aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp')
-rw-r--r--lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp452
1 files changed, 452 insertions, 0 deletions
diff --git a/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp b/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp
new file mode 100644
index 0000000000..d4e5a45876
--- /dev/null
+++ b/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp
@@ -0,0 +1,452 @@
+//===-------- LegalizeFloatTypes.cpp - Legalization of float types --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements float type expansion and conversion of float types to
+// integer types on behalf of LegalizeTypes.
+// Converting to integer is the act of turning a computation in an illegal
+// floating point type into a computation in an integer type of the same size.
+// For example, turning f32 arithmetic into operations using i32. Also known as
+// "soft float". The result is equivalent to bitcasting the float value to the
+// integer type.
+// Expansion is the act of changing a computation in an illegal type to be a
+// computation in multiple registers of a smaller type. For example,
+// implementing ppcf128 arithmetic in two f64 registers.
+//
+//===----------------------------------------------------------------------===//
+
+#include "LegalizeTypes.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+using namespace llvm;
+
+/// GetFPLibCall - Return the right libcall for the given floating point type.
+static RTLIB::Libcall GetFPLibCall(MVT VT,
+ RTLIB::Libcall Call_F32,
+ RTLIB::Libcall Call_F64,
+ RTLIB::Libcall Call_F80,
+ RTLIB::Libcall Call_PPCF128) {
+ return
+ VT == MVT::f32 ? Call_F32 :
+ VT == MVT::f64 ? Call_F64 :
+ VT == MVT::f80 ? Call_F80 :
+ VT == MVT::ppcf128 ? Call_PPCF128 :
+ RTLIB::UNKNOWN_LIBCALL;
+}
+
+//===----------------------------------------------------------------------===//
+// Result Float to Integer Conversion.
+//===----------------------------------------------------------------------===//
+
+void DAGTypeLegalizer::PromoteFloatResult(SDNode *N, unsigned ResNo) {
+ DEBUG(cerr << "Promote float result " << ResNo << ": "; N->dump(&DAG);
+ cerr << "\n");
+ SDOperand R = SDOperand();
+
+ // FIXME: Custom lowering for float-to-int?
+#if 0
+ // See if the target wants to custom convert this node to an integer.
+ if (TLI.getOperationAction(N->getOpcode(), N->getValueType(0)) ==
+ TargetLowering::Custom) {
+ // If the target wants to, allow it to lower this itself.
+ if (SDNode *P = TLI.FloatToIntOperationResult(N, DAG)) {
+ // Everything that once used N now uses P. We are guaranteed that the
+ // result value types of N and the result value types of P match.
+ ReplaceNodeWith(N, P);
+ return;
+ }
+ }
+#endif
+
+ switch (N->getOpcode()) {
+ default:
+#ifndef NDEBUG
+ cerr << "PromoteFloatResult #" << ResNo << ": ";
+ N->dump(&DAG); cerr << "\n";
+#endif
+ assert(0 && "Do not know how to convert the result of this operator!");
+ abort();
+
+ case ISD::BIT_CONVERT: R = PromoteFloatRes_BIT_CONVERT(N); break;
+ case ISD::BUILD_PAIR: R = PromoteFloatRes_BUILD_PAIR(N); break;
+ case ISD::ConstantFP:
+ R = PromoteFloatRes_ConstantFP(cast<ConstantFPSDNode>(N));
+ break;
+ case ISD::FCOPYSIGN: R = PromoteFloatRes_FCOPYSIGN(N); break;
+ case ISD::LOAD: R = PromoteFloatRes_LOAD(N); break;
+ case ISD::SINT_TO_FP:
+ case ISD::UINT_TO_FP: R = PromoteFloatRes_XINT_TO_FP(N); break;
+
+ case ISD::FADD: R = PromoteFloatRes_FADD(N); break;
+ case ISD::FMUL: R = PromoteFloatRes_FMUL(N); break;
+ case ISD::FSUB: R = PromoteFloatRes_FSUB(N); break;
+ }
+
+ // If R is null, the sub-method took care of registering the result.
