diff options
Diffstat (limited to 'lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp')
-rw-r--r-- | lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp | 4765 |
1 files changed, 4765 insertions, 0 deletions
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp b/lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp new file mode 100644 index 0000000000..9df4bbaf73 --- /dev/null +++ b/lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp @@ -0,0 +1,4765 @@ +//===-- SelectionDAGBuild.cpp - Selection-DAG building --------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This implements routines for translating from LLVM IR into SelectionDAG IR. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "isel" +#include "SelectionDAGBuild.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Constants.h" +#include "llvm/CallingConv.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Function.h" +#include "llvm/GlobalVariable.h" +#include "llvm/InlineAsm.h" +#include "llvm/Instructions.h" +#include "llvm/Intrinsics.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/ParameterAttributes.h" +#include "llvm/CodeGen/FastISel.h" +#include "llvm/CodeGen/GCStrategy.h" +#include "llvm/CodeGen/GCMetadata.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Target/TargetFrameInfo.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetLowering.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetOptions.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/MathExtras.h" +#include <algorithm> +using namespace llvm; + +/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence +/// insertvalue or extractvalue indices that identify a member, return +/// the linearized index of the start of the member. +/// +static unsigned ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty, + const unsigned *Indices, + const unsigned *IndicesEnd, + unsigned CurIndex = 0) { + // Base case: We're done. + if (Indices && Indices == IndicesEnd) + return CurIndex; + + // Given a struct type, recursively traverse the elements. + if (const StructType *STy = dyn_cast<StructType>(Ty)) { + for (StructType::element_iterator EB = STy->element_begin(), + EI = EB, + EE = STy->element_end(); + EI != EE; ++EI) { + if (Indices && *Indices == unsigned(EI - EB)) + return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex); + CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex); + } + } + // Given an array type, recursively traverse the elements. + else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { + const Type *EltTy = ATy->getElementType(); + for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { + if (Indices && *Indices == i) + return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex); + CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex); + } + } + // We haven't found the type we're looking for, so keep searching. + return CurIndex + 1; +} + +/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of +/// MVTs that represent all the individual underlying +/// non-aggregate types that comprise it. +/// +/// If Offsets is non-null, it points to a vector to be filled in +/// with the in-memory offsets of each of the individual values. +/// +static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty, + SmallVectorImpl<MVT> &ValueVTs, + SmallVectorImpl<uint64_t> *Offsets = 0, + uint64_t StartingOffset = 0) { + // Given a struct type, recursively traverse the elements. + if (const StructType *STy = dyn_cast<StructType>(Ty)) { + const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy); + for (StructType::element_iterator EB = STy->element_begin(), + EI = EB, + EE = STy->element_end(); + EI != EE; ++EI) + ComputeValueVTs(TLI, *EI, ValueVTs, Offsets, + StartingOffset + SL->getElementOffset(EI - EB)); + return; + } + // Given an array type, recursively traverse the elements. + if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { + const Type *EltTy = ATy->getElementType(); + uint64_t EltSize = TLI.getTargetData()->getABITypeSize(EltTy); + for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) + ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets, + StartingOffset + i * EltSize); + return; + } + // Base case: we can get an MVT for this LLVM IR type. + ValueVTs.push_back(TLI.getValueType(Ty)); + if (Offsets) + Offsets->push_back(StartingOffset); +} + +namespace { + /// RegsForValue - This struct represents the registers (physical or virtual) + /// that a particular set of values is assigned, and the type information about + /// the value. The most common situation is to represent one value at a time, + /// but struct or array values are handled element-wise as multiple values. + /// The splitting of aggregates is performed recursively, so that we never + /// have aggregate-typed registers. The values at this point do not necessarily + /// have legal types, so each value may require one or more registers of some + /// legal type. + /// + struct VISIBILITY_HIDDEN RegsForValue { + /// TLI - The TargetLowering object. + /// + const TargetLowering *TLI; + + /// ValueVTs - The value types of the values, which may not be legal, and + /// may need be promoted or synthesized from one or more registers. + /// + SmallVector<MVT, 4> ValueVTs; + + /// RegVTs - The value types of the registers. This is the same size as + /// ValueVTs and it records, for each value, what the type of the assigned + /// register or registers are. (Individual values are never synthesized + /// from more than one type of register.) + /// + /// With virtual registers, the contents of RegVTs is redundant with TLI's + /// getRegisterType member function, however when with physical registers + /// it is necessary to have a separate record of the types. + /// + SmallVector<MVT, 4> RegVTs; + + /// Regs - This list holds the registers assigned to the values. + /// Each legal or promoted value requires one register, and each + /// expanded value requires multiple registers. + /// + SmallVector<unsigned, 4> Regs; + + RegsForValue() : TLI(0) {} + + RegsForValue(const TargetLowering &tli, + const SmallVector<unsigned, 4> ®s, + MVT regvt, MVT valuevt) + : TLI(&tli), ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} + RegsForValue(const TargetLowering &tli, + const SmallVector<unsigned, 4> ®s, + const SmallVector<MVT, 4> ®vts, + const SmallVector<MVT, 4> &valuevts) + : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {} + RegsForValue(const TargetLowering &tli, + unsigned Reg, const Type *Ty) : TLI(&tli) { + ComputeValueVTs(tli, Ty, ValueVTs); + + for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { + MVT ValueVT = ValueVTs[Value]; + unsigned NumRegs = TLI->getNumRegisters(ValueVT); + MVT RegisterVT = TLI->getRegisterType(ValueVT); + for (unsigned i = 0; i != NumRegs; ++i) + Regs.push_back(Reg + i); + RegVTs.push_back(RegisterVT); + Reg += NumRegs; + } + } + + /// append - Add the specified values to this one. + void append(const RegsForValue &RHS) { + TLI = RHS.TLI; + ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); + RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); + Regs.append(RHS.Regs.begin(), RHS.Regs.end()); + } + + + /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from + /// this value and returns the result as a ValueVTs value. This uses + /// Chain/Flag as the input and updates them for the output Chain/Flag. + /// If the Flag pointer is NULL, no flag is used. + SDValue getCopyFromRegs(SelectionDAG &DAG, + SDValue &Chain, SDValue *Flag) const; + + /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the + /// specified value into the registers specified by this object. This uses + /// Chain/Flag as the input and updates them for the output Chain/Flag. + /// If the Flag pointer is NULL, no flag is used. + void getCopyToRegs(SDValue Val, SelectionDAG &DAG, + SDValue &Chain, SDValue *Flag) const; + + /// AddInlineAsmOperands - Add this value to the specified inlineasm node + /// operand list. This adds the code marker and includes the number of + /// values added into it. + void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG, + std::vector<SDValue> &Ops) const; + }; +} + +/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by +/// PHI nodes or outside of the basic block that defines it, or used by a +/// switch or atomic instruction, which may expand to multiple basic blocks. +static bool isUsedOutsideOfDefiningBlock(Instruction *I) { + if (isa<PHINode>(I)) return true; + BasicBlock *BB = I->getParent(); + for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) + if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) || + // FIXME: Remove switchinst special case. + isa<SwitchInst>(*UI)) + return true; + return false; +} + +/// isOnlyUsedInEntryBlock - If the specified argument is only used in the +/// entry block, return true. This includes arguments used by switches, since +/// the switch may expand into multiple basic blocks. +static bool isOnlyUsedInEntryBlock(Argument *A, bool EnableFastISel) { + // With FastISel active, we may be splitting blocks, so force creation + // of virtual registers for all non-dead arguments. + if (EnableFastISel) + return A->use_empty(); + + BasicBlock *Entry = A->getParent()->begin(); + for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI) + if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI)) + return false; // Use not in entry block. + return true; +} + +FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli) + : TLI(tli) { +} + +void FunctionLoweringInfo::set(Function &fn, MachineFunction &mf, + bool EnableFastISel) { + Fn = &fn; + MF = &mf; + RegInfo = &MF->getRegInfo(); + + // Create a vreg for each argument register that is not dead and is used + // outside of the entry block for the function. + for (Function::arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end(); + AI != E; ++AI) + if (!isOnlyUsedInEntryBlock(AI, EnableFastISel)) + InitializeRegForValue(AI); + + // Initialize the mapping of values to registers. This is only set up for + // instruction values that are used outside of the block that defines + // them. + Function::iterator BB = Fn->begin(), EB = Fn->end(); + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) + if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) + if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) { + const Type *Ty = AI->getAllocatedType(); + uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty); + unsigned Align = + std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), + AI->getAlignment()); + + TySize *= CUI->getZExtValue(); // Get total allocated size. + if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. + StaticAllocaMap[AI] = + MF->getFrameInfo()->CreateStackObject(TySize, Align); + } + + for (; BB != EB; ++BB) + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) + if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I)) + if (!isa<AllocaInst>(I) || + !StaticAllocaMap.count(cast<AllocaInst>(I))) + InitializeRegForValue(I); + + // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This + // also creates the initial PHI MachineInstrs, though none of the input + // operands are populated. + for (BB = Fn->begin(), EB = Fn->end(); BB != EB; ++BB) { + MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB); + MBBMap[BB] = MBB; + MF->push_back(MBB); + + // Create Machine PHI nodes for LLVM PHI nodes, lowering them as + // appropriate. + PHINode *PN; + for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){ + if (PN->use_empty()) continue; + + unsigned PHIReg = ValueMap[PN]; + assert(PHIReg && "PHI node does not have an assigned virtual register!"); + + SmallVector<MVT, 4> ValueVTs; + ComputeValueVTs(TLI, PN->getType(), ValueVTs); + for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { + MVT VT = ValueVTs[vti]; + unsigned NumRegisters = TLI.getNumRegisters(VT); + const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo(); + for (unsigned i = 0; i != NumRegisters; ++i) + BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i); + PHIReg += NumRegisters; + } + } + } +} + +unsigned FunctionLoweringInfo::MakeReg(MVT VT) { + return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT)); +} + +/// CreateRegForValue - Allocate the appropriate number of virtual registers of +/// the correctly promoted or expanded types. Assign these registers +/// consecutive vreg numbers and return the first assigned number. +/// +/// In the case that the given value has struct or array type, this function +/// will assign registers for each member or element. +/// +unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) { + SmallVector<MVT, 4> ValueVTs; + ComputeValueVTs(TLI, V->getType(), ValueVTs); + + unsigned FirstReg = 0; + for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { + MVT ValueVT = ValueVTs[Value]; + MVT RegisterVT = TLI.getRegisterType(ValueVT); + + unsigned NumRegs = TLI.getNumRegisters(ValueVT); + for (unsigned i = 0; i != NumRegs; ++i) { + unsigned R = MakeReg(RegisterVT); + if (!FirstReg) FirstReg = R; + } + } + return FirstReg; +} + +/// getCopyFromParts - Create a value that contains the specified legal parts +/// combined into the value they represent. If the parts combine to a type +/// larger then ValueVT then AssertOp can be used to specify whether the extra +/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT +/// (ISD::AssertSext). +static SDValue getCopyFromParts(SelectionDAG &DAG, + const SDValue *Parts, + unsigned NumParts, + MVT PartVT, + MVT ValueVT, + ISD::NodeType AssertOp = ISD::DELETED_NODE) { + assert(NumParts > 0 && "No parts to assemble!"); + TargetLowering &TLI = DAG.getTargetLoweringInfo(); + SDValue Val = Parts[0]; + + if (NumParts > 1) { + // Assemble the value from multiple parts. + if (!ValueVT.isVector()) { + unsigned PartBits = PartVT.getSizeInBits(); + unsigned ValueBits = ValueVT.getSizeInBits(); + + // Assemble the power of 2 part. + unsigned RoundParts = NumParts & (NumParts - 1) ? + 1 << Log2_32(NumParts) : NumParts; + unsigned RoundBits = PartBits * RoundParts; + MVT RoundVT = RoundBits == ValueBits ? + ValueVT : MVT::getIntegerVT(RoundBits); + SDValue Lo, Hi; + + if (RoundParts > 2) { + MVT HalfVT = MVT::getIntegerVT(RoundBits/2); + Lo = getCopyFromParts(DAG, Parts, RoundParts/2, PartVT, HalfVT); + Hi = getCopyFromParts(DAG, Parts+RoundParts/2, RoundParts/2, + PartVT, HalfVT); + } else { + Lo = Parts[0]; + Hi = Parts[1]; + } + if (TLI.isBigEndian()) + std::swap(Lo, Hi); + Val = DAG.getNode(ISD::BUILD_PAIR, RoundVT, Lo, Hi); + + if (RoundParts < NumParts) { + // Assemble the trailing non-power-of-2 part. + unsigned OddParts = NumParts - RoundParts; + MVT OddVT = MVT::getIntegerVT(OddParts * PartBits); + Hi = getCopyFromParts(DAG, Parts+RoundParts, OddParts, PartVT, OddVT); + + // Combine the round and odd parts. + Lo = Val; + if (TLI.isBigEndian()) + std::swap(Lo, Hi); + MVT TotalVT = MVT::getIntegerVT(NumParts * PartBits); + Hi = DAG.getNode(ISD::ANY_EXTEND, TotalVT, Hi); + Hi = DAG.getNode(ISD::SHL, TotalVT, Hi, + DAG.getConstant(Lo.getValueType().getSizeInBits(), + TLI.getShiftAmountTy())); + Lo = DAG.getNode(ISD::ZERO_EXTEND, TotalVT, Lo); + Val = DAG.getNode(ISD::OR, TotalVT, Lo, Hi); + } + } else { + // Handle a multi-element vector. + MVT IntermediateVT, RegisterVT; + unsigned NumIntermediates; + unsigned NumRegs = + TLI.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates, + RegisterVT); + assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); + NumParts = NumRegs; // Silence a compiler warning. + assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); + assert(RegisterVT == Parts[0].getValueType() && + "Part type doesn't match part!"); + + // Assemble the parts into intermediate operands. + SmallVector<SDValue, 8> Ops(NumIntermediates); + if (NumIntermediates == NumParts) { + // If the register was not expanded, truncate or copy the value, + // as appropriate. + for (unsigned i = 0; i != NumParts; ++i) + Ops[i] = getCopyFromParts(DAG, &Parts[i], 1, + PartVT, IntermediateVT); + } else if (NumParts > 0) { + // If the intermediate type was expanded, build the intermediate operands + // from the parts. + assert(NumParts % NumIntermediates == 0 && + "Must expand into a divisible number of parts!"); + unsigned Factor = NumParts / NumIntermediates; + for (unsigned i = 0; i != NumIntermediates; ++i) + Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor, + PartVT, IntermediateVT); + } + + // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate + // operands. + Val = DAG.getNode(IntermediateVT.isVector() ? + ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, + ValueVT, &Ops[0], NumIntermediates); + } + } + + // There is now one part, held in Val. Correct it to match ValueVT. + PartVT = Val.getValueType(); + + if (PartVT == ValueVT) + return Val; + + if (PartVT.isVector()) { + assert(ValueVT.isVector() && "Unknown vector conversion!"); + return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val); + } + + if (ValueVT.isVector()) { + assert(ValueVT.getVectorElementType() == PartVT && + ValueVT.getVectorNumElements() == 1 && + "Only trivial scalar-to-vector conversions should get here!"); + return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val); + } + + if (PartVT.isInteger() && + ValueVT.isInteger()) { + if (ValueVT.bitsLT(PartVT)) { + // For a truncate, see if we have any information to + // indicate whether the truncated bits will always be + // zero or sign-extension. + if (AssertOp != ISD::DELETED_NODE) + Val = DAG.getNode(AssertOp, PartVT, Val, + DAG.getValueType(ValueVT)); + return DAG.getNode(ISD::TRUNCATE, ValueVT, Val); + } else { + return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val); + } + } + + if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { + if (ValueVT.bitsLT(Val.getValueType())) + // FP_ROUND's are always exact here. + return DAG.getNode(ISD::FP_ROUND, ValueVT, Val, + DAG.getIntPtrConstant(1)); + return DAG.getNode(ISD::FP_EXTEND, ValueVT, Val); + } + + if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) + return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val); + + assert(0 && "Unknown mismatch!"); + return SDValue(); +} + +/// getCopyToParts - Create a series of nodes that contain the specified value +/// split into legal parts. If the parts contain more bits than Val, then, for +/// integers, ExtendKind can be used to specify how to generate the extra bits. +static void getCopyToParts(SelectionDAG &DAG, + SDValue Val, + SDValue *Parts, + unsigned NumParts, + MVT PartVT, + ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { + TargetLowering &TLI = DAG.getTargetLoweringInfo(); + MVT PtrVT = TLI.getPointerTy(); + MVT ValueVT = Val.getValueType(); + unsigned PartBits = PartVT.getSizeInBits(); + assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); + + if (!NumParts) + return; + + if (!ValueVT.isVector()) { + if (PartVT == ValueVT) { + assert(NumParts == 1 && "No-op copy with multiple parts!"); + Parts[0] = Val; + return; + } + + if (NumParts * PartBits > ValueVT.getSizeInBits()) { + // If the parts cover more bits than the value has, promote the value. + if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { + assert(NumParts == 1 && "Do not know what to promote to!"); + Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val); + } else if (PartVT.isInteger() && ValueVT.isInteger()) { + ValueVT = MVT::getIntegerVT(NumParts * PartBits); + Val = DAG.getNode(ExtendKind, ValueVT, Val); + } else { + assert(0 && "Unknown mismatch!"); + } + } else if (PartBits == ValueVT.getSizeInBits()) { + // Different types of the same size. + assert(NumParts == 1 && PartVT != ValueVT); + Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val); + } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { + // If the parts cover less bits than value has, truncate the value. + if (PartVT.isInteger() && ValueVT.isInteger()) { + ValueVT = MVT::getIntegerVT(NumParts * PartBits); + Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val); + } else { + assert(0 && "Unknown mismatch!"); + } + } + + // The value may have changed - recompute ValueVT. + ValueVT = Val.getValueType(); + assert(NumParts * PartBits == ValueVT.getSizeInBits() && + "Failed to tile the value with PartVT!"); + + if (NumParts == 1) { + assert(PartVT == ValueVT && "Type conversion failed!"); + Parts[0] = Val; + return; + } + + // Expand the value into multiple parts. + if (NumParts & (NumParts - 1)) { + // The number of parts is not a power of 2. Split off and copy the tail. + assert(PartVT.isInteger() && ValueVT.isInteger() && + "Do not know what to expand to!"); + unsigned RoundParts = 1 << Log2_32(NumParts); + unsigned RoundBits = RoundParts * PartBits; + unsigned OddParts = NumParts - RoundParts; + SDValue OddVal = DAG.getNode(ISD::SRL, ValueVT, Val, + DAG.getConstant(RoundBits, + TLI.getShiftAmountTy())); + getCopyToParts(DAG, OddVal, Parts + RoundParts, OddParts, PartVT); + if (TLI.isBigEndian()) + // The odd parts were reversed by getCopyToParts - unreverse them. + std::reverse(Parts + RoundParts, Parts + NumParts); + NumParts = RoundParts; + ValueVT = MVT::getIntegerVT(NumParts * PartBits); + Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val); + } + + // The number of parts is a power of 2. Repeatedly bisect the value using + // EXTRACT_ELEMENT. + Parts[0] = DAG.getNode(ISD::BIT_CONVERT, + MVT::getIntegerVT(ValueVT.getSizeInBits()), + Val); + for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { + for (unsigned i = 0; i < NumParts; i += StepSize) { + unsigned ThisBits = StepSize * PartBits / 2; + MVT ThisVT = MVT::getIntegerVT (ThisBits); + SDValue &Part0 = Parts[i]; + SDValue &Part1 = Parts[i+StepSize/2]; + + Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0, + DAG.getConstant(1, PtrVT)); + Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0, + DAG.getConstant(0, PtrVT)); + + if (ThisBits == PartBits && ThisVT != PartVT) { + Part0 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part0); + Part1 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part1); + } + } + } + + if (TLI.isBigEndian()) + std::reverse(Parts, Parts + NumParts); + + return; + } + + // Vector ValueVT. + if (NumParts == 1) { + if (PartVT != ValueVT) { + if (PartVT.isVector()) { + Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val); + } else { + assert(ValueVT.getVectorElementType() == PartVT && + ValueVT.getVectorNumElements() == 1 && + "Only trivial vector-to-scalar conversions should get here!"); + Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val, + DAG.getConstant(0, PtrVT)); + } + } + + Parts[0] = Val; + return; + } + + // Handle a multi-element vector. + MVT IntermediateVT, RegisterVT; + unsigned NumIntermediates; + unsigned NumRegs = + DAG.getTargetLoweringInfo() + .