable) {
+ DEBUG(dbgs() << "NOT unswitching loop %"
+ << L->getHeader()->getName() << ", contents cannot be "
+ << "duplicated!\n");
+ return false;
+ }
}
if (!Props.CanBeUnswitchedCount) {
@@ -639,7 +646,8 @@ bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val) {
// Do not do non-trivial unswitch while optimizing for size.
if (OptimizeForSize ||
- F->getFnAttributes().hasAttribute(Attributes::OptimizeForSize))
+ F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::OptimizeForSize))
return false;
UnswitchNontrivialCondition(LoopCond, Val, currentLoop);
diff --git a/lib/Transforms/Scalar/LowerAtomic.cpp b/lib/Transforms/Scalar/LowerAtomic.cpp
index 7419a6543e..8ced4946c8 100644
--- a/lib/Transforms/Scalar/LowerAtomic.cpp
+++ b/lib/Transforms/Scalar/LowerAtomic.cpp
@@ -14,9 +14,9 @@
#define DEBUG_TYPE "loweratomic"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Pass.h"
using namespace llvm;
diff --git a/lib/Transforms/Scalar/MemCpyOptimizer.cpp b/lib/Transforms/Scalar/MemCpyOptimizer.cpp
index 26b6269f42..be0f0e8a25 100644
--- a/lib/Transforms/Scalar/MemCpyOptimizer.cpp
+++ b/lib/Transforms/Scalar/MemCpyOptimizer.cpp
@@ -20,11 +20,11 @@
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/DataLayout.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/raw_ostream.h"
diff --git a/lib/Transforms/Scalar/NaClCcRewrite.cpp b/lib/Transforms/Scalar/NaClCcRewrite.cpp
index 9109e22592..72a8e7e358 100644
--- a/lib/Transforms/Scalar/NaClCcRewrite.cpp
+++ b/lib/Transforms/Scalar/NaClCcRewrite.cpp
@@ -19,15 +19,15 @@
#define DEBUG_TYPE "naclcc"
-#include "llvm/Argument.h"
-#include "llvm/Attributes.h"
-#include "llvm/Constant.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Instruction.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Function.h"
#include "llvm/Pass.h"
+#include "llvm/IR/Argument.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Function.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
@@ -510,7 +510,7 @@ Type* RewriteFunctionSret(Function& F,
// Rewrite one byval function parameter while rewriting a function
void FixFunctionByvalsParameter(Function& F,
std::vector<Argument*>& new_arguments,
- std::vector<Attributes>& new_attributes,
+ std::vector<Attribute>& new_attributes,
Value* byval,
const TypeRewriteRule* rule) {
LLVMContext& C = F.getContext();
@@ -543,7 +543,7 @@ void FixFunctionByvalsParameter(Function& F,
v = new StoreInst(arg, v, before);
new_arguments.push_back(arg);
- new_attributes.push_back(Attributes());
+ new_attributes.push_back(Attribute());
}
}
@@ -552,7 +552,7 @@ void FixFunctionByvalsParameter(Function& F,
void UpdateFunctionSignature(Function &F,
Type* new_result_type,
std::vector<Argument*>& new_arguments,
- std::vector<Attributes>& new_attributes) {
+ std::vector<Attribute>& new_attributes) {
DEBUG(dbgs() << "PHASE PROTOTYPE UPDATE\n");
if (new_result_type) {
DEBUG(dbgs() << "NEW RESULT TYPE: " << *new_result_type << "\n");
@@ -588,12 +588,12 @@ void UpdateFunctionSignature(Function &F,
DEBUG(dbgs() << "PHASE ATTRIBUTES UPDATE\n");
std::vector<AttributeWithIndex> new_attributes_vec;
for (size_t i = 0; i < new_attributes.size(); ++i) {
- Attributes attr = new_attributes[i];
+ Attribute attr = new_attributes[i];
if (attr.hasAttributes()) {
new_attributes_vec.push_back(AttributeWithIndex::get(i + 1, attr));
}
}
- Attributes fattr = F.getAttributes().getFnAttributes();
+ Attribute fattr = F.getAttributes().getFnAttributes();
if (fattr.hasAttributes())
new_attributes_vec.push_back(AttributeWithIndex::get(~0, fattr));
F.setAttributes(AttributeSet::get(F.getContext(), new_attributes_vec));
@@ -602,7 +602,7 @@ void UpdateFunctionSignature(Function &F,
void ExtractFunctionArgsAndAttributes(Function& F,
std::vector<Argument*>& old_arguments,
- std::vector<Attributes>& old_attributes) {
+ std::vector<Attribute>& old_attributes) {
for (Function::arg_iterator ai = F.arg_begin(),
end = F.arg_end();
ai != end;
@@ -612,7 +612,7 @@ void ExtractFunctionArgsAndAttributes(Function& F,
for (size_t i = 0; i < old_arguments.size(); ++i) {
// index zero is for return value attributes
- old_attributes.push_back(F.getParamAttributes(i + 1));
+ old_attributes.push_back(F.getAttributes().getParamAttributes(i + 1));
}
}
@@ -626,9 +626,9 @@ void NaClCcRewrite::RewriteFunctionPrologAndEpilog(Function& F) {
DEBUG(dbgs() << "\n");
std::vector<Argument*> new_arguments;
- std::vector<Attributes> new_attributes;
+ std::vector<Attribute> new_attributes;
std::vector<Argument*> old_arguments;
- std::vector<Attributes> old_attributes;
+ std::vector<Attribute> old_attributes;
// make a copy of everything first as create Argument adds them to the list
@@ -638,7 +638,7 @@ void NaClCcRewrite::RewriteFunctionPrologAndEpilog(Function& F) {
Type* new_result_type = 0;
// only the first arg can be "sret"
- if (old_attributes.size() > 0 && old_attributes[0].hasAttribute(Attributes::StructRet)) {
+ if (old_attributes.size() > 0 && old_attributes[0].hasAttribute(Attribute::StructRet)) {
const TypeRewriteRule* sret_rule =
MatchRewriteRulesPointee(old_arguments[0]->getType(), SretRewriteRules);
if (sret_rule) {
@@ -656,8 +656,8 @@ void NaClCcRewrite::RewriteFunctionPrologAndEpilog(Function& F) {
for (size_t i = 0; i < old_arguments.size(); ++i) {
Argument* arg = old_arguments[i];
Type* t = arg->getType();
- Attributes attr = old_attributes[i];
- if (attr.hasAttribute(Attributes::ByVal)) {
+ Attribute attr = old_attributes[i];
+ if (attr.hasAttribute(Attribute::ByVal)) {
const TypeRewriteRule* rule =
MatchRewriteRulesPointee(t, ByvalRewriteRules);
if (rule != 0 && RegUseForRewriteRule(rule) <= available) {
@@ -711,14 +711,14 @@ template<class T> bool CallNeedsRewrite(
Type* pointee = dyn_cast<PointerType>(t)->getElementType();
// param zero is for the return value
- if (ByvalRewriteRules && call->paramHasAttr(i + 1, Attributes::ByVal)) {
+ if (ByvalRewriteRules && call->paramHasAttr(i + 1, Attribute::ByVal)) {
const TypeRewriteRule* rule =
MatchRewriteRules(pointee, ByvalRewriteRules);
if (rule != 0 && RegUseForRewriteRule(rule) <= available) {
return true;
}
} else if (SretRewriteRules &&
- call->paramHasAttr(i + 1, Attributes::StructRet)) {
+ call->paramHasAttr(i + 1, Attribute::StructRet)) {
if (0 != MatchRewriteRules(pointee, SretRewriteRules)) {
return true;
}
@@ -733,7 +733,7 @@ template<class T> bool CallNeedsRewrite(
// which will then be used as argument when we rewrite the actual call
// instruction.
void PrependCompensationForByvals(std::vector<Value*>& new_operands,
- std::vector<Attributes>& new_attributes,
+ std::vector<Attribute>& new_attributes,
Instruction* call,
Value* byval,
const TypeRewriteRule* rule,
@@ -759,7 +759,7 @@ void PrependCompensationForByvals(std::vector<Value*>& new_operands,
v = new LoadInst(v, "byval_extract", call);
new_operands.push_back(v);
- new_attributes.push_back(Attributes());
+ new_attributes.push_back(Attribute());
}
}
@@ -803,7 +803,7 @@ void CallsiteFixupSrets(Instruction* call,
void ExtractOperandsAndAttributesFromCallInst(
CallInst* call,
std::vector<Value*>& operands,
- std::vector<Attributes>& attributes) {
+ std::vector<Attribute>& attributes) {
AttributeSet PAL = call->getAttributes();
// last operand is: function
@@ -818,7 +818,7 @@ void ExtractOperandsAndAttributesFromCallInst(
void ExtractOperandsAndAttributesFromeInvokeInst(
InvokeInst* call,
std::vector<Value*>& operands,
- std::vector<Attributes>& attributes) {
+ std::vector<Attribute>& attributes) {
AttributeSet PAL = call->getAttributes();
// last three operands are: function, bb-normal, bb-exception
for (size_t i = 0; i < call->getNumOperands() - 3; ++i) {
@@ -832,7 +832,7 @@ void ExtractOperandsAndAttributesFromeInvokeInst(
Instruction* ReplaceCallInst(CallInst* call,
Type* function_pointer,
std::vector<Value*>& new_operands,
- std::vector<Attributes>& new_attributes) {
+ std::vector<Attribute>& new_attributes) {
Value* v = CastInst::CreatePointerCast(
call->getCalledValue(), function_pointer, "fp_cast", call);
CallInst* new_call = CallInst::Create(v, new_operands, "", call);
@@ -850,7 +850,7 @@ Instruction* ReplaceCallInst(CallInst* call,
Instruction* ReplaceInvokeInst(InvokeInst* call,
Type* function_pointer,
std::vector<Value*>& new_operands,
- std::vector<Attributes>& new_attributes) {
+ std::vector<Attribute>& new_attributes) {
Value* v = CastInst::CreatePointerCast(
call->getCalledValue(), function_pointer, "fp_cast", call);
InvokeInst* new_call = InvokeInst::Create(v,
@@ -887,7 +887,7 @@ void NaClCcRewrite::RewriteCallsite(Instruction* call, LLVMContext& C) {
Value* new_result = 0;
std::vector<Value*> old_operands;
- std::vector<Attributes> old_attributes;
+ std::vector<Attribute> old_attributes;
if (isa<CallInst>(call)) {
ExtractOperandsAndAttributesFromCallInst(
cast<CallInst>(call), old_operands, old_attributes);
@@ -900,7 +900,7 @@ void NaClCcRewrite::RewriteCallsite(Instruction* call, LLVMContext& C) {
// handle sret (just the book-keeping, 'new_result' is dealt with below)
// only the first arg can be "sret"
- if (old_attributes[0].hasAttribute(Attributes::StructRet)) {
+ if (old_attributes[0].hasAttribute(Attribute::StructRet)) {
sret_rule = MatchRewriteRulesPointee(
old_operands[0]->getType(), SretRewriteRules);
if (sret_rule) {
@@ -914,15 +914,15 @@ void NaClCcRewrite::RewriteCallsite(Instruction* call, LLVMContext& C) {
// handle byval
std::vector<Value*> new_operands;
- std::vector<Attributes> new_attributes;
+ std::vector<Attribute> new_attributes;
RegUse available = AvailableRegs;
for (size_t i = 0; i < old_operands.size(); ++i) {
Value *operand = old_operands[i];
Type* t = operand->getType();
- Attributes attr = old_attributes[i];
+ Attribute attr = old_attributes[i];
- if (attr.hasAttribute(Attributes::ByVal)) {
+ if (attr.hasAttribute(Attribute::ByVal)) {
const TypeRewriteRule* rule =
MatchRewriteRulesPointee(t, ByvalRewriteRules);
if (rule != 0 && RegUseForRewriteRule(rule) <= available) {
diff --git a/lib/Transforms/Scalar/ObjCARC.cpp b/lib/Transforms/Scalar/ObjCARC.cpp
index ce397658bf..abd6b4185f 100644
--- a/lib/Transforms/Scalar/ObjCARC.cpp
+++ b/lib/Transforms/Scalar/ObjCARC.cpp
@@ -6,53 +6,53 @@
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
-//
-// This file defines ObjC ARC optimizations. ARC stands for
-// Automatic Reference Counting and is a system for managing reference counts
-// for objects in Objective C.
-//
-// The optimizations performed include elimination of redundant, partially
-// redundant, and inconsequential reference count operations, elimination of
-// redundant weak pointer operations, pattern-matching and replacement of
-// low-level operations into higher-level operations, and numerous minor
-// simplifications.
-//
-// This file also defines a simple ARC-aware AliasAnalysis.
-//
-// WARNING: This file knows about certain library functions. It recognizes them
-// by name, and hardwires knowledge of their semantics.
-//
-// WARNING: This file knows about how certain Objective-C library functions are
-// used. Naive LLVM IR transformations which would otherwise be
-// behavior-preserving may break these assumptions.
-//
+/// \file
+/// This file defines ObjC ARC optimizations. ARC stands for Automatic
+/// Reference Counting and is a system for managing reference counts for objects
+/// in Objective C.
+///
+/// The optimizations performed include elimination of redundant, partially
+/// redundant, and inconsequential reference count operations, elimination of
+/// redundant weak pointer operations, pattern-matching and replacement of
+/// low-level operations into higher-level operations, and numerous minor
+/// simplifications.
+///
+/// This file also defines a simple ARC-aware AliasAnalysis.
+///
+/// WARNING: This file knows about certain library functions. It recognizes them
+/// by name, and hardwires knowledge of their semantics.
+///
+/// WARNING: This file knows about how certain Objective-C library functions are
+/// used. Naive LLVM IR transformations which would otherwise be
+/// behavior-preserving may break these assumptions.
+///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "objc-arc"
#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
-// A handy option to enable/disable all optimizations in this file.
+/// \brief A handy option to enable/disable all optimizations in this file.
static cl::opt<bool> EnableARCOpts("enable-objc-arc-opts", cl::init(true));
-//===----------------------------------------------------------------------===//
-// Misc. Utilities
-//===----------------------------------------------------------------------===//
+/// \defgroup MiscUtils Miscellaneous utilities that are not ARC specific.
+/// @{
namespace {
- /// MapVector - An associative container with fast insertion-order
- /// (deterministic) iteration over its elements. Plus the special
- /// blot operation.
+ /// \brief An associative container with fast insertion-order (deterministic)
+ /// iteration over its elements. Plus the special blot operation.
template<class KeyT, class ValueT>
class MapVector {
- /// Map - Map keys to indices in Vector.
+ /// Map keys to indices in Vector.
typedef DenseMap<KeyT, size_t> MapTy;
MapTy Map;
- /// Vector - Keys and values.
typedef std::vector<std::pair<KeyT, ValueT> > VectorTy;
+ /// Keys and values.
VectorTy Vector;
public:
@@ -110,10 +110,9 @@ namespace {
return Vector.begin() + It->second;
}
- /// blot - This is similar to erase, but instead of removing the element
- /// from the vector, it just zeros out the key in the vector. This leaves
- /// iterators intact, but clients must be prepared for zeroed-out keys when
- /// iterating.
+ /// This is similar to erase, but instead of removing the element from the
+ /// vector, it just zeros out the key in the vector. This leaves iterators
+ /// intact, but clients must be prepared for zeroed-out keys when iterating.
void blot(const KeyT &Key) {
typename MapTy::iterator It = Map.find(Key);
if (It == Map.end()) return;
@@ -128,19 +127,21 @@ namespace {
};
}
-//===----------------------------------------------------------------------===//
-// ARC Utilities.
-//===----------------------------------------------------------------------===//
+/// @}
+///
+/// \defgroup ARCUtilities Utility declarations/definitions specific to ARC.
+/// @{
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/Module.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Module.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Transforms/Utils/Local.h"
namespace {
- /// InstructionClass - A simple classification for instructions.
+ /// \enum InstructionClass
+ /// \brief A simple classification for instructions.
enum InstructionClass {
IC_Retain, ///< objc_retain
IC_RetainRV, ///< objc_retainAutoreleasedReturnValue
@@ -168,8 +169,7 @@ namespace {
};
}
-/// IsPotentialUse - Test whether the given value is possible a
-/// reference-counted pointer.
+/// \brief Test whether the given value is possible a reference-counted pointer.
static bool IsPotentialUse(const Value *Op) {
// Pointers to static or stack storage are not reference-counted pointers.
if (isa<Constant>(Op) || isa<AllocaInst>(Op))
@@ -192,8 +192,8 @@ static bool IsPotentialUse(const Value *Op) {
return true;
}
-/// GetCallSiteClass - Helper for GetInstructionClass. Determines what kind
-/// of construct CS is.
+/// \brief Helper for GetInstructionClass. Determines what kind of construct CS
+/// is.
static InstructionClass GetCallSiteClass(ImmutableCallSite CS) {
for (ImmutableCallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
I != E; ++I)
@@ -203,8 +203,8 @@ static InstructionClass GetCallSiteClass(ImmutableCallSite CS) {
return CS.onlyReadsMemory() ? IC_None : IC_Call;
}
-/// GetFunctionClass - Determine if F is one of the special known Functions.
-/// If it isn't, return IC_CallOrUser.
+/// \brief Determine if F is one of the special known Functions. If it isn't,
+/// return IC_CallOrUser.
static InstructionClass GetFunctionClass(const Function *F) {
Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
@@ -276,7 +276,7 @@ static InstructionClass GetFunctionClass(const Function *F) {
return IC_CallOrUser;
}
-/// GetInstructionClass - Determine what kind of construct V is.
+/// \brief Determine what kind of construct V is.
static InstructionClass GetInstructionClass(const Value *V) {
if (const Instruction *I = dyn_cast<Instruction>(V)) {
// Any instruction other than bitcast and gep with a pointer operand have a
@@ -366,9 +366,11 @@ static InstructionClass GetInstructionClass(const Value *V) {
return IC_None;
}
-/// GetBasicInstructionClass - Determine what kind of construct V is. This is
-/// similar to GetInstructionClass except that it only detects objc runtine
-/// calls. This allows it to be faster.
+/// \brief Determine which objc runtime call instruction class V belongs to.
+///
+/// This is similar to GetInstructionClass except that it only detects objc
+/// runtime calls. This allows it to be faster.
+///
static InstructionClass GetBasicInstructionClass(const Value *V) {
if (const CallInst *CI = dyn_cast<CallInst>(V)) {
if (const Function *F = CI->getCalledFunction())
@@ -381,22 +383,20 @@ static InstructionClass GetBasicInstructionClass(const Value *V) {
return isa<InvokeInst>(V) ? IC_CallOrUser : IC_User;
}
-/// IsRetain - Test if the given class is objc_retain or
-/// equivalent.
+/// \brief Test if the given class is objc_retain or equivalent.
static bool IsRetain(InstructionClass Class) {
return Class == IC_Retain ||
Class == IC_RetainRV;
}
-/// IsAutorelease - Test if the given class is objc_autorelease or
-/// equivalent.
+/// \brief Test if the given class is objc_autorelease or equivalent.
static bool IsAutorelease(InstructionClass Class) {
return Class == IC_Autorelease ||
Class == IC_AutoreleaseRV;
}
-/// IsForwarding - Test if the given class represents instructions which return
-/// their argument verbatim.
+/// \brief Test if the given class represents instructions which return their
+/// argument verbatim.
static bool IsForwarding(InstructionClass Class) {
// objc_retainBlock technically doesn't always return its argument
// verbatim, but it doesn't matter for our purposes here.
@@ -408,8 +408,8 @@ static bool IsForwarding(InstructionClass Class) {
Class == IC_NoopCast;
}
-/// IsNoopOnNull - Test if the given class represents instructions which do
-/// nothing if passed a null pointer.
+/// \brief Test if the given class represents instructions which do nothing if
+/// passed a null pointer.
static bool IsNoopOnNull(InstructionClass Class) {
return Class == IC_Retain ||
Class == IC_RetainRV ||
@@ -419,18 +419,28 @@ static bool IsNoopOnNull(InstructionClass Class) {
Class == IC_RetainBlock;
}
-/// IsAlwaysTail - Test if the given class represents instructions which are
-/// always safe to mark with the "tail" keyword.
+/// \brief Test if the given class represents instructions which are always safe
+/// to mark with the "tail" keyword.
static bool IsAlwaysTail(InstructionClass Class) {
// IC_RetainBlock may be given a stack argument.
return Class == IC_Retain ||
Class == IC_RetainRV ||
- Class == IC_Autorelease ||
Class == IC_AutoreleaseRV;
}
-/// IsNoThrow - Test if the given class represents instructions which are always
-/// safe to mark with the nounwind attribute..
+/// \brief Test if the given class represents instructions which are never safe
+/// to mark with the "tail" keyword.
+static bool IsNeverTail(InstructionClass Class) {
+ /// It is never safe to tail call objc_autorelease since by tail calling
+ /// objc_autorelease, we also tail call -[NSObject autorelease] which supports
+ /// fast autoreleasing causing our object to be potentially reclaimed from the
+ /// autorelease pool which violates the semantics of __autoreleasing types in
+ /// ARC.
+ return Class == IC_Autorelease;
+}
+
+/// \brief Test if the given class represents instructions which are always safe
+/// to mark with the nounwind attribute.
static bool IsNoThrow(InstructionClass Class) {
// objc_retainBlock is not nounwind because it calls user copy constructors
// which could theoretically throw.
@@ -443,9 +453,12 @@ static bool IsNoThrow(InstructionClass Class) {
Class == IC_AutoreleasepoolPop;
}
-/// EraseInstruction - Erase the given instruction. Many ObjC calls return their
-/// argument verbatim, so if it's such a call and the return value has users,
-/// replace them with the argument value.
+/// \brief Erase the given instruction.
+///
+/// Many ObjC calls return their argument verbatim,
+/// so if it's such a call and the return value has users, replace them with the
+/// argument value.
+///
static void EraseInstruction(Instruction *CI) {
Value *OldArg = cast<CallInst>(CI)->getArgOperand(0);
@@ -464,9 +477,9 @@ static void EraseInstruction(Instruction *CI) {
RecursivelyDeleteTriviallyDeadInstructions(OldArg);
}
-/// GetUnderlyingObjCPtr - This is a wrapper around getUnderlyingObject which
-/// also knows how to look through objc_retain and objc_autorelease calls, which
-/// we know to return their argument verbatim.
+/// \brief This is a wrapper around getUnderlyingObject which also knows how to
+/// look through objc_retain and objc_autorelease calls, which we know to return
+/// their argument verbatim.
static const Value *GetUnderlyingObjCPtr(const Value *V) {
for (;;) {
V = GetUnderlyingObject(V);
@@ -478,9 +491,9 @@ static const Value *GetUnderlyingObjCPtr(const Value *V) {
return V;
}
-/// StripPointerCastsAndObjCCalls - This is a wrapper around
-/// Value::stripPointerCasts which also knows how to look through objc_retain
-/// and objc_autorelease calls, which we know to return their argument verbatim.
+/// \brief This is a wrapper around Value::stripPointerCasts which also knows
+/// how to look through objc_retain and objc_autorelease calls, which we know to
+/// return their argument verbatim.
static const Value *StripPointerCastsAndObjCCalls(const Value *V) {
for (;;) {
V = V->stripPointerCasts();
@@ -491,9 +504,9 @@ static const Value *StripPointerCastsAndObjCCalls(const Value *V) {
return V;
}
-/// StripPointerCastsAndObjCCalls - This is a wrapper around
-/// Value::stripPointerCasts which also knows how to look through objc_retain
-/// and objc_autorelease calls, which we know to return their argument verbatim.
+/// \brief This is a wrapper around Value::stripPointerCasts which also knows
+/// how to look through objc_retain and objc_autorelease calls, which we know to
+/// return their argument verbatim.
static Value *StripPointerCastsAndObjCCalls(Value *V) {
for (;;) {
V = V->stripPointerCasts();
@@ -504,16 +517,15 @@ static Value *StripPointerCastsAndObjCCalls(Value *V) {
return V;
}
-/// GetObjCArg - Assuming the given instruction is one of the special calls such
-/// as objc_retain or objc_release, return the argument value, stripped of no-op
+/// \brief Assuming the given instruction is one of the special calls such as
+/// objc_retain or objc_release, return the argument value, stripped of no-op
/// casts and forwarding calls.
static Value *GetObjCArg(Value *Inst) {
return StripPointerCastsAndObjCCalls(cast<CallInst>(Inst)->getArgOperand(0));
}
-/// IsObjCIdentifiedObject - This is similar to AliasAnalysis'
-/// isObjCIdentifiedObject, except that it uses special knowledge of
-/// ObjC conventions...
+/// \brief This is similar to AliasAnalysis's isObjCIdentifiedObject, except
+/// that it uses special knowledge of ObjC conventions.
static bool IsObjCIdentifiedObject(const Value *V) {
// Assume that call results and arguments have their own "provenance".
// Constants (including GlobalVariables) and Allocas are never
@@ -546,9 +558,8 @@ static bool IsObjCIdentifiedObject(const Value *V) {
return false;
}
-/// FindSingleUseIdentifiedObject - This is similar to
-/// StripPointerCastsAndObjCCalls but it stops as soon as it finds a value
-/// with multiple uses.
+/// \brief This is similar to StripPointerCastsAndObjCCalls but it stops as soon
+/// as it finds a value with multiple uses.
static const Value *FindSingleUseIdentifiedObject(const Value *Arg) {
if (Arg->hasOneUse()) {
if (const BitCastInst *BC = dyn_cast<BitCastInst>(Arg))
@@ -580,8 +591,8 @@ static const Value *FindSingleUseIdentifiedObject(const Value *Arg) {
return 0;
}
-/// ModuleHasARC - Test if the given module looks interesting to run ARC
-/// optimization on.
+/// \brief Test if the given module looks interesting to run ARC optimization
+/// on.
static bool ModuleHasARC(const Module &M) {
return
M.getNamedValue("objc_retain") ||
@@ -603,19 +614,34 @@ static bool ModuleHasARC(const Module &M) {
M.getNamedValue("objc_unretainedPointer");
}
-/// DoesObjCBlockEscape - Test whether the given pointer, which is an
-/// Objective C block pointer, does not "escape". This differs from regular
-/// escape analysis in that a use as an argument to a call is not considered
-/// an escape.
+/// \brief Test whether the given pointer, which is an Objective C block
+/// pointer, does not "escape".
+///
+/// This differs from regular escape analysis in that a use as an
+/// argument to a call is not considered an escape.
+///
static bool DoesObjCBlockEscape(const Value *BlockPtr) {
+
+ DEBUG(dbgs() << "DoesObjCBlockEscape: Target: " << *BlockPtr << "\n");
+
// Walk the def-use chains.
SmallVector<const Value *, 4> Worklist;
Worklist.push_back(BlockPtr);
+
+ // Ensure we do not visit any value twice.
+ SmallPtrSet<const Value *, 4> VisitedSet;
+
do {
const Value *V = Worklist.pop_back_val();
+
+ DEBUG(dbgs() << "DoesObjCBlockEscape: Visiting: " << *V << "\n");
+
for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
UI != UE; ++UI) {
const User *UUser = *UI;
+
+ DEBUG(dbgs() << "DoesObjCBlockEscape: User: " << *UUser << "\n");
+
// Special - Use by a call (callee or argument) is not considered
// to be an escape.
switch (GetBasicInstructionClass(UUser)) {
@@ -623,16 +649,26 @@ static bool DoesObjCBlockEscape(const Value *BlockPtr) {
case IC_InitWeak:
case IC_StoreStrong:
case IC_Autorelease:
- case IC_AutoreleaseRV:
+ case IC_AutoreleaseRV: {
+ DEBUG(dbgs() << "DoesObjCBlockEscape: User copies pointer arguments. "
+ "Block Escapes!\n");
// These special functions make copies of their pointer arguments.
return true;
+ }
case IC_User:
case IC_None:
// Use by an instruction which copies the value is an escape if the
// result is an escape.
if (isa<BitCastInst>(UUser) || isa<GetElementPtrInst>(UUser) ||
isa<PHINode>(UUser) || isa<SelectInst>(UUser)) {
- Worklist.push_back(UUser);
+
+ if (!VisitedSet.insert(UUser)) {
+ DEBUG(dbgs() << "DoesObjCBlockEscape: User copies value. Escapes "
+ "if result escapes. Adding to list.\n");
+ Worklist.push_back(UUser);
+ } else {
+ DEBUG(dbgs() << "DoesObjCBlockEscape: Already visited node.\n");
+ }
continue;
}
// Use by a load is not an escape.
@@ -648,25 +684,28 @@ static bool DoesObjCBlockEscape(const Value *BlockPtr) {
continue;
}
// Otherwise, conservatively assume an escape.
+ DEBUG(dbgs() << "DoesObjCBlockEscape: Assuming block escapes.\n");
return true;
}
} while (!Worklist.empty());
// No escapes found.
+ DEBUG(dbgs() << "DoesObjCBlockEscape: Block does not escape.\n");
return false;
}
-//===----------------------------------------------------------------------===//
-// ARC AliasAnalysis.
-//===----------------------------------------------------------------------===//
+/// @}
+///
+/// \defgroup ARCAA Extends alias analysis using ObjC specific knowledge.
+/// @{
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Pass.h"
namespace {
- /// ObjCARCAliasAnalysis - This is a simple alias analysis
- /// implementation that uses knowledge of ARC constructs to answer queries.
+ /// \brief This is a simple alias analysis implementation that uses knowledge
+ /// of ARC constructs to answer queries.
///
/// TODO: This class could be generalized to know about other ObjC-specific
/// tricks. Such as knowing that ivars in the non-fragile ABI are non-aliasing
@@ -684,10 +723,9 @@ namespace {
InitializeAliasAnalysis(this);
}
- /// getAdjustedAnalysisPointer - This method is used when a pass implements
- /// an analysis interface through multiple inheritance. If needed, it
- /// should override this to adjust the this pointer as needed for the
- /// specified pass info.
+ /// This method is used when a pass implements an analysis interface through
+ /// multiple inheritance. If needed, it should override this to adjust the
+ /// this pointer as needed for the specified pass info.
virtual void *getAdjustedAnalysisPointer(const void *PI) {
if (PI == &AliasAnalysis::ID)
return static_cast<AliasAnalysis *>(this);
@@ -831,21 +869,22 @@ ObjCARCAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
return AliasAnalysis::getModRefInfo(CS1, CS2);
}
-//===----------------------------------------------------------------------===//
-// ARC expansion.
-//===----------------------------------------------------------------------===//
+/// @}
+///
+/// \defgroup ARCExpansion Early ARC Optimizations.
+/// @{
#include "llvm/Support/InstIterator.h"
#include "llvm/Transforms/Scalar.h"
namespace {
- /// ObjCARCExpand - Early ARC transformations.
+ /// \brief Early ARC transformations.
class ObjCARCExpand : public FunctionPass {
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
virtual bool doInitialization(Module &M);
virtual bool runOnFunction(Function &F);
- /// Run - A flag indicating whether this optimization pass should run.
+ /// A flag indicating whether this optimization pass should run.
bool Run;
public:
@@ -883,40 +922,51 @@ bool ObjCARCExpand::runOnFunction(Function &F) {
bool Changed = false;
+ DEBUG(dbgs() << "ObjCARCExpand: Visiting Function: " << F.getName() << "\n");
+
for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
Instruction *Inst = &*I;
+ DEBUG(dbgs() << "ObjCARCExpand: Visiting: " << *Inst << "\n");
+
switch (GetBasicInstructionClass(Inst)) {
case IC_Retain:
case IC_RetainRV:
case IC_Autorelease:
case IC_AutoreleaseRV:
case IC_FusedRetainAutorelease:
- case IC_FusedRetainAutoreleaseRV:
+ case IC_FusedRetainAutoreleaseRV: {
// These calls return their argument verbatim, as a low-level
// optimization. However, this makes high-level optimizations
// harder. Undo any uses of this optimization that the front-end
// emitted here. We'll redo them in the contract pass.
Changed = true;
- Inst->replaceAllUsesWith(cast<CallInst>(Inst)->getArgOperand(0));
+ Value *Value = cast<CallInst>(Inst)->getArgOperand(0);
+ DEBUG(dbgs() << "ObjCARCExpand: Old = " << *Inst << "\n"
+ " New = " << *Value << "\n");
+ Inst->replaceAllUsesWith(Value);
break;
+ }
default:
break;
}
}
+ DEBUG(dbgs() << "ObjCARCExpand: Finished List.\n\n");
+
return Changed;
}
-//===----------------------------------------------------------------------===//
-// ARC autorelease pool elimination.
-//===----------------------------------------------------------------------===//
+/// @}
+///
+/// \defgroup ARCAPElim ARC Autorelease Pool Elimination.
+/// @{
#include "llvm/ADT/STLExtras.h"
-#include "llvm/Constants.h"
+#include "llvm/IR/Constants.h"
namespace {
- /// ObjCARCAPElim - Autorelease pool elimination.
+ /// \brief Autorelease pool elimination.
class ObjCARCAPElim : public ModulePass {
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
virtual bool runOnModule(Module &M);
@@ -946,8 +996,8 @@ void ObjCARCAPElim::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
}
-/// MayAutorelease - Interprocedurally determine if calls made by the
-/// given call site can possibly produce autoreleases.
+/// Interprocedurally determine if calls made by the given call site can
+/// possibly produce autoreleases.
bool ObjCARCAPElim::MayAutorelease(ImmutableCallSite CS, unsigned Depth) {
if (const Function *Callee = CS.getCalledFunction()) {
if (Callee->isDeclaration() || Callee->mayBeOverridden())
@@ -986,6 +1036,10 @@ bool ObjCARCAPElim::OptimizeBB(BasicBlock *BB) {
// zap the pair.
if (Push && cast<CallInst>(Inst)->getArgOperand(0) == Push) {
Changed = true;
+ DEBUG(dbgs() << "ObjCARCAPElim::OptimizeBB: Zapping push pop "
+ "autorelease pair:\n"
+ " Pop: " << *Inst << "\n"
+ << " Push: " << *Push << "\n");
Inst->eraseFromParent();
Push->eraseFromParent();
}
@@ -1051,9 +1105,10 @@ bool ObjCARCAPElim::runOnModule(Module &M) {
return Changed;
}
-//===----------------------------------------------------------------------===//
-// ARC optimization.
-//===----------------------------------------------------------------------===//
+/// @}
+///
+/// \defgroup ARCOpt ARC Optimization.
+/// @{
// TODO: On code like this:
//
@@ -1095,7 +1150,7 @@ bool ObjCARCAPElim::runOnModule(Module &M) {
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/LLVMContext.h"
+#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/CFG.h"
STATISTIC(NumNoops, "Number of no-op objc calls eliminated");
@@ -1107,9 +1162,9 @@ STATISTIC(NumRRs, "Number of retain+release paths eliminated");
STATISTIC(NumPeeps, "Number of calls peephole-optimized");
namespace {
- /// ProvenanceAnalysis - This is similar to BasicAliasAnalysis, and it
- /// uses many of the same techniques, except it uses special ObjC-specific
- /// reasoning about pointer relationships.
+ /// \brief This is similar to BasicAliasAnalysis, and it uses many of the same
+ /// techniques, except it uses special ObjC-specific reasoning about pointer
+ /// relationships.
class ProvenanceAnalysis {
AliasAnalysis *AA;
@@ -1177,8 +1232,8 @@ bool ProvenanceAnalysis::relatedPHI(const PHINode *A, const Value *B) {
return false;
}
-/// isStoredObjCPointer - Test if the value of P, or any value covered by its
-/// provenance, is ever stored within the function (not counting callees).
+/// Test if the value of P, or any value covered by its provenance, is ever
+/// stored within the function (not counting callees).
static bool isStoredObjCPointer(const Value *P) {
SmallPtrSet<const Value *, 8> Visited;
SmallVector<const Value *, 8> Worklist;
@@ -1282,8 +1337,10 @@ bool ProvenanceAnalysis::related(const Value *A, const Value *B) {
}
namespace {
- // Sequence - A sequence of states that a pointer may go through in which an
- // objc_retain and objc_release are actually needed.
+ /// \enum Sequence
+ ///
+ /// \brief A sequence of states that a pointer may go through in which an
+ /// objc_retain and objc_release are actually needed.
enum Sequence {
S_None,
S_Retain, ///< objc_retain(x)
@@ -1324,11 +1381,11 @@ static Sequence MergeSeqs(Sequence A, Sequence B, bool TopDown) {
}
namespace {
- /// RRInfo - Unidirectional information about either a
+ /// \brief Unidirectional information about either a
/// retain-decrement-use-release sequence or release-use-decrement-retain
/// reverese sequence.
struct RRInfo {
- /// KnownSafe - After an objc_retain, the reference count of the referenced
+ /// After an objc_retain, the reference count of the referenced
/// object is known to be positive. Similarly, before an objc_release, the
/// reference count of the referenced object is known to be positive. If
/// there are retain-release pairs in code regions where the retain count
@@ -1342,24 +1399,23 @@ namespace {
/// KnownSafe is true when either of these conditions is satisfied.
bool KnownSafe;
- /// IsRetainBlock - True if the Calls are objc_retainBlock calls (as
- /// opposed to objc_retain calls).