+ if (R.Val)
+ SetPromotedFloat(SDOperand(N, ResNo), R);
+}
+
+SDOperand DAGTypeLegalizer::PromoteFloatRes_BIT_CONVERT(SDNode *N) {
+ return BitConvertToInteger(N->getOperand(0));
+}
+
+SDOperand DAGTypeLegalizer::PromoteFloatRes_BUILD_PAIR(SDNode *N) {
+ // Convert the inputs to integers, and build a new pair out of them.
+ return DAG.getNode(ISD::BUILD_PAIR,
+ TLI.getTypeToTransformTo(N->getValueType(0)),
+ BitConvertToInteger(N->getOperand(0)),
+ BitConvertToInteger(N->getOperand(1)));
+}
+
+SDOperand DAGTypeLegalizer::PromoteFloatRes_ConstantFP(ConstantFPSDNode *N) {
+ return DAG.getConstant(N->getValueAPF().convertToAPInt(),
+ TLI.getTypeToTransformTo(N->getValueType(0)));
+}
+
+SDOperand DAGTypeLegalizer::PromoteFloatRes_FADD(SDNode *N) {
+ MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ SDOperand Ops[2] = { GetPromotedFloat(N->getOperand(0)),
+ GetPromotedFloat(N->getOperand(1)) };
+ return MakeLibCall(GetFPLibCall(N->getValueType(0),
+ RTLIB::ADD_F32,
+ RTLIB::ADD_F64,
+ RTLIB::ADD_F80,
+ RTLIB::ADD_PPCF128),
+ NVT, Ops, 2, false/*sign irrelevant*/);
+}
+
+SDOperand DAGTypeLegalizer::PromoteFloatRes_FCOPYSIGN(SDNode *N) {
+ SDOperand LHS = GetPromotedFloat(N->getOperand(0));
+ SDOperand RHS = BitConvertToInteger(N->getOperand(1));
+
+ MVT LVT = LHS.getValueType();
+ MVT RVT = RHS.getValueType();
+
+ unsigned LSize = LVT.getSizeInBits();
+ unsigned RSize = RVT.getSizeInBits();
+
+ // First get the sign bit of second operand.
+ SDOperand SignBit = DAG.getNode(ISD::SHL, RVT, DAG.getConstant(1, RVT),
+ DAG.getConstant(RSize - 1,
+ TLI.getShiftAmountTy()));
+ SignBit = DAG.getNode(ISD::AND, RVT, RHS, SignBit);
+
+ // Shift right or sign-extend it if the two operands have different types.
+ int SizeDiff = RVT.getSizeInBits() - LVT.getSizeInBits();
+ if (SizeDiff > 0) {
+ SignBit = DAG.getNode(ISD::SRL, RVT, SignBit,
+ DAG.getConstant(SizeDiff, TLI.getShiftAmountTy()));
+ SignBit = DAG.getNode(ISD::TRUNCATE, LVT, SignBit);
+ } else if (SizeDiff < 0) {
+ SignBit = DAG.getNode(ISD::ANY_EXTEND, LVT, SignBit);
+ SignBit = DAG.getNode(ISD::SHL, LVT, SignBit,
+ DAG.getConstant(-SizeDiff, TLI.getShiftAmountTy()));
+ }
+
+ // Clear the sign bit of the first operand.
+ SDOperand Mask = DAG.getNode(ISD::SHL, LVT, DAG.getConstant(1, LVT),
+ DAG.getConstant(LSize - 1,
+ TLI.getShiftAmountTy()));
+ Mask = DAG.getNode(ISD::SUB, LVT, Mask, DAG.getConstant(1, LVT));
+ LHS = DAG.getNode(ISD::AND, LVT, LHS, Mask);
+
+ // Or the value with the sign bit.