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates, + RegisterVT); + unsigned NumElements = ValueVT.getVectorNumElements(); + + assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); + NumParts = NumRegs; // Silence a compiler warning. + assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); + + // Split the vector into intermediate operands. + SmallVector<SDValue, 8> Ops(NumIntermediates); + for (unsigned i = 0; i != NumIntermediates; ++i) + if (IntermediateVT.isVector()) + Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, + IntermediateVT, Val, + DAG.getConstant(i * (NumElements / NumIntermediates), + PtrVT)); + else + Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, + IntermediateVT, Val, + DAG.getConstant(i, PtrVT)); + + // Split the intermediate operands into legal parts. + if (NumParts == NumIntermediates) { + // If the register was not expanded, promote or copy the value, + // as appropriate. + for (unsigned i = 0; i != NumParts; ++i) + getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT); + } else if (NumParts > 0) { + // If the intermediate type was expanded, split each the value into + // legal parts. + assert(NumParts % NumIntermediates == 0 && + "Must expand into a divisible number of parts!"); + unsigned Factor = NumParts / NumIntermediates; + for (unsigned i = 0; i != NumIntermediates; ++i) + getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT); + } +} + + +void SelectionDAGLowering::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { + AA = &aa; + GFI = gfi; + TD = DAG.getTarget().getTargetData(); +} + +/// clear - Clear out the curret SelectionDAG and the associated +/// state and prepare this SelectionDAGLowering object to be used +/// for a new block. This doesn't clear out information about +/// additional blocks that are needed to complete switch lowering +/// or PHI node updating; that information is cleared out as it is +/// consumed. +void SelectionDAGLowering::clear() { + NodeMap.clear(); + PendingLoads.clear(); + PendingExports.clear(); + DAG.clear(); +} + +/// getRoot - Return the current virtual root of the Selection DAG, +/// flushing any PendingLoad items. This must be done before emitting +/// a store or any other node that may need to be ordered after any +/// prior load instructions. +/// +SDValue SelectionDAGLowering::getRoot() { + if (PendingLoads.empty()) + return DAG.getRoot(); + + if (PendingLoads.size() == 1) { + SDValue Root = PendingLoads[0]; + DAG.setRoot(Root); + PendingLoads.clear(); + return Root; + } + + // Otherwise, we have to make a token factor node. + SDValue Root = DAG.getNode(ISD::TokenFactor, MVT::Other, + &PendingLoads[0], PendingLoads.size()); + PendingLoads.clear(); + DAG.setRoot(Root); + return Root; +} + +/// getControlRoot - Similar to getRoot, but instead of flushing all the +/// PendingLoad items, flush all the PendingExports items. It is necessary +/// to do this before emitting a terminator instruction. +/// +SDValue SelectionDAGLowering::getControlRoot() { + SDValue Root = DAG.getRoot(); + + if (PendingExports.empty()) + return Root; + + // Turn all of the CopyToReg chains into one factored node. + if (Root.getOpcode() != ISD::EntryToken) { + unsigned i = 0, e = PendingExports.size(); + for (; i != e; ++i) { + assert(PendingExports[i].getNode()->getNumOperands() > 1); + if (PendingExports[i].getNode()->getOperand(0) == Root) + break; // Don't add the root if we already indirectly depend on it. + } + + if (i == e) + PendingExports.push_back(Root); + } + + Root = DAG.getNode(ISD::TokenFactor, MVT::Other, + &PendingExports[0], + PendingExports.size()); + PendingExports.clear(); + DAG.setRoot(Root); + return Root; +} + +void SelectionDAGLowering::visit(Instruction &I) { + visit(I.getOpcode(), I); +} + +void SelectionDAGLowering::visit(unsigned Opcode, User &I) { + // Note: this doesn't use InstVisitor, because it has to work with + // ConstantExpr's in addition to instructions. + switch (Opcode) { + default: assert(0 && "Unknown instruction type encountered!"); + abort(); + // Build the switch statement using the Instruction.def file. +#define HANDLE_INST(NUM, OPCODE, CLASS) \ + case Instruction::OPCODE:return visit##OPCODE((CLASS&)I); +#include "llvm/Instruction.def" + } +} + +void SelectionDAGLowering::visitAdd(User &I) { + if (I.getType()->isFPOrFPVector()) + visitBinary(I, ISD::FADD); + else + visitBinary(I, ISD::ADD); +} + +void SelectionDAGLowering::visitMul(User &I) { + if (I.getType()->isFPOrFPVector()) + visitBinary(I, ISD::FMUL); + else + visitBinary(I, ISD::MUL); +} + +SDValue SelectionDAGLowering::getValue(const Value *V) { + SDValue &N = NodeMap[V]; + if (N.getNode()) return N; + + if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) { + MVT VT = TLI.getValueType(V->getType(), true); + + if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) + return N = DAG.getConstant(CI->getValue(), VT); + + if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) + return N = DAG.getGlobalAddress(GV, VT); + + if (isa<ConstantPointerNull>(C)) + return N = DAG.getConstant(0, TLI.getPointerTy()); + + if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) + return N = DAG.getConstantFP(CFP->getValueAPF(), VT); + + if (isa<UndefValue>(C) && !isa<VectorType>(V->getType()) && + !V->getType()->isAggregateType()) + return N = DAG.getNode(ISD::UNDEF, VT); + + if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { + visit(CE->getOpcode(), *CE); + SDValue N1 = NodeMap[V]; + assert(N1.getNode() && "visit didn't populate the ValueMap!"); + return N1; + } + + if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { + SmallVector<SDValue, 4> Constants; + for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); + OI != OE; ++OI) { + SDNode *Val = getValue(*OI).getNode(); + for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) + Constants.push_back(SDValue(Val, i)); + } + return DAG.getMergeValues(&Constants[0], Constants.size()); + } + + if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType())) { + assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && + "Unknown struct or array constant!"); + + SmallVector<MVT, 4> ValueVTs; + ComputeValueVTs(TLI, C->getType(), ValueVTs); + unsigned NumElts = ValueVTs.size(); + if (NumElts == 0) + return SDValue(); // empty struct + SmallVector<SDValue, 4> Constants(NumElts); + for (unsigned i = 0; i != NumElts; ++i) { + MVT EltVT = ValueVTs[i]; + if (isa<UndefValue>(C)) + Constants[i] = DAG.getNode(ISD::UNDEF, EltVT); + else if (EltVT.isFloatingPoint()) + Constants[i] = DAG.getConstantFP(0, EltVT); + else + Constants[i] = DAG.getConstant(0, EltVT); + } + return DAG.getMergeValues(&Constants[0], NumElts); + } + + const VectorType *VecTy = cast<VectorType>(V->getType()); + unsigned NumElements = VecTy->getNumElements(); + + // Now that we know the number and type of the elements, get that number of + // elements into the Ops array based on what kind of constant it is. + SmallVector<SDValue, 16> Ops; + if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) { + for (unsigned i = 0; i != NumElements; ++i) + Ops.push_back(getValue(CP->getOperand(i))); + } else { + assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && + "Unknown vector constant!"); + MVT EltVT = TLI.getValueType(VecTy->getElementType()); + + SDValue Op; + if (isa<UndefValue>(C)) + Op = DAG.getNode(ISD::UNDEF, EltVT); + else if (EltVT.isFloatingPoint()) + Op = DAG.getConstantFP(0, EltVT); + else + Op = DAG.getConstant(0, EltVT); + Ops.assign(NumElements, Op); + } + + // Create a BUILD_VECTOR node. + return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); + } + + // If this is a static alloca, generate it as the frameindex instead of + // computation. + if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { + DenseMap<const AllocaInst*, int>::iterator SI = + FuncInfo.StaticAllocaMap.find(AI); + if (SI != FuncInfo.StaticAllocaMap.end()) + return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); + } + + unsigned InReg = FuncInfo.ValueMap[V]; + assert(InReg && "Value not in map!"); + + RegsForValue RFV(TLI, InReg, V->getType()); + SDValue Chain = DAG.getEntryNode(); + return RFV.getCopyFromRegs(DAG, Chain, NULL); +} + + +void SelectionDAGLowering::visitRet(ReturnInst &I) { + if (I.getNumOperands() == 0) { + DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getControlRoot())); + return; + } + + SmallVector<SDValue, 8> NewValues; + NewValues.push_back(getControlRoot()); + for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { + SDValue RetOp = getValue(I.getOperand(i)); + + SmallVector<MVT, 4> ValueVTs; + ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs); + for (unsigned j = 0, f = ValueVTs.size(); j != f; ++j) { + MVT VT = ValueVTs[j]; + + // FIXME: C calling convention requires the return type to be promoted to + // at least 32-bit. But this is not necessary for non-C calling conventions. + if (VT.isInteger()) { + MVT MinVT = TLI.getRegisterType(MVT::i32); + if (VT.bitsLT(MinVT)) + VT = MinVT; + } + + unsigned NumParts = TLI.getNumRegisters(VT); + MVT PartVT = TLI.getRegisterType(VT); + SmallVector<SDValue, 4> Parts(NumParts); + ISD::NodeType ExtendKind = ISD::ANY_EXTEND; + + const Function *F = I.getParent()->getParent(); + if (F->paramHasAttr(0, ParamAttr::SExt)) + ExtendKind = ISD::SIGN_EXTEND; + else if (F->paramHasAttr(0, ParamAttr::ZExt)) + ExtendKind = ISD::ZERO_EXTEND; + + getCopyToParts(DAG, SDValue(RetOp.getNode(), RetOp.getResNo() + j), + &Parts[0], NumParts, PartVT, ExtendKind); + + for (unsigned i = 0; i < NumParts; ++i) { + NewValues.push_back(Parts[i]); + NewValues.push_back(DAG.getArgFlags(ISD::ArgFlagsTy())); + } + } + } + DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, + &NewValues[0], NewValues.size())); +} + +/// ExportFromCurrentBlock - If this condition isn't known to be exported from +/// the current basic block, add it to ValueMap now so that we'll get a +/// CopyTo/FromReg. +void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) { + // No need to export constants. + if (!isa<Instruction>(V) && !isa<Argument>(V)) return; + + // Already exported? + if (FuncInfo.isExportedInst(V)) return; + + unsigned Reg = FuncInfo.InitializeRegForValue(V); + CopyValueToVirtualRegister(V, Reg); +} + +bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V, + const BasicBlock *FromBB) { + // The operands of the setcc have to be in this block. We don't know + // how to export them from some other block. + if (Instruction *VI = dyn_cast<Instruction>(V)) { + // Can export from current BB. + if (VI->getParent() == FromBB) + return true; + + // Is already exported, noop. + return FuncInfo.isExportedInst(V); + } + + // If this is an argument, we can export it if the BB is the entry block or + // if it is already exported. + if (isa<Argument>(V)) { + if (FromBB == &FromBB->getParent()->getEntryBlock()) + return true; + + // Otherwise, can only export this if it is already exported. + return FuncInfo.isExportedInst(V); + } + + // Otherwise, constants can always be exported. + return true; +} + +static bool InBlock(const Value *V, const BasicBlock *BB) { + if (const Instruction *I = dyn_cast<Instruction>(V)) + return I->getParent() == BB; + return true; +} + +/// FindMergedConditions - If Cond is an expression like +void SelectionDAGLowering::FindMergedConditions(Value *Cond, + MachineBasicBlock *TBB, + MachineBasicBlock *FBB, + MachineBasicBlock *CurBB, + unsigned Opc) { + // If this node is not part of the or/and tree, emit it as a branch. + Instruction *BOp = dyn_cast<Instruction>(Cond); + + if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || + (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || + BOp->getParent() != CurBB->getBasicBlock() || + !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || + !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { + const BasicBlock *BB = CurBB->getBasicBlock(); + + // If the leaf of the tree is a comparison, merge the condition into + // the caseblock. + if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) && + // The operands of the cmp have to be in this block. We don't know + // how to export them from some other block. If this is the first block + // of the sequence, no exporting is needed. + (CurBB == CurMBB || + (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && + isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) { + BOp = cast<Instruction>(Cond); + ISD::CondCode Condition; + if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { + switch (IC->getPredicate()) { + default: assert(0 && "Unknown icmp predicate opcode!"); + case ICmpInst::ICMP_EQ: Condition = ISD::SETEQ; break; + case ICmpInst::ICMP_NE: Condition = ISD::SETNE; break; + case ICmpInst::ICMP_SLE: Condition = ISD::SETLE; break; + case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break; + case ICmpInst::ICMP_SGE: Condition = ISD::SETGE; break; + case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break; + case ICmpInst::ICMP_SLT: Condition = ISD::SETLT; break; + case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break; + case ICmpInst::ICMP_SGT: Condition = ISD::SETGT; break; + case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break; + } + } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { + ISD::CondCode FPC, FOC; + switch (FC->getPredicate()) { + default: assert(0 && "Unknown fcmp predicate opcode!"); + case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; + case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; + case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break; + case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break; + case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break; + case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break; + case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break; + case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break; + case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break; + case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; + case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break; + case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break; + case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break; + case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break; + case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break; + case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break; + } + if (FiniteOnlyFPMath()) + Condition = FOC; + else + Condition = FPC; + } else { + Condition = ISD::SETEQ; // silence warning. + assert(0 && "Unknown compare instruction"); + } + + CaseBlock CB(Condition, BOp->getOperand(0), + BOp->getOperand(1), NULL, TBB, FBB, CurBB); + SwitchCases.push_back(CB); + return; + } + + // Create a CaseBlock record representing this branch. + CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(), + NULL, TBB, FBB, CurBB); + SwitchCases.push_back(CB); + return; + } + + + // Create TmpBB after CurBB. + MachineFunction::iterator BBI = CurBB; + MachineFunction &MF = DAG.getMachineFunction(); + MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); + CurBB->getParent()->insert(++BBI, TmpBB); + + if (Opc == Instruction::Or) { + // Codegen X | Y as: + // jmp_if_X TBB + // jmp TmpBB + // TmpBB: + // jmp_if_Y TBB + // jmp FBB + // + + // Emit the LHS condition. + FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc); + + // Emit the RHS condition into TmpBB. + FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); + } else { + assert(Opc == Instruction::And && "Unknown merge op!"); + // Codegen X & Y as: + // jmp_if_X TmpBB + // jmp FBB + // TmpBB: + // jmp_if_Y TBB + // jmp FBB + // + // This requires creation of TmpBB after CurBB. + + // Emit the LHS condition. + FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc); + + // Emit the RHS condition into TmpBB. + FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); + } +} + +/// If the set of cases should be emitted as a series of branches, return true. +/// If we should emit this as a bunch of and/or'd together conditions, return +/// false. +bool +SelectionDAGLowering::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ + if (Cases.size() != 2) return true; + + // If this is two comparisons of the same values or'd or and'd together, they + // will get folded into a single comparison, so don't emit two blocks. + if ((Cases[0].CmpLHS == Cases[1].CmpLHS && + Cases[0].CmpRHS == Cases[1].CmpRHS) || + (Cases[0].CmpRHS == Cases[1].CmpLHS && + Cases[0].CmpLHS == Cases[1].CmpRHS)) { + return false; + } + + return true; +} + +void SelectionDAGLowering::visitBr(BranchInst &I) { + // Update machine-CFG edges. + MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; + + // Figure out which block is immediately after the current one. + MachineBasicBlock *NextBlock = 0; + MachineFunction::iterator BBI = CurMBB; + if (++BBI != CurMBB->getParent()->end()) + NextBlock = BBI; + + if (I.isUnconditional()) { + // Update machine-CFG edges. + CurMBB->addSuccessor(Succ0MBB); + + // If this is not a fall-through branch, emit the branch. + if (Succ0MBB != NextBlock) + DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(), + DAG.getBasicBlock(Succ0MBB))); + return; + } + + // If this condition is one of the special cases we handle, do special stuff + // now. + Value *CondVal = I.getCondition(); + MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; + + // If this is a series of conditions that are or'd or and'd together, emit + // this as a sequence of branches instead of setcc's with and/or operations. + // For example, instead of something like: + // cmp A, B + // C = seteq + // cmp D, E + // F = setle + // or C, F + // jnz foo + // Emit: + // cmp A, B + // je foo + // cmp D, E + // jle foo + // + if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { + if (BOp->hasOneUse() && + (BOp->getOpcode() == Instruction::And || + BOp->getOpcode() == Instruction::Or)) { + FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode()); + // If the compares in later blocks need to use values not currently + // exported from this block, export them now. This block should always + // be the first entry. + assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!"); + + // Allow some cases