+ /// True if the Calls are objc_retainBlock calls (as opposed to objc_retain
+ /// calls).
bool IsRetainBlock;
- /// IsTailCallRelease - True of the objc_release calls are all marked
- /// with the "tail" keyword.
+ /// True of the objc_release calls are all marked with the "tail" keyword.
bool IsTailCallRelease;
- /// ReleaseMetadata - If the Calls are objc_release calls and they all have
- /// a clang.imprecise_release tag, this is the metadata tag.
+ /// If the Calls are objc_release calls and they all have a
+ /// clang.imprecise_release tag, this is the metadata tag.
MDNode *ReleaseMetadata;
- /// Calls - For a top-down sequence, the set of objc_retains or
+ /// For a top-down sequence, the set of objc_retains or
/// objc_retainBlocks. For bottom-up, the set of objc_releases.
SmallPtrSet<Instruction *, 2> Calls;
- /// ReverseInsertPts - The set of optimal insert positions for
- /// moving calls in the opposite sequence.
+ /// The set of optimal insert positions for moving calls in the opposite
+ /// sequence.
SmallPtrSet<Instruction *, 2> ReverseInsertPts;
RRInfo() :
@@ -1381,23 +1437,22 @@ void RRInfo::clear() {
}
namespace {
- /// PtrState - This class summarizes several per-pointer runtime properties
- /// which are propogated through the flow graph.
+ /// \brief This class summarizes several per-pointer runtime properties which
+ /// are propogated through the flow graph.
class PtrState {
- /// KnownPositiveRefCount - True if the reference count is known to
- /// be incremented.
+ /// True if the reference count is known to be incremented.
bool KnownPositiveRefCount;
- /// Partial - True of we've seen an opportunity for partial RR elimination,
- /// such as pushing calls into a CFG triangle or into one side of a
- /// CFG diamond.
+ /// True of we've seen an opportunity for partial RR elimination, such as
+ /// pushing calls into a CFG triangle or into one side of a CFG diamond.
bool Partial;
- /// Seq - The current position in the sequence.
+ /// The current position in the sequence.
Sequence Seq : 8;
public:
- /// RRI - Unidirectional information about the current sequence.
+ /// Unidirectional information about the current sequence.
+ ///
/// TODO: Encapsulate this better.
RRInfo RRI;
@@ -1478,30 +1533,31 @@ PtrState::Merge(const PtrState &Other, bool TopDown) {
}
namespace {
- /// BBState - Per-BasicBlock state.
+ /// \brief Per-BasicBlock state.
class BBState {
- /// TopDownPathCount - The number of unique control paths from the entry
- /// which can reach this block.
+ /// The number of unique control paths from the entry which can reach this
+ /// block.
unsigned TopDownPathCount;
- /// BottomUpPathCount - The number of unique control paths to exits
- /// from this block.
+ /// The number of unique control paths to exits from this block.
unsigned BottomUpPathCount;
- /// MapTy - A type for PerPtrTopDown and PerPtrBottomUp.
+ /// A type for PerPtrTopDown and PerPtrBottomUp.
typedef MapVector<const Value *, PtrState> MapTy;
- /// PerPtrTopDown - The top-down traversal uses this to record information
- /// known about a pointer at the bottom of each block.
+ /// The top-down traversal uses this to record information known about a
+ /// pointer at the bottom of each block.
MapTy PerPtrTopDown;
- /// PerPtrBottomUp - The bottom-up traversal uses this to record information
- /// known about a pointer at the top of each block.
+ /// The bottom-up traversal uses this to record information known about a
+ /// pointer at the top of each block.
MapTy PerPtrBottomUp;
- /// Preds, Succs - Effective successors and predecessors of the current
- /// block (this ignores ignorable edges and ignored backedges).
+ /// Effective predecessors of the current block ignoring ignorable edges and
+ /// ignored backedges.
SmallVector<BasicBlock *, 2> Preds;
+ /// Effective successors of the current block ignoring ignorable edges and
+ /// ignored backedges.
SmallVector<BasicBlock *, 2> Succs;
public:
@@ -1528,12 +1584,12 @@ namespace {
return PerPtrBottomUp.end();
}
- /// SetAsEntry - Mark this block as being an entry block, which has one
- /// path from the entry by definition.
+ /// Mark this block as being an entry block, which has one path from the
+ /// entry by definition.
void SetAsEntry() { TopDownPathCount = 1; }
- /// SetAsExit - Mark this block as being an exit block, which has one
- /// path to an exit by definition.
+ /// Mark this block as being an exit block, which has one path to an exit by
+ /// definition.
void SetAsExit() { BottomUpPathCount = 1; }
PtrState &getPtrTopDownState(const Value *Arg) {
@@ -1557,9 +1613,9 @@ namespace {
void MergePred(const BBState &Other);
void MergeSucc(const BBState &Other);
- /// GetAllPathCount - Return the number of possible unique paths from an
- /// entry to an exit which pass through this block. This is only valid
- /// after both the top-down and bottom-up traversals are complete.
+ /// Return the number of possible unique paths from an entry to an exit
+ /// which pass through this block. This is only valid after both the
+ /// top-down and bottom-up traversals are complete.
unsigned GetAllPathCount() const {
assert(TopDownPathCount != 0);
assert(BottomUpPathCount != 0);
@@ -1590,14 +1646,15 @@ void BBState::InitFromSucc(const BBState &Other) {
BottomUpPathCount = Other.BottomUpPathCount;
}
-/// MergePred - The top-down traversal uses this to merge information about
-/// predecessors to form the initial state for a new block.
+/// The top-down traversal uses this to merge information about predecessors to
+/// form the initial state for a new block.
void BBState::MergePred(const BBState &Other) {
// Other.TopDownPathCount can be 0, in which case it is either dead or a
// loop backedge. Loop backedges are special.
TopDownPathCount += Other.TopDownPathCount;
- // Check for overflow. If we have overflow, fall back to conservative behavior.
+ // Check for overflow. If we have overflow, fall back to conservative
+ // behavior.
if (TopDownPathCount < Other.TopDownPathCount) {
clearTopDownPointers();
return;
@@ -1621,14 +1678,15 @@ void BBState::MergePred(const BBState &Other) {
MI->second.Merge(PtrState(), /*TopDown=*/true);
}
-/// MergeSucc - The bottom-up traversal uses this to merge information about
-/// successors to form the initial state for a new block.
+/// The bottom-up traversal uses this to merge information about successors to
+/// form the initial state for a new block.
void BBState::MergeSucc(const BBState &Other) {
// Other.BottomUpPathCount can be 0, in which case it is either dead or a
// loop backedge. Loop backedges are special.
BottomUpPathCount += Other.BottomUpPathCount;
- // Check for overflow. If we have overflow, fall back to conservative behavior.
+ // Check for overflow. If we have overflow, fall back to conservative
+ // behavior.
if (BottomUpPathCount < Other.BottomUpPathCount) {
clearBottomUpPointers();
return;
@@ -1653,34 +1711,43 @@ void BBState::MergeSucc(const BBState &Other) {
}
namespace {
- /// ObjCARCOpt - The main ARC optimization pass.
+ /// \brief The main ARC optimization pass.
class ObjCARCOpt : public FunctionPass {
bool Changed;
ProvenanceAnalysis PA;
- /// Run - A flag indicating whether this optimization pass should run.
+ /// A flag indicating whether this optimization pass should run.
bool Run;
- /// RetainRVCallee, etc. - Declarations for ObjC runtime
- /// functions, for use in creating calls to them. These are initialized
- /// lazily to avoid cluttering up the Module with unused declarations.
- Constant *RetainRVCallee, *AutoreleaseRVCallee, *ReleaseCallee,
- *RetainCallee, *RetainBlockCallee, *AutoreleaseCallee;
-
- /// UsedInThisFunciton - Flags which determine whether each of the
- /// interesting runtine functions is in fact used in the current function.
+ /// Declarations for ObjC runtime functions, for use in creating calls to
+ /// them. These are initialized lazily to avoid cluttering up the Module
+ /// with unused declarations.
+
+ /// Declaration for ObjC runtime function
+ /// objc_retainAutoreleasedReturnValue.
+ Constant *RetainRVCallee;
+ /// Declaration for ObjC runtime function objc_autoreleaseReturnValue.
+ Constant *AutoreleaseRVCallee;
+ /// Declaration for ObjC runtime function objc_release.
+ Constant *ReleaseCallee;
+ /// Declaration for ObjC runtime function objc_retain.
+ Constant *RetainCallee;
+ /// Declaration for ObjC runtime function objc_retainBlock.
+ Constant *RetainBlockCallee;
+ /// Declaration for ObjC runtime function objc_autorelease.
+ Constant *AutoreleaseCallee;
+
+ /// Flags which determine whether each of the interesting runtine functions
+ /// is in fact used in the current function.
unsigned UsedInThisFunction;
- /// ImpreciseReleaseMDKind - The Metadata Kind for clang.imprecise_release
- /// metadata.
+ /// The Metadata Kind for clang.imprecise_release metadata.
unsigned ImpreciseReleaseMDKind;
- /// CopyOnEscapeMDKind - The Metadata Kind for clang.arc.copy_on_escape
- /// metadata.
+ /// The Metadata Kind for clang.arc.copy_on_escape metadata.
unsigned CopyOnEscapeMDKind;
- /// NoObjCARCExceptionsMDKind - The Metadata Kind for
- /// clang.arc.no_objc_arc_exceptions metadata.
+ /// The Metadata Kind for clang.arc.no_objc_arc_exceptions metadata.
unsigned NoObjCARCExceptionsMDKind;
Constant *getRetainRVCallee(Module *M);
@@ -1694,7 +1761,8 @@ namespace {
void OptimizeRetainCall(Function &F, Instruction *Retain);
bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV);
- void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV);
+ void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV,
+ InstructionClass &Class);
void OptimizeIndividualCalls(Function &F);
void CheckForCFGHazards(const BasicBlock *BB,
@@ -1788,12 +1856,12 @@ Constant *ObjCARCOpt::getRetainRVCallee(Module *M) {
Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
Type *Params[] = { I8X };
FunctionType *FTy = FunctionType::get(I8X, Params, /*isVarArg=*/false);
- AttributeSet Attributes =
+ AttributeSet Attribute =
AttributeSet().addAttr(M->getContext(), AttributeSet::FunctionIndex,
- Attributes::get(C, Attributes::NoUnwind));
+ Attribute::get(C, Attribute::NoUnwind));
RetainRVCallee =
M->getOrInsertFunction("objc_retainAutoreleasedReturnValue", FTy,
- Attributes);
+ Attribute);
}
return RetainRVCallee;
}
@@ -1804,12 +1872,12 @@ Constant *ObjCARCOpt::getAutoreleaseRVCallee(Module *M) {
Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
Type *Params[] = { I8X };
FunctionType *FTy = FunctionType::get(I8X, Params, /*isVarArg=*/false);
- AttributeSet Attributes =
+ AttributeSet Attribute =
AttributeSet().addAttr(M->getContext(), AttributeSet::FunctionIndex,
- Attributes::get(C, Attributes::NoUnwind));
+ Attribute::get(C, Attribute::NoUnwind));
AutoreleaseRVCallee =
M->getOrInsertFunction("objc_autoreleaseReturnValue", FTy,
- Attributes);
+ Attribute);
}
return AutoreleaseRVCallee;
}
@@ -1818,14 +1886,14 @@ Constant *ObjCARCOpt::getReleaseCallee(Module *M) {
if (!ReleaseCallee) {
LLVMContext &C = M->getContext();
Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) };
- AttributeSet Attributes =
+ AttributeSet Attribute =
AttributeSet().addAttr(M->getContext(), AttributeSet::FunctionIndex,
- Attributes::get(C, Attributes::NoUnwind));
+ Attribute::get(C, Attribute::NoUnwind));
ReleaseCallee =
M->getOrInsertFunction(
"objc_release",
FunctionType::get(Type::getVoidTy(C), Params, /*isVarArg=*/false),
- Attributes);
+ Attribute);
}
return ReleaseCallee;
}
@@ -1834,14 +1902,14 @@ Constant *ObjCARCOpt::getRetainCallee(Module *M) {
if (!RetainCallee) {
LLVMContext &C = M->getContext();
Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) };
- AttributeSet Attributes =
+ AttributeSet Attribute =
AttributeSet().addAttr(M->getContext(), AttributeSet::FunctionIndex,
- Attributes::get(C, Attributes::NoUnwind));
+ Attribute::get(C, Attribute::NoUnwind));
RetainCallee =
M->getOrInsertFunction(
"objc_retain",
FunctionType::get(Params[0], Params, /*isVarArg=*/false),
- Attributes);
+ Attribute);
}
return RetainCallee;
}
@@ -1865,20 +1933,20 @@ Constant *ObjCARCOpt::getAutoreleaseCallee(Module *M) {
if (!AutoreleaseCallee) {
LLVMContext &C = M->getContext();
Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) };
- AttributeSet Attributes =
+ AttributeSet Attribute =
AttributeSet().addAttr(M->getContext(), AttributeSet::FunctionIndex,
- Attributes::get(C, Attributes::NoUnwind));
+ Attribute::get(C, Attribute::NoUnwind));
AutoreleaseCallee =
M->getOrInsertFunction(
"objc_autorelease",
FunctionType::get(Params[0], Params, /*isVarArg=*/false),
- Attributes);
+ Attribute);
}
return AutoreleaseCallee;
}
-/// IsPotentialUse - Test whether the given value is possible a
-/// reference-counted pointer, including tests which utilize AliasAnalysis.
+/// Test whether the given value is possible a reference-counted pointer,
+/// including tests which utilize AliasAnalysis.
static bool IsPotentialUse(const Value *Op, AliasAnalysis &AA) {
// First make the rudimentary check.
if (!IsPotentialUse(Op))
@@ -1897,9 +1965,8 @@ static bool IsPotentialUse(const Value *Op, AliasAnalysis &AA) {
return true;
}
-/// CanAlterRefCount - Test whether the given instruction can result in a
-/// reference count modification (positive or negative) for the pointer's
-/// object.
+/// Test whether the given instruction can result in a reference count
+/// modification (positive or negative) for the pointer's object.
static bool
CanAlterRefCount(const Instruction *Inst, const Value *Ptr,
ProvenanceAnalysis &PA, InstructionClass Class) {
@@ -1933,8 +2000,8 @@ CanAlterRefCount(const Instruction *Inst, const Value *Ptr,
return true;
}
-/// CanUse - Test whether the given instruction can "use" the given pointer's
-/// object in a way that requires the reference count to be positive.
+/// Test whether the given instruction can "use" the given pointer's object in a
+/// way that requires the reference count to be positive.
static bool
CanUse(const Instruction *Inst, const Value *Ptr, ProvenanceAnalysis &PA,
InstructionClass Class) {
@@ -1978,8 +2045,8 @@ CanUse(const Instruction *Inst, const Value *Ptr, ProvenanceAnalysis &PA,
return false;
}
-/// CanInterruptRV - Test whether the given instruction can autorelease
-/// any pointer or cause an autoreleasepool pop.
+/// Test whether the given instruction can autorelease any pointer or cause an
+/// autoreleasepool pop.
static bool
CanInterruptRV(InstructionClass Class) {
switch (Class) {
@@ -1997,8 +2064,11 @@ CanInterruptRV(InstructionClass Class) {
}
namespace {
- /// DependenceKind - There are several kinds of dependence-like concepts in
- /// use here.
+ /// \enum DependenceKind
+ /// \brief Defines different dependence kinds among various ARC constructs.
+ ///
+ /// There are several kinds of dependence-like concepts in use here.
+ ///
enum DependenceKind {
NeedsPositiveRetainCount,
AutoreleasePoolBoundary,
@@ -2009,8 +2079,8 @@ namespace {
};
}
-/// Depends - Test if there can be dependencies on Inst through Arg. This
-/// function only tests dependencies relevant for removing pairs of calls.
+/// Test if there can be dependencies on Inst through Arg. This function only
+/// tests dependencies relevant for removing pairs of calls.
static bool
Depends(DependenceKind Flavor, Instruction *Inst, const Value *Arg,
ProvenanceAnalysis &PA) {
@@ -2095,8 +2165,9 @@ Depends(DependenceKind Flavor, Instruction *Inst, const Value *Arg,
llvm_unreachable("Invalid dependence flavor");
}
-/// FindDependencies - Walk up the CFG from StartPos (which is in StartBB) and
-/// find local and non-local dependencies on Arg.
+/// Walk up the CFG from StartPos (which is in StartBB) and find local and
+/// non-local dependencies on Arg.
+///
/// TODO: Cache results?
static void
FindDependencies(DependenceKind Flavor,
@@ -2168,8 +2239,8 @@ static bool isNoopInstruction(const Instruction *I) {
cast<GetElementPtrInst>(I)->hasAllZeroIndices());
}
-/// OptimizeRetainCall - Turn objc_retain into
-/// objc_retainAutoreleasedReturnValue if the operand is a return value.
+/// Turn objc_retain into objc_retainAutoreleasedReturnValue if the operand is a
+/// return value.
void
ObjCARCOpt::OptimizeRetainCall(Function &F, Instruction *Retain) {
ImmutableCallSite CS(GetObjCArg(Retain));
@@ -2187,12 +2258,22 @@ ObjCARCOpt::OptimizeRetainCall(Function &F, Instruction *Retain) {
// Turn it to an objc_retainAutoreleasedReturnValue..
Changed = true;
++NumPeeps;
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeRetainCall: Transforming "
+ "objc_retain => objc_retainAutoreleasedReturnValue"
+ " since the operand is a return value.\n"
+ " Old: "
+ << *Retain << "\n");
+
cast<CallInst>(Retain)->setCalledFunction(getRetainRVCallee(F.getParent()));
+
+ DEBUG(dbgs() << " New: "
+ << *Retain << "\n");
}
-/// OptimizeRetainRVCall - Turn objc_retainAutoreleasedReturnValue into
-/// objc_retain if the operand is not a return value. Or, if it can be paired
-/// with an objc_autoreleaseReturnValue, delete the pair and return true.
+/// Turn objc_retainAutoreleasedReturnValue into objc_retain if the operand is
+/// not a return value. Or, if it can be paired with an
+/// objc_autoreleaseReturnValue, delete the pair and return true.
bool
ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) {
// Check for the argument being from an immediately preceding call or invoke.
@@ -2225,6 +2306,11 @@ ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) {
GetObjCArg(I) == Arg) {
Changed = true;
++NumPeeps;
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeRetainRVCall: Erasing " << *I << "\n"
+ << " Erasing " << *RetainRV
+ << "\n");
+
EraseInstruction(I);
EraseInstruction(RetainRV);
return true;
@@ -2234,14 +2320,26 @@ ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) {
// Turn it to a plain objc_retain.
Changed = true;
++NumPeeps;
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeRetainRVCall: Transforming "
+ "objc_retainAutoreleasedReturnValue => "
+ "objc_retain since the operand is not a return value.\n"
+ " Old: "
+ << *RetainRV << "\n");
+
cast<CallInst>(RetainRV)->setCalledFunction(getRetainCallee(F.getParent()));
+
+ DEBUG(dbgs() << " New: "
+ << *RetainRV << "\n");
+
return false;
}
-/// OptimizeAutoreleaseRVCall - Turn objc_autoreleaseReturnValue into
-/// objc_autorelease if the result is not used as a return value.
+/// Turn objc_autoreleaseReturnValue into objc_autorelease if the result is not
+/// used as a return value.
void
-ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV) {
+ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV,
+ InstructionClass &Class) {
// Check for a return of the pointer value.
const Value *Ptr = GetObjCArg(AutoreleaseRV);
SmallVector<const Value *, 2> Users;
@@ -2260,12 +2358,27 @@ ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV) {
Changed = true;
++NumPeeps;
- cast<CallInst>(AutoreleaseRV)->
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeAutoreleaseRVCall: Transforming "
+ "objc_autoreleaseReturnValue => "
+ "objc_autorelease since its operand is not used as a return "
+ "value.\n"
+ " Old: "
+ << *AutoreleaseRV << "\n");
+
+ CallInst *AutoreleaseRVCI = cast<CallInst>(AutoreleaseRV);
+ AutoreleaseRVCI->
setCalledFunction(getAutoreleaseCallee(F.getParent()));
+ AutoreleaseRVCI->setTailCall(false); // Never tail call objc_autorelease.
+ Class = IC_Autorelease;
+
+ DEBUG(dbgs() << " New: "
+ << *AutoreleaseRV << "\n");
+
}
-/// OptimizeIndividualCalls - Visit each call, one at a time, and make
-/// simplifications without doing any additional analysis.
+/// Visit each call, one at a time, and make simplifications without doing any
+/// additional analysis.
void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
// Reset all the flags in preparation for recomputing them.
UsedInThisFunction = 0;
@@ -2273,6 +2386,10 @@ void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
// Visit all objc_* calls in F.
for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
Instruction *Inst = &*I++;
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Visiting: " <<
+ *Inst << "\n");
+
InstructionClass Class = GetBasicInstructionClass(Inst);
switch (Class) {
@@ -2289,6 +2406,8 @@ void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
case IC_NoopCast:
Changed = true;
++NumNoops;
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Erasing no-op cast:"
+ " " << *Inst << "\n");
EraseInstruction(Inst);
continue;
@@ -2305,7 +2424,13 @@ void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
Constant::getNullValue(Ty),
CI);
- CI->replaceAllUsesWith(UndefValue::get(CI->getType()));
+ llvm::Value *NewValue = UndefValue::get(CI->getType());
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: A null "
+ "pointer-to-weak-pointer is undefined behavior.\n"
+ " Old = " << *CI <<
+ "\n New = " <<
+ *NewValue << "\n");
+ CI->replaceAllUsesWith(NewValue);
CI->eraseFromParent();
continue;
}
@@ -2321,7 +2446,15 @@ void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
Constant::getNullValue(Ty),
CI);
- CI->replaceAllUsesWith(UndefValue::get(CI->getType()));
+
+ llvm::Value *NewValue = UndefValue::get(CI->getType());
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: A null "
+ "pointer-to-weak-pointer is undefined behavior.\n"
+ " Old = " << *CI <<
+ "\n New = " <<
+ *NewValue << "\n");
+
+ CI->replaceAllUsesWith(NewValue);
CI->eraseFromParent();
continue;
}
@@ -2335,7 +2468,7 @@ void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
continue;
break;
case IC_AutoreleaseRV:
- OptimizeAutoreleaseRVCall(F, Inst);
+ OptimizeAutoreleaseRVCall(F, Inst, Class);
break;
}
@@ -2355,6 +2488,14 @@ void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
Call->getArgOperand(0), "", Call);
NewCall->setMetadata(ImpreciseReleaseMDKind,
MDNode::get(C, ArrayRef<Value *>()));
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Replacing "
+ "objc_autorelease(x) with objc_release(x) since x is "
+ "otherwise unused.\n"
+ " Old: " << *Call <<
+ "\n New: " <<
+ *NewCall << "\n");
+
EraseInstruction(Call);
Inst = NewCall;
Class = IC_Release;
@@ -2365,12 +2506,27 @@ void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
// a tail keyword.
if (IsAlwaysTail(Class)) {
Changed = true;
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Adding tail keyword"
+ " to function since it can never be passed stack args: " << *Inst <<
+ "\n");
cast<CallInst>(Inst)->setTailCall();
}
+ // Ensure that functions that can never have a "tail" keyword due to the
+ // semantics of ARC truly do not do so.
+ if (IsNeverTail(Class)) {
+ Changed = true;
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Removing tail "
+ "keyword from function: " << *Inst <<
+ "\n");
+ cast<CallInst>(Inst)->setTailCall(false);
+ }
+
// Set nounwind as needed.
if (IsNoThrow(Class)) {
Changed = true;
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Found no throw"
+ " class. Setting nounwind on: " << *Inst << "\n");
cast<CallInst>(Inst)->setDoesNotThrow();
}
@@ -2385,6 +2541,8 @@ void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
if (isNullOrUndef(Arg)) {
Changed = true;
++NumNoops;
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: ARC calls with "
+ " null are no-ops. Erasing: " << *Inst << "\n");
EraseInstruction(Inst);
continue;
}
@@ -2477,21 +2635,28 @@ void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
Op = new BitCastInst(Op, ParamTy, "", InsertPos);
Clone->setArgOperand(0, Op);
Clone->insertBefore(InsertPos);
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Cloning "
+ << *CInst << "\n"
+ " And inserting "
+ "clone at " << *InsertPos << "\n");
Worklist.push_back(std::make_pair(Clone, Incoming));
}
}
// Erase the original call.
+ DEBUG(dbgs() << "Erasing: " << *CInst << "\n");
EraseInstruction(CInst);
continue;
}
}
} while (!Worklist.empty());
}
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Finished List.\n");
}
-/// CheckForCFGHazards - Check for critical edges, loop boundaries, irreducible
-/// control flow, or other CFG structures where moving code across the edge
-/// would result in it being executed more.
+/// Check for critical edges, loop boundaries, irreducible control flow, or
+/// other CFG structures where moving code across the edge would result in it
+/// being executed more.
void
ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB,
DenseMap<const BasicBlock *, BBState> &BBStates,
@@ -2513,8 +2678,13 @@ ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB,
// If the terminator is an invoke marked with the
// clang.arc.no_objc_arc_exceptions metadata, the unwind edge can be
// ignored, for ARC purposes.
- if (isa<InvokeInst>(TI) && TI->getMetadata(NoObjCARCExceptionsMDKind))
+ if (isa<InvokeInst>(TI) && TI->getMetadata(NoObjCARCExceptionsMDKind)) {
+ DEBUG(dbgs() << "ObjCARCOpt::CheckForCFGHazards: Found an invoke "
+ "terminator marked with "
+ "clang.arc.no_objc_arc_exceptions. Ignoring unwind "
+ "edge.\n");
--SE;
+ }
for (; SI != SE; ++SI) {
Sequence SuccSSeq = S_None;
@@ -2567,8 +2737,13 @@ ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB,
// If the terminator is an invoke marked with the
// clang.arc.no_objc_arc_exceptions metadata, the unwind edge can be
// ignored, for ARC purposes.
- if (isa<InvokeInst>(TI) && TI->getMetadata(NoObjCARCExceptionsMDKind))
+ if (isa<InvokeInst>(TI) && TI->getMetadata(NoObjCARCExceptionsMDKind)) {
+ DEBUG(dbgs() << "ObjCARCOpt::CheckForCFGHazards: Found an invoke "
+ "terminator marked with "
+ "clang.arc.no_objc_arc_exceptions. Ignoring unwind "
+ "edge.\n");
--SE;
+ }
for (; SI != SE; ++SI) {
Sequence SuccSSeq = S_None;
@@ -2635,8 +2810,11 @@ ObjCARCOpt::VisitInstructionBottomUp(Instruction *Inst,
// Theoretically we could implement removal of nested retain+release
// pairs by making PtrState hold a stack of states, but this is
// simple and avoids adding overhead for the non-nested case.
- if (S.GetSeq() == S_Release || S.GetSeq() == S_MovableRelease)
+ if (S.GetSeq() == S_Release || S.GetSeq() == S_MovableRelease) {
+ DEBUG(dbgs() << "ObjCARCOpt::VisitInstructionBottomUp: Found nested "
+ "releases (i.e. a release pair)\n");
NestingDetected = true;
+ }
MDNode *ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind);
S.ResetSequenceProgress(ReleaseMetadata ? S_MovableRelease : S_Release);
@@ -2799,6 +2977,8 @@ ObjCARCOpt::VisitBottomUp(BasicBlock *BB,
if (isa<InvokeInst>(Inst))
continue;
+ DEBUG(dbgs() << "ObjCARCOpt::VisitButtonUp: Visiting " << *Inst << "\n");
+
NestingDetected |= VisitInstructionBottomUp(Inst, BB, Retains, MyStates);
}
@@ -2981,6 +3161,9 @@ ObjCARCOpt::VisitTopDown(BasicBlock *BB,
// Visit all the instructions, top-down.
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
Instruction *Inst = I;
+
+ DEBUG(dbgs() << "ObjCARCOpt::VisitTopDown: Visiting " << *Inst << "\n");
+
NestingDetected |= VisitInstructionTopDown(Inst, Releases, MyStates);
}
@@ -2994,7 +3177,7 @@ ComputePostOrders(Function &F,
SmallVectorImpl<BasicBlock *> &ReverseCFGPostOrder,
unsigned NoObjCARCExceptionsMDKind,
DenseMap<const BasicBlock *, BBState> &BBStates) {
- /// Visited - The visited set, for doing DFS walks.
+ /// The visited set, for doing DFS walks.
SmallPtrSet<BasicBlock *, 16> Visited;
// Do DFS, computing the PostOrder.
@@ -3019,8 +3202,13 @@ ComputePostOrders(Function &F,
// If the terminator is an invoke marked with the
// clang.arc.no_objc_arc_exceptions metadata, the unwind edge can be
// ignored, for ARC purposes.
- if (isa<InvokeInst>(TI) && TI->getMetadata(NoObjCARCExceptionsMDKind))
+ if (isa<InvokeInst>(TI) && TI->getMetadata(NoObjCARCExceptionsMDKind)) {
+ DEBUG(dbgs() << "ObjCARCOpt::ComputePostOrders: Found an invoke "
+ "terminator marked with "
+ "clang.arc.no_objc_arc_exceptions. Ignoring unwind "
+ "edge.\n");
--SE;
+ }
while (SuccStack.back().second != SE) {
BasicBlock *SuccBB = *SuccStack.back().second++;
@@ -3075,7 +3263,7 @@ ComputePostOrders(Function &F,
}
}
-// Visit - Visit the function both top-down and bottom-up.
+// Visit the function both top-down and bottom-up.
bool
ObjCARCOpt::Visit(Function &F,
DenseMap<const BasicBlock *, BBState> &BBStates,
@@ -3110,7 +3298,7 @@ ObjCARCOpt::Visit(Function &F,
return TopDownNestingDetected && BottomUpNestingDetected;
}
-/// MoveCalls - Move the calls in RetainsToMove and ReleasesToMove.
+/// Move the calls in RetainsToMove and ReleasesToMove.
void ObjCARCOpt::MoveCalls(Value *Arg,
RRInfo &RetainsToMove,
RRInfo &ReleasesToMove,
@@ -3138,6 +3326,11 @@ void ObjCARCOpt::MoveCalls(Value *Arg,
MDNode::get(M->getContext(), ArrayRef<Value *>()));
else
Call->setTailCall();
+
+ DEBUG(dbgs() << "ObjCARCOpt::MoveCalls: Inserting new Release: " << *Call
+ << "\n"
+ " At insertion point: " << *InsertPt
+ << "\n");
}
for (SmallPtrSet<Instruction *, 2>::const_iterator
PI = RetainsToMove.ReverseInsertPts.begin(),
@@ -3153,6 +3346,11 @@ void ObjCARCOpt::MoveCalls(Value *Arg,
Call->setDoesNotThrow();
if (ReleasesToMove.IsTailCallRelease)
Call->setTailCall();
+
+ DEBUG(dbgs() << "ObjCARCOpt::MoveCalls: Inserting new Retain: " << *Call
+ << "\n"
+ " At insertion point: " << *InsertPt
+ << "\n");
}
// Delete the original retain and release calls.
@@ -3162,6 +3360,8 @@ void ObjCARCOpt::MoveCalls(Value *Arg,
Instruction *OrigRetain = *AI;
Retains.blot(OrigRetain);
DeadInsts.push_back(OrigRetain);
+ DEBUG(dbgs() << "ObjCARCOpt::MoveCalls: Deleting retain: " << *OrigRetain <<
+ "\n");
}
for (SmallPtrSet<Instruction *, 2>::const_iterator
AI = ReleasesToMove.Calls.begin(),
@@ -3169,11 +3369,13 @@ void ObjCARCOpt::MoveCalls(Value *Arg,
Instruction *OrigRelease = *AI;
Releases.erase(OrigRelease);
DeadInsts.push_back(OrigRelease);
+ DEBUG(dbgs() << "ObjCARCOpt::MoveCalls: Deleting release: " << *OrigRelease
+ << "\n");
}
}
-/// PerformCodePlacement - Identify pairings between the retains and releases,
-/// and delete and/or move them.
+/// Identify pairings between the retains and releases, and delete and/or move
+/// them.
bool
ObjCARCOpt::PerformCodePlacement(DenseMap<const BasicBlock *, BBState>
&BBStates,
@@ -3194,6 +3396,10 @@ ObjCARCOpt::PerformCodePlacement(DenseMap<const BasicBlock *, BBState>
if (!V) continue; // blotted
Instruction *Retain = cast<Instruction>(V);
+
+ DEBUG(dbgs() << "ObjCARCOpt::PerformCodePlacement: Visiting: " << *Retain
+ << "\n");
+
Value *Arg = GetObjCArg(Retain);
// If the object being released is in static or stack storage, we know it's
@@ -3382,13 +3588,17 @@ ObjCARCOpt::PerformCodePlacement(DenseMap<const BasicBlock *, BBState>
return AnyPairsCompletelyEliminated;
}
-/// OptimizeWeakCalls - Weak pointer optimizations.
+/// Weak pointer optimizations.
void ObjCARCOpt::OptimizeWeakCalls(Function &F) {
// First, do memdep-style RLE and S2L optimizations. We can't use memdep
// itself because it uses AliasAnalysis and we need to do provenance
// queries instead.
for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
Instruction *Inst = &*I++;
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeWeakCalls: Visiting: " << *Inst <<
+ "\n");
+
InstructionClass Class = GetBasicInstructionClass(Inst);
if (Class != IC_LoadWeak && Class != IC_LoadWeakRetained)
continue;
@@ -3534,10 +3744,13 @@ void ObjCARCOpt::OptimizeWeakCalls(Function &F) {
done:;
}
}
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeWeakCalls: Finished List.\n\n");
+
}
-/// OptimizeSequences - Identify program paths which execute sequences of
-/// retains and releases which can be eliminated.
+/// Identify program paths which execute sequences of retains and releases which
+/// can be eliminated.
bool ObjCARCOpt::OptimizeSequences(Function &F) {
/// Releases, Retains - These are used to store the results of the main flow
/// analysis. These use Value* as the key instead of Instruction* so that the
@@ -3546,7 +3759,7 @@ bool ObjCARCOpt::OptimizeSequences(Function &F) {
DenseMap<Value *, RRInfo> Releases;
MapVector<Value *, RRInfo> Retains;
- /// BBStates, This is used during the traversal of the function to track the
+ /// This is used during the traversal of the function to track the
/// states for each identified object at each block.
DenseMap<const BasicBlock *, BBState> BBStates;
@@ -3558,7 +3771,7 @@ bool ObjCARCOpt::OptimizeSequences(Function &F) {
NestingDetected;
}
-/// OptimizeReturns - Look for this pattern:
+/// Look for this pattern:
/// \code
/// %call = call i8* @something(...)
/// %2 = call i8* @objc_retain(i8* %call)
@@ -3582,6 +3795,9 @@ void ObjCARCOpt::OptimizeReturns(Function &F) {
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
BasicBlock *BB = FI;
ReturnInst *Ret = dyn_cast<ReturnInst>(&BB->back());
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeReturns: Visiting: " << *Ret << "\n");
+
if (!Ret) continue;
const Value *Arg = StripPointerCastsAndObjCCalls(Ret->getOperand(0));
@@ -3627,7 +3843,14 @@ void ObjCARCOpt::OptimizeReturns(Function &F) {
// Convert the autorelease to an autoreleaseRV, since it's
// returning the value.
if (AutoreleaseClass == IC_Autorelease) {
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeReturns: Converting autorelease "
+ "=> autoreleaseRV since it's returning a value.\n"
+ " In: " << *Autorelease
+ << "\n");
Autorelease->setCalledFunction(getAutoreleaseRVCallee(F.getParent()));
+ DEBUG(dbgs() << " Out: " << *Autorelease
+ << "\n");
+ Autorelease->setTailCall(); // Always tail call autoreleaseRV.
AutoreleaseClass = IC_AutoreleaseRV;
}
@@ -3655,6 +3878,9 @@ void ObjCARCOpt::OptimizeReturns(Function &F) {
// If so, we can zap the retain and autorelease.
Changed = true;
++NumRets;
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeReturns: Erasing: " << *Retain
+ << "\n Erasing: "
+ << *Autorelease << "\n");
EraseInstruction(Retain);
EraseInstruction(Autorelease);
}
@@ -3665,6 +3891,9 @@ void ObjCARCOpt::OptimizeReturns(Function &F) {
DependingInstructions.clear();
Visited.clear();
}
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeReturns: Finished List.\n\n");
+
}
bool ObjCARCOpt::doInitialization(Module &M) {
@@ -3709,6 +3938,8 @@ bool ObjCARCOpt::runOnFunction(Function &F) {
Changed = false;
+ DEBUG(dbgs() << "ObjCARCOpt: Visiting Function: " << F.getName() << "\n");
+
PA.setAA(&getAnalysis<AliasAnalysis>());
// This pass performs several distinct transformations. As a compile-time aid
@@ -3742,6 +3973,8 @@ bool ObjCARCOpt::runOnFunction(Function &F) {
(1 << IC_AutoreleaseRV)))
OptimizeReturns(F);
+ DEBUG(dbgs() << "\n");
+
return Changed;
}
@@ -3749,44 +3982,52 @@ void ObjCARCOpt::releaseMemory() {
PA.clear();
}
-//===----------------------------------------------------------------------===//
-// ARC contraction.