+ return DAG.getNode(ISD::OR, LVT, LHS, SignBit);
+}
+
+SDOperand DAGTypeLegalizer::PromoteFloatRes_FMUL(SDNode *N) {
+ MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ SDOperand Ops[2] = { GetPromotedFloat(N->getOperand(0)),
+ GetPromotedFloat(N->getOperand(1)) };
+ return MakeLibCall(GetFPLibCall(N->getValueType(0),
+ RTLIB::MUL_F32,
+ RTLIB::MUL_F64,
+ RTLIB::MUL_F80,
+ RTLIB::MUL_PPCF128),
+ NVT, Ops, 2, false/*sign irrelevant*/);
+}
+
+SDOperand DAGTypeLegalizer::PromoteFloatRes_FSUB(SDNode *N) {
+ MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ SDOperand Ops[2] = { GetPromotedFloat(N->getOperand(0)),
+ GetPromotedFloat(N->getOperand(1)) };
+ return MakeLibCall(GetFPLibCall(N->getValueType(0),
+ RTLIB::SUB_F32,
+ RTLIB::SUB_F64,
+ RTLIB::SUB_F80,
+ RTLIB::SUB_PPCF128),
+ NVT, Ops, 2, false/*sign irrelevant*/);
+}
+
+SDOperand DAGTypeLegalizer::PromoteFloatRes_LOAD(SDNode *N) {
+ LoadSDNode *L = cast<LoadSDNode>(N);
+ MVT VT = N->getValueType(0);
+ MVT NVT = TLI.getTypeToTransformTo(VT);
+
+ if (L->getExtensionType() == ISD::NON_EXTLOAD)
+ return DAG.getLoad(L->getAddressingMode(), L->getExtensionType(),
+ NVT, L->getChain(), L->getBasePtr(), L->getOffset(),
+ L->getSrcValue(), L->getSrcValueOffset(), NVT,
+ L->isVolatile(), L->getAlignment());
+
+ // Do a non-extending load followed by FP_EXTEND.
+ SDOperand NL = DAG.getLoad(L->getAddressingMode(), ISD::NON_EXTLOAD,
+ L->getMemoryVT(), L->getChain(),
+ L->getBasePtr(), L->getOffset(),
+ L->getSrcValue(), L->getSrcValueOffset(),
+ L->getMemoryVT(),
+ L->isVolatile(), L->getAlignment());
+ return BitConvertToInteger(DAG.getNode(ISD::FP_EXTEND, VT, NL));
+}
+
+SDOperand DAGTypeLegalizer::PromoteFloatRes_XINT_TO_FP(SDNode *N) {
+ bool isSigned = N->getOpcode() == ISD::SINT_TO_FP;
+ MVT DestVT = N->getValueType(0);
+ SDOperand Op = N->getOperand(0);
+
+ if (Op.getValueType() == MVT::i32) {
+ // simple 32-bit [signed|unsigned] integer to float/double expansion
+
+ // Get the stack frame index of a 8 byte buffer.
+ SDOperand StackSlot = DAG.CreateStackTemporary(MVT::f64);
+
+ // word offset constant for Hi/Lo address computation
+ SDOperand Offset =
+ DAG.getConstant(MVT(MVT::i32).getSizeInBits() / 8,
+ TLI.getPointerTy());
+ // set up Hi and Lo (into buffer) address based on endian
+ SDOperand Hi = StackSlot;
+ SDOperand Lo = DAG.getNode(ISD::ADD, TLI.getPointerTy(), StackSlot, Offset);
+ if (TLI.isLittleEndian())
+ std::swap(Hi, Lo);
+
+ // if signed map to unsigned space
+ SDOperand OpMapped;
+ if (isSigned) {
+ // constant used to invert sign bit (signed to unsigned mapping)
+ SDOperand SignBit = DAG.getConstant(0x80000000u, MVT::i32);
+ OpMapped = DAG.getNode(ISD::XOR, MVT::i32, Op, SignBit);
+ } else {
+ OpMapped = Op;
+ }
+ // store the lo of the constructed double - based on integer input
+ SDOperand Store1 = DAG.getStore(DAG.getEntryNode(),
+ OpMapped, Lo, NULL, 0);
+ // initial hi portion of constructed double
+ SDOperand InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
+ // store the hi of the constructed double - biased exponent
+ SDOperand Store2=DAG.getStore(Store1, InitialHi, Hi, NULL, 0);
+ // load the constructed double
+ SDOperand Load = DAG.getLoad(MVT::f64, Store2, StackSlot, NULL, 0);
+ // FP constant to bias correct the final result
+ SDOperand Bias = DAG.getConstantFP(isSigned ?