to be rejected. + if (ShouldEmitAsBranches(SwitchCases)) { + for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { + ExportFromCurrentBlock(SwitchCases[i].CmpLHS); + ExportFromCurrentBlock(SwitchCases[i].CmpRHS); + } + + // Emit the branch for this block. + visitSwitchCase(SwitchCases[0]); + SwitchCases.erase(SwitchCases.begin()); + return; + } + + // Okay, we decided not to do this, remove any inserted MBB's and clear + // SwitchCases. + for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) + CurMBB->getParent()->erase(SwitchCases[i].ThisBB); + + SwitchCases.clear(); + } + } + + // Create a CaseBlock record representing this branch. + CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(), + NULL, Succ0MBB, Succ1MBB, CurMBB); + // Use visitSwitchCase to actually insert the fast branch sequence for this + // cond branch. + visitSwitchCase(CB); +} + +/// visitSwitchCase - Emits the necessary code to represent a single node in +/// the binary search tree resulting from lowering a switch instruction. +void SelectionDAGLowering::visitSwitchCase(CaseBlock &CB) { + SDValue Cond; + SDValue CondLHS = getValue(CB.CmpLHS); + + // Build the setcc now. + if (CB.CmpMHS == NULL) { + // Fold "(X == true)" to X and "(X == false)" to !X to + // handle common cases produced by branch lowering. + if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ) + Cond = CondLHS; + else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) { + SDValue True = DAG.getConstant(1, CondLHS.getValueType()); + Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True); + } else + Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); + } else { + assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); + + uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue(); + uint64_t High = cast<ConstantInt>(CB.CmpRHS)->getSExtValue(); + + SDValue CmpOp = getValue(CB.CmpMHS); + MVT VT = CmpOp.getValueType(); + + if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { + Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE); + } else { + SDValue SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT)); + Cond = DAG.getSetCC(MVT::i1, SUB, + DAG.getConstant(High-Low, VT), ISD::SETULE); + } + } + + // Update successor info + CurMBB->addSuccessor(CB.TrueBB); + CurMBB->addSuccessor(CB.FalseBB); + + // Set NextBlock to be the MBB immediately after the current one, if any. + // This is used to avoid emitting unnecessary branches to the next block. + MachineBasicBlock *NextBlock = 0; + MachineFunction::iterator BBI = CurMBB; + if (++BBI != CurMBB->getParent()->end()) + NextBlock = BBI; + + // If the lhs block is the next block, invert the condition so that we can + // fall through to the lhs instead of the rhs block. + if (CB.TrueBB == NextBlock) { + std::swap(CB.TrueBB, CB.FalseBB); + SDValue True = DAG.getConstant(1, Cond.getValueType()); + Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True); + } + SDValue BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(), Cond, + DAG.getBasicBlock(CB.TrueBB)); + + // If the branch was constant folded, fix up the CFG. + if (BrCond.getOpcode() == ISD::BR) { + CurMBB->removeSuccessor(CB.FalseBB); + DAG.setRoot(BrCond); + } else { + // Otherwise, go ahead and insert the false branch. + if (BrCond == getControlRoot()) + CurMBB->removeSuccessor(CB.TrueBB); + + if (CB.FalseBB == NextBlock) + DAG.setRoot(BrCond); + else + DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond, + DAG.getBasicBlock(CB.FalseBB))); + } +} + +/// visitJumpTable - Emit JumpTable node in the current MBB +void SelectionDAGLowering::visitJumpTable(JumpTable &JT) { + // Emit the code for the jump table + assert(JT.Reg != -1U && "Should lower JT Header first!"); + MVT PTy = TLI.getPointerTy(); + SDValue Index = DAG.getCopyFromReg(getControlRoot(), JT.Reg, PTy); + SDValue Table = DAG.getJumpTable(JT.JTI, PTy); + DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1), + Table, Index)); + return; +} + +/// visitJumpTableHeader - This function emits necessary code to produce index +/// in the JumpTable from switch case. +void SelectionDAGLowering::visitJumpTableHeader(JumpTable &JT, + JumpTableHeader &JTH) { + // Subtract the lowest switch case value from the value being switched on + // and conditional branch to default mbb if the result is greater than the + // difference between smallest and largest cases. + SDValue SwitchOp = getValue(JTH.SValue); + MVT VT = SwitchOp.getValueType(); + SDValue SUB = DAG.getNode(ISD::SUB, VT, SwitchOp, + DAG.getConstant(JTH.First, VT)); + + // The SDNode we just created, which holds the value being switched on + // minus the the smallest case value, needs to be copied to a virtual + // register so it can be used as an index into the jump table in a + // subsequent basic block. This value may be smaller or larger than the + // target's pointer type, and therefore require extension or truncating. + if (VT.bitsGT(TLI.getPointerTy())) + SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB); + else + SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB); + + unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy()); + SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), JumpTableReg, SwitchOp); + JT.Reg = JumpTableReg; + + // Emit the range check for the jump table, and branch to the default + // block for the switch statement if the value being switched on exceeds + // the largest case in the switch. + SDValue CMP = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB, + DAG.getConstant(JTH.Last-JTH.First,VT), + ISD::SETUGT); + + // Set NextBlock to be the MBB immediately after the current one, if any. + // This is used to avoid emitting unnecessary branches to the next block. + MachineBasicBlock *NextBlock = 0; + MachineFunction::iterator BBI = CurMBB; + if (++BBI != CurMBB->getParent()->end()) + NextBlock = BBI; + + SDValue BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP, + DAG.getBasicBlock(JT.Default)); + + if (JT.MBB == NextBlock) + DAG.setRoot(BrCond); + else + DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond, + DAG.getBasicBlock(JT.MBB))); + + return; +} + +/// visitBitTestHeader - This function emits necessary code to produce value +/// suitable for "bit tests" +void SelectionDAGLowering::visitBitTestHeader(BitTestBlock &B) { + // Subtract the minimum value + SDValue SwitchOp = getValue(B.SValue); + MVT VT = SwitchOp.getValueType(); + SDValue SUB = DAG.getNode(ISD::SUB, VT, SwitchOp, + DAG.getConstant(B.First, VT)); + + // Check range + SDValue RangeCmp = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB, + DAG.getConstant(B.Range, VT), + ISD::SETUGT); + + SDValue ShiftOp; + if (VT.bitsGT(TLI.getShiftAmountTy())) + ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB); + else + ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB); + + // Make desired shift + SDValue SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(), + DAG.getConstant(1, TLI.getPointerTy()), + ShiftOp); + + unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy()); + SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), SwitchReg, SwitchVal); + B.Reg = SwitchReg; + + // Set NextBlock to be the MBB immediately after the current one, if any. + // This is used to avoid emitting unnecessary branches to the next block. + MachineBasicBlock *NextBlock = 0; + MachineFunction::iterator BBI = CurMBB; + if (++BBI != CurMBB->getParent()->end()) + NextBlock = BBI; + + MachineBasicBlock* MBB = B.Cases[0].ThisBB; + + CurMBB->addSuccessor(B.Default); + CurMBB->addSuccessor(MBB); + + SDValue BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp, + DAG.getBasicBlock(B.Default)); + + if (MBB == NextBlock) + DAG.setRoot(BrRange); + else + DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo, + DAG.getBasicBlock(MBB))); + + return; +} + +/// visitBitTestCase - this function produces one "bit test" +void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB, + unsigned Reg, + BitTestCase &B) { + // Emit bit tests and jumps + SDValue SwitchVal = DAG.getCopyFromReg(getControlRoot(), Reg, + TLI.getPointerTy()); + + SDValue AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(), SwitchVal, + DAG.getConstant(B.Mask, TLI.getPointerTy())); + SDValue AndCmp = DAG.getSetCC(TLI.getSetCCResultType(AndOp), AndOp, + DAG.getConstant(0, TLI.getPointerTy()), + ISD::SETNE); + + CurMBB->addSuccessor(B.TargetBB); + CurMBB->addSuccessor(NextMBB); + + SDValue BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(), + AndCmp, DAG.getBasicBlock(B.TargetBB)); + + // Set NextBlock to be the MBB immediately after the current one, if any. + // This is used to avoid emitting unnecessary branches to the next block. + MachineBasicBlock *NextBlock = 0; + MachineFunction::iterator BBI = CurMBB; + if (++BBI != CurMBB->getParent()->end()) + NextBlock = BBI; + + if (NextMBB == NextBlock) + DAG.setRoot(BrAnd); + else + DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd, + DAG.getBasicBlock(NextMBB))); + + return; +} + +void SelectionDAGLowering::visitInvoke(InvokeInst &I) { + // Retrieve successors. + MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; + MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; + + if (isa<InlineAsm>(I.getCalledValue())) + visitInlineAsm(&I); + else + LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad); + + // If the value of the invoke is used outside of its defining block, make it + // available as a virtual register. + if (!I.use_empty()) { + DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I); + if (VMI != FuncInfo.ValueMap.end()) + CopyValueToVirtualRegister(&I, VMI->second); + } + + // Update successor info + CurMBB->addSuccessor(Return); + CurMBB->addSuccessor(LandingPad); + + // Drop into normal successor. + DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(), + DAG.getBasicBlock(Return))); +} + +void SelectionDAGLowering::visitUnwind(UnwindInst &I) { +} + +/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for +/// small case ranges). +bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR, + CaseRecVector& WorkList, + Value* SV, + MachineBasicBlock* Default) { + Case& BackCase = *(CR.Range.second-1); + + // Size is the number of Cases represented by this range. + unsigned Size = CR.Range.second - CR.Range.first; + if (Size > 3) + return false; + + // Get the MachineFunction which holds the current MBB. This is used when + // inserting any additional MBBs necessary to represent the switch. + MachineFunction *CurMF = CurMBB->getParent(); + + // Figure out which block is immediately after the current one. + MachineBasicBlock *NextBlock = 0; + MachineFunction::iterator BBI = CR.CaseBB; + + if (++BBI != CurMBB->getParent()->end()) + NextBlock = BBI; + + // TODO: If any two of the cases has the same destination, and if one value + // is the same as the other, but has one bit unset that the other has set, + // use bit manipulation to do two compares at once. For example: + // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" + + // Rearrange the case blocks so that the last one falls through if possible. + if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { + // The last case block won't fall through into 'NextBlock' if we emit the + // branches in this order. See if rearranging a case value would help. + for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { + if (I->BB == NextBlock) { + std::swap(*I, BackCase); + break; + } + } + } + + // Create a CaseBlock record representing a conditional branch to + // the Case's target mbb if the value being switched on SV is equal + // to C. + MachineBasicBlock *CurBlock = CR.CaseBB; + for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { + MachineBasicBlock *FallThrough; + if (I != E-1) { + FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); + CurMF->insert(BBI, FallThrough); + } else { + // If the last case doesn't match, go to the default block. + FallThrough = Default; + } + + Value *RHS, *LHS, *MHS; + ISD::CondCode CC; + if (I->High == I->Low) { + // This is just small small case range :) containing exactly 1 case + CC = ISD::SETEQ; + LHS = SV; RHS = I->High; MHS = NULL; + } else { + CC = ISD::SETLE; + LHS = I->Low; MHS = SV; RHS = I->High; + } + CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); + + // If emitting the first comparison, just call visitSwitchCase to emit the + // code into the current block. Otherwise, push the CaseBlock onto the + // vector to be later processed by SDISel, and insert the node's MBB + // before the next MBB. + if (CurBlock == CurMBB) + visitSwitchCase(CB); + else + SwitchCases.push_back(CB); + + CurBlock = FallThrough; + } + + return true; +} + +static inline bool areJTsAllowed(const TargetLowering &TLI) { + return !DisableJumpTables && + (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) || + TLI.isOperationLegal(ISD::BRIND, MVT::Other)); +} + +/// handleJTSwitchCase - Emit jumptable for current switch case range +bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR, + CaseRecVector& WorkList, + Value* SV, + MachineBasicBlock* Default) { + Case& FrontCase = *CR.Range.first; + Case& BackCase = *(CR.Range.second-1); + + int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue(); + int64_t Last = cast<ConstantInt>(BackCase.High)->getSExtValue(); + + uint64_t TSize = 0; + for (CaseItr I = CR.Range.first, E = CR.Range.second; + I!=E; ++I) + TSize += I->size(); + + if (!areJTsAllowed(TLI) || TSize <= 3) + return false; + + double Density = (double)TSize / (double)((Last - First) + 1ULL); + if (Density < 0.4) + return false; + + DOUT << "Lowering jump table\n" + << "First entry: " << First << ". Last entry: " << Last << "\n" + << "Size: " << TSize << ". Density: " << Density << "\n\n"; + + // Get the MachineFunction which holds the current MBB. This is used when + // inserting any additional MBBs necessary to represent the switch. + MachineFunction *CurMF = CurMBB->getParent(); + + // Figure out which block is immediately after the current one. + MachineBasicBlock *NextBlock = 0; + MachineFunction::iterator BBI = CR.CaseBB; + + if (++BBI != CurMBB->getParent()->end()) + NextBlock = BBI; + + const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); + + // Create a new basic block to hold the code for loading the address + // of the jump table, and jumping to it. Update successor information; + // we will either branch to the default case for the switch, or the jump + // table. + MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); + CurMF->insert(BBI, JumpTableBB); + CR.CaseBB->addSuccessor(Default); + CR.CaseBB->addSuccessor(JumpTableBB); + + // Build a vector of destination BBs, corresponding to each target + // of the jump table. If the value of the jump table slot corresponds to + // a case statement, push the case's BB onto the vector, otherwise, push + // the default BB. + std::vector<MachineBasicBlock*> DestBBs; + int64_t TEI = First; + for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { + int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue(); + int64_t High = cast<ConstantInt>(I->High)->getSExtValue(); + + if ((Low <= TEI) && (TEI <= High)) { + DestBBs.push_back(I->BB); + if (TEI==High) + ++I; + } else { + DestBBs.push_back(Default); + } + } + + // Update successor info. Add one edge to each unique successor. + BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); + for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), + E = DestBBs.end(); I != E; ++I) { + if (!SuccsHandled[(*I)->getNumber()]) { + SuccsHandled[(*I)->getNumber()] = true; + JumpTableBB->addSuccessor(*I); + } + } + + // Create a jump table index for this jump table, or return an existing + // one. + unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs); + + // Set the jump table information so that we can codegen it as a second + // MachineBasicBlock + JumpTable JT(-1U, JTI, JumpTableBB, Default); + JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB)); + if (CR.CaseBB == CurMBB) + visitJumpTableHeader(JT, JTH); + + JTCases.push_back(JumpTableBlock(JTH, JT)); + + return true; +} + +/// handleBTSplitSwitchCase - emit comparison and split binary search tree into +/// 2 subtrees. +bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR, + CaseRecVector& WorkList, + Value* SV, + MachineBasicBlock* Default) { + // Get the MachineFunction which holds the current MBB. This is used when + // inserting any additional MBBs necessary to represent the switch. + MachineFunction *CurMF = CurMBB->getParent(); + + // Figure out which block is immediately after the current one. + MachineBasicBlock *NextBlock = 0; + MachineFunction::iterator BBI = CR.CaseBB; + + if (++BBI != CurMBB->getParent()->end()) + NextBlock = BBI; + + Case& FrontCase = *CR.Range.first; + Case& BackCase = *(CR.Range.second-1); + const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); + + // Size is the number of Cases represented by this range. + unsigned Size = CR.Range.second - CR.Range.first; + + int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue(); + int64_t Last = cast<ConstantInt>(BackCase.High)->getSExtValue(); + double FMetric = 0; + CaseItr Pivot = CR.Range.first + Size/2; + + // Select optimal pivot, maximizing sum density of LHS and RHS. This will + // (heuristically) allow us to emit JumpTable's later. + uint64_t TSize = 0; + for (CaseItr I = CR.Range.first, E = CR.Range.second; + I!=E; ++I) + TSize += I->size(); + + uint64_t LSize = FrontCase.size(); + uint64_t RSize = TSize-LSize; + DOUT << "Selecting best pivot: \n" + << "First: " << First << ", Last: " << Last <<"\n" + << "LSize: " << LSize << ", RSize: " << RSize << "\n"; + for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; + J!=E; ++I, ++J) { + int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue(); + int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue(); + assert((RBegin-LEnd>=1) && "Invalid case distance"); + double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL); + double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL); + double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity); + // Should always split in some non-trivial place + DOUT <<"=>Step\n" + << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n" + << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n" + << "Metric: " << Metric << "\n"; + if (FMetric < Metric) { + Pivot = J; + FMetric = Metric; + DOUT << "Current metric set to: " << FMetric << "\n"; + } + + LSize += J->size(); + RSize -= J->size(); + } + if (areJTsAllowed(TLI)) { + // If our case is dense we *really* should handle it earlier! + assert((FMetric > 0) && "Should handle dense range earlier!"); + } else { + Pivot = CR.Range.first + Size/2; + } + + CaseRange LHSR(CR.Range.first, Pivot); + CaseRange RHSR(Pivot, CR.Range.second); + Constant *C = Pivot->Low; + MachineBasicBlock *FalseBB = 0, *TrueBB = 0; + + // We know that we branch to the LHS if the Value being switched on is + // less than the Pivot value, C. We use this to optimize our binary + // tree a bit, by recognizing that if SV is greater than or equal to the + // LHS's Case Value, and that Case Value is exactly one less than the + // Pivot's Value, then we can branch directly to the LHS's Target, + // rather than creating a leaf node for it. + if ((LHSR.second - LHSR.first) == 1 && + LHSR.first->High == CR.GE && + cast<ConstantInt>(C)->getSExtValue() == + (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) { + TrueBB = LHSR.first->BB; + } else { + TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); + CurMF->insert(BBI, TrueBB); + WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); + } + + // Similar to the optimization above, if the Value being switched on is + // known to be less than the Constant CR.LT, and the current Case Value + // is CR.LT - 1, then we can branch directly to the target block for + // the current Case Value, rather than emitting a RHS leaf node for it. + if ((RHSR.second - RHSR.first) == 1 && CR.LT && + cast<ConstantInt>(RHSR.first->Low)->getSExtValue() == + (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) { + FalseBB = RHSR.first->BB; + } else { + FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); + CurMF->insert(BBI, FalseBB); + WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); + } + + // Create a CaseBlock record representing a conditional branch to + // the LHS node if the value being switched on SV is less than C. + // Otherwise, branch to LHS. + CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); + + if (CR.CaseBB == CurMBB) + visitSwitchCase(CB); + else + SwitchCases.push_back(CB); + + return true; +} + +/// handleBitTestsSwitchCase - if current case range has few destination and +/// range span less, than machine word bitwidth, encode case range into series +/// of masks and emit bit tests with these masks. +bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR, + CaseRecVector& WorkList, + Value* SV, + MachineBasicBlock* Default){ + unsigned IntPtrBits = TLI.getPointerTy().getSizeInBits(); + + Case& FrontCase = *CR.Range.first; + Case& BackCase = *(CR.Range.second-1); + + // Get the MachineFunction which holds the current MBB. This is used when + // inserting any additional MBBs necessary to represent the switch. + MachineFunction *CurMF = CurMBB->getParent(); + + unsigned numCmps = 0; + for (CaseItr I = CR.Range.first, E = CR.Range.second; + I!