-//===----------------------------------------------------------------------===//
+/// @}
+///
+/// \defgroup ARCContract ARC Contraction.
+/// @{
// TODO: ObjCARCContract could insert PHI nodes when uses aren't
// dominated by single calls.
#include "llvm/Analysis/Dominators.h"
-#include "llvm/InlineAsm.h"
-#include "llvm/Operator.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/Operator.h"
STATISTIC(NumStoreStrongs, "Number objc_storeStrong calls formed");
namespace {
- /// ObjCARCContract - Late ARC optimizations. These change the IR in a way
- /// that makes it difficult to be analyzed by ObjCARCOpt, so it's run late.
+ /// \brief Late ARC optimizations
+ ///
+ /// These change the IR in a way that makes it difficult to be analyzed by
+ /// ObjCARCOpt, so it's run late.
class ObjCARCContract : public FunctionPass {
bool Changed;
AliasAnalysis *AA;
DominatorTree *DT;
ProvenanceAnalysis PA;
- /// Run - A flag indicating whether this optimization pass should run.
+ /// A flag indicating whether this optimization pass should run.
bool Run;
- /// StoreStrongCallee, etc. - Declarations for ObjC runtime
- /// functions, for use in creating calls to them. These are initialized
- /// lazily to avoid cluttering up the Module with unused declarations.
- Constant *StoreStrongCallee,
- *RetainAutoreleaseCallee, *RetainAutoreleaseRVCallee;
+ /// Declarations for ObjC runtime functions, for use in creating calls to
+ /// them. These are initialized lazily to avoid cluttering up the Module
+ /// with unused declarations.
- /// RetainRVMarker - The inline asm string to insert between calls and
- /// RetainRV calls to make the optimization work on targets which need it.
+ /// Declaration for objc_storeStrong().
+ Constant *StoreStrongCallee;
+ /// Declaration for objc_retainAutorelease().
+ Constant *RetainAutoreleaseCallee;
+ /// Declaration for objc_retainAutoreleaseReturnValue().
+ Constant *RetainAutoreleaseRVCallee;
+
+ /// The inline asm string to insert between calls and RetainRV calls to make
+ /// the optimization work on targets which need it.
const MDString *RetainRVMarker;
- /// StoreStrongCalls - The set of inserted objc_storeStrong calls. If
- /// at the end of walking the function we have found no alloca
- /// instructions, these calls can be marked "tail".
+ /// The set of inserted objc_storeStrong calls. If at the end of walking the
+ /// function we have found no alloca instructions, these calls can be marked
+ /// "tail".
SmallPtrSet<CallInst *, 8> StoreStrongCalls;
Constant *getStoreStrongCallee(Module *M);
@@ -3840,16 +4081,16 @@ Constant *ObjCARCContract::getStoreStrongCallee(Module *M) {
Type *I8XX = PointerType::getUnqual(I8X);
Type *Params[] = { I8XX, I8X };
- AttributeSet Attributes = AttributeSet()
+ AttributeSet Attribute = AttributeSet()
.addAttr(M->getContext(), AttributeSet::FunctionIndex,
- Attributes::get(C, Attributes::NoUnwind))
- .addAttr(M->getContext(), 1, Attributes::get(C, Attributes::NoCapture));
+ Attribute::get(C, Attribute::NoUnwind))
+ .addAttr(M->getContext(), 1, Attribute::get(C, Attribute::NoCapture));
StoreStrongCallee =
M->getOrInsertFunction(
"objc_storeStrong",
FunctionType::get(Type::getVoidTy(C), Params, /*isVarArg=*/false),
- Attributes);
+ Attribute);
}
return StoreStrongCallee;
}
@@ -3860,11 +4101,11 @@ Constant *ObjCARCContract::getRetainAutoreleaseCallee(Module *M) {
Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
Type *Params[] = { I8X };
FunctionType *FTy = FunctionType::get(I8X, Params, /*isVarArg=*/false);
- AttributeSet Attributes =
+ AttributeSet Attribute =
AttributeSet().addAttr(M->getContext(), AttributeSet::FunctionIndex,
- Attributes::get(C, Attributes::NoUnwind));
+ Attribute::get(C, Attribute::NoUnwind));
RetainAutoreleaseCallee =
- M->getOrInsertFunction("objc_retainAutorelease", FTy, Attributes);
+ M->getOrInsertFunction("objc_retainAutorelease", FTy, Attribute);
}
return RetainAutoreleaseCallee;
}
@@ -3875,17 +4116,17 @@ Constant *ObjCARCContract::getRetainAutoreleaseRVCallee(Module *M) {
Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
Type *Params[] = { I8X };
FunctionType *FTy = FunctionType::get(I8X, Params, /*isVarArg=*/false);
- AttributeSet Attributes =
+ AttributeSet Attribute =
AttributeSet().addAttr(M->getContext(), AttributeSet::FunctionIndex,
- Attributes::get(C, Attributes::NoUnwind));
+ Attribute::get(C, Attribute::NoUnwind));
RetainAutoreleaseRVCallee =
M->getOrInsertFunction("objc_retainAutoreleaseReturnValue", FTy,
- Attributes);
+ Attribute);
}
return RetainAutoreleaseRVCallee;
}
-/// ContractAutorelease - Merge an autorelease with a retain into a fused call.
+/// Merge an autorelease with a retain into a fused call.
bool
ObjCARCContract::ContractAutorelease(Function &F, Instruction *Autorelease,
InstructionClass Class,
@@ -3924,19 +4165,27 @@ ObjCARCContract::ContractAutorelease(Function &F, Instruction *Autorelease,
Changed = true;
++NumPeeps;
+ DEBUG(dbgs() << "ObjCARCContract::ContractAutorelease: Fusing "
+ "retain/autorelease. Erasing: " << *Autorelease << "\n"
+ " Old Retain: "
+ << *Retain << "\n");
+
if (Class == IC_AutoreleaseRV)
Retain->setCalledFunction(getRetainAutoreleaseRVCallee(F.getParent()));
else
Retain->setCalledFunction(getRetainAutoreleaseCallee(F.getParent()));
+ DEBUG(dbgs() << " New Retain: "
+ << *Retain << "\n");
+
EraseInstruction(Autorelease);
return true;
}
-/// ContractRelease - Attempt to merge an objc_release with a store, load, and
-/// objc_retain to form an objc_storeStrong. This can be a little tricky because
-/// the instructions don't always appear in order, and there may be unrelated
-/// intervening instructions.
+/// Attempt to merge an objc_release with a store, load, and objc_retain to form
+/// an objc_storeStrong. This can be a little tricky because the instructions
+/// don't always appear in order, and there may be unrelated intervening
+/// instructions.
void ObjCARCContract::ContractRelease(Instruction *Release,
inst_iterator &Iter) {
LoadInst *Load = dyn_cast<LoadInst>(GetObjCArg(Release));
@@ -4079,6 +4328,8 @@ bool ObjCARCContract::runOnFunction(Function &F) {
for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
Instruction *Inst = &*I++;
+ DEBUG(dbgs() << "ObjCARCContract: Visiting: " << *Inst << "\n");
+
// Only these library routines return their argument. In particular,
// objc_retainBlock does not necessarily return its argument.
InstructionClass Class = GetBasicInstructionClass(Inst);
@@ -4116,6 +4367,8 @@ bool ObjCARCContract::runOnFunction(Function &F) {
} while (isNoopInstruction(BBI));
if (&*BBI == GetObjCArg(Inst)) {
+ DEBUG(dbgs() << "ObjCARCContract: Adding inline asm marker for "
+ "retainAutoreleasedReturnValue optimization.\n");
Changed = true;
InlineAsm *IA =
InlineAsm::get(FunctionType::get(Type::getVoidTy(Inst->getContext()),
@@ -4135,6 +4388,10 @@ bool ObjCARCContract::runOnFunction(Function &F) {
ConstantPointerNull::get(cast<PointerType>(CI->getType()));
Changed = true;
new StoreInst(Null, CI->getArgOperand(0), CI);
+
+ DEBUG(dbgs() << "OBJCARCContract: Old = " << *CI << "\n"
+ << " New = " << *Null << "\n");
+
CI->replaceAllUsesWith(Null);
CI->eraseFromParent();
}
@@ -4154,6 +4411,8 @@ bool ObjCARCContract::runOnFunction(Function &F) {
continue;
}
+ DEBUG(dbgs() << "ObjCARCContract: Finished List.\n\n");
+
// Don't use GetObjCArg because we don't want to look through bitcasts
// and such; to do the replacement, the argument must have type i8*.
const Value *Arg = cast<CallInst>(Inst)->getArgOperand(0);
@@ -4230,3 +4489,6 @@ bool ObjCARCContract::runOnFunction(Function &F) {
return Changed;
}
+
+/// @}
+///
diff --git a/lib/Transforms/Scalar/Reassociate.cpp b/lib/Transforms/Scalar/Reassociate.cpp
index 569439aaf4..0da3746950 100644
--- a/lib/Transforms/Scalar/Reassociate.cpp
+++ b/lib/Transforms/Scalar/Reassociate.cpp
@@ -28,12 +28,12 @@
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Assembly/Writer.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
diff --git a/lib/Transforms/Scalar/Reg2Mem.cpp b/lib/Transforms/Scalar/Reg2Mem.cpp
index 5524e01230..07f540a301 100644
--- a/lib/Transforms/Scalar/Reg2Mem.cpp
+++ b/lib/Transforms/Scalar/Reg2Mem.cpp
@@ -19,11 +19,11 @@
#define DEBUG_TYPE "reg2mem"
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/BasicBlock.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
#include "llvm/Transforms/Utils/Local.h"
diff --git a/lib/Transforms/Scalar/SCCP.cpp b/lib/Transforms/Scalar/SCCP.cpp
index 28aaddc50e..3e935d8dc0 100644
--- a/lib/Transforms/Scalar/SCCP.cpp
+++ b/lib/Transforms/Scalar/SCCP.cpp
@@ -26,11 +26,11 @@
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/Constants.h"
-#include "llvm/DataLayout.h"
-#include "llvm/DerivedTypes.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
#include "llvm/InstVisitor.h"
-#include "llvm/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
diff --git a/lib/Transforms/Scalar/SROA.cpp b/lib/Transforms/Scalar/SROA.cpp
index 1c220ca0f6..420417187f 100644
--- a/lib/Transforms/Scalar/SROA.cpp
+++ b/lib/Transforms/Scalar/SROA.cpp
@@ -33,19 +33,19 @@
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/PtrUseVisitor.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Constants.h"
#include "llvm/DIBuilder.h"
-#include "llvm/DataLayout.h"
#include "llvm/DebugInfo.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
#include "llvm/InstVisitor.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/Operator.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
@@ -1642,44 +1642,6 @@ private:
};
}
-/// \brief Accumulate the constant offsets in a GEP into a single APInt offset.
-///
-/// If the provided GEP is all-constant, the total byte offset formed by the
-/// GEP is computed and Offset is set to it. If the GEP has any non-constant
-/// operands, the function returns false and the value of Offset is unmodified.
-static bool accumulateGEPOffsets(const DataLayout &TD, GEPOperator &GEP,
- APInt &Offset) {
- APInt GEPOffset(Offset.getBitWidth(), 0);
- for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
- GTI != GTE; ++GTI) {
- ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
- if (!OpC)
- return false;
- if (OpC->isZero()) continue;
-
- // Handle a struct index, which adds its field offset to the pointer.
- if (StructType *STy = dyn_cast<StructType>(*GTI)) {
- unsigned ElementIdx = OpC->getZExtValue();
- const StructLayout *SL = TD.getStructLayout(STy);
- GEPOffset += APInt(Offset.getBitWidth(),
- SL->getElementOffset(ElementIdx));
- continue;
- }
-
- APInt TypeSize(Offset.getBitWidth(),
- TD.getTypeAllocSize(GTI.getIndexedType()));
- if (VectorType *VTy = dyn_cast<VectorType>(*GTI)) {
- assert((VTy->getScalarSizeInBits() % 8) == 0 &&
- "vector element size is not a multiple of 8, cannot GEP over it");
- TypeSize = VTy->getScalarSizeInBits() / 8;
- }
-
- GEPOffset += OpC->getValue().sextOrTrunc(Offset.getBitWidth()) * TypeSize;
- }
- Offset = GEPOffset;
- return true;
-}
-
/// \brief Build a GEP out of a base pointer and indices.
///
/// This will return the BasePtr if that is valid, or build a new GEP
@@ -1762,7 +1724,7 @@ static Value *getNaturalGEPRecursively(IRBuilder<> &IRB, const DataLayout &TD,
// extremely poorly defined currently. The long-term goal is to remove GEPing
// over a vector from the IR completely.
if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
- unsigned ElementSizeInBits = VecTy->getScalarSizeInBits();
+ unsigned ElementSizeInBits = TD.getTypeSizeInBits(VecTy->getScalarType());
if (ElementSizeInBits % 8)
return 0; // GEPs over non-multiple of 8 size vector elements are invalid.
APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
@@ -1882,7 +1844,7 @@ static Value *getAdjustedPtr(IRBuilder<> &IRB, const DataLayout &TD,
// First fold any existing GEPs into the offset.
while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
APInt GEPOffset(Offset.getBitWidth(), 0);
- if (!accumulateGEPOffsets(TD, *GEP, GEPOffset))
+ if (!GEP->accumulateConstantOffset(TD, GEPOffset))
break;
Offset += GEPOffset;
Ptr = GEP->getPointerOperand();
@@ -2009,15 +1971,14 @@ static bool isVectorPromotionViable(const DataLayout &TD,
if (!Ty)
return false;
- uint64_t VecSize = TD.getTypeSizeInBits(Ty);
- uint64_t ElementSize = Ty->getScalarSizeInBits();
+ uint64_t ElementSize = TD.getTypeSizeInBits(Ty->getScalarType());
// While the definition of LLVM vectors is bitpacked, we don't support sizes
// that aren't byte sized.
if (ElementSize % 8)
return false;
- assert((VecSize % 8) == 0 && "vector size not a multiple of element size?");
- VecSize /= 8;
+ assert((TD.getTypeSizeInBits(Ty) % 8) == 0 &&
+ "vector size not a multiple of element size?");
ElementSize /= 8;
for (; I != E; ++I) {
@@ -2150,7 +2111,7 @@ static bool isIntegerWideningViable(const DataLayout &TD,
!canConvertValue(TD, ValueTy, AllocaTy))
return false;
} else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I->U->getUser())) {
- if (MI->isVolatile())
+ if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
return false;
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I->U->getUser())) {
const AllocaPartitioning::MemTransferOffsets &MTO
@@ -2223,6 +2184,84 @@ static Value *insertInteger(const DataLayout &DL, IRBuilder<> &IRB, Value *Old,
return V;
}
+static Value *extractVector(IRBuilder<> &IRB, Value *V,
+ unsigned BeginIndex, unsigned EndIndex,
+ const Twine &Name) {
+ VectorType *VecTy = cast<VectorType>(V->getType());
+ unsigned NumElements = EndIndex - BeginIndex;
+ assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
+
+ if (NumElements == VecTy->getNumElements())
+ return V;
+
+ if (NumElements == 1) {
+ V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
+ Name + ".extract");
+ DEBUG(dbgs() << " extract: " << *V << "\n");
+ return V;
+ }
+
+ SmallVector<Constant*, 8> Mask;
+ Mask.reserve(NumElements);
+ for (unsigned i = BeginIndex; i != EndIndex; ++i)
+ Mask.push_back(IRB.getInt32(i));
+ V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
+ ConstantVector::get(Mask),
+ Name + ".extract");
+ DEBUG(dbgs() << " shuffle: " << *V << "\n");
+ return V;
+}
+
+static Value *insertVector(IRBuilder<> &IRB, Value *Old, Value *V,
+ unsigned BeginIndex, const Twine &Name) {
+ VectorType *VecTy = cast<VectorType>(Old->getType());
+ assert(VecTy && "Can only insert a vector into a vector");
+
+ VectorType *Ty = dyn_cast<VectorType>(V->getType());
+ if (!Ty) {
+ // Single element to insert.
+ V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
+ Name + ".insert");
+ DEBUG(dbgs() << " insert: " << *V << "\n");
+ return V;
+ }
+
+ assert(Ty->getNumElements() <= VecTy->getNumElements() &&
+ "Too many elements!");
+ if (Ty->getNumElements() == VecTy->getNumElements()) {
+ assert(V->getType() == VecTy && "Vector type mismatch");
+ return V;
+ }
+ unsigned EndIndex = BeginIndex + Ty->getNumElements();
+
+ // When inserting a smaller vector into the larger to store, we first
+ // use a shuffle vector to widen it with undef elements, and then
+ // a second shuffle vector to select between the loaded vector and the
+ // incoming vector.
+ SmallVector<Constant*, 8> Mask;
+ Mask.reserve(VecTy->getNumElements());
+ for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
+ if (i >= BeginIndex && i < EndIndex)
+ Mask.push_back(IRB.getInt32(i - BeginIndex));
+ else
+ Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
+ V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
+ ConstantVector::get(Mask),
+ Name + ".expand");
+ DEBUG(dbgs() << " shuffle1: " << *V << "\n");
+
+ Mask.clear();
+ for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
+ if (i >= BeginIndex && i < EndIndex)
+ Mask.push_back(IRB.getInt32(i));
+ else
+ Mask.push_back(IRB.getInt32(i + VecTy->getNumElements()));
+ V = IRB.CreateShuffleVector(V, Old, ConstantVector::get(Mask),
+ Name + "insert");
+ DEBUG(dbgs() << " shuffle2: " << *V << "\n");
+ return V;
+}
+
namespace {
/// \brief Visitor to rewrite instructions using a partition of an alloca to
/// use a new alloca.
@@ -2292,9 +2331,9 @@ public:
++NumVectorized;
VecTy = cast<VectorType>(NewAI.getAllocatedType());
ElementTy = VecTy->getElementType();
- assert((VecTy->getScalarSizeInBits() % 8) == 0 &&
+ assert((TD.getTypeSizeInBits(VecTy->getScalarType()) % 8) == 0 &&
"Only multiple-of-8 sized vector elements are viable");
- ElementSize = VecTy->getScalarSizeInBits() / 8;
+ ElementSize = TD.getTypeSizeInBits(VecTy->getScalarType()) / 8;
} else if (isIntegerWideningViable(TD, NewAI.getAllocatedType(),
NewAllocaBeginOffset, P, I, E)) {
IntTy = Type::getIntNTy(NewAI.getContext(),
@@ -2388,29 +2427,14 @@ private:
Pass.DeadInsts.insert(I);
}
- Value *rewriteVectorizedLoadInst(IRBuilder<> &IRB, LoadInst &LI, Value *OldOp) {
- Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
- getName(".load"));
+ Value *rewriteVectorizedLoadInst(IRBuilder<> &IRB) {
unsigned BeginIndex = getIndex(BeginOffset);
unsigned EndIndex = getIndex(EndOffset);
assert(EndIndex > BeginIndex && "Empty vector!");
- unsigned NumElements = EndIndex - BeginIndex;
- assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
- if (NumElements == 1) {
- V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
- getName(".extract"));
- DEBUG(dbgs() << " extract: " << *V << "\n");
- } else if (NumElements < VecTy->getNumElements()) {
- SmallVector<Constant*, 8> Mask;
- Mask.reserve(NumElements);
- for (unsigned i = BeginIndex; i != EndIndex; ++i)
- Mask.push_back(IRB.getInt32(i));
- V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
- ConstantVector::get(Mask),
- getName(".extract"));
- DEBUG(dbgs() << " shuffle: " << *V << "\n");
- }
- return V;
+
+ Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ getName(".load"));
+ return extractVector(IRB, V, BeginIndex, EndIndex, getName(".vec"));
}
Value *rewriteIntegerLoad(IRBuilder<> &IRB, LoadInst &LI) {
@@ -2457,7 +2481,7 @@ private:
bool IsPtrAdjusted = false;
Value *V;
if (VecTy) {
- V = rewriteVectorizedLoadInst(IRB, LI, OldOp);
+ V = rewriteVectorizedLoadInst(IRB);
} else if (IntTy && LI.getType()->isIntegerTy()) {
V = rewriteIntegerLoad(IRB, LI);
} else if (BeginOffset == NewAllocaBeginOffset &&
@@ -2518,44 +2542,12 @@ private:
: VectorType::get(ElementTy, NumElements);
if (V->getType() != PartitionTy)
V = convertValue(TD, IRB, V, PartitionTy);
- if (NumElements < VecTy->getNumElements()) {
- // We need to mix in the existing elements.
- LoadInst *LI = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
- getName(".load"));
- if (NumElements == 1) {
- V = IRB.CreateInsertElement(LI, V, IRB.getInt32(BeginIndex),
- getName(".insert"));
- DEBUG(dbgs() << " insert: " << *V << "\n");
- } else {
- // When inserting a smaller vector into the larger to store, we first
- // use a shuffle vector to widen it with undef elements, and then
- // a second shuffle vector to select between the loaded vector and the
- // incoming vector.
- SmallVector<Constant*, 8> Mask;
- Mask.reserve(VecTy->getNumElements());
- for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
- if (i >= BeginIndex && i < EndIndex)
- Mask.push_back(IRB.getInt32(i - BeginIndex));
- else
- Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
- V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
- ConstantVector::get(Mask),
- getName(".expand"));
- DEBUG(dbgs() << " shuffle1: " << *V << "\n");
-
- Mask.clear();
- for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
- if (i >= BeginIndex && i < EndIndex)
- Mask.push_back(IRB.getInt32(i));
- else
- Mask.push_back(IRB.getInt32(i + VecTy->getNumElements()));
- V = IRB.CreateShuffleVector(V, LI, ConstantVector::get(Mask),
- getName("insert"));
- DEBUG(dbgs() << " shuffle2: " << *V << "\n");
- }
- } else {
- V = convertValue(TD, IRB, V, VecTy);
- }
+
+ // Mix in the existing elements.
+ Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ getName(".load"));
+ V = insertVector(IRB, Old, V, BeginIndex, getName(".vec"));
+
StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
Pass.DeadInsts.insert(&SI);
@@ -2607,7 +2599,7 @@ private:
TD.getTypeStoreSizeInBits(V->getType()) &&
"Non-byte-multiple bit width");
assert(V->getType()->getIntegerBitWidth() ==
- TD.getTypeSizeInBits(OldAI.getAllocatedType()) &&
+ TD.getTypeAllocSizeInBits(OldAI.getAllocatedType()) &&
"Only alloca-wide stores can be split and recomposed");
IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), Size * 8);
V = extractInteger(TD, IRB, V, NarrowTy, BeginOffset,
@@ -2639,6 +2631,40 @@ private:
return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
}
+ /// \brief Compute an integer value from splatting an i8 across the given
+ /// number of bytes.
+ ///
+ /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
+ /// call this routine.
+ /// FIXME: Heed the abvice above.
+ ///
+ /// \param V The i8 value to splat.
+ /// \param Size The number of bytes in the output (assuming i8 is one byte)
+ Value *getIntegerSplat(IRBuilder<> &IRB, Value *V, unsigned Size) {
+ assert(Size > 0 && "Expected a positive number of bytes.");
+ IntegerType *VTy = cast<IntegerType>(V->getType());
+ assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
+ if (Size == 1)
+ return V;
+
+ Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size*8);
+ V = IRB.CreateMul(IRB.CreateZExt(V, SplatIntTy, getName(".zext")),
+ ConstantExpr::getUDiv(
+ Constant::getAllOnesValue(SplatIntTy),
+ ConstantExpr::getZExt(
+ Constant::getAllOnesValue(V->getType()),
+ SplatIntTy)),
+ getName(".isplat"));
+ return V;
+ }
+
+ /// \brief Compute a vector splat for a given element value.
+ Value *getVectorSplat(IRBuilder<> &IRB, Value *V, unsigned NumElements) {
+ V = IRB.CreateVectorSplat(NumElements, V, NamePrefix);
+ DEBUG(dbgs() << " splat: " << *V << "\n");
+ return V;
+ }
+
bool visitMemSetInst(MemSetInst &II) {
DEBUG(dbgs() << " original: " << II << "\n");
IRBuilder<> IRB(&II);
@@ -2667,7 +2693,8 @@ private:
(BeginOffset != NewAllocaBeginOffset ||
EndOffset != NewAllocaEndOffset ||
!AllocaTy->isSingleValueType() ||
- !TD.isLegalInteger(TD.getTypeSizeInBits(ScalarTy)))) {
+ !TD.isLegalInteger(TD.getTypeSizeInBits(ScalarTy)) ||
+ TD.getTypeSizeInBits(ScalarTy)%8 != 0)) {
Type *SizeTy = II.getLength()->getType();
Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
CallInst *New
@@ -2683,53 +2710,62 @@ private:
// If we can represent this as a simple value, we have to build the actual
// value to store, which requires expanding the byte present in memset to
// a sensible representation for the alloca type. This is essentially
- // splatting the byte to a sufficiently wide integer, bitcasting to the
- // desired scalar type, and splatting it across any desired vector type.
- uint64_t Size = EndOffset - BeginOffset;
- Value *V = II.getValue();
- IntegerType *VTy = cast<IntegerType>(V->getType());
- Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size*8);
- if (Size*8 > VTy->getBitWidth())
- V = IRB.CreateMul(IRB.CreateZExt(V, SplatIntTy, getName(".zext")),
- ConstantExpr::getUDiv(
- Constant::getAllOnesValue(SplatIntTy),
- ConstantExpr::getZExt(
- Constant::getAllOnesValue(V->getType()),
- SplatIntTy)),
- getName(".isplat"));
-
- // If this is an element-wide memset of a vectorizable alloca, insert it.
- if (VecTy && (BeginOffset > NewAllocaBeginOffset ||
- EndOffset < NewAllocaEndOffset)) {
- if (V->getType() != ScalarTy)
- V = convertValue(TD, IRB, V, ScalarTy);
- StoreInst *Store = IRB.CreateAlignedStore(
- IRB.CreateInsertElement(IRB.CreateAlignedLoad(&NewAI,
- NewAI.getAlignment(),
- getName(".load")),
- V, IRB.getInt32(getIndex(BeginOffset)),
- getName(".insert")),
- &NewAI, NewAI.getAlignment());
- (void)Store;
- DEBUG(dbgs() << " to: " << *Store << "\n");
- return true;
- }
+ // splatting the byte to a sufficiently wide integer, splatting it across
+ // any desired vector width, and bitcasting to the final type.
+ Value *V;
+
+ if (VecTy) {
+ // If this is a memset of a vectorized alloca, insert it.
+ assert(ElementTy == ScalarTy);
+
+ unsigned BeginIndex = getIndex(BeginOffset);
+ unsigned EndIndex = getIndex(EndOffset);
+ assert(EndIndex > BeginIndex && "Empty vector!");
+ unsigned NumElements = EndIndex - BeginIndex;
+ assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
+
+ Value *Splat = getIntegerSplat(IRB, II.getValue(),
+ TD.getTypeSizeInBits(ElementTy)/8);
+ Splat = convertValue(TD, IRB, Splat, ElementTy);
+ if (NumElements > 1)
+ Splat = getVectorSplat(IRB, Splat, NumElements);
- // If this is a memset on an alloca where we can widen stores, insert the
- // set integer.
- if (IntTy && (BeginOffset > NewAllocaBeginOffset ||
- EndOffset < NewAllocaEndOffset)) {
- assert(!II.isVolatile());
Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
getName(".oldload"));
- Old = convertValue(TD, IRB, Old, IntTy);
- assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
- uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
- V = insertInteger(TD, IRB, Old, V, Offset, getName(".insert"));
- }
+ V = insertVector(IRB, Old, Splat, BeginIndex, getName(".vec"));
+ } else if (IntTy) {
+ // If this is a memset on an alloca where we can widen stores, insert the
+ // set integer.
+ assert(!II.isVolatile());
+
+ uint64_t Size = EndOffset - BeginOffset;
+ V = getIntegerSplat(IRB, II.getValue(), Size);
+
+ if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
+ EndOffset != NewAllocaBeginOffset)) {
+ Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ getName(".oldload"));
+ Old = convertValue(TD, IRB, Old, IntTy);
+ assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
+ uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
+ V = insertInteger(TD, IRB, Old, V, Offset, getName(".insert"));
+ } else {
+ assert(V->getType() == IntTy &&
+ "Wrong type for an alloca wide integer!");
+ }
+ V = convertValue(TD, IRB, V, AllocaTy);
+ } else {
+ // Established these invariants above.
+ assert(BeginOffset == NewAllocaBeginOffset);
+ assert(EndOffset == NewAllocaEndOffset);
+
+ V = getIntegerSplat(IRB, II.getValue(),
+ TD.getTypeSizeInBits(ScalarTy)/8);
+ if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
+ V = getVectorSplat(IRB, V, AllocaVecTy->getNumElements());
- if (V->getType() != AllocaTy)
V = convertValue(TD, IRB, V, AllocaTy);
+ }
Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
II.isVolatile());
@@ -2814,37 +2850,22 @@ private:
// Record this instruction for deletion.
Pass.DeadInsts.insert(&II);
- bool IsWholeAlloca = BeginOffset == NewAllocaBeginOffset &&
- EndOffset == NewAllocaEndOffset;
- bool IsVectorElement = VecTy && !IsWholeAlloca;
- uint64_t Size = EndOffset - BeginOffset;
- IntegerType *SubIntTy
- = IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : 0;
-
- Type *OtherPtrTy = IsDest ? II.getRawSource()->getType()
- : II.getRawDest()->getType();
- if (!EmitMemCpy) {
- if (IsVectorElement)
- OtherPtrTy = VecTy->getElementType()->getPointerTo();
- else if (IntTy && !IsWholeAlloca)
- OtherPtrTy = SubIntTy->getPointerTo();
- else
- OtherPtrTy = NewAI.getType();
- }
-
- // Compute the other pointer, folding as much as possible to produce
- // a single, simple GEP in most cases.
- Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
- OtherPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy,
- getName("." + OtherPtr->getName()));
-
// Strip all inbounds GEPs and pointer casts to try to dig out any root
// alloca that should be re-examined after rewriting this instruction.
+ Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
if (AllocaInst *AI
= dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets()))
Pass.Worklist.insert(AI);
if (EmitMemCpy) {
+ Type *OtherPtrTy = IsDest ? II.getRawSource()->getType()
+ : II.getRawDest()->getType();
+
+ // Compute the other pointer, folding as much as possible to produce
+ // a single, simple GEP in most cases.
+ OtherPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy,
+ getName("." + OtherPtr->getName()));
+
Value *OurPtr
= getAdjustedAllocaPtr(IRB, IsDest ? II.getRawDest()->getType()
: II.getRawSource()->getType());
@@ -2865,18 +2886,38 @@ private:
if (!Align)
Align = 1;
- Value *SrcPtr = OtherPtr;
+ bool IsWholeAlloca = BeginOffset == NewAllocaBeginOffset &&
+ EndOffset == NewAllocaEndOffset;
+ uint64_t Size = EndOffset - BeginOffset;
+ unsigned BeginIndex = VecTy ? getIndex(BeginOffset) : 0;
+ unsigned EndIndex = VecTy ? getIndex(EndOffset) : 0;
+ unsigned NumElements = EndIndex - BeginIndex;
+ IntegerType *SubIntTy
+ = IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : 0;
+
+ Type *OtherPtrTy = NewAI.getType();
+ if (VecTy && !IsWholeAlloca) {
+ if (NumElements == 1)
+ OtherPtrTy = VecTy->getElementType();
+ else
+ OtherPtrTy = VectorType::get(VecTy->getElementType(), NumElements);
+
+ OtherPtrTy = OtherPtrTy->getPointerTo();
+ } else if (IntTy && !IsWholeAlloca) {
+ OtherPtrTy = SubIntTy->getPointerTo();
+ }
+
+ Value *SrcPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy,
+ getName("." + OtherPtr->getName()));
Value *DstPtr = &NewAI;
if (!IsDest)
std::swap(SrcPtr, DstPtr);
Value *Src;
- if (IsVectorElement && !IsDest) {
- // We have to extract rather than load.
- Src = IRB.CreateExtractElement(
- IRB.CreateAlignedLoad(SrcPtr, Align, getName(".copyload")),
- IRB.getInt32(getIndex(BeginOffset)),
- getName(".copyextract"));
+ if (VecTy && !IsWholeAlloca && !IsDest) {
+ Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ getName(".load"));
+ Src = extractVector(IRB, Src, BeginIndex, EndIndex, getName(".vec"));
} else if (IntTy && !IsWholeAlloca && !IsDest) {
Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
getName(".load"));
@@ -2889,7 +2930,11 @@ private:
getName(".copyload"));
}
- if (IntTy && !IsWholeAlloca && IsDest) {
+ if (VecTy && !IsWholeAlloca && IsDest) {
+ Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ getName(".oldload"));
+ Src = insertVector(IRB, Old, Src, BeginIndex, getName(".vec"));
+ } else if (IntTy && !IsWholeAlloca && IsDest) {
Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
getName(".oldload"));
Old = convertValue(TD, IRB, Old, IntTy);
@@ -2899,14 +2944,6 @@ private:
Src = convertValue(TD, IRB, Src, NewAllocaTy);
}
- if (IsVectorElement && IsDest) {
- // We have to insert into a loaded copy before storing.
- Src = IRB.CreateInsertElement(
- IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), getName(".load")),
- Src, IRB.getInt32(getIndex(BeginOffset)),
- getName(".insert"));
- }
-
StoreInst *Store = cast<StoreInst>(
IRB.CreateAlignedStore(Src, DstPtr, Align, II.isVolatile()));
(void)Store;
diff --git a/lib/Transforms/Scalar/Scalar.cpp b/lib/Transforms/Scalar/Scalar.cpp
index 762bb15c59..35d2fa04c2 100644
--- a/lib/Transforms/Scalar/Scalar.cpp
+++ b/lib/Transforms/Scalar/Scalar.cpp
@@ -18,7 +18,7 @@
#include "llvm-c/Transforms/Scalar.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/Verifier.h"
-#include "llvm/DataLayout.h"
+#include "llvm/IR/DataLayout.h"
#include "llvm/InitializePasses.h"
#include "llvm/PassManager.h"
diff --git a/lib/Transforms/Scalar/ScalarReplAggregates.cpp b/lib/Transforms/Scalar/ScalarReplAggregates.cpp
index c8656fbd8e..e590a374ea 100644
--- a/lib/Transforms/Scalar/ScalarReplAggregates.cpp
+++ b/lib/Transforms/Scalar/ScalarReplAggregates.cpp
@@ -27,19 +27,19 @@
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Constants.h"
#include "llvm/DIBuilder.h"
-#include "llvm/DataLayout.h"
#include "llvm/DebugInfo.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/Operator.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
diff --git a/lib/Transforms/Scalar/SimplifyCFGPass.cpp b/lib/Transforms/Scalar/SimplifyCFGPass.cpp
index 9160f04fe2..c243d34fd7 100644
--- a/lib/Transforms/Scalar/SimplifyCFGPass.cpp
+++ b/lib/Transforms/Scalar/SimplifyCFGPass.cpp
@@ -26,15 +26,15 @@
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/Attributes.h"
-#include "llvm/Constants.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Module.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
-#include "llvm/TargetTransformInfo.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
@@ -48,12 +48,19 @@ namespace {
}
virtual bool runOnFunction(Function &F);
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<TargetTransformInfo>();
+ }
};
}
char CFGSimplifyPass::ID = 0;
-INITIALIZE_PASS(CFGSimplifyPass, "simplifycfg",
- "Simplify the CFG", false, false)
+INITIALIZE_PASS_BEGIN(CFGSimplifyPass, "simplifycfg", "Simplify the CFG",
+ false, false)
+INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
+INITIALIZE_PASS_END(CFGSimplifyPass, "simplifycfg", "Simplify the CFG",
+ false, false)
// Public interface to the CFGSimplification pass
FunctionPass *llvm::createCFGSimplificationPass() {
@@ -111,13 +118,11 @@ static bool markAliveBlocks(BasicBlock *BB,
SmallVector<BasicBlock*, 128> Worklist;
Worklist.push_back(BB);
+ Reachable.insert(BB);
bool Changed = false;
do {
BB = Worklist.pop_back_val();
- if (!Reachable.insert(BB))
- continue;
-
// Do a quick scan of the basic block, turning any obviously unreachable
// instructions into LLVM unreachable insts. The instruction combining pass
// canonicalizes unreachable insts into stores to null or undef.
@@ -176,7 +181,8 @@ static bool markAliveBlocks(BasicBlock *BB,
Changed |= ConstantFoldTerminator(BB, true);
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
- Worklist.push_back(*SI);
+ if (Reachable.insert(*SI))
+ Worklist.push_back(*SI);
} while (!Worklist.empty());
return Changed;
}
@@ -294,8 +300,8 @@ static bool mergeEmptyReturnBlocks(Function &F) {
/// iterativelySimplifyCFG - Call SimplifyCFG on all the blocks in the function,
/// iterating until no more changes are made.