+ BitsToDouble(0x4330000080000000ULL)
+ : BitsToDouble(0x4330000000000000ULL),
+ MVT::f64);
+ // subtract the bias
+ SDOperand Sub = DAG.getNode(ISD::FSUB, MVT::f64, Load, Bias);
+ // final result
+ SDOperand Result;
+ // handle final rounding
+ if (DestVT == MVT::f64) {
+ // do nothing
+ Result = Sub;
+ } else if (DestVT.bitsLT(MVT::f64)) {
+ Result = DAG.getNode(ISD::FP_ROUND, DestVT, Sub,
+ DAG.getIntPtrConstant(0));
+ } else if (DestVT.bitsGT(MVT::f64)) {
+ Result = DAG.getNode(ISD::FP_EXTEND, DestVT, Sub);
+ }
+ return BitConvertToInteger(Result);
+ }
+ assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
+ SDOperand Tmp1 = DAG.getNode(ISD::SINT_TO_FP, DestVT, Op);
+
+ SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultType(Op), Op,
+ DAG.getConstant(0, Op.getValueType()),
+ ISD::SETLT);
+ SDOperand Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
+ SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(),
+ SignSet, Four, Zero);
+
+ // If the sign bit of the integer is set, the large number will be treated
+ // as a negative number. To counteract this, the dynamic code adds an
+ // offset depending on the data type.
+ uint64_t FF;
+ switch (Op.getValueType().getSimpleVT()) {
+ default: assert(0 && "Unsupported integer type!");
+ case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float)
+ case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float)
+ case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float)
+ case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float)
+ }
+ if (TLI.isLittleEndian()) FF <<= 32;
+ static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF);
+
+ SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
+ CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset);
+ SDOperand FudgeInReg;
+ if (DestVT == MVT::f32)
+ FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx,
+ PseudoSourceValue::getConstantPool(), 0);
+ else {
+ FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, DestVT,
+ DAG.getEntryNode(), CPIdx,
+ PseudoSourceValue::getConstantPool(), 0,
+ MVT::f32);
+ }
+
+ return BitConvertToInteger(DAG.getNode(ISD::FADD, DestVT, Tmp1, FudgeInReg));
+}
+
+
+//===----------------------------------------------------------------------===//
+// Operand Float to Integer Conversion..
+//===----------------------------------------------------------------------===//
+
+bool DAGTypeLegalizer::PromoteFloatOperand(SDNode *N, unsigned OpNo) {
+ DEBUG(cerr << "Promote float operand " << OpNo << ": "; N->dump(&DAG);
+ cerr << "\n");
+ SDOperand Res(0, 0);
+
+ // FIXME: Custom lowering for float-to-int?
+#if 0
+ if (TLI.getOperationAction(N->getOpcode(), N->getOperand(OpNo).getValueType())
+ == TargetLowering::Custom)
+ Res = TLI.LowerOperation(SDOperand(N, 0), DAG);
+#endif
+
+ if (Res.Val == 0) {
+ switch (N->getOpcode()) {
+ default:
+#ifndef NDEBUG
+ cerr << "PromoteFloatOperand Op #" << OpNo << ": ";
+ N->dump(&DAG); cerr << "\n";
+#endif
+ assert(0 && "Do not know how to convert this operator's operand!");
+ abort();
+
+ case ISD::BIT_CONVERT: Res = PromoteFloatOp_BIT_CONVERT(N); break;
+ }
+ }
+
+ // If the result is null, the sub-method took care of registering results etc.
+ if (!Res.Val) return false;
+
+ // If the result is N, the sub-method updated N in place. Check to see if any
+ // operands are new, and if so, mark them.