=E; ++I) { + // Single case counts one, case range - two. + if (I->Low == I->High) + numCmps +=1; + else + numCmps +=2; + } + + // Count unique destinations + SmallSet<MachineBasicBlock*, 4> Dests; + for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { + Dests.insert(I->BB); + if (Dests.size() > 3) + // Don't bother the code below, if there are too much unique destinations + return false; + } + DOUT << "Total number of unique destinations: " << Dests.size() << "\n" + << "Total number of comparisons: " << numCmps << "\n"; + + // Compute span of values. + Constant* minValue = FrontCase.Low; + Constant* maxValue = BackCase.High; + uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() - + cast<ConstantInt>(minValue)->getSExtValue(); + DOUT << "Compare range: " << range << "\n" + << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n" + << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n"; + + if (range>=IntPtrBits || + (!(Dests.size() == 1 && numCmps >= 3) && + !(Dests.size() == 2 && numCmps >= 5) && + !(Dests.size() >= 3 && numCmps >= 6))) + return false; + + DOUT << "Emitting bit tests\n"; + int64_t lowBound = 0; + + // Optimize the case where all the case values fit in a + // word without having to subtract minValue. In this case, + // we can optimize away the subtraction. + if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 && + cast<ConstantInt>(maxValue)->getSExtValue() < IntPtrBits) { + range = cast<ConstantInt>(maxValue)->getSExtValue(); + } else { + lowBound = cast<ConstantInt>(minValue)->getSExtValue(); + } + + CaseBitsVector CasesBits; + unsigned i, count = 0; + + for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { + MachineBasicBlock* Dest = I->BB; + for (i = 0; i < count; ++i) + if (Dest == CasesBits[i].BB) + break; + + if (i == count) { + assert((count < 3) && "Too much destinations to test!"); + CasesBits.push_back(CaseBits(0, Dest, 0)); + count++; + } + + uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound; + uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound; + + for (uint64_t j = lo; j <= hi; j++) { + CasesBits[i].Mask |= 1ULL << j; + CasesBits[i].Bits++; + } + + } + std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); + + BitTestInfo BTC; + + // Figure out which block is immediately after the current one. + MachineFunction::iterator BBI = CR.CaseBB; + ++BBI; + + const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); + + DOUT << "Cases:\n"; + for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { + DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits + << ", BB: " << CasesBits[i].BB << "\n"; + + MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); + CurMF->insert(BBI, CaseBB); + BTC.push_back(BitTestCase(CasesBits[i].Mask, + CaseBB, + CasesBits[i].BB)); + } + + BitTestBlock BTB(lowBound, range, SV, + -1U, (CR.CaseBB == CurMBB), + CR.CaseBB, Default, BTC); + + if (CR.CaseBB == CurMBB) + visitBitTestHeader(BTB); + + BitTestCases.push_back(BTB); + + return true; +} + + +/// Clusterify - Transform simple list of Cases into list of CaseRange's +unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases, + const SwitchInst& SI) { + unsigned numCmps = 0; + + // Start with "simple" cases + for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) { + MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; + Cases.push_back(Case(SI.getSuccessorValue(i), + SI.getSuccessorValue(i), + SMBB)); + } + std::sort(Cases.begin(), Cases.end(), CaseCmp()); + + // Merge case into clusters + if (Cases.size()>=2) + // Must recompute end() each iteration because it may be + // invalidated by erase if we hold on to it + for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) { + int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue(); + int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue(); + MachineBasicBlock* nextBB = J->BB; + MachineBasicBlock* currentBB = I->BB; + + // If the two neighboring cases go to the same destination, merge them + // into a single case. + if ((nextValue-currentValue==1) && (currentBB == nextBB)) { + I->High = J->High; + J = Cases.erase(J); + } else { + I = J++; + } + } + + for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { + if (I->Low != I->High) + // A range counts double, since it requires two compares. + ++numCmps; + } + + return numCmps; +} + +void SelectionDAGLowering::visitSwitch(SwitchInst &SI) { + // Figure out which block is immediately after the current one. + MachineBasicBlock *NextBlock = 0; + MachineFunction::iterator BBI = CurMBB; + + MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; + + // If there is only the default destination, branch to it if it is not the + // next basic block. Otherwise, just fall through. + if (SI.getNumOperands() == 2) { + // Update machine-CFG edges. + + // If this is not a fall-through branch, emit the branch. + CurMBB->addSuccessor(Default); + if (Default != NextBlock) + DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(), + DAG.getBasicBlock(Default))); + + return; + } + + // If there are any non-default case statements, create a vector of Cases + // representing each one, and sort the vector so that we can efficiently + // create a binary search tree from them. + CaseVector Cases; + unsigned numCmps = Clusterify(Cases, SI); + DOUT << "Clusterify finished. Total clusters: " << Cases.size() + << ". Total compares: " << numCmps << "\n"; + + // Get the Value to be switched on and default basic blocks, which will be + // inserted into CaseBlock records, representing basic blocks in the binary + // search tree. + Value *SV = SI.getOperand(0); + + // Push the initial CaseRec onto the worklist + CaseRecVector WorkList; + WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end()))); + + while (!WorkList.empty()) { + // Grab a record representing a case range to process off the worklist + CaseRec CR = WorkList.back(); + WorkList.pop_back(); + + if (handleBitTestsSwitchCase(CR, WorkList, SV, Default)) + continue; + + // If the range has few cases (two or less) emit a series of specific + // tests. + if (handleSmallSwitchRange(CR, WorkList, SV, Default)) + continue; + + // If the switch has more than 5 blocks, and at least 40% dense, and the + // target supports indirect branches, then emit a jump table rather than + // lowering the switch to a binary tree of conditional branches. + if (handleJTSwitchCase(CR, WorkList, SV, Default)) + continue; + + // Emit binary tree. We need to pick a pivot, and push left and right ranges + // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. + handleBTSplitSwitchCase(CR, WorkList, SV, Default); + } +} + + +void SelectionDAGLowering::visitSub(User &I) { + // -0.0 - X --> fneg + const Type *Ty = I.getType(); + if (isa<VectorType>(Ty)) { + if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) { + const VectorType *DestTy = cast<VectorType>(I.getType()); + const Type *ElTy = DestTy->getElementType(); + if (ElTy->isFloatingPoint()) { + unsigned VL = DestTy->getNumElements(); + std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy)); + Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size()); + if (CV == CNZ) { + SDValue Op2 = getValue(I.getOperand(1)); + setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2)); + return; + } + } + } + } + if (Ty->isFloatingPoint()) { + if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) + if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) { + SDValue Op2 = getValue(I.getOperand(1)); + setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2)); + return; + } + } + + visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB); +} + +void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) { + SDValue Op1 = getValue(I.getOperand(0)); + SDValue Op2 = getValue(I.getOperand(1)); + + setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2)); +} + +void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) { + SDValue Op1 = getValue(I.getOperand(0)); + SDValue Op2 = getValue(I.getOperand(1)); + if (!isa<VectorType>(I.getType())) { + if (TLI.getShiftAmountTy().bitsLT(Op2.getValueType())) + Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2); + else if (TLI.getShiftAmountTy().bitsGT(Op2.getValueType())) + Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2); + } + + setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2)); +} + +void SelectionDAGLowering::visitICmp(User &I) { + ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; + if (ICmpInst *IC = dyn_cast<ICmpInst>(&I)) + predicate = IC->getPredicate(); + else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) + predicate = ICmpInst::Predicate(IC->getPredicate()); + SDValue Op1 = getValue(I.getOperand(0)); + SDValue Op2 = getValue(I.getOperand(1)); + ISD::CondCode Opcode; + switch (predicate) { + case ICmpInst::ICMP_EQ : Opcode = ISD::SETEQ; break; + case ICmpInst::ICMP_NE : Opcode = ISD::SETNE; break; + case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break; + case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break; + case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break; + case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break; + case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break; + case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break; + case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break; + case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break; + default: + assert(!"Invalid ICmp predicate value"); + Opcode = ISD::SETEQ; + break; + } + setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode)); +} + +void SelectionDAGLowering::visitFCmp(User &I) { + FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; + if (FCmpInst *FC = dyn_cast<FCmpInst>(&I)) + predicate = FC->getPredicate(); + else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) + predicate = FCmpInst::Predicate(FC->getPredicate()); + SDValue Op1 = getValue(I.getOperand(0)); + SDValue Op2 = getValue(I.getOperand(1)); + ISD::CondCode Condition, FOC, FPC; + switch (predicate) { + case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; + case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; + case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break; + case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break; + case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break; + case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break; + case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break; + case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break; + case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break; + case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; + case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break; + case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break; + case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break; + case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break; + case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break; + case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break; + default: + assert(!"Invalid FCmp predicate value"); + FOC = FPC = ISD::SETFALSE; + break; + } + if (FiniteOnlyFPMath()) + Condition = FOC; + else + Condition = FPC; + setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition)); +} + +void SelectionDAGLowering::visitVICmp(User &I) { + ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; + if (VICmpInst *IC = dyn_cast<VICmpInst>(&I)) + predicate = IC->getPredicate(); + else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) + predicate = ICmpInst::Predicate(IC->getPredicate()); + SDValue Op1 = getValue(I.getOperand(0)); + SDValue Op2 = getValue(I.getOperand(1)); + ISD::CondCode Opcode; + switch (predicate) { + case ICmpInst::ICMP_EQ : Opcode = ISD::SETEQ; break; + case ICmpInst::ICMP_NE : Opcode = ISD::SETNE; break; + case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break; + case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break; + case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break; + case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break; + case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break; + case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break; + case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break; + case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break; + default: + assert(!"Invalid ICmp predicate value"); + Opcode = ISD::SETEQ; + break; + } + setValue(&I, DAG.getVSetCC(Op1.getValueType(), Op1, Op2, Opcode)); +} + +void SelectionDAGLowering::visitVFCmp(User &I) { + FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; + if (VFCmpInst *FC = dyn_cast<VFCmpInst>(&I)) + predicate = FC->getPredicate(); + else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) + predicate = FCmpInst::Predicate(FC->getPredicate()); + SDValue Op1 = getValue(I.getOperand(0)); + SDValue Op2 = getValue(I.getOperand(1)); + ISD::CondCode Condition, FOC, FPC; + switch (predicate) { + case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; + case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; + case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break; + case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break; + case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break; + case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break; + case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break; + case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break; + case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break; + case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; + case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break; + case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break; + case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break; + case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break; + case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break; + case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break; + default: + assert(!"Invalid VFCmp predicate value"); + FOC = FPC = ISD::SETFALSE; + break; + } + if (FiniteOnlyFPMath()) + Condition = FOC; + else + Condition = FPC; + + MVT DestVT = TLI.getValueType(I.getType()); + + setValue(&I, DAG.getVSetCC(DestVT, Op1, Op2, Condition)); +} + +void SelectionDAGLowering::visitSelect(User &I) { + SDValue Cond = getValue(I.getOperand(0)); + SDValue TrueVal = getValue(I.getOperand(1)); + SDValue FalseVal = getValue(I.getOperand(2)); + setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond, + TrueVal, FalseVal)); +} + + +void SelectionDAGLowering::visitTrunc(User &I) { + // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). + SDValue N = getValue(I.getOperand(0)); + MVT DestVT = TLI.getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N)); +} + +void SelectionDAGLowering::visitZExt(User &I) { + // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). + // ZExt also can't be a cast to bool for same reason. So, nothing much to do + SDValue N = getValue(I.getOperand(0)); + MVT DestVT = TLI.getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N)); +} + +void SelectionDAGLowering::visitSExt(User &I) { + // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). + // SExt also can't be a cast to bool for same reason. So, nothing much to do + SDValue N = getValue(I.getOperand(0)); + MVT DestVT = TLI.getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N)); +} + +void SelectionDAGLowering::visitFPTrunc(User &I) { + // FPTrunc is never a no-op cast, no need to check + SDValue N = getValue(I.getOperand(0)); + MVT DestVT = TLI.getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N, DAG.getIntPtrConstant(0))); +} + +void SelectionDAGLowering::visitFPExt(User &I){ + // FPTrunc is never a no-op cast, no need to check + SDValue N = getValue(I.getOperand(0)); + MVT DestVT = TLI.getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N)); +} + +void SelectionDAGLowering::visitFPToUI(User &I) { + // FPToUI is never a no-op cast, no need to check + SDValue N = getValue(I.getOperand(0)); + MVT DestVT = TLI.getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N)); +} + +void SelectionDAGLowering::visitFPToSI(User &I) { + // FPToSI is never a no-op cast, no need to check + SDValue N = getValue(I.getOperand(0)); + MVT DestVT = TLI.getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N)); +} + +void SelectionDAGLowering::visitUIToFP(User &I) { + // UIToFP is never a no-op cast, no need to check + SDValue N = getValue(I.getOperand(0)); + MVT DestVT = TLI.getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N)); +} + +void SelectionDAGLowering::visitSIToFP(User &I){ + // UIToFP is never a no-op cast, no need to check + SDValue N = getValue(I.getOperand(0)); + MVT DestVT = TLI.getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N)); +} + +void SelectionDAGLowering::visitPtrToInt(User &I) { + // What to do depends on the size of the integer and the size of the pointer. + // We can either truncate, zero extend, or no-op, accordingly. + SDValue N = getValue(I.getOperand(0)); + MVT SrcVT = N.getValueType(); + MVT DestVT = TLI.getValueType(I.getType()); + SDValue Result; + if (DestVT.bitsLT(SrcVT)) + Result = DAG.getNode(ISD::TRUNCATE, DestVT, N); + else + // Note: ZERO_EXTEND can handle cases where the sizes are equal too + Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N); + setValue(&I, Result); +} + +void SelectionDAGLowering::visitIntToPtr(User &I) { + // What to do depends on the size of the integer and the size of the pointer. + // We can either truncate, zero extend, or no-op, accordingly. + SDValue N = getValue(I.getOperand(0)); + MVT SrcVT = N.getValueType(); + MVT DestVT = TLI.getValueType(I.getType()); + if (DestVT.bitsLT(SrcVT)) + setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N)); + else + // Note: ZERO_EXTEND can handle cases where the sizes are equal too + setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N)); +} + +void SelectionDAGLowering::visitBitCast(User &I) { + SDValue N = getValue(I.getOperand(0)); + MVT DestVT = TLI.getValueType(I.getType()); + + // BitCast assures us that source and destination are the same size so this + // is either a BIT_CONVERT or a no-op. + if (DestVT != N.getValueType()) + setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types + else + setValue(&I, N); // noop cast. +} + +void SelectionDAGLowering::visitInsertElement(User &I) { + SDValue InVec = getValue(I.getOperand(0)); + SDValue InVal = getValue(I.getOperand(1)); + SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), + getValue(I.getOperand(2))); + + setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, + TLI.getValueType(I.getType()), + InVec, InVal, InIdx)); +} + +void SelectionDAGLowering::visitExtractElement(User &I) { + SDValue InVec = getValue(I.getOperand(0)); + SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), + getValue(I.getOperand(1))); + setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, + TLI.getValueType(I.getType()), InVec, InIdx)); +} + +void SelectionDAGLowering::visitShuffleVector(User &I) { + SDValue V1 = getValue(I.getOperand(0)); + SDValue V2 = getValue(I.getOperand(1)); + SDValue Mask = getValue(I.getOperand(2)); + + setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE, + TLI.getValueType(I.getType()), + V1, V2, Mask)); +} + +void SelectionDAGLowering::visitInsertValue(InsertValueInst &I) { + const Value *Op0 = I.getOperand(0); + const Value *Op1 = I.getOperand(1); + const Type *AggTy = I.getType(); + const Type *ValTy = Op1->getType(); + bool IntoUndef = isa<UndefValue>(Op0); + bool