-static bool iterativelySimplifyCFG(Function &F, const DataLayout *TD,
- const TargetTransformInfo *TTI) {
+static bool iterativelySimplifyCFG(Function &F, const TargetTransformInfo &TTI,
+ const DataLayout *TD) {
bool Changed = false;
bool LocalChange = true;
while (LocalChange) {
@@ -304,7 +310,7 @@ static bool iterativelySimplifyCFG(Function &F, const DataLayout *TD,
// Loop over all of the basic blocks and remove them if they are unneeded...
//
for (Function::iterator BBIt = F.begin(); BBIt != F.end(); ) {
- if (SimplifyCFG(BBIt++, TD, TTI)) {
+ if (SimplifyCFG(BBIt++, TTI, TD)) {
LocalChange = true;
++NumSimpl;
}
@@ -318,12 +324,11 @@ static bool iterativelySimplifyCFG(Function &F, const DataLayout *TD,
// simplify the CFG.
//
bool CFGSimplifyPass::runOnFunction(Function &F) {
+ const TargetTransformInfo &TTI = getAnalysis<TargetTransformInfo>();
const DataLayout *TD = getAnalysisIfAvailable<DataLayout>();
- const TargetTransformInfo *TTI =
- getAnalysisIfAvailable<TargetTransformInfo>();
bool EverChanged = removeUnreachableBlocksFromFn(F);
EverChanged |= mergeEmptyReturnBlocks(F);
- EverChanged |= iterativelySimplifyCFG(F, TD, TTI);
+ EverChanged |= iterativelySimplifyCFG(F, TTI, TD);
// If neither pass changed anything, we're done.
if (!EverChanged) return false;
@@ -337,7 +342,7 @@ bool CFGSimplifyPass::runOnFunction(Function &F) {
return true;
do {
- EverChanged = iterativelySimplifyCFG(F, TD, TTI);
+ EverChanged = iterativelySimplifyCFG(F, TTI, TD);
EverChanged |= removeUnreachableBlocksFromFn(F);
} while (EverChanged);
diff --git a/lib/Transforms/Scalar/SimplifyLibCalls.cpp b/lib/Transforms/Scalar/SimplifyLibCalls.cpp
index d4643b9d80..d5cefa35a0 100644
--- a/lib/Transforms/Scalar/SimplifyLibCalls.cpp
+++ b/lib/Transforms/Scalar/SimplifyLibCalls.cpp
@@ -23,10 +23,10 @@
#include "llvm/ADT/StringMap.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Config/config.h" // FIXME: Shouldn't depend on host!
-#include "llvm/DataLayout.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
diff --git a/lib/Transforms/Scalar/Sink.cpp b/lib/Transforms/Scalar/Sink.cpp
index cde9c178ad..d4595bb373 100644
--- a/lib/Transforms/Scalar/Sink.cpp
+++ b/lib/Transforms/Scalar/Sink.cpp
@@ -20,7 +20,7 @@
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Assembly/Writer.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
diff --git a/lib/Transforms/Scalar/TailRecursionElimination.cpp b/lib/Transforms/Scalar/TailRecursionElimination.cpp
index e357378524..6572e0915e 100644
--- a/lib/Transforms/Scalar/TailRecursionElimination.cpp
+++ b/lib/Transforms/Scalar/TailRecursionElimination.cpp
@@ -58,12 +58,12 @@
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/Loads.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Module.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CallSite.h"
diff --git a/lib/Transforms/Utils/AddrModeMatcher.cpp b/lib/Transforms/Utils/AddrModeMatcher.cpp
deleted file mode 100644
index 3a19b706ea..0000000000
--- a/lib/Transforms/Utils/AddrModeMatcher.cpp
+++ /dev/null
@@ -1,577 +0,0 @@
-//===- AddrModeMatcher.cpp - Addressing mode matching facility --*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements target addressing mode matcher class.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Utils/AddrModeMatcher.h"
-#include "llvm/Assembly/Writer.h"
-#include "llvm/DataLayout.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/GlobalValue.h"
-#include "llvm/Instruction.h"
-#include "llvm/Support/CallSite.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
-#include "llvm/Support/PatternMatch.h"
-#include "llvm/Support/raw_ostream.h"
-
-using namespace llvm;
-using namespace llvm::PatternMatch;
-
-void ExtAddrMode::print(raw_ostream &OS) const {
- bool NeedPlus = false;
- OS << "[";
- if (BaseGV) {
- OS << (NeedPlus ? " + " : "")
- << "GV:";
- WriteAsOperand(OS, BaseGV, /*PrintType=*/false);
- NeedPlus = true;
- }
-
- if (BaseOffs)
- OS << (NeedPlus ? " + " : "") << BaseOffs, NeedPlus = true;
-
- if (BaseReg) {
- OS << (NeedPlus ? " + " : "")
- << "Base:";
- WriteAsOperand(OS, BaseReg, /*PrintType=*/false);
- NeedPlus = true;
- }
- if (Scale) {
- OS << (NeedPlus ? " + " : "")
- << Scale << "*";
- WriteAsOperand(OS, ScaledReg, /*PrintType=*/false);
- NeedPlus = true;
- }
-
- OS << ']';
-}
-
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
-void ExtAddrMode::dump() const {
- print(dbgs());
- dbgs() << '\n';
-}
-#endif
-
-
-/// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.
-/// Return true and update AddrMode if this addr mode is legal for the target,
-/// false if not.
-bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
- unsigned Depth) {
- // If Scale is 1, then this is the same as adding ScaleReg to the addressing
- // mode. Just process that directly.
- if (Scale == 1)
- return MatchAddr(ScaleReg, Depth);
-
- // If the scale is 0, it takes nothing to add this.
- if (Scale == 0)
- return true;
-
- // If we already have a scale of this value, we can add to it, otherwise, we
- // need an available scale field.
- if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
- return false;
-
- ExtAddrMode TestAddrMode = AddrMode;
-
- // Add scale to turn X*4+X*3 -> X*7. This could also do things like
- // [A+B + A*7] -> [B+A*8].
- TestAddrMode.Scale += Scale;
- TestAddrMode.ScaledReg = ScaleReg;
-
- // If the new address isn't legal, bail out.
- if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy))
- return false;
-
- // It was legal, so commit it.
- AddrMode = TestAddrMode;
-
- // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
- // to see if ScaleReg is actually X+C. If so, we can turn this into adding
- // X*Scale + C*Scale to addr mode.
- ConstantInt *CI = 0; Value *AddLHS = 0;
- if (isa<Instruction>(ScaleReg) && // not a constant expr.
- match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
- TestAddrMode.ScaledReg = AddLHS;
- TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
-
- // If this addressing mode is legal, commit it and remember that we folded
- // this instruction.
- if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) {
- AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
- AddrMode = TestAddrMode;
- return true;
- }
- }
-
- // Otherwise, not (x+c)*scale, just return what we have.
- return true;
-}
-
-/// MightBeFoldableInst - This is a little filter, which returns true if an
-/// addressing computation involving I might be folded into a load/store
-/// accessing it. This doesn't need to be perfect, but needs to accept at least
-/// the set of instructions that MatchOperationAddr can.
-static bool MightBeFoldableInst(Instruction *I) {
- switch (I->getOpcode()) {
- case Instruction::BitCast:
- // Don't touch identity bitcasts.
- if (I->getType() == I->getOperand(0)->getType())
- return false;
- return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
- case Instruction::PtrToInt:
- // PtrToInt is always a noop, as we know that the int type is pointer sized.
- return true;
- case Instruction::IntToPtr:
- // We know the input is intptr_t, so this is foldable.
- return true;
- case Instruction::Add:
- return true;
- case Instruction::Mul:
- case Instruction::Shl:
- // Can only handle X*C and X << C.
- return isa<ConstantInt>(I->getOperand(1));
- case Instruction::GetElementPtr:
- return true;
- default:
- return false;
- }
-}
-
-
-/// MatchOperationAddr - Given an instruction or constant expr, see if we can
-/// fold the operation into the addressing mode. If so, update the addressing
-/// mode and return true, otherwise return false without modifying AddrMode.
-bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
- unsigned Depth) {
- // Avoid exponential behavior on extremely deep expression trees.
- if (Depth >= 5) return false;
-
- switch (Opcode) {
- case Instruction::PtrToInt:
- // PtrToInt is always a noop, as we know that the int type is pointer sized.
- return MatchAddr(AddrInst->getOperand(0), Depth);
- case Instruction::IntToPtr:
- // This inttoptr is a no-op if the integer type is pointer sized.
- if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
- TLI.getPointerTy())
- return MatchAddr(AddrInst->getOperand(0), Depth);
- return false;
- case Instruction::BitCast:
- // BitCast is always a noop, and we can handle it as long as it is
- // int->int or pointer->pointer (we don't want int<->fp or something).
- if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
- AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
- // Don't touch identity bitcasts. These were probably put here by LSR,
- // and we don't want to mess around with them. Assume it knows what it
- // is doing.
- AddrInst->getOperand(0)->getType() != AddrInst->getType())
- return MatchAddr(AddrInst->getOperand(0), Depth);
- return false;
- case Instruction::Add: {
- // Check to see if we can merge in the RHS then the LHS. If so, we win.
- ExtAddrMode BackupAddrMode = AddrMode;
- unsigned OldSize = AddrModeInsts.size();
- if (MatchAddr(AddrInst->getOperand(1), Depth+1) &&
- MatchAddr(AddrInst->getOperand(0), Depth+1))
- return true;
-
- // Restore the old addr mode info.
- AddrMode = BackupAddrMode;
- AddrModeInsts.resize(OldSize);
-
- // Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
- if (MatchAddr(AddrInst->getOperand(0), Depth+1) &&
- MatchAddr(AddrInst->getOperand(1), Depth+1))
- return true;
-
- // Otherwise we definitely can't merge the ADD in.
- AddrMode = BackupAddrMode;
- AddrModeInsts.resize(OldSize);
- break;
- }
- //case Instruction::Or:
- // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
- //break;
- case Instruction::Mul:
- case Instruction::Shl: {
- // Can only handle X*C and X << C.
- ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
- if (!RHS) return false;
- int64_t Scale = RHS->getSExtValue();
- if (Opcode == Instruction::Shl)
- Scale = 1LL << Scale;
-
- return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
- }
- case Instruction::GetElementPtr: {
- // Scan the GEP. We check it if it contains constant offsets and at most
- // one variable offset.
- int VariableOperand = -1;
- unsigned VariableScale = 0;
-
- int64_t ConstantOffset = 0;
- const DataLayout *TD = TLI.getDataLayout();
- gep_type_iterator GTI = gep_type_begin(AddrInst);
- for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
- if (StructType *STy = dyn_cast<StructType>(*GTI)) {
- const StructLayout *SL = TD->getStructLayout(STy);
- unsigned Idx =
- cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
- ConstantOffset += SL->getElementOffset(Idx);
- } else {
- uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType());
- if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
- ConstantOffset += CI->getSExtValue()*TypeSize;
- } else if (TypeSize) { // Scales of zero don't do anything.
- // We only allow one variable index at the moment.
- if (VariableOperand != -1)
- return false;
-
- // Remember the variable index.
- VariableOperand = i;
- VariableScale = TypeSize;
- }
- }
- }
-
- // A common case is for the GEP to only do a constant offset. In this case,
- // just add it to the disp field and check validity.
- if (VariableOperand == -1) {
- AddrMode.BaseOffs += ConstantOffset;
- if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
- // Check to see if we can fold the base pointer in too.
- if (MatchAddr(AddrInst->getOperand(0), Depth+1))
- return true;
- }
- AddrMode.BaseOffs -= ConstantOffset;
- return false;
- }
-
- // Save the valid addressing mode in case we can't match.
- ExtAddrMode BackupAddrMode = AddrMode;
- unsigned OldSize = AddrModeInsts.size();
-
- // See if the scale and offset amount is valid for this target.
- AddrMode.BaseOffs += ConstantOffset;
-
- // Match the base operand of the GEP.
- if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) {
- // If it couldn't be matched, just stuff the value in a register.
- if (AddrMode.HasBaseReg) {
- AddrMode = BackupAddrMode;
- AddrModeInsts.resize(OldSize);
- return false;
- }
- AddrMode.HasBaseReg = true;
- AddrMode.BaseReg = AddrInst->getOperand(0);
- }
-
- // Match the remaining variable portion of the GEP.
- if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
- Depth)) {
- // If it couldn't be matched, try stuffing the base into a register
- // instead of matching it, and retrying the match of the scale.
- AddrMode = BackupAddrMode;
- AddrModeInsts.resize(OldSize);
- if (AddrMode.HasBaseReg)
- return false;
- AddrMode.HasBaseReg = true;
- AddrMode.BaseReg = AddrInst->getOperand(0);
- AddrMode.BaseOffs += ConstantOffset;
- if (!MatchScaledValue(AddrInst->getOperand(VariableOperand),
- VariableScale, Depth)) {
- // If even that didn't work, bail.
- AddrMode = BackupAddrMode;
- AddrModeInsts.resize(OldSize);
- return false;
- }
- }
-
- return true;
- }
- }
- return false;
-}
-
-/// MatchAddr - If we can, try to add the value of 'Addr' into the current
-/// addressing mode. If Addr can't be added to AddrMode this returns false and
-/// leaves AddrMode unmodified. This assumes that Addr is either a pointer type
-/// or intptr_t for the target.
-///
-bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
- // Fold in immediates if legal for the target.
- AddrMode.BaseOffs += CI->getSExtValue();
- if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
- return true;
- AddrMode.BaseOffs -= CI->getSExtValue();
- } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
- // If this is a global variable, try to fold it into the addressing mode.
- if (AddrMode.BaseGV == 0) {
- AddrMode.BaseGV = GV;
- if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
- return true;
- AddrMode.BaseGV = 0;
- }
- } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
- ExtAddrMode BackupAddrMode = AddrMode;
- unsigned OldSize = AddrModeInsts.size();
-
- // Check to see if it is possible to fold this operation.
- if (MatchOperationAddr(I, I->getOpcode(), Depth)) {
- // Okay, it's possible to fold this. Check to see if it is actually
- // *profitable* to do so. We use a simple cost model to avoid increasing
- // register pressure too much.
- if (I->hasOneUse() ||
- IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
- AddrModeInsts.push_back(I);
- return true;
- }
-
- // It isn't profitable to do this, roll back.
- //cerr << "NOT FOLDING: " << *I;
- AddrMode = BackupAddrMode;
- AddrModeInsts.resize(OldSize);
- }
- } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
- if (MatchOperationAddr(CE, CE->getOpcode(), Depth))
- return true;
- } else if (isa<ConstantPointerNull>(Addr)) {
- // Null pointer gets folded without affecting the addressing mode.
- return true;
- }
-
- // Worse case, the target should support [reg] addressing modes. :)
- if (!AddrMode.HasBaseReg) {
- AddrMode.HasBaseReg = true;
- AddrMode.BaseReg = Addr;
- // Still check for legality in case the target supports [imm] but not [i+r].
- if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
- return true;
- AddrMode.HasBaseReg = false;
- AddrMode.BaseReg = 0;
- }
-
- // If the base register is already taken, see if we can do [r+r].
- if (AddrMode.Scale == 0) {
- AddrMode.Scale = 1;
- AddrMode.ScaledReg = Addr;
- if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
- return true;
- AddrMode.Scale = 0;
- AddrMode.ScaledReg = 0;
- }
- // Couldn't match.
- return false;
-}
-
-
-/// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified
-/// inline asm call are due to memory operands. If so, return true, otherwise
-/// return false.
-static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
- const TargetLowering &TLI) {
- TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI));
- for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
- TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
-
- // Compute the constraint code and ConstraintType to use.
- TLI.ComputeConstraintToUse(OpInfo, SDValue());
-
- // If this asm operand is our Value*, and if it isn't an indirect memory
- // operand, we can't fold it!
- if (OpInfo.CallOperandVal == OpVal &&
- (OpInfo.ConstraintType != TargetLowering::C_Memory ||
- !OpInfo.isIndirect))
- return false;
- }
-
- return true;
-}
-
-
-/// FindAllMemoryUses - Recursively walk all the uses of I until we find a
-/// memory use. If we find an obviously non-foldable instruction, return true.
-/// Add the ultimately found memory instructions to MemoryUses.
-static bool FindAllMemoryUses(Instruction *I,
- SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses,
- SmallPtrSet<Instruction*, 16> &ConsideredInsts,
- const TargetLowering &TLI) {
- // If we already considered this instruction, we're done.
- if (!ConsideredInsts.insert(I))
- return false;
-
- // If this is an obviously unfoldable instruction, bail out.
- if (!MightBeFoldableInst(I))
- return true;
-
- // Loop over all the uses, recursively processing them.
- for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
- UI != E; ++UI) {
- User *U = *UI;
-
- if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
- MemoryUses.push_back(std::make_pair(LI, UI.getOperandNo()));
- continue;
- }
-
- if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
- unsigned opNo = UI.getOperandNo();
- if (opNo == 0) return true; // Storing addr, not into addr.
- MemoryUses.push_back(std::make_pair(SI, opNo));
- continue;
- }
-
- if (CallInst *CI = dyn_cast<CallInst>(U)) {
- InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
- if (!IA) return true;
-
- // If this is a memory operand, we're cool, otherwise bail out.
- if (!IsOperandAMemoryOperand(CI, IA, I, TLI))
- return true;
- continue;
- }
-
- if (FindAllMemoryUses(cast<Instruction>(U), MemoryUses, ConsideredInsts,
- TLI))
- return true;
- }
-
- return false;
-}
-
-
-/// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at
-/// the use site that we're folding it into. If so, there is no cost to
-/// include it in the addressing mode. KnownLive1 and KnownLive2 are two values
-/// that we know are live at the instruction already.
-bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
- Value *KnownLive2) {
- // If Val is either of the known-live values, we know it is live!
- if (Val == 0 || Val == KnownLive1 || Val == KnownLive2)
- return true;
-
- // All values other than instructions and arguments (e.g. constants) are live.
- if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
-
- // If Val is a constant sized alloca in the entry block, it is live, this is
- // true because it is just a reference to the stack/frame pointer, which is
- // live for the whole function.
- if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
- if (AI->isStaticAlloca())
- return true;
-
- // Check to see if this value is already used in the memory instruction's
- // block. If so, it's already live into the block at the very least, so we
- // can reasonably fold it.
- return Val->isUsedInBasicBlock(MemoryInst->getParent());
-}
-
-
-
-/// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing
-/// mode of the machine to fold the specified instruction into a load or store
-/// that ultimately uses it. However, the specified instruction has multiple
-/// uses. Given this, it may actually increase register pressure to fold it
-/// into the load. For example, consider this code:
-///
-/// X = ...
-/// Y = X+1
-/// use(Y) -> nonload/store
-/// Z = Y+1
-/// load Z
-///
-/// In this case, Y has multiple uses, and can be folded into the load of Z
-/// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
-/// be live at the use(Y) line. If we don't fold Y into load Z, we use one
-/// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
-/// number of computations either.
-///
-/// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
-/// X was live across 'load Z' for other reasons, we actually *would* want to
-/// fold the addressing mode in the Z case. This would make Y die earlier.
-bool AddressingModeMatcher::
-IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
- ExtAddrMode &AMAfter) {
- if (IgnoreProfitability) return true;
-
- // AMBefore is the addressing mode before this instruction was folded into it,
- // and AMAfter is the addressing mode after the instruction was folded. Get
- // the set of registers referenced by AMAfter and subtract out those
- // referenced by AMBefore: this is the set of values which folding in this
- // address extends the lifetime of.
- //
- // Note that there are only two potential values being referenced here,
- // BaseReg and ScaleReg (global addresses are always available, as are any
- // folded immediates).
- Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
-
- // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
- // lifetime wasn't extended by adding this instruction.
- if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
- BaseReg = 0;
- if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
- ScaledReg = 0;
-
- // If folding this instruction (and it's subexprs) didn't extend any live
- // ranges, we're ok with it.
- if (BaseReg == 0 && ScaledReg == 0)
- return true;
-
- // If all uses of this instruction are ultimately load/store/inlineasm's,
- // check to see if their addressing modes will include this instruction. If
- // so, we can fold it into all uses, so it doesn't matter if it has multiple
- // uses.
- SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
- SmallPtrSet<Instruction*, 16> ConsideredInsts;
- if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI))
- return false; // Has a non-memory, non-foldable use!
-
- // Now that we know that all uses of this instruction are part of a chain of
- // computation involving only operations that could theoretically be folded
- // into a memory use, loop over each of these uses and see if they could
- // *actually* fold the instruction.
- SmallVector<Instruction*, 32> MatchedAddrModeInsts;
- for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
- Instruction *User = MemoryUses[i].first;
- unsigned OpNo = MemoryUses[i].second;
-
- // Get the access type of this use. If the use isn't a pointer, we don't
- // know what it accesses.
- Value *Address = User->getOperand(OpNo);
- if (!Address->getType()->isPointerTy())
- return false;
- Type *AddressAccessTy =
- cast<PointerType>(Address->getType())->getElementType();
-
- // Do a match against the root of this address, ignoring profitability. This
- // will tell us if the addressing mode for the memory operation will
- // *actually* cover the shared instruction.
- ExtAddrMode Result;
- AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy,
- MemoryInst, Result);
- Matcher.IgnoreProfitability = true;
- bool Success = Matcher.MatchAddr(Address, 0);
- (void)Success; assert(Success && "Couldn't select *anything*?");
-
- // If the match didn't cover I, then it won't be shared by it.
- if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
- I) == MatchedAddrModeInsts.end())
- return false;
-
- MatchedAddrModeInsts.clear();
- }
-
- return true;
-}
diff --git a/lib/Transforms/Utils/BasicBlockUtils.cpp b/lib/Transforms/Utils/BasicBlockUtils.cpp
index e8833f2092..8330e8468f 100644
--- a/lib/Transforms/Utils/BasicBlockUtils.cpp
+++ b/lib/Transforms/Utils/BasicBlockUtils.cpp
@@ -17,16 +17,16 @@
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
-#include "llvm/Constant.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Type.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Type.h"
#include <algorithm>
using namespace llvm;
diff --git a/lib/Transforms/Utils/BreakCriticalEdges.cpp b/lib/Transforms/Utils/BreakCriticalEdges.cpp
index 385ceb13b2..8513772da2 100644
--- a/lib/Transforms/Utils/BreakCriticalEdges.cpp
+++ b/lib/Transforms/Utils/BreakCriticalEdges.cpp
@@ -22,12 +22,12 @@
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ProfileInfo.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Type.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Type.h"
using namespace llvm;
STATISTIC(NumBroken, "Number of blocks inserted");
diff --git a/lib/Transforms/Utils/BuildLibCalls.cpp b/lib/Transforms/Utils/BuildLibCalls.cpp
index 62b79bf2b3..bf540b0d32 100644
--- a/lib/Transforms/Utils/BuildLibCalls.cpp
+++ b/lib/Transforms/Utils/BuildLibCalls.cpp
@@ -13,17 +13,15 @@
#include "llvm/Transforms/Utils/BuildLibCalls.h"
#include "llvm/ADT/SmallString.h"
-#include "llvm/Constants.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
#include "llvm/Target/TargetLibraryInfo.h"
-#include "llvm/Type.h"
using namespace llvm;
@@ -41,10 +39,10 @@ Value *llvm::EmitStrLen(Value *Ptr, IRBuilder<> &B, const DataLayout *TD,
Module *M = B.GetInsertBlock()->getParent()->getParent();
AttributeWithIndex AWI[2];
- AWI[0] = AttributeWithIndex::get(M->getContext(), 1, Attributes::NoCapture);
- Attributes::AttrVal AVs[2] = { Attributes::ReadOnly, Attributes::NoUnwind };
+ AWI[0] = AttributeWithIndex::get(M->getContext(), 1, Attribute::NoCapture);
+ Attribute::AttrKind AVs[2] = { Attribute::ReadOnly, Attribute::NoUnwind };
AWI[1] = AttributeWithIndex::get(M->getContext(), AttributeSet::FunctionIndex,
- ArrayRef<Attributes::AttrVal>(AVs, 2));
+ ArrayRef<Attribute::AttrKind>(AVs, 2));
LLVMContext &Context = B.GetInsertBlock()->getContext();
Constant *StrLen = M->getOrInsertFunction("strlen",
@@ -70,10 +68,10 @@ Value *llvm::EmitStrNLen(Value *Ptr, Value *MaxLen, IRBuilder<> &B,
Module *M = B.GetInsertBlock()->getParent()->getParent();
AttributeWithIndex AWI[2];
- AWI[0] = AttributeWithIndex::get(M->getContext(), 1, Attributes::NoCapture);
- Attributes::AttrVal AVs[2] = { Attributes::ReadOnly, Attributes::NoUnwind };
+ AWI[0] = AttributeWithIndex::get(M->getContext(), 1, Attribute::NoCapture);
+ Attribute::AttrKind AVs[2] = { Attribute::ReadOnly, Attribute::NoUnwind };
AWI[1] = AttributeWithIndex::get(M->getContext(), AttributeSet::FunctionIndex,
- ArrayRef<Attributes::AttrVal>(AVs, 2));
+ ArrayRef<Attribute::AttrKind>(AVs, 2));
LLVMContext &Context = B.GetInsertBlock()->getContext();
Constant *StrNLen = M->getOrInsertFunction("strnlen",
@@ -99,10 +97,10 @@ Value *llvm::EmitStrChr(Value *Ptr, char C, IRBuilder<> &B,
return 0;
Module *M = B.GetInsertBlock()->getParent()->getParent();
- Attributes::AttrVal AVs[2] = { Attributes::ReadOnly, Attributes::NoUnwind };
+ Attribute::AttrKind AVs[2] = { Attribute::ReadOnly, Attribute::NoUnwind };
AttributeWithIndex AWI =
AttributeWithIndex::get(M->getContext(), AttributeSet::FunctionIndex,
- ArrayRef<Attributes::AttrVal>(AVs, 2));
+ ArrayRef<Attribute::AttrKind>(AVs, 2));
Type *I8Ptr = B.getInt8PtrTy();
Type *I32Ty = B.getInt32Ty();
@@ -126,11 +124,11 @@ Value *llvm::EmitStrNCmp(Value *Ptr1, Value *Ptr2, Value *Len,
Module *M = B.GetInsertBlock()->getParent()->getParent();
AttributeWithIndex AWI[3];
- AWI[0] = AttributeWithIndex::get(M->getContext(), 1, Attributes::NoCapture);
- AWI[1] = AttributeWithIndex::get(M->getContext(), 2, Attributes::NoCapture);
- Attributes::AttrVal AVs[2] = { Attributes::ReadOnly, Attributes::NoUnwind };
+ AWI[0] = AttributeWithIndex::get(M->getContext(), 1, Attribute::NoCapture);
+ AWI[1] = AttributeWithIndex::get(M->getContext(), 2, Attribute::NoCapture);
+ Attribute::AttrKind AVs[2] = { Attribute::ReadOnly, Attribute::NoUnwind };
AWI[2] = AttributeWithIndex::get(M->getContext(), AttributeSet::FunctionIndex,
- ArrayRef<Attributes::AttrVal>(AVs, 2));
+ ArrayRef<Attribute::AttrKind>(AVs, 2));
LLVMContext &Context = B.GetInsertBlock()->getContext();
Value *StrNCmp = M->getOrInsertFunction("strncmp",
@@ -159,9 +157,9 @@ Value *llvm::EmitStrCpy(Value *Dst, Value *Src, IRBuilder<> &B,
Module *M = B.GetInsertBlock()->getParent()->getParent();
AttributeWithIndex AWI[2];
- AWI[0] = AttributeWithIndex::get(M->getContext(), 2, Attributes::NoCapture);
+ AWI[0] = AttributeWithIndex::get(M->getContext(), 2, Attribute::NoCapture);
AWI[1] = AttributeWithIndex::get(M->getContext(), AttributeSet::FunctionIndex,
- Attributes::NoUnwind);
+ Attribute::NoUnwind);
Type *I8Ptr = B.getInt8PtrTy();
Value *StrCpy = M->getOrInsertFunction(Name,
AttributeSet::get(M->getContext(), AWI),
@@ -183,9 +181,9 @@ Value *llvm::EmitStrNCpy(Value *Dst, Value *Src, Value *Len,
Module *M = B.GetInsertBlock()->getParent()->getParent();
AttributeWithIndex AWI[2];
- AWI[0] = AttributeWithIndex::get(M->getContext(), 2, Attributes::NoCapture);
+ AWI[0] = AttributeWithIndex::get(M->getContext(), 2, Attribute::NoCapture);
AWI[1] = AttributeWithIndex::get(M->getContext(), AttributeSet::FunctionIndex,
- Attributes::NoUnwind);
+ Attribute::NoUnwind);
Type *I8Ptr = B.getInt8PtrTy();
Value *StrNCpy = M->getOrInsertFunction(Name,
AttributeSet::get(M->getContext(),
@@ -211,7 +209,7 @@ Value *llvm::EmitMemCpyChk(Value *Dst, Value *Src, Value *Len, Value *ObjSize,
Module *M = B.GetInsertBlock()->getParent()->getParent();
AttributeWithIndex AWI;
AWI = AttributeWithIndex::get(M->getContext(), AttributeSet::FunctionIndex,
- Attributes::NoUnwind);
+ Attribute::NoUnwind);
LLVMContext &Context = B.GetInsertBlock()->getContext();
Value *MemCpy = M->getOrInsertFunction("__memcpy_chk",
AttributeSet::get(M->getContext(), AWI),
@@ -238,9 +236,9 @@ Value *llvm::EmitMemChr(Value *Ptr, Value *Val,
Module *M = B.GetInsertBlock()->getParent()->getParent();
AttributeWithIndex AWI;
- Attributes::AttrVal AVs[2] = { Attributes::ReadOnly, Attributes::NoUnwind };
+ Attribute::AttrKind AVs[2] = { Attribute::ReadOnly, Attribute::NoUnwind };
AWI = AttributeWithIndex::get(M->getContext(), AttributeSet::FunctionIndex,
- ArrayRef<Attributes::AttrVal>(AVs, 2));
+ ArrayRef<Attribute::AttrKind>(AVs, 2));
LLVMContext &Context = B.GetInsertBlock()->getContext();
Value *MemChr = M->getOrInsertFunction("memchr",
AttributeSet::get(M->getContext(), AWI),
@@ -266,11 +264,11 @@ Value *llvm::EmitMemCmp(Value *Ptr1, Value *Ptr2,
Module *M = B.GetInsertBlock()->getParent()->getParent();
AttributeWithIndex AWI[3];
- AWI[0] = AttributeWithIndex::get(M->getContext(), 1, Attributes::NoCapture);
- AWI[1] = AttributeWithIndex::get(M->getContext(), 2, Attributes::NoCapture);
- Attributes::AttrVal AVs[2] = { Attributes::ReadOnly, Attributes::NoUnwind };
+ AWI[0] = AttributeWithIndex::get(M->getContext(), 1, Attribute::NoCapture);
+ AWI[1] = AttributeWithIndex::get(M->getContext(), 2, Attribute::NoCapture);
+ Attribute::AttrKind AVs[2] = { Attribute::ReadOnly, Attribute::NoUnwind };
AWI[2] = AttributeWithIndex::get(M->getContext(), AttributeSet::FunctionIndex,
- ArrayRef<Attributes::AttrVal>(AVs, 2));
+ ArrayRef<Attribute::AttrKind>(AVs, 2));
LLVMContext &Context = B.GetInsertBlock()->getContext();
Value *MemCmp = M->getOrInsertFunction("memcmp",
@@ -347,9 +345,9 @@ Value *llvm::EmitPutS(Value *Str, IRBuilder<> &B, const DataLayout *TD,
Module *M = B.GetInsertBlock()->getParent()->getParent();
AttributeWithIndex AWI[2];
- AWI[0] = AttributeWithIndex::get(M->getContext(), 1, Attributes::NoCapture);
+ AWI[0] = AttributeWithIndex::get(M->getContext(), 1, Attribute::NoCapture);
AWI[1] = AttributeWithIndex::get(M->getContext(), AttributeSet::FunctionIndex,
- Attributes::NoUnwind);
+ Attribute::NoUnwind);
Value *PutS = M->getOrInsertFunction("puts",
AttributeSet::get(M->getContext(), AWI),
@@ -371,9 +369,9 @@ Value *llvm::EmitFPutC(Value *Char, Value *File, IRBuilder<> &B,
Module *M = B.GetInsertBlock()->getParent()->getParent();
AttributeWithIndex AWI[2];
- AWI[0] = AttributeWithIndex::get(M->getContext(), 2, Attributes::NoCapture);
+ AWI[0] = AttributeWithIndex::get(M->getContext(), 2, Attribute::NoCapture);
AWI[1] = AttributeWithIndex::get(M->getContext(), AttributeSet::FunctionIndex,
- Attributes::NoUnwind);
+ Attribute::NoUnwind);
Constant *F;
if (File->getType()->isPointerTy())
F = M->getOrInsertFunction("fputc",
@@ -404,10 +402,10 @@ Value *llvm::EmitFPutS(Value *Str, Value *File, IRBuilder<> &B,
Module *M = B.GetInsertBlock()->getParent()->getParent();
AttributeWithIndex AWI[3];
- AWI[0] = AttributeWithIndex::get(M->getContext(), 1, Attributes::NoCapture);
- AWI[1] = AttributeWithIndex::get(M->getContext(), 2, Attributes::NoCapture);
+ AWI[0] = AttributeWithIndex::get(M->getContext(), 1, Attribute::NoCapture);
+ AWI[1] = AttributeWithIndex::get(M->getContext(), 2, Attribute::NoCapture);
AWI[2] = AttributeWithIndex::get(M->getContext(), AttributeSet::FunctionIndex,
- Attributes::NoUnwind);
+ Attribute::NoUnwind);
StringRef FPutsName = TLI->getName(LibFunc::fputs);
Constant *F;
if (File->getType()->isPointerTy())
@@ -437,10 +435,10 @@ Value *llvm::EmitFWrite(Value *Ptr, Value *Size, Value *File,
Module *M = B.GetInsertBlock()->getParent()->getParent();
AttributeWithIndex AWI[3];
- AWI[0] = AttributeWithIndex::get(M->getContext(), 1, Attributes::NoCapture);
- AWI[1] = AttributeWithIndex::get(M->getContext(), 4, Attributes::NoCapture);
+ AWI[0] = AttributeWithIndex::get(M->getContext(), 1, Attribute::NoCapture);
+ AWI[1] = AttributeWithIndex::get(M->getContext(), 4, Attribute::NoCapture);
AWI[2] = AttributeWithIndex::get(M->getContext(), AttributeSet::FunctionIndex,
- Attributes::NoUnwind);
+ Attribute::NoUnwind);
LLVMContext &Context = B.GetInsertBlock()->getContext();
StringRef FWriteName = TLI->getName(LibFunc::fwrite);
Constant *F;
diff --git a/lib/Transforms/Utils/BypassSlowDivision.cpp b/lib/Transforms/Utils/BypassSlowDivision.cpp
index 1699a3b648..00cda8e034 100644
--- a/lib/Transforms/Utils/BypassSlowDivision.cpp
+++ b/lib/Transforms/Utils/BypassSlowDivision.cpp
@@ -18,9 +18,9 @@
#define DEBUG_TYPE "bypass-slow-division"
#include "llvm/Transforms/Utils/BypassSlowDivision.h"
#include "llvm/ADT/DenseMap.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Instructions.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
using namespace llvm;
diff --git a/lib/Transforms/Utils/CMakeLists.txt b/lib/Transforms/Utils/CMakeLists.txt
index 620209bccb..b71628bcb2 100644
--- a/lib/Transforms/Utils/CMakeLists.txt
+++ b/lib/Transforms/Utils/CMakeLists.txt
@@ -1,5 +1,4 @@
add_llvm_library(LLVMTransformUtils
- AddrModeMatcher.cpp
BasicBlockUtils.cpp
BreakCriticalEdges.cpp
BuildLibCalls.cpp
diff --git a/lib/Transforms/Utils/CloneFunction.cpp b/lib/Transforms/Utils/CloneFunction.cpp
index 12f2e4b83e..ccc3eae782 100644
--- a/lib/Transforms/Utils/CloneFunction.cpp
+++ b/lib/Transforms/Utils/CloneFunction.cpp
@@ -17,15 +17,15 @@
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Constants.h"
#include "llvm/DebugInfo.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Metadata.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
#include "llvm/Support/CFG.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
diff --git a/lib/Transforms/Utils/CloneModule.cpp b/lib/Transforms/Utils/CloneModule.cpp
index 29ab5a72c4..46a77daffb 100644
--- a/lib/Transforms/Utils/CloneModule.cpp
+++ b/lib/Transforms/Utils/CloneModule.cpp
@@ -13,9 +13,9 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/Cloning.h"
-#include "llvm/Constant.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Module.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Module.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
using namespace llvm;
diff --git a/lib/Transforms/Utils/CmpInstAnalysis.cpp b/lib/Transforms/Utils/CmpInstAnalysis.cpp
index 9b099150a7..8fa412a18b 100644
--- a/lib/Transforms/Utils/CmpInstAnalysis.cpp
+++ b/lib/Transforms/Utils/CmpInstAnalysis.cpp
@@ -13,8 +13,8 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/CmpInstAnalysis.h"
-#include "llvm/Constants.h"
-#include "llvm/Instructions.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Instructions.h"
using namespace llvm;
diff --git a/lib/Transforms/Utils/CodeExtractor.cpp b/lib/Transforms/Utils/CodeExtractor.cpp
index a596df64fd..3a215284d9 100644
--- a/lib/Transforms/Utils/CodeExtractor.cpp
+++ b/lib/Transforms/Utils/CodeExtractor.cpp
@@ -21,12 +21,12 @@
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/RegionIterator.h"
#include "llvm/Analysis/Verifier.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
diff --git a/lib/Transforms/Utils/DemoteRegToStack.cpp b/lib/Transforms/Utils/DemoteRegToStack.cpp
index f8a0cafadc..d5c41f5459 100644
--- a/lib/Transforms/Utils/DemoteRegToStack.cpp
+++ b/lib/Transforms/Utils/DemoteRegToStack.cpp
@@ -9,9 +9,9 @@
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/ADT/DenseMap.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/Type.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Type.h"
using namespace llvm;
/// DemoteRegToStack - This function takes a virtual register computed by an
@@ -124,7 +124,12 @@ AllocaInst *llvm::DemotePHIToStack(PHINode *P, Instruction *AllocaPoint) {
}
// Insert a load in place of the PHI and replace all uses.