+ if (Res.Val == N) {
+ // Mark N as new and remark N and its operands. This allows us to correctly
+ // revisit N if it needs another step of promotion and allows us to visit
+ // any new operands to N.
+ ReanalyzeNode(N);
+ return true;
+ }
+
+ assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
+ "Invalid operand expansion");
+
+ ReplaceValueWith(SDOperand(N, 0), Res);
+ return false;
+}
+
+SDOperand DAGTypeLegalizer::PromoteFloatOp_BIT_CONVERT(SDNode *N) {
+ return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0),
+ GetPromotedFloat(N->getOperand(0)));
+}
+
+
+//===----------------------------------------------------------------------===//
+// Float Result Expansion
+//===----------------------------------------------------------------------===//
+
+/// ExpandFloatResult - This method is called when the specified result of the
+/// specified node is found to need expansion. At this point, the node may also
+/// have invalid operands or may have other results that need promotion, we just
+/// know that (at least) one result needs expansion.
+void DAGTypeLegalizer::ExpandFloatResult(SDNode *N, unsigned ResNo) {
+ DEBUG(cerr << "Expand float result: "; N->dump(&DAG); cerr << "\n");
+ SDOperand Lo, Hi;
+ Lo = Hi = SDOperand();
+
+ // See if the target wants to custom expand this node.
+ if (TLI.getOperationAction(N->getOpcode(), N->getValueType(0)) ==
+ TargetLowering::Custom) {
+ // If the target wants to, allow it to lower this itself.
+ if (SDNode *P = TLI.ExpandOperationResult(N, DAG)) {
+ // Everything that once used N now uses P. We are guaranteed that the
+ // result value types of N and the result value types of P match.
+ ReplaceNodeWith(N, P);
+ return;
+ }
+ }
+
+ switch (N->getOpcode()) {
+ default:
+#ifndef NDEBUG
+ cerr << "ExpandFloatResult #" << ResNo << ": ";
+ N->dump(&DAG); cerr << "\n";
+#endif
+ assert(0 && "Do not know how to expand the result of this operator!");
+ abort();
+ }
+
+ // If Lo/Hi is null, the sub-method took care of registering results etc.
+ if (Lo.Val)
+ SetExpandedFloat(SDOperand(N, ResNo), Lo, Hi);
+}
+
+
+//===----------------------------------------------------------------------===//
+// Float Operand Expansion
+//===----------------------------------------------------------------------===//
+
+/// ExpandFloatOperand - This method is called when the specified operand of the
+/// specified node is found to need expansion. At this point, all of the result
+/// types of the node are known to be legal, but other operands of the node may
+/// need promotion or expansion as well as the specified one.
+bool DAGTypeLegalizer::ExpandFloatOperand(SDNode *N, unsigned OpNo) {
+ DEBUG(cerr << "Expand float operand: "; N->dump(&DAG); cerr << "\n");
+ SDOperand Res(0, 0);
+
+ if (TLI.getOperationAction(N->getOpcode(), N->getOperand(OpNo).getValueType())
+ == TargetLowering::Custom)
+ Res = TLI.LowerOperation(SDOperand(N, 0), DAG);
+
+ if (Res.Val == 0) {
+ switch (N->getOpcode()) {
+ default:
+ #ifndef NDEBUG
+ cerr << "ExpandFloatOperand Op #" << OpNo << ": ";
+ N->dump(&DAG); cerr << "\n";
+ #endif
+ assert(0 && "Do not know how to expand this operator's operand!");
+ abort();
+ }
+ }
+
+ // If the result is null, the sub-method took care of registering results etc.
+ if (!Res.Val) return false;
+ // If the result is N, the sub-method updated N in place. Check to see if any
+ // operands are new, and if so, mark them.
+ if (Res.Val == N) {
+ // Mark N as new and remark N and its operands. This allows us to correctly
+ // revisit N if it needs another step of expansion and allows us to visit
+ // any new operands to N.
+ ReanalyzeNode(N);
+ return true;
+ }
+
+ assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
+ "Invalid operand expansion");
+
+ ReplaceValueWith(SDOperand(N, 0), Res);
+ return false;
+}