FromUndef = isa<UndefValue>(Op1); + + unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, + I.idx_begin(), I.idx_end()); + + SmallVector<MVT, 4> AggValueVTs; + ComputeValueVTs(TLI, AggTy, AggValueVTs); + SmallVector<MVT, 4> ValValueVTs; + ComputeValueVTs(TLI, ValTy, ValValueVTs); + + unsigned NumAggValues = AggValueVTs.size(); + unsigned NumValValues = ValValueVTs.size(); + SmallVector<SDValue, 4> Values(NumAggValues); + + SDValue Agg = getValue(Op0); + SDValue Val = getValue(Op1); + unsigned i = 0; + // Copy the beginning value(s) from the original aggregate. + for (; i != LinearIndex; ++i) + Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) : + SDValue(Agg.getNode(), Agg.getResNo() + i); + // Copy values from the inserted value(s). + for (; i != LinearIndex + NumValValues; ++i) + Values[i] = FromUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) : + SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); + // Copy remaining value(s) from the original aggregate. + for (; i != NumAggValues; ++i) + Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) : + SDValue(Agg.getNode(), Agg.getResNo() + i); + + setValue(&I, DAG.getMergeValues(DAG.getVTList(&AggValueVTs[0], NumAggValues), + &Values[0], NumAggValues)); +} + +void SelectionDAGLowering::visitExtractValue(ExtractValueInst &I) { + const Value *Op0 = I.getOperand(0); + const Type *AggTy = Op0->getType(); + const Type *ValTy = I.getType(); + bool OutOfUndef = isa<UndefValue>(Op0); + + unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, + I.idx_begin(), I.idx_end()); + + SmallVector<MVT, 4> ValValueVTs; + ComputeValueVTs(TLI, ValTy, ValValueVTs); + + unsigned NumValValues = ValValueVTs.size(); + SmallVector<SDValue, 4> Values(NumValValues); + + SDValue Agg = getValue(Op0); + // Copy out the selected value(s). + for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) + Values[i - LinearIndex] = + OutOfUndef ? DAG.getNode(ISD::UNDEF, Agg.getNode()->getValueType(Agg.getResNo() + i)) : + SDValue(Agg.getNode(), Agg.getResNo() + i); + + setValue(&I, DAG.getMergeValues(DAG.getVTList(&ValValueVTs[0], NumValValues), + &Values[0], NumValValues)); +} + + +void SelectionDAGLowering::visitGetElementPtr(User &I) { + SDValue N = getValue(I.getOperand(0)); + const Type *Ty = I.getOperand(0)->getType(); + + for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end(); + OI != E; ++OI) { + Value *Idx = *OI; + if (const StructType *StTy = dyn_cast<StructType>(Ty)) { + unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); + if (Field) { + // N = N + Offset + uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); + N = DAG.getNode(ISD::ADD, N.getValueType(), N, + DAG.getIntPtrConstant(Offset)); + } + Ty = StTy->getElementType(Field); + } else { + Ty = cast<SequentialType>(Ty)->getElementType(); + + // If this is a constant subscript, handle it quickly. + if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { + if (CI->getZExtValue() == 0) continue; + uint64_t Offs = + TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); + N = DAG.getNode(ISD::ADD, N.getValueType(), N, + DAG.getIntPtrConstant(Offs)); + continue; + } + + // N = N + Idx * ElementSize; + uint64_t ElementSize = TD->getABITypeSize(Ty); + SDValue IdxN = getValue(Idx); + + // If the index is smaller or larger than intptr_t, truncate or extend + // it. + if (IdxN.getValueType().bitsLT(N.getValueType())) + IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN); + else if (IdxN.getValueType().bitsGT(N.getValueType())) + IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN); + + // If this is a multiply by a power of two, turn it into a shl + // immediately. This is a very common case. + if (ElementSize != 1) { + if (isPowerOf2_64(ElementSize)) { + unsigned Amt = Log2_64(ElementSize); + IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN, + DAG.getConstant(Amt, TLI.getShiftAmountTy())); + } else { + SDValue Scale = DAG.getIntPtrConstant(ElementSize); + IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale); + } + } + + N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN); + } + } + setValue(&I, N); +} + +void SelectionDAGLowering::visitAlloca(AllocaInst &I) { + // If this is a fixed sized alloca in the entry block of the function, + // allocate it statically on the stack. + if (FuncInfo.StaticAllocaMap.count(&I)) + return; // getValue will auto-populate this. + + const Type *Ty = I.getAllocatedType(); + uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty); + unsigned Align = + std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), + I.getAlignment()); + + SDValue AllocSize = getValue(I.getArraySize()); + MVT IntPtr = TLI.getPointerTy(); + if (IntPtr.bitsLT(AllocSize.getValueType())) + AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize); + else if (IntPtr.bitsGT(AllocSize.getValueType())) + AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize); + + AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize, + DAG.getIntPtrConstant(TySize)); + + // Handle alignment. If the requested alignment is less than or equal to + // the stack alignment, ignore it. If the size is greater than or equal to + // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. + unsigned StackAlign = + TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); + if (Align <= StackAlign) + Align = 0; + + // Round the size of the allocation up to the stack alignment size + // by add SA-1 to the size. + AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize, + DAG.getIntPtrConstant(StackAlign-1)); + // Mask out the low bits for alignment purposes. + AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize, + DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); + + SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; + const MVT *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(), + MVT::Other); + SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3); + setValue(&I, DSA); + DAG.setRoot(DSA.getValue(1)); + + // Inform the Frame Information that we have just allocated a variable-sized + // object. + CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject(); +} + +void SelectionDAGLowering::visitLoad(LoadInst &I) { + const Value *SV = I.getOperand(0); + SDValue Ptr = getValue(SV); + + const Type *Ty = I.getType(); + bool isVolatile = I.isVolatile(); + unsigned Alignment = I.getAlignment(); + + SmallVector<MVT, 4> ValueVTs; + SmallVector<uint64_t, 4> Offsets; + ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); + unsigned NumValues = ValueVTs.size(); + if (NumValues == 0) + return; + + SDValue Root; + bool ConstantMemory = false; + if (I.isVolatile()) + // Serialize volatile loads with other side effects. + Root = getRoot(); + else if (AA->pointsToConstantMemory(SV)) { + // Do not serialize (non-volatile) loads of constant memory with anything. + Root = DAG.getEntryNode(); + ConstantMemory = true; + } else { + // Do not serialize non-volatile loads against each other. + Root = DAG.getRoot(); + } + + SmallVector<SDValue, 4> Values(NumValues); + SmallVector<SDValue, 4> Chains(NumValues); + MVT PtrVT = Ptr.getValueType(); + for (unsigned i = 0; i != NumValues; ++i) { + SDValue L = DAG.getLoad(ValueVTs[i], Root, + DAG.getNode(ISD::ADD, PtrVT, Ptr, + DAG.getConstant(Offsets[i], PtrVT)), + SV, Offsets[i], + isVolatile, Alignment); + Values[i] = L; + Chains[i] = L.getValue(1); + } + + if (!ConstantMemory) { + SDValue Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, + &Chains[0], NumValues); + if (isVolatile) + DAG.setRoot(Chain); + else + PendingLoads.push_back(Chain); + } + + setValue(&I, DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], NumValues), + &Values[0], NumValues)); +} + + +void SelectionDAGLowering::visitStore(StoreInst &I) { + Value *SrcV = I.getOperand(0); + Value *PtrV = I.getOperand(1); + + SmallVector<MVT, 4> ValueVTs; + SmallVector<uint64_t, 4> Offsets; + ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); + unsigned NumValues = ValueVTs.size(); + if (NumValues == 0) + return; + + // Get the lowered operands. Note that we do this after + // checking if NumResults is zero, because with zero results + // the operands won't have values in the map. + SDValue Src = getValue(SrcV); + SDValue Ptr = getValue(PtrV); + + SDValue Root = getRoot(); + SmallVector<SDValue, 4> Chains(NumValues); + MVT PtrVT = Ptr.getValueType(); + bool isVolatile = I.isVolatile(); + unsigned Alignment = I.getAlignment(); + for (unsigned i = 0; i != NumValues; ++i) + Chains[i] = DAG.getStore(Root, SDValue(Src.getNode(), Src.getResNo() + i), + DAG.getNode(ISD::ADD, PtrVT, Ptr, + DAG.getConstant(Offsets[i], PtrVT)), + PtrV, Offsets[i], + isVolatile, Alignment); + + DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumValues)); +} + +/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC +/// node. +void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I, + unsigned Intrinsic) { + bool HasChain = !I.doesNotAccessMemory(); + bool OnlyLoad = HasChain && I.onlyReadsMemory(); + + // Build the operand list. + SmallVector<SDValue, 8> Ops; + if (HasChain) { // If this intrinsic has side-effects, chainify it. + if (OnlyLoad) { + // We don't need to serialize loads against other loads. + Ops.push_back(DAG.getRoot()); + } else { + Ops.push_back(getRoot()); + } + } + + // Add the intrinsic ID as an integer operand. + Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); + + // Add all operands of the call to the operand list. + for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { + SDValue Op = getValue(I.getOperand(i)); + assert(TLI.isTypeLegal(Op.getValueType()) && + "Intrinsic uses a non-legal type?"); + Ops.push_back(Op); + } + + std::vector<MVT> VTs; + if (I.getType() != Type::VoidTy) { + MVT VT = TLI.getValueType(I.getType()); + if (VT.isVector()) { + const VectorType *DestTy = cast<VectorType>(I.getType()); + MVT EltVT = TLI.getValueType(DestTy->getElementType()); + + VT = MVT::getVectorVT(EltVT, DestTy->getNumElements()); + assert(VT != MVT::Other && "Intrinsic uses a non-legal type?"); + } + + assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?"); + VTs.push_back(VT); + } + if (HasChain) + VTs.push_back(MVT::Other); + + const MVT *VTList = DAG.getNodeValueTypes(VTs); + + // Create the node. + SDValue Result; + if (!HasChain) + Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(), + &Ops[0], Ops.size()); + else if (I.getType() != Type::VoidTy) + Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(), + &Ops[0], Ops.size()); + else + Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(), + &Ops[0], Ops.size()); + + if (HasChain) { + SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); + if (OnlyLoad) + PendingLoads.push_back(Chain); + else + DAG.setRoot(Chain); + } + if (I.getType() != Type::VoidTy) { + if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { + MVT VT = TLI.getValueType(PTy); + Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result); + } + setValue(&I, Result); + } +} + +/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. +static GlobalVariable *ExtractTypeInfo(Value *V) { + V = V->stripPointerCasts(); + GlobalVariable *GV = dyn_cast<GlobalVariable>(V); + assert ((GV || isa<ConstantPointerNull>(V)) && + "TypeInfo must be a global variable or NULL"); + return GV; +} + +namespace llvm { + +/// AddCatchInfo - Extract the personality and type infos from an eh.selector +/// call, and add them to the specified machine basic block. +void AddCatchInfo(CallInst &I, MachineModuleInfo *MMI, + MachineBasicBlock *MBB) { + // Inform the MachineModuleInfo of the personality for this landing pad. + ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2)); + assert(CE->getOpcode() == Instruction::BitCast && + isa<Function>(CE->getOperand(0)) && + "Personality should be a function"); + MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0))); + + // Gather all the type infos for this landing pad and pass them along to + // MachineModuleInfo. + std::vector<GlobalVariable *> TyInfo; + unsigned N = I.getNumOperands(); + + for (unsigned i = N - 1; i > 2; --i) { + if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) { + unsigned FilterLength = CI->getZExtValue(); + unsigned FirstCatch = i + FilterLength + !FilterLength; + assert (FirstCatch <= N && "Invalid filter length"); + + if (FirstCatch < N) { + TyInfo.reserve(N - FirstCatch); + for (unsigned j = FirstCatch; j < N; ++j) + TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); + MMI->addCatchTypeInfo(MBB, TyInfo); + TyInfo.clear(); + } + + if (!FilterLength) { + // Cleanup. + MMI->addCleanup(MBB); + } else { + // Filter. + TyInfo.reserve(FilterLength - 1); + for (unsigned j = i + 1; j < FirstCatch; ++j) + TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); + MMI->addFilterTypeInfo(MBB, TyInfo); + TyInfo.clear(); + } + + N = i; + } + } + + if (N > 3) { + TyInfo.reserve(N - 3); + for (unsigned j = 3; j < N; ++j) + TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); + MMI->addCatchTypeInfo(MBB, TyInfo); + } +} + +} + +/// Inlined utility function to implement binary input atomic intrinsics for +/// visitIntrinsicCall: I is a call instruction +/// Op is the associated NodeType for I +const char * +SelectionDAGLowering::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) { + SDValue Root = getRoot(); + SDValue L = DAG.getAtomic(Op, Root, + getValue(I.getOperand(1)), + getValue(I.getOperand(2)), + I.getOperand(1)); + setValue(&I, L); + DAG.setRoot(L.getValue(1)); + return 0; +} + +/// visitIntrinsicCall - Lower the call to the specified intrinsic function. If +/// we want to emit this as a call to a named external function, return the name +/// otherwise lower it and return null. +const char * +SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) { + switch (Intrinsic) { + default: + // By default, turn this into a target intrinsic node. + visitTargetIntrinsic(I, Intrinsic); + return 0; + case Intrinsic::vastart: visitVAStart(I); return 0; + case Intrinsic::vaend: visitVAEnd(I); return 0; + case Intrinsic::vacopy: visitVACopy(I); return 0; + case Intrinsic::returnaddress: + setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(), + getValue(I.getOperand(1)))); + return 0; + case Intrinsic::frameaddress: + setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(), + getValue(I.getOperand(1)))); + return 0; + case Intrinsic::setjmp: + return "_setjmp"+!TLI.usesUnderscoreSetJmp(); + break; + case Intrinsic::longjmp: + return "_longjmp"+!TLI.usesUnderscoreLongJmp(); + break; + case Intrinsic::memcpy_i32: + case Intrinsic::memcpy_i64: { + SDValue Op1 = getValue(I.getOperand(1)); + SDValue Op2 = getValue(I.getOperand(2)); + SDValue Op3 = getValue(I.getOperand(3)); + unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); + DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false, + I.getOperand(1), 0, I.getOperand(2), 0)); + return 0; + } + case Intrinsic::memset_i32: + case Intrinsic::memset_i64: { + SDValue Op1 = getValue(I.getOperand(1)); + SDValue Op2 = getValue(I.getOperand(2)); + SDValue Op3 = getValue(I.getOperand(3)); + unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); + DAG.setRoot(DAG.getMemset(getRoot(), Op1, Op2, Op3, Align, + I.getOperand(1), 0)); + return 0; + } + case Intrinsic::memmove_i32: + case Intrinsic::memmove_i64: { + SDValue Op1 = getValue(I.getOperand(1)); + SDValue Op2 = getValue(I.getOperand(2)); + SDValue Op3 = getValue(I.getOperand(3)); + unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); + + // If the source and destination are known to not be aliases, we can + // lower memmove as memcpy. + uint64_t Size = -1ULL; + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3)) + Size = C->getValue(); + if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) == + AliasAnalysis::NoAlias) { + DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false, + I.getOperand(1), 0, I.getOperand(2), 0)); + return 0; + } + + DAG.setRoot(DAG.getMemmove(getRoot(), Op1, Op2, Op3, Align, + I.getOperand(1), 0, I.getOperand(2), 0)); + return 0; + } + case Intrinsic::dbg_stoppoint: { + MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); + DbgStopPointInst &SPI = cast<DbgStopPointInst>(I); + if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) { + DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext()); + assert(DD && "Not a debug information descriptor"); + DAG.setRoot(DAG.getDbgStopPoint(getRoot(), + SPI.getLine(), + SPI.getColumn(), + cast<CompileUnitDesc>(DD))); + } + + return 0; + } + case Intrinsic::dbg_region_start: { + MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); + DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I); + if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) { + unsigned LabelID = MMI->RecordRegionStart(RSI.getContext()); + DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID)); + } + + return 0; + } + case Intrinsic::dbg_region_end: { + MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); + DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I); + if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) { + unsigned LabelID = MMI->RecordRegionEnd(REI.getContext()); + DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID)); + } + + return 0; + } + case Intrinsic::dbg_func_start: { + MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); + if (!MMI) return 0; + DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I); + Value *SP = FSI.getSubprogram(); + if (SP && MMI->Verify(SP)) { + // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is + // what (most?) gdb expects. + DebugInfoDesc *DD = MMI->getDescFor(SP); + assert(DD && "Not a debug information descriptor"); + SubprogramDesc *Subprogram = cast<SubprogramDesc>(DD); + const CompileUnitDesc *CompileUnit = Subprogram->getFile(); + unsigned SrcFile = MMI->RecordSource(CompileUnit); + // Record the source line but does create a label. It will be emitted + // at asm emission time. + MMI->RecordSourceLine(Subprogram->getLine(), 0, SrcFile); + } + + return 0; + } + case Intrinsic::dbg_declare: { + MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); + DbgDeclareInst &DI = cast<DbgDeclareInst>(I); + Value *Variable = DI.getVariable(); + if (MMI && Variable && MMI->Verify(Variable)) + DAG.setRoot(DAG.getNode(ISD::DECLARE, MVT::Other, getRoot(), + getValue(DI.getAddress()), getValue(Variable))); + return 0; + } + + case Intrinsic::eh_exception: { + if (!CurMBB->isLandingPad()) { + // FIXME: Mark exception register as live in. Hack for PR1508. + unsigned Reg = TLI.getExceptionAddressRegister(); + if (Reg) CurMBB->addLiveIn(Reg); + } + // Insert the EXCEPTIONADDR instruction. + SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); + SDValue Ops[1]; + Ops[0] = DAG.getRoot(); + SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1); + setValue(&I, Op); + DAG.setRoot(Op.getValue(1)); + return 0; + } + + case Intrinsic::eh_selector_i32: + case Intrinsic::eh_selector_i64: { + MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); + MVT VT = (Intrinsic == Intrinsic::eh_selector_i32 ? + MVT::i32 : MVT::i64); + + if (MMI) { + if (CurMBB->isLandingPad()) + AddCatchInfo(I, MMI, CurMBB); + else { +#ifndef NDEBUG + FuncInfo.CatchInfoLost.insert(&I); +#endif + // FIXME: Mark exception selector register as live in. Hack for PR1508. + unsigned Reg = TLI.getExceptionSelectorRegister(); + if (Reg) CurMBB->addLiveIn(Reg); + } + + // Insert the EHSELECTION instruction. + SDVTList VTs = DAG.getVTList(VT, MVT::Other); + SDValue Ops[2]; + Ops[0] = getValue(I.getOperand(1)); + Ops[1] = getRoot(); + SDValue Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2); + setValue(&I, Op); + DAG.setRoot(Op.getValue(1)); + } else { + setValue(&I, DAG.getConstant(0, VT)); + } + + return 0; + } + + case Intrinsic::eh_typeid_for_i32: + case Intrinsic::eh_typeid_for_i64: { + MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); + MVT VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ? + MVT::i32 : MVT::i64); + + if (MMI) { + // Find the type id for the given typeinfo. + GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1)); + + unsigned TypeID = MMI->getTypeIDFor(GV); + setValue(&I, DAG.getConstant(TypeID, VT)); + } else { + // Return something different to eh_selector. + setValue(&I, DAG.getConstant(1, VT)); + } + + return 0; + } + + case Intrinsic::eh_return: { + MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); + + if (MMI) { + MMI->setCallsEHReturn(true); + DAG.setRoot(DAG.getNode(ISD::EH_RETURN, + MVT::Other, + getControlRoot(), + getValue(I.getOperand(1)), + getValue(I.getOperand(2)))); + } else { + setValue(&I, DAG.getConstant(0, TLI.getPointerTy())); + } + + return 0; + } + + case Intrinsic::eh_unwind_init: { + if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) { + MMI->setCallsUnwindInit(true); + } + + return 0; + } + + case Intrinsic::eh_dwarf_cfa: { + MVT VT = getValue(I.getOperand(1)).getValueType(); + SDValue CfaArg; + if (VT.bitsGT(TLI.getPointerTy())) + CfaArg = DAG.getNode(ISD::TRUNCATE, + TLI.getPointerTy(), getValue(I.getOperand(1))); + else + CfaArg = DAG.getNode(ISD::SIGN_EXTEND, + TLI.getPointerTy(), getValue(I.getOperand(1))); + + SDValue Offset = DAG.getNode(ISD::ADD, + TLI.getPointerTy(), + DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, + TLI.getPointerTy()), + CfaArg); + setValue(&I, DAG.getNode(ISD::ADD, + TLI.getPointerTy(), + DAG.getNode(ISD::FRAMEADDR, + TLI.getPointerTy(), + DAG.getConstant(0, + TLI.getPointerTy())), + Offset)); + return 0; + } + + case Intrinsic::sqrt: + setValue(&I, DAG.getNode(ISD::FSQRT, + getValue(I.getOperand(1)).getValueType(), + getValue(I.getOperand(1)))); + return 0; + case Intrinsic::powi: + setValue(&I, DAG.getNode(ISD::FPOWI, + getValue(I.getOperand(1)).getValueType(), + getValue(I.getOperand(1)), + getValue(I.getOperand(2)))); + return 0; + case Intrinsic::sin: + setValue(&I, DAG.getNode(ISD::FSIN, + getValue(I.getOperand(1)).getValueType(), + getValue(I.getOperand(1)))); + return 0; + case Intrinsic::cos: + setValue(&I, DAG.getNode(ISD::FCOS, + getValue(I.getOperand(1)).getValueType(), + getValue(I.getOperand(1)))); + return 0; + case Intrinsic::pow: + setValue(&I, DAG.getNode(ISD::FPOW, + getValue(I.getOperand(1)).getValueType(), + getValue(I.getOperand(1)), + getValue(I.getOperand(2)))); + return 0; + case Intrinsic::pcmarker: { + SDValue Tmp = getValue(I.getOperand(1)); + DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp)); + return 0; + } + case Intrinsic::readcyclecounter: { + SDValue Op = getRoot(); + SDValue Tmp = DAG.getNode(ISD::READCYCLECOUNTER, + DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2, + &Op, 1); + setValue(&I, Tmp); + DAG.setRoot(Tmp.getValue(1)); + return 0; + } + case Intrinsic::part_select: { + // Currently not implemented: just abort + assert(0 && "part_select intrinsic not implemented"); + abort(); + } + case Intrinsic::part_set: { + // Currently not implemented: just abort + assert(0 && "part_set intrinsic not implemented"); + abort(); + } + case Intrinsic::bswap: + setValue(&I, DAG.getNode(ISD::BSWAP, + getValue(I.getOperand(1)).getValueType(), + getValue(I.getOperand(1)))); + return 0; + case Intrinsic::cttz: { + SDValue Arg = getValue(I.getOperand(1)); + MVT Ty = Arg.getValueType(); + SDValue result = DAG.getNode(ISD::CTTZ, Ty, Arg); + setValue(&I, result); + return 0; + } + case Intrinsic::ctlz: { + SDValue Arg = getValue(I.getOperand(1)); + MVT Ty = Arg.getValueType(); + SDValue result = DAG.getNode(ISD::CTLZ, Ty, Arg); + setValue(&I, result); + return 0; + } + case Intrinsic::ctpop: { + SDValue Arg = getValue(I.getOperand(1)); + MVT Ty = Arg.getValueType(); + SDValue result = DAG.getNode(ISD::CTPOP, Ty, Arg); + setValue(&I, result); + return 0; + } + case Intrinsic::stacksave: { + SDValue Op = getRoot(); + SDValue Tmp = DAG.getNode(ISD::STACKSAVE, + DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1); + setValue(&I, Tmp); + DAG.setRoot(Tmp.getValue(1)); + return 0; + } + case Intrinsic::stackrestore: { + SDValue Tmp = getValue(I.getOperand(1)); + DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp)); + return 0; + } + case Intrinsic::var_annotation: + // Discard annotate attributes + return 0; + + case Intrinsic::init_trampoline: { + const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts()); + + SDValue Ops[6]; + Ops[0] = getRoot(); + Ops[1] = getValue(I.getOperand(1)); + Ops[2] = getValue(I.getOperand(2)); + Ops[3] = getValue(I.getOperand(3)); + Ops[4] = DAG.getSrcValue(I.getOperand(1)); + Ops[5] = DAG.getSrcValue(F); + + SDValue Tmp = DAG.getNode(ISD::TRAMPOLINE, + DAG.getNodeValueTypes(TLI.getPointerTy(), + MVT::Other), 2, + Ops, 6); + + setValue(&I, Tmp); + DAG.setRoot(Tmp.getValue(1)); + return 0; + } + + case Intrinsic::gcroot: + if (GFI) { + Value *Alloca = I.getOperand(1); + Constant *TypeMap = cast<Constant>(I.getOperand(2)); + + FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); + GFI->addStackRoot(FI->getIndex(), TypeMap); + } + return 0; + + case Intrinsic::gcread: + case Intrinsic::gcwrite: + assert(0 && "GC failed to lower gcread/gcwrite intrinsics!"); + return 0; + + case Intrinsic::flt_rounds: { + setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, MVT::i32)); + return 0; + } + + case Intrinsic::trap: { + DAG.setRoot(DAG.getNode(ISD::TRAP, MVT::Other, getRoot())); + return 0; + } + case Intrinsic::prefetch: { + SDValue Ops[4]; + Ops[0] = getRoot(); + Ops[1] = getValue(I.getOperand(1)); + Ops[2] = getValue(I.getOperand(2)); + Ops[3] = getValue(I.getOperand(3)); + DAG.setRoot(DAG.getNode(ISD::PREFETCH, MVT::Other, &Ops[0], 4)); + return 0; + } + + case Intrinsic::memory_barrier: { + SDValue Ops[6]; + Ops[0] = getRoot(); + for (int x = 1; x < 6; ++x) + Ops[x] = getValue(I.getOperand(x)); + + DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, MVT::Other, &Ops[0], 6)); + return 0; + } + case Intrinsic::atomic_cmp_swap: { + SDValue Root = getRoot(); + SDValue L; + switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) { + case MVT::i8: + L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP_8, Root, + getValue(I.getOperand(1)), + getValue(I.getOperand(2)), + getValue(I.getOperand(3)), + I.getOperand(1)); + break; + case MVT::i16: + L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP_16, Root, + getValue(I.getOperand(1)), + getValue(I.getOperand(2)), + getValue(I.getOperand(3)), + I.getOperand(1)); + break; + case MVT::i32: + L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP_32, Root, + getValue(I.getOperand(1)), + getValue(I.getOperand(2)), + getValue(I.getOperand(3)), + I.getOperand(1)); + break; + case MVT::i64: + L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP_64, Root, + getValue(I.getOperand(1)), + getValue(I.getOperand(2)), + getValue(I.getOperand(3)), + I.getOperand(1)); + break; + default: + assert(0 && "Invalid atomic type"); + abort(); + } + setValue(&I, L); + DAG.setRoot(L.getValue(1)); + return 0; + } + case Intrinsic::atomic_load_add: + switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) { + case MVT::i8: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD_8); + case MVT::i16: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD_16); + case MVT::i32: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD_32); + case MVT::i64: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD_64); + default: + assert(0 && "Invalid atomic type"); + abort(); + } + case Intrinsic::atomic_load_sub: + switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) { + case MVT::i8: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB_8); + case MVT::i16: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB_16); + case MVT::i32: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB_32); + case MVT::i64: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB_64); + default: + assert(0 && "Invalid atomic type"); + abort(); + } + case Intrinsic::atomic_load_or: + switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) { + case MVT::i8: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR_8); + case MVT::i16: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR_16); + case MVT::i32: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR_32); + case MVT::i64: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR_64); + default: + assert(0 && "Invalid atomic type"); + abort(); + } + case Intrinsic::atomic_load_xor: + switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) { + case MVT::i8: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR_8); + case MVT::i16: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR_16); + case MVT::i32: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR_32); + case MVT::i64: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR_64); + default: + assert(0 && "Invalid atomic type"); + abort(); + } + case Intrinsic::atomic_load_and: + switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) { + case MVT::i8: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND_8); + case MVT::i16: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND_16); + case MVT::i32: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND_32); + case MVT::i64: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND_64); + default: + assert(0 && "Invalid atomic type"); + abort(); + } + case Intrinsic::atomic_load_nand: + switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) { + case MVT::i8: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND_8); + case MVT::i16: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND_16); + case MVT::i32: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND_32); + case MVT::i64: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND_64); + default: + assert(0 && "Invalid atomic type"); + abort(); + } + case Intrinsic::atomic_load_max: + switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) { + case MVT::i8: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX_8); + case MVT::i16: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX_16); + case MVT::i32: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX_32); + case MVT::i64: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX_64); + default: + assert(0 && "Invalid atomic type"); + abort(); + } + case Intrinsic::atomic_load_min: + switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) { + case MVT::i8: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN_8); + case MVT::i16: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN_16); + case MVT::i32: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN_32); + case MVT::i64: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN_64); + default: + assert(0 && "Invalid atomic type"); + abort(); + } + case Intrinsic::atomic_load_umin: + switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) { + case MVT::i8: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN_8); + case MVT::i16: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN_16); + case MVT::i32: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN_32); + case MVT::i64: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN_64); + default: + assert(0 && "Invalid atomic type"); + abort(); + } + case Intrinsic::atomic_load_umax: + switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) { + case MVT::i8: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX_8); + case MVT::i16: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX_16); + case MVT::i32: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX_32); + case MVT::i64: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX_64); + default: + assert(0 && "Invalid atomic type"); + abort(); + } + case Intrinsic::atomic_swap: + switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) { + case MVT::i8: + return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP_8); + case MVT::i16: + return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP_16); + case MVT::i32: + return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP_32); + case MVT::i64: + return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP_64); + default: + assert(0 && "Invalid atomic type"); + abort(); + } + } +} + + +void SelectionDAGLowering::LowerCallTo(CallSite CS, SDValue Callee, + bool IsTailCall, + MachineBasicBlock *LandingPad) { + const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); + const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); + MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); + unsigned BeginLabel = 0, EndLabel = 0; + + TargetLowering::ArgListTy Args; + TargetLowering::ArgListEntry Entry; + Args.reserve(CS.arg_size()); + for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); + i != e; ++i) { + SDValue ArgNode = getValue(*i); + Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); + + unsigned attrInd = i - CS.arg_begin() + 1; + Entry.isSExt = CS.paramHasAttr(attrInd, ParamAttr::SExt); + Entry.isZExt = CS.paramHasAttr(attrInd, ParamAttr::ZExt); + Entry.isInReg = CS.paramHasAttr(attrInd, ParamAttr::InReg); + Entry.isSRet = CS.paramHasAttr(attrInd, ParamAttr::StructRet); + Entry.isNest = CS.paramHasAttr(attrInd, ParamAttr::Nest); + Entry.isByVal = CS.paramHasAttr(attrInd, ParamAttr::ByVal); + Entry.Alignment = CS.getParamAlignment(attrInd); + Args.push_back(Entry); + } + + if (LandingPad && MMI) { + // Insert a label before the invoke call to mark the try range. This can be + // used to detect deletion of the invoke via the MachineModuleInfo. + BeginLabel = MMI->NextLabelID(); + // Both PendingLoads and PendingExports must be flushed here; + // this call might not return. + (void)getRoot(); + DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getControlRoot(), BeginLabel)); + } + + std::pair<SDValue,SDValue> Result = + TLI.LowerCallTo(getRoot(), CS.getType(), + CS.paramHasAttr(0, ParamAttr::SExt), + CS.paramHasAttr(0, ParamAttr::ZExt), + FTy->isVarArg(), CS.getCallingConv(), IsTailCall, + Callee, Args, DAG); + if (CS.getType() != Type::VoidTy) + setValue(CS.getInstruction(), Result.first); + DAG.setRoot(Result.second); + + if (LandingPad && MMI) { + // Insert a label at the end of the invoke call to mark the try range. This + // can be used to detect deletion of the invoke via the MachineModuleInfo. + EndLabel = MMI->NextLabelID(); + DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getRoot(), EndLabel)); + + // Inform MachineModuleInfo of range. + MMI->addInvoke(LandingPad, BeginLabel, EndLabel); + } +} + + +void SelectionDAGLowering::visitCall(CallInst &I) { + const char *RenameFn = 0; + if (Function *F = I.getCalledFunction()) { + if (F->isDeclaration()) { + if (unsigned IID = F->getIntrinsicID()) { + RenameFn = visitIntrinsicCall(I, IID); + if (!RenameFn) + return; + } + } + + // Check for well-known libc/libm calls. If the function is internal, it + // can't be a library call. + unsigned NameLen = F->getNameLen(); + if (!F->hasInternalLinkage() && NameLen) { + const char *NameStr = F->getNameStart(); + if (NameStr[0] == 'c' && + ((NameLen == 8 && !strcmp(NameStr, "copysign")) || + (NameLen == 9 && !strcmp(NameStr, "copysignf")))) { + if (I.getNumOperands() == 3 && // Basic sanity checks. + I.getOperand(1)->getType()->isFloatingPoint() && + I.getType() == I.getOperand(1)->getType() && + I.getType() == I.getOperand(2)->getType()) { + SDValue LHS = getValue(I.getOperand(1)); + SDValue RHS = getValue(I.getOperand(2)); + setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(), + LHS, RHS)); + return; + } + } else if (NameStr[0] == 'f' && + ((NameLen == 4 && !strcmp(NameStr, "fabs")) || + (NameLen == 5 && !strcmp(NameStr, "fabsf")) || + (NameLen == 5 && !strcmp(NameStr, "fabsl")))) { + if (I.getNumOperands() == 2 && // Basic sanity checks. + I.getOperand(1)->getType()->isFloatingPoint() && + I.getType() == I.getOperand(1)->getType()) { + SDValue Tmp = getValue(I.getOperand(1)); + setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp)); + return; + } + } else if (NameStr[0] == 's' && + ((NameLen == 3 && !strcmp(NameStr, "sin")) || + (NameLen == 4 && !strcmp(NameStr, "sinf")) || + (NameLen == 4 && !strcmp(NameStr, "sinl")))) { + if (I.getNumOperands() == 2 && // Basic sanity checks. + I.getOperand(1)->getType()->isFloatingPoint() && + I.getType() == I.getOperand(1)->getType()) { + SDValue Tmp = getValue(I.getOperand(1)); + setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp)); + return; + } + } else if (NameStr[0] == 'c' && + ((NameLen == 3 && !strcmp(NameStr, "cos")) || + (NameLen == 4 && !strcmp(NameStr, "cosf")) || + (NameLen == 4 && !strcmp(NameStr, "cosl")))) { + if (I.getNumOperands() == 2 && // Basic sanity checks. + I.getOperand(1)->getType()->isFloatingPoint() && + I.getType() == I.getOperand(1)->getType()) { + SDValue Tmp = getValue(I.getOperand(1)); + setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp)); + return; + } + } + } + } else if (isa<InlineAsm>(I.getOperand(0))) { + visitInlineAsm(&I); + return; + } + + SDValue Callee; + if (!RenameFn) + Callee = getValue(I.getOperand(0)); + else + Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); + + LowerCallTo(&I, Callee, I.isTailCall()); +} + + +/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from +/// this value and returns the result as a ValueVT value. This uses +/// Chain/Flag as the input and updates them for the output Chain/Flag. +/// If the Flag pointer is NULL, no flag is used. +SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, + SDValue &Chain, + SDValue *Flag) const { + // Assemble the legal parts into the final values. + SmallVector<SDValue, 4> Values(ValueVTs.size()); + SmallVector<SDValue, 8> Parts; + for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { + // Copy the legal parts from the registers. + MVT ValueVT = ValueVTs[Value]; + unsigned NumRegs = TLI->getNumRegisters(ValueVT); + MVT RegisterVT = RegVTs[Value]; + + Parts.resize(NumRegs); + for (unsigned i = 0; i != NumRegs; ++i) { + SDValue P; + if (Flag == 0) + P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT); + else { + P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT, *Flag); + *Flag = P.getValue(2); + } + Chain = P.getValue(1); + + // If the source register was virtual and if we know something about it, + // add an assert node. + if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) && + RegisterVT.isInteger() && !RegisterVT.isVector()) { + unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister; + FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); + if (FLI.LiveOutRegInfo.size() > SlotNo) { + FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo]; + + unsigned RegSize = RegisterVT.getSizeInBits(); + unsigned NumSignBits = LOI.NumSignBits; + unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes(); + + // FIXME: We capture more information than the dag can represent. For + // now, just use the tightest assertzext/assertsext possible. + bool isSExt = true; + MVT FromVT(MVT::Other); + if (NumSignBits == RegSize) + isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 + else if (NumZeroBits >= RegSize-1) + isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 + else if (NumSignBits > RegSize-8) + isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 + else if (NumZeroBits >= RegSize-9) + isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 + else if (NumSignBits > RegSize-16) + isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 + else if (NumZeroBits >= RegSize-17) + isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 + else if (NumSignBits > RegSize-32) + isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 + else if (NumZeroBits >= RegSize-33) + isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 + + if (FromVT != MVT::Other) { + P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, + RegisterVT, P, DAG.getValueType(FromVT)); + + } + } + } + + Parts[i] = P; + } + + Values[Value] = getCopyFromParts(DAG, Parts.begin(), NumRegs, RegisterVT, + ValueVT); + Part += NumRegs; + Parts.clear(); + } + + return DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], ValueVTs.size()), + &Values[0], ValueVTs.size()); +} + +/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the +/// specified value into the registers specified by this object. This uses +/// Chain/Flag as the input and updates them for the output Chain/Flag. +/// If the Flag pointer is NULL, no flag is used. +void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, + SDValue &Chain, SDValue *Flag) const { + // Get the list of the values's legal parts. + unsigned NumRegs = Regs.size(); + SmallVector<SDValue, 8> Parts(NumRegs); + for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { + MVT ValueVT = ValueVTs[Value]; + unsigned NumParts = TLI->getNumRegisters(ValueVT); + MVT RegisterVT = RegVTs[Value]; + + getCopyToParts(DAG, Val.getValue(Val.getResNo() + Value), + &Parts[Part], NumParts, RegisterVT); + Part += NumParts; + } + + // Copy the parts into the registers. + SmallVector<SDValue, 8> Chains(NumRegs); + for (unsigned i = 0; i != NumRegs; ++i) { + SDValue Part; + if (Flag == 0) + Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i]); + else { + Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag); + *Flag = Part.getValue(1); + } + Chains[i] = Part.getValue(0); + } + + if (NumRegs == 1 || Flag) + // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is + // flagged to it. That is the CopyToReg nodes and the user are considered + // a single scheduling unit. If we create a TokenFactor and return it as + // chain, then the TokenFactor is both a predecessor (operand) of the + // user as well as a successor (the TF operands are flagged to the user). + // c1, f1 = CopyToReg + // c2, f2 = CopyToReg + // c3 = TokenFactor c1, c2 + // ... + // = op c3, ..., f2 + Chain = Chains[NumRegs-1]; + else + Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs); +} + +/// AddInlineAsmOperands - Add this value to the specified inlineasm node +/// operand list. This adds the code marker and includes the number of +/// values added into it. +void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG, + std::vector<SDValue> &Ops) const { + MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy(); + Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy)); + for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { + unsigned NumRegs = TLI->getNumRegisters(ValueVTs[Value]); + MVT RegisterVT = RegVTs[Value]; + for (unsigned i = 0; i != NumRegs; ++i) + Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); + } +} + +/// isAllocatableRegister - If the specified register is safe to allocate, +/// i.e. it isn't a stack pointer or some other special register, return the +/// register class for the register. Otherwise, return null. +static const TargetRegisterClass * +isAllocatableRegister(unsigned Reg, MachineFunction &MF, + const TargetLowering &TLI, + const TargetRegisterInfo *TRI) { + MVT FoundVT = MVT::Other; + const TargetRegisterClass *FoundRC = 0; + for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), + E = TRI->regclass_end(); RCI != E; ++RCI) { + MVT ThisVT = MVT::Other; + + const TargetRegisterClass *RC = *RCI; + // If none of the the value types for this register class are valid, we + // can't use it. For example, 64-bit reg classes on 32-bit targets. + for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); + I != E; ++I) { + if (TLI.isTypeLegal(*I)) { + // If we have already found this register in a different register class, + // choose the one with the largest VT specified. For example, on + // PowerPC, we favor f64 register classes over f32. + if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { + ThisVT = *I; + break; + } + } + } + + if (ThisVT == MVT::Other) continue; + + // NOTE: This isn't ideal. In particular, this might allocate the + // frame pointer in functions that need it (due to them not being taken + // out of allocation, because a variable sized allocation hasn't been seen + // yet). This is a slight code pessimization, but should still work. + for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), + E = RC->allocation_order_end(MF); I != E; ++I) + if (*I == Reg) { + // We found a matching register class. Keep looking at others in case + // we find one with larger registers that this physreg is also in. + FoundRC = RC; + FoundVT = ThisVT; + break; + } + } + return FoundRC; +} + + +namespace llvm { +/// AsmOperandInfo - This contains information for each constraint that we are +/// lowering. +struct SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { + /// CallOperand - If this is the result output operand or a clobber + /// this is null, otherwise it is the incoming operand to the CallInst. + /// This gets modified as the asm is processed. + SDValue CallOperand; + + /// AssignedRegs - If this is a register or register class operand, this + /// contains the set of register corresponding to the operand. + RegsForValue AssignedRegs; + + explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info) + : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { + } + + /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers + /// busy in OutputRegs/InputRegs. + void MarkAllocatedRegs(bool isOutReg, bool isInReg, + std::set<unsigned> &OutputRegs, + std::set<unsigned> &InputRegs, + const TargetRegisterInfo &TRI) const { + if (isOutReg) { + for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) + MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); + } + if (isInReg) { + for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) + MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); + } + } + +private: + /// MarkRegAndAliases - Mark the specified register and all aliases in the + /// specified set. + static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, + const TargetRegisterInfo &TRI) { + assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); + Regs.insert(Reg); + if (const unsigned *Aliases = TRI.getAliasSet(Reg)) + for (; *Aliases; ++Aliases) + Regs.insert(*Aliases); + } +}; +} // end llvm namespace. + + +/// GetRegistersForValue - Assign registers (virtual or physical) for the +/// specified operand. We prefer to assign virtual registers, to allow the +/// register allocator handle the assignment process. However, if the asm uses +/// features that we can't model on machineinstrs, we have SDISel do the +/// allocation. This produces generally horrible, but correct, code. +/// +/// OpInfo describes the operand. +/// HasEarlyClobber is true if there are any early clobber constraints (=&r) +/// or any explicitly clobbered registers. +/// Input and OutputRegs are the set of already allocated physical registers. +/// +void SelectionDAGLowering:: +GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber, + std::set<unsigned> &OutputRegs, + std::set<unsigned> &InputRegs) { + // Compute whether this value requires an input register, an output register, + // or both. + bool isOutReg = false; + bool isInReg = false; + switch (OpInfo.Type) { + case InlineAsm::isOutput: + isOutReg = true; + + // If this is an early-clobber output, or if there is an input + // constraint that matches this, we need to reserve the input register + // so no other inputs allocate to it. + isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput; + break; + case InlineAsm::isInput: + isInReg = true; + isOutReg = false; + break; + case InlineAsm::isClobber: + isOutReg = true; + isInReg = true; + break; + } + + + MachineFunction &MF = DAG.getMachineFunction(); + SmallVector<unsigned, 4> Regs; + + // If this is a constraint for a single physreg, or a constraint for a + // register class, find it. + std::pair<unsigned, const TargetRegisterClass*> PhysReg = + TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, + OpInfo.ConstraintVT); + + unsigned NumRegs = 1; + if (OpInfo.ConstraintVT != MVT::Other) + NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT); + MVT RegVT; + MVT ValueVT = OpInfo.ConstraintVT; + + + // If this is a constraint for a specific physical register, like {r17}, + // assign it now. + if (PhysReg.first) { + if (OpInfo.ConstraintVT == MVT::Other) + ValueVT = *PhysReg.second->vt_begin(); + + // Get the actual register value type. This is important, because the user + // may have asked for (e.g.) the AX register in i32 type. We need to + // remember that AX is actually i16 to get the right extension. + RegVT = *PhysReg.second->vt_begin(); + + // This is a explicit reference to a physical register. + Regs.push_back(PhysReg.first); + + // If this is an expanded reference, add the rest of the regs to Regs. + if (NumRegs != 1) { + TargetRegisterClass::iterator I = PhysReg.second->begin(); + for (; *I != PhysReg.first; ++I) + assert(I != PhysReg.second->end() && "Didn't find reg!"); + + // Already added the first reg. + --NumRegs; ++I; + for (; NumRegs; --NumRegs, ++I) { + assert(I != PhysReg.second->end() && "Ran out of registers to allocate!"); + Regs.push_back(*I); + } + } + OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); + const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); + OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); + return; + } + + // Otherwise, if this was a reference to an LLVM register class, create vregs + // for this reference. + std::vector<unsigned> RegClassRegs; + const TargetRegisterClass *RC = PhysReg.second; + if (RC) { + // If this is an early clobber or tied register, our regalloc doesn't know + // how to maintain the constraint. If it isn't, go ahead and create vreg + // and let the regalloc do the right thing. + if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber && + // If there is some other early clobber and this is an input register, + // then we are forced to pre-allocate the input reg so it doesn't + // conflict with the earlyclobber. + !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) { + RegVT = *PhysReg.second->vt_begin(); + + if (OpInfo.ConstraintVT == MVT::Other) + ValueVT = RegVT; + + // Create the appropriate number of virtual registers. + MachineRegisterInfo &RegInfo = MF.getRegInfo(); + for (; NumRegs; --NumRegs) + Regs.push_back(RegInfo.createVirtualRegister(PhysReg.second)); + + OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); + return; + } + + // Otherwise, we can't allocate it. Let the code below figure out how to + // maintain these constraints. + RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end()); + + } else { + // This is a reference to a register class that doesn't directly correspond + // to an LLVM register class. Allocate NumRegs consecutive, available, + // registers from the class. + RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, + OpInfo.ConstraintVT); + } + + const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); + unsigned NumAllocated = 0; + for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { + unsigned Reg = RegClassRegs[i]; + // See if this register is available. + if ((isOutReg && OutputRegs.count(Reg)) || // Already used. + (isInReg && InputRegs.count(Reg))) { // Already used. + // Make sure we find consecutive registers. + NumAllocated = 0; + continue; + } + + // Check to see if this register is allocatable (i.e. don't give out the + // stack pointer). + if (RC == 0) { + RC = isAllocatableRegister(Reg, MF, TLI, TRI); + if (!RC) { // Couldn't allocate this register. + // Reset NumAllocated to make sure we return consecutive registers. + NumAllocated = 0; + continue; + } + } + + // Okay, this register is good, we can use it. + ++NumAllocated; + + // If we allocated enough consecutive registers, succeed. + if (NumAllocated == NumRegs) { + unsigned RegStart = (i-NumAllocated)+1; + unsigned RegEnd = i+1; + // Mark all of the allocated registers used. + for (unsigned i = RegStart; i != RegEnd; ++i) + Regs.push_back(RegClassRegs[i]); + + OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(), + OpInfo.ConstraintVT); + OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); + return; + } + } + + // Otherwise, we couldn't allocate enough registers for this. +} + + +/// visitInlineAsm - Handle a call to an InlineAsm object. +/// +void SelectionDAGLowering::visitInlineAsm(CallSite CS) { + InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); + + /// ConstraintOperands - Information about all of the constraints. + std::vector<SDISelAsmOperandInfo> ConstraintOperands; + + SDValue Chain = getRoot(); + SDValue Flag; + + std::set<unsigned> OutputRegs, InputRegs; + + // Do a prepass over the constraints, canonicalizing them, and building up the + // ConstraintOperands list. + std::vector<InlineAsm::ConstraintInfo> + ConstraintInfos = IA->ParseConstraints(); + + // SawEarlyClobber - Keep track of whether we saw an earlyclobber output + // constraint. If so, we can't let the register allocator allocate any input + // registers, because it will not know to avoid the earlyclobbered output reg. + bool SawEarlyClobber = false; + + unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. + unsigned ResNo = 0; // ResNo - The result number of the next output. + for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { + ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i])); + SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); + + MVT OpVT = MVT::Other; + + // Compute the value type for each operand. + switch (OpInfo.Type) { + case InlineAsm::isOutput: + // Indirect outputs just consume an argument. + if (OpInfo.isIndirect) { + OpInfo.CallOperandVal = CS.getArgument(ArgNo++); + break; + } + // The return value of the call is this value. As such, there is no + // corresponding argument. + assert(CS.getType() != Type::VoidTy && "Bad inline asm!"); + if (const StructType *STy = dyn_cast<StructType>(CS.getType())) { + OpVT = TLI.getValueType(STy->getElementType(ResNo)); + } else { + assert(ResNo == 0 && "Asm only has one result!"); + OpVT = TLI.getValueType(CS.getType()); + } + ++ResNo; + break; + case InlineAsm::isInput: + OpInfo.CallOperandVal = CS.getArgument(ArgNo++); + break; + case InlineAsm::isClobber: + // Nothing to do. + break; + } + + // If this is an input or an indirect output, process the call argument. + // BasicBlocks are labels, currently appearing only in asm's. + if (OpInfo.CallOperandVal) { + if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) + OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); + else { + OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); + const Type *OpTy = OpInfo.CallOperandVal->getType(); + // If this is an indirect operand, the operand is a pointer to the + // accessed type. + if (OpInfo.isIndirect) + OpTy = cast<PointerType>(OpTy)->getElementType(); + + // If OpTy is not a single value, it may be a struct/union that we + // can tile with integers. + if (!OpTy->isSingleValueType() && OpTy->isSized()) { + unsigned BitSize = TD->getTypeSizeInBits(OpTy); + switch (BitSize) { + default: break; + case 1: + case 8: + case 16: + case 32: + case 64: + OpTy = IntegerType::get(BitSize); + break; + } + } + + OpVT = TLI.getValueType(OpTy, true); + } + } + + OpInfo.ConstraintVT = OpVT; + + // Compute the constraint code and ConstraintType to use. + TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); + + // Keep track of whether we see an earlyclobber. + SawEarlyClobber |= OpInfo.isEarlyClobber; + + // If we see a clobber of a register, it is an early clobber. + if (!SawEarlyClobber && + OpInfo.Type == InlineAsm::isClobber && + OpInfo.ConstraintType == TargetLowering::C_Register) { + // Note that we want to ignore things that we don't track here, like + // dirflag, fpsr, flags, etc. + std::pair<unsigned, const TargetRegisterClass*> PhysReg = + TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, + OpInfo.ConstraintVT); + if (PhysReg.first || PhysReg.second) { + // This is a register we know of. + SawEarlyClobber = true; + } + } + + // If this is a memory input, and if the operand is not indirect, do what we + // need to to provide an address for the memory input. + if (OpInfo.ConstraintType == TargetLowering::C_Memory && + !OpInfo.isIndirect) { + assert(OpInfo.Type == InlineAsm::isInput && + "Can only indirectify direct input operands!"); + + // Memory operands really want the address of the value. If we don't have + // an indirect input, put it in the constpool if we can, otherwise spill + // it to a stack slot. + + // If the operand is a float, integer, or vector constant, spill to a + // constant pool entry to get its address. + Value *OpVal = OpInfo.CallOperandVal; + if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || + isa<ConstantVector>(OpVal)) { + OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), + TLI.getPointerTy()); + } else { + // Otherwise, create a stack slot and emit a store to it before the + // asm. + const Type *Ty = OpVal->getType(); + uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty); + unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); + MachineFunction &MF = DAG.getMachineFunction(); + int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align); + SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); + Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0); + OpInfo.CallOperand = StackSlot; + } + + // There is no longer a Value* corresponding to this operand. + OpInfo.CallOperandVal = 0; + // It is now an indirect operand. + OpInfo.isIndirect = true; + } + + // If this constraint is for a specific register, allocate it before + // anything else. + if (OpInfo.ConstraintType == TargetLowering::C_Register) + GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs); + } + ConstraintInfos.clear(); + + + // Second pass - Loop over all of the operands, assigning virtual or physregs + // to registerclass operands. + for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { + SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; + + // C_Register operands have already been allocated, Other/Memory don't need + // to be. + if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) + GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs); + } + + // AsmNodeOperands - The operands for the ISD::INLINEASM node. + std::vector<SDValue> AsmNodeOperands; + AsmNodeOperands.push_back(SDValue()); // reserve space for input chain + AsmNodeOperands.push_back( + DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other)); + + + // Loop over all of the inputs, copying the operand values into the + // appropriate registers and processing the output regs. + RegsForValue RetValRegs; + + // IndirectStoresToEmit - The set of stores to emit after the inline asm node. + std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; + + for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { + SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; + + switch (OpInfo.Type) { + case InlineAsm::isOutput: { + if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && + OpInfo.ConstraintType != TargetLowering::C_Register) { + // Memory output, or 'other' output (e.g. 'X' constraint). + assert(OpInfo.isIndirect && "Memory output must be indirect operand"); + + // Add information to the INLINEASM node to know about this output. + unsigned ResOpType = 4/*MEM*/ | (1 << 3); + AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, + TLI.getPointerTy())); + AsmNodeOperands.push_back(OpInfo.CallOperand); + break; + } + + // Otherwise, this is a register or register class output. + + // Copy the output from the appropriate register. Find a register that + // we can use. + if (OpInfo.AssignedRegs.Regs.empty()) { + cerr << "Couldn't allocate output reg for constraint '" + << OpInfo.ConstraintCode << "'!\n"; + exit(1); + } + + // If this is an indirect operand, store through the pointer after the + // asm. + if (OpInfo.isIndirect) { + IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, + OpInfo.CallOperandVal)); + } else { + // This is the result value of the call. + assert(CS.getType() != Type::VoidTy && "Bad inline asm!"); + // Concatenate this output onto the outputs list. + RetValRegs.append(OpInfo.AssignedRegs); + } + + // Add information to the INLINEASM node to know that this register is + // set. + OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, + AsmNodeOperands); + break; + } + case InlineAsm::isInput: { + SDValue InOperandVal = OpInfo.CallOperand; + + if (isdigit(OpInfo.ConstraintCode[0])) { // Matching constraint? + // If this is required to match an output register we have already set, + // just use its register. + unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str()); + + // Scan until we find the definition we already emitted of this operand. + // When we find it, create a RegsForValue operand. + unsigned CurOp = 2; // The first operand. + for (; OperandNo; --OperandNo) { + // Advance to the next operand. + unsigned NumOps = + cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue(); + assert(((NumOps & 7) == 2 /*REGDEF*/ || + (NumOps & 7) == 4 /*MEM*/) && + "Skipped past definitions?"); + CurOp += (NumOps>>3)+1; + } + + unsigned NumOps = + cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue(); + if ((NumOps & 7) == 2 /*REGDEF*/) { + // Add NumOps>>3 registers to MatchedRegs. + RegsForValue MatchedRegs; + MatchedRegs.TLI = &TLI; + MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); + MatchedRegs.RegVTs.push_back(AsmNodeOperands[CurOp+1].getValueType()); + for (unsigned i = 0, e = NumOps>>3; i != e; ++i) { + unsigned Reg = + cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg(); + MatchedRegs.Regs.push_back(Reg); + } + + // Use the produced MatchedRegs object to + MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag); + MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands); + break; + } else { + assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!"); + assert((NumOps >> 3) == 1 && "Unexpected number of operands"); + // Add information to the INLINEASM node to know about this input. + unsigned ResOpType = 4/*MEM*/ | (1 << 3); + AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, + TLI.getPointerTy())); + AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); + break; + } + } + + if (OpInfo.ConstraintType == TargetLowering::C_Other) { + assert(!OpInfo.isIndirect && + "Don't know how to handle indirect other inputs yet!"); + + std::vector<SDValue> Ops; + TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], + Ops, DAG); + if (Ops.empty()) { + cerr << "Invalid operand for inline asm constraint '" + << OpInfo.ConstraintCode << "'!