- Value *V = new LoadInst(Slot, P->getName()+".reload", P);
+ BasicBlock::iterator InsertPt = P;
+
+ for (; isa<PHINode>(InsertPt) || isa<LandingPadInst>(InsertPt); ++InsertPt)
+ /* empty */; // Don't insert before PHI nodes or landingpad instrs.
+
+ Value *V = new LoadInst(Slot, P->getName()+".reload", InsertPt);
P->replaceAllUsesWith(V);
// Delete PHI.
diff --git a/lib/Transforms/Utils/InlineFunction.cpp b/lib/Transforms/Utils/InlineFunction.cpp
index c176cf1075..0d2598a221 100644
--- a/lib/Transforms/Utils/InlineFunction.cpp
+++ b/lib/Transforms/Utils/InlineFunction.cpp
@@ -17,16 +17,16 @@
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Attributes.h"
-#include "llvm/Constants.h"
-#include "llvm/DataLayout.h"
#include "llvm/DebugInfo.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/Module.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Module.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
diff --git a/lib/Transforms/Utils/InstructionNamer.cpp b/lib/Transforms/Utils/InstructionNamer.cpp
index 45c15de943..a020bc7398 100644
--- a/lib/Transforms/Utils/InstructionNamer.cpp
+++ b/lib/Transforms/Utils/InstructionNamer.cpp
@@ -15,9 +15,9 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Function.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Type.h"
#include "llvm/Pass.h"
-#include "llvm/Type.h"
using namespace llvm;
namespace {
diff --git a/lib/Transforms/Utils/IntegerDivision.cpp b/lib/Transforms/Utils/IntegerDivision.cpp
index 67dcbe446b..5187d7cdd7 100644
--- a/lib/Transforms/Utils/IntegerDivision.cpp
+++ b/lib/Transforms/Utils/IntegerDivision.cpp
@@ -16,10 +16,10 @@
#define DEBUG_TYPE "integer-division"
#include "llvm/Transforms/Utils/IntegerDivision.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Instructions.h"
-#include "llvm/Intrinsics.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
using namespace llvm;
diff --git a/lib/Transforms/Utils/LCSSA.cpp b/lib/Transforms/Utils/LCSSA.cpp
index 5dddb6e28a..2d1b166c21 100644
--- a/lib/Transforms/Utils/LCSSA.cpp
+++ b/lib/Transforms/Utils/LCSSA.cpp
@@ -34,9 +34,9 @@
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Constants.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/Support/PredIteratorCache.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
diff --git a/lib/Transforms/Utils/Local.cpp b/lib/Transforms/Utils/Local.cpp
index 0e56817a1b..a54ee08b67 100644
--- a/lib/Transforms/Utils/Local.cpp
+++ b/lib/Transforms/Utils/Local.cpp
@@ -14,26 +14,27 @@
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/ProfileInfo.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Constants.h"
#include "llvm/DIBuilder.h"
-#include "llvm/DataLayout.h"
#include "llvm/DebugInfo.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/GlobalAlias.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/MDBuilder.h"
-#include "llvm/Metadata.h"
-#include "llvm/Operator.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Operator.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
@@ -604,7 +605,7 @@ bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
// possible to handle such cases, but difficult: it requires checking whether
// BB dominates Succ, which is non-trivial to calculate in the case where
// Succ has multiple predecessors. Also, it requires checking whether
- // constructing the necessary self-referential PHI node doesn't intoduce any
+ // constructing the necessary self-referential PHI node doesn't introduce any
// conflicts; this isn't too difficult, but the previous code for doing this
// was incorrect.
//
@@ -928,3 +929,78 @@ DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
return 0;
}
+
+bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
+ DIBuilder &Builder) {
+ DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI);
+ if (!DDI)
+ return false;
+ DIVariable DIVar(DDI->getVariable());
+ if (!DIVar.Verify())
+ return false;
+
+ // Create a copy of the original DIDescriptor for user variable, appending
+ // "deref" operation to a list of address elements, as new llvm.dbg.declare
+ // will take a value storing address of the memory for variable, not
+ // alloca itself.
+ Type *Int64Ty = Type::getInt64Ty(AI->getContext());
+ SmallVector<Value*, 4> NewDIVarAddress;
+ if (DIVar.hasComplexAddress()) {
+ for (unsigned i = 0, n = DIVar.getNumAddrElements(); i < n; ++i) {
+ NewDIVarAddress.push_back(
+ ConstantInt::get(Int64Ty, DIVar.getAddrElement(i)));
+ }
+ }
+ NewDIVarAddress.push_back(ConstantInt::get(Int64Ty, DIBuilder::OpDeref));
+ DIVariable NewDIVar = Builder.createComplexVariable(
+ DIVar.getTag(), DIVar.getContext(), DIVar.getName(),
+ DIVar.getFile(), DIVar.getLineNumber(), DIVar.getType(),
+ NewDIVarAddress, DIVar.getArgNumber());
+
+ // Insert llvm.dbg.declare in the same basic block as the original alloca,
+ // and remove old llvm.dbg.declare.
+ BasicBlock *BB = AI->getParent();
+ Builder.insertDeclare(NewAllocaAddress, NewDIVar, BB);
+ DDI->eraseFromParent();
+ return true;
+}
+
+bool llvm::removeUnreachableBlocks(Function &F) {
+ SmallPtrSet<BasicBlock*, 16> Reachable;
+ SmallVector<BasicBlock*, 128> Worklist;
+ Worklist.push_back(&F.getEntryBlock());
+ Reachable.insert(&F.getEntryBlock());
+ do {
+ BasicBlock *BB = Worklist.pop_back_val();
+ for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
+ if (Reachable.insert(*SI))
+ Worklist.push_back(*SI);
+ } while (!Worklist.empty());
+
+ if (Reachable.size() == F.size())
+ return false;
+
+ assert(Reachable.size() < F.size());
+ for (Function::iterator I = llvm::next(F.begin()), E = F.end(); I != E; ++I) {
+ if (Reachable.count(I))
+ continue;
+
+ // Remove the block as predecessor of all its reachable successors.
+ // Unreachable successors don't matter as they'll soon be removed, too.
+ for (succ_iterator SI = succ_begin(I), SE = succ_end(I); SI != SE; ++SI)
+ if (Reachable.count(*SI))
+ (*SI)->removePredecessor(I);
+
+ // Zap all instructions in this basic block.
+ while (!I->empty()) {
+ Instruction &Inst = I->back();
+ if (!Inst.use_empty())
+ Inst.replaceAllUsesWith(UndefValue::get(Inst.getType()));
+ I->getInstList().pop_back();
+ }
+
+ --I;
+ llvm::next(I)->eraseFromParent();
+ }
+ return true;
+}
diff --git a/lib/Transforms/Utils/LoopSimplify.cpp b/lib/Transforms/Utils/LoopSimplify.cpp
index 6a68416a3d..37819cc9c9 100644
--- a/lib/Transforms/Utils/LoopSimplify.cpp
+++ b/lib/Transforms/Utils/LoopSimplify.cpp
@@ -49,16 +49,16 @@
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Constants.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Type.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Type.h"
using namespace llvm;
STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
diff --git a/lib/Transforms/Utils/LoopUnroll.cpp b/lib/Transforms/Utils/LoopUnroll.cpp
index d24b334681..cb581b3d13 100644
--- a/lib/Transforms/Utils/LoopUnroll.cpp
+++ b/lib/Transforms/Utils/LoopUnroll.cpp
@@ -23,7 +23,7 @@
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/BasicBlock.h"
+#include "llvm/IR/BasicBlock.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
diff --git a/lib/Transforms/Utils/LoopUnrollRuntime.cpp b/lib/Transforms/Utils/LoopUnrollRuntime.cpp
index 242e7fa021..d801d5f2c2 100644
--- a/lib/Transforms/Utils/LoopUnrollRuntime.cpp
+++ b/lib/Transforms/Utils/LoopUnrollRuntime.cpp
@@ -28,7 +28,7 @@
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
-#include "llvm/BasicBlock.h"
+#include "llvm/IR/BasicBlock.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
diff --git a/lib/Transforms/Utils/LowerExpectIntrinsic.cpp b/lib/Transforms/Utils/LowerExpectIntrinsic.cpp
index 8756d26ca4..4aee8ff51a 100644
--- a/lib/Transforms/Utils/LowerExpectIntrinsic.cpp
+++ b/lib/Transforms/Utils/LowerExpectIntrinsic.cpp
@@ -14,14 +14,14 @@
#define DEBUG_TYPE "lower-expect-intrinsic"
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/BasicBlock.h"
-#include "llvm/Constants.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/MDBuilder.h"
-#include "llvm/Metadata.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Metadata.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
diff --git a/lib/Transforms/Utils/LowerInvoke.cpp b/lib/Transforms/Utils/LowerInvoke.cpp
index 7b89ffd401..9ec84d730e 100644
--- a/lib/Transforms/Utils/LowerInvoke.cpp
+++ b/lib/Transforms/Utils/LowerInvoke.cpp
@@ -38,12 +38,12 @@
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetLowering.h"
diff --git a/lib/Transforms/Utils/LowerSwitch.cpp b/lib/Transforms/Utils/LowerSwitch.cpp
index 74a457ce81..955b853533 100644
--- a/lib/Transforms/Utils/LowerSwitch.cpp
+++ b/lib/Transforms/Utils/LowerSwitch.cpp
@@ -15,10 +15,10 @@
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/STLExtras.h"
-#include "llvm/Constants.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/LLVMContext.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
#include "llvm/Pass.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
diff --git a/lib/Transforms/Utils/Mem2Reg.cpp b/lib/Transforms/Utils/Mem2Reg.cpp
index 70fbf13b97..61b3965d8f 100644
--- a/lib/Transforms/Utils/Mem2Reg.cpp
+++ b/lib/Transforms/Utils/Mem2Reg.cpp
@@ -16,8 +16,8 @@
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
using namespace llvm;
diff --git a/lib/Transforms/Utils/MetaRenamer.cpp b/lib/Transforms/Utils/MetaRenamer.cpp
index 363e9367f3..d519fb7548 100644
--- a/lib/Transforms/Utils/MetaRenamer.cpp
+++ b/lib/Transforms/Utils/MetaRenamer.cpp
@@ -16,13 +16,12 @@
#include "llvm/Transforms/IPO.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/Module.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/TypeFinder.h"
#include "llvm/Pass.h"
-#include "llvm/Type.h"
-#include "llvm/TypeFinder.h"
-
using namespace llvm;
namespace {
diff --git a/lib/Transforms/Utils/ModuleUtils.cpp b/lib/Transforms/Utils/ModuleUtils.cpp
index dbcf3b2fe2..d090b48721 100644
--- a/lib/Transforms/Utils/ModuleUtils.cpp
+++ b/lib/Transforms/Utils/ModuleUtils.cpp
@@ -12,10 +12,10 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/ModuleUtils.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Module.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Module.h"
using namespace llvm;
diff --git a/lib/Transforms/Utils/PromoteMemoryToRegister.cpp b/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
index b41f433659..de335ec1a0 100644
--- a/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
+++ b/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
@@ -37,14 +37,14 @@
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Constants.h"
#include "llvm/DIBuilder.h"
#include "llvm/DebugInfo.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Metadata.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Metadata.h"
#include "llvm/Support/CFG.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
diff --git a/lib/Transforms/Utils/SSAUpdater.cpp b/lib/Transforms/Utils/SSAUpdater.cpp
index e1e7f4d668..9d90fbe565 100644
--- a/lib/Transforms/Utils/SSAUpdater.cpp
+++ b/lib/Transforms/Utils/SSAUpdater.cpp
@@ -16,9 +16,9 @@
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Constants.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/AlignOf.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CFG.h"
diff --git a/lib/Transforms/Utils/SimplifyCFG.cpp b/lib/Transforms/Utils/SimplifyCFG.cpp
index 3cae77227c..f10c35fa65 100644
--- a/lib/Transforms/Utils/SimplifyCFG.cpp
+++ b/lib/Transforms/Utils/SimplifyCFG.cpp
@@ -20,28 +20,28 @@
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Constants.h"
-#include "llvm/DataLayout.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/MDBuilder.h"
-#include "llvm/Metadata.h"
-#include "llvm/Module.h"
-#include "llvm/Operator.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/Type.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/NoFolder.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/TargetTransformInfo.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Type.h"
#include <algorithm>
#include <map>
#include <set>
@@ -82,8 +82,8 @@ namespace {
};
class SimplifyCFGOpt {
+ const TargetTransformInfo &TTI;
const DataLayout *const TD;
- const TargetTransformInfo *const TTI;
Value *isValueEqualityComparison(TerminatorInst *TI);
BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
@@ -103,8 +103,8 @@ class SimplifyCFGOpt {
bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
public:
- SimplifyCFGOpt(const DataLayout *td, const TargetTransformInfo *tti)
- : TD(td), TTI(tti) {}
+ SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout *TD)
+ : TTI(TTI), TD(TD) {}
bool run(BasicBlock *BB);
};
}
@@ -2522,9 +2522,9 @@ static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
///
/// We prefer to split the edge to 'end' so that there is a true/false entry to
/// the PHI, merging the third icmp into the switch.
-static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
- const DataLayout *TD,
- IRBuilder<> &Builder) {
+static bool TryToSimplifyUncondBranchWithICmpInIt(
+ ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI,
+ const DataLayout *TD) {
BasicBlock *BB = ICI->getParent();
// If the block has any PHIs in it or the icmp has multiple uses, it is too
@@ -2557,7 +2557,7 @@ static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
ICI->eraseFromParent();
}
// BB is now empty, so it is likely to simplify away.
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
}
// Ok, the block is reachable from the default dest. If the constant we're
@@ -2573,7 +2573,7 @@ static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
ICI->replaceAllUsesWith(V);
ICI->eraseFromParent();
// BB is now empty, so it is likely to simplify away.
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
}
// The use of the icmp has to be in the 'end' block, by the only PHI node in
@@ -3510,8 +3510,8 @@ bool SwitchLookupTable::WouldFitInRegister(const DataLayout *TD,
/// types of the results.
static bool ShouldBuildLookupTable(SwitchInst *SI,
uint64_t TableSize,
+ const TargetTransformInfo &TTI,
const DataLayout *TD,
- const TargetTransformInfo *TTI,
const SmallDenseMap<PHINode*, Type*>& ResultTypes) {
if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
return false; // TableSize overflowed, or mul below might overflow.
@@ -3523,8 +3523,7 @@ static bool ShouldBuildLookupTable(SwitchInst *SI,
Type *Ty = I->second;
// Saturate this flag to true.
- HasIllegalType = HasIllegalType ||
- !TTI->getScalarTargetTransformInfo()->isTypeLegal(Ty);
+ HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
// Saturate this flag to false.
AllTablesFitInRegister = AllTablesFitInRegister &&
@@ -3556,13 +3555,12 @@ static bool ShouldBuildLookupTable(SwitchInst *SI,
/// replace the switch with lookup tables.
static bool SwitchToLookupTable(SwitchInst *SI,
IRBuilder<> &Builder,
- const DataLayout* TD,
- const TargetTransformInfo *TTI) {
+ const TargetTransformInfo &TTI,
+ const DataLayout* TD) {
assert(SI->getNumCases() > 1 && "Degenerate switch?");
// Only build lookup table when we have a target that supports it.
- if (!TTI || !TTI->getScalarTargetTransformInfo() ||
- !TTI->getScalarTargetTransformInfo()->shouldBuildLookupTables())
+ if (!TTI.shouldBuildLookupTables())
return false;
// FIXME: If the switch is too sparse for a lookup table, perhaps we could
@@ -3629,7 +3627,7 @@ static bool SwitchToLookupTable(SwitchInst *SI,
APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
- if (!ShouldBuildLookupTable(SI, TableSize, TD, TTI, ResultTypes))
+ if (!ShouldBuildLookupTable(SI, TableSize, TTI, TD, ResultTypes))
return false;
// Create the BB that does the lookups.
@@ -3694,12 +3692,12 @@ bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
// see if that predecessor totally determines the outcome of this switch.
if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
Value *Cond = SI->getCondition();
if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
if (SimplifySwitchOnSelect(SI, Select))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
// If the block only contains the switch, see if we can fold the block
// away into any preds.
@@ -3709,22 +3707,22 @@ bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
++BBI;
if (SI == &*BBI)
if (FoldValueComparisonIntoPredecessors(SI, Builder))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
}
// Try to transform the switch into an icmp and a branch.
if (TurnSwitchRangeIntoICmp(SI, Builder))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
// Remove unreachable cases.
if (EliminateDeadSwitchCases(SI))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
if (ForwardSwitchConditionToPHI(SI))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
- if (SwitchToLookupTable(SI, Builder, TD, TTI))
- return SimplifyCFG(BB) | true;
+ if (SwitchToLookupTable(SI, Builder, TTI, TD))
+ return SimplifyCFG(BB, TTI, TD) | true;
return false;
}
@@ -3761,7 +3759,7 @@ bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
if (SimplifyIndirectBrOnSelect(IBI, SI))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
}
return Changed;
}
@@ -3785,7 +3783,7 @@ bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
for (++I; isa<DbgInfoIntrinsic>(I); ++I)
;
if (I->isTerminator() &&
- TryToSimplifyUncondBranchWithICmpInIt(ICI, TD, Builder))
+ TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI, TD))
return true;
}
@@ -3794,7 +3792,7 @@ bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
// predecessor and use logical operations to update the incoming value
// for PHI nodes in common successor.
if (FoldBranchToCommonDest(BI))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
return false;
}
@@ -3809,7 +3807,7 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
// switch.
if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
// This block must be empty, except for the setcond inst, if it exists.
// Ignore dbg intrinsics.
@@ -3819,14 +3817,14 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
++I;
if (&*I == BI) {
if (FoldValueComparisonIntoPredecessors(BI, Builder))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
} else if (&*I == cast<Instruction>(BI->getCondition())){
++I;
// Ignore dbg intrinsics.
while (isa<DbgInfoIntrinsic>(I))
++I;
if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
}
}
@@ -3838,7 +3836,7 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
// branches to us and one of our successors, fold the comparison into the
// predecessor and use logical operations to pick the right destination.
if (FoldBranchToCommonDest(BI))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
// We have a conditional branch to two blocks that are only reachable
// from BI. We know that the condbr dominates the two blocks, so see if
@@ -3847,7 +3845,7 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
if (HoistThenElseCodeToIf(BI))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
} else {
// If Successor #1 has multiple preds, we may be able to conditionally
// execute Successor #0 if it branches to successor #1.
@@ -3855,7 +3853,7 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
if (Succ0TI->getNumSuccessors() == 1 &&
Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
}
} else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
// If Successor #0 has multiple preds, we may be able to conditionally
@@ -3864,7 +3862,7 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
if (Succ1TI->getNumSuccessors() == 1 &&
Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
}
// If this is a branch on a phi node in the current block, thread control
@@ -3872,14 +3870,14 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
if (PN->getParent() == BI->getParent())
if (FoldCondBranchOnPHI(BI, TD))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
// Scan predecessor blocks for conditional branches.
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
if (PBI != BI && PBI->isConditional())
if (SimplifyCondBranchToCondBranch(PBI, BI))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
return false;
}
@@ -4020,7 +4018,7 @@ bool SimplifyCFGOpt::run(BasicBlock *BB) {
/// eliminates unreachable basic blocks, and does other "peephole" optimization
/// of the CFG. It returns true if a modification was made.
///
-bool llvm::SimplifyCFG(BasicBlock *BB, const DataLayout *TD,
- const TargetTransformInfo *TTI) {
- return SimplifyCFGOpt(TD, TTI).run(BB);
+bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
+ const DataLayout *TD) {
+ return SimplifyCFGOpt(TTI, TD).run(BB);
}
diff --git a/lib/Transforms/Utils/SimplifyIndVar.cpp b/lib/Transforms/Utils/SimplifyIndVar.cpp
index 5883293a81..41c207c3d5 100644
--- a/lib/Transforms/Utils/SimplifyIndVar.cpp
+++ b/lib/Transforms/Utils/SimplifyIndVar.cpp
@@ -22,8 +22,8 @@
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Instructions.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instructions.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
diff --git a/lib/Transforms/Utils/SimplifyInstructions.cpp b/lib/Transforms/Utils/SimplifyInstructions.cpp
index 8b2eeb9928..f9687e4d58 100644
--- a/lib/Transforms/Utils/SimplifyInstructions.cpp
+++ b/lib/Transforms/Utils/SimplifyInstructions.cpp
@@ -21,12 +21,12 @@
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Function.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Type.h"
#include "llvm/Pass.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Type.h"
using namespace llvm;
STATISTIC(NumSimplified, "Number of redundant instructions removed");
diff --git a/lib/Transforms/Utils/SimplifyLibCalls.cpp b/lib/Transforms/Utils/SimplifyLibCalls.cpp
index 11a1ee5207..355bcc08b2 100644
--- a/lib/Transforms/Utils/SimplifyLibCalls.cpp
+++ b/lib/Transforms/Utils/SimplifyLibCalls.cpp
@@ -17,12 +17,12 @@
#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
@@ -792,8 +792,8 @@ struct StrToOpt : public LibCallOptimization {
if (isa<ConstantPointerNull>(EndPtr)) {
// With a null EndPtr, this function won't capture the main argument.
// It would be readonly too, except that it still may write to errno.
- CI->addAttribute(1, Attributes::get(Callee->getContext(),
- Attributes::NoCapture));
+ CI->addAttribute(1, Attribute::get(Callee->getContext(),
+ Attribute::NoCapture));
}
return 0;
diff --git a/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp b/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp
index 8cf62196cc..560f581607 100644
--- a/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp
+++ b/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp
@@ -16,11 +16,11 @@
#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
#include "llvm/ADT/StringExtras.h"
-#include "llvm/BasicBlock.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Type.h"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Type.h"
using namespace llvm;
char UnifyFunctionExitNodes::ID = 0;
diff --git a/lib/Transforms/Utils/ValueMapper.cpp b/lib/Transforms/Utils/ValueMapper.cpp
index a30b09321b..a5e164374f 100644
--- a/lib/Transforms/Utils/ValueMapper.cpp
+++ b/lib/Transforms/Utils/ValueMapper.cpp
@@ -13,11 +13,11 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/ValueMapper.h"
-#include "llvm/Constants.h"
-#include "llvm/Function.h"
-#include "llvm/InlineAsm.h"
-#include "llvm/Instructions.h"
-#include "llvm/Metadata.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Metadata.h"
using namespace llvm;
// Out of line method to get vtable etc for class.
diff --git a/lib/Transforms/Vectorize/BBVectorize.cpp b/lib/Transforms/Vectorize/BBVectorize.cpp
index a48229132b..d72a4a1a62 100644
--- a/lib/Transforms/Vectorize/BBVectorize.cpp
+++ b/lib/Transforms/Vectorize/BBVectorize.cpp
@@ -29,24 +29,24 @@
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Constants.h"
-#include "llvm/DataLayout.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Metadata.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Type.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/TargetTransformInfo.h"
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Type.h"
#include <algorithm>
#include <map>
using namespace llvm;
@@ -199,9 +199,7 @@ namespace {
DT = &P->getAnalysis<DominatorTree>();
SE = &P->getAnalysis<ScalarEvolution>();
TD = P->getAnalysisIfAvailable<DataLayout>();
- TTI = IgnoreTargetInfo ? 0 :
- P->getAnalysisIfAvailable<TargetTransformInfo>();
- VTTI = TTI ? TTI->getVectorTargetTransformInfo() : 0;
+ TTI = IgnoreTargetInfo ? 0 : &P->getAnalysis<TargetTransformInfo>();
}
typedef std::pair<Value *, Value *> ValuePair;
@@ -219,8 +217,7 @@ namespace {
DominatorTree *DT;
ScalarEvolution *SE;
DataLayout *TD;
- TargetTransformInfo *TTI;
- const VectorTargetTransformInfo *VTTI;
+ const TargetTransformInfo *TTI;
// FIXME: const correct?
@@ -387,7 +384,7 @@ namespace {
return false;
}
- DEBUG(if (VTTI) dbgs() << "BBV: using target information\n");
+ DEBUG(if (TTI) dbgs() << "BBV: using target information\n");
bool changed = false;
// Iterate a sufficient number of times to merge types of size 1 bit,
@@ -395,7 +392,7 @@ namespace {
// target vector register.
unsigned n = 1;
for (unsigned v = 2;
- (VTTI || v <= Config.VectorBits) &&
+ (TTI || v <= Config.VectorBits) &&
(!Config.MaxIter || n <= Config.MaxIter);
v *= 2, ++n) {
DEBUG(dbgs() << "BBV: fusing loop #" << n <<
@@ -426,9 +423,7 @@ namespace {
DT = &getAnalysis<DominatorTree>();
SE = &getAnalysis<ScalarEvolution>();
TD = getAnalysisIfAvailable<DataLayout>();
- TTI = IgnoreTargetInfo ? 0 :
- getAnalysisIfAvailable<TargetTransformInfo>();
- VTTI = TTI ? TTI->getVectorTargetTransformInfo() : 0;
+ TTI = IgnoreTargetInfo ? 0 : &getAnalysis<TargetTransformInfo>();
return vectorizeBB(BB);
}
@@ -438,6 +433,7 @@ namespace {
AU.addRequired<AliasAnalysis>();
AU.addRequired<DominatorTree>();
AU.addRequired<ScalarEvolution>();
+ AU.addRequired<TargetTransformInfo>();
AU.addPreserved<AliasAnalysis>();
AU.addPreserved<DominatorTree>();
AU.addPreserved<ScalarEvolution>();
@@ -520,7 +516,7 @@ namespace {
return 1;
}
- // Returns the cost of the provided instruction using VTTI.
+ // Returns the cost of the provided instruction using TTI.
// This does not handle loads and stores.
unsigned getInstrCost(unsigned Opcode, Type *T1, Type *T2) {
switch (Opcode) {
@@ -531,7 +527,7 @@ namespace {
// generate vector GEPs.
return 0;
case Instruction::Br:
- return VTTI->getCFInstrCost(Opcode);
+ return TTI->getCFInstrCost(Opcode);
case Instruction::PHI:
return 0;
case Instruction::Add:
@@ -552,11 +548,11 @@ namespace {
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
- return VTTI->getArithmeticInstrCost(Opcode, T1);
+ return TTI->getArithmeticInstrCost(Opcode, T1);
case Instruction::Select:
case Instruction::ICmp:
case Instruction::FCmp:
- return VTTI->getCmpSelInstrCost(Opcode, T1, T2);
+ return TTI->getCmpSelInstrCost(Opcode, T1, T2);
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
@@ -570,7 +566,7 @@ namespace {
case Instruction::FPTrunc:
case Instruction::BitCast:
case Instruction::ShuffleVector:
- return VTTI->getCastInstrCost(Opcode, T1, T2);
+ return TTI->getCastInstrCost(Opcode, T1, T2);
}
return 1;
@@ -642,7 +638,7 @@ namespace {
Function *F = I->getCalledFunction();
if (!F) return false;
- unsigned IID = F->getIntrinsicID();
+ Intrinsic::ID IID = (Intrinsic::ID) F->getIntrinsicID();
if (!IID) return false;
switch(IID) {
@@ -660,6 +656,7 @@ namespace {
case Intrinsic::pow:
return Config.VectorizeMath;
case Intrinsic::fma:
+ case Intrinsic::fmuladd:
return Config.VectorizeFMA;
}
}
@@ -903,8 +900,8 @@ namespace {
T2->getScalarType()->isPointerTy()))
return false;
- if (!VTTI && (T1->getPrimitiveSizeInBits() >= Config.VectorBits ||
- T2->getPrimitiveSizeInBits() >= Config.VectorBits))
+ if (!TTI && (T1->getPrimitiveSizeInBits() >= Config.VectorBits ||
+ T2->getPrimitiveSizeInBits() >= Config.VectorBits))
return false;
return true;
@@ -935,7 +932,7 @@ namespace {
unsigned MaxTypeBits = std::max(
IT1->getPrimitiveSizeInBits() + JT1->getPrimitiveSizeInBits(),
IT2->getPrimitiveSizeInBits() + JT2->getPrimitiveSizeInBits());
- if (!VTTI && MaxTypeBits > Config.VectorBits)
+ if (!TTI && MaxTypeBits > Config.VectorBits)
return false;
// FIXME: handle addsub-type operations!
@@ -967,21 +964,21 @@ namespace {
return false;
}
- if (VTTI) {
- unsigned ICost = VTTI->getMemoryOpCost(I->getOpcode(), I->getType(),
- IAlignment, IAddressSpace);
- unsigned JCost = VTTI->getMemoryOpCost(J->getOpcode(), J->getType(),
- JAlignment, JAddressSpace);
- unsigned VCost = VTTI->getMemoryOpCost(I->getOpcode(), VType,
- BottomAlignment,
- IAddressSpace);
+ if (TTI) {
+ unsigned ICost = TTI->getMemoryOpCost(I->getOpcode(), aTypeI,
+ IAlignment, IAddressSpace);
+ unsigned JCost = TTI->getMemoryOpCost(J->getOpcode(), aTypeJ,
+ JAlignment, JAddressSpace);
+ unsigned VCost = TTI->getMemoryOpCost(I->getOpcode(), VType,
+ BottomAlignment,
+ IAddressSpace);
if (VCost > ICost + JCost)
return false;
// We don't want to fuse to a type that will be split, even
// if the two input types will also be split and there is no other
// associated cost.
- unsigned VParts = VTTI->getNumberOfParts(VType);
+ unsigned VParts = TTI->getNumberOfParts(VType);
if (VParts > 1)
return false;
else if (!VParts && VCost == ICost + JCost)
@@ -992,7 +989,7 @@ namespace {
} else {
return false;
}
- } else if (VTTI) {
+ } else if (TTI) {
unsigned ICost = getInstrCost(I->getOpcode(), IT1, IT2);
unsigned JCost = getInstrCost(J->getOpcode(), JT1, JT2);
Type *VT1 = getVecTypeForPair(IT1, JT1),
@@ -1005,8 +1002,8 @@ namespace {
// We don't want to fuse to a type that will be split, even
// if the two input types will also be split and there is no other
// associated cost.
- unsigned VParts1 = VTTI->getNumberOfParts(VT1),
- VParts2 = VTTI->getNumberOfParts(VT2);
+ unsigned VParts1 = TTI->getNumberOfParts(VT1),
+ VParts2 = TTI->getNumberOfParts(VT2);
if (VParts1 > 1 || VParts2 > 1)
return false;
else if ((!VParts1 || !VParts2) && VCost == ICost + JCost)
@@ -1019,14 +1016,67 @@ namespace {
// vectorized, the second arguments must be equal.
CallInst *CI = dyn_cast<CallInst>(I);
Function *FI;
- if (CI && (FI = CI->getCalledFunction()) &&
- FI->getIntrinsicID() == Intrinsic::powi) {
-
- Value *A1I = CI->getArgOperand(1),
- *A1J = cast<CallInst>(J)->getArgOperand(1);
- const SCEV *A1ISCEV = SE->getSCEV(A1I),
- *A1JSCEV = SE->getSCEV(A1J);
- return (A1ISCEV == A1JSCEV);
+ if (CI && (FI = CI->getCalledFunction())) {
+ Intrinsic::ID IID = (Intrinsic::ID) FI->getIntrinsicID();
+ if (IID == Intrinsic::powi) {
+ Value *A1I = CI->getArgOperand(1),
+ *A1J = cast<CallInst>(J)->getArgOperand(1);
+ const SCEV *A1ISCEV = SE->getSCEV(A1I),
+ *A1JSCEV = SE->getSCEV(A1J);
+ return (A1ISCEV == A1JSCEV);
+ }
+
+ if (IID && TTI) {
+ SmallVector<Type*, 4> Tys;
+ for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
+ Tys.push_back(CI->getArgOperand(i)->getType());
+ unsigned ICost = TTI->getIntrinsicInstrCost(IID, IT1, Tys);
+
+ Tys.clear();
+ CallInst *CJ = cast<CallInst>(J);
+ for (unsigned i = 0, ie = CJ->getNumArgOperands(); i != ie; ++i)
+ Tys.push_back(CJ->getArgOperand(i)->getType());
+ unsigned JCost = TTI->getIntrinsicInstrCost(IID, JT1, Tys);
+
+ Tys.clear();
+ assert(CI->getNumArgOperands() == CJ->getNumArgOperands() &&
+ "Intrinsic argument counts differ");
+ for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
+ if (IID == Intrinsic::powi && i == 1)
+ Tys.push_back(CI->getArgOperand(i)->getType());
+ else
+ Tys.push_back(getVecTypeForPair(CI->getArgOperand(i)->getType(),
+ CJ->getArgOperand(i)->getType()));
+ }
+
+ Type *RetTy = getVecTypeForPair(IT1, JT1);
+ unsigned VCost = TTI->getIntrinsicInstrCost(IID, RetTy, Tys);
+
+ if (VCost > ICost + JCost)
+ return false;
+
+ // We don't want to fuse to a type that will be split, even
+ // if the two input types will also be split and there is no other
+ // associated cost.
+ unsigned RetParts = TTI->getNumberOfParts(RetTy);
+ if (RetParts > 1)
+ return false;
+ else if (!RetParts && VCost == ICost + JCost)
+ return false;
+
+ for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
+ if (!Tys[i]->isVectorTy())
+ continue;
+
+ unsigned NumParts = TTI->getNumberOfParts(Tys[i]);
+ if (NumParts > 1)
+ return false;
+ else if (!NumParts && VCost == ICost + JCost)
+ return false;
+ }
+
+ CostSavings = ICost + JCost - VCost;
+ }
}
return true;
@@ -1144,7 +1194,7 @@ namespace {
}
CandidatePairs.insert(ValuePair(I, J));
- if (VTTI)
+ if (TTI)
CandidatePairCostSavings.insert(ValuePairWithCost(ValuePair(I, J),
CostSavings));
@@ -1691,7 +1741,7 @@ namespace {
PrunedTree, *J, UseCycleCheck);
int EffSize = 0;
- if (VTTI) {
+ if (TTI) {
DenseSet<Value *> PrunedTreeInstrs;
for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(),
E = PrunedTree.end(); S != E; ++S) {
@@ -1808,7 +1858,7 @@ namespace {
ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
Ty1, VTy);
else
- ESContrib = (int) VTTI->getVectorInstrCost(
+ ESContrib = (int) TTI->getVectorInstrCost(
Instruction::ExtractElement, VTy, 0);
DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
@@ -1838,7 +1888,7 @@ namespace {
ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
Ty2, VTy);
else
- ESContrib = (int) VTTI->getVectorInstrCost(
+ ESContrib = (int) TTI->getVectorInstrCost(
Instruction::ExtractElement, VTy, 1);
DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
*S->second << "} = " << ESContrib << "\n");
@@ -1914,21 +1964,21 @@ namespace {
ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
VTy, VTy);
} else if (!Ty1->isVectorTy() && !Ty2->isVectorTy()) {
- ESContrib = (int) VTTI->getVectorInstrCost(
+ ESContrib = (int) TTI->getVectorInstrCost(
Instruction::InsertElement, VTy, 0);
- ESContrib += (int) VTTI->getVectorInstrCost(
+ ESContrib += (int) TTI->getVectorInstrCost(
Instruction::InsertElement, VTy, 1);
} else if (!Ty1->isVectorTy()) {
// O1 needs to be inserted into a vector of size O2, and then
// both need to be shuffled together.
- ESContrib = (int) VTTI->getVectorInstrCost(
+ ESContrib = (int) TTI->getVectorInstrCost(
Instruction::InsertElement, Ty2, 0);
ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
VTy, Ty2);
} else if (!Ty2->isVectorTy()) {
// O2 needs to be inserted into a vector of size O1, and then
// both need to be shuffled together.
- ESContrib = (int) VTTI->getVectorInstrCost(
+ ESContrib = (int) TTI->getVectorInstrCost(
Instruction::InsertElement, Ty1, 0);
ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
VTy, Ty1);
@@ -1970,7 +2020,7 @@ namespace {
<< *J->first << " <-> " << *J->second << "} of depth " <<
MaxDepth << " and size " << PrunedTree.size() <<
" (effective size: " << EffSize << ")\n");
- if (((VTTI && !UseChainDepthWithTI) ||
+ if (((TTI && !UseChainDepthWithTI) ||
MaxDepth >= Config.ReqChainDepth) &&
EffSize > 0 && EffSize > BestEffSize) {
BestMaxDepth = MaxDepth;
@@ -2550,7 +2600,7 @@ namespace {
continue;
} else if (isa<CallInst>(I)) {
Function *F = cast<CallInst>(I)->getCalledFunction();
- unsigned IID = F->getIntrinsicID();
+ Intrinsic::ID IID = (Intrinsic::ID) F->getIntrinsicID();
if (o == NumOperands-1) {
BasicBlock &BB = *I->getParent();
@@ -2559,8 +2609,7 @@ namespace {
Type *ArgTypeJ = J->getType();
Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
- ReplacedOperands[o] = Intrinsic::getDeclaration(M,
- (Intrinsic::ID) IID, VArgType);
+ ReplacedOperands[o] = Intrinsic::getDeclaration(M, IID, VArgType);
continue;
} else if (IID == Intrinsic::powi && o == 1) {
// The second argument of powi is a single integer and we've already
@@ -2972,6 +3021,7 @@ char BBVectorize::ID = 0;
static const char bb_vectorize_name[] = "Basic-Block Vectorization";
INITIALIZE_PASS_BEGIN(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_END(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
diff --git a/lib/Transforms/Vectorize/LoopVectorize.cpp b/lib/Transforms/Vectorize/LoopVectorize.cpp
index feeececedb..464ed97506 100644
--- a/lib/Transforms/Vectorize/LoopVectorize.cpp
+++ b/lib/Transforms/Vectorize/LoopVectorize.cpp
@@ -6,7 +6,51 @@
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
-#include "LoopVectorize.h"
+//
+// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
+// and generates target-independent LLVM-IR. Legalization of the IR is done
+// in the codegen. However, the vectorizes uses (will use) the codegen
+// interfaces to generate IR that is likely to result in an optimal binary.
+//
+// The loop vectorizer combines consecutive loop iteration into a single
+// 'wide' iteration. After this transformation the index is incremented
+// by the SIMD vector width, and not by one.
+//
+// This pass has three parts:
+// 1. The main loop pass that drives the different parts.
+// 2. LoopVectorizationLegality - A unit that checks for the legality
+// of the vectorization.
+// 3. InnerLoopVectorizer - A unit that performs the actual
+// widening of instructions.
+// 4. LoopVectorizationCostModel - A unit that checks for the profitability
+// of vectorization. It decides on the optimal vector width, which
+// can be one, if vectorization is not profitable.
+//
+//===----------------------------------------------------------------------===//
+//
+// The reduction-variable vectorization is based on the paper:
+// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
+//
+// Variable uniformity checks are inspired by:
+// Karrenberg, R. and Hack, S. Whole Function Vectorization.
+//
+// Other ideas/concepts are from:
+// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
+//
+// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
+// Vectorizing Compilers.
+//
+//===----------------------------------------------------------------------===//
+
+#define LV_NAME "loop-vectorize"
+#define DEBUG_TYPE LV_NAME
+
+#include "llvm/Transforms/Vectorize.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
@@ -14,46 +58,526 @@
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/LoopPass.h"
-#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/Verifier.h"
-#include "llvm/Constants.h"
-#include "llvm/DataLayout.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/TargetTransformInfo.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Transforms/Vectorize.h"
-#include "llvm/Type.h"
-#include "llvm/Value.h"
+#include <algorithm>
+#include <map>
+
+using namespace llvm;
static cl::opt<unsigned>
VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
cl::desc("Sets the SIMD width. Zero is autoselect."));
+static cl::opt<unsigned>
+VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden,
+ cl::desc("Sets the vectorization unroll count. "
+ "Zero is autoselect."));
+
static cl::opt<bool>
EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
cl::desc("Enable if-conversion during vectorization."));
+/// We don't vectorize loops with a known constant trip count below this number.
+static const unsigned TinyTripCountVectorThreshold = 16;
+
+/// We don't unroll loops with a known constant trip count below this number.
+static const unsigned TinyTripCountUnrollThreshold = 128;
+
+/// We don't unroll loops that are larget than this threshold.
+static const unsigned MaxLoopSizeThreshold = 32;
+
+/// When performing a runtime memory check, do not check more than this
+/// number of pointers. Notice that the check is quadratic!
+static const unsigned RuntimeMemoryCheckThreshold = 4;
+
namespace {
+// Forward declarations.
+class LoopVectorizationLegality;
+class LoopVectorizationCostModel;
+
+/// InnerLoopVectorizer vectorizes loops which contain only one basic
+/// block to a specified vectorization factor (VF).
+/// This class performs the widening of scalars into vectors, or multiple
+/// scalars. This class also implements the following features:
+/// * It inserts an epilogue loop for handling loops that don't have iteration
+/// counts that are known to be a multiple of the vectorization factor.
+/// * It handles the code generation for reduction variables.
+/// * Scalarization (implementation using scalars) of un-vectorizable
+/// instructions.
+/// InnerLoopVectorizer does not perform any vectorization-legality
+/// checks, and relies on the caller to check for the different legality
+/// aspects. The InnerLoopVectorizer relies on the
+/// LoopVectorizationLegality class to provide information about the induction
+/// and reduction variables that were found to a given vectorization factor.
+class InnerLoopVectorizer {
+public:
+ InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
+ DominatorTree *DT, DataLayout *DL, unsigned VecWidth,
+ unsigned UnrollFactor)
+ : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), VF(VecWidth),
+ UF(UnrollFactor), Builder(SE->getContext()), Induction(0),
+ OldInduction(0), WidenMap(UnrollFactor) {}
+
+ // Perform the actual loop widening (vectorization).
+ void vectorize(LoopVectorizationLegality *Legal) {
+ // Create a new empty loop. Unlink the old loop and connect the new one.
+ createEmptyLoop(Legal);
+ // Widen each instruction in the old loop to a new one in the new loop.
+ // Use the Legality module to find the induction and reduction variables.
+ vectorizeLoop(Legal);
+ // Register the new loop and update the analysis passes.
+ updateAnalysis();
+ }
+
+private:
+ /// A small list of PHINodes.
+ typedef SmallVector<PHINode*, 4> PhiVector;
+ /// When we unroll loops we have multiple vector values for each scalar.
+ /// This data structure holds the unrolled and vectorized values that
+ /// originated from one scalar instruction.
+ typedef SmallVector<Value*, 2> VectorParts;
+
+ /// Add code that checks at runtime if the accessed arrays overlap.
+ /// Returns the comparator value or NULL if no check is needed.
+ Value *addRuntimeCheck(LoopVectorizationLegality *Legal,
+ Instruction *Loc);
+ /// Create an empty loop, based on the loop ranges of the old loop.
+ void createEmptyLoop(LoopVectorizationLegality *Legal);
+ /// Copy and widen the instructions from the old loop.
+ void vectorizeLoop(LoopVectorizationLegality *Legal);
+
+ /// A helper function that computes the predicate of the block BB, assuming
+ /// that the header block of the loop is set to True. It returns the *entry*
+ /// mask for the block BB.
+ VectorParts createBlockInMask(BasicBlock *BB);
+ /// A helper function that computes the predicate of the edge between SRC
+ /// and DST.
+ VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
+
+ /// A helper function to vectorize a single BB within the innermost loop.
+ void vectorizeBlockInLoop(LoopVectorizationLegality *Legal, BasicBlock *BB,
+ PhiVector *PV);
+
+ /// Insert the new loop to the loop hierarchy and pass manager
+ /// and update the analysis passes.
+ void updateAnalysis();
+
+ /// This instruction is un-vectorizable. Implement it as a sequence
+ /// of scalars.
+ void scalarizeInstruction(Instruction *Instr);
+
+ /// Create a broadcast instruction. This method generates a broadcast
+ /// instruction (shuffle) for loop invariant values and for the induction
+ /// value. If this is the induction variable then we extend it to N, N+1, ...
+ /// this is needed because each iteration in the loop corresponds to a SIMD
+ /// element.
+ Value *getBroadcastInstrs(Value *V);
+
+ /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
+ /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
+ /// The sequence starts at StartIndex.
+ Value *getConsecutiveVector(Value* Val, unsigned StartIdx, bool Negate);
+
+ /// When we go over instructions in the basic block we rely on previous
+ /// values within the current basic block or on loop invariant values.
+ /// When we widen (vectorize) values we place them in the map. If the values
+ /// are not within the map, they have to be loop invariant, so we simply
+ /// broadcast them into a vector.
+ VectorParts &getVectorValue(Value *V);
+
+ /// Generate a shuffle sequence that will reverse the vector Vec.
+ Value *reverseVector(Value *Vec);
+
+ /// This is a helper class that holds the vectorizer state. It maps scalar
+ /// instructions to vector instructions. When the code is 'unrolled' then
+ /// then a single scalar value is mapped to multiple vector parts. The parts
+ /// are stored in the VectorPart type.
+ struct ValueMap {
+ /// C'tor. UnrollFactor controls the number of vectors ('parts') that
+ /// are mapped.
+ ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
+
+ /// \return True if 'Key' is saved in the Value Map.
+ bool has(Value *Key) { return MapStoreage.count(Key); }
+
+ /// Initializes a new entry in the map. Sets all of the vector parts to the
+ /// save value in 'Val'.
+ /// \return A reference to a vector with splat values.
+ VectorParts &splat(Value *Key, Value *Val) {
+ MapStoreage[Key].clear();
+ MapStoreage[Key].append(UF, Val);
+ return MapStoreage[Key];
+ }
+
+ ///\return A reference to the value that is stored at 'Key'.
+ VectorParts &get(Value *Key) {
+ if (!has(Key))
+ MapStoreage[Key].resize(UF);
+ return MapStoreage[Key];
+ }
+
+ /// The unroll factor. Each entry in the map stores this number of vector
+ /// elements.
+ unsigned UF;
+
+ /// Map storage. We use std::map and not DenseMap because insertions to a
+ /// dense map invalidates its iterators.
+ std::map<Value*, VectorParts> MapStoreage;
+ };
+
+ /// The original loop.
+ Loop *OrigLoop;
+ /// Scev analysis to use.
+ ScalarEvolution *SE;
+ /// Loop Info.
+ LoopInfo *LI;
+ /// Dominator Tree.
+ DominatorTree *DT;
+ /// Data Layout.
+ DataLayout *DL;
+ /// The vectorization SIMD factor to use. Each vector will have this many
+ /// vector elements.
+ unsigned VF;
+ /// The vectorization unroll factor to use. Each scalar is vectorized to this
+ /// many different vector instructions.
+ unsigned UF;
+
+ /// The builder that we use
+ IRBuilder<> Builder;
+
+ // --- Vectorization state ---
+
+ /// The vector-loop preheader.
+ BasicBlock *LoopVectorPreHeader;
+ /// The scalar-loop preheader.
+ BasicBlock *LoopScalarPreHeader;
+ /// Middle Block between the vector and the scalar.
+ BasicBlock *LoopMiddleBlock;
+ ///The ExitBlock of the scalar loop.
+ BasicBlock *LoopExitBlock;
+ ///The vector loop body.
+ BasicBlock *LoopVectorBody;
+ ///The scalar loop body.
+ BasicBlock *LoopScalarBody;
+ ///The first bypass block.
+ BasicBlock *LoopBypassBlock;
+
+ /// The new Induction variable which was added to the new block.
+ PHINode *Induction;
+ /// The induction variable of the old basic block.
+ PHINode *OldInduction;
+ /// Maps scalars to widened vectors.
+ ValueMap WidenMap;
+};
+
+/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
+/// to what vectorization factor.
+/// This class does not look at the profitability of vectorization, only the
+/// legality. This class has two main kinds of checks:
+/// * Memory checks - The code in canVectorizeMemory checks if vectorization
+/// will change the order of memory accesses in a way that will change the
+/// correctness of the program.
+/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
+/// checks for a number of different conditions, such as the availability of a
+/// single induction variable, that all types are supported and vectorize-able,
+/// etc. This code reflects the capabilities of InnerLoopVectorizer.
+/// This class is also used by InnerLoopVectorizer for identifying
+/// induction variable and the different reduction variables.
+class LoopVectorizationLegality {
+public:
+ LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DataLayout *DL,
+ DominatorTree *DT)
+ : TheLoop(L), SE(SE), DL(DL), DT(DT), Induction(0) {}
+
+ /// This enum represents the kinds of reductions that we support.
+ enum ReductionKind {
+ RK_NoReduction, ///< Not a reduction.
+ RK_IntegerAdd, ///< Sum of integers.
+ RK_IntegerMult, ///< Product of integers.
+ RK_IntegerOr, ///< Bitwise or logical OR of numbers.
+ RK_IntegerAnd, ///< Bitwise or logical AND of numbers.
+ RK_IntegerXor, ///< Bitwise or logical XOR of numbers.
+ RK_FloatAdd, ///< Sum of floats.
+ RK_FloatMult ///< Product of floats.
+ };
+
+ /// This enum represents the kinds of inductions that we support.
+ enum InductionKind {
+ IK_NoInduction, ///< Not an induction variable.
+ IK_IntInduction, ///< Integer induction variable. Step = 1.
+ IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1.
+ IK_PtrInduction ///< Pointer induction variable. Step = sizeof(elem).
+ };
+
+ /// This POD struct holds information about reduction variables.
+ struct ReductionDescriptor {
+ ReductionDescriptor() : StartValue(0), LoopExitInstr(0),
+ Kind(RK_NoReduction) {}
+
+ ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K)
+ : StartValue(Start), LoopExitInstr(Exit), Kind(K) {}
+
+ // The starting value of the reduction.
+ // It does not have to be zero!
+ Value *StartValue;
+ // The instruction who's value is used outside the loop.
+ Instruction *LoopExitInstr;
+ // The kind of the reduction.
+ ReductionKind Kind;
+ };
+
+ // This POD struct holds information about the memory runtime legality
+ // check that a group of pointers do not overlap.
+ struct RuntimePointerCheck {
+ RuntimePointerCheck() : Need(false) {}
+
+ /// Reset the state of the pointer runtime information.
+ void reset() {
+ Need = false;
+ Pointers.clear();
+ Starts.clear();
+ Ends.clear();
+ }
+
+ /// Insert a pointer and calculate the start and end SCEVs.
+ void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr);
+
+ /// This flag indicates if we need to add the runtime check.
+ bool Need;
+ /// Holds the pointers that we need to check.
+ SmallVector<Value*, 2> Pointers;
+ /// Holds the pointer value at the beginning of the loop.
+ SmallVector<const SCEV*, 2> Starts;
+ /// Holds the pointer value at the end of the loop.
+ SmallVector<const SCEV*, 2> Ends;
+ };
+
+ /// A POD for saving information about induction variables.
+ struct InductionInfo {
+ InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
+ InductionInfo() : StartValue(0), IK(IK_NoInduction) {}
+ /// Start value.
+ Value *StartValue;
+ /// Induction kind.
+ InductionKind IK;
+ };
+
+ /// ReductionList contains the reduction descriptors for all
+ /// of the reductions that were found in the loop.
+ typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
+
+ /// InductionList saves induction variables and maps them to the
+ /// induction descriptor.
+ typedef MapVector<PHINode*, InductionInfo> InductionList;
+
+ /// Returns true if it is legal to vectorize this loop.
+ /// This does not mean that it is profitable to vectorize this
+ /// loop, only that it is legal to do so.
+ bool canVectorize();
+
+ /// Returns the Induction variable.
+ PHINode *getInduction() { return Induction; }
+
+ /// Returns the reduction variables found in the loop.
+ ReductionList *getReductionVars() { return &Reductions; }
+
+ /// Returns the induction variables found in the loop.
+ InductionList *getInductionVars() { return &Inductions; }
+
+ /// Returns True if V is an induction variable in this loop.
+ bool isInductionVariable(const Value *V);
+
+ /// Return true if the block BB needs to be predicated in order for the loop
+ /// to be vectorized.
+ bool blockNeedsPredication(BasicBlock *BB);
+
+ /// Check if this pointer is consecutive when vectorizing. This happens
+ /// when the last index of the GEP is the induction variable, or that the
+ /// pointer itself is an induction variable.
+ /// This check allows us to vectorize A[idx] into a wide load/store.
+ /// Returns:
+ /// 0 - Stride is unknown or non consecutive.
+ /// 1 - Address is consecutive.
+ /// -1 - Address is consecutive, and decreasing.
+ int isConsecutivePtr(Value *Ptr);
+
+ /// Returns true if the value V is uniform within the loop.
+ bool isUniform(Value *V);
+
+ /// Returns true if this instruction will remain scalar after vectorization.
+ bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
+
+ /// Returns the information that we collected about runtime memory check.
+ RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
+private:
+ /// Check if a single basic block loop is vectorizable.
+ /// At this point we know that this is a loop with a constant trip count
+ /// and we only need to check individual instructions.
+ bool canVectorizeInstrs();
+
+ /// When we vectorize loops we may change the order in which
+ /// we read and write from memory. This method checks if it is
+ /// legal to vectorize the code, considering only memory constrains.
+ /// Returns true if the loop is vectorizable
+ bool canVectorizeMemory();
+
+ /// Return true if we can vectorize this loop using the IF-conversion
+ /// transformation.
+ bool canVectorizeWithIfConvert();
+
+ /// Collect the variables that need to stay uniform after vectorization.
+ void collectLoopUniforms();
+
+ /// Return true if all of the instructions in the block can be speculatively
+ /// executed.
+ bool blockCanBePredicated(BasicBlock *BB);
+
+ /// Returns True, if 'Phi' is the kind of reduction variable for type
+ /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
+ bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
+ /// Returns true if the instruction I can be a reduction variable of type
+ /// 'Kind'.
+ bool isReductionInstr(Instruction *I, ReductionKind Kind);
+ /// Returns the induction kind of Phi. This function may return NoInduction
+ /// if the PHI is not an induction variable.
+ InductionKind isInductionVariable(PHINode *Phi);
+ /// Return true if can compute the address bounds of Ptr within the loop.
+ bool hasComputableBounds(Value *Ptr);
+
+ /// The loop that we evaluate.
+ Loop *TheLoop;
+ /// Scev analysis.
+ ScalarEvolution *SE;
+ /// DataLayout analysis.
+ DataLayout *DL;
+ // Dominators.
+ DominatorTree *DT;
+
+ // --- vectorization state --- //
+
+ /// Holds the integer induction variable. This is the counter of the
+ /// loop.
+ PHINode *Induction;
+ /// Holds the reduction variables.
+ ReductionList Reductions;
+ /// Holds all of the induction variables that we found in the loop.
+ /// Notice that inductions don't need to start at zero and that induction
+ /// variables can be pointers.
+ InductionList Inductions;
+
+ /// Allowed outside users. This holds the reduction
+ /// vars which can be accessed from outside the loop.
+ SmallPtrSet<Value*, 4> AllowedExit;
+ /// This set holds the variables which are known to be uniform after
+ /// vectorization.
+ SmallPtrSet<Instruction*, 4> Uniforms;
+ /// We need to check that all of the pointers in this list are disjoint
+ /// at runtime.
+ RuntimePointerCheck PtrRtCheck;
+};
+
+/// LoopVectorizationCostModel - estimates the expected speedups due to
+/// vectorization.
+/// In many cases vectorization is not profitable. This can happen because of
+/// a number of reasons. In this class we mainly attempt to predict the
+/// expected speedup/slowdowns due to the supported instruction set. We use the
+/// TargetTransformInfo to query the different backends for the cost of
+/// different operations.
+class LoopVectorizationCostModel {
+public:
+ LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
+ LoopVectorizationLegality *Legal,
+ const TargetTransformInfo &TTI)
+ : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI) {}
+
+ /// \return The most profitable vectorization factor.
+ /// This method checks every power of two up to VF. If UserVF is not ZERO
+ /// then this vectorization factor will be selected if vectorization is
+ /// possible.
+ unsigned selectVectorizationFactor(bool OptForSize, unsigned UserVF);
+
+ /// \returns The size (in bits) of the widest type in the code that
+ /// needs to be vectorized. We ignore values that remain scalar such as
+ /// 64 bit loop indices.
+ unsigned getWidestType();
+
+ /// \return The most profitable unroll factor.
+ /// If UserUF is non-zero then this method finds the best unroll-factor
+ /// based on register pressure and other parameters.
+ unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF);
+
+ /// \brief A struct that represents some properties of the register usage
+ /// of a loop.
+ struct RegisterUsage {
+ /// Holds the number of loop invariant values that are used in the loop.
+ unsigned LoopInvariantRegs;
+ /// Holds the maximum number of concurrent live intervals in the loop.
+ unsigned MaxLocalUsers;
+ /// Holds the number of instructions in the loop.
+ unsigned NumInstructions;
+ };
+
+ /// \return information about the register usage of the loop.
+ RegisterUsage calculateRegisterUsage();
+
+private:
+ /// Returns the expected execution cost. The unit of the cost does
+ /// not matter because we use the 'cost' units to compare different
+ /// vector widths. The cost that is returned is *not* normalized by
+ /// the factor width.
+ unsigned expectedCost(unsigned VF);
+
+ /// Returns the execution time cost of an instruction for a given vector
+ /// width. Vector width of one means scalar.
+ unsigned getInstructionCost(Instruction *I, unsigned VF);
+
+ /// A helper function for converting Scalar types to vector types.
+ /// If the incoming type is void, we return void. If the VF is 1, we return
+ /// the scalar type.
+ static Type* ToVectorTy(Type *Scalar, unsigned VF);
+
+ /// The loop that we evaluate.
+ Loop *TheLoop;
+ /// Scev analysis.
+ ScalarEvolution *SE;
+ /// Loop Info analysis.
+ LoopInfo *LI;
+ /// Vectorization legality.
+ LoopVectorizationLegality *Legal;
+ /// Vector target information.
+ const TargetTransformInfo &TTI;
+};
+
/// The LoopVectorize Pass.
struct LoopVectorize : public LoopPass {
- static char ID; // Pass identification, replacement for typeid
+ /// Pass identification, replacement for typeid
+ static char ID;
- LoopVectorize() : LoopPass(ID) {
+ explicit LoopVectorize() : LoopPass(ID) {
initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
}
@@ -71,7 +595,7 @@ struct LoopVectorize : public LoopPass {
SE = &getAnalysis<ScalarEvolution>();
DL = getAnalysisIfAvailable<DataLayout>();
LI = &getAnalysis<LoopInfo>();
- TTI = getAnalysisIfAvailable<TargetTransformInfo>();
+ TTI = &getAnalysis<TargetTransformInfo>();
DT = &getAnalysis<DominatorTree>();
DEBUG(dbgs() << "LV: Checking a loop in \"" <<
@@ -84,32 +608,38 @@ struct LoopVectorize : public LoopPass {
return false;
}
- // Select the preffered vectorization factor.
- unsigned VF = 1;
- if (VectorizationFactor == 0) {
- const VectorTargetTransformInfo *VTTI = 0;
- if (TTI)
- VTTI = TTI->getVectorTargetTransformInfo();
- // Use the cost model.
- LoopVectorizationCostModel CM(L, SE, &LVL, VTTI);
- VF = CM.findBestVectorizationFactor();
-
- if (VF == 1) {
- DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
- return false;
- }
+ // Use the cost model.
+ LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI);
+
+ // Check the function attribues to find out if this function should be
+ // optimized for size.
+ Function *F = L->getHeader()->getParent();
+ Attribute::AttrKind SzAttr = Attribute::OptimizeForSize;
+ Attribute::AttrKind FlAttr = Attribute::NoImplicitFloat;
+ unsigned FnIndex = AttributeSet::FunctionIndex;
+ bool OptForSize = F->getAttributes().hasAttribute(FnIndex, SzAttr);
+ bool NoFloat = F->getAttributes().hasAttribute(FnIndex, FlAttr);
+
+ if (NoFloat) {
+ DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
+ "attribute is used.\n");
+ return false;
+ }
- } else {
- // Use the user command flag.
- VF = VectorizationFactor;
+ unsigned VF = CM.selectVectorizationFactor(OptForSize, VectorizationFactor);
+ unsigned UF = CM.selectUnrollFactor(OptForSize, VectorizationUnroll);
+
+ if (VF == 1) {
+ DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
+ return false;
}
DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF << ") in "<<
- L->getHeader()->getParent()->getParent()->getModuleIdentifier()<<
- "\n");
+ F->getParent()->getModuleIdentifier()<<"\n");
+ DEBUG(dbgs() << "LV: Unroll Factor is " << UF << "\n");
// If we decided that it is *legal* to vectorizer the loop then do it.
- InnerLoopVectorizer LB(L, SE, LI, DT, DL, VF);
+ InnerLoopVectorizer LB(L, SE, LI, DT, DL, VF, UF);
LB.vectorize(&LVL);
DEBUG(verifyFunction(*L->getHeader()->getParent()));
@@ -120,16 +650,17 @@ struct LoopVectorize : public LoopPass {
LoopPass::getAnalysisUsage(AU);
AU.addRequiredID(LoopSimplifyID);
AU.addRequiredID(LCSSAID);
+ AU.addRequired<DominatorTree>();
AU.addRequired<LoopInfo>();
AU.addRequired<ScalarEvolution>();
- AU.addRequired<DominatorTree>();
+ AU.addRequired<TargetTransformInfo>();
AU.addPreserved<LoopInfo>();
AU.addPreserved<DominatorTree>();
}
};
-}// namespace
+} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
@@ -150,11 +681,6 @@ LoopVectorizationLegality::RuntimePointerCheck::insert(ScalarEvolution *SE,
}
Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
- // Create the types.
- LLVMContext &C = V->getContext();
- Type *VTy = VectorType::get(V->getType(), VF);
- Type *I32 = IntegerType::getInt32Ty(C);
-
// Save the current insertion location.
Instruction *Loc = Builder.GetInsertPoint();
@@ -167,14 +693,8 @@ Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
if (Invariant)
Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
- Constant *Zero = ConstantInt::get(I32, 0);
- Value *Zeros = ConstantAggregateZero::get(VectorType::get(I32, VF));
- Value *UndefVal = UndefValue::get(VTy);
- // Insert the value into a new vector.
- Value *SingleElem = Builder.CreateInsertElement(UndefVal, V, Zero);
// Broadcast the scalar into all locations in the vector.
- Value *Shuf = Builder.CreateShuffleVector(SingleElem, UndefVal, Zeros,
- "broadcast");
+ Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
// Restore the builder insertion point.
if (Invariant)
@@ -183,7 +703,8 @@ Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
return Shuf;
}
-Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, bool Negate) {
+Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, unsigned StartIdx,
+ bool Negate) {
assert(Val->getType()->isVectorTy() && "Must be a vector");
assert(Val->getType()->getScalarType()->isIntegerTy() &&
"Elem must be an integer");
@@ -194,8 +715,10 @@ Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, bool Negate) {
SmallVector<Constant*, 8> Indices;
// Create a vector of consecutive numbers from zero to VF.
- for (int i = 0; i < VLen; ++i)
- Indices.push_back(ConstantInt::get(ITy, Negate ? (-i): i ));
+ for (int i = 0; i < VLen; ++i) {
+ int Idx = Negate ? (-i): i;
+ Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx));
+ }
// Add the consecutive indices to the vector value.
Constant *Cv = ConstantVector::get(Indices);
@@ -203,20 +726,20 @@ Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, bool Negate) {
return Builder.CreateAdd(Val, Cv, "induction");
}
-bool LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
+int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr");
// If this value is a pointer induction variable we know it is consecutive.
PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
if (Phi && Inductions.count(Phi)) {
InductionInfo II = Inductions[Phi];
- if (PtrInduction == II.IK)
- return true;
+ if (IK_PtrInduction == II.IK)
+ return 1;
}
GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
if (!Gep)
- return false;
+ return 0;
unsigned NumOperands = Gep->getNumOperands();
Value *LastIndex = Gep->getOperand(NumOperands - 1);
@@ -224,7 +747,7 @@ bool LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
// Check that all of the gep indices are uniform except for the last.
for (unsigned i = 0; i < NumOperands - 1; ++i)
if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
- return false;
+ return 0;
// We can emit wide load/stores only if the last index is the induction
// variable.
@@ -235,39 +758,49 @@ bool LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
// The memory is consecutive because the last index is consecutive
// and all other indices are loop invariant.
if (Step->isOne())
- return true;
+ return 1;
+ if (Step->isAllOnesValue())
+ return -1;
}
- return false;
+ return 0;
}
bool LoopVectorizationLegality::isUniform(Value *V) {
return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
}
-Value *InnerLoopVectorizer::getVectorValue(Value *V) {
+InnerLoopVectorizer::VectorParts&
+InnerLoopVectorizer::getVectorValue(Value *V) {
assert(V != Induction && "The new induction variable should not be used.");
assert(!V->getType()->isVectorTy() && "Can't widen a vector");
- // If we saved a vectorized copy of V, use it.
- Value *&MapEntry = WidenMap[V];
- if (MapEntry)
- return MapEntry;
- // Broadcast V and save the value for future uses.
+ // If we have this scalar in the map, return it.
+ if (WidenMap.has(V))
+ return WidenMap.get(V);
+
+ // If this scalar is unknown, assume that it is a constant or that it is
+ // loop invariant. Broadcast V and save the value for future uses.
Value *B = getBroadcastInstrs(V);
- MapEntry = B;
- return B;
+ WidenMap.splat(V, B);
+ return WidenMap.get(V);
}
-Constant*
-InnerLoopVectorizer::getUniformVector(unsigned Val, Type* ScalarTy) {
- return ConstantVector::getSplat(VF, ConstantInt::get(ScalarTy, Val, true));
+Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
+ assert(Vec->getType()->isVectorTy() && "Invalid type");
+ SmallVector<Constant*, 8> ShuffleMask;
+ for (unsigned i = 0; i < VF; ++i)
+ ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
+
+ return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
+ ConstantVector::get(ShuffleMask),
+ "reverse");
}
void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
// Holds vector parameters or scalars, in case of uniform vals.
- SmallVector<Value*, 8> Params;
+ SmallVector<VectorParts, 4> Params;
// Find all of the vectorized parameters.
for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
@@ -284,13 +817,15 @@ void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
// If the src is an instruction that appeared earlier in the basic block
// then it should already be vectorized.
- if (SrcInst && SrcInst->getParent() == Instr->getParent()) {
- assert(WidenMap.count(SrcInst) && "Source operand is unavailable");
+ if (SrcInst && OrigLoop->contains(SrcInst)) {
+ assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
// The parameter is a vector value from earlier.
- Params.push_back(WidenMap[SrcInst]);
+ Params.push_back(WidenMap.get(SrcInst));
} else {
// The parameter is a scalar from outside the loop. Maybe even a constant.
- Params.push_back(SrcOp);
+ VectorParts Scalars;
+ Scalars.append(UF, SrcOp);
+ Params.push_back(Scalars);
}
}
@@ -299,39 +834,38 @@ void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
// Does this instruction return a value ?
bool IsVoidRetTy = Instr->getType()->isVoidTy();
- Value *VecResults = 0;
- // If we have a return value, create an empty vector. We place the scalarized
- // instructions in this vector.
- if (!IsVoidRetTy)
- VecResults = UndefValue::get(VectorType::get(Instr->getType(), VF));
+ Value *UndefVec = IsVoidRetTy ? 0 :
+ UndefValue::get(VectorType::get(Instr->getType(), VF));
+ // Create a new entry in the WidenMap and initialize it to Undef or Null.
+ VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
// For each scalar that we create:
- for (unsigned i = 0; i < VF; ++i) {
- Instruction *Cloned = Instr->clone();
- if (!IsVoidRetTy)
- Cloned->setName(Instr->getName() + ".cloned");
- // Replace the operands of the cloned instrucions with extracted scalars.
- for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
- Value *Op = Params[op];
- // Param is a vector. Need to extract the right lane.
- if (Op->getType()->isVectorTy())
- Op = Builder.CreateExtractElement(Op, Builder.getInt32(i));
- Cloned->setOperand(op, Op);
- }
+ for (unsigned Width = 0; Width < VF; ++Width) {
+ // For each vector unroll 'part':
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ Instruction *Cloned = Instr->clone();
+ if (!IsVoidRetTy)
+ Cloned->setName(Instr->getName() + ".cloned");
+ // Replace the operands of the cloned instrucions with extracted scalars.
+ for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
+ Value *Op = Params[op][Part];
+ // Param is a vector. Need to extract the right lane.
+ if (Op->getType()->isVectorTy())
+ Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
+ Cloned->setOperand(op, Op);
+ }
- // Place the cloned scalar in the new loop.
- Builder.Insert(Cloned);
+ // Place the cloned scalar in the new loop.
+ Builder.Insert(Cloned);
- // If the original scalar returns a value we need to place it in a vector
- // so that future users will be able to use it.
- if (!IsVoidRetTy)
- VecResults = Builder.CreateInsertElement(VecResults, Cloned,
- Builder.getInt32(i));
+ // If the original scalar returns a value we need to place it in a vector
+ // so that future users will be able to use it.
+ if (!IsVoidRetTy)
+ VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
+ Builder.getInt32(Width));
+ }
}
-
- if (!IsVoidRetTy)
- WidenMap[Instr] = VecResults;
}
Value*
@@ -407,27 +941,27 @@ InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
the vectorized instructions while the old loop will continue to run the
scalar remainder.
- [ ] <-- vector loop bypass.
- / |
- / v
+ [ ] <-- vector loop bypass.
+ / |
+ / v
| [ ] <-- vector pre header.
| |
| v
| [ ] \
| [ ]_| <-- vector loop.
| |
- \ v
- >[ ] <--- middle-block.
- / |
- / v
+ \ v
+ >[ ] <--- middle-block.
+ / |
+ / v
| [ ] <--- new preheader.
| |
| v
| [ ] \
| [ ]_| <-- old scalar loop to handle remainder.
- \ |
- \ v
- >[ ] <-- exit block.
+ \ |
+ \ v
+ >[ ] <-- exit block.
...
*/
@@ -493,15 +1027,20 @@ InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
// Generate the induction variable.
Induction = Builder.CreatePHI(IdxTy, 2, "index");
- Constant *Step = ConstantInt::get(IdxTy, VF);
+ // The loop step is equal to the vectorization factor (num of SIMD elements)
+ // times the unroll factor (num of SIMD instructions).
+ Constant *Step = ConstantInt::get(IdxTy, VF * UF);
// We may need to extend the index in case there is a type mismatch.
// We know that the count starts at zero and does not overflow.
+ unsigned IdxTyBW = IdxTy->getScalarSizeInBits();
if (Count->getType() != IdxTy) {
// The exit count can be of pointer type. Convert it to the correct
// integer type.
if (ExitCount->getType()->isPointerTy())
Count = CastInst::CreatePointerCast(Count, IdxTy, "ptrcnt.to.int", Loc);
+ else if (IdxTyBW < Count->getType()->getScalarSizeInBits())
+ Count = CastInst::CreateTruncOrBitCast(Count, IdxTy, "tr.cnt", Loc);
else
Count = CastInst::CreateZExtOrBitCast(Count, IdxTy, "zext.cnt", Loc);
}
@@ -511,8 +1050,7 @@ InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
// Now we need to generate the expression for N - (N % VF), which is
// the part that the vectorized body will execute.
- Constant *CIVF = ConstantInt::get(IdxTy, VF);
- Value *R = BinaryOperator::CreateURem(Count, CIVF, "n.mod.vf", Loc);
+ Value *R = BinaryOperator::CreateURem(Count, Step, "n.mod.vf", Loc);
Value *CountRoundDown = BinaryOperator::CreateSub(Count, R, "n.vec", Loc);
Value *IdxEndRoundDown = BinaryOperator::CreateAdd(CountRoundDown, StartIdx,
"end.idx.rnd.down", Loc);
@@ -552,9 +1090,9 @@ InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
MiddleBlock->getTerminator());
Value *EndValue = 0;
switch (II.IK) {
- case LoopVectorizationLegality::NoInduction:
+ case LoopVectorizationLegality::IK_NoInduction:
llvm_unreachable("Unknown induction");
- case LoopVectorizationLegality::IntInduction: {
+ case LoopVectorizationLegality::IK_IntInduction: {
// Handle the integer induction counter:
assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
assert(OrigPhi == OldInduction && "Unknown integer PHI");
@@ -564,7 +1102,7 @@ InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
ResumeIndex = ResumeVal;
break;
}
- case LoopVectorizationLegality::ReverseIntInduction: {
+ case LoopVectorizationLegality::IK_ReverseIntInduction: {
// Convert the CountRoundDown variable to the PHI size.
unsigned CRDSize = CountRoundDown->getType()->getScalarSizeInBits();
unsigned IISize = II.StartValue->getType()->getScalarSizeInBits();
@@ -582,7 +1120,7 @@ InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
BypassBlock->getTerminator());
break;
}
- case LoopVectorizationLegality::PtrInduction: {
+ case LoopVectorizationLegality::IK_PtrInduction: {
// For pointer induction variables, calculate the offset using
// the end index.
EndValue = GetElementPtrInst::Create(II.StartValue, CountRoundDown,
@@ -671,20 +1209,26 @@ InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
/// This function returns the identity element (or neutral element) for
/// the operation K.
-static unsigned
-getReductionIdentity(LoopVectorizationLegality::ReductionKind K) {
+static Constant*
+getReductionIdentity(LoopVectorizationLegality::ReductionKind K, Type *Tp) {
switch (K) {
- case LoopVectorizationLegality::IntegerXor:
- case LoopVectorizationLegality::IntegerAdd:
- case LoopVectorizationLegality::IntegerOr:
+ case LoopVectorizationLegality:: RK_IntegerXor:
+ case LoopVectorizationLegality:: RK_IntegerAdd:
+ case LoopVectorizationLegality:: RK_IntegerOr:
// Adding, Xoring, Oring zero to a number does not change it.
- return 0;
- case LoopVectorizationLegality::IntegerMult:
+ return ConstantInt::get(Tp, 0);
+ case LoopVectorizationLegality:: RK_IntegerMult:
// Multiplying a number by 1 does not change it.
- return 1;
- case LoopVectorizationLegality::IntegerAnd:
+ return ConstantInt::get(Tp, 1);
+ case LoopVectorizationLegality:: RK_IntegerAnd:
// AND-ing a number with an all-1 value does not change it.
- return -1;
+ return ConstantInt::get(Tp, -1, true);
+ case LoopVectorizationLegality:: RK_FloatMult:
+ // Multiplying a number by 1 does not change it.
+ return ConstantFP::get(Tp, 1.0L);
+ case LoopVectorizationLegality:: RK_FloatAdd:
+ // Adding zero to a number does not change it.
+ return ConstantFP::get(Tp, 0.0L);
default:
llvm_unreachable("Unknown reduction kind");
}
@@ -712,6 +1256,7 @@ isTriviallyVectorizableIntrinsic(Instruction *Inst) {
case Intrinsic::nearbyint:
case Intrinsic::pow:
case Intrinsic::fma:
+ case Intrinsic::fmuladd:
return true;
default:
return false;
@@ -719,6 +1264,29 @@ isTriviallyVectorizableIntrinsic(Instruction *Inst) {
return false;
}
+/// This function translates the reduction kind to an LLVM binary operator.
+static Instruction::BinaryOps
+getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
+ switch (Kind) {
+ case LoopVectorizationLegality::RK_IntegerAdd:
+ return Instruction::Add;
+ case LoopVectorizationLegality::RK_IntegerMult:
+ return Instruction::Mul;
+ case LoopVectorizationLegality::RK_IntegerOr:
+ return Instruction::Or;
+ case LoopVectorizationLegality::RK_IntegerAnd:
+ return Instruction::And;
+ case LoopVectorizationLegality::RK_IntegerXor:
+ return Instruction::Xor;
+ case LoopVectorizationLegality::RK_FloatMult:
+ return Instruction::FMul;
+ case LoopVectorizationLegality::RK_FloatAdd:
+ return Instruction::FAdd;
+ default:
+ llvm_unreachable("Unknown reduction operation");
+ }
+}
+
void
InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
//===------------------------------------------------===//
@@ -764,7 +1332,6 @@ InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
it != e; ++it) {
PHINode *RdxPhi = *it;
- PHINode *VecRdxPhi = dyn_cast<PHINode>(WidenMap[RdxPhi]);
assert(RdxPhi && "Unable to recover vectorized PHI");
// Find the reduction variable descriptor.
@@ -780,13 +1347,13 @@ InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
Builder.SetInsertPoint(LoopBypassBlock->getTerminator());
// This is the vector-clone of the value that leaves the loop.
- Value *VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
- Type *VecTy = VectorExit->getType();
+ VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
+ Type *VecTy = VectorExit[0]->getType();
// Find the reduction identity variable. Zero for addition, or, xor,
// one for multiplication, -1 for And.
- Constant *Identity = getUniformVector(getReductionIdentity(RdxDesc.Kind),
- VecTy->getScalarType());
+ Constant *Iden = getReductionIdentity(RdxDesc.Kind, VecTy->getScalarType());
+ Constant *Identity = ConstantVector::getSplat(VF, Iden);
// This vector is the Identity vector where the first element is the
// incoming scalar reduction.
@@ -800,10 +1367,17 @@ InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
// Reductions do not have to start at zero. They can start with
// any loop invariant values.
- VecRdxPhi->addIncoming(VectorStart, VecPreheader);
- Value *Val =
- getVectorValue(RdxPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
- VecRdxPhi->addIncoming(Val, LoopVectorBody);
+ VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
+ BasicBlock *Latch = OrigLoop->getLoopLatch();
+ Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
+ VectorParts &Val = getVectorValue(LoopVal);
+ for (unsigned part = 0; part < UF; ++part) {
+ // Make sure to add the reduction stat value only to the
+ // first unroll part.
+ Value *StartVal = (part == 0) ? VectorStart : Identity;
+ cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader);
+ cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], LoopVectorBody);
+ }
// Before each round, move the insertion point right between
// the PHIs and the values we are going to write.
@@ -811,40 +1385,55 @@ InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
// instructions.
Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
- // This PHINode contains the vectorized reduction variable, or
- // the initial value vector, if we bypass the vector loop.
- PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
- NewPhi->addIncoming(VectorStart, LoopBypassBlock);
- NewPhi->addIncoming(getVectorValue(RdxDesc.LoopExitInstr), LoopVectorBody);
-
- // Extract the first scalar.
- Value *Scalar0 =
- Builder.CreateExtractElement(NewPhi, Builder.getInt32(0));
- // Extract and reduce the remaining vector elements.
- for (unsigned i=1; i < VF; ++i) {
- Value *Scalar1 =
- Builder.CreateExtractElement(NewPhi, Builder.getInt32(i));
- switch (RdxDesc.Kind) {
- case LoopVectorizationLegality::IntegerAdd:
- Scalar0 = Builder.CreateAdd(Scalar0, Scalar1, "add.rdx");
- break;
- case LoopVectorizationLegality::IntegerMult:
- Scalar0 = Builder.CreateMul(Scalar0, Scalar1, "mul.rdx");
- break;
- case LoopVectorizationLegality::IntegerOr:
- Scalar0 = Builder.CreateOr(Scalar0, Scalar1, "or.rdx");
- break;
- case LoopVectorizationLegality::IntegerAnd:
- Scalar0 = Builder.CreateAnd(Scalar0, Scalar1, "and.rdx");
- break;
- case LoopVectorizationLegality::IntegerXor:
- Scalar0 = Builder.CreateXor(Scalar0, Scalar1, "xor.rdx");
- break;
- default:
- llvm_unreachable("Unknown reduction operation");
- }
+ VectorParts RdxParts;
+ for (unsigned part = 0; part < UF; ++part) {
+ // This PHINode contains the vectorized reduction variable, or
+ // the initial value vector, if we bypass the vector loop.
+ VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
+ PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
+ Value *StartVal = (part == 0) ? VectorStart : Identity;
+ NewPhi->addIncoming(StartVal, LoopBypassBlock);
+ NewPhi->addIncoming(RdxExitVal[part], LoopVectorBody);
+ RdxParts.push_back(NewPhi);
+ }
+
+ // Reduce all of the unrolled parts into a single vector.
+ Value *ReducedPartRdx = RdxParts[0];
+ for (unsigned part = 1; part < UF; ++part) {
+ Instruction::BinaryOps Op = getReductionBinOp(RdxDesc.Kind);
+ ReducedPartRdx = Builder.CreateBinOp(Op, RdxParts[part], ReducedPartRdx,
+ "bin.rdx");
}
+ // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
+ // and vector ops, reducing the set of values being computed by half each
+ // round.
+ assert(isPowerOf2_32(VF) &&
+ "Reduction emission only supported for pow2 vectors!");
+ Value *TmpVec = ReducedPartRdx;
+ SmallVector<Constant*, 32> ShuffleMask(VF, 0);
+ for (unsigned i = VF; i != 1; i >>= 1) {
+ // Move the upper half of the vector to the lower half.
+ for (unsigned j = 0; j != i/2; ++j)
+ ShuffleMask[j] = Builder.getInt32(i/2 + j);
+
+ // Fill the rest of the mask with undef.
+ std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
+ UndefValue::get(Builder.getInt32Ty()));
+
+ Value *Shuf =
+ Builder.CreateShuffleVector(TmpVec,
+ UndefValue::get(TmpVec->getType()),
+ ConstantVector::get(ShuffleMask),
+ "rdx.shuf");
+
+ Instruction::BinaryOps Op = getReductionBinOp(RdxDesc.Kind);
+ TmpVec = Builder.CreateBinOp(Op, TmpVec, Shuf, "bin.rdx");
+ }
+
+ // The result is in the first element of the vector.
+ Value *Scalar0 = Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
+
// Now, we need to fix the users of the reduction variable
// inside and outside of the scalar remainder loop.
// We know that the loop is in LCSSA form. We need to update the
@@ -877,29 +1466,49 @@ InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
(RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, Scalar0);
(RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
}// end of for each redux variable.
+
+ // The Loop exit block may have single value PHI nodes where the incoming
+ // value is 'undef'. While vectorizing we only handled real values that
+ // were defined inside the loop. Here we handle the 'undef case'.
+ // See PR14725.
+ for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
+ LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
+ PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
+ if (!LCSSAPhi) continue;
+ if (LCSSAPhi->getNumIncomingValues() == 1)
+ LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
+ LoopMiddleBlock);
+ }
}
-Value *InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
+InnerLoopVectorizer::VectorParts
+InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
"Invalid edge");
- Value *SrcMask = createBlockInMask(Src);
+ VectorParts SrcMask = createBlockInMask(Src);
// The terminator has to be a branch inst!
BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
assert(BI && "Unexpected terminator found");
- Value *EdgeMask = SrcMask;
if (BI->isConditional()) {
- EdgeMask = getVectorValue(BI->getCondition());
+ VectorParts EdgeMask = getVectorValue(BI->getCondition());
+
if (BI->getSuccessor(0) != Dst)
- EdgeMask = Builder.CreateNot(EdgeMask);
+ for (unsigned part = 0; part < UF; ++part)
+ EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
+
+ for (unsigned part = 0; part < UF; ++part)
+ EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
+ return EdgeMask;
}
- return Builder.CreateAnd(EdgeMask, SrcMask);
+ return SrcMask;
}
-Value *InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
+InnerLoopVectorizer::VectorParts
+InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
// Loop incoming mask is all-one.
@@ -910,11 +1519,14 @@ Value *InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
// This is the block mask. We OR all incoming edges, and with zero.
Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
- Value *BlockMask = getVectorValue(Zero);
+ VectorParts BlockMask = getVectorValue(Zero);
// For each pred:
- for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it)
- BlockMask = Builder.CreateOr(BlockMask, createEdgeMask(*it, BB));
+ for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
+ VectorParts EM = createEdgeMask(*it, BB);
+ for (unsigned part = 0; part < UF; ++part)
+ BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
+ }
return BlockMask;
}
@@ -922,11 +1534,11 @@ Value *InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
void
InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
BasicBlock *BB, PhiVector *PV) {
- Constant *Zero =
- ConstantInt::get(IntegerType::getInt32Ty(BB->getContext()), 0);
+ Constant *Zero = Builder.getInt32(0);
// For each instruction in the old loop.
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
+ VectorParts &Entry = WidenMap.get(it);
switch (it->getOpcode()) {
case Instruction::Br:
// Nothing to do for PHIs and BR, since we already took care of the
@@ -936,11 +1548,12 @@ InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
PHINode* P = cast<PHINode>(it);
// Handle reduction variables:
if (Legal->getReductionVars()->count(P)) {
- // This is phase one of vectorizing PHIs.
- Type *VecTy = VectorType::get(it->getType(), VF);
- WidenMap[it] =
- PHINode::Create(VecTy, 2, "vec.phi",
- LoopVectorBody->getFirstInsertionPt());
+ for (unsigned part = 0; part < UF; ++part) {
+ // This is phase one of vectorizing PHIs.
+ Type *VecTy = VectorType::get(it->getType(), VF);
+ Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
+ LoopVectorBody-> getFirstInsertionPt());
+ }
PV->push_back(P);
continue;
}
@@ -954,12 +1567,15 @@ InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
// At this point we generate the predication tree. There may be
// duplications since this is a simple recursive scan, but future
// optimizations will clean it up.
- Value *Cond = createBlockInMask(P->getIncomingBlock(0));
- WidenMap[P] =
- Builder.CreateSelect(Cond,
- getVectorValue(P->getIncomingValue(0)),
- getVectorValue(P->getIncomingValue(1)),
- "predphi");
+ VectorParts Cond = createEdgeMask(P->getIncomingBlock(0),
+ P->getParent());
+
+ for (unsigned part = 0; part < UF; ++part) {
+ VectorParts &In0 = getVectorValue(P->getIncomingValue(0));
+ VectorParts &In1 = getVectorValue(P->getIncomingValue(1));
+ Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In1[part],
+ "predphi");
+ }
continue;
}
@@ -972,19 +1588,19 @@ InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
Legal->getInductionVars()->lookup(P);
switch (II.IK) {
- case LoopVectorizationLegality::NoInduction:
+ case LoopVectorizationLegality::IK_NoInduction:
llvm_unreachable("Unknown induction");
- case LoopVectorizationLegality::IntInduction: {
+ case LoopVectorizationLegality::IK_IntInduction: {
assert(P == OldInduction && "Unexpected PHI");
Value *Broadcasted = getBroadcastInstrs(Induction);
// After broadcasting the induction variable we need to make the
// vector consecutive by adding 0, 1, 2 ...
- Value *ConsecutiveInduction = getConsecutiveVector(Broadcasted);
- WidenMap[OldInduction] = ConsecutiveInduction;
+ for (unsigned part = 0; part < UF; ++part)
+ Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
continue;
}
- case LoopVectorizationLegality::ReverseIntInduction:
- case LoopVectorizationLegality::PtrInduction:
+ case LoopVectorizationLegality::IK_ReverseIntInduction:
+ case LoopVectorizationLegality::IK_PtrInduction:
// Handle reverse integer and pointer inductions.
Value *StartIdx = 0;
// If we have a single integer induction variable then use it.
@@ -1001,7 +1617,7 @@ InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
"normalized.idx");
// Handle the reverse integer induction variable case.
- if (LoopVectorizationLegality::ReverseIntInduction == II.IK) {
+ if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) {
IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
"resize.norm.idx");
@@ -1012,9 +1628,8 @@ InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
Value *Broadcasted = getBroadcastInstrs(ReverseInd);
// After broadcasting the induction variable we need to make the
// vector consecutive by adding ... -3, -2, -1, 0.
- Value *ConsecutiveInduction = getConsecutiveVector(Broadcasted,
- true);
- WidenMap[it] = ConsecutiveInduction;
+ for (unsigned part = 0; part < UF; ++part)
+ Entry[part] = getConsecutiveVector(Broadcasted, -VF * part, true);
continue;
}
@@ -1023,19 +1638,21 @@ InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
// This is the vector of results. Notice that we don't generate
// vector geps because scalar geps result in better code.
- Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
- for (unsigned int i = 0; i < VF; ++i) {
- Constant *Idx = ConstantInt::get(Induction->getType(), i);
- Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx,
- "gep.idx");
- Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
- "next.gep");
- VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
- Builder.getInt32(i),
- "insert.gep");
+ for (unsigned part = 0; part < UF; ++part) {
+ Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
+ for (unsigned int i = 0; i < VF; ++i) {
+ Constant *Idx = ConstantInt::get(Induction->getType(),
+ i + part * VF);
+ Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx,
+ "gep.idx");
+ Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
+ "next.gep");
+ VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
+ Builder.getInt32(i),
+ "insert.gep");
+ }
+ Entry[part] = VecVal;
}
-
- WidenMap[it] = VecVal;
continue;
}
@@ -1061,41 +1678,48 @@ InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
case Instruction::Xor: {
// Just widen binops.
BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
- Value *A = getVectorValue(it->getOperand(0));
- Value *B = getVectorValue(it->getOperand(1));
+ VectorParts &A = getVectorValue(it->getOperand(0));
+ VectorParts &B = getVectorValue(it->getOperand(1));
// Use this vector value for all users of the original instruction.
- Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B);
- WidenMap[it] = V;
-
- // Update the NSW, NUW and Exact flags.
- BinaryOperator *VecOp = cast<BinaryOperator>(V);
- if (isa<OverflowingBinaryOperator>(BinOp)) {
- VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
- VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
+
+ // Update the NSW, NUW and Exact flags. Notice: V can be an Undef.
+ BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V);
+ if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) {
+ VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
+ VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
+ }
+ if (VecOp && isa<PossiblyExactOperator>(VecOp))
+ VecOp->setIsExact(BinOp->isExact());
+
+ Entry[Part] = V;
}
- if (isa<PossiblyExactOperator>(VecOp))
- VecOp->setIsExact(BinOp->isExact());
break;
}
case Instruction::Select: {
// Widen selects.
// If the selector is loop invariant we can create a select
// instruction with a scalar condition. Otherwise, use vector-select.
- Value *Cond = it->getOperand(0);
- bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(Cond), OrigLoop);
+ bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
+ OrigLoop);
// The condition can be loop invariant but still defined inside the
// loop. This means that we can't just use the original 'cond' value.
// We have to take the 'vectorized' value and pick the first lane.
// Instcombine will make this a no-op.
- Cond = getVectorValue(Cond);
- if (InvariantCond)
- Cond = Builder.CreateExtractElement(Cond, Builder.getInt32(0));
-
- Value *Op0 = getVectorValue(it->getOperand(1));
- Value *Op1 = getVectorValue(it->getOperand(2));
- WidenMap[it] = Builder.CreateSelect(Cond, Op0, Op1);
+ VectorParts &Cond = getVectorValue(it->getOperand(0));
+ VectorParts &Op0 = getVectorValue(it->getOperand(1));
+ VectorParts &Op1 = getVectorValue(it->getOperand(2));
+ Value *ScalarCond = Builder.CreateExtractElement(Cond[0],
+ Builder.getInt32(0));
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ Entry[Part] = Builder.CreateSelect(
+ InvariantCond ? ScalarCond : Cond[Part],
+ Op0[Part],
+ Op1[Part]);
+ }
break;
}
@@ -1104,12 +1728,16 @@ InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
// Widen compares. Generate vector compares.
bool FCmp = (it->getOpcode() == Instruction::FCmp);
CmpInst *Cmp = dyn_cast<CmpInst>(it);
- Value *A = getVectorValue(it->getOperand(0));
- Value *B = getVectorValue(it->getOperand(1));
- if (FCmp)
- WidenMap[it] = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
- else
- WidenMap[it] = Builder.CreateICmp(Cmp->getPredicate(), A, B);
+ VectorParts &A = getVectorValue(it->getOperand(0));
+ VectorParts &B = getVectorValue(it->getOperand(1));
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ Value *C = 0;
+ if (FCmp)
+ C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
+ else
+ C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
+ Entry[Part] = C;
+ }
break;
}
@@ -1123,19 +1751,25 @@ InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
assert(!Legal->isUniform(Ptr) &&
"We do not allow storing to uniform addresses");
- GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
- // This store does not use GEPs.
- if (!Legal->isConsecutivePtr(Ptr)) {
+ int Stride = Legal->isConsecutivePtr(Ptr);
+ bool Reverse = Stride < 0;
+ if (Stride == 0) {
scalarizeInstruction(it);
break;
}
+ // Handle consecutive stores.
+
+ GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
if (Gep) {
// The last index does not have to be the induction. It can be
// consecutive and be a function of the index. For example A[I+1];
unsigned NumOperands = Gep->getNumOperands();
- Value *LastIndex = getVectorValue(Gep->getOperand(NumOperands - 1));
+
+ Value *LastGepOperand = Gep->getOperand(NumOperands - 1);
+ VectorParts &GEPParts = getVectorValue(LastGepOperand);
+ Value *LastIndex = GEPParts[0];
LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
// Create the new GEP with the new induction variable.
@@ -1145,11 +1779,28 @@ InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
} else {
// Use the induction element ptr.
assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
- Ptr = Builder.CreateExtractElement(getVectorValue(Ptr), Zero);
+ VectorParts &PtrVal = getVectorValue(Ptr);
+ Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
+ }
+
+ VectorParts &StoredVal = getVectorValue(SI->getValueOperand());
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ // Calculate the pointer for the specific unroll-part.
+ Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
+
+ if (Reverse) {
+ // If we store to reverse consecutive memory locations then we need
+ // to reverse the order of elements in the stored value.
+ StoredVal[Part] = reverseVector(StoredVal[Part]);
+ // If the address is consecutive but reversed, then the
+ // wide store needs to start at the last vector element.
+ PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
+ PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
+ }
+
+ Value *VecPtr = Builder.CreateBitCast(PartPtr, StTy->getPointerTo());
+ Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment);
}
- Ptr = Builder.CreateBitCast(Ptr, StTy->getPointerTo());
- Value *Val = getVectorValue(SI->getValueOperand());
- Builder.CreateStore(Val, Ptr)->setAlignment(Alignment);
break;
}
case Instruction::Load: {
@@ -1158,21 +1809,25 @@ InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
Type *RetTy = VectorType::get(LI->getType(), VF);
Value *Ptr = LI->getPointerOperand();
unsigned Alignment = LI->getAlignment();
- GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
// If the pointer is loop invariant or if it is non consecutive,
// scalarize the load.
- bool Con = Legal->isConsecutivePtr(Ptr);
- if (Legal->isUniform(Ptr) || !Con) {
+ int Stride = Legal->isConsecutivePtr(Ptr);
+ bool Reverse = Stride < 0;
+ if (Legal->isUniform(Ptr) || Stride == 0) {
scalarizeInstruction(it);
break;
}
+ GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
if (Gep) {
// The last index does not have to be the induction. It can be
// consecutive and be a function of the index. For example A[I+1];
unsigned NumOperands = Gep->getNumOperands();
- Value *LastIndex = getVectorValue(Gep->getOperand(NumOperands -1));
+
+ Value *LastGepOperand = Gep->getOperand(NumOperands - 1);
+ VectorParts &GEPParts = getVectorValue(LastGepOperand);
+ Value *LastIndex = GEPParts[0];
LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
// Create the new GEP with the new induction variable.
@@ -1182,14 +1837,26 @@ InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
} else {
// Use the induction element ptr.
assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
- Ptr = Builder.CreateExtractElement(getVectorValue(Ptr), Zero);
+ VectorParts &PtrVal = getVectorValue(Ptr);
+ Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
}
- Ptr = Builder.CreateBitCast(Ptr, RetTy->getPointerTo());
- LI = Builder.CreateLoad(Ptr);
- LI->setAlignment(Alignment);
- // Use this vector value for all users of the load.
- WidenMap[it] = LI;
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ // Calculate the pointer for the specific unroll-part.
+ Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
+
+ if (Reverse) {
+ // If the address is consecutive but reversed, then the
+ // wide store needs to start at the last vector element.
+ PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
+ PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
+ }
+
+ Value *VecPtr = Builder.CreateBitCast(PartPtr, RetTy->getPointerTo());
+ Value *LI = Builder.CreateLoad(VecPtr, "wide.load");
+ cast<LoadInst>(LI)->setAlignment(Alignment);
+ Entry[Part] = Reverse ? reverseVector(LI) : LI;
+ }
break;
}
case Instruction::ZExt:
@@ -1204,11 +1871,26 @@ InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
case Instruction::Trunc:
case Instruction::FPTrunc:
case Instruction::BitCast: {
- /// Vectorize bitcasts.
CastInst *CI = dyn_cast<CastInst>(it);
- Value *A = getVectorValue(it->getOperand(0));
+ /// Optimize the special case where the source is the induction
+ /// variable. Notice that we can only optimize the 'trunc' case
+ /// because: a. FP conversions lose precision, b. sext/zext may wrap,
+ /// c. other casts depend on pointer size.
+ if (CI->getOperand(0) == OldInduction &&
+ it->getOpcode() == Instruction::Trunc) {
+ Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
+ CI->getType());
+ Value *Broadcasted = getBroadcastInstrs(ScalarCast);
+ for (unsigned Part = 0; Part < UF; ++Part)
+ Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false);
+ break;
+ }
+ /// Vectorize casts.
Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF);
- WidenMap[it] = Builder.CreateCast(CI->getOpcode(), A, DestTy);
+
+ VectorParts &A = getVectorValue(it->getOperand(0));
+ for (unsigned Part = 0; Part < UF; ++Part)
+ Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
break;
}
@@ -1217,12 +1899,16 @@ InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
Module *M = BB->getParent()->getParent();
IntrinsicInst *II = cast<IntrinsicInst>(it);
Intrinsic::ID ID = II->getIntrinsicID();
- SmallVector<Value*, 4> Args;
- for (unsigned i = 0, ie = II->getNumArgOperands(); i != ie; ++i)
- Args.push_back(getVectorValue(II->getArgOperand(i)));
- Type *Tys[] = { VectorType::get(II->getType()->getScalarType(), VF) };
- Function *F = Intrinsic::getDeclaration(M, ID, Tys);
- WidenMap[it] = Builder.CreateCall(F, Args);
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ SmallVector<Value*, 4> Args;
+ for (unsigned i = 0, ie = II->getNumArgOperands(); i != ie; ++i) {
+ VectorParts &Arg = getVectorValue(II->getArgOperand(i));
+ Args.push_back(Arg[Part]);
+ }
+ Type *Tys[] = { VectorType::get(II->getType()->getScalarType(), VF) };
+ Function *F = Intrinsic::getDeclaration(M, ID, Tys);
+ Entry[Part] = Builder.CreateCall(F, Args);
+ }
break;
}
@@ -1263,6 +1949,10 @@ bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
for (unsigned i = 0, e = LoopBlocks.size(); i < e; ++i) {
BasicBlock *BB = LoopBlocks[i];
+ // We don't support switch statements inside loops.
+ if (!isa<BranchInst>(BB->getTerminator()))
+ return false;
+
// We must have at most two predecessors because we need to convert
// all PHIs to selects.
unsigned Preds = std::distance(pred_begin(BB), pred_end(BB));
@@ -1315,7 +2005,7 @@ bool LoopVectorizationLegality::canVectorize() {
// Do not loop-vectorize loops with a tiny trip count.
unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch);
- if (TC > 0u && TC < TinyTripCountThreshold) {
+ if (TC > 0u && TC < TinyTripCountVectorThreshold) {
DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " <<
"This loop is not worth vectorizing.\n");
return false;
@@ -1367,6 +2057,7 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
// Check that this PHI type is allowed.
if (!Phi->getType()->isIntegerTy() &&
+ !Phi->getType()->isFloatingPointTy() &&
!Phi->getType()->isPointerTy()) {
DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
return false;
@@ -1383,9 +2074,9 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
// Check if this is an induction variable.
InductionKind IK = isInductionVariable(Phi);
- if (NoInduction != IK) {
+ if (IK_NoInduction != IK) {
// Int inductions are special because we only allow one IV.
- if (IK == IntInduction) {
+ if (IK == IK_IntInduction) {
if (Induction) {
DEBUG(dbgs() << "LV: Found too many inductions."<< *Phi <<"\n");
return false;
@@ -1398,26 +2089,34 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
continue;
}
- if (AddReductionVar(Phi, IntegerAdd)) {
+ if (AddReductionVar(Phi, RK_IntegerAdd)) {
DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
continue;
}
- if (AddReductionVar(Phi, IntegerMult)) {
+ if (AddReductionVar(Phi, RK_IntegerMult)) {
DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
continue;
}
- if (AddReductionVar(Phi, IntegerOr)) {
+ if (AddReductionVar(Phi, RK_IntegerOr)) {
DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
continue;
}
- if (AddReductionVar(Phi, IntegerAnd)) {
+ if (AddReductionVar(Phi, RK_IntegerAnd)) {
DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
continue;
}
- if (AddReductionVar(Phi, IntegerXor)) {
+ if (AddReductionVar(Phi, RK_IntegerXor)) {
DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
continue;
}
+ if (AddReductionVar(Phi, RK_FloatMult)) {
+ DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
+ continue;
+ }
+ if (AddReductionVar(Phi, RK_FloatAdd)) {
+ DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
+ continue;
+ }
DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
return false;
@@ -1430,13 +2129,20 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
return false;
}
- // We do not re-vectorize vectors.
+ // Check that the instruction return type is vectorizable.
if (!VectorType::isValidElementType(it->getType()) &&
!it->getType()->isVoidTy()) {
DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n");
return false;
}
+ // Check that the stored type is vectorizable.
+ if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
+ Type *T = ST->getValueOperand()->getType();
+ if (!VectorType::isValidElementType(T))
+ return false;
+ }
+
// Reduction instructions are allowed to have exit users.
// All other instructions must not have external users.
if (!AllowedExit.count(it))
@@ -1558,8 +2264,7 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
ValueVector::iterator I, IE;
for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
- StoreInst *ST = dyn_cast<StoreInst>(*I);
- assert(ST && "Bad StoreInst");
+ StoreInst *ST = cast<StoreInst>(*I);
Value* Ptr = ST->getPointerOperand();
if (isUniform(Ptr)) {
@@ -1574,8 +2279,7 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
}
for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
- LoadInst *LD = dyn_cast<LoadInst>(*I);
- assert(LD && "Bad LoadInst");
+ LoadInst *LD = cast<LoadInst>(*I);
Value* Ptr = LD->getPointerOperand();
// If we did *not* see this pointer before, insert it to the
// read list. If we *did* see it before, then it is already in
@@ -1585,7 +2289,7 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
// If the address of i is unknown (for example A[B[i]]) then we may
// read a few words, modify, and write a few words, and some of the
// words may be written to the same address.
- if (Seen.insert(Ptr) || !isConsecutivePtr(Ptr))
+ if (Seen.insert(Ptr) || 0 == isConsecutivePtr(Ptr))
Reads.push_back(Ptr);
}
@@ -1598,13 +2302,13 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
// Find pointers with computable bounds. We are going to use this information
// to place a runtime bound check.
- bool RT = true;
+ bool CanDoRT = true;
for (I = ReadWrites.begin(), IE = ReadWrites.end(); I != IE; ++I)
if (hasComputableBounds(*I)) {
PtrRtCheck.insert(SE, TheLoop, *I);
DEBUG(dbgs() << "LV: Found a runtime check ptr:" << **I <<"\n");
} else {
- RT = false;
+ CanDoRT = false;
break;
}
for (I = Reads.begin(), IE = Reads.end(); I != IE; ++I)
@@ -1612,23 +2316,23 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
PtrRtCheck.insert(SE, TheLoop, *I);
DEBUG(dbgs() << "LV: Found a runtime check ptr:" << **I <<"\n");
} else {
- RT = false;
+ CanDoRT = false;
break;
}
// Check that we did not collect too many pointers or found a
// unsizeable pointer.
- if (!RT || PtrRtCheck.Pointers.size() > RuntimeMemoryCheckThreshold) {
+ if (!CanDoRT || PtrRtCheck.Pointers.size() > RuntimeMemoryCheckThreshold) {
PtrRtCheck.reset();
- RT = false;
+ CanDoRT = false;
}
- PtrRtCheck.Need = RT;
-
- if (RT) {
+ if (CanDoRT) {
DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
}
+ bool NeedRTCheck = false;
+
// Now that the pointers are in two lists (Reads and ReadWrites), we
// can check that there are no conflicts between each of the writes and
// between the writes to the reads.
@@ -1637,18 +2341,20 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
// Check that the read-writes do not conflict with other read-write
// pointers.
+ bool AllWritesIdentified = true;
for (I = ReadWrites.begin(), IE = ReadWrites.end(); I != IE; ++I) {
GetUnderlyingObjects(*I, TempObjects, DL);
for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end();
it != e; ++it) {
if (!isIdentifiedObject(*it)) {
DEBUG(dbgs() << "LV: Found an unidentified write ptr:"<< **it <<"\n");
- return RT;
+ NeedRTCheck = true;
+ AllWritesIdentified = false;
}
if (!WriteObjects.insert(*it)) {
DEBUG(dbgs() << "LV: Found a possible write-write reorder:"
<< **it <<"\n");
- return RT;
+ return false;
}
}
TempObjects.clear();
@@ -1659,22 +2365,31 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
GetUnderlyingObjects(*I, TempObjects, DL);
for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end();
it != e; ++it) {
- if (!isIdentifiedObject(*it)) {
+ // If all of the writes are identified then we don't care if the read
+ // pointer is identified or not.
+ if (!AllWritesIdentified && !isIdentifiedObject(*it)) {
DEBUG(dbgs() << "LV: Found an unidentified read ptr:"<< **it <<"\n");
- return RT;
+ NeedRTCheck = true;
}
if (WriteObjects.count(*it)) {
DEBUG(dbgs() << "LV: Found a possible read/write reorder:"
<< **it <<"\n");
- return RT;
+ return false;
}
}
TempObjects.clear();
}
- // It is safe to vectorize and we don't need any runtime checks.
- DEBUG(dbgs() << "LV: We don't need a runtime memory check.\n");
- PtrRtCheck.reset();
+ PtrRtCheck.Need = NeedRTCheck;
+ if (NeedRTCheck && !CanDoRT) {
+ DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
+ "the array bounds.\n");
+ PtrRtCheck.reset();
+ return false;
+ }
+
+ DEBUG(dbgs() << "LV: We "<< (NeedRTCheck ? "" : "don't") <<
+ " need a runtime memory check.\n");
return true;
}
@@ -1696,12 +2411,13 @@ bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
// This includes users of the reduction, variables (which form a cycle
// which ends in the phi node).
Instruction *ExitInstruction = 0;
+ // Indicates that we found a binary operation in our scan.
+ bool FoundBinOp = false;
// Iter is our iterator. We start with the PHI node and scan for all of the
- // users of this instruction. All users must be instructions which can be
+ // users of this instruction. All users must be instructions that can be
// used as reduction variables (such as ADD). We may have a single
- // out-of-block user. They cycle must end with the original PHI.
- // Also, we can't have multiple block-local users.
+ // out-of-block user. The cycle must end with the original PHI.
Instruction *Iter = Phi;
while (true) {
// If the instruction has no users then this is a broken
@@ -1709,15 +2425,14 @@ bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
if (Iter->use_empty())
return false;
- // Any reduction instr must be of one of the allowed kinds.
- if (!isReductionInstr(Iter, Kind))
- return false;
-
- // Did we find a user inside this block ?
+ // Did we find a user inside this loop already ?
bool FoundInBlockUser = false;
- // Did we reach the initial PHI node ?
+ // Did we reach the initial PHI node already ?
bool FoundStartPHI = false;
+ // Is this a bin op ?
+ FoundBinOp |= !isa<PHINode>(Iter);
+
// For each of the *users* of iter.
for (Value::use_iterator it = Iter->use_begin(), e = Iter->use_end();
it != e; ++it) {
@@ -1740,58 +2455,78 @@ bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
// We allow in-loop PHINodes which are not the original reduction PHI
// node. If this PHI is the only user of Iter (happens in IF w/ no ELSE
// structure) then don't skip this PHI.
- if (isa<PHINode>(U) && U->getParent() != TheLoop->getHeader() &&
- TheLoop->contains(U) && Iter->getNumUses() > 1)
+ if (isa<PHINode>(Iter) && isa<PHINode>(U) &&
+ U->getParent() != TheLoop->getHeader() &&
+ TheLoop->contains(U) &&
+ Iter->getNumUses() > 1)
continue;
// We can't have multiple inside users.
if (FoundInBlockUser)
return false;
FoundInBlockUser = true;
+
+ // Any reduction instr must be of one of the allowed kinds.
+ if (!isReductionInstr(U, Kind))
+ return false;
+
+ // Reductions of instructions such as Div, and Sub is only
+ // possible if the LHS is the reduction variable.
+ if (!U->isCommutative() && !isa<PHINode>(U) && U->getOperand(0) != Iter)
+ return false;
+
Iter = U;
}
// We found a reduction var if we have reached the original
// phi node and we only have a single instruction with out-of-loop
// users.
- if (FoundStartPHI && ExitInstruction) {
+ if (FoundStartPHI) {
// This instruction is allowed to have out-of-loop users.
AllowedExit.insert(ExitInstruction);
// Save the description of this reduction variable.
ReductionDescriptor RD(RdxStart, ExitInstruction, Kind);
Reductions[Phi] = RD;
- return true;
+ // We've ended the cycle. This is a reduction variable if we have an
+ // outside user and it has a binary op.
+ return FoundBinOp && ExitInstruction;
}
-
- // If we've reached the start PHI but did not find an outside user then
- // this is dead code. Abort.
- if (FoundStartPHI)
- return false;
}
}
bool
LoopVectorizationLegality::isReductionInstr(Instruction *I,
ReductionKind Kind) {
+ bool FP = I->getType()->isFloatingPointTy();
+ bool FastMath = (FP && I->isCommutative() && I->isAssociative());
+
switch (I->getOpcode()) {
default:
return false;
case Instruction::PHI:
+ if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd))
+ return false;
// possibly.
return true;
- case Instruction::Add:
case Instruction::Sub:
- return Kind == IntegerAdd;
+ case Instruction::Add:
+ return Kind == RK_IntegerAdd;
+ case Instruction::SDiv:
+ case Instruction::UDiv:
case Instruction::Mul:
- return Kind == IntegerMult;
+ return Kind == RK_IntegerMult;
case Instruction::And:
- return Kind == IntegerAnd;
+ return Kind == RK_IntegerAnd;
case Instruction::Or:
- return Kind == IntegerOr;
+ return Kind == RK_IntegerOr;
case Instruction::Xor:
- return Kind == IntegerXor;
- }
+ return Kind == RK_IntegerXor;
+ case Instruction::FMul:
+ return Kind == RK_FloatMult && FastMath;
+ case Instruction::FAdd:
+ return Kind == RK_FloatAdd && FastMath;
+ }
}
LoopVectorizationLegality::InductionKind
@@ -1799,37 +2534,46 @@ LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
Type *PhiTy = Phi->getType();
// We only handle integer and pointer inductions variables.
if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
- return NoInduction;
+ return IK_NoInduction;
// Check that the PHI is consecutive and starts at zero.
const SCEV *PhiScev = SE->getSCEV(Phi);
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
if (!AR) {
DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
- return NoInduction;
+ return IK_NoInduction;
}
const SCEV *Step = AR->getStepRecurrence(*SE);
// Integer inductions need to have a stride of one.
if (PhiTy->isIntegerTy()) {
if (Step->isOne())
- return IntInduction;
+ return IK_IntInduction;
if (Step->isAllOnesValue())
- return ReverseIntInduction;
- return NoInduction;
+ return IK_ReverseIntInduction;
+ return IK_NoInduction;
}
// Calculate the pointer stride and check if it is consecutive.
const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
if (!C)
- return NoInduction;
+ return IK_NoInduction;
assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType());
if (C->getValue()->equalsInt(Size))
- return PtrInduction;
+ return IK_PtrInduction;
+
+ return IK_NoInduction;
+}
+
+bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
+ Value *In0 = const_cast<Value*>(V);
+ PHINode *PN = dyn_cast_or_null<PHINode>(In0);
+ if (!PN)
+ return false;
- return NoInduction;
+ return Inductions.count(PN);
}
bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
@@ -1846,7 +2590,7 @@ bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB) {
if (it->mayReadFromMemory() || it->mayWriteToMemory() || it->mayThrow())
return false;
- // The isntructions below can trap.
+ // The instructions below can trap.
switch (it->getOpcode()) {
default: continue;
case Instruction::UDiv:
@@ -1870,12 +2614,62 @@ bool LoopVectorizationLegality::hasComputableBounds(Value *Ptr) {
}
unsigned
-LoopVectorizationCostModel::findBestVectorizationFactor(unsigned VF) {
- if (!VTTI) {
- DEBUG(dbgs() << "LV: No vector target information. Not vectorizing. \n");
+LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
+ unsigned UserVF) {
+ if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
+ DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
return 1;
}
+ // Find the trip count.
+ unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch());
+ DEBUG(dbgs() << "LV: Found trip count:"<<TC<<"\n");
+
+ unsigned WidestType = getWidestType();
+ unsigned WidestRegister = TTI.getRegisterBitWidth(true);
+ unsigned MaxVectorSize = WidestRegister / WidestType;
+ DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n");
+ DEBUG(dbgs() << "LV: The Widest register is:" << WidestRegister << "bits.\n");
+
+ if (MaxVectorSize == 0) {
+ DEBUG(dbgs() << "LV: The target has no vector registers.\n");
+ return 1;
+ }
+
+ assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements"
+ " into one vector.");
+
+ unsigned VF = MaxVectorSize;
+
+ // If we optimize the program for size, avoid creating the tail loop.
+ if (OptForSize) {
+ // If we are unable to calculate the trip count then don't try to vectorize.
+ if (TC < 2) {
+ DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
+ return 1;
+ }
+
+ // Find the maximum SIMD width that can fit within the trip count.
+ VF = TC % MaxVectorSize;
+
+ if (VF == 0)
+ VF = MaxVectorSize;
+
+ // If the trip count that we found modulo the vectorization factor is not
+ // zero then we require a tail.
+ if (VF < 2) {
+ DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
+ return 1;
+ }
+ }
+
+ if (UserVF != 0) {
+ assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
+ DEBUG(dbgs() << "LV: Using user VF "<<UserVF<<".\n");
+
+ return UserVF;
+ }
+
float Cost = expectedCost(1);
unsigned Width = 1;
DEBUG(dbgs() << "LV: Scalar loop costs: "<< (int)Cost << ".\n");
@@ -1896,6 +2690,205 @@ LoopVectorizationCostModel::findBestVectorizationFactor(unsigned VF) {
return Width;
}
+unsigned LoopVectorizationCostModel::getWidestType() {
+ unsigned MaxWidth = 8;
+
+ // For each block.
+ for (Loop::block_iterator bb = TheLoop->block_begin(),
+ be = TheLoop->block_end(); bb != be; ++bb) {
+ BasicBlock *BB = *bb;
+
+ // For each instruction in the loop.
+ for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
+ Type *T = it->getType();
+
+ // Only examine Loads, Stores and PHINodes.
+ if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
+ continue;
+
+ // Examine PHI nodes that are reduction variables.
+ if (PHINode *PN = dyn_cast<PHINode>(it))
+ if (!Legal->getReductionVars()->count(PN))
+ continue;
+
+ // Examine the stored values.
+ if (StoreInst *ST = dyn_cast<StoreInst>(it))
+ T = ST->getValueOperand()->getType();
+
+ // Ignore stored/loaded pointer types.
+ if (T->isPointerTy())
+ continue;
+
+ MaxWidth = std::max(MaxWidth, T->getScalarSizeInBits());
+ }
+ }
+
+ return MaxWidth;
+}
+
+unsigned
+LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
+ unsigned UserUF) {
+ // Use the user preference, unless 'auto' is selected.
+ if (UserUF != 0)
+ return UserUF;
+
+ // When we optimize for size we don't unroll.
+ if (OptForSize)
+ return 1;
+
+ // Do not unroll loops with a relatively small trip count.
+ unsigned TC = SE->getSmallConstantTripCount(TheLoop,
+ TheLoop->getLoopLatch());
+ if (TC > 1 && TC < TinyTripCountUnrollThreshold)
+ return 1;
+
+ unsigned TargetVectorRegisters = TTI.getNumberOfRegisters(true);
+ DEBUG(dbgs() << "LV: The target has " << TargetVectorRegisters <<
+ " vector registers\n");
+
+ LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
+ // We divide by these constants so assume that we have at least one
+ // instruction that uses at least one register.
+ R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
+ R.NumInstructions = std::max(R.NumInstructions, 1U);
+
+ // We calculate the unroll factor using the following formula.
+ // Subtract the number of loop invariants from the number of available
+ // registers. These registers are used by all of the unrolled instances.
+ // Next, divide the remaining registers by the number of registers that is
+ // required by the loop, in order to estimate how many parallel instances
+ // fit without causing spills.
+ unsigned UF = (TargetVectorRegisters - R.LoopInvariantRegs) / R.MaxLocalUsers;
+
+ // We don't want to unroll the loops to the point where they do not fit into
+ // the decoded cache. Assume that we only allow 32 IR instructions.
+ UF = std::min(UF, (MaxLoopSizeThreshold / R.NumInstructions));
+
+ // Clamp the unroll factor ranges to reasonable factors.
+ unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor();
+
+ if (UF > MaxUnrollSize)
+ UF = MaxUnrollSize;
+ else if (UF < 1)
+ UF = 1;
+
+ return UF;
+}
+
+LoopVectorizationCostModel::RegisterUsage
+LoopVectorizationCostModel::calculateRegisterUsage() {
+ // This function calculates the register usage by measuring the highest number
+ // of values that are alive at a single location. Obviously, this is a very
+ // rough estimation. We scan the loop in a topological order in order and
+ // assign a number to each instruction. We use RPO to ensure that defs are
+ // met before their users. We assume that each instruction that has in-loop
+ // users starts an interval. We record every time that an in-loop value is
+ // used, so we have a list of the first and last occurrences of each
+ // instruction. Next, we transpose this data structure into a multi map that
+ // holds the list of intervals that *end* at a specific location. This multi
+ // map allows us to perform a linear search. We scan the instructions linearly
+ // and record each time that a new interval starts, by placing it in a set.
+ // If we find this value in the multi-map then we remove it from the set.
+ // The max register usage is the maximum size of the set.
+ // We also search for instructions that are defined outside the loop, but are
+ // used inside the loop. We need this number separately from the max-interval
+ // usage number because when we unroll, loop-invariant values do not take
+ // more register.
+ LoopBlocksDFS DFS(TheLoop);
+ DFS.perform(LI);
+
+ RegisterUsage R;
+ R.NumInstructions = 0;
+
+ // Each 'key' in the map opens a new interval. The values
+ // of the map are the index of the 'last seen' usage of the
+ // instruction that is the key.
+ typedef DenseMap<Instruction*, unsigned> IntervalMap;
+ // Maps instruction to its index.
+ DenseMap<unsigned, Instruction*> IdxToInstr;
+ // Marks the end of each interval.
+ IntervalMap EndPoint;
+ // Saves the list of instruction indices that are used in the loop.
+ SmallSet<Instruction*, 8> Ends;
+ // Saves the list of values that are used in the loop but are
+ // defined outside the loop, such as arguments and constants.
+ SmallPtrSet<Value*, 8> LoopInvariants;
+
+ unsigned Index = 0;
+ for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
+ be = DFS.endRPO(); bb != be; ++bb) {
+ R.NumInstructions += (*bb)->size();
+ for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
+ ++it) {
+ Instruction *I = it;
+ IdxToInstr[Index++] = I;
+
+ // Save the end location of each USE.
+ for (unsigned i = 0; i < I->getNumOperands(); ++i) {
+ Value *U = I->getOperand(i);
+ Instruction *Instr = dyn_cast<Instruction>(U);
+
+ // Ignore non-instruction values such as arguments, constants, etc.
+ if (!Instr) continue;
+
+ // If this instruction is outside the loop then record it and continue.
+ if (!TheLoop->contains(Instr)) {
+ LoopInvariants.insert(Instr);
+ continue;
+ }
+
+ // Overwrite previous end points.
+ EndPoint[Instr] = Index;
+ Ends.insert(Instr);
+ }
+ }
+ }
+
+ // Saves the list of intervals that end with the index in 'key'.
+ typedef SmallVector<Instruction*, 2> InstrList;
+ DenseMap<unsigned, InstrList> TransposeEnds;
+
+ // Transpose the EndPoints to a list of values that end at each index.
+ for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
+ it != e; ++it)
+ TransposeEnds[it->second].push_back(it->first);
+
+ SmallSet<Instruction*, 8> OpenIntervals;
+ unsigned MaxUsage = 0;
+
+
+ DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
+ for (unsigned int i = 0; i < Index; ++i) {
+ Instruction *I = IdxToInstr[i];
+ // Ignore instructions that are never used within the loop.
+ if (!Ends.count(I)) continue;
+
+ // Remove all of the instructions that end at this location.
+ InstrList &List = TransposeEnds[i];
+ for (unsigned int j=0, e = List.size(); j < e; ++j)
+ OpenIntervals.erase(List[j]);
+
+ // Count the number of live interals.
+ MaxUsage = std::max(MaxUsage, OpenIntervals.size());
+
+ DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
+ OpenIntervals.size() <<"\n");
+
+ // Add the current instruction to the list of open intervals.
+ OpenIntervals.insert(I);
+ }
+
+ unsigned Invariant = LoopInvariants.size();
+ DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << " \n");
+ DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << " \n");
+ DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << " \n");
+
+ R.LoopInvariantRegs = Invariant;
+ R.MaxLocalUsers = MaxUsage;
+ return R;
+}
+
unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
unsigned Cost = 0;
@@ -1927,8 +2920,6 @@ unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
unsigned
LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
- assert(VTTI && "Invalid vector target transformation info");
-
// If we know that this instruction will remain uniform, check the cost of
// the scalar version.
if (Legal->isUniformAfterVectorization(I))
@@ -1945,7 +2936,7 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
// generate vector geps.
return 0;
case Instruction::Br: {
- return VTTI->getCFInstrCost(I->getOpcode());
+ return TTI.getCFInstrCost(I->getOpcode());
}
case Instruction::PHI:
//TODO: IF-converted IFs become selects.
@@ -1968,7 +2959,7 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
- return VTTI->getArithmeticInstrCost(I->getOpcode(), VectorTy);
+ return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy);
case Instruction::Select: {
SelectInst *SI = cast<SelectInst>(I);
const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
@@ -1977,13 +2968,13 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
if (ScalarCond)
CondTy = VectorType::get(CondTy, VF);
- return VTTI->getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
+ return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
}
case Instruction::ICmp:
case Instruction::FCmp: {
Type *ValTy = I->getOperand(0)->getType();
VectorTy = ToVectorTy(ValTy, VF);
- return VTTI->getCmpSelInstrCost(I->getOpcode(), VectorTy);
+ return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
}
case Instruction::Store: {
StoreInst *SI = cast<StoreInst>(I);
@@ -1991,54 +2982,76 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
VectorTy = ToVectorTy(ValTy, VF);
if (VF == 1)
- return VTTI->getMemoryOpCost(I->getOpcode(), ValTy,
+ return TTI.getMemoryOpCost(I->getOpcode(), VectorTy,
SI->getAlignment(),
SI->getPointerAddressSpace());
// Scalarized stores.
- if (!Legal->isConsecutivePtr(SI->getPointerOperand())) {
+ int Stride = Legal->isConsecutivePtr(SI->getPointerOperand());
+ bool Reverse = Stride < 0;
+ if (0 == Stride) {
unsigned Cost = 0;
- unsigned ExtCost = VTTI->getInstrCost(Instruction::ExtractElement,
- ValTy);
- // The cost of extracting from the value vector.
- Cost += VF * (ExtCost);
+
+ // The cost of extracting from the value vector and pointer vector.
+ Type *PtrTy = ToVectorTy(I->getOperand(0)->getType(), VF);
+ for (unsigned i = 0; i < VF; ++i) {
+ Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
+ i);
+ Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
+ }
+
// The cost of the scalar stores.
- Cost += VF * VTTI->getMemoryOpCost(I->getOpcode(),
- ValTy->getScalarType(),
- SI->getAlignment(),
- SI->getPointerAddressSpace());
+ Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
+ SI->getAlignment(),
+ SI->getPointerAddressSpace());
return Cost;
}
// Wide stores.
- return VTTI->getMemoryOpCost(I->getOpcode(), VectorTy, SI->getAlignment(),
- SI->getPointerAddressSpace());
+ unsigned Cost = TTI.getMemoryOpCost(I->getOpcode(), VectorTy,
+ SI->getAlignment(),
+ SI->getPointerAddressSpace());
+ if (Reverse)
+ Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
+ VectorTy, 0);
+ return Cost;
}
case Instruction::Load: {
LoadInst *LI = cast<LoadInst>(I);
if (VF == 1)
- return VTTI->getMemoryOpCost(I->getOpcode(), RetTy,
- LI->getAlignment(),
- LI->getPointerAddressSpace());
+ return TTI.getMemoryOpCost(I->getOpcode(), VectorTy, LI->getAlignment(),
+ LI->getPointerAddressSpace());
// Scalarized loads.
- if (!Legal->isConsecutivePtr(LI->getPointerOperand())) {
+ int Stride = Legal->isConsecutivePtr(LI->getPointerOperand());
+ bool Reverse = Stride < 0;
+ if (0 == Stride) {
unsigned Cost = 0;
- unsigned InCost = VTTI->getInstrCost(Instruction::InsertElement, RetTy);
- // The cost of inserting the loaded value into the result vector.
- Cost += VF * (InCost);
+ Type *PtrTy = ToVectorTy(I->getOperand(0)->getType(), VF);
+
+ // The cost of extracting from the pointer vector.
+ for (unsigned i = 0; i < VF; ++i)
+ Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
+
+ // The cost of inserting data to the result vector.
+ for (unsigned i = 0; i < VF; ++i)
+ Cost += TTI.getVectorInstrCost(Instruction::InsertElement, VectorTy, i);
+
// The cost of the scalar stores.
- Cost += VF * VTTI->getMemoryOpCost(I->getOpcode(),
- RetTy->getScalarType(),
- LI->getAlignment(),
- LI->getPointerAddressSpace());
+ Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), RetTy->getScalarType(),
+ LI->getAlignment(),
+ LI->getPointerAddressSpace());
return Cost;
}
// Wide loads.
- return VTTI->getMemoryOpCost(I->getOpcode(), VectorTy, LI->getAlignment(),
- LI->getPointerAddressSpace());
+ unsigned Cost = TTI.getMemoryOpCost(I->getOpcode(), VectorTy,
+ LI->getAlignment(),
+ LI->getPointerAddressSpace());
+ if (Reverse)
+ Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
+ return Cost;
}
case Instruction::ZExt:
case Instruction::SExt:
@@ -2052,8 +3065,15 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
case Instruction::Trunc:
case Instruction::FPTrunc:
case Instruction::BitCast: {
+ // We optimize the truncation of induction variable.
+ // The cost of these is the same as the scalar operation.
+ if (I->getOpcode() == Instruction::Trunc &&
+ Legal->isInductionVariable(I->getOperand(0)))
+ return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
+ I->getOperand(0)->getType());
+
Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
- return VTTI->getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
+ return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
}
case Instruction::Call: {
assert(isTriviallyVectorizableIntrinsic(I));
@@ -2062,7 +3082,7 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
SmallVector<Type*, 4> Tys;
for (unsigned i = 0, ie = II->getNumArgOperands(); i != ie; ++i)
Tys.push_back(ToVectorTy(II->getArgOperand(i)->getType(), VF));
- return VTTI->getIntrinsicInstrCost(II->getIntrinsicID(), RetTy, Tys);
+ return TTI.getIntrinsicInstrCost(II->getIntrinsicID(), RetTy, Tys);
}
default: {
// We are scalarizing the instruction. Return the cost of the scalar
@@ -2070,21 +3090,20 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
// elements, times the vector width.
unsigned Cost = 0;
- bool IsVoid = RetTy->isVoidTy();
+ if (!RetTy->isVoidTy() && VF != 1) {
+ unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
+ VectorTy);
+ unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
+ VectorTy);
- unsigned InsCost = (IsVoid ? 0 :
- VTTI->getInstrCost(Instruction::InsertElement,
- VectorTy));
-
- unsigned ExtCost = VTTI->getInstrCost(Instruction::ExtractElement,
- VectorTy);
-
- // The cost of inserting the results plus extracting each one of the
- // operands.
- Cost += VF * (InsCost + ExtCost * I->getNumOperands());
+ // The cost of inserting the results plus extracting each one of the
+ // operands.
+ Cost += VF * (InsCost + ExtCost * I->getNumOperands());
+ }
- // The cost of executing VF copies of the scalar instruction.
- Cost += VF * VTTI->getInstrCost(I->getOpcode(), RetTy);
+ // The cost of executing VF copies of the scalar instruction. This opcode
+ // is unknown. Assume that it is the same as 'mul'.
+ Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
return Cost;
}
}// end of switch.
@@ -2100,6 +3119,7 @@ char LoopVectorize::ID = 0;
static const char lv_name[] = "Loop Vectorization";
INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
diff --git a/lib/Transforms/Vectorize/LoopVectorize.h b/lib/Transforms/Vectorize/LoopVectorize.h
deleted file mode 100644
index 9d6d80e22b..0000000000
--- a/lib/Transforms/Vectorize/LoopVectorize.h
+++ /dev/null
@@ -1,458 +0,0 @@
-//===- LoopVectorize.h --- A Loop Vectorizer ------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
-// and generates target-independent LLVM-IR. Legalization of the IR is done
-// in the codegen. However, the vectorizes uses (will use) the codegen
-// interfaces to generate IR that is likely to result in an optimal binary.
-//
-// The loop vectorizer combines consecutive loop iteration into a single
-// 'wide' iteration. After this transformation the index is incremented
-// by the SIMD vector width, and not by one.
-//
-// This pass has three parts:
-// 1. The main loop pass that drives the different parts.
-// 2. LoopVectorizationLegality - A unit that checks for the legality
-// of the vectorization.
-// 3. InnerLoopVectorizer - A unit that performs the actual
-// widening of instructions.
-// 4. LoopVectorizationCostModel - A unit that checks for the profitability
-// of vectorization. It decides on the optimal vector width, which
-// can be one, if vectorization is not profitable.
-//
-//===----------------------------------------------------------------------===//
-//
-// The reduction-variable vectorization is based on the paper:
-// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
-//
-// Variable uniformity checks are inspired by:
-// Karrenberg, R. and Hack, S. Whole Function Vectorization.
-//
-// Other ideas/concepts are from:
-// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
-//
-// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
-// Vectorizing Compilers.
-//
-//===----------------------------------------------------------------------===//
-#ifndef LLVM_TRANSFORM_VECTORIZE_LOOP_VECTORIZE_H
-#define LLVM_TRANSFORM_VECTORIZE_LOOP_VECTORIZE_H
-
-#define LV_NAME "loop-vectorize"
-#define DEBUG_TYPE LV_NAME
-
-#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/IRBuilder.h"
-
-#include <algorithm>
-using namespace llvm;
-
-/// We don't vectorize loops with a known constant trip count below this number.
-const unsigned TinyTripCountThreshold = 16;
-
-/// When performing a runtime memory check, do not check more than this
-/// number of pointers. Notice that the check is quadratic!
-const unsigned RuntimeMemoryCheckThreshold = 4;
-
-/// This is the highest vector width that we try to generate.
-const unsigned MaxVectorSize = 8;
-
-namespace llvm {
-
-// Forward declarations.
-class LoopVectorizationLegality;
-class LoopVectorizationCostModel;
-class VectorTargetTransformInfo;
-
-/// InnerLoopVectorizer vectorizes loops which contain only one basic
-/// block to a specified vectorization factor (VF).
-/// This class performs the widening of scalars into vectors, or multiple
-/// scalars. This class also implements the following features:
-/// * It inserts an epilogue loop for handling loops that don't have iteration
-/// counts that are known to be a multiple of the vectorization factor.
-/// * It handles the code generation for reduction variables.
-/// * Scalarization (implementation using scalars) of un-vectorizable
-/// instructions.
-/// InnerLoopVectorizer does not perform any vectorization-legality
-/// checks, and relies on the caller to check for the different legality
-/// aspects. The InnerLoopVectorizer relies on the
-/// LoopVectorizationLegality class to provide information about the induction
-/// and reduction variables that were found to a given vectorization factor.
-class InnerLoopVectorizer {
-public:
- /// Ctor.
- InnerLoopVectorizer(Loop *Orig, ScalarEvolution *Se, LoopInfo *Li,
- DominatorTree *Dt, DataLayout *Dl, unsigned VecWidth):
- OrigLoop(Orig), SE(Se), LI(Li), DT(Dt), DL(Dl), VF(VecWidth),
- Builder(Se->getContext()), Induction(0), OldInduction(0) { }
-
- // Perform the actual loop widening (vectorization).
- void vectorize(LoopVectorizationLegality *Legal) {
- // Create a new empty loop. Unlink the old loop and connect the new one.
- createEmptyLoop(Legal);
- // Widen each instruction in the old loop to a new one in the new loop.
- // Use the Legality module to find the induction and reduction variables.
- vectorizeLoop(Legal);
- // Register the new loop and update the analysis passes.
- updateAnalysis();
- }
-
-private:
- /// A small list of PHINodes.
- typedef SmallVector<PHINode*, 4> PhiVector;
-
- /// Add code that checks at runtime if the accessed arrays overlap.
- /// Returns the comparator value or NULL if no check is needed.
- Value *addRuntimeCheck(LoopVectorizationLegality *Legal,
- Instruction *Loc);
- /// Create an empty loop, based on the loop ranges of the old loop.
- void createEmptyLoop(LoopVectorizationLegality *Legal);
- /// Copy and widen the instructions from the old loop.
- void vectorizeLoop(LoopVectorizationLegality *Legal);
-
- /// A helper function that computes the predicate of the block BB, assuming
- /// that the header block of the loop is set to True. It returns the *entry*
- /// mask for the block BB.
- Value *createBlockInMask(BasicBlock *BB);
- /// A helper function that computes the predicate of the edge between SRC
- /// and DST.
- Value *createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
-
- /// A helper function to vectorize a single BB within the innermost loop.
- void vectorizeBlockInLoop(LoopVectorizationLegality *Legal, BasicBlock *BB,
- PhiVector *PV);
-
- /// Insert the new loop to the loop hierarchy and pass manager
- /// and update the analysis passes.
- void updateAnalysis();
-
- /// This instruction is un-vectorizable. Implement it as a sequence
- /// of scalars.
- void scalarizeInstruction(Instruction *Instr);
-
- /// Create a broadcast instruction. This method generates a broadcast
- /// instruction (shuffle) for loop invariant values and for the induction
- /// value. If this is the induction variable then we extend it to N, N+1, ...
- /// this is needed because each iteration in the loop corresponds to a SIMD
- /// element.
- Value *getBroadcastInstrs(Value *V);
-
- /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
- /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
- Value *getConsecutiveVector(Value* Val, bool Negate = false);
-
- /// When we go over instructions in the basic block we rely on previous
- /// values within the current basic block or on loop invariant values.
- /// When we widen (vectorize) values we place them in the map. If the values
- /// are not within the map, they have to be loop invariant, so we simply
- /// broadcast them into a vector.
- Value *getVectorValue(Value *V);
-
- /// Get a uniform vector of constant integers. We use this to get
- /// vectors of ones and zeros for the reduction code.
- Constant* getUniformVector(unsigned Val, Type* ScalarTy);
-
- typedef DenseMap<Value*, Value*> ValueMap;
-
- /// The original loop.
- Loop *OrigLoop;
- // Scev analysis to use.
- ScalarEvolution *SE;
- // Loop Info.
- LoopInfo *LI;
- // Dominator Tree.
- DominatorTree *DT;
- // Data Layout.
- DataLayout *DL;
- // The vectorization factor to use.
- unsigned VF;
-
- // The builder that we use
- IRBuilder<> Builder;
-
- // --- Vectorization state ---
-
- /// The vector-loop preheader.
- BasicBlock *LoopVectorPreHeader;
- /// The scalar-loop preheader.
- BasicBlock *LoopScalarPreHeader;
- /// Middle Block between the vector and the scalar.
- BasicBlock *LoopMiddleBlock;
- ///The ExitBlock of the scalar loop.
- BasicBlock *LoopExitBlock;
- ///The vector loop body.
- BasicBlock *LoopVectorBody;
- ///The scalar loop body.
- BasicBlock *LoopScalarBody;
- ///The first bypass block.
- BasicBlock *LoopBypassBlock;
-
- /// The new Induction variable which was added to the new block.
- PHINode *Induction;
- /// The induction variable of the old basic block.
- PHINode *OldInduction;
- // Maps scalars to widened vectors.
- ValueMap WidenMap;
-};
-
-/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
-/// to what vectorization factor.
-/// This class does not look at the profitability of vectorization, only the
-/// legality. This class has two main kinds of checks:
-/// * Memory checks - The code in canVectorizeMemory checks if vectorization
-/// will change the order of memory accesses in a way that will change the
-/// correctness of the program.
-/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
-/// checks for a number of different conditions, such as the availability of a
-/// single induction variable, that all types are supported and vectorize-able,
-/// etc. This code reflects the capabilities of InnerLoopVectorizer.
-/// This class is also used by InnerLoopVectorizer for identifying
-/// induction variable and the different reduction variables.
-class LoopVectorizationLegality {
-public:
- LoopVectorizationLegality(Loop *Lp, ScalarEvolution *Se, DataLayout *Dl,
- DominatorTree *Dt):
- TheLoop(Lp), SE(Se), DL(Dl), DT(Dt), Induction(0) { }
-
- /// This enum represents the kinds of reductions that we support.
- enum ReductionKind {
- NoReduction, /// Not a reduction.
- IntegerAdd, /// Sum of numbers.
- IntegerMult, /// Product of numbers.
- IntegerOr, /// Bitwise or logical OR of numbers.
- IntegerAnd, /// Bitwise or logical AND of numbers.
- IntegerXor /// Bitwise or logical XOR of numbers.
- };
-
- /// This enum represents the kinds of inductions that we support.
- enum InductionKind {
- NoInduction, /// Not an induction variable.
- IntInduction, /// Integer induction variable. Step = 1.
- ReverseIntInduction, /// Reverse int induction variable. Step = -1.
- PtrInduction /// Pointer induction variable. Step = sizeof(elem).
- };
-
- /// This POD struct holds information about reduction variables.
- struct ReductionDescriptor {
- // Default C'tor
- ReductionDescriptor():
- StartValue(0), LoopExitInstr(0), Kind(NoReduction) {}
-
- // C'tor.
- ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K):
- StartValue(Start), LoopExitInstr(Exit), Kind(K) {}
-
- // The starting value of the reduction.
- // It does not have to be zero!
- Value *StartValue;
- // The instruction who's value is used outside the loop.
- Instruction *LoopExitInstr;
- // The kind of the reduction.
- ReductionKind Kind;
- };
-
- // This POD struct holds information about the memory runtime legality
- // check that a group of pointers do not overlap.
- struct RuntimePointerCheck {
- RuntimePointerCheck(): Need(false) {}
-
- /// Reset the state of the pointer runtime information.
- void reset() {
- Need = false;
- Pointers.clear();
- Starts.clear();
- Ends.clear();
- }
-
- /// Insert a pointer and calculate the start and end SCEVs.
- void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr);
-
- /// This flag indicates if we need to add the runtime check.
- bool Need;
- /// Holds the pointers that we need to check.
- SmallVector<Value*, 2> Pointers;
- /// Holds the pointer value at the beginning of the loop.
- SmallVector<const SCEV*, 2> Starts;
- /// Holds the pointer value at the end of the loop.
- SmallVector<const SCEV*, 2> Ends;
- };
-
- /// A POD for saving information about induction variables.
- struct InductionInfo {
- /// Ctors.
- InductionInfo(Value *Start, InductionKind K):
- StartValue(Start), IK(K) {};
- InductionInfo(): StartValue(0), IK(NoInduction) {};
- /// Start value.
- Value *StartValue;
- /// Induction kind.
- InductionKind IK;
- };
-
- /// ReductionList contains the reduction descriptors for all
- /// of the reductions that were found in the loop.
- typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
-
- /// InductionList saves induction variables and maps them to the
- /// induction descriptor.
- typedef DenseMap<PHINode*, InductionInfo> InductionList;
-
- /// Returns true if it is legal to vectorize this loop.
- /// This does not mean that it is profitable to vectorize this
- /// loop, only that it is legal to do so.
- bool canVectorize();
-
- /// Returns the Induction variable.
- PHINode *getInduction() {return Induction;}
-
- /// Returns the reduction variables found in the loop.
- ReductionList *getReductionVars() { return &Reductions; }
-
- /// Returns the induction variables found in the loop.
- InductionList *getInductionVars() { return &Inductions; }
-
- /// Return true if the block BB needs to be predicated in order for the loop
- /// to be vectorized.
- bool blockNeedsPredication(BasicBlock *BB);
-
- /// Check if this pointer is consecutive when vectorizing. This happens
- /// when the last index of the GEP is the induction variable, or that the
- /// pointer itself is an induction variable.
- /// This check allows us to vectorize A[idx] into a wide load/store.
- bool isConsecutivePtr(Value *Ptr);
-
- /// Returns true if the value V is uniform within the loop.
- bool isUniform(Value *V);
-
- /// Returns true if this instruction will remain scalar after vectorization.
- bool isUniformAfterVectorization(Instruction* I) {return Uniforms.count(I);}
-
- /// Returns the information that we collected about runtime memory check.
- RuntimePointerCheck *getRuntimePointerCheck() {return &PtrRtCheck; }
-private:
- /// Check if a single basic block loop is vectorizable.
- /// At this point we know that this is a loop with a constant trip count
- /// and we only need to check individual instructions.
- bool canVectorizeInstrs();
-
- /// When we vectorize loops we may change the order in which
- /// we read and write from memory. This method checks if it is
- /// legal to vectorize the code, considering only memory constrains.
- /// Returns true if the loop is vectorizable
- bool canVectorizeMemory();
-
- /// Return true if we can vectorize this loop using the IF-conversion
- /// transformation.
- bool canVectorizeWithIfConvert();
-
- /// Collect the variables that need to stay uniform after vectorization.
- void collectLoopUniforms();
-
- /// Return true if all of the instructions in the block can be speculatively
- /// executed.
- bool blockCanBePredicated(BasicBlock *BB);
-
- /// Returns True, if 'Phi' is the kind of reduction variable for type
- /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
- bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
- /// Returns true if the instruction I can be a reduction variable of type
- /// 'Kind'.
- bool isReductionInstr(Instruction *I, ReductionKind Kind);
- /// Returns the induction kind of Phi. This function may return NoInduction
- /// if the PHI is not an induction variable.
- InductionKind isInductionVariable(PHINode *Phi);
- /// Return true if can compute the address bounds of Ptr within the loop.
- bool hasComputableBounds(Value *Ptr);
-
- /// The loop that we evaluate.
- Loop *TheLoop;
- /// Scev analysis.
- ScalarEvolution *SE;
- /// DataLayout analysis.
- DataLayout *DL;
- // Dominators.
- DominatorTree *DT;
-
- // --- vectorization state --- //
-
- /// Holds the integer induction variable. This is the counter of the
- /// loop.
- PHINode *Induction;
- /// Holds the reduction variables.
- ReductionList Reductions;
- /// Holds all of the induction variables that we found in the loop.
- /// Notice that inductions don't need to start at zero and that induction
- /// variables can be pointers.
- InductionList Inductions;
-
- /// Allowed outside users. This holds the reduction
- /// vars which can be accessed from outside the loop.
- SmallPtrSet<Value*, 4> AllowedExit;
- /// This set holds the variables which are known to be uniform after
- /// vectorization.
- SmallPtrSet<Instruction*, 4> Uniforms;
- /// We need to check that all of the pointers in this list are disjoint
- /// at runtime.
- RuntimePointerCheck PtrRtCheck;
-};
-
-/// LoopVectorizationCostModel - estimates the expected speedups due to
-/// vectorization.
-/// In many cases vectorization is not profitable. This can happen because
-/// of a number of reasons. In this class we mainly attempt to predict
-/// the expected speedup/slowdowns due to the supported instruction set.
-/// We use the VectorTargetTransformInfo to query the different backends
-/// for the cost of different operations.
-class LoopVectorizationCostModel {
-public:
- /// C'tor.
- LoopVectorizationCostModel(Loop *Lp, ScalarEvolution *Se,
- LoopVectorizationLegality *Leg,
- const VectorTargetTransformInfo *Vtti):
- TheLoop(Lp), SE(Se), Legal(Leg), VTTI(Vtti) { }
-
- /// Returns the most profitable vectorization factor for the loop that is
- /// smaller or equal to the VF argument. This method checks every power
- /// of two up to VF.
- unsigned findBestVectorizationFactor(unsigned VF = MaxVectorSize);
-
-private:
- /// Returns the expected execution cost. The unit of the cost does
- /// not matter because we use the 'cost' units to compare different
- /// vector widths. The cost that is returned is *not* normalized by
- /// the factor width.
- unsigned expectedCost(unsigned VF);
-
- /// Returns the execution time cost of an instruction for a given vector
- /// width. Vector width of one means scalar.
- unsigned getInstructionCost(Instruction *I, unsigned VF);
-
- /// A helper function for converting Scalar types to vector types.
- /// If the incoming type is void, we return void. If the VF is 1, we return
- /// the scalar type.
- static Type* ToVectorTy(Type *Scalar, unsigned VF);
-
- /// The loop that we evaluate.
- Loop *TheLoop;
- /// Scev analysis.
- ScalarEvolution *SE;
-
- /// Vectorization legality.
- LoopVectorizationLegality *Legal;
- /// Vector target information.
- const VectorTargetTransformInfo *VTTI;
-};
-
-}// namespace llvm
-
-#endif //LLVM_TRANSFORM_VECTORIZE_LOOP_VECTORIZE_H
-
diff --git a/lib/Transforms/Vectorize/Vectorize.cpp b/lib/Transforms/Vectorize/Vectorize.cpp
index 3fb36cadea..19eefd2f87 100644
--- a/lib/Transforms/Vectorize/Vectorize.cpp
+++ b/lib/Transforms/Vectorize/Vectorize.cpp
@@ -1,4 +1,4 @@
-//===-- Vectorize.cpp -----------------------------------------------------===//
+ //===-- Vectorize.cpp -----------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//