\n"; + exit(1); + } + + // Add information to the INLINEASM node to know about this input. + unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3); + AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, + TLI.getPointerTy())); + AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); + break; + } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) { + assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); + assert(InOperandVal.getValueType() == TLI.getPointerTy() && + "Memory operands expect pointer values"); + + // Add information to the INLINEASM node to know about this input. + unsigned ResOpType = 4/*MEM*/ | (1 << 3); + AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, + TLI.getPointerTy())); + AsmNodeOperands.push_back(InOperandVal); + break; + } + + assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || + OpInfo.ConstraintType == TargetLowering::C_Register) && + "Unknown constraint type!"); + assert(!OpInfo.isIndirect && + "Don't know how to handle indirect register inputs yet!"); + + // Copy the input into the appropriate registers. + assert(!OpInfo.AssignedRegs.Regs.empty() && + "Couldn't allocate input reg!"); + + OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag); + + OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, + AsmNodeOperands); + break; + } + case InlineAsm::isClobber: { + // Add the clobbered value to the operand list, so that the register + // allocator is aware that the physreg got clobbered. + if (!OpInfo.AssignedRegs.Regs.empty()) + OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, + AsmNodeOperands); + break; + } + } + } + + // Finish up input operands. + AsmNodeOperands[0] = Chain; + if (Flag.getNode()) AsmNodeOperands.push_back(Flag); + + Chain = DAG.getNode(ISD::INLINEASM, + DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2, + &AsmNodeOperands[0], AsmNodeOperands.size()); + Flag = Chain.getValue(1); + + // If this asm returns a register value, copy the result from that register + // and set it as the value of the call. + if (!RetValRegs.Regs.empty()) { + SDValue Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag); + + // If any of the results of the inline asm is a vector, it may have the + // wrong width/num elts. This can happen for register classes that can + // contain multiple different value types. The preg or vreg allocated may + // not have the same VT as was expected. Convert it to the right type with + // bit_convert. + if (const StructType *ResSTy = dyn_cast<StructType>(CS.getType())) { + for (unsigned i = 0, e = ResSTy->getNumElements(); i != e; ++i) { + if (Val.getNode()->getValueType(i).isVector()) + Val = DAG.getNode(ISD::BIT_CONVERT, + TLI.getValueType(ResSTy->getElementType(i)), Val); + } + } else { + if (Val.getValueType().isVector()) + Val = DAG.getNode(ISD::BIT_CONVERT, TLI.getValueType(CS.getType()), + Val); + } + + setValue(CS.getInstruction(), Val); + } + + std::vector<std::pair<SDValue, Value*> > StoresToEmit; + + // Process indirect outputs, first output all of the flagged copies out of + // physregs. + for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { + RegsForValue &OutRegs = IndirectStoresToEmit[i].first; + Value *Ptr = IndirectStoresToEmit[i].second; + SDValue OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag); + StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); + } + + // Emit the non-flagged stores from the physregs. + SmallVector<SDValue, 8> OutChains; + for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) + OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first, + getValue(StoresToEmit[i].second), + StoresToEmit[i].second, 0)); + if (!OutChains.empty()) + Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, + &OutChains[0], OutChains.size()); + DAG.setRoot(Chain); +} + + +void SelectionDAGLowering::visitMalloc(MallocInst &I) { + SDValue Src = getValue(I.getOperand(0)); + + MVT IntPtr = TLI.getPointerTy(); + + if (IntPtr.bitsLT(Src.getValueType())) + Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src); + else if (IntPtr.bitsGT(Src.getValueType())) + Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src); + + // Scale the source by the type size. + uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType()); + Src = DAG.getNode(ISD::MUL, Src.getValueType(), + Src, DAG.getIntPtrConstant(ElementSize)); + + TargetLowering::ArgListTy Args; + TargetLowering::ArgListEntry Entry; + Entry.Node = Src; + Entry.Ty = TLI.getTargetData()->getIntPtrType(); + Args.push_back(Entry); + + std::pair<SDValue,SDValue> Result = + TLI.LowerCallTo(getRoot(), I.getType(), false, false, false, CallingConv::C, + true, DAG.getExternalSymbol("malloc", IntPtr), Args, DAG); + setValue(&I, Result.first); // Pointers always fit in registers + DAG.setRoot(Result.second); +} + +void SelectionDAGLowering::visitFree(FreeInst &I) { + TargetLowering::ArgListTy Args; + TargetLowering::ArgListEntry Entry; + Entry.Node = getValue(I.getOperand(0)); + Entry.Ty = TLI.getTargetData()->getIntPtrType(); + Args.push_back(Entry); + MVT IntPtr = TLI.getPointerTy(); + std::pair<SDValue,SDValue> Result = + TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, false, + CallingConv::C, true, + DAG.getExternalSymbol("free", IntPtr), Args, DAG); + DAG.setRoot(Result.second); +} + +void SelectionDAGLowering::visitVAStart(CallInst &I) { + DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(), + getValue(I.getOperand(1)), + DAG.getSrcValue(I.getOperand(1)))); +} + +void SelectionDAGLowering::visitVAArg(VAArgInst &I) { + SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(), + getValue(I.getOperand(0)), + DAG.getSrcValue(I.getOperand(0))); + setValue(&I, V); + DAG.setRoot(V.getValue(1)); +} + +void SelectionDAGLowering::visitVAEnd(CallInst &I) { + DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(), + getValue(I.getOperand(1)), + DAG.getSrcValue(I.getOperand(1)))); +} + +void SelectionDAGLowering::visitVACopy(CallInst &I) { + DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(), + getValue(I.getOperand(1)), + getValue(I.getOperand(2)), + DAG.getSrcValue(I.getOperand(1)), + DAG.getSrcValue(I.getOperand(2)))); +} + +/// TargetLowering::LowerArguments - This is the default LowerArguments +/// implementation, which just inserts a FORMAL_ARGUMENTS node. FIXME: When all +/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be +/// integrated into SDISel. +void TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG, + SmallVectorImpl<SDValue> &ArgValues) { + // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node. + SmallVector<SDValue, 3+16> Ops; + Ops.push_back(DAG.getRoot()); + Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy())); + Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy())); + + // Add one result value for each formal argument. + SmallVector<MVT, 16> RetVals; + unsigned j = 1; + for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); + I != E; ++I, ++j) { + SmallVector<MVT, 4> ValueVTs; + ComputeValueVTs(*this, I->getType(), ValueVTs); + for (unsigned Value = 0, NumValues = ValueVTs.size(); + Value != NumValues; ++Value) { + MVT VT = ValueVTs[Value]; + const Type *ArgTy = VT.getTypeForMVT(); + ISD::ArgFlagsTy Flags; + unsigned OriginalAlignment = + getTargetData()->getABITypeAlignment(ArgTy); + + if (F.paramHasAttr(j, ParamAttr::ZExt)) + Flags.setZExt(); + if (F.paramHasAttr(j, ParamAttr::SExt)) + Flags.setSExt(); + if (F.paramHasAttr(j, ParamAttr::InReg)) + Flags.setInReg(); + if (F.paramHasAttr(j, ParamAttr::StructRet)) + Flags.setSRet(); + if (F.paramHasAttr(j, ParamAttr::ByVal)) { + Flags.setByVal(); + const PointerType *Ty = cast<PointerType>(I->getType()); + const Type *ElementTy = Ty->getElementType(); + unsigned FrameAlign = getByValTypeAlignment(ElementTy); + unsigned FrameSize = getTargetData()->getABITypeSize(ElementTy); + // For ByVal, alignment should be passed from FE. BE will guess if + // this info is not there but there are cases it cannot get right. + if (F.getParamAlignment(j)) + FrameAlign = F.getParamAlignment(j); + Flags.setByValAlign(FrameAlign); + Flags.setByValSize(FrameSize); + } + if (F.paramHasAttr(j, ParamAttr::Nest)) + Flags.setNest(); + Flags.setOrigAlign(OriginalAlignment); + + MVT RegisterVT = getRegisterType(VT); + unsigned NumRegs = getNumRegisters(VT); + for (unsigned i = 0; i != NumRegs; ++i) { + RetVals.push_back(RegisterVT); + ISD::ArgFlagsTy MyFlags = Flags; + if (NumRegs > 1 && i == 0) + MyFlags.setSplit(); + // if it isn't first piece, alignment must be 1 + else if (i > 0) + MyFlags.setOrigAlign(1); + Ops.push_back(DAG.getArgFlags(MyFlags)); + } + } + } + + RetVals.push_back(MVT::Other); + + // Create the node. + SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS, + DAG.getVTList(&RetVals[0], RetVals.size()), + &Ops[0], Ops.size()).getNode(); + + // Prelower FORMAL_ARGUMENTS. This isn't required for functionality, but + // allows exposing the loads that may be part of the argument access to the + // first DAGCombiner pass. + SDValue TmpRes = LowerOperation(SDValue(Result, 0), DAG); + + // The number of results should match up, except that the lowered one may have + // an extra flag result. + assert((Result->getNumValues() == TmpRes.getNode()->getNumValues() || + (Result->getNumValues()+1 == TmpRes.getNode()->getNumValues() && + TmpRes.getValue(Result->getNumValues()).getValueType() == MVT::Flag)) + && "Lowering produced unexpected number of results!"); + + // The FORMAL_ARGUMENTS node itself is likely no longer needed. + if (Result != TmpRes.getNode() && Result->use_empty()) { + HandleSDNode Dummy(DAG.getRoot()); + DAG.RemoveDeadNode(Result); + } + + Result = TmpRes.getNode(); + + unsigned NumArgRegs = Result->getNumValues() - 1; + DAG.setRoot(SDValue(Result, NumArgRegs)); + + // Set up the return result vector. + unsigned i = 0; + unsigned Idx = 1; + for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; + ++I, ++Idx) { + SmallVector<MVT, 4> ValueVTs; + ComputeValueVTs(*this, I->getType(), ValueVTs); + for (unsigned Value = 0, NumValues = ValueVTs.size(); + Value != NumValues; ++Value) { + MVT VT = ValueVTs[Value]; + MVT PartVT = getRegisterType(VT); + + unsigned NumParts = getNumRegisters(VT); + SmallVector<SDValue, 4> Parts(NumParts); + for (unsigned j = 0; j != NumParts; ++j) + Parts[j] = SDValue(Result, i++); + + ISD::NodeType AssertOp = ISD::DELETED_NODE; + if (F.paramHasAttr(Idx, ParamAttr::SExt)) + AssertOp = ISD::AssertSext; + else if (F.paramHasAttr(Idx, ParamAttr::ZExt)) + AssertOp = ISD::AssertZext; + + ArgValues.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT, + AssertOp)); + } + } + assert(i == NumArgRegs && "Argument register count mismatch!"); +} + + +/// TargetLowering::LowerCallTo - This is the default LowerCallTo +/// implementation, which just inserts an ISD::CALL node, which is later custom +/// lowered by the target to something concrete. FIXME: When all targets are +/// migrated to using ISD::CALL, this hook should be integrated into SDISel. +std::pair<SDValue, SDValue> +TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, + bool RetSExt, bool RetZExt, bool isVarArg, + unsigned CallingConv, bool isTailCall, + SDValue Callee, + ArgListTy &Args, SelectionDAG &DAG) { + SmallVector<SDValue, 32> Ops; + Ops.push_back(Chain); // Op#0 - Chain + Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC + Ops.push_back(DAG.getConstant(isVarArg, getPointerTy())); // Op#2 - VarArg + Ops.push_back(DAG.getConstant(isTailCall, getPointerTy())); // Op#3 - Tail + Ops.push_back(Callee); + + // Handle all of the outgoing arguments. + for (unsigned i = 0, e = Args.size(); i != e; ++i) { + SmallVector<MVT, 4> ValueVTs; + ComputeValueVTs(*this, Args[i].Ty, ValueVTs); + for (unsigned Value = 0, NumValues = ValueVTs.size(); + Value != NumValues; ++Value) { + MVT VT = ValueVTs[Value]; + const Type *ArgTy = VT.getTypeForMVT(); + SDValue Op = SDValue(Args[i].Node.getNode(), Args[i].Node.getResNo() + Value); + ISD::ArgFlagsTy Flags; + unsigned OriginalAlignment = + getTargetData()->getABITypeAlignment(ArgTy); + + if (Args[i].isZExt) + Flags.setZExt(); + if (Args[i].isSExt) + Flags.setSExt(); + if (Args[i].isInReg) + Flags.setInReg(); + if (Args[i].isSRet) + Flags.setSRet(); + if (Args[i].isByVal) { + Flags.setByVal(); + const PointerType *Ty = cast<PointerType>(Args[i].Ty); + const Type *ElementTy = Ty->getElementType(); + unsigned FrameAlign = getByValTypeAlignment(ElementTy); + unsigned FrameSize = getTargetData()->getABITypeSize(ElementTy); + // For ByVal, alignment should come from FE. BE will guess if this + // info is not there but there are cases it cannot get right. + if (Args[i].Alignment) + FrameAlign = Args[i].Alignment; + Flags.setByValAlign(FrameAlign); + Flags.setByValSize(FrameSize); + } + if (Args[i].isNest) + Flags.setNest(); + Flags.setOrigAlign(OriginalAlignment); + + MVT PartVT = getRegisterType(VT); + unsigned NumParts = getNumRegisters(VT); + SmallVector<SDValue, 4> Parts(NumParts); + ISD::NodeType ExtendKind = ISD::ANY_EXTEND; + + if (Args[i].isSExt) + ExtendKind = ISD::SIGN_EXTEND; + else if (Args[i].isZExt) + ExtendKind = ISD::ZERO_EXTEND; + + getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT, ExtendKind); + + for (unsigned i = 0; i != NumParts; ++i) { + // if it isn't first piece, alignment must be 1 + ISD::ArgFlagsTy MyFlags = Flags; + if (NumParts > 1 && i == 0) + MyFlags.setSplit(); + else if (i != 0) + MyFlags.setOrigAlign(1); + + Ops.push_back(Parts[i]); + Ops.push_back(DAG.getArgFlags(MyFlags)); + } + } + } + + // Figure out the result value types. We start by making a list of + // the potentially illegal return value types. + SmallVector<MVT, 4> LoweredRetTys; + SmallVector<MVT, 4> RetTys; + ComputeValueVTs(*this, RetTy, RetTys); + + // Then we translate that to a list of legal types. + for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { + MVT VT = RetTys[I]; + MVT RegisterVT = getRegisterType(VT); + unsigned NumRegs = getNumRegisters(VT); + for (unsigned i = 0; i != NumRegs; ++i) + LoweredRetTys.push_back(RegisterVT); + } + + LoweredRetTys.push_back(MVT::Other); // Always has a chain. + + // Create the CALL node. + SDValue Res = DAG.getNode(ISD::CALL, + DAG.getVTList(&LoweredRetTys[0], + LoweredRetTys.size()), + &Ops[0], Ops.size()); + Chain = Res.getValue(LoweredRetTys.size() - 1); + + // Gather up the call result into a single value. + if (RetTy != Type::VoidTy) { + ISD::NodeType AssertOp = ISD::DELETED_NODE; + + if (RetSExt) + AssertOp = ISD::AssertSext; + else if (RetZExt) + AssertOp = ISD::AssertZext; + + SmallVector<SDValue, 4> ReturnValues; + unsigned RegNo = 0; + for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { + MVT VT = RetTys[I]; + MVT RegisterVT = getRegisterType(VT); + unsigned NumRegs = getNumRegisters(VT); + unsigned RegNoEnd = NumRegs + RegNo; + SmallVector<SDValue, 4> Results; + for (; RegNo != RegNoEnd; ++RegNo) + Results.push_back(Res.getValue(RegNo)); + SDValue ReturnValue = + getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT, + AssertOp); + ReturnValues.push_back(ReturnValue); + } + Res = DAG.getMergeValues(DAG.getVTList(&RetTys[0], RetTys.size()), + &ReturnValues[0], ReturnValues.size()); + } + + return std::make_pair(Res, Chain); +} + +SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) { + assert(0 && "LowerOperation not implemented for this target!"); + abort(); + return SDValue(); +} + + +void SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, unsigned Reg) { + SDValue Op = getValue(V); + assert((Op.getOpcode() != ISD::CopyFromReg || + cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && + "Copy from a reg to the same reg!"); + assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); + + RegsForValue RFV(TLI, Reg, V->getType()); + SDValue Chain = DAG.getEntryNode(); + RFV.getCopyToRegs(Op, DAG, Chain, 0); + PendingExports.push_back(Chain); +} + +#include "llvm/CodeGen/SelectionDAGISel.h" + +void SelectionDAGISel:: +LowerArguments(BasicBlock *LLVMBB) { + // If this is the entry block, emit arguments. + Function &F = *LLVMBB->getParent(); + SDValue OldRoot = SDL->DAG.getRoot(); + SmallVector<SDValue, 16> Args; + TLI.LowerArguments(F, SDL->DAG, Args); + + unsigned a = 0; + for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); + AI != E; ++AI) { + SmallVector<MVT, 4> ValueVTs; + ComputeValueVTs(TLI, AI->getType(), ValueVTs); + unsigned NumValues = ValueVTs.size(); + if (!AI->use_empty()) { + SDL->setValue(AI, SDL->DAG.getMergeValues(&Args[a], NumValues)); + // If this argument is live outside of the entry block, insert a copy from + // whereever we got it to the vreg that other BB's will reference it as. + DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo->ValueMap.find(AI); + if (VMI != FuncInfo->ValueMap.end()) { + SDL->CopyValueToVirtualRegister(AI, VMI->second); + } + } + a += NumValues; + } + + // Finally, if the target has anything special to do, allow it to do so. + // FIXME: this should insert code into the DAG! + EmitFunctionEntryCode(F, SDL->DAG.getMachineFunction()); +} + +/// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to +/// ensure constants are generated when needed. Remember the virtual registers +/// that need to be added to the Machine PHI nodes as input. We cannot just +/// directly add them, because expansion might result in multiple MBB's for one +/// BB. As such, the start of the BB might correspond to a different MBB than +/// the end. +/// +void +SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) { + TerminatorInst *TI = LLVMBB->getTerminator(); + + SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; + + // Check successor nodes' PHI nodes that expect a constant to be available + // from this block. + for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { + BasicBlock *SuccBB = TI->getSuccessor(succ); + if (!isa<PHINode>(SuccBB->begin())) continue; + MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB]; + + // If this terminator has multiple identical successors (common for + // switches), only handle each succ once. + if (!SuccsHandled.insert(SuccMBB)) continue; + + MachineBasicBlock::iterator MBBI = SuccMBB->begin(); + PHINode *PN; + + // At this point we know that there is a 1-1 correspondence between LLVM PHI + // nodes and Machine PHI nodes, but the incoming operands have not been + // emitted yet. + for (BasicBlock::iterator I = SuccBB->begin(); + (PN = dyn_cast<PHINode>(I)); ++I) { + // Ignore dead phi's. + if (PN->use_empty()) continue; + + unsigned Reg; + Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); + + if (Constant *C = dyn_cast<Constant>(PHIOp)) { + unsigned &RegOut = SDL->ConstantsOut[C]; + if (RegOut == 0) { + RegOut = FuncInfo->CreateRegForValue(C); + SDL->CopyValueToVirtualRegister(C, RegOut); + } + Reg = RegOut; + } else { + Reg = FuncInfo->ValueMap[PHIOp]; + if (Reg == 0) { + assert(isa<AllocaInst>(PHIOp) && + FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && + "Didn't codegen value into a register!??"); + Reg = FuncInfo->CreateRegForValue(PHIOp); + SDL->CopyValueToVirtualRegister(PHIOp, Reg); + } + } + + // Remember that this register needs to added to the machine PHI node as + // the input for this MBB. + SmallVector<MVT, 4> ValueVTs; + ComputeValueVTs(TLI, PN->getType(), ValueVTs); + for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { + MVT VT = ValueVTs[vti]; + unsigned NumRegisters = TLI.getNumRegisters(VT); + for (unsigned i = 0, e = NumRegisters; i != e; ++i) + SDL->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); + Reg += NumRegisters; + } + } + } + SDL->ConstantsOut.clear(); + + // Lower the terminator after the copies are emitted. + SDL->visit(*LLVMBB->getTerminator()